DATA REDUCTIONIN NON-PARAMETRIC
STATISTICAL ANALYSIS AND OPTIMAL
TRANSPORT METHODS

by

CHENG MENG
(Under the Direction of Wenxuan Zhong and Ping Ma )
ABSTRACT

With advances in science and technologies in the past decade, the amount
of data generated and recorded has grown enormously in virtually all fields of in-
dustry and science. This extraordinary amount of data provides unprecedented
opportunities for data-driven decision-making and knowledge discovery. How-
ever, the task of analyzing such large-scale dataset poses significant challenges
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and higher efficiency. In this thesis, I will cover some state-of-the-art data re-
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subsampling methods and some applications of sufficient dimension reduction
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CHAPTER I

LowCoN: ADESIGN-BASED
SUBSAMPLING APPROACH IN
A MISSPECIFIED LINEAR
MoODEL

We consider a measurement constrained supervised learning problem, thatis, (1)
tull sample of the predictors are given;(2) the response observations are unavail-
able and expensive to measure. Thus, itisideal to select a subsample of predictor
observations, measure the corresponding responses, and then fit the supervised
learning model on the subsample of the predictors and responses. However,
model fitting is a dynamic process, the postulated model for the data could
be misspecified. Our empirical studies demonstrate that most of the existing
subsampling methods have unsatisfactory performance when the models are
misspecified. In this chapter, we develop a novel subsampling method, called
“LowCon", in a misspecified linear model, where there is an unknown misspec-
ified term in addition to linear terms of predictors. Our method utilizes the
Latin hypercube design in experimental design to achieve a robust estimation.
We show the estimator using the proposed subsample approximately minimizes
the so-called “worst-case” bias, with respect to many possible misspecification
terms. Both the simulation and real-data analysis demonstrate the proposed es-
timator is more robust than several subsample least squares estimators obtained

by state-of-the-art subsampling methods.



1.1 Introduction

Measurement constrained supervised learning is an emerging problem in ma-
chine learning (Derezinski et al., 2018} Settles, 20125 Y. Wang et al., 2or7)). In
this problem, the predictor observations (also called unlabeled data points in
machine learning literature) are collected, but the response observations are
unavailable and difficult or expensive to obtain. Take speech recognition as an
example, one may easily get plenty of unlabeled audio data, but the accurate
labeling of speech utterances is extremely time-consuming and requires trained
linguists. For an unlabeled speech of one minute, it can take up to ten minutes
for the word-level annotation and nearly seven hours for the phoneme-level an-
notation (Zhu et al,,|200s). A more concrete example is the task of predicting
the soil functional property, where the soil function property refers to the prop-
erty related to a soil’s capacity to support essential ecosystem service (Hengl
et al., 2o1s). Suppose one wants to model the relationship between the soil
functional property and some predictors that can be easily derived from Earth
remote sensing data. To get the response, the accurate measurement of the soil
property, a sample of soil from the target area is needed. The response thus can
be extremely time-consuming or even impractical to obtain, especially when
the target area is off the beaten path. Thus, it is ideal to select a subsample of
predictor observations, measure the corresponding responses, and then fit the
supervised learning model on the subsample of the predictors and responses.

In this chapter, we study the subsampling method and postulate a general
linear model for linking the response and predictors. One of the natural sub-
sampling methods is the uniform subsampling method (also called the simple
random subsampling method), i.e., selecting a subsample with the uniform
sampling probability. For many problems, it is straightforward to construct
“worst-case” input for which uniform subsampling method will perform poorly
(Cochran, 2007; Thompson, [2012)). Motivated by this, there has been a great
deal of work on developing random subsampling methods that select a subsam-
ple with a data-dependent non-uniform sampling probability (Mahoney et al.,
2011). One popular choice of the sampling probability is the normalized statisti-
cal leverage scores, leading to the algorithmic leveraging approach (Ma & Sun,
20155 Meng et al., por7; X. Zhang et al., 2018)).

Such an approach has already yielded impressive algorithmic and theoretical
benefits in the linear regression model (Drineas et al., 20125 Ma, Mahoney, et
al., 2o15; Mahoney et al., 2011). Besides linear models, the idea of algorithmic
leveraging is also widely applied in logistic regression, and Nystrom method
(Alaoui & Mahoney, 2015).



Difterent from random subsampling methods, there also exist some deter-
ministic subsampling methods which select the subsample based on certain
rules, especially the optimality criteria. Optimality criteria are often used in the
context of the design of experiments (Pukelsheim, 2006)), which includes but
not limited to A-, D- and E-optimality.

Y. Wang et al., 2017 proposed a computationally tractable subsampling ap-
proach based on the A-optimality criterion. D-optimality criterion was consid-
ered in H. Wang et al., 2018, in which the author introduced the information-
based optimal subdata selection method for selecting the most informative sub-
data.

data point
® subsample

Figure 1.1: Example of subsampling in misspecified linear model

While the existing subsampling methods have already shown impressive
performance on coeflicient estimation and model prediction, the performance
highly relies on the model assumption. However, model fitting is a dynamic pro-
cess, and a postulated model could be misspecified. When the model is misspec-
ified, most of these methods may lead to unacceptable results. Take the random
subsampling method as an example; note that different model assumptions yield
different sampling probabilities. Hence the selected subsample may be mislead-
ing when the model is misspecified, resulting in poor estimation or prediction.
For deterministic subsampling methods, the key to the success of these meth-
ods is the optimality criteria they used. The optimality criteria, however, differs
from model to model. An optimality criterion derived from a postulated model
does not necessarily lead to a decent subsampling method for the true model.
We now demonstrate the issue of model misspecification using a toy example.
In this example, data are generated from the model y; = x; + sin(27)/2 + ¢;,
i = 1,2,...,n, where {¢;}}, are the i.i.d. standard normal errors. In Fig-
ure .1, the data points (blue points) and the true function (blue curve) are
shown in the left panel. The red line in the right panel shows the full-sample



linear regression line based on only z;, with the nonlinear term removed. We
postulate a linear model without the nonlinear term and randomly select a sub-
sample of size ten (black dots) using the leverage subsampling method (Ma,
Mahoney, et al., 2015). The subsample linear regression line is shown as the
black line, which deviates severely from the red line. Such an observation sug-
gests the performance of a subsample least squares estimator may deteriorate
significantly when the model is misspecified.

In practice, the explicit form of the underlying true model is almost always
unknown to the practitioner. The subsample hence is highly desirable to be
robust to possible model misspecification. To achieve the goal, Tsao and Ling,
2012/ proposed to construct a robust estimator using bootstrap. One limitation
of this method is that it can not be applied under the measurement-constrained
setting since the value of the whole response vector is needed in this method to
obtain the estimator.

In this chapter, we bridge the gap by providing the first statistical analysis of
the subsampling method under the scenario where the underlying linear model
contains unknown misspecification. We do so in the context of coefficient
estimation by performing the least squares estimation on the selected subsample.
Our major theoretical contribution is to provide an analytic framework for
evaluating the mean squared error (MSE) of the subsample least squares (SLS)
estimator in a misspecified linear model. Within this framework, we show it
is very easy to construct a “worst-case” sample and a misspecification term for
which an SLS estimator will have an arbitrary large mean squared error. We
also show that an SLS estimator is robust if and only if the information matrix
of the selected subsample has a relatively-low condition number, a traditional
concept from numerical analysis (Trefethen & Bau II1, 1997).

Based on these theoretical results, we propose and analyze a novel subsam-
pling algorithm, called “LowCon". LowCon is designed to select the subsample,
which takes the balance of variance and bias to the estimation of the coefficient.
This algorithm involves selecting the subsample, which approximates a set of
orthogonal Latin hypercube design points, a technique in experimental design
(Ye,1998). We show the proposed SLS estimator has a finite upper bound of the
mean squared error, and it approximately minimizes the “worst-case” bias, with
respect to all the possible misspecification terms. Our main empirical contribu-
tion is to provide a detailed evaluation of the robustness of the SLS estimators
on both synthetic and real datasets. The empirical results indicate the proposed
estimator is the only one among all that is robust to various types of misspeci-
fication terms. We thus recommend the use of LowCon in the measurement-

constrained linear regression problem in the future.



1.2 Model Setup

In this section, we first introduce the linear model that contains unknown mis-
specification. We then consider the subsample least squares estimator, and we
derive the mean squared error of these estimators under this model. We show
that an SLS estimator is robust if and only if the information matrix of the
selected subsample has a relatively-low condition number.

Throughout this chapter, || - || represents the Euclidean norm. Let Ay ()
and A4, (+) be the smallest and the largest eigenvalue of a matrix, and o (+)
and a4 (+) be the corresponding eigenvectors, respectively. We use s (-) and
Sp(+) to denote the largest and the smallest non-zero singular value of a matrix

with p columns, respectively.

r.2.1 Misspecified Linear Model

Suppose the underlying true model has the form
yi:w?l’)’o—{—ui, 1=1,2,...,n, (L)

where y;s are the input responses, ;s are the input predictors, and By € R?
(p < n) is the coefficient. The random errors {u;}!" | are independently
distributed, and u; follows non-centered normal distribution N (h(x;), o),
t =1, ..., n. In this chapter, we consider the unknown multivariate function
h that satisfies

h(x
max| (@)l = q, (1.2)

= [|z]|
where @ > 0 is a constant. Lety = (yi,...,¥ys)" be the response vector,
X = (x1,...,x,)" asthe predictor matrix,and hx = (h(z1),..., h(z,))"

as the misspecification term. For model-identifiability, we assume the matrix
[X; hx] has a full column rank. When @; = (@1, ..., %i,)" has bounded
value, some examples of h include h(x;) = sin(z;1) and h(x;) = x1240.

We consider the scenario that the practitioner has no prior information
about the true model and the practitioner postulates a classical linear model

Yi :wZTBO—i_Eia L= 1,2,...,71, (13)

where the random errors {¢;}", follow i.i.d. normal distribution N (0, o?).
Model (1.3)) is thus a misspecified linear model, and the existence of the misspec-
ification term in the true model may result in the degenerated performance



of the coefhicient estimation and model prediction. For example, the full-sample
ordinary least squares (OLS) estimator, known as the best linear unbiased esti-
mator, will lead to a biased estimation for the true coefficient when the model
is misspecified (Box & Draper, 1959). We refer to Kiefer, 197s/and Sacks and
Ylvisaker, 1978 for more discussion about the misspecified linear model.

In our measurement-constrained setting, the practitioner is initially given
the full sample of predictors {; } ;. Although required as the input in model
, the responses {y; }I;, however, are hidden unless explicitly requested.
The practitioner is then allowed to reveal a subset of {y; }-;, denoted by y* =
(yi,...,y5)", where p < r < n. The goal is to estimate the true coefficient
By by using y* and the corresponding subsample {x} }/_;. The subsample
predictor matrix is denoted by R = (3, ..., x})’. A natural estimator for
the coeflicient By is the subsample least squares estimator (Y. Wang et al., 2017),

Br = (R'R)'Ry".

We derive the mean squared error and the worst-case MSE of this estimator, in
the next subsection.

1.2.2 Worst-case MSE
Let Q = (RTR)'R” and h = (h(x}),...,h(z}))T € R". The mean

.
squared error of the estimator Bg (conditional on &) thus can be decomposed

as

MSE(BR) = tr(Var(Bg)) + [bias(Br)]" [bias(Br)]
— *u[(R"R)7!] + [(R"R)"'R”h|T[(R"R)'R”h)
= ’u[(R"R) ']+ A" Q" Qh, (1.4)

where the bias term h” QT QA is associated with the model misspecification.
Note that when hx = 0, i.e., the model is correctly specified, the bias term will
vanish, and thus minimizing MSE is equivalent to minimizing the variance term.
Further discussion following this line of thinking can be found in Y. Wang et al.,
2017/and H. Wang et al., |2018, in which the authors focused on selecting the
subsample that minimizes the variance term. In our setting, where the model is
misspecified, however, minimizing the variance term does not necessarily lead
to a small MSE.

Recall that our goal is to select a subsample such that the corresponding SLS
estimator is robust to various model misspecification. Since the misspecification

term hx is unknown to the practitioner, a natural and intuitive approach is



to find the subsample that minimizes the so-called “worst-case” MSE, i.e., the
maximum value of MSE(3g) with respect to all the possible choices of the
misspecification term h x. The following lemma gives an explicit form of the
worst-case MSE, see the appendix for the proof.

Lemma r.2.1 (Worst-case MSE). Under the regularity condition (1.2} the fol-
lowing inequality holds:

, t7/(RTR)

MSE(Br) < o*t[RTR) ] + a N (TR

(rs)
The right-hand side of (.5)) is called the worst-case MSE, and it can be achieved
when

h = OéQtr(RTR) ’ ,mea:(:(QTQ)'

Two conclusions can be made from Lemmalr.2.1 First, the worst-case MSE
of an SLS estimator can be inflated to arbitrarily large values by a very small
value of A (RTR). Tt is thus very easy to construct a “worst-case” sample
and a misspecification term for which an SLS estimator will have unacceptable
performance. Second, BR is the most robust SLS estimator if and only if the
selected subsample minimizes the worst-case MSE. Such a subsample, however,
is impossible to obtain for real examples, since both the values of o2 and o? are
unknown to the practitioners.

In many real-life datasets, with a large sample size particularly, some outliers
in the response vector often exist (Kriegel, Zimek, et al., 2008; Zimek et al.,
2012)). The existence of these extreme outliers indicates the value of o can
be considerable in practice. Motivated by this, we thus are more interested in
the setting where the value of a?is large enough such that, on the right-hand
side of the inequality , the second term dominates the first term. Under
this setting, the desired subsample R should yield a relatively small value of
tr(RTR) /A nin (RTR). Notice that

tr(R'R) /Apmin(RTR) > p, (1.6)

where the equality holds when the condition number of the subsample informa-

tion matrix, i.e., k(RTR) def Amaz(RTR) /Ain (RTR)), takes the minimum

value 1. The inequality thus indicates the desired subsample R is the one
such that £(RTR) has a relatively small value.

We now give another intuition about how is x(R*R) related to the ro-
bustness of the SLS estimator. In the literature, the condition number of the



full-sample information matrix, k(X7 X’) is known to be related to the robust-
ness of the full-sample OLS estimator 3,;5. Casella, 1985/ considered the ques-
tion, how much would 3,5 change if there were perturbation in X T4, and the

author showed that

||5BOZSH ||6<XTX)_1XTy|| .
3 B < k(XX
1Baoss|| AT X) X Ty]| (A7)

16Xy ||
X7yl

where 53013 and 60X Ty represent the perturbation. Thus the length of the
estimator is more stable if k(X7 X) has a small value. Analogously, one can
also show that

168x||
[1Brl|

Inequality thus indicates that smaller the value of x(R” R.) is, more robust
the estimator Br will be.

[oR ||
< K(RTR) T
[[RTy||

(1.7)

It worth noting that the subsample matrix R which minimize the worst-
case MSE does not necessarily minimize x(R”R) simultaneously since both
the value of 02 and o are not available in practice. A robust subsample R
should at least yield a relatively small value of x(R”R) and take the balance of
the variance and the bias in the equation . Following this line of thinking,
we propose a novel subsampling algorithm, and the details are presented in the

next section.

1.3 LowCon Algorithm

In this section, we present our main algorithm, called “Low condition num-
ber pursuit” or “LowCon." We first introduce the notion of orthogonal Latin
hypercube designs (OLHD), and how these can be used to generate a design
matrix L such that x(L”L) has a relatively small value. Next, we present the
detail of the proposed algorithm which incorporates the idea of OLHD. We
conclude the section by presenting the theoretical property of the proposed SLS
estimator, which is obtained by LowCon algorithm. We show the proposed
estimator has a relatively small upper bound of the MSE.

1.3.1 Orthogonal Latin Hypercube Design

Space-filling design techniques have been used as standard practice for com-
puter experiments (Fang et al., 2005} Kleijnen, [2008). These techniques focus



on the problem that how to draw the design points that cover a continuous
design space as uniformly as possible. Note that one fundamental difference
between such a problem and the subsampling problem, however, is that in the
latter, the selected points cannot be freely designed in a continuous space and
they must come from the given finite sample pool {z; }I;. To bridge the gap
between these two problems, we propose to round the design point to its nearest
neighbor in the sample. Details are provided in Section 3.2.

We now introduce the Latin hypercube design (LHD), a specific space-
fillling design technique thatis of our interest. Latin hypercube design is known
for the best one-dimensional marginal projection property (McKay et al., 2000;
Stein, 1987), and its definition is shown in the following.

Definition 1.3.r (Latin hypercube design). Given the space X = [—1, 1],
L € R"™P s called a Latin hypercube design matrix if each column of L is a
random permutation of 1—;’" r .., r;rl} (Steinberg & Lin, 20006)).

T

Intuitively, if one divides the design space [—1, 1]? into r equal-size slices
according to the jth (5 = 1,...,p) dimension, a Latin hypercube design en-
sures that there is exactly one design point in each slice. The left panel of Figure
shows an example of a set of Latin hypercube design points (black dots).
Although uniformly distributed on the marginal, the Latin hypercube design
points do not necessarily spread out within the whole design space. That is to
say, a set of LHD points may not be “space-filling” enough. To improve the
“space-filling” property of LHD, various methods have been developed (Fang
etal.,2002; Joseph & Hung, 2008; ].-S. Park, 1994; Tang,|1993)). Of particular in-
terest in this chapter is the orthogonal Latin hypercube design (OLHD) which
achieves the goal by reducing the pairwise correlations of LHD (Ye, 1998)), see
the right panel of Figure for an example.

Consider the information matrix L7 L where L is an OLHD matrix. In-
tuitively, the matrix L”L hasa relatively small condition number, since all the
diagonal elements of L”L are the same and all the off-diagonal elements of
L”'L have relatively small absolute value. Although there is a lack of theoretical
guarantee, empirically, it is known that x(L”L) is in general no greater than
1.13 (Cioppa & Lucas, [2007). Such a fact motivates us to select the subsample
that approximates a set of orthogonal Latin hypercube design points.

1.3.2 LowCon Subsampling Algorithm

We now provide the details of LowCon subsampling algorithm. Intuitively,
given an OLHD with 7 design points, the proposed algorithm searches and
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Figure 1.2: Example of LHD (left panel) and OLHD (right panel) with nine
design points in [—1, 1]2.

selects the nearest neighbor from the data points in the full-sample for every

design point. The algorithm is summarized in the following.

Algorithm 1 “ Low Condition Number Pursuit (LowCon)” subsampling al-
gorithm

Data normalization: The data points {x; }}_; are first scaled to [—1, 1]P.
Generate OLHD points: Given a design space X' C [—1, 1]7, generate a
set of orthogonal Latin hypercube design points {s; }7_;.

Nearest neighbor search: Select the nearest neighbor for each design point
s; from {x;}?,, denoted by s!. The selected subsample is thus given by

{si izt

Figure illustrates LowCon algorithm. The synthetic data points in the

left panel were generated from a bivariate normal distribution, and are scaled to
[—1,1]%. A set of orthogonal Latin hypercube design points are then generated,
labeled as black triangles in the middle panel. For each design point, the nearest
data point is selected, marked as black dots in the right panel. Observe that the
selected points can well-approximate the design points.
Comment 1. The set of design points generated by orthogonal Latin hypercube
design technique is not unique and different sets of design points may result
in different subsamples. Algorithm 1 thus is a random subsampling method
instead of a deterministic subsampling method. In practice, the set of design
points {s;}/_; in Algorithm 1 can be randomly generated.
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Figure 1.3: Illustration for Algorithm 1.

Comment 2. The key to the success of Algorithm 1 is that the selected subsam-
ple {s}}7_; can well-represent the set of design points {s;}/_;. This is to say,
the design point s; is close-enough to its nearest neighbor s7,¢ = 1,...,r. We
provide more discussion in Section 3.3 about when such a requirement is met in
practice. Empirically, we find [—1, 1]” may not be a good choice for the design
space X'. This is because in such a scenario, the design points, which close to the
boundary of [—1, 1]?, may be too far away from its nearest neighbor, especially
when the population density function has a heavy tail. As a result, a design
space that is slightly smaller than [—1, 1]” would be a safer choice. We opt to set
the design space as X' = [0;1, 0;2]7, where 61 and 8, are the f-percentile and
(100 — 6)-percentile of the jth column of the scaled data points, respectively.
Through all the experiments in this chapter, 6 is set as 1.

1.3.3 Theoretical Results

We now present the theoretical property of the subsample least squares estima-
tor, obtained by the LowCon algorithm. Recall that L represents an orthogonal
Latin hypercube design matrix. Let R, be the subsample matrix obtained by
the proposed algorithm. One thus can decompose R, into a sum of the design
matrix L and a matrix D = (dy, - - ,d,)7,ie, Ry, = L+ D.

