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ABSTRACT 

 This dissertation covers a wide range of topics from describing factors related to 

within-host infection outcomes to the population-level effects of disease severity as well 

as the clinical epidemiology of influenza. We address four different problems in the 

subsequent studies. First is the development of a clinical prediction rule for use in a non-

hospitalized population since, currently, such a score has not been developed or validated. 

Then we explore the impact inoculum dose has on infection outcomes using data from 

challenge studies. We are specifically looking at the within-host viral dynamics, immune 

response, and symptoms. In the same study we explore the implications of using non-

parametric methods for some infection outcomes. We then explore the impact symptoms 

have on the transmission through reduction of activity and the possible impacts they can 

have on population-level disease transmission. Finally, we look at a new PCR point of care 

test and see if the viral load at diagnosis can help predict the clinical outcomes of the 

patients. All these manuscripts provide additional knowledge to a wide range of topics 

related to human influenza.      
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

The research presented in this dissertation covers a wide range of topics relating to 

influenza infection in humans, from within host dynamics to population-level impacts. 

Specifically, the development of a clinical prediction rule using signs and symptoms, investigating 

the impact inoculum dose has on infection outcomes, the impact symptoms have on transmission, 

and exploring the clinical relevance of viral load at diagnosis. 

1.2 Summary of Objectives 

Chapter 2  

Currently, only severe complications are investigated when developing a clinical 

prediction, and the patient populations they can be applied to are limited [1]. The plan to develop 

and validate a clinical prediction rule for both severe and less severe complications in an outpatient 

setting has the potential to help a much larger number of patients. The less severe complications 

of influenza are those that require an antibiotic such as bacterial sinus infections or ear infections. 

These complications occur at a much higher rate of around 10% [2] compared to the severe 

complications that occur in 1-2% of those infected [3,4]. These less severe outcomes do not require 

the same level of care as the severe outcomes, but since they occur at a significantly higher rate, 

they are important in the context of a pandemic. Decision aids, such as clinical prediction rules 

have been shown to have a positive impact on clinical care [5] and are used to help physicians in 
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a wide variety of clinical settings [6]. The application of clinical prediction rules also helps doctors 

avoid both under and overestimating the risk of complications, which can occur when using 

clinical judgment alone [7]. 

Chapter 3  

Understanding the relationship between inoculum dose, viral dynamics, and infection 

outcomes in humans infected with influenza are critical to creating effective control measures and 

identifying important clinical aspects of the disease. Previous studies have explored the natural 

history of the disease, the relationship between viral load and symptoms scores as well as 

infectiousness [8,9]. However, the correlation between many infection outcomes and inoculum 

dose has not been explored. Through analysis of the challenge study data, this study hopes to 

provide a better understanding of the impact that influenza inoculum dose has on disease outcomes 

related to within-host viral dynamics, host immune response, and morbidity associated with 

influenza infection. 

Chapter 4  

There is very little data for human pathogens that can be used to investigate the relationship 

between symptoms and transmission. Influenza induces symptoms in around 84% of infected 

individuals [10]. Some of the symptoms, such as coughing and sneezing, likely enhance 

transmission by increasing the infectiousness of a host. A recent study provided estimates for the 

transmission potential of symptomatic versus asymptomatic individuals and found that individuals 

with symptomatic infections are about 3-12 times as infectious as persons with asymptomatic 

infections [11]. Other symptoms, such as fever, body aches, and general malaise, are more likely 

to lead to a reduction in transmission by reducing host activity. A previous study on influenza in 

146 adults and children in the United Kingdom found that healthy individuals had a mean of 12.72 
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contacts per day, while sick individuals only had a 3.58 [12]. The study also showed that the 

number of contacts decreased as the number of symptoms increased. These studies suggest that 

there might be a trade-off between infectiousness and activity for influenza, which together 

determines overall transmission. We plan to investigate this relationship. 

Chapter 5  

Currently, there are no studies of viral load at diagnosis in an outpatient setting using a 

point of care PCR test. We plan to conduct an analysis of PCR results from the Cobas Liat POC 

test to determine if viral load measurement provided useful additional information about a patient’s 

disease progression or recovery. Our study is unique in that our study population was from a 

primary care setting, use of a POC PCR test, and the inclusion of outcomes for disease resolution 

five days after the patients visit. The goal of our analysis was to describe the relative viral load at 

diagnosis based on POC PCR and its potential relevance to physicians. 

1.3 Seasonal and Pandemic Influenza 

 The seasonality of influenza infections is one of the diseases most prominent features. In 

temperate regions, “seasonal” outbreaks occur each winter while seasonality is less pronounces in 

the tropical and subtropical areas. In temperate regions, the flu seasons begins in November and 

diminish in April and May. There is a significant year to year variation, and the exact cause of the 

seasonality is not apparent [13,14]. In southern temperate regions, the timing of seasonality is 

reversed and equally hard to predict. In tropical and subtropical regions seasonality is less clear, 

and transmission seems to be related to different climate factors and possibly altitude [15]. Flu 

season often starts with type A causing most infections with type B taking over towards the end. 

Understanding the seasonality of influenza infection has allowed modelers to access the impact of 

influenza on excess hospitalizations and death without requiring laboratory confirmation of cases. 
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The epidemiology of influenza is determined by the virus currently in circulation [16]. 

Each virus variant is capable of causing a varying degree of disease and factors associated with 

risk of infection or severity are also variant specific. Pandemic influenza is distinguished from 

seasonal influenza by existing prevalence and geographic spread of the infectious agent [17]. 

Generally, seasonal outbreaks are caused by circulating A and B strains from previous years or 

previous pandemics. During seasonal outbreaks, it is common for more than one strain to be co-

circulating, which is not the case during a pandemic caused by a novel strain. The seasonal strains 

slowly change over the years. When the changes in the surface proteins of the virus are small, it is 

referred to as antigenic “drift”. This process allows the virus to at least partially evade host 

immunity and is why a strain can circulate year after year in the same host population. Significant 

antigenic drift is cited as the cause of the more severe flu season in 2003 [18]. When a drastic 

change occurs, it is referred to as antigenic “shift”. A shift occurs when an entirely new gene 

segment or segments are added through re-assortment. When the resulting novel variant is 

introduced to a population, and there is little to no pre-existing immunity and sets the stage for a 

severe outbreak with global consequences. 

Severe pandemics are generally caused by a novel type A virus and are generally zoonotic 

in origin. In some cases, even though the virus is considered novel the predecessors of the novel 

virus have been in circulation for years or decades. As a result, some hosts have been exposed to 

the proceeding virus may have some level of protection [19,20]. This is thought to affect the attack 

rate in certain age groups. The strain that causes the pandemic becomes the seasonal strain in future 

flu seasons. 2009 H1N1 is a perfect example of this process. With each passing year, the 

epidemiology of the virus changes as immunity builds in the population. Since the 1918 pandemic, 

the characteristics and severity of each subsequent pandemic have varied widely. It is important to 
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note that while pandemics are a significant public health concern seasonal flu is responsible for 

the majority of morbidity and mortality. Efficient transmission is often the first hurdle for novel 

flu types. Influenza A(H5N1) has been considered a significant threat for a severe pandemic. 