Following the notations in Algorithm 1, one can write L = (s, . .. T

5)
and Ry, = (s7,...,s:)", where s; and s} represent the ith design point and
its corresponding nearest neighbor from the sample, respectively. One thus
hasd; = s — s;,fori = 1,...,r. Intuitively, D is a random perturbation
matrix, and the selected data points can well-approximate the design points
if D is “negligible”. In such a case, M .S E(BRL), which is a function of R,
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can be expanded around M SE (BL) through Taylor expansion. From this, we
can establish our main theorem in the following. The proof is relegated to the

appendix.

Theorem 1.3.1. Suppose the data follow the model (1.1) and the regularity condi-
tion (1.2) is satisfied. Assume s,(L) > s1(D), where s1(-) and s,(-) represent the
largest and the smallest singular value of a matrix of p columns, respectively. A
Taylor expansion of M SE( Br . ) around the point R, = L yields the following
upper bound,

2 9 “(LTL)

MSE(Br,) < op ) a?pr(LTL) + W. (1.8)

Here, W = O(s1(D)) is the Taylor expansion remainder.

When the Taylor expansion in Theorem is valid, three significant con-
clusions can be made. First, the theorem indicates that the MSE of the pro-
posed estimator is finite. Recall that Lemmalr.2.]shows the worst-case MSE of
an SLS estimator can be inflated to arbitrarily large value by a very small value
of Anin(RTR). The fact that the proposed estimator has a finite MSE thus
indicates the proposed estimator is robust, i.e., the value of which will not be
inflated to arbitrary large.

Second, the upper bound of the squared bias of the proposed estimator,
which equals a?pr (LT L), is very close to the minimum value of the worst-case
squared bias. To see this, combining the inequality and the inequality
yields the worst-case squared bias has the minimum value of a?p. In Section
3.1, we discussed the value of k(L”L) is known to be close to 1. Combining
these two facts together yields the second conclusion. Consider the common
situation when the value of o is large enough such that, in inequality ,
the bias term dominates the variance term. Under such a situation, the second
conclusion thus indicates, the proposed estimator is very close to the “most
robust” estimator which minimizes the worst-case squared bias.

Third, the proposed estimator has finite variance. This is because the value
of tr(LTL) is finite when the design space of L equals [—1, 1]?, a direct con-
clusion from the definition of the Latin hypercube design. Recall that in Al-
gorithm 1, sometimes we may choose a design space X C [—1, 1]P. The value
of tr(L”L) will decrease in such cases, compared to the case when the design
space equals [—1, 1]7. The variance of the proposed estimator thus will increase
in such cases. Nevertheless, the variance term will not be inflated to arbitrarily
large, as long as the design space is not too small.

There are two essential assumptions in Theorem One s that s, (L) >
s1(D) and the other is that the Taylor expansion is valid, i.e., when s1(D) is
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“small". Although we will evaluate the quality of the proposed estimator empir-
ically in the next section, a precise theoretical characterization of when these
two assumptions are valid is currently not available. Here, we simply give an ex-
ample such that 51 (D) converges to zero as n goes to infinity, in which case the
desired Taylor expansion is valid apparently. The assumption s, (L) > s1(D)
is also satisfied in such a case, as n goes to infinity, since the value of s, (L) is not
relevant to n. Consider the case when the non-zero support of the population
distribution is [—1, 1]P. This is to say, the sample and the design points have
the same domain. In such a case, the distance between each design pointand its
nearest neighbor converges to zero, as 1 goes to infinity. As a result, each entry
of the matrix D converges to zero, and thus s1 (D) converges to zero as well, as
n goes to infinity. Consequently, the desired Taylor expansion is valid in such a

case.

1.4 Simulation Results

To show the effectiveness of the proposed method in misspecified linear mod-
els, we compare it with existing subsampling methods in terms of estimation
error. The subsampling methods considered here are uniform subsampling
(UNIF), basic leverage subsampling (BLEV), shrinkage leverage subsampling
(SLEV), unweighted-leverage subsampling (LEVUNW) (Ma, Mahoney, et al.,
2015; Ma & Sun, 2015), and information-based optimal subset selection (IBOSS)
(H. Wang et al., 2018). The parameter for SLEV is set as 0.9, as suggested in Ma,
Mahoney, et al., 2o15, The parameter ¢ for the proposed method is set as 1.

We simulate the data from the model (r.1) with n = 10%, p = {10, 20} and
r={2p,4p, ..., 10p}. Three different population distributions for the data
points are considered: (Dr) N (1, X); (D2) 0.5N(0,23%) + 0.5N (1, X); (D3)
t10(1,X), where 3;; = 10x 0.6/ fori, j = 1, ..., p. For the coefficient By,
the first 20% and the last 20% entries were set to be 1 and the rest of them were
set to be o.1. To show the robustness of the proposed estimator under various
of misspecification terms, we consider five different scenarios: (Hr) h(x;) = 0;
(H2) h(x;) = 10sin(x;3); (H3) h(x;) = 1 - xi3xs; (He) h(x;) = co -
T3 sin(x;s) and (Hs) h(x;) = c3 - x%. To ensure that the response will not
be dominated by the misspecification term, we select the constants ¢y, ¢, and
c3 such that maxg ({|h(x)[}1-,) = 10, respectively. In Figure[.4] we depict
the heat map of the last four misspecified terms, where the data are generated
from distribution N (1, X). Only the third and eighth predictors are shown
for illustration.
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Figure 1.4: The scatterplots of ten thousand data points generated from distri-
bution Dx with ten predictors.

Figure.s|compares the subsamples selected by different subsampling meth-
ods. The LEVUNW method is omitted here since the subsample identified by
LEVUNW is the same as the subsample identified by BLEV. The data points
(blue dots) are generated from distribution D3 with n = 10* and p = 10,
only the third and the eighth predictors are shown. In each panel, a subsample
of size 40 is selected (black dots). Figurereveals some interesting facts. We
first observe the subsamples selected by BLEV and SLEV are more dispersed
than the subsample selected by UNIF. Such an observation can be attributed
to the fact that BLEV and SLEV give more weight to the high-leverage-score
data points. For the IBOSS method, the selected subsample includes all the
“extreme” data points from all predictors. Such a subsample is most informa-
tive when the linear model assumption is valid (H. Wang et al., . Finally,
we observe that the subsample chosen by the proposed LowCon algorithm is
most “uniformly-distributed” among all. Intuitively, such a pattern indicates
the selected subsample yields an information matrix that has a relatively small
condition number.

Figure 1.5: An illustration of five subsamples identified by different subsampling
methods.

To compare the performance for different SLS estimators, we calculate
the mean squared error for each of the SLS estimator based on 100 replicates,

MSE = 3% ||B(z) — Bo][*/100, where 3(2) represents the SLS estimator in

=1

14



the 7th replication. Figureand Figureshow the log(MSE) versus different
subsample size under various settings, when p = 10 and 20, respectively. In
both figures, each row represents a particular data distribution (D1—D3) and
each column represents a particular misspecification term (Hi—Hs).

D=D1, h(X)=H1, p=10 D=D1, h(X)=H2, p=10 D=D1, h(X)=H3, p=10 D=D1, h(X)=H4, p=10 D=D1, h(X)=HS, p=10
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Figure 1.6: Comparison of different estimators when p = 10.

From Figureand Figure we first observe that UNIF (black solid line),
as expected, is not performing well. As two of the random subsampling meth-
ods, BLEV (black dashed line) and SLEV (black dotted line) perform similarly,
and both have superior performance than UNIF in most of the cases. Such
a phenomenon is attributed to the fact that both methods tend to select the
data points with high leverage-scores, and these points are more informative for
estimating the coefficient, compared to randomly selected points.

Next, we find both LEVUNW (blue line) and IBOSS (purple line) have de-
cent performance when the misspecification term equals zero (the most left col-
umn). Their performance, however, is inconsistent when the non-zero misspec-
ification term exists, i.e., they perform well in some cases and perform poorly
on others. Note that these two methods, at times, are even inferior to the UNIF
method. Such an observation indicates that these two methods are effective
when the linear model assumption is correct, butare not robust when the model
is misspecified. We attribute this observation to the fact that the most informa-
tive data points derived under the postulated model do not necessarily lead to a
decent estimator when the postulated model is incorrect. On the contrary, the
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selected subsample can even be misleading and may dramatically pull back the
performance of the subsample estimator.
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Figure 1.7: Comparison of different estimators when p = 20.

Finally, we observe that the proposed LowCon (red line) method is con-
sistently better than the UNIF method. Furthermore, LowCon has a decent
performance in most of the cases, especially when the model is misspecified.
This observation indicates LowCon is able to give a robust estimator under var-
ious misspecified linear models. Such success can be attributed to the fact that

the proposed estimator has a relatively small upper bound for the worst-case

MSE.

1.5 Real Data Analysis

In this section, we evaluate the performance of different SLS estimators on two
real-world datasets. One problem in real data analysis is that one does not know
the true coefhicient. It is thus impossible to calculate the mean squared error of
a coefficient estimate. To overcome this problem, we consider the full-sample
OLS estimator BO s and the following two estimators as the surrogates for the
true coefficient 3. One of them is the M-estimator B\ A, which is a well-known
estimator in robust linear regression (Meer et al., 1991). M-estimator can be
calculated by using iterated re-weighted least squares, and it is known that such
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an estimator is more robust to the potential outliers in the data, compared to
the OLS estimator (Andersen, 2008). We obtained the M-estimator using the
R package MASS with default parameters. The other estimator we considered is
the cubic smoothing spline estimator for the “null space” (C. Gu, 2013; Wahba,
1990), denoted by BSS. We now briefly introduce the cubic smoothing spline
estimator in the following.

Suppose the response y; and the vector of predictors &; = (1, . . ., T4)"

are related through the unknown functions 7 such thaty; = n(x;) +€;, where

& NN (0, 02). A widely used approach for estimating 7 is using minimizing

the penalized likelihood function,

— Z 2+ N (n), (r9)

where A is the tuning parameter and .J (1) is a penalty term. We refer to C. Gu,
2013/ for how to select the tuning parameter and how to construct the penalty
term. The standard formulation of cubic smoothing splines performs the min-
imization of in a reproducing kernel Hilbert space H. In this case, the
well-known representer theorem (Wahba, 1990) states that there exist vectors
B=B,...,5,) ande = (c1,...,c,)", such that the minimizer of is
given by n(x) = Z§:1 Bz + > i, ¢iH(x;, ). Here, the bivariate func-
tion H (-, -) is related to the reproducing kernel of #, and we refer to C. Gu,
2013 for technical details. Let H be an n X n matrix with (¢, j)-th element
equals H (x;, ;). By construction of , one has J (1) = ¢"He (C. Gu, 2o13).
Solving the minimization problem in thus is equivalent to solving

(Bss €) = ar%mml (y—XB—Hce)" (y — XB —Hc) + Ac¢' He. (r10)

We could thus view the estimated ,@55 in as the “corrected” estimate of
the true coefficient B that takes into consideration of the misspecified terms
quantified by He. We calculate such an estimate using the R package gss with
the default parameters.

To compare the performance of different SLS estimators, we calculate the
empirical MSE (EMSE) through a hundred replicates. In the ith replicate, each
subsampling method selects a subsample, leading to an SLS estimator B9, For
each of the three full-sample estimators (BO .S B v and ,BSS) the correspond-
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ing EMSE is then calculated as,

100
EMSEors = Y |18 — Bousl[*/100,
=1

100

EMSEy = Y |18% — Basl[?/100,
=1

100

EMSEss = Y _ [|BY — Bss||?/100.
=1

We emphasize that none of the three full-sample estimators can be regarded
as the gold standard. However, a robust SLS estimator should at least be rel-
atively “close” to all of these three estimators. That is to say, intuitively, a ro-
bust SLS estimator yields relatively small values of EMSEp s, EMSE); and
EMSEgs.

Throughout this section, we set the parameter 6 for the proposed LowCon
method as 1. We opt to choose the subsample size 1 as 5p, 10p and 20p. The
results in this section show the proposed SLS estimator yields the smallest em-

pirical mean squared error.

r.5.x Africa Soil Property Prediction

Soil functional properties refer to the properties related to a soil’s capacity to
support essential ecosystem services, which includes primary productivity, nu-
trient and water retention, and resistance to soil erosion (Hengl et al., ors)).
The soil functional properties are thus important for planning sustainable agri-
cultural intensification and natural resources management. To measure the soil
functional properties in a target area, a natural paradigm is to first collect a sam-
ple of soil in this area, then analyze the sample using the technique of diffuse
reflectance infrared spectroscopy (Shepherd & Walsh, 2002). Such a paradigm
might be time-consuming or even impractical if the desired sample of soil from
the target area is difficult to obtain. Predicting the soil functional properties is
thus a measurement-constrained problem.

With the help of greater availability of Earth remote sensing data, the practi-
tioners are provided new opportunities to predict soil functional properties at
unsampled locations. One of the Earth remote sensing databases is provided by
the Shuttle Radar Topography Mission (SRTM), which aims to generate the
most complete high-resolution digital topographic database of Earth (Farr etal.,
2007)). In this section, we consider the Africa Soil Property Prediction dataset,
which contains the soil samples from 1157 different areas (n = 1157). We aim
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to analyze the relationship between the sand content, one of the soil functional
properties, and the five features (p = 5) derived from the SRTM data. The fea-
tures include: compound topographic index calculated from SRTM elevation
data (CTI); SRTM elevation data (ELEV); topographic Relief calculated from
SRTM elevation data (RELI); mean annual precipitation of average long-term
Tropical Rainfall Monitoring Mission data (TMAP); and modified Fournier
index of average long-term Tropical Rainfall Monitoring Mission data (TMFI).

We assume the data follow the model

yi = Bo+ S1OTI; + BoELEV; + BsRELI; + B TMAP;
+BsTMFIL; +u;, 1=1,2,...,n, (r.1x)

where u; follow i.i.d. normal distribution N (h(z;), o). Here, one has x; =
(1,CTIL;, ELEV;, RELI;, TMAP;, TMFI;)" and h(-) represents a multi-
variate function that is unknown to the practitioner. The postulated model
is thus a misspecified linear model. In our measurement-constrained setting,
we assume the response vector is hidden unless explicitly requested. We then
estimate the true coefficient of the model , ie., (8o, B1, B, B3, Ba, Bs) T,
using subsampling methods.

The methods considered here are uniform subsampling (UNIF), basic lever-
age subsampling (BLEV), shrinkage leverage subsampling (SLEV) with parame-
ter & = 0.9, unweighted-leverage subsampling (LEVUNW) (Ma, Mahoney, et
al., 20155 Ma & Sun, |2015)), information-based optimal subset selection (IBOSS)
(H. Wang et al., 2018) and the proposed LowCon method. Table 1 summarizes
the EMSE:s for all six SLS estimators, and the best result in each row is in bold
letter. We observe that the proposed LowCon method yields the best result in

every row.

Table 1.1: EMSEs for the Africa Soil Property Prediction dataset

r EMSE UNIF BLEV SLEV LEVUNW IBOSS LowCon

OLS 6.09 3.23 2.82 2.56 34.87 1.17

5p M 6.12 3.24 2.82 2.56 34.07 1.14
SS 9.89 6.56 6.58 5.84 28.74 2.81

OLS .92 1.26 1.23 0.91 18.62 0.57

10p M 1.92 L.27 1.24 0.93 17.97 0.56
SS 5.56 4.76 4.73 438 18.01 2.69

OLS 0.78 0.55 0.53 0.44 2.84 0.33

20p M 0.79 0.57 0.54 0.47 2.64 0.33
SS 4.31 3.86 3.96 3.74 5.48 2.48
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1.5.2 Diamond Price Prediction

The second real-data example we consider is the Diamond Price Prediction
dataset, which contains the prices and the features of around 54,000 diamonds.
Of interest is to analyze the relationship between the price of the diamond, and
three continuous features (p=3): weight of the diamond (carer), total depth per-
centage (depth); and width of top of diamond relative to widest point (zzble).

As the same setting used in Section 5.1, we assume the data follow a misspec-
ified linear model,

Y, = BO + 616@T6ti + ﬁzd@pthi + ﬂgt&bl@ + u;, 1= 1, 2, o, n.

Here, u; follow i.i.d. non-centered normal distribution N (h(x;), 0?), where
x; = (1,caret;, depth;, table;)”, and h(-) is a multivariate function that is
unknown to the practitioner. Note that the price of a diamond might be time-
consuming or even impossible to obtain if the diamond has not been on the
market yet. We thus assume the value of the response vector is hidden unless
explicitly requested, and we estimate the true coefficient using subsampling
methods.

Table 2 summarizes the EMSEs for all the subsample estimators, and the
best result in each row is in bold letter. From Table 2, we observe that the
proposed LowCon algorithm yields the best result in most of the cases.

Table 1.2: EMSE:s for the Diamond Price Prediction data

r EMSE UNIF BLEV SLEV LEVUNW IBOSS LowCon

OLS 7.80 4.27 4.77 4.82 8.96 3.40

5p M 8.29 4.39 5.17 4.94 6.07 4.09
SS 12.42 8.43 9.33 9.05 9.36 7.98
OLS 2.84 2.20 2.08 2.59 8.68 1.50

10p M 3.10 2.71 2.37 2.83 5.82 212
SS 7.14 6.90 6.44 7.02 9.29 5.94

OLS 130 0.95 1.09 LI13 8.16 0.78

20p M 170 1.23 1.36 L.24 5.38 1.32
SS 5.82 5.29 5.43 5.29 8.79 5.14

1.6 Concluding Remarks

We considered the problem of estimating the coefficients in a misspecified lin-
ear model, under the measurement-constrained setting. When the model is
correctly specified, various subsampling methods have been proposed to solve
this problem. When the model is misspecified, however, we found the worst-
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case bias for a subsample least squares estimator can be inflated to arbitrarily
large. To overcome this problem, we aim to find a robust SLS estimator whose
variance is bounded and the worst-case bias is relatively small. We found such
a goal can be achieved by selecting a subsample whose information matrix has
a relatively small condition number. Motivated by this, we proposed the Low-
Con subsampling algorithm which utilizes the orthogonal Latin hypercube
design technique. We proved the proposed estimator has a finite mean squared
error. Furthermore, the bias of the proposed estimator has an upper bound
which approximately achieves the minimum value of the worst-case bias. We
evaluated the performance of the proposed estimator through extensive simu-
lation and real data analysis. Consistent with the theorem, the empirical results
showed the proposed method has robust performance.
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CHAPTER 2

AN OPTIMAL TRANSPORT
APPROACH FOR SELECTING A
REPRESENTATIVE
SUBSAMPLE

Subsampling methods have drawn significant attention in large-scale data anal-
ysis, active learning, and privacy-preserving analysis. Most of the existing sub-
sampling methods are model-based methods, which assume the sample follows
apre-specified model. These methods, however, sufter from deteriorated perfor-
mance in practice when the model specification is incorrect. Instead, we present
a model-free subsampling method, by combining the idea of optimal transport
map and star discrepancy, a metric that measures how uniformly-distributed a
sample is. Specifically, the proposed method first transforms the given sample to
be uniformly distributed, then selects a representative subsample in accordance
with the star discrepancy, requiring only (approximately) linear computational
time. Moreover, we theoretically demonstrate that the selected subsample can
be used for efficient density estimation, by deriving the convergence rate for the
subsample kernel density estimator. We explore our findings empirically and
illustrate the benefits through two empirical studies: density estimation and

active learning.

2.1 Introduction

Subsampling problem can be described as follows: given a sample {x;}7_; €
R4 generated from an unknown probability distribution, the goal is to take
a subsample {x;}/_;, r < n, as a surrogate for the original sample. The
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subsampling problem for a large sample with moderate dimension, i.e., “large 1
moderate d”, has drawn significant attention in machine learning, statistics, and
computer science. In active learning, there is usually a large sample of unlabeled
data, and one is interested in selecting a subsample to label (Settles, 2012)). In
the privacy-preserving analysis, working on only a subset of data can reveal little
confidential information. Subsampling methods have the potential to enhance
data security (N. Li et al., or2; Nissim et al., 20oo7). In model selection, a
validation subsample resembling the full sample enables the effective model
selection. Recently, subsampling methods have been used in numerical analysis
to alleviate the computational burden in large-scale data analysisTsai et al., 2015;
Zhou et al.,por7.

However, most of the existing subsampling methods are model-based sub-
sampling, i.e., the data is assumed to follow a pre-specified model. The model-
based subsampling aims to select an znformative subsample for model-fitting
and prediction (Huang et al., 2010). Such subsampling methods have been pro-
posed for different models, which include linear regression (Derezinski et al.,
2018} Drineas et al., 2006} Drineas et al., 2o11; Ma, Mahoney, et al., 2o15; Ma &
Sun, 2015)), logistic regression, [, regression (A. Dasgupta et al., 2009)), Gaussian
mixture model (Feldman et al., 2011) and Bayesian logistic regression (Huggins
etal.,2016). While the model-based subsampling methods have already yielded
impressive achievements, the key to the success of these methods highly depends
on the correct model specification. Nevertheless, in practice, model specification
is a dynamic process of trial and error. For example, in supervised learning, we
start with a high dimensional model with numerous features, and using model
selection, we may end up with a low dimensional model with parsimonious
features. In another instance, we may start with a linear regression model for
a continuous response, by the categorization of the response, we may end up
with a classification model. Existing literature suggests model-based subsam-
pling methods may result in subsamples misleading such dynamic processes
Tsao and Ling, por2.

Different from model-based subsampling methods, there are emerging sub-
sampling methods that aim to select a subsample that can capture the overall
patterns of the original sample (Settles, 2012)). These methods, termed as repre-
sentative subsampling methods, are not confined by the model assumption, and
provide a reasonable surrogate of the full sample regardless of the downstream
analyses tasks performed. The representative subsampling methods can be di-
vided into two classes: clustering-based methods and kernel-based methods.
The clustering-based methods, which are usually developed for clustering anal-
ysis, include k-medoids method (Kaufman & Rousseeuw, 1987; H.-S. Park &
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Jun, 2009), k-center method (Feder & Greene, 1988), and Wasserstein barycen-
ter method (Cuturi & Doucet, 2014; Rabin et al., 2011). The k-medoids method
is closely related to k-means algorithm, and the k-center method is widely used
in fast multipole methods, and fast Gauss transform methods (Greengard &
Strain, 1991; Lee & Gray, 2009; White etal.,1994; Yang et al.,2003). Wasserstein
barycenter method aims to find the “mean” of a set of empirical probability
measures under the optimal transport metric, and this “mean" itself can be re-
garded as a representative subsample. A similar idea has been explored in (Claici
& Solomon, 2018) to selected a Wasserstein coreset. Although these clustering-
based methods provide task-invariant subsamples, the empirical distributions of
their subsamples may not resemble the probability distribution of the original
data. Alternatively in mathematical language, as the subsample size increases,
the probability distribution of the selected subsample by these methods does
not necessarily converge to the true probability distribution (Mak, Joseph, et al.,
2018; Y. Su, 2000).

To address such a limitation, the kernel-based representative subsampling
methods utilize the kernel method to estimate the probability density function
of the full sample and select a subsample that can effectively estimate the prob-
ability distribution. These methods include kernel herding (Chen & Zhang,
2014)) and coreset for kernel density estimation (Phillips, 2013; Zheng et al., |2013;
Zheng et al., 2017)). In practice, however, the kernel-based methods depend on
computationally intensive methods to tune kernel-bandwidth parameters and
are thus not scalable to large sample analysis. Moreover, kernel-based methods
usually suffer from deteriorated performance when they are applied to high-
dimensional data.

Our contributions. We present an innovative model-free representative
subsampling method, termed as space-filling design after optimal transport
(SDAOT). Compared with existing representative subsampling methods, the
proposed SDAOT method is computationally efficient, works well for high-
dimensional data, and theoretically guaranteed to select a subsample that can
effectively represent the underlying probability distribution. In this article, we
demonstrate a method to quantify the representativeness of a subsample in
accordance with the star discrepancy (Fang et al., 2005; Pukelsheim, 2006) af-
ter transforming the sample to be uniformly distributed. U'tilizing the tech-
niques of space-filling design (Pukelsheim, 2006) and optimal transport map
(Villani, 2008), SDAOT provides a computational-efficient way to select a “rel-
atively” representative subsample within the computational time at the order of
O(d*nlog(n)). Theoretically, we derive the convergence rate for the SDOAT
density estimator under general regularity conditions. We evaluate the empirical
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performance for the proposed method by the applications of density estimation
and active learning. The proposed method outperforms several state-of-the-art
representative subsampling methods using extensive experiments on various

synthetic and real-world datasets.

2.2 Definition and methodology

2.2.1 Star discrepancy

As an extensively adopted metric in experimental design and quasi-Monte Carlo
methods (Fang & Wang,|1993; Niederreiter, 1992), star discrepancy measures the
“discrepancy” between a set of discrete data pointsand U0, 1]¢, i.e., the uniform
distribution on the d-dimensional unit hypercube [0, 1]%. Let U, = {u;}I_,
be a set of 7 data points in [0, 1]%, [0, a) = H?:1 0, a;) be a hyper-rectangle
in RY, and 1{-} be the indicator function. The star discrepancy are defined as
follows (Fang et al., 2005; Pukelsheim, 2006)).

Definition 1. (Star discrepancy) Given U, and a hyper-rectangle [0, a),
where a € [0, 1]%, the corresponding local discrepancy is defined as,

r

d
DUy, a) = |%Zl{ui e (0.)}— [T osl

i=1
The star discrepancy is defined as,

D*(U,) = sup DU,,a).

a€0,1]4

We illustrate the idea of local discrepancy in Fig. |21l Three of ten data points
locate in the rectangular [0, @), where @ = (0.4,0.5)". The corresponding
local discrepancy is thus calculated as |3/10 — 0.4 x 0.5| = 0.1. The star
discrepancy D*(U,) calculates the supreme of all the local discrepancy over
a € [0,1]% Asaresult, a small value of D*(,.) indicates U, is representative
to the uniform distribution U0, 1]¢ and vice versa.

One limitation for star discrepancy, however, is that it can only be applied to
the data points located in the unit hypercube. The limitation can be addressed
by transforming the data points to the unit hypercube before calculating the
star discrepancy. Denote F as the cumulative distribution function (CDF) of
asample {x;}!" ;. The transformed sample { F'(x;)}!, follows the uniform
distribution U0, 1]%. Star discrepancy thus can be employed to measure the
representativeness of the sample {a; }1'_, using D*({ F'(x;) }_,). That s, the

25



°
°
. °
a = (0.4,0.5)7
°
™
°
°
° °
0 1

D(Uyq @) = |3/10 — 0.2] = 0.1
Figure 2.1: Illustration for the local discrepancy.

smaller the value of D*({F'(x;)}!",) is, the more representative the sample
{x;}, will be.

In practice, however, such a measurement cannot be directly used to select
the most representative subsample from the given sample. This is because (i) the
explicit form of [ is usually unknown in practice and estimating the empirical
CDF may be computationally intensive, especially when the dimension d is
large; and (ii) even when F' is known and the transformed sample { F'(x;) }7_,
can be obtained, it is computationally infeasible to search the subsample with
the smallest star discrepancy exhaustively. To surmount the computational
challenges, we develop a new method integrating both space-filling design and

optimal transport map.

2.2.2  Space-filling design

There are methods to generate the design points using directly minimizing the
star discrepancy, e.g., the uniform design methods (Fang et al., 2005). Never-
theless, such methods are computationally expensive and are applicable only
for small datasets on U [0, 1]%. To alleviate such a computational burden, the
method which yields a set of data points with relatively small star discrepancy
could be used as an alternative for uniform design methods. These alternatives
include the space-filling design methods (Fang et al., [200s; Pukelsheim, 2006;
Wu & Hamada, 2011) and the low-discrepancy sequence method(Owen, 2003).
The former aims to generate a set of design points that spread out over the
domain as uniformly as possible. The latter generates the design points sequen-
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tially, and the generated points achieve an asymptotically fast decay rate for star
discrepancy. For a Sobol sequence S, = {s;}/_,, one kind of low-discrepancy
sequence, D*(S,) converges to zero at the rate of O(log(r)?/r) (Owen, 2003).
In other words, the convergence rate of D*(S,.) is of the order O (r~(1=%)) for
an arbitrary small & > 0 and fixed d, as 7 goes to infinity. Some space-filling
design techniques can achieve even smaller convergence rate (Fang et al., 200s;
Owen, 2003)). For comparison, when a set of data points X, = {«;}]_; is ran-
domly generated from U[0, 1]%, the convergence rate of D*(X,,) is only of the
order O((log log(r)/r)'/?), which is much slower than O(r~(1=9)) (Chung,
1949)). Without loss of generality, in this chapter, we always assume the star
discrepancy D*(S,.) converges to zero with the rate O(r~(1=9),

The space-filling design techniques provide powerful tools to generate a set
of representative design points in U [0, 1]%. Besides, these techniques could also
be used to select a representative subsample from a given sample generated from
U10, 1]¢, with the help of one-nearest-neighbor approximation. The detailed
algorithm follows.

Algorithm 2 Select a subsample by approximating a space-filling design

Input: a sample U, = {u;}?_, generated from U|0, 1]°.
Generate a set of space-filling design points S, = {s;}7_; € [0,1]%.
fori = 1tor do

Select the nearest neighbor for s; from {u;}I" ,, using [, distance.
end for
Output: the final subsample is U = {u]}_;.

The following Lemma characterizes the approximation errors of the sub-

sample selected by Algorithm The proof is relegated to the Appendix.

Lemma 2.2.1. Let S, = {s;}/_, € [0, 1]% be a st of design points which satisfy
D*(S,) = O(r=U=9) for any arbitrary small 6 > 0, asr — oc. Suppose d is
fixed, when r = O(nY/?), asn — oo, we have D*(U) = O, (r~1=9).

Lemma states that the approximation error yielded by one-nearest-
neighbour approximation is negligible, when d is fixed and 7 = O(n!/?). In
particular, Lemmala.2.1suggests the selected subsample U, can effectively ap-
proximate the design points S, in the sense that the convergence rate of D*(U,")
is almost the identical as that of D*(S,.).

To extend Algorithm p]to the case when the cumulative distribution func-
tion [ is non-uniform but has an explicit form, one can employ the following
two-step strategy similar to the inverse transform sampling method (Devroye,
1986; Mosegaard & Tarantola, 199s). First, select a subsample {u}7_; from

27



" One exception is that when
all the covariates of the sam-
ple are independent with
each other, in which case
one can directly calculate
the multivariate CDF as

the product of all the one-
dimensional marginal CDF.
Nevertheless, independent
covariates are rarely the case

in practice.

the transformed sample { F'(x;) }?_, using Algorithm Notice that the trans-
formed sample is uniformly distributed on [0, 1] and the selected subsample
{u;}r_, thus is relatively representative to U0, 1]%. Second, take the desired
representative subsample { /! (u}) }7_; using the look-up table. Such a two-
step strategy, however, is inapplicable when [ is unknown or is computational-
intensive to obtain, especially when d is large'. To overcome such an obstacle,
in the following, we introduce the optimal transport map, which serves as a

surrogate for .

2.2.3 Optimal transport map

Optimal transport map (OTM) has been extensively used as a standard tech-
nique to transform one probability distribution to another. Recently, OTM
has received significant attention due to its close relationship with generative
models, including generative adversarial nets (Goodfellow et al., 2014), the “de-
coder” network in variational autoencoders (Kingma & Welling, 2013; Meng
et al., 2o19), among others. Moreover, OTM also plays essential roles in various
machine learning applications, e.g., color transfer (Ferradans et al., 2014; Rabin
et al,, 2014), shape match (Z. Su et al., 2015), transfer learning (Courty et al.,
2017), and natural language processing (Peyré, Cuturi, et al., 2019)).

Instead of introducing the general definition of the OTM, we now present
a specific map of our interest, and we refer to (Cuturi, 2013; X. D. Gu & Yau,
2008; Santambrogio, 2ors; Villani, 2008)) for more details. Let u be the uniform
probability distribution on [0, 1]%. Let px and Q C R? be the probability
distribution and the domain of the random variable X, respectively. For all
B C , denote ¢4 (px)(B) = px(¢~'(B)). Among all the maps ¢ : Q —
[0, 1]¢ such that ¢4 (px) = uwand gb; (u) = px, the OTM ¢* of our interest
is the one which minimizes the L cost, [, | X — ¢(X)||*dpx, where || - ||
denotes the Euclidean norm.

As a special case, when {2 = Rand d = 1, the OTM ¢ is equivalent to the
CDF F (Villani,[2008). This fact motivates us to use the OTM ¢* as a surrogate
for F' in high-dimensional cases.

Calculating the exact OTM on a large-scale sample may yield an enormous
computational cost. In practice, ¢* can be approximated using the iterative
method (Meng et al., 2o19; Pitié et al., 2007) or the sliced method (Bonneel
et al., po1s; Rabin et al., o). These methods tackle the problem of estimating
a d-dimensional OTM iteratively by breaking down the problem into a series
of subproblems, each of which finds a one-dimensional OTM using projected
samples. Note that the one-dimensional OTM can be easily solved through
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sorting algorithms. In this work, we opt to use the iterative approach for ap-
proximating ¢*, summarized in Algorithm 2.

Algorithm 3 Approximating the optimal transport map

Input: A sample matrix X = (1, ..., x,)T € R"% aspace-filling design
matrix S € [0, 1]™*%,
k+ 0, X0 X let X;) be the jth column of X.
repeat
generate a random orthogonal matrix B € Réxd,
S’ + SBand X’ + X" B.
for jinl:ddo
find the r-dimensional OTM ¢ that match X, to S{,, usingsorting
algorithms.
Xy € 95(X()-
end for
X X'B-Y, k<« k+ 1.
until converge.

Output: o(;) is given by: o) = wgk yi=1,...,n.

2.2.4 SDAOT algorithm

We are now ready to present our main algorithm, named as Space-filling Design
After Optimal Transport (SDAOT). In particular, SDAOT first transforms a
given sample to be uniformly distributed, using Algorithm 3 Subsequently,
SDOAT uses Algorithm@ to select a subsample from the transformed sample,
and the final subsample is obtained using the look-up table. The details are
presented in Algorithm

We illustrate the SDAOT algorithm in Figure[z.2] The synthetic data points
(grey dots) in Figure 2(a) are generated from a two-dimensional donuts-shape
distribution. Using Algorithm [3} the data points are transformed to be uni-
formly distributed in [0, 1]?, as shown in Figure 2(b). In Figure 2(c), we gen-
erate 32 design points (black triangles) using the max projection design, one
kind of space-filling design methods (Joseph et al., 2015). For each design point,
we find its nearest neighbor (red dots) from the transformed data points (grey
dots). Notice that both the design points and the selected subsample are “space-
filling.” The red dots in Figure 2(d) are the final subsample obtained using the
look-up table. One can observe that the subsample can effectively represent the
population.

SDAOT algorithm involves both calculating the “forward step” from the
probability distribution to the uniform distribution, and the “backward step”
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that map the selected subsample to the original data points. Such a two-step
procedure may look unnecessarily complicated at first glance. Indeed, one can
directly calculate the “backward step” and map the design points to the prob-
ability distribution, then select the nearest neighbor for each mapped design
pointas the subsample point. One limitation of one-step “backward" approach,
however, is that finding the nearest neighbor in the original sample, instead of
the uniformly-distributed sample, may yield ultra-large approximation error.
In contrast, our approach, which utilizes the “forward step,” ensures that the
approximation error is bounded, and the selected subsample can eftectively
approximate the design points, as stated in Lemma 1. Furthermore, the “back-
ward" step in SDAOT algorithm can be easily implemented using a look-up
table with negligible computation. Thus SDAOT algorithm is not as compli-
cated as it seems.

Algorithm 4 Space-filling Design After Optimal Transport (SDAOT)

Input: A sample X, = {x;}7;.

Generate a set of space-filling design points S, = {s;}/_; € [0,1]%
Step 1: calculate the transformed sample {(E(ﬂjl) ™1 (use Algorithm .
Step 2: select a subsample {u}7_; from {5(%)}?:1 (use Algorithm ED

Output: the final subsample is given by X" = {5—1 (uf)}r_;.

2.2.5 Implementation details and computational cost

There are two steps in the Algorithrn In Step 1, we approximate the desired
OTM using Algorithm 3} and the computational complexity for Algorithm
is of the order O(K dnlog(n)), where K denotes the number of iterations.
Empirically, K is usually set to be at the order of O(d) (Meng et al., 2019;
Pitie et al., 2oos; Pitié et al., 2oo7), and we find K = 10d works well in
most of our experiments. In this case, the computational complexity becomes
O(d?nlog(n)). In Step 2, we select the subsample from the transformed sam-
ple using Algorithm o} which includes two sub-steps: generating the design
points and searching the nearest neighbor. Sobol sequence method(Owen,
2003) is conducted to generate the design points in the simulation. From the
empirical perspective, we find other space-filling design techniques, e.g., Latin
hypercube design (Pukelsheim, 2006), uniform design (Fang et al., 2000), and
max projection design (Joseph et al., 2015, also yield results similar to ours. Itis
worth noting that the design points in our algorithm are generated beforehand;
thus, the computational cost for generating the design points is not included
in the computational cost for the SDAOT algorithm. In terms of searching the
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Figure 2.2: Illustration for Algorithm 3.

nearest neighbor, we opt to use the k-d tree method, whose computation cost
is O(nlog(n)) (Bentley, 1975; Wald & Havran, 2006)). In summary, the overall
computational complexity for the SDAOT algorithm is O(d?*nlog(n)). The
memory costs for both Step 1 and Step 2 are of the order O(nd). The overall
memory cost is thus of the order O(nd).

To demonstrate the computational cost for SDOAT empirically, we evalu-
ate the CPU time for SDAOT according to various sample sizes n, dimensions
d and subsample sizes 7, respectively. The CPU time is obtained using an In-
tel 2.6GHz processor. Currently, the code is implemented in R, and a faster
running time could be achieved after implementing the code in Python.

The results are shown in Fig. [2.3} in which the 95% confidence bands (gray
shadows) are calculated using 100 replicates. In the left panel, we observe that
the CPU time roughly linearly increases as the sample size n increases. The
middle panel shows the CPU time has a quadratic growth when the dimen-
sion d increases, however, the overall computational time is still reasonable and
moderate. If further computation saving is desired, one may use dimension

reduction methods, e.g., principal component analysis, to reduce the number
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Figure 2.3: CPU time of SDAOT with various sample sizes (left), dimensions
(middle), and subsample sizes (right).

of dimensions before using SDAOT. In the right panel, one can observe that
the CPU time remains stable regardless of the changes in subsample size r.

2.3 Theoretical results

In this section, we demonstrate the use of SDAOT for efficient density estima-
tion. Here, we focus on the kernel density estimation method (KDE), which
is a widely-used nonparametric density estimation method, see Scott, 2015/ for
more reference.

Regularity conditions. Let & (-) be a non-negative real-valued integrable
function, which satisfies the following conditions: (a) ffooo K(z)dz = 1;(b)
K(—z) = K(z)forallz € Ry (c) [*2_ 2K (2)dz < o0s(d) [T K*(2)dz <
00; (e) [ (K'(2))*dz < 0o. One example which satisfies these conditions is
the Gaussian kernel function. Denote z;; as the jth entry of @;, h > 0 as the
bandwidth, and K,(t) as an abbreviation for K (t/h)/h.

Recall that X denotes the full-sample matrix. For z € RY, the tull-sample
product kernel density estimator can be written as

p(z]X) = Z{H K (25 — xy5)}/n.

The asymptotic integrated mean squared error (AIMSE) of an estimator p is
defined as

AIMSE(p) = / E{(p(=) - p(2))*}dz.

Two regularity conditions for p are required : for j = 1,...,d, (1) 9*p/ 837? is
absolutely continuous; (2) 0°p/0z3 € Ls.
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Let X* € R be the subsample matrix yielded by the proposed SDAOT
algorithm, and p(z|X*) be the subsample estimator. We derive the following
convergence rate of AIMSE(p(z|X*)). The proofis relegated to the Appendix.

Theorem 2.3.1. Suppose K (-) satisfies the regularity conditions (a)-(¢) and the
population density function p satisfies the regularity conditions (1) and (2). Sup-

pose p has a compact convex domain Q0 C RY. For any arbitrary small § > 0, if
r = O(nY?) and h = O(r=20=9/+6)) e have

AIMSE(p(z|X*)) < O, (r~801-0)/(d+6)), (2.1)

Theorem reveals that the SDAOT can be used for efficient density
estimation. To see this, let X+ € R"™*% be a randomly selected subsample
matrix and p(z|X™) as the corresponding subsample estimator. According to
Theorem 6.4 of Scott, 2015, as 7 = o(n) and n — oo, if h = O(r~1/@+d),
AIMSE(p(z|X ™)) achieves the optimal convergence rate O (r~#(@+4)) Note
that such a convergence rate is much slower than the convergence rate in .
Theorem thus implies the proposed estimator p(z|X*) converges to the
true density function faster than p(z|X™).

An essential regularity condition in Theorem is that the domain of
p is compact convex. Empirically, we find the proposed estimator still works
reasonably well even when such a condition does nothold, as shown in Section 4.
How to determine the bandwidth £, or in general, the bandwidth matrix H €
R4 is essential for the performance of the kernel density estimators®. Let 3 be
the empirical variance-covariance matrix. In practice, for the random subsample
estimator p(z|X ), we opt to choose H = r~1/(4+4) $2, according to the
general Scott’s rule (Scott, 2015). In terms of the proposed estimator p(z|X*),

—2/(d+6)

we choose H = r x 31/2, according to Theorem 1.

2.4 Numerical experiments

2.4.1 SDAOT subsample visualization

We show the performance of the subsamples (red dots) selected by SDAOT
(lower row) versus the subsamples selected by uniform sampling (upper row).
The samples (grey dots) are generated from three different bivariate distribu-
tions: standard Gaussian distribution (left), mixture beta distribution (middle),
and mixture Gaussian distribution (right). In figures of the left column, one can
observe that the uniformly selected subsample is far from symmetric. In figures

of the middle and the right columns, one can see that some of the peaks in the

33

> Asa special case, in Theo-
rem 1, the bandwidth matrix
H = h - I, wherel,

denotes the identity matrix.



-25

Figure 2.4: Subsamples (red dots) selected by SDAOT (lower) versus randomly
selected subsamples (upper). Contour curves (black) are superimposed.

probability distribution are largely overlooked by the uniform random subsam-
pling method. In summary, in all these three cases, the subsamples identified
by SDAOT have a more appealing visual representation of the corresponding
probability distribution than that selected by the uniform subsampling method.

2.4.2 SDAOT for density estimation

We now investigate the performance of SDAOT for density estimation in com-
parison with uniform subsampling (UNIF), k-medoids (KM), support point
(SP), and kernel herding (KH). We simulate the data with n = 10%, d =
{5,10,20} and r = {32,64, 128,256} from a multivariate standard Gaus-
sian distribution and a “dumbbell-like” mixture Gaussian distribution (Duong
etal,,2oo7), N(1,1;)/4 + N(—1,1;)/4 + N(0,X)/4, where ¥ = 0.8/i=71]
i,7 = 1,...,d. The Gaussian kernel is used in the simulation, and we opt to
use the general Scott’s rule for selecting the bandwidth for the kernel function
(Scott, pors). Specifically, we choose the bandwidth matrix r=2/(d+6) x $31/2
for the SDAOT estimator (according to Theorem 1) and 7~ 1/(@+4) x $U2 for
the other estimators, where 3" denotes the empirical variance-covariance matrix.
To measure the estimation accuracy, we use the empirical Hellinger distance
(D.Lietal,2o16), 1 — £ 3" \/p(@;)/p(x;), where p(a) is the subsample
kernel density estimate of the density p(x).
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Figure 2.5: Hellinger distances between the estimated density function and true
density function.

Figureshows the result for the estimation accuracy, where the lines are
the mean Hellinger distance, and the vertical bars are the standard error obtained
across ten replicates. The upper and lower row show the result for the standard
Gaussian case and the mixture Gaussian cases, respectively.

We observe that the UNIF (black line) yields a decent performance. The
KM (blue line) does not perform as well as the UNIF in most cases since the
subsamples selected by the KM are not representative of the probability distri-
bution. We also observe that the KH method does not perform well, which may
be attributed to the fact that the performance of the KH is sensitive to the choice
of its parameter. The SP method (orange line) performs reasonably well when
d is small, and its performance deteriorates as d increases. Finally, we observe
that the proposed SDAOT method (red line) outperforms the other methods
significantly in most of the cases. Such success can be attributed to the fact that
the selected subsamples are representative of the probability distribution, and
the SDAOT algorithm is adaptive to the high-dimensional cases.

2.4.3 SDAOT for active learning

Active learning approaches aim to make an accurate prediction, with the num-
ber of labeled training data points as small as possible (Cohn et al., 1996; Krogh
& Vedelsby, 199s)). These approaches are essential for numerous sophisticated
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Figure 2.6: The mean classification accuracy on testing sets across ten replicates.

supervised learning tasks, where the labeled instances are challenging, time-
consuming, or expensive to obtain . Take speech recognition as an example;
accurate labeling of speech utterances is extremely time-consuming and requires
trained linguists. It is reported that annotation at the level of the phoneme can
take 400 times longer than the actual audio (Settles, 2012).

In general, active learning approaches select the data points (also termed
as the query points) iteratively and interactively. In each iteration, one query
the oracle to obtain the label at a new query point, based on certain criteria.
The SDAOT algorithm can be cast as an active learning approach. In partic-
ular, we generate Sobol sequence S, (Owen, |2003)). in Algorithm 1 and select
the query points sequentially in Algorithm 3. We now compare SDAOT in
active learning and with the following baseline methods: (1) random sampling
(RANDOM), (2) query by committee (COMMITTEE) which select query
points that maximize the “disagreement” among different models (Settles, 2012),
(3) margin-based method (MARGIN) which choose query points that lic on
the margin of the decision line (Schohn & Cohn, 2000]), and (4) hierarchical-
clustering-based method (CLUSTER) which select the center nodes in each
cluster (S. Dasgupta & Hsu, 2008)).

We consider twelve binary-class real-world datasets: Fourclass Ho and Klein-

berg, 1996, SVMguider Hsu et al., 2003, banknote, occupancy, wine, and covtype,
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the last four of which are downloaded from UCI machine learning repository
(Asmussen & Glynn, [2007): Since covtype is a multi-class data set, we construct
two binary-class datasets: data with labels 5 and 6, data with labels 6 and 7,
respectively. Letter is also a multi-class data set, and we construct a binary class
data set for each of the following pairs of letters that are relatively difficult to dis-
tinguish, i.e, M vs N,U vsV, K vs R, F' vs P, and G vs (). For each dataset, we
replicate the experiment ten times. In each replication, each dataset is randomly
divided into the training set testing set of equal sizes.

We evaluate the classification model by its mean classification accuracy on
the testing set. The classification accuracy is defined as (T'P + F'N) /n, where
n denotes the size of the testing set, and 7'P and F'/N denote true positive and
false negative, respectively. We opt to use the support vector machine (SVM)
(implemented by the R package “ero71” (Meyer et al., 2015)) for classification.
The RBF kernel with default parameters is used in SVM, and the parameter A is
selected using cross-validation. To mimic the real scenarios where the labeling
cost is expensive, we select only a small number of query points, ranging from
10 to 50, in each dataset. For COMMITTEE and MARGIN where several
initial labeled data points are required, ten data points are randomly selected
and labeled.

Figure[2.6|shows the mean classification accuracy of different active learn-
ing methods versus different numbers of query points. We first observe that
RANDOM (black line) yields decent performance even though such a method
is expected to be less efficient than others. A similar observation was also found
in Guyon et al., 2011, where the random sampling strategy is a runner-up in the
active learning challenge. It is suggested that the advantages of state-of-the-art
active learning methods over the random sampling methods decreases as the full
sample classification accuracy decreases. In specific, (Mussmann & Liang, 2018)
indicated that when the full-sample classification accuracy is lower than 90%,
the random sampling method is non-significantly worse than active learning
methods. Note that most of the datasets we considered in the experiments have
the full sample classification accuracy no more than 90%, and such a fact may
be the cause of why the naive random sampling method has decent performance
in most of our experiments.

MARGIN (purple line) and COMMITTEE (orange line) do not perform
well when the number of the query points is small. These two methods quickly
catch up with other methods as the number of query points increases. Such a
phenomenon is attributed to the fact that the performance of these two meth-
ods highly depends on the accuracy of the learned classification model. Never-
theless, with only a few training data points, the learned classification models
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tend to be inaccurate, resulting in unsatisfactory results. Compared with the
two aforementioned “semi-supervised” methods, CLUSTER (blue line) is an
“unsupervised” method in the sense that it selects the next query points without
using the information from the available labels. We observe that the perfor-
mance of the CLUSTER is inconsistent, i.c., it performs well on some datasets
and performs poorly on others. We attribute such an observation to the fact that
the cluster structure of the training set may not always be informative to learn
the desired classification model. Finally, we observe that the proposed SDAOT
method (red line) outperforms the other baseline methods significantly in most
of the cases, especially when the number of query data points is small. Such
success can be attributed to the fact that the query points selected by SDAOT
are representative of the probability distribution. Intuitively, the classification
models learned from a set of representative query points are very close to the

classification models learned from the whole training set.

2.5 Concluding remarks

We consider the problem of identifying a subsample that can eftectively repre-
sent the underlying probability distribution of a given sample. The key step
in the proposed SDAOT algorithm is the optimal transport map, which is em-
ployed to transform the sample to be uniformly distributed. We demonstrate
the selected subsample has an appealing visual representation of the full sample,
and the computational cost is only of the (approximately) linear order of the
sample size. The proposed algorithm provides a systematic way of selecting
representative subsamples and can be used for efficient density estimation and

active learning.
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CHAPTER 3

MORE EFFICIENT
APPROXIMATION OF
SMOOTHING SPLINES USING
SPACE-FILLING BASIS
SELECTION

We consider the problem of approximating smoothing spline estimators in
a nonparametric regression model. When applied to a sample of size n, the
smoothing spline estimator can be expressed as a linear combination of n basis
functions, requiring O(n?) computational time when the number of predic-
tors d > 2. Such a sizable computational cost hinders the broad applicability of
smoothing splines. In practice, the full sample smoothing spline estimator can
be approximated by an estimator based on ¢ randomly-selected basis functions,
resulting in a computational cost of O(ng?). It is known that these two estima-
tors converge at the identical rate when g is of the order O{n? ®"r+D} where
p € [1,2] depends on the true function 7, and > 1 depends on the type of
spline. Such ¢ is called the essential number of basis functions. In this article,
we develop a more efficient basis selection method. By selecting the ones corre-
sponding to roughly equal-spaced observations, the proposed method chooses
a set of basis functions with a large diversity. The asymptotic analysis shows our
proposed smoothing spline estimator can decrease ¢ to roughly O{n!/® 1)},
when d < pr + 1. Applications on synthetic and real-world datasets show the
proposed method leads to a smaller prediction error compared with other basis
selection methods.
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3.1 Introduction

Consider the nonparametric regression model y; = n(z;) + (i = 1,...,n),
where y; € R denotes the ith observation of the response, 7) represents an un-
known function to be estimated, z; € R? is the ith observation of the predictor
variable, and {¢; }?_; are independent and identically distributed random errors
with zero mean and unknown variance 0. The function 7 can be estimated by

minimizing the penalized least squares criterion,

S e+ M), 6

where J (1) denotes a quadratic roughness penalty (C. Gu, 2013; Wahba, |1990;
X. Wang et al., 2o11). The smoothing parameter A here administrates the trade-
off between the goodness-of-fit of the model and the roughness of the function
7. In this chapter, expression is minimized in a reproducing kernel Hilbert
space H, which leads to a smoothing spline estimate for 7.

Although univariate smoothing splines can be computed in O(n) time
(Reinsch, 1967), it takes O(n?) time to find the minimizer of (3.1) when d > 2.
Such a computational cost hinders the use of smoothing splines for large sam-
ples. To reduce the computational cost for smoothing splines, extensive efforts
have been made to approximate the minimizer of by restricting the estima-
tor 1) to a subspace Hp C H. Let the dimension of the space H g be ¢ and the
restricted estimator be 7). Compared with the O(n?) computational cost of
calculating ), the computational cost of 7z can be reduced to O(ng?). Along
this line of thinking, numerous studies have been developed in recent decades.
Luo and Wahba, 1997/ and H. H. Zhang et al., 2004 approximated the mini-
mizer of (3.1) using variable selection techniques. Pseudosplines (Hastie, 1996)
and penalized splines (Ruppert et al.,2009) were also developed to approximate
smoothing splines.

Although these methods have already yielded impressive algorithmic bene-
fits, they are usually ad hoc in choosing the value of . The value of ¢ regulates
the trade-oft between the computational time and the prediction accuracy. One
fundamental question is how small ¢ can be in order to ensure the restricted es-
timator 7) converge to the true function 7 at the identical rate as the full sample
estimator 7). To answer this question, C. Gu and Kim, 2002; Ma, Huang, et al.,
2015/ developed random sampling methods for selecting the basis functions and
established the coherent theory for the convergence of the restricted estimator
Ne. To ensure that 7 has the same convergence rate as 7), both methods in
C. Gu and Kim, 2002 and Ma, Huang, et al., 2015 require ¢ be of the order
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O{n?Pr+1+31 "where § is an arbitrary small positive number, p € [1,2] de-
pends on the true function 1), and r depends on the fitted spline. Itis shown that
fewer basis functions are needed to warrant the aforementioned convergence
rate if we select the basis functions { R(z;, -) }J_,, where {2;}_, are roughly
equal-spaced. However, they only provide the theory in the univariate predictor
case, and their method cannot be directly applied to multivariate cases.

In this chapter, we develop a more efficient computational method to ap-
proximate smoothing splines. The distinguishing feature of the method is that
it considers the notion of diversity of the selected basis functions. We propose
the space-filling basis selection method, which chooses the basis functions with
a large diversity, by selecting the ones that correspond to roughly uniformly-
distributed observations. When d < pr + 1, we show that the smoothing
spline estimator proposed here has the same convergence rate as the full sample

estimator, and the order of the essential number of basis function ¢ is reduced
to O{n(lJr(S)/(pTJrl)}.

3.2 Backgrounds

Let H = {n : J(n) < oo} be a reproducing kernel Hilbert space, where
J(-) is a squared semi-norm. Let N; = {n : J(n) = 0} be the null space
of J(n) and assume that V} is a finite-dimensional linear subspace of H with
basis {&;}7, in which m is the dimension of ;. Let H; be the orthogonal
complement of N in H such that H = N; @ H;. The space H is a re-
producing kernel Hilbert space with .J(+) as the squared norm. The reproduc-
ing kernel of H ; is denoted by R (-, -). The well-known representer theorem
(Wahba, 1990) states that there exist vectors d = (dy, ..., d,,)T € R™ and
c = (c1,...,c,)7 € R™, such that the minimizer of in H is given by
n(x) = >0, deée(x) + > ciRy(zi,x). Let Y = (y1,...,yn)" be the
vector of response observations, S be the n x m matrix with the (¢, j)th entry
&;(z;),and R be the n x n matrix with the (¢, j)th entry R ;(z;, z;). Solving
the minimization problem in thus is equivalent to solving

A

1

(d,¢) = argmin—(Y — Sd — Re)" (Y — Sd — Rc) + A" Re,  (3.2)
d,c n

where the smoothing parameter \ can be selected based on the generalized cross-

validation criterion (Wahba & Craven, 1978). In a general case where n >> m

and d > 2, the computation cost for calculating (d, ¢) in equation is of

the order O(n?), which is prohibitive when the sample size n is considerable.
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3 A learner is either a model
or a learning algorithm.

To reduce this computational burden, one can restrict the full sample estimator
7j to a subspace Hy C H, where Hg = N; @ span{R;(z},-),i=1,...,q}.
Here, H g, termed as the effective model space, can be constructed by selecting
asubsample {2} }{_, from {z;},. Such an approach is thus called the basis
selection method.

Denote a matrix R, € R"*? with the (7, j)th entry R;(7;, 7}) and R.. €
R4 with the (i, j)th entry R (x, ). The minimizer of (3.1) in the effective

model space H i thus can be written as

ne(r) = deﬁk(ﬂf) + ZCiR(Jﬁf, )

T

and the coefficients, dg = (d1,...,d,n)" and cg = (c1,...,¢4)" can be

obtained through solving

A 1
(dp,ég) = argmin—(Y — Sdg — R,cp)' (Y — Sdg — R.cg)  (3.3)

dp,cg T
HACER e (3.4)

The evaluation of the restricted estimator 7 at sample points thus satis-
flesnp = Sdg + R.ép, where e = {Ne(x1),...,0e(x,)}. Ina general
case where m < ¢ < n, the overall computational cost for the basis selection
method is O(ng?), which is a significant reduction compared with O(n?*). Re-
call that the value of ¢ controls the trade-oft between the computational time
and the prediction accuracy. To ensure that ) converges to the true function
7 at the same rate as 7, researchers showed that the essential number of basis
functions ¢ needs to be of the order O{n? P +1D+3} 'where § is an arbitrary
small positive number (Kim & Gu, 2004; Ma, Huang, et al., 2015). In the next

section, we present the proposed space-filling basis selection method, which
reduces such an order to O{n(1+9)/(r+1)1,

3.3 Space-filling basis selection

3.3.1 Motivation and Notations

To motivate the development of the proposed method, we first re-examine the
ensemble learning methods, which are well-known in statistics and machine
learning (Dietterich, [2002; Rokach, 2010). To achieve better predictive perfor-
mance than asingle learner?, ensemble learning methods first build a committee

which consists of a number of different learners, then aggregate the predictions
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of these learners in the committee. The aggregation is usually achieved by em-
ploying the majority vote or by calculating a weighted average. The diversity
among the learners in the committee holds the key to the success of the en-
semble learning methods. A large diversity in the committee yields a better
performance of ensemble learning methods (Kuncheva & Whitaker, 2003)).

The restricted smoothing spline estimator 1) can be considered as an ensem-
ble learning method. In particular, the prediction of 7)g is conducted by taking
a weighted average of the predictions of the selected basis functions R ;(z}, -),
i € {1,...,q},inaddition to the basis functions in the null space \V;;. Inspired
by Kuncheva and Whitaker, 2003, we propose to select a subsample {x} ER
such that the diversity among the basis functions { R (7, -) }7_; is as large as
possible. One crucial question is how to measure the diversity among a set of ba-
sis functions. Notice that adjacent data points, i.c., 2; = 7 (i,j € {1,...,q})
yields similar basis functions, i.e., 2;(}, ) & R;(x}, ). On the other hand,
if 27 is far away from z7%, the basis function R;(z}, ) tends to be different
from R;(x7, ). These observations inspire us to select a set of basis functions
{Rj(zf, )}, where {z}}]_, are as uniformly-distributed as possible. The
uniformly-distributed property, usually termed as the space-filling property in
the experimental design literature (Pukelsheim, 2006), can be systematically
measured by the star discrepancy.

Since the star discrepancy is defined for data in [0, 1]%, in practice, we need
to map the data with arbitrary distribution to this domain. Suppose &,, =
{x;}1-, are independent and identically distributed observations generated
from the cumulative distribution function F’ with bounded support D C R,
Suppose 7 is a transformation, such that {7(z;)}!_; has the uniform distribu-
tion on [0, 1]%. In a simple case where d = 1 and F' is known, we can find the
transformation 7 by setting 7 = F'. In a more general case where d > 1 and
F is unknown, the transformation 7 can be calculated using the optimal trans-
port theory (Villani, 2008). However, finding the exact solution using the op-
timal transport theory can be time-consuming. Instead, one may approximate
the transformation 7 using the iterative transformation approach (Pukelsheim,
2006) or the sliced optimal transport map approach (Rabin et al., j2o11). The
computational cost of these two approaches is of the order O{ K'nlog(n)},
where K denotes the number of iterations (Bonneel et al., 2o15; Cuturi &
Doucet, 2014; Kolouri et al., 2018). Such a computational cost is negligible
compared with the computational cost of the proposed method. In practice,
the data can always be preprocessed using the transformation of 7. Withoutloss
of generality, X, may be assumed to be independent and identically distributed
observations generated from the uniform distribution on [0, 1]%.
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3.3.2 Star discrepancy and space-filling design

Leta = (a1,...,aq9)" € [0,1]%10,a) = H?ZI[O, a;) be a hyper-rectangle
and 1{-} be the indicator function. The local discrepancy and the star discrep-

ancy are defined as follows (Fang et al., 200s; Pukelsheim, 2006).

Definition 3.3.1. Given X, = {z1,...,z,} in [0, 1]? and a hyper-rectangle
[0, a), the corresponding local discrepancy is defined as

q

Do) =113 1 € )} - [ o)
q ’

i=1
The star discrepancy corresponding to Xy is defined as

D*(Xx,) = sup D(&X,,a).

a€l0,1]4

The local discrepancy D(X,, a) measures the difference between the vol-
ume of the hyper-rectangle [0, a) and the fraction of the data points located
in [0, a). The local discrepancy is illustrated in the left panel of Fig. 3.1 The
star discrepancy D* (X)) calculates the supreme of all the local discrepancy over
a € [0, 1]% In other words, the smaller the D*(X,) is, the more space-filling
the data points X, are (Fang et al., 2005)).

1
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Figure 3.1: Left panel: A toy example for local discrepancy. Right panel: An
illustration for the proposed basis selection method.

Chung, 1949 showed that when X is generated from the uniform distribu-
tion in [0, 1]¢, the convergence rate for D* () is O[{log log(q) /q}*/?]. Faster
convergence rate can be achieved using space-filling design methods and the low-
discrepancy sequence method (Halton, 1960; Owen, [2003; Sobol, 1967). The
space-filling design methods, developed in the experimental design literature,
aim to generate a set of design points that can cover the space as uniformly
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as possible. For further details, please refer to Fang et al., 200s; Pukelsheim,
2006; Wu and Hamada, 2011, The low-discrepancy sequence method Such a
method is frequently applied in the field of quasi-Monte Carlo and is extensively
employed for numerical integration. For a Sobol sequence S, one type of low-
discrepancy sequence, it is known that D*(S,) is of the order O{log(¢)?/q},
which is roughly the square order D*(X,)) for fixed d. For more in-depth dis-
cussions on the quasi-Monte Carlo methods, see e.g., Dick et al., 2013; Lemieux,
2009; Leobacher and Pillichshammer, 2014 or Chapter 5 in Glasserman, 2013
and references therein.

Existing studies suggested that space-filling property can be exploited to
achieve a fast convergence rate for numerical integration and response surface
estimation (Fang et al., 200s; Pukelsheim, 2006). These results inspire us to
select the space-filling basis functions in smoothing splines. Unfortunately,
the existing techniques of space-filling design cannot be applied to our basis
selection problem directly due to the following fact. The design space in space-
filling design methods is usually continuous, whereas our sample space {z; }7_;

is finite and discrete. We propose an algorithm to overcome the barrier.

3.3.3 Main algorithm

We shall develop a space-filling basis selection method, in which we select the
space-filling data points in a computationally-attractive manner. First, a set
of design points S, = {s;}._; € [0,1]¢ are generated, either using low-
discrepancy sequence or space-filling design methods. Subsequently, the near-
est neighbor 7 is selected for each s;, from the sample points {z;}}_;. Thus,
{x}}]_, can approximate the design points S, well, if x} is sufficiently close to
si,fori =1, ... ¢q. The proposed method is summarized as in Algorithm

Algorithm s Space-filling basis selection algorithm

Input: A sample {x;}7_;.

Step 1: Generate a set of design points {s; }7_, from [0, 1]%.

Step 2: Select the nearest neighbor for each design point s; from {z;}} ;.
Let the selected data points be {z] }{_,.

Step 3: Minimize the penalized least squares criterion (3.1)) over the following
effective model space Hp = N @ span{R;(z},-),i =1,...,¢}.

The proposed algorithm is illustrated through a toy example in the right
panel of Fig. 3.1 One hundred data points (gray dots) are generated from the
uniform distribution in [0, 1]?, and a set of design points (black triangles) are
generated through the max projection design (Joseph et al., |2015), a recently
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developed space-filling design method. The nearest neighbor to each design
pointis selected (circle). Itis observed that the selected subsample is space-filling
since it can effectively approximate the design points.

Truth UNIF ABS

1.00 100 | ypmmn ‘ 1.00 ‘
078 ‘ 07514, " t. 075 8 .

* e’ 2
X' 050 = 050 ' 3 X' 050 . A
025 025 . + 025 e
St ' .
0001 % 0001~ 0.00 b

000 025 050 075 100 000 025 050 075 100 000 025 050 075 100 000 025 050 075 1.00
X Xy X1 X1

Figure 3.2: Comparison of different basis selection methods.

In Fig. the proposed space-filling basis selection method is compared
with the uniform basis selection method (C. Gu & Kim, 2002) and the adaptive
basis selection method (Ma, Huang, et al., 2015)) using a two-dimensional toy
example. We generate sooo data points from the uniform distribution in [0, 1]2.
The leftmost panel in Fig. [3.2] presents the heat map for the true response sur-
face y = sin{5(x; + x2)}. The dimension of the effective model space ¢ is
set to be 5 x (5000)%/° ~ 33, for all basis selection methods. The selected
basis functions are labeled as solid dots in each panel. The right three panels
of Fig. plot the heat maps of the spline estimates of all three basis selection
methods. In the uniform basis selection method, the default random number
generator in R is employed to select the basis functions. It is observed that
the selected points are not uniformly distributed. This is a very common phe-
nomenon for uniform basis selection since the randomly selected points do not
necessarily look uniformly-distributed, especially when the number of selected
points is small. In contrast, it is observed that the basis functions selected by the
proposed method are space-filling. Using the space-filling design techniques,
the proposed method overcomes the pitfall of uniform basis selection method
and uniformly-distribute the selected points. The true response can be better
estimated using the proposed method than using other methods.

Now we calculate the computational cost of the proposed method. In Step
1, the design points can be generated beforehand; thus, the computational cost
in Step 1 can be ignored. For the nearest neighbor search in Step 2, we employ
the k-d tree method, which takes O{nlog(n)} flops (Bentley, 1975; Wald &
Havran, 2006)). The computational cost of this step can be further reduced if
we are willing to sacrifice the accuracy of the searching results, e.g., using those
approximate nearest neighbor searching algorithms (Altman, 19925 Arya et al,,
1994). For Step 3, computing the smoothing spline estimates in the restricted
space H f; is of the order O(ng?), as discussed in Section 2.2. In summary, the
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overall computational cost for the space-filling basis selection method is of the

order O(ng?).

3.4 Convergence rates for function estimation

Recall that the data points are assumed to be generated from the uniform dis-
tribution on [0, 1]¢. Thus, for each coordinate z, the corresponding marginal
density fx(-) = 1. We define that V(g f[o a9 2dz. The following four
regularity conditions are required for the asymptotic analysis, and the first three
are the identical conditions employed by Ma, Huang, et al., 2015, in which one
can find more technical discussions.

Condition 1. The function V' is completely continuous with respect to J;

Condition 2. for some § > Oand r > 1, p, > Bv" for sufficiently large v;

Condition 3. forall gand v, var{¢, (z)¢,(z)} < Cy, where ¢, ¢,, are the
eigenfunctions associated with V" and J in H, C'; denotes a positive constant;

Condition 4. forall gand v,V (g,,) < Cs, where V(-) denotes the total
variation, ¢, () = ¢, (2)¢,(x), and C; represents a positive constant. The
total variation here is defined in the sense of Hardy and Krause (Owen, 2003)).
Asaspecific case when d = 1, the total variation V(g) = [ |¢/(x)|dz, revealing
that a smooth function displays a small total variation. Intuitively, the total
variation measures how wiggly the function ¢ is.

Condition 1 indicates that there exist a sequence of eigenfunctions ¢, € H
and the associated sequence of eigenvalues p,, 1 0o satisfying V (¢, ¢,.) = 0,
and J(¢y, @) = puOyy, where 6, is the Kronecker delta. The growth rate of
the eigenvalues p,, dictates how fast A should approach to o, and further what
the convergence rate of smoothing spline estimates is (C. Gu, |2013). Notice
that the eigenfunctions ¢, s have a close relationship with the Demmler-Reinsch
basis, which are orthogonal vectors representing l» norm (Ruppert, 2002)). The
eigenfunctions ¢, s can be calculated explicitly in several speciﬁc scenarios For
instance, ¢, s are the sine and cosine functions when J (7 fo 2d:1: where
7 denotes a periodic function on [0, 1]. For more details on the construction
of ¢,s can be found in Section 9.1 of C. Gu, 2013.

We now present our main theoretical results, and all the proofs are rele-
gated to the Appendix. For a set of design points S, of size ¢, we now assume
the star discrepancy D*(S,) converges to zero at the rate of O{log(q)?/q}, or
O{q~'=9} for an arbitrary small positive number 6. Such a convergence rate
is warranted if S is generated from a low-discrepancy sequence or space-filling
design methods, as discussed in Section 3.1. Recall that the proposed method
aims to select a subsample that is space-filling, and the key to success depends
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on whether the chosen subsample X can effectively approximate the design
points S;. The following lemma bounds the difference between Xy and S in
terms of star discrepancy.

Lemma 3.4.1. Suppose dis fised and D*(S,) = O™}, forany arbitrary
small § > 0.1fq = O(n/?), asn — oo, we have D*(X]) = O, {q~ 79}

Lemma states that the selected subsample X7 can effectively approx-
imate the design points S, in the sense that the convergence rate of D*(X)
is similar to that of D*(S,). The following theorem is the Koksma-Hlawka
inequality, which will be used in proving our main theorem. See Kuipers and
Niederreiter, 2012/ for a proof.

Theorem 3.4.1 (Koksma-Hlawka inequality). Ler T, = {t1, ..., t,} beasetof
data points in [0, 1]%, and h be a function defined on [0,1]* with bounded total
variation V(h). We bave | f[O,I]d h(z)dz — >~ | h(t;)/q| < D*(T,)V(h).

Combining Lemma and Theorem andseth = g,,, Ty = &

yields the following lemma.

Lemma 3.4.2. If'q = O(nY%), under Condition 4, for all jand v, we bave

1 q
¢V¢Md1: - gz ¢V('T;k)¢u(x;) = Op{q_(l_é)}'
j=1

[0,1)¢
Lemmal3.4.2]shows the advantage of {x}}{_,, the subsample selected by
the proposed method, over a randomly selected subsample {z; }?_,. To be
specific, as a direct consequence of Condition 3, we have E| f[o 1 Oy pudr —
1 dv(x])ou(z])/q]* = O(q™"), forall u and v. Lemma 2 therefore

implies the subsample /’\?q* can more efficiently approximate the integration
f[o 1 ¢y ¢, dx, for all pand v. We now present our main theoretical result.

Theorem 3.4.2. Suppose’y ; piV (1o, ¢:)* < oo forsomep € [1, 2] and d isan
arbitrary small positive number. Under Conditions1-4,q = O(nl/ D as\ — 0
and ¢\ — o0, we have (V + A\J)(Ag — no) = Op(n~ A7V + \P),
In particular, if A < n~"/ D) the estimator achieves the optimal convergence

rate (V + AJ) (g — 1n9) = Op{n~Pr/(r+l)}

It is shown in Theorem 9.17 of C. Gu, 2013/ that the full sample smoothing
spline estimator 7) has the convergence rate,

(V 4+ A = o) = O~/ 7+
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under some regularity conditions. Theorem thus states that proposed es-
timator 7)g achieves the same convergence rate as the full sample estimator 7),
under two extra conditions imposed on ¢ (a) ¢ = O(n/%),and (b) ¢* °AY/" —
o0 as A — 0. Moreover, Theorem 3.4.2]indicates that to achieve the identical
convergence rate as the full sample estimator 7), the proposed approach requires
a much smaller number of basis functions, in the case when \ = n~"/@r+1),
¢" A" — oo indicates an essential choice of ¢ for the proposed estimator
should satisty ¢ = O{n(+9/r+D1 'swhen A =< n="/®"+1) For comparison,
both the random basis selection (C. Gu & Kim, |2002) and the adaptive basis
selection method (Ma, Huang, et al., 2015) require the essential number of basis
functions to be ¢ = O{n¥ @ +V+%} " As a result, the proposed estimator is
more efficient since it reduces the order of the essential number of basis func-
tions.

Given ¢ = O(n'/?), when d < pr + 1, it follows when ¢* 2 A\Y/" — oo is
satisfied. Otherwise, when d > pr + 1, ¢ = O(n'/?) becomes sufficient but
not necessary for ¢* 9 A\/" — oo. We thus stress that the essential number of
basis functions for the proposed method, ¢ = O{n(1+9/(Pr+D} "can only be
achieved when d < pr + 1. The parameter p in Theorem 2 is closely associated
with the true function 1y and will affect the convergence rate of the proposed
estimator. Intuitively, the larger the p is, the smoother the function 7y will be.
For p € [1, 2], the optimal convergence rate of (V' + AJ)(7)g — 1) falls in the
interval [O,(n="/"*+1)), O, (n=2/+1)]. To the best of our knowledge, the
problem of selecting the optimal p has rarely been studied, and one exception
is Serra and Krivobokova, 2017, where the author studied such a problem in
one-dimensional cases. Serra and Krivobokova, 2017| provided a Bayesian ap-
proach for selecting the optimal parameter, named 3, which is known to be
proportional to p. Nevertheless, since the constant $/p is usually unknown,
such an approach still cannot be used to select the optimal p in practice. Fur-
thermore, whether such an approach can be extended to the high-dimensional
cases remains unclear.

For the dimension of the effective model space g, a suitable choice is ¢ =
nU+0)/@p+1)+0 i the following two cases. Case 1. Univariate cubic smoothing
splines with the penalty J (1) = fol (02, r = 4and XA < n=40P+D; Case 2.
Tensor-product splines with 7 = 4 — 0*, where 0* > 0. Forp € [1,2], the
dimension roughly lies in the interval (O(n!/?), O(n'/?)).
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3.5 Simulation Results

To assess the performance of the proposed space-filling basis selection method,
we carry out extensive analysis on simulated datasets. We report some of them
in this section. We compare the proposed method with uniform basis selection
and adaptive basis selection, and report both prediction error and running time.

The following four functions on [0, 1] (Lin & Zhang, 2006)) are used as
the building blocks in our simulation study, ¢1(t) = ¢, g2(t) = (2t — 1)%,
g3(t) = sin(2nt) /{2—sin(27t) },and g4(t) = 0.1 sin(27t)+0.2 cos(27t) +
0.3sin(27t)? 4 0.4 cos(27t)? + 0.5sin(27t)3. In addition, we also use the
following functions on [0, 1]* (Wood, 2003) as the building blocks,

hi(ty,ts) = {0.75/(ro102)} x exp{—(t; — 0.2)*/o] — (to — 0.3)*/03},
ho(ty,ts) = {0.45/(mo102)} x exp{—(t; — 0.7)*/o] — (to — 0.8)*/03},

where 0y = 0.3 and 05 = 0.4. The signal-to-noise ratio (SNR), defined as
var{n(X)}/o?, is set to be at two levels: 5 and 2. We generate replicated sam-
ples with sample sizes n = {219, 21 ... 2!} and dimensions d = {2,4,6}
uniformly on [0, 1]? from the following four regression settings,

(1) A 2-d function gy (7122) +ga(22) +g3(21) +ga(w2) +g3{ (z1+72) /2}5

(2) A 2-d function hy (x1, 22) + ho(z1, x2);

(3) A 4-d function g1 (1) + ga(x2) + gs(x3) + 2g1{(z1 + z4)/2} +
292{ (@2 + 23)/2} + 2g3{(21 + 23) /2}5

(4) A 6-d function h(xy, x2) + h(xq, z5).

In the simulation, ¢ s set to be 5n%/? and 10n!/?, based on the asymptotic re-
sults. To combat the curse of dimensionality, we fit smoothing spline analysis of
variance models with all main effects and two-way interactions. The prediction
error is measured by the mean squared error (MSE), defined as [y ., {7jr(t;) —
no(t:) }?]/no, where {t;}1°, denotes an independent testing dataset uniformly
generated on [0, 1]” with ng = 5000. The max projection design (Joseph et al.,
2015)) is used to generate design points in Step 1 of the proposed method. Our
empirical studies suggest that the Sobol sequence and other space-filling tech-
niques, e.g., the Latin hypercube design (Pukelsheim, 2006) and the uniform
design (Fang et al.,|2000), also yield similar performance.

Figureshows the MSE against the sample size on the log-log scale. Each
column presents the results of a function setting as described above. We set
the signal-to-noise ratio to be five and two in the upper row and the lower row,
respectively. We use solid lines for the proposed method, dotted lines for adap-
tive basis selection method, and dashed lines for uniform basis selection method.
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Figure 3.3: Simulation under different settings (from left to right) with SNR
being five (the upper row) and two (the lower row).

The number of the basis functions ¢ is 57%/? and 10n'/? for the lines with trian-
gles and the lines with circles, respectively. The vertical bars represent standard
error bars obtained from 20 replicates. The full sample estimator is omitted
here due to the high computation cost. It is observed that the space-filling basis
selection method provides more accurate smoothing spline predictions than
the other two methods in almost all settings. Notably, the lines with circles for
the space-filling basis selection method displays a linear trend similar to the lines
with triangles for the other two methods. This observation reveals the proposed
estimator yields a faster convergence rate than the other two methods.

More simulation results can be found in the Appendix, in which we con-
sider the regression functions that exhibit several sharp peaks. In those cases, the
results suggest that both the space-filling basis selection method and the adap-
tive basis selection method outperform the uniform basis selection, whereas
neither the space-filling basis selection method nor the adaptive basis selection
method dominates each other. Moreover, the proposed space-filling basis se-
lection method outperforms the adaptive basis selection method as the sample
size n gets larger.

Table summarizes the computing times of model-fitting using all meth-
ods on a synthetic dataset with n = 2! and ¢ = 5n%"*. The simulation is
replicated for 20 runs using a computer with an Intel 2.6 GHz processor. In
Table 1, UNIF, ABS, and SBS represent the uniform basis selection method, the
adaptive basis selection method, and the proposed space-filling basis selection
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Table 3.1: Means and standard errors (in parentheses) of the computational time,
in CPU seconds, for multivariate cases, based on 20 replicates.

True function SNR  UNIF ABS SBS
Function 1 S 0.97(0.15)  0.90(0.05) 0.90(0.04)
2 0.92(0.10) 0.87(0.04) 0.87(0.06)
Function 2 5 0.88(0.04) 0.87(0.03) 0.90(0.06)
2 0.86(0.05) 0.85(0.02) 0.90(0.06)
Function 3 s 3.92(0.24) 3.95(0.24)  4.04(0.19)
2 4.08(0.30) 4.51(0.66) 4.27(0.39)
Function 4 5 12.95(0.61)  15.10(3.20)  15.45(3.04)
2 1433(144) 1B.72(r02) 14.25(1.09)

method, respectively. The time for calculating the smoothing parameter is not
included. The result for the full basis smoothing spline estimator is omitted
here due to the huge computational cost. The computational time for generat-
ing a set of design points, i.e., Step 1in the proposed algorithm, is not included
since the design points can be generated beforehand. It is observed that the
computing time of the proposed method is comparable with that of the other
two basis selection methods under all settings. Combining such an observation
with the result in Fig.[3.3) it is concluded that the proposed method can achieve

amore accurate prediction, without requiring much more computational time.

3.6 Real data example

The problem of measuring total column ozone has attracted significant atten-
tion for decades. Ozone depletion facilitates the transmission of ultraviolet
radiation (290-400 nm wavelength) through the atmosphere and causes severe
damage to DNA and cellular proteins that are involved in biochemical processes,
affecting growth and reproduction. Statistical analysis of total column ozone
data has three steps. In the first step, the raw satellite data (level 1) are retrieved
by NASA. Subsequently, NASA calibrates and preprocesses the data to gener-
ate spatially and temporally irregular total column ozone measurements (level
2). Finally, the level 2 data are processed to yield the level 3 data, which are the
daily and spatially regular data product released extensively to the public.

We fit the nonparametric model y;; = 1(21yi, T(2);) + €5 to alevel 2 total
column ozone dataset (n=173,405) compiled by Cressie and Johannesson, 2008.
Here, y;; is the level 2 total column ozone measurement at the ¢th longitude,
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ie., (1), and the jthlatitude, i.e., 7(2);, and €;; represent the independent and
identically distributed random errors. The heat map of the raw data is presented
in the Appendix. The thin-plate smoothing spline is used for the model-fitting,
and the proposed method is employed to facilitate the estimation. The number
of basis functions is set to ¢ = 20n%*/? ~ 292. The design points employed in
the proposed basis selection method are yielded from a Sobol sequence. The
heat map of the predicted image on a 1° x 1° regular grid is presented in Fig.
It is seen that the total column ozone value decreases dramatically to form
the ozone hole over the South Pole, around -55° latitudinal zone.
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Figure 3.4: Smoothing spline prediction of total column ozone value for
10/01/1988, in Dobson units

We now report computing times of the model-fitting that are performed on
the identical laptop computer for the simulation studies. The computational
times, in CPU seconds, are presented in parentheses, including basis selection
(0.15), model fitting (129s), and prediction (21s). Further comparison between
the proposed method and other basis selection methods on this dataset can be

found in the Appendix.
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CHAPTER 4

LARGE-SCALE OPTIMAL
TRANSPORT MAP
ESTIMATION USING
PROJECTION PURSUIT

This chapter studies the large-scale optimal transport maps (OTM), which is
a well known challenging problem owing to the curse of dimensionality. Exist-
ing literature approximates the large-scale OTM by a series of one-dimensional
OTM problems through iterative random projection. Such methods, however,
suffer from slow or none convergence in practice due to the nature of randomly
selected projection directions. Instead, we propose an estimation method of
large-scale OTM by combining the idea of projection pursuit regression and
sufficient dimension reduction. The proposed method, named projection pur-
suit Monge map (PPMM), adaptively selects the most “informative” projection
direction in each iteration. We theoretically show the proposed dimension re-
duction method can consistently estimate the most “informative” projection
direction in each iteration. Furthermore, the PPMM algorithm weakly conver-
gences to the target large-scale OTM in a reasonable number of steps. Empir-
ically, PPMM is computationally easy and converges fast. We assess its finite
sample performance through the applications of Wasserstein distance estima-
tion and generative models.

4.1 Introduction

Recently, optimal transport map (OTM) draws great attention in machine
learning, statistics, and computer science due to its close relationship to gen-
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erative models, including generative adversarial nets (Goodfellow et al., 2014)),
the “decoder” network in variational autoencoders (Kingma & Welling, |2013),
among others. In a generative model, the goal is usually to generate a “fake” sam-
ple, which is indistinguishable from the genuine one. This is equivalent to find
a transport map ¢ from random noises with distribution px (e.g., Gaussian dis-
tribution or uniform distribution) to the underlying population distribution
py of the genuine sample, e.g., the MNIST or the ImageNet dataset. Nowa-
days, generative models have been widely-used for generating realistic images
(Dosovitskiy & Brox, [2016; Liu et al., |2017), songs (Blaauw & Bonada, |2016;
Engel et al., 2017) and videos (Liang et al., j2017; Vondrick et al., |2016)). Besides
generative models, OTM also plays essential roles in various machine learning
applications, say color transfer (Ferradans et al.,|2014; Rabin et al., 2014)), shape
match (Z. Su et al,, 2015), transfer learning (Courty et al., 2017; Peyré, Cuturi,
et al., 2019) and natural language processing (Peyré, Cuturi, et al., 2019).

Despite its impressive performance, the computation of OTM is challeng-
ing for a large-scale sample with massive sample size and/or high dimensionality.
Traditional methods for estimating the OTM includes finding a parametric
map and using ordinary differential equations (Benamou et al., |2002; Brenier,
1997). To address the computational concern, recent developments of OTM
estimation have been made based on solving linear programs (Pele & Werman,
2009; Rubner et al,, 1997). Let {z;}", € R%and {y;}", € R?be two
samples from two continuous probability distributions functions px and py-,
respectively. Estimating the OTM from px to py by solving a linear program
requiring O(n®log(n)) computational time for fixed d (Peyré, Cuturi, et al.,
2019; Seguy et al.,[2017). To alleviate the computational burden, some literature
(Arjovsky et al., 2or7; Cuturi, 2013; Genevay et al., [2016; Gulrajani et al., 2017)
pursued fast computation approaches of the OTM objective, i.e., the Wasser-
stein distance. Another school of methods aims to estimate the OTM efficiently
when d is small, including multi-scale approaches (Gerber & Maggioni, 2017}
Meérigot, 2011) and dynamic formulations (Papadakis et al., 20145 Solomon et
al,, 2o14)). These methods utilize the space discretization, thus are generally not
applicable in high-dimensional cases.

The random projection method (or known as the radon transformation
method) is proposed to estimate OTM:s efhiciently when d is large Pitie et al.,
2005; Pitié et al., 2007, Such a method tackles the problem of estimating a d-
dimensional OTM iteratively by breaking down the problem into a series of
subproblems, each of which finds a one-dimensional OTM using projected sam-
ples. Denote S as the d-dimensional unit sphere. In each iteration, a random
direction @ € S% ! is picked, and the one-dimensional OTM is then calculated
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Figure 4.1: Illustration for the “informative” projection direction

between the projected samples {x;0}7_; and {y]0}7_,. The collection of all
the one-dimensional maps serves as the final estimate of the target OTM. The
sliced method modifies the random projection method by considering a large
set of random directions from S?~ in each iteration (Bonneel et al., 2o15; Ra-
bin et al., 2o11). The “mean map” of the one-dimensional OTMs over these
random directions is considered as a component of the final estimate of the tar-
get OTM. We call the random projection method, the sliced method, and their
variants as the projection-based approach. Such an approach reduces the com-
putational cost of calculating an OTM from O(n? log(n)) to O(Knlog(n)),
where K is the number of iterations until convergence. However, there is no
theoretical guideline on the order of K. In addition, the existing projection-
based approaches usually require a large number of iterations to convergence
or even fail to converge. We speculate that the slow convergence is because a
randomly selected projection direction may not be “informative”, leading to a
one-dimensional OTM that failed to be a decent representation of the target
OTM. We illustrate such a phenomenon through an illustrative example as
follows.

An illustrative example. The left and right panels in Figure 1 illustrates
the importance of choosing the “informative” projection direction in OTM
estimation. The goal is to obtain the OTM ¢* which maps a source distribu-
tion px (colored in red) to a target distribution py (colored in green). For each
panel, we first randomly pick a projection direction (black arrow) and obtain the
marginal distributions of px and py (the bell-shaped curves), respectively. The
one-dimensional OTM then can be calculated based on the marginal distribu-
tions. Applying such a map to the source distribution yields the transformed
distribution (colored in blue). One can observe that the transformed distri-
butions are significantly different from the target ones. Such an observation
indicates that the one-dimensional OTM with respect to a random projection
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direction may fail to well-represent the target OTM. This observation motivates
us to select the “informative” projection direction (red arrow), which yields a
better one-dimensional OTM.

Our contributions. To address the issues mentioned above, this chapter
introduces a novel statistical approach to estimate large-scale OTMs. The pro-
posed method, named projection pursuit Monge map (PPMM), improves the
existing projection-based approaches from two aspects. First, PPMM uses a
sufficient dimension reduction technique to estimate the most “informative”
projection direction in each iteration. Second, PPMM is based on projection
pursuit (Friedman & Stuetzle, 1981). The idea is similar to boosting that search
for the next optimal direction based on the residual of previous ones. The-
oretically, we show the proposed method can consistently estimate the most
“informative” projection direction in each iteration, and the algorithm weakly
convergences to the target large-scale OTM in a reasonable number of steps.
The finite sample performance of the proposed algorithm is evaluated by two
applications: Wasserstein distance estimation and generative model. We show
the proposed method outperforms several state-of-the-art large-scale OTM es-
timation methods through extensive experiments on various synthetic and real-

world datasets.

4.2 Problem setup and methodology

Optimal transport map and Wasserstein distance. Denote X € R? and
Y € R?as two continuous random variables with probability distribution
functions px and py, respectively. The problem of finding a transport map ¢ :
R? — R such that ¢(X) and Y have the same distribution, has been widely-
studied in mathematics, probability, and economics, see (Ferradans et al., |2014;
Reich, 2013; Z. Su et al., 2015)) for examples of some new developments. Note
that the transport map between the two distributions is not unique. Amongall
transport maps, it may be of interest to define the “optimal” one according to
some criteria. A standard approach, named Monge formulation (Villani, 2008),
is to find the OTM* ¢* that satisfies

o = inf [ 1X =001,

ped

where @ is the set of all transport maps, || - || is the vector norm and p is a positive
integer. Given the existence of the Monge map, the Wasserstein distance of
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order p is defined as

Wil = </Rd 1% - ¢*(X)depX> 1/19.

Denote ¢ as an estimator of ¢". Suppose one observe X' = (x1,...,x,)" €
R™%andy = (y1,...,yn)" € R™? from px and py, respectively. The
Wasserstein distance W,(px, py ) thus can be estimated by

n 1/p

Projection pursuit method. Projection pursuit regression (Huber, 1985;
Ifarraguerri & Chang, 2000)) is widely-used for high-dimensional nonparamet-

ric regression models which takes the form.
S
" .
2 = E fj(ﬁja:i)—i—ei, 2:1,...,n,
j=1

where s is a hyper-parameter, {z;}; is the univariate response, {x; }; are
d-dimensional covariates, and {¢; }"; are i.i.d. normal errors. The goal is to
estimate the unknown link functions { f;}5_; : R — R and the unknown
- d
coeficients {3;}5_; € R".
The additive model can be fitted in an iterative fashion. In the kth iteration,
T oA k-1 . k-1 .
k =2,...,s,denote {(f;, B;) ;=1 the estimate of {(f;,8;) ;1 obtained
. . . k k=1 775 ,
from previous k — 1 iterations. Denote RZ[- F= 2 - > fi(Bimi), i =
1,...,n,theresiduals. Then ( fi, Bk) can be estimated by solving the following
least squares problem

n

: R _ o
min “[ i~ fu(Bpzi)

2

The above iterative process explains the intuition behind the projection pursuit
regression. Given the model fitted in previous iterations, we fit a one dimen-
sional regression model using the current residuals, rather than the original
responses. We then add this new regression model into the fitted function in or-
der to update the residuals. By adding small regression models to the residuals,
we gradually improve fitted model in areas where it does not perform well.
The intuition of projection pursuit regression motivates us to modify the
existing projection-based OTM estimation approaches from two aspects. First,
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in the kth iteration, we propose to seek a new projection direction for the one-
dimensional OTM in the subspace spanned by the residuals of the previously
k — 1 directions. On the contrary, following a direction that is in the span of
used ones can lead to an inefficient one dimensional OTM. As a resul, this
“move” may hardly reduce the Wasserstein distance between px and py. Such
ineflicient “moves” can be one of the causes of the convergence issue in existing
projection-based OTM estimation algorithms. Second, in each iteration, we
propose to select the most “informative” direction with respect to the current
residuals rather than a random one. Specifically, we choose the direction that
explains the highest proportion of variations in the subspace spanned by the
current residuals. Intuitively, this direction addresses the maximum marginal
“discrepancy” between px and py among the ones that are not considered by
previous iterations. We propose to estimate this most “informative” direction
with sufficient dimension reduction techniques introduced as follows.

Sufficient dimension reduction. Consider a regression problem with uni-
variate response Z and a d-dimensional predictor X. Sufhicient dimension re-
duction for regression aims to reduce the dimension of X while preserving
its regression relation with Z. In other words, sufficient dimension reduction
seeks a set of linear combinations of X, say B" X with some B € R9%4 and
q < d, such that Z depends on X only through B" X, ie., Z 1l X|B"X.
Then, the column space of B, denoted as S(B) is called a dimension reduction
space (DRS). Furthermore, if the union of all possible DRSs is also a DRS, we
call it the central subspace and denote it as Sz x. When Sz x exists, it is the
minimum DRS. We call a sufficient dimension reduction method exclusive if it
induces a DRS that equals to the central subspace. Some popular sufficient di-
mension reduction techniques include sliced inverse regression (SIR) (K.-C. Li,
1991)), principal Hessian directions (PHD) (K.-C. Li, 1992)), sliced average vari-
ance estimator (SAVE) (Cook & Weisberg, 1991), directional regression (DR)
(B. Li & Wang, 2007), among others.

Estimation of the most “informative” projection direction. Consider
estimating an OTM between a source sample and a target sample. We first
form a regression problem by adding a binary response, which equals zero for
the source sample and one for the target sample. We then utilize the sufficient
dimension reduction technique to select the most “informative” projection
direction. To be specific, we select the projection direction § € R as the eigen-
vector corresponds to the largest eigenvalue of the estimated B. The direction §
is most “informative” in the sense that, the projected samples X' and y& have
the most substantial “ discrepancy.” The metric of the “discrepancy” depends
on the choice of the sufficient dimension reduction technique. Figure[t.3|gives a
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Figure 4.2: The most “informative” projection direction ensures the projected
samples (illustrated by the distributions colored in red and blue, respectively)
have the largest “discrepancy”.

toy example to illustrate this idea. In this chapter, we opt to use SAVE for calcu-
lating B, and hence the “discrepancy” metric is the difference between Var(X'§)
and Var(y§). Empirically, we find other sufficient dimension reduction tech-
niques, like PHD and DR, also yield similar performance. The SIR method,
however, yields inferior performance, since it only considers the first moment.
The Algorithm |6|below introduces our estimation method of “informative”

projection direction in detail.

Algorithm 6 Select the most “informative” projection direction using SAVE

Input: two standardized matrix X € R"*¢and Y € R"*?
Step1: calculate S € R4 je.. the sample variance-covariance matrix of (%)

1/2

Step 2: calculate the sample variance-covariance matrices of XS™/* and

yg ~1/2 denoted as §1 € R4 3nd §2 € Rdxd respectively

Step 3: calculate the eigenvector € € RY, which corresponding to the largest
eigenvalue of the matrix ((§1 — ;)% + (3\2 —1)%)/4

Output: the final result is given by S1/2¢ /||8-1/2¢||, where || - || denotes
the Euclidean norm

Projection pursuit Monge map algorithm. Now, we are ready to present
our estimation method for large-scale OTM. The detailed algorithm, named
projection pursuit Monge map, is summarized in Algorithmbelow. In each
iteration, the PPMM applies a one-dimensional OTM following the most “in-
formative” projection direction selected by the Algorithm 1.

Computational cost of PPMM. In Algorithm 7] the computational cost
mainly resides in the first two steps within each iteration. In step (a), one calcu-
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Algorithm 7 Projection pursuit Monge map (PPMM)

Input: two matrix X € R"*%and Y € R™*¢
k+ 0,X0 + X
repeat

(a) calculate the projection direction &), € R between X* and Y (us-
ing Algorithm 1)

(b) find the one-dimensional OTM ¢*) that matches X¥¢;, to Y&,
(using look-up table)

(c) X1 X 4 (o) (XK g, ) — XK )T and b + k + 1
until converge
The final estimator is given by gg : X — X[

lates &, using Algorithm 1, whose computational cost is of order O(nd?). In
step (b), one calculates a one-dimensional OTM using the look-up table, which
is simply a sorting algorithm (Peyré, Cuturi, et al., zo19; Pitié et al., 2007).
The computational cost for step (b) is of order O(n log(n)). Suppose that
the algorithm converges after K iterations. The overall cost of Algorithm 2
is of order O (Knd* + Knlog(n)). Empirically, we find K = O(d) works
reasonably well. When log(n)'/? < d < n*?, the order of computational
cost of PPMM is o (n® log(n)) which is smaller than the computational cost
of the naive method for calculating OTMs. When d < log(n)/2, the order of
computational cost reduces to O (Kn log(n)) which is faster than the exiting
projection-based methods given PPMM converges faster. The memory cost for
Algorithm 2 mainly resides in the step (a), which is of the order O(Knd?).

4.3 Theoretical results

Exclusiveness of SAVE. For mathematical simplicity, we assume E[X] =
E[Y] = 04. When E[X]| # E[Y], one can use a first-order dimension re-
duction method like SIR to adjust means before applying SAVE.

Denote W = (X +Y) /2,3y = Var(W),and Z = WZ;Vl/z. For a
univariate continuous response variable R, one can approximate the central

subspace Sg|z by Ssave, which is the population version of the dimension re-
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duction space of SAVE. To be specific, Ssay is the column space of matrix

E[Var(Z|R) — I,)* =
% {E[Var(XE;[}/2|R) — LJ? + E[Var(YS;,?|R) — Id]2} ,

where the above equation used the fact that X' 1l Y.

Assumption 4.3.x. Let P be the projection onto the central space Sg)z with re-
spect to the inner project a - b = a"b. For any nonzero vectors u,v € R such
that w is orthogonal to Sg|; and v € Sg|z, we assume

(a) E(u"Z|PZ) is a linear function of Z;
(b) Var(u"Z|PZ) is a nonrandom number;
(c) Let (Z, R) bean independent copy of (Z, R). E [’UT(Z — 7)2|R, é)] is

non degenerate; that is, it is not equal almost surely to a constant.

Theorem 4.3.1. Let R be a univariate continuous response variable. Under As-
sumption 1, the dimension reduction space induced by SAVE is exclusive. In other

LUO}"dJ, SSAVE = SR\Z-

Consistency of the most “informative” projection direction. Let 3J;
and X9 be the sample covariance matrix estimator of ¥; and Xy, respectively.
Denote

Ssave = — [(31 — Ia)* 4 (32 — 1a)?]

=

Ssave = [@1 — 1)+ (5 — [d>2] :

Denote & and El the eigenvectors correspond to the largest eigenvalues of
Ysave and Xgave, respectively. Further, denote r = Rank(Xgavg), the rank
Of ZS AVE.

Assumption 4.3.2. Ler {x;,y;}} | be an iid. sample of (X,Y). We assume
that

(a) Denote x;; and y;, the jth and kth component of T; and y;, respectively.
E(%;jyik) =0 foralll <i<nandl < j k <d;

(b) Therearery,ro > 0and by, by > 0such that, foranys > 0,1 <1 <n
and1 < j <d,

X

I

P(|zij] > s) < exp{—(s/b1)"},
P(lyijl > s) < exp{—(s/b2)"™}
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(c) Let Ay ..., \g be the eigenvalues of Ygavr in descending ovder. There ex-
ist positive constants c¢; ¢, and cs such that

¢ < min (A — )\l+1)d_1/2 <y, and 0< Ay <cs.
1<I<r—1

Theoremshows that Algorithm 1 can consistently estimate the most
“informative” projection direction. The O, in Theoremstands for order
in probability, which is similar to O but for random variables.

Theorem 4.3.2. Under Assumption 2, the SAVE estimator of most “informa-
tive” projection direction satisfies,

~ log d log d
1&1 — &illo = Op(T4 % + 7“4\/3%), as mn,d — oo.

Convergence of PPMM algorithm. Denote ¢* as the d-dimensional op-
timal transport map from px to py and ¢%) as the PPMM estimator after
K iterations, ie. o) (X) = XK The following theorem gives the weak
convergence results of the PPMM algorithm.

Theorem 4.3.3. Suppose Assumption 1 and Assumption 2 hold. Let K > Cd for

some large enough positive constant C, one has

—

W, (69(X), ) = W, (¢"(X), ).
and STN(X) = ¢*(X) as n— .

Works are proving the convergence rates of the empirical optimal transport
objectives (Boissard et al., 20115 Boissard & Le Gouic, |2014; Sriperumbudur
etal., 20125 Weed & Bach, 2017). The convergence rate of the OTM has rarely
been studied except for a recent chapter (Hiitter & Rigollet, 2019). We believe

Theorem is the first step in this direction.

4.4 Numerical experiments

4.4.1 Estimation of optimal transport map

Suppose that we observe i.i.d. samples X' = (x1,...,2,)" from Ny(px,Sx)
andy = (y1,...,Yn)" from Ny(py, Sy), respectively. We set n = 10, 000,
d ={10,20,50}, ux = —2, uy = 2,Sx = 0.8/ and Sy = 0.5I" !, for
,7=1,...,d.
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Figure 4.3: The black dashed line is the true value of the Wasserstein distance.
The colored lines represent the sample mean of the estimated Wasserstein dis-
tances over 100 replications, and the vertical bars represent the standard devia-

tions.

We apply PPMM to estimate the OTM between px and py from {«;}!",
and {y;}7_;. In comparison, we also consider the following two projection-
based competitors: (1) the random projection method (RANDOM) as pro-
posedin (Pitie et al.,poos; Pitié etal.,2007); (2) the sliced method as proposed in
(Bonneel et al., 2015; Rabin et al., 2011). The number of slices L is set to be 10, 20,
and so. We assess the convergence of each method by the estimated Wasserstein

distance of order 2 after each iteration, i.e. W5 (gb(k) (X), X ) , where ¢*)(.)
is the estimator of OTM after kth iteration. For all three methods, we set the
maximum number of iterations to be 200. Notice that, the Wasserstein distance

between px and py admits a closed form,

Wi(px,py)
= ||px — pyl||3 + trace <SX + 8y — 2(8)1(/283/8)1(/2>1/2> ,

which serves as the ground-truth. The results are presented in Figure

In all three scenarios, PPMM (red line) converges to the ground truth within
a small number of iterations. The fluctuations of the convergence curves ob-
served in Figure 4.3 are caused by the non-equal sample means. This can be
adjusted by applying a first-order dimension reduction method (e.g., SIR). We
do not pursue this approach as the fluctuations do not cover the main pattern
in Figure When d = 10, RANDOM and SLICED converge to the ground
truth but in a much slower manner. When d = 20 and 50, neither RAN-
DOM nor SLICED manages to converge within 200 iterations. We also find a
large number of slices L does not necessarily lead to a better estimation for the
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Table 4.1: The mean CPU time (sec) per iteration, with standard deviations
presented in parentheses

PPMM RANDOM SLICED(10) SLICED(20) SLICED(s0)

)
) 0.529 (0.031)
d=20 o.027(o.on) o0.014(0.008) 0.125(0.027) 0.247(0.033) 0.605(0.058)
d=50 0.059(0.036) o0.015(0.008) o0.171(0.037) 0.338(0.049) 0.863(0.117)

d=10 o0.019(0.008) o.01(0.008) o.u1(0.019) 0.213(0.024

Table 4.2: The mean convergence time (sec) for estimating the Wasserstein dis-
tance, with standard deviations presented in parentheses. The symbol “-” is
inserted when the algorithm fails to converge.

d PPMM RANDOM SLICED(i0) AUCTION REVSIM SHORT

10  0.6(0.1) 4.8 (1.7) 23.0 (2.6) 99.7(10.4)  40.2(4.0) 42.5(3.2)
20 2.1(03) 24.4(3.2) 230.2(28.4)  109.4(12.5)  42.6(5.3) 50.2(6.6)
50 s:5(0-4) - - 255(13.3)  465(56)  56.5(7.1)

SLICED method. As we can see, PPMM is the only one among three that is
adaptive to large-scale OTM estimation problems.
In Table 1 below, we compare the computational cost of three methods by
reporting the CPU time per iteration over 100 replication.’ As we expected, the 5 The experiments are
RANDOM method has the lowest CPU time per iteration due to it does not implemented by an Intel 2.6
select projection direction. We notice that the CPU time per iteration of the GHz processor.
SLICED method is proportional to the number of slices L. Last but not least,
the CPU time per iteration of PPMM is slightly larger than RANDOM but
much smaller than SLICED.
In the Table 2 below, we report the mean convergence time over 100 replica-
tions for PPMM, RANDOM, SLICED, the refined auction algorithm (AUC-
TIONBF)(Bertsekas, 1992)), the revised simplex algorithm (REVSIM) (Luen-
berger, Ye, et al., 1984) and the shortlist method (SHORT) (Gottschlich &
Schuhmacher, 2014).° Table 2 shows that the PPMM is the most computation- ¢ AUCTION, REVSIM

ally efficient method thanks to its cheap per iteration cost and fast convergence. and SHORT are imple-
mented by the R package

. . . “transport” (Schuhmacher
4.4.2 Application to generative models et al., zo19).

A critical issue in generative models is the so-called mode collapse, i.c., the gen-
erated “fake” sample fails to capture some modes present in the training data
(Guo et al., 2o19j Salimans et al., 2018). To address this issue, recent studies

(Arjovsky et al., 20175 Guo et al., 2019; Kolouri et al., |2018) incorporated genera-

6s



Manifold Probability
learning transformation

) )

/ ~.

Figure 4.4: Illustration for the generative model using manifold learning and

optimal transport

tive models with the optimal transportation theory. As illustrated in Figure
one can decompose the problem of generating fake samples into two major
steps: (1) manifold learning and (2) probability transformation. The step (1)
aims to discover the manifold structure of the training data by mapping the
training data from the original space X C R? to a latent space Z C R?" with
d* < d. Notice that the probability distribution of the transformed data in
Z may not be convex, leading to the problem of mode collapse. The step (2)
then addresses the mode collapse issue through transporting the distribution
in Z to the uniform distribution U ([0, 1]%"). Then, the generative model takes
arandom input from U ([0, 1]%") and sequentially applies the inverse transfor-
mations in step (2) and step (1) to generate the output. In practice, one may
implement the step (1) and (2) using variational autoencoders (VAE) and OTM,
respectively. As we can see, the estimation of OTM plays an essential role in
this framework.

In this subsection, we apply PPMM as well as RANDOM and SLICED to
generative models to study two datasets: MINST and Google doodle dataset.
For the SLICED method, we set the number of slices to be 10, 20, and 50. For
all three methods, we set the number of iterations is set to be 10d*. We use the
squared Euclidean distance as the cost for the VAE model.

MNIST. We first study the MNIST dataset, which contains 60,000 train-
ing images and 10,000 testing images of hand written digits. We pull each
28 x 28 image to a 784-dimensional vector and rescale the grayscale values from
[0,255] to [0, 1]. Following the method in (Arjovsky et al., 2017), we apply VAE
to encode the data into a latent space Z of dimensionality d* = 8. Then, the
OTM from the distribution in Z to U([0, 1]®) is estimated by PPMM as well
as RANDOM and SLICED.
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Figure 4.5: Left: random samples generated by PPMM. Right: linear interpo-

lation between random pairs of images.

First, we visually examine the fake sample generated with PPMM. In the
left-hand panel of Figure |4.5, we display some random images generated by
PPMM. The right-hand panel of Figure[4.s|shows that PPMM can predict the
continuous shift from one digit to another. To be specific, let @, b € R™* be
the sample of two digits (e.g. 3 and 9) in the testing set. Let 7" : X — Z be
the map induced by VAE and ¢ the OTM estimated by PPMM. Then, gb( (+)
maps the sample distribution to U([0, 1]¥). We linearly interpolate between
g/b\(T(a)) and qz?(T(b)) with equal-size steps. Then we transform the interpo-
lated points back to the sample distribution to generate the middle columns in
the right panel of Figure

We use the “Fréchet Inception Distance” (FID) (Heusel et al., 2017) to quan-
tify the similarity between the generated fake sample and the training sample.
Specifically, we first generate 1,000 random inputs from U ([0, 1]*). We then
apply PPMM, RANDOM, and SLICED to this input sample, yields the fake
samples in the latent space Z. Finally, we calculate the FID between the encoded
training sample in the latent space and the generated fake samples, respectively.
A small value of FID indicates the generated fake sample is similar to the train-
ing sample and vice versa. The sample mean and sample standard deviation (in
parentheses) of FID over so replications are presented in Table[4.3] Table[4.3]
indicates PPMM significantly outperforms the other two methods in terms of
estimating the OTM.

Google doodle dataset. The Google Doodle dataset contains over so mil-
lion drawings created by users with a mouse under 20 secs. We analyze a pre-
processed version of this dataset from the quick draw Github account. In the
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Table 4.3: The FID for the generated samples (lower the better), with standard
deviations presented in parentheses

PPMM RANDOM SLICED(10) SLICED(20) SLICED(50)

MNIST  o.r7(o.01) 4.62(0.02) 2.98(0.01) 3.04(0.01) 3.12(0.01)
Doodle (face) 0.59 (0.09) 8.78 (0.04) 5.69(0.01) 6.01(0.01) 5.52(0.01)
Doodle (cat) 0.24(0.03) 8.93(0.03) 5.99(0.01) 5.26(0.01) 5.33(0.01)
Doodle (bird) 0.36 (0.03) 7.81(0.03) 5.44 (0.01) s.50(0.01) 4.98 (0.01)

dataset we use, the drawings are centered and rendered into 28 x 28 grayscale
images. We pull each 28 x 28 image to a 784-dimensional vector and rescale
the grayscale values from [0, 255] to [0, 1]. In this experiment, we study the
drawings from three different categories: smile face, cat, and bird. These three
categories contain 161,666, 123,202, and 133,572 drawings, respectively. Within
each category, we randomly split the data into a training set and a validation set
of equal sample sizes.

We apply VAE to the training set with a stopping criterion selected by the
validation set. The dimension of the latent space is set to be 16. Leta, b € R™*
be two vectors in the validation set, 7' : X — Z be the map induced by VAE
and ¢ be the OTM estimated by PPMM. Note that o(T()) maps the sample
distribution to U ([0, 1]*%). We then linearly interpolate between éﬁ\(T(a)) and
&(T (b)) with equal-size steps. The results are presented in Figure

NOOCECOOD soLLOOLVOY VVPQQYRYQ
CORCPRPOOR VYWWHHEHE voeeeed
QOOOOEO® GEdddaas VOOV
OIGISISISISISIS) Sae668008Y ST T erardt
COOOOOOEO CHIYYYIIY (TP PPyY
POOOOOe® HEGEEDDY JVTTTBRTmm
QSISO A A A A S B N LT L <t oh )
OOO0OOOO®® vvvBuLLas IVVPPPPP

Figure 4.6: Linear interpolation between random pairs of images from the
dataset of smile face (left), cat (center), and bird (right).

Then, we quantify the similarity between the generated fake samples and the
truth by calculating the FID in the latent space. The sample mean and sample
standard deviation (in parentheses) of FID over so replications are presented

in Table Again, the results in Table|4.3|justify the superior performance of
PPMM over existing projection-based methods.
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CHAPTER §

CONCLUSION

Data reduction method, as an effective and general solution for big data prob-
lem, becomes more and more attractive. In this thesis, we focus on design-based
subsampling methods and sufficient dimension reduction methods for solving
large non-parametric regression and optimal transport problems. These meth-
ods are recently-proposed popular data reduction methods, shown to be efhi-
cient in keeping essential information from the data. In particular, in Chapter
I, we show the design-based subsampling methods can be used to select sub-
samples that are robust to the model. In Chapter IT and Chapter III, we show
the design-based subsampling methods can be used to select informative sub-
samples. Finally, we discuss how to use sufficient dimension reduction to solve
the computation burden of large-scale optimal transport problems. Although
not covered in this chapter, the data reduction methods can also be applied to
generalized linear models, time series models, variable selections, etc. A further
refinement of the current methods and even brand new algorithms are under

intensive development.
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APPENDIX A

PROOF FOR CHAPTER I

A.1 Proof of Lemma 1.2.1

Proof. The inequality yields ||h||* < o? >0, [|2f]]* = *u(RTR).
One thus has

R"Q"Qh < X (QTQ)[|R]]? € Mnae(QTQ) - *ur(R'R) (A1)
o*tr(RTR)

_ TR-1\. 2 TRY —
= Ao (RTRT) - 0’ur(RTR) = 1 ®R)’

(A.2)

Recall that f£,,4,(+) as the corresponding eigenvector to Ayyq.(+). The first
equation in (A.1) holds when A = ¢ - p0.(QT Q) for some real number c,
and the second equation in holds when ||k ||? = a?tr(RTR). Asaresult,
both equations in hold when b = \/a2tr(RTR) * fnar (QT Q). The
desired result follows directly after plugging the inequality @ in the equation
=) 0

A.2 Proof of Theorem [2.3.1

The following Weyl’s inequalities are needed in the proof.

Theorem A.2.1. Weyl’s inequalities (Horn € Jobnson,|t990) Let A € R™*4
and B € R4 be two matrices and t = min{n, d}. Let s1(A) > sy(A) >
o> 51(A) >0,5(B) > 52(B) > ... > 5(B) > 0and s1(A+B) >
so(A+B) > ... > s(A+ B) > 0 be the singular values of A, B and
A + B, respectively. Then

5i(A+B) — s5,(A)| <si(B), i=1,.. 1
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Proof of Theorem Leti = 1, the Weyl’s inequalities yield

s1(Rp) = s1(L+ D) < s1(L) + s1(D). (A3)
Leti = p, the Weyl’s inequalities yield

55(Ry) = 5,(L+ D) > 5,(L) — 5,(D). (A1)

Recall that in Theorem|.3.1, we assume s, (L) — s1(D) > 0. Combining
inequality and inequality thus yields

) = ()

k(RIRL) = ( (Ass)
Performing a Taylor expansion of the right-hand side of the inequality ,

which can be viewed as a function of s (D), around the point 0 yields

s1(L) + s1(D) 2 (LT Sl(L)2S
(Sp(L)_Sl(D)) < w(L L)+4SP(L)3 (D) + W,

k(LTL)

siD)+ Wy, (Ae)
where W = o(s1(D)) is the remainder. Plugging the inequality back
into yields

x(LTL)
sp(L)

We now derive an upper bound for the first term on the right-hand side of
inequality . Note that

| (RLRL) ] < pAnae((RLRL) ™) =

k(RIRL) < w(L'L) + 4

Sl(D) -+ Wl. (A7)

sp(Rr)? = (sp(L) — s1(D))?’

where the inequality (A.4)) is used in the last step.
By performing a Taylor expansion of the right-hand side of the inequality
(A.8)) around the point 0, one has

p P /P
(sp(L) — s1(D))?  s,(L)2 + QSP(L)TSl(D) + W, (A.9)
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where W5 = 0(s1(D)) is the remainder. Plugging the inequality back
into (A.8) yields

T -1 p VP
tr[(RLRL) ] < Sp<L>2 + ZSP(L)2 Sl(D) + WQ. (A.IO)

Finally, plugging both the inequality and in the inequality
yields

~ LTL
MSE(Br) < o )

+ o?pr(LTL) + O(s1(D)).

The fact that tr(L7L)) < pAyaz(LTL)) = pr(LTL))s,(L)? is used in the
last step. This completes the proof. O
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APPENDIX B

PROOF FOR CHAPTER 2

B.x  Proof of an ancillary lemma

Following the notations in Algorithm 1, we let S = (sy,...,s,)" , U* =
(ui,...,u)?,and AS = U* — S = (Asy,...,As,)". The following
lemma derives the distribution of the random variable ||As;||, where || - ||
denotes the Euclidean norm. Notice that this lemma also coincides with void
probabilities of the binomial point process (Moltchanov, 2012)).

Lemma B.r.x. Let kg be the volume of the d-dimensional unit Euclidean ball,
which is a constant when d is fixed. SupposeU,, = {w; }_| arei.i.d. observations
generated from the uniform distribution U0, 1]% Fori = 1,...r, ||As;||s are
identically distributed with the cumulative density function, denoted by F(p),
where

Fp)>1— (1 - /ﬁd(p/Q)d>n, when 0 < p < 2(1/kq)4,

Proof of Lemma Let the count N (B) ne the number of points in the do-
main B, and b(s;, p) be a Euclidean ball centered at s; with radius p. The
volume of b(s;, p) is thus kgp?. Now we consider two scenarios:

Scenario 1. When b(s;, p) C [0, 1]%, as a Bernoulli trial, one has

pr (N(b(s;, p)) = O|N([0,1]%) = n)

_ pr (N(b<sup>> - O N([ ) ] \b(SZ, )) )
pr (N([0,1]%) = n)
= (1 — Kgp®)™.
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Scenario 2. When b(s;, p) ¢ [0, 1]%, the volume of the intersection be-
tween b(s;, p) and [0, 1]% is no larger than r4p? and no smaller than r4(p/2)%.
This is due to the fact that the design point s; € [0, 1]

Combining these two scenarios, one thus has

(1= rap”)" < pr(N(b(si,p)) = OIN([0,1]%) = n)
< (1= rka(p/2)")" (B.1)

Notice that ||As;|| measures the distance between s; and the its nearest
neighbor u. Thus N (b(s;, p)) = 0 is equivalent to ||As;|| > p. From the

inequality , one thus has
pr(llAsi| > p) < (1= ralp/2)") . (B2)

The lemma thus follows. O

B.2 Proof of Lemma 1

We need the following definitions and notations for the proof. The projection
function for a scalar 6 is defined as

0 if <0
proj(#) =¢1 if 6>1
0 otherwise.
For a d-dimensional vector ® = (04, . ..,0,)%, define

. ) ) T
Proj(©) = (proj(61), ..., proj(6a)) -
We also define two operators 1 and |, between a vector © and a scalar ¢

O10=(0,+0,...,0,+0)T
©1l0=(06,-6,. 0,—060T

Foranya € [0,1]?and p > 0, we denote

Ay =[0,Proj(atp)) \ [0 Proj(a | p)).
A, = (0,17 \ A,

Figure[B.1|gives an toy example of A, , (grey area) when d = 2.
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Figure B.1: The grey area illustrates A, ,, when d = 2

Proof. We now bound the difference between D*(U,) and D*(S, ).

|D*(Uy) = D*(S,)]

_| sup DU a)— sup D(S,.b)
aefo,1]¢ be[0,1]
=| sup (D(L{ a) — sup D(S,,,b)>
aefo,1]¢ be[0,1]
<| sw (DU a) - D(S.,a))
aclo,1]4
1 < 1 < i
<l s (123 1s e 0.0)) - 23 1ut € 0,0}
ac)? \ | =) [t

lz (1{32- €[0,a)} — 1{(s; + As;) € [0, a)}) D

r A
1=

= sup
aclo,1]d

< sup (1 Z |1{s; € [0,a)} — 1{(s; + As;) € [O,a)}\) , (B3)

T =

where the property of supreme and the triangle inequality are used.
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Denote &; = 1{s; € [0,a)} — 1{(s; + As;) € [0,a)}. Using the
notations presented before our proof and inequality (B.3)), one has, Vp > 0,

| D*(U;) — D*(S,)|
< sup <%i Sz)
< sup (12 5| (1{sieAa,p})>
x (145 € Ag,p})> (B.4)

di

Let the first term and the second term on the right-hand side of the inequal-
ity (B.4) be T} and 75, respectively. For T3, one has

T

7< s (33 1si € Au))
i=1

acfo,1]4
= sup ([i(a) — Ix(a)), (B:s)
aclo,1]d
where
Li(a) = ! T 1¢s; € [O Proj(an))
r — ) )

Iy(a) = %Z 1{31- € |0, Proj(a | p))}.
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Foranya € [0,1]?and p > 0, one has

D(S,) = sup D(S,a)

a€l0,1]4

> D(ST7 Proj(a 0 p))

—|Z Z { 0 Pro;( a? p))} — ﬁproj(aj +p)

=1

':]m

= |li(a) — ] | proj(a; + p)

1

> Ii(a) — | | proj(a; + p). (B.6)

|
.
I :jg S
I

The inequality (B.6) yields, Vp > 0,

d
Ii(a) < D*(S,) + [ [ proj(a; + p). (B.7)

j=1

Analogous to inequality (B.6)), Vp > 0, one has

QL

D*(S,) H proj(a

which yields
d
H proj(a — D*(S,). (B.8)

Plug (B-7) and (B.8) back into (B.s) yields, Vp > 0,

d d
Ty < sup <2D* Hpro] aj +p) Hproj(aj - p)))
a€l0,1]4 J=1 .
d d
< sup (2D*(S,) + H aj +p) H ) (B.9)
a€l0,1]4 j=1 j=1

Next, we show pr(73 = 0) — 1 for a properly specified p and  asn — oc.

Notice that forany p > Oand s; € A¢

a0 ||Asi|| < pisasufficient condition
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for
1{s; €[0,a)} — 1{(s; + As;) € [0,a)} =0,

since (As;); < (352, ((A8:);)%)2 = || Asi].
Asaresult, when 0 < p < 2(1/k4)"%, one has

pr(T> = 0)

zpr< N (IIAsiHSp))
{ilsi€ A ,}

r

> pe(( (1281l < p) )

= 1-p(UG13sil > 1))
> 1—ipr(|rAsiH > p)
>1-— r(l — /{d(p/Q)d>n, (B.10)

where the inequality (B.2)) is used in the last step.
Plug in the result in (B.9)) and (B.10)) back into (B.4)) yields, when 0 < p <
2(1/k4)"4, one has

| D*(Uy) — D*(S,)|
< sup (QD*(ST’) + (HJ (a; +p) — H;'lzl(aj —,0))>, (B.1x)

aclo,1]4
with probability at least 1 — 7 (1 — Kd (p/2)d> .
Let p = r~179 for any arbitrary small § > 0. Notice that such p satisfies

the condition 0 < p < 2(1/kq)"/* when 1 is large enough. Using the fact that
a € [0,1]%and ijl a; < d,one has

d d
sup (2D*( H aj + p) — H(aﬂ' )
acfo,1]d Jate e
d
= sup (2D°(S,) +2 3 (a,)r ) 4 o(r(07))
aclo,1]d P
- O<T_(1_6))’ (B.12)
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where the fact that D*(S,.) = O(r~(17%)) is used in the last step.
Also, notice that when p = =79 and r = O(n'/?), one has

lim (1 - 7’(1 — /{d(p/Q)d>n>

n—oo

: 1 \\"
=1 (1 () )

=1. (B.13)

Combining the results in (B.12)) and (B.13)) together and plug into the equa-
tion (B.1) yields, when 7 = O(n'/%), one has D*(U) = O,(r~=%). This
completes the proof. O

B.3 Proof of Theorem 1

The following Koksma-Hlawka inequality (Kuipers & Niederreiter, 2012) is
needed in the proof.

Theorem B.3.1. (Koksma-Hlawka inequality) Denote S, = {s1, ..., s, }
as a set of data points in [0, 1)? and f is a function on [0, 1]? with bounded total
variation V(). The total variation is defined in the sense of Hardy and Krause
(Owen, 2003). Then,

< DX(S)V(f).

1 T
x)dr — ;;f(s

Proof for Theorem 1. For any fixed point 2 € R4, the full sample estimator can

[0,1]¢

be written as
(Z|X Z {H Kh — Ty } (BI4)
=1 =1

Let X be the random variable with probability distribution function p. Let
¢* be the optimal transport map such that ¢*(X') has the uniform distribu-
tion on [0,1]% i.e., U[0,1]%. One thus can calculate the expectation of the

equation (B.14)),
E(p(=[X)) = / g2 (u)du, (Bas)
[0,1]¢

where g, (u) = H?:l K (25— ((¢) 71 (w));)-



Recall £ = {u}/_, in Algorithm 1, the proposed subsample estimator

can be written as

e =13 {Hm (u;>>,.>}
— - Z g=(ul). (B.16)

Combining the result in (B.1s) and (B.16)) and using the Koksma-Hlawka

inequality, one has,

p(2[X7) = E (p(2[X))|

Zgz )= [ o
[0,1]4

< D*(UZ‘ WV(g)- (B.17)

To analyze V(g ), we consider two cases,d > 2and d = 1. Whend > 2,

one has

Vo) = [ 117 gslw)ldu
[0,1]¢

9 9 r
where || - || is the £ norm, and /¢, (u) = < g=(u) gz(u)) . To simplify

ou1 7 Oug

the expression of g, (1), we set

K(x) =] K(z;), zecR"
One thus has g (u) = 7K (%ﬂ(m) Letw = 2200 W) e haye

h

ng(u) - hd Jw%u \V4 K( )

where
Owy Qwi.
Our " Oug
Jwﬁu =
wq Owa
ouy Tt OQug
Let
uy uy o(¢* (@)1 8(¢* (@),
owi; "7 Owyg ox1 e Oxg
Jusw = 7J¢*: : )
dug dug 9(o*(x))a 9(o*(x))a
w1 Tt Qwg o1 e Oxg

8o



and
(")~ (u) A((¢*)~(u)

ouq T Jug
J(¢*)71 = ..
A((¢™) "M (w))g A((¢*) "1 (w))g
ouq et Jug
Notice that J,_, = —%J((b*)q, one thus has

ng< ) hd+1 J((b* -1V IC( )

Using the Jensen’s inequality, one has

V2(g,) < / |7 9. (w)|Pdu
[0,1]4

= [ (o) 7 gty

1
1
- h2d+2 /Q(V’C(w))TJ(qS*)lj(j;,*)—l V’C( )ldet( u_>w)|dw

1

= T /g;(v’c(w))T:](d)*)—ng’;*)l v K(w)|det(Jg+)|dw,

(B.18)

where that fact thatu = ¢*(2 — hw), Jy—w = —hJyp+, and | det(Jyoe )| =
h?| det(J4+)| are used in the last equation.
Notice that

(VE(w)" i) ¢*) 1V K(w) (B.19)
:tr( Ty T 1vlC(w)>
= tr (VIC (w)) J(¢*),1J3(;,*)_1)

< tr (VK(w (w))") tr (JW)AJ@*),I). (B.20)

For the first term in the right-hand-side of (B.20)), one has

tr (VK (w)(VE(W))") = tr (VK(w))" v K(w))
= (VK(w))" v K(w)

- Z ({HKQ(WJ>} (K/(Wk))2> . (B.2y)

k=1 £k
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For the second term in the right-hand-side of , one has
tr (J(¢*)—1 J(I(;*)f1) < C,

for a positive constant C'. This is because, as p is defined on a compact convex

domain Q C RY the optimal transport map ¢* ensures that all the entries
in J(4+)-1 are finite (Villani, 2008). Thus, tr <J(¢*)71 J(:;*),1> has a bounded
value. As a result, plugging the equation (B.21) and the inequality (B.20)) back

into (B.18)) yields

i [ - /Z({HKQ%}K’%)))CM d

J#k

V3(g,) <

d

hch {J#k/ K2 (w; d%/ (K'(wk))2dwk}

1
-0 (hd+2) : (B.22)

where the regularity condition (d) and (e) are used in the last step.
When d = 1, one has V(g.) fo |g%.(u)|du, where g.(u) = Kp(z —

(¢*)~'(u)) and
PN z— (") (u)
g.(u) = 5@[( (—h ) :

Letw(u) = %fl(“), we have ¢/ (u) = 3 K'(w)w(u). Using the Jensen’s
inequality, one has

ﬁ i (K’<w))2<w’(u))2du
|
) (K'(w))" ' (u)dw(u)
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Such a result is consistent with the inequality (B.22)) that V*(g.) < O (7:4+2)-
Combining the above result, Lemma 1, and inequality , we have

(=)~ E@EX)) < (@) Vigs)  (Bay)
<0, (W) : (B.24)

We now quantify the AIMSE of the proposed estimator,

AIMSE(p(2|X*)) = (ﬁ(le*) —p(z)>2
= (B(=1X") ~ E(B(=[X)) + E@(=]X)) ~ (=)

< 2fp(2X") ~ B@E(=/X))| +2[E@(=IX)) - p(2)
(B.25)

2

It is known that
2
E@(21X) - p(z)| = O*), (B.26)
see (Scott, 2015)) for more details. Plugging (B.23)) and (B.26)) into (B.2s)) yields

~ . 1

Consequently, when h = O(r~ Kich ), one has

_8(1=9)

AIMSE(ﬁ(Z|X*)) < Op(r 6+d )
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APPENDIX C

PROOF FOR CHAPTER 3

C.1  Proof of an ancillary lemma

The proof follows Lemma B.2 directly.

C.2 Proof of Lemma 2

Under the regularity condition (4), for all ;¢ and v, the function g, ,(z) =
¢y ()¢, (x) has bounded total variation V(g,,,,). By Theorem 1, one has

bude = =3 6,(a5)00()| £ DA Wlan). (€
j=1

[0,1]4
By Corollary 1, when ¢ = O(n'/?),
D*(X;) = Op{q~ "7}, (C-2)

Combining the results in Equation (C.1) and (C.2)) together yields: when
q = O(n'/?), forall yand v,

q
bz — gz 60 (2)6,(x0)| = 0, {g~ 0D},
j=1

[0,1]

C.3 Proof of Lemma S2

Recall that for basis selection method, we estimate the smoothing spline estima-
tor in the effective model space H . Let HOH g be the orthogonal complement
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of H ; in the reproducing kernel Hilbert space H. We have the following lemma
which justifies the use of the effective space H .

Lemma C.3.1. Under the regularity conditions (1) — (4), ¢ = O(n'/%), as
N — 0and ¢" 9NV — oo, where § is an arbitrary small positive number,
Vh € H & Hg, one bas V (h) = o,{\J(h)}.

Before we prove the lemma, we first introduce an essential lemma as follows,

refer to Lemma 9.1 of C. Gu, 2013 for details.

Lemma C.3.2. Under Condition 2, as A\ — 0, one has

> s =0

L+ Apy)

1 —1/r
2 oy~ O,

1
=O0\").
Z 14 Apy O )

v

of Lemma Sz2. Forh € H © Hp, one has h(x;) = J(R;(xj,-),h) = 0and
;1.:1 h? (x;) = 0. Write h = ) h,¢,, it follows that

Vi) < / h2da
[0,1)¢

=3 hhy, ¢, pdr

[0,1)¢
DRI
N

Denote dg,.6, = f[O,l}d Gy pudr — % -1 00(73)u(x7). The Cauchy
inequality yields.

¢vpdr — gz ¢u<x;>¢u($j)} . (C3)

[0,1]¢

1/2
1 1
v 1%

1/2
X (Z > 1+ )1+ Amhih,i) S (o)
voop
By Lemma one has

1 1 _ —2/r

8s




and Lemma 2 shows, when ¢ = O(n'/?),

(3 > dula)o(a) -

One also has

2
¢V¢de> = 0,{¢7 179} (C.6)

[0,1]¢

> (14 Ap)hl = (V + \J)(h), (C.7)

v

since ¢,,’s simultaneously diagonalize V' and J.

Combining the results in (C.4]), (C.s)), (C.6) and (C.7) together yields, when
q = O(n'%),

V(h) < O {q TINVHV + AT)(h). (C.8)
Asaresult, when ¢ = O(nl/d) and (> 9N\Y" — o0, the inequality 1} yields

V(h) = op{AJ (h)}.

C.4 Proof of Theorem 2

Compared with the condition from g \*/" — o0 in Theorem 9.17 in C. Gu,
2013/and Theorem 1 in Ma, Huang, et al., 2015, the condition for Theorem 2
is ¢>9A?/" — 00. As a result, the proposed smoothing spline estimator 7
can have the same convergence rate as the full-basis estimator with smaller g.
Under this condition as well as the regularity conditions (1)-(4), as A — 0,
Vh € H & Hpg, V(h)is dominated by AJ(h), which is guaranteed by Lemma
S2. Theorem 2 thus can be proved by following the proof of Theorem 9.17 in
C. Gu, pors|directly.

C.s Additional Simulation results

We now evaluate the performance of the proposed estimator on the cases when
the regression function has several sharp peaks. The function we considered
is a bivariate copula function, which is the same as the second function used
in Ma, Huang, et al., 2015 The parameters are set as the same as the ones in

Ma, Huang, et al,, 2o1s. The regression function has several sharp peaks in
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the domain of interest, as shown in the left panel of Fig. 4. We simulated the
data withn = {28 ..., 2'3} uniformly from [—2, 2]* and we set the num-
ber of basis functions g as [40n'/?], where [-] denotes the rounding function.
The prediction error is measured by mean squared error (MSE), defined as
{370 (ME(ti) —no(t;))*}/no, where {t;}1%, is an independent testing dataset
uniformly generated on [—2, 2] with ng = 5000. The signal-to-noise ratio is
setass.

The right panel of Fig. 4 shows the MSE against the sample size on the log-
log scale. The vertical bars are standard error bars obtained from so replicates.
Three significant observations can be made from the right panel of Fig. 4. First,
both SBS (the proposed approach) and ABS (the approach in Ma, Huang, etal.,
2015)) uniformly outperform the naive UNIF approach. Second, neither SBS
nor ABS dominates the other. Third, the MSE for the proposed SBS estimator
decreases faster than the other two estimators as n increase. Such an observation
is consistent with the simulation results in Section 5. In the meanwhile, this
observation is also consistent with Theorem 2, which indicates the proposed
approach shows merit as n — oo.

2 15
16
1 - I4
o 3 I-I(I)’T17 cres ABS
< 0 2 §18 ——s8s
2 - UNIF
1 ! 19
- 0
20
-2
2 1 0 1 2 O A B

Figure C.1: Left panel: Contour plot of the true function; Right panel: the
mean squared error versus the sample size for different estimators.

C.6 Additional details of real data analysis

We plot the heat map of the raw data in Fig. where some missing data can
be observed.

To show the efficiency of the proposed SBS method, we compare it with
the uniform basis selection method and the adaptive basis selection method,
in terms of the mean squared fitting error (MSE). We set the number of basis
functions ¢ = {5n?°,10n*/?,15n%/°,20n?/°}, and the standard errors are

calculated based on ten replicates for each method, respectively. Figure
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Figure C.2: Level 2 TCO data on October 1st, 1988, in Dobson units.
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Figure C.3: The lines show the mean predict MSE versus the number of basis

for the ozone data. The standard deviations based on ten replicates are shown

as vertical bars.

shows the MSE in log scale. We observe that the proposed SBS method yields a
smaller MSE.
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APPENDIX D

PROOF FOR CHAPTER 4

This appendix provides the proofs of the theoretical results for the main docu-

ment.

D.1  Proof of Theorem 1

First, we presents some Lemmas to facilitate the proof of Theorem 1.
Let (Z, R) be an independent copy of (Z, R). We denote

ARR) =E [(Z —72)(Z - Z)"|R, }Nz] . (D.1)

Let P be the projection onto the central space S|z with respect to the inner
projecta - b = a®b,and let Q = I; — P. Further, define two quantities

C=2I;,—A(R,R) and G = E(C)%

Lemma D.r.1. Denote span(G) the column space of matrix G, then Ssyyr =
span(G).

Proof of Lemma(D.1.1} Follow the Theorem 2 in B. Li and Wang, 2007 and
notice E(ZZ") = I, the matrix G can be re-expressed as

G = 2E[E*(ZZ" — I4|R)] + 2E* [E(Z|R)E(Z"|R)]
+2F [E(Z"|R)E(Z|R)| E[E(Z|R)E(Z"|R)].
First, let v be a vector orthogonal to Ssavg. We have E(Z"|R)v = 0 and

[I; — Var(Z|R)Jv = 0 almost surely. Therefore, G;u = Ofori = 1,...,6.
This implies that v is orthogonal to span(G), and hence span(G) C Ssave.
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On the other hand, let v be a vector orthogonal tospan(G). Then, v"Gv =
0 implies

V'E [E*(ZZ" — 14R)] v =0 (D.2)

and
V'EE(ZT|R)E(Z|R)| EE(ZIR)E(Z"|R)]v=0, (D)

almost surely.

The second equality implies that E(Z"|R) = 0 almost surely. Further-
more, Using the fact that E(ZZ") = I, and E(ZZ"|R) = Var(Z|R) +
E(Z|R)E(Z™"|Y), the first inequality can be re-expressed as

0= VT E [Var(Z|R) — I v
+ VTE[(Var(Z|R) — I,)E(Z|R)E(Z"|R)| v
+ V"E[E(Z|R)E(Z"|R)(Var(Z|R) — I)]v
+ v'E [E(Z|R)E(Z"|R)] v.

The second to fourth terms are o since F(Z"|R) = 0. Thus the first term must
also be o, almost surely, implying that v is independent of Ssaye. We complete
the proof by showing that Ssyve C span(G).

O

Lemma D.x.2. Suppose the Assumption 1 (a) and (b) hold. Denote span(G) the
column space of matrix G, then Ssqyp = span(G).

Proof of Lemma By Lemma 2.1 of B. Li et al., 2005/and Propsition 4.6 of

Cook, 2009, (Z, R) 1L (Z, R) implies that Z 1L Z(R, é), Z 1 é\R and
Z I R|R. Thus A(R, R) can be re-expressed as

A(R,R)= E(ZZ"|R)— E(Z|R)E(Z"|R)
— E(ZIR)E(Z"|R) + E(ZZ"|R)) (D.4)

Let v be a vector orthogonal to Sgyw . By assumption (a), E(v" Z|PZ) =
aTPZ for some o € RY. Multiply both sides by Z P and then take uncondi-
tional expectation to obtain v" Pav = a" Pav = 0. Thus E(v*Z|PZ) = 0.

By Assumption 1 (a) and (b), E [(v"Z)?|PZ] = ¢+ E*(vV"Z|PZ) = ¢,
for some constant c. Take unconditional expectations on both sides to obtain
¢ =v". Thus E [(v"Z)?|PZ] = v"v.

Because R AL Z|PZ, we have

E(W'Z|R) = E[E(w"Z|PZ|R)] = 0,
E[(v"Z)*|R] =E{E[(W"Z)*|PZ]|R} =v"v.
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Substitute the above two lines into[D.4} we have
v"A(R, R)v = 2v™,

which implies v"Gv = 0. Then, we have span(G) € Sgpw.
[]

Lemma D.x.3. Let G be a symmetric and positive semi-definite matrix which
satisfies span(G) C Sgyw. Then, span(G) = Spw iff v"Gv > 0 for all
veS RIW> U 7é 0.

Proof of Lemma(D.1.3] Suppose span(G) is a strict subspace of Sgjy. Then
v"Gv = Oforanyv # 0,v € Sgjw © span(G). Conversely, for span(G) =
Srw,v € Spw, v # 0, we have v € span(G), and hence v"Gv > 0. O]

Proof of Theorem 1. We first show that span(G) = Sgpw. G is symmetric
and positive semi-definite according to its definition. Also, Lemmashows
span(G) C Sgw under Assumption 1 (a) and (b).

Letv € Sgpw, v # 0. Without loss of generality, we assume ||v|| = 1.
Then

v"Gu =0 E [C(I; — v")Clv+ E [(v"Cv)?] . (D.s)

Because I; — vv™ > 0, the first term on the right hand side of (D.s]) is
nonnegative. By Assumption 1 (c), v" A(R, R)v is non-degenerate. Therefore,
v"Cv is non-degenerate. Then, by Jensen’s inequality and notice E(C') = 0,

E[(v"Cv)*] > [E(™Cw)]* = 0. (D.6)

Then, by Lemma|D.1.1jand Lemma[D.1.3} we complete the proof by showing
SSAVE = span(G) = SR\W
[]

D.2 Proof of Theorem 2

Proof of Theorem 2. Suppose Assumption 2 holds. By applying Theorem 3
and Proposition 3, we arrive at

- - -
161 — &1l < {2%”& €1l

< Chd=32(r*| Ssave — Ysavelleo + 72| Ssave — Ssavell2)

< 027’4d_1/2||§33AVE — YsAVE |l max; (D.7)
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where C'; and C5 are some positive constants.
It can be shown that

SSAVE — LSAVE
= L = (B = L+ (52— 1) = (%2 = L)?]

[
i [@1 F 3 = 21)(51 — 1) + (50 + By — 21,) (5 — 22)]

1SsavE — ZsavE| max
< HNE + 21 = 20)(S1 = B1) e
(S + 22 = 214) (5 — %2) [l
< LIE1 + 31 = 21a)2l1E1 — St llmax
H152 + T2 — 274ll21Z2 — sllmas] (D:3)

Follow the classic asymptotic result in univariate OLS and use the union
bound, we have

121 = 21 lmax = Op(1/'25%); (D.9)

n

||§2 _ZQHmaX - Op( loid). (D.IO)
Then, we bound the first operator norm in as

||§1 + X1 — 2142
= |=) = o1 + 2% — 214
<181 = Sil2 + 2011 — Lall2
< d||Z) = Zillmax + 2121 = Lall2

= 0,(\/ 2 + 0,(VA), (D)

where the second term of the last equality is due to |21 || = O, (v/d) derived

from Assumption 2. Similarly, we have

= d?log d
1S + S5 — 214lls = O, 8% L V). (D.12)

n

92



By plugging (D.9), (D.11) and (D.12)) back to (D.7)), we conclude the proof
by showing

~ log d log d
€ &illoe = Op(r'y | =25 4 11Va=25),

n

D.3 Proof of Theorem 3

We will work on the space of probability measures on X C R? with bounded
pth moment, i.e.

?MX)E{MEPijgMWm@)<m},

The following Lemma follows the Theorem s.10 in Santambrogio, [201s,
which provides the weak convergence in Wasserstein distance. Hence we omit
its proof.

Lemma D3.a. Let X C RY be compact, and jui,,, jn € P(X). Then i, — pif
and only if Wt it) — 0.

— n 1/p
Denote Wy (X, y) = (% ; |lz; — ¢*(a:l)|\p> , the empirical Wasser-

stein distance with true OTM ¢*(-). The following Lemma follows the Theo-
rem 2.1 in Klein et al., 2017/ guarantees that W (X', y) is a consistent estimator
of Wa(pa, py). We refer to Klein et al., 2017 for its proof.

Lemma D.3.2. Under Assumption z (a) and (b), W; (X, y) converges almost
surely to Wo(py, py) asn — oo.

Proof of Theorem 3. Notice that, we can decompose the empirical Wasser-

stein distance as

W, (0(x), ) = {W, (6 2), ) = W, (69(X), X ) }
+{ W (0990, X) = W, (07 (X), X ) } + W, (9°(X), X)
=1, + I+ I

First, under Assumption 2 (a) and (b) and with Lemma[D.3.2} one can show

that I; converges to o almost surely as n — 00.
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Forany k > 0, denote Al = ylk+1 _ xlK Then, we have

AWM = (¢ (xWg,) — xHg)er
= (y& — mek)élz
= (y— X[k])skgg’ (D.3)

where the second inequality used the fact that ¢*)(.) is the OTM between
X[k]ﬁk and Y&
Therefore, by taking the vector norm to both sides or (D.13)), we have

1AB], = (g — X¥)e.er],
= Tr{&; (y — X&)
— X2y — W],
— 2 (y — B 4 Al
> 2 {ly — XA~ AR)
RV ENCEIN

> 02 (A IAF) = 5
k+1

In other words, we have
At Aest
AF A, < =AM, < Z5H|AM]], - for k> 0.
k 0

According to Theorem 2, Ay, is a consistent estimator of the leading eigen-
value of Xgavg in the kth iteration. Also, according to Theorem 1, A, is upper
bounded by the kth eigenvalue of ¥, almost surely. Then, under Assumption
2 (c), we have A;/A; converges to o asd — oo and k > Cd for some C' > 0.
This implies || AF*1||; — 0asd — coand k > Od.

Then, Lemma guarantees that I, weakly converges to o as d — oo

and k > C'd and hence completes our proof.
O]
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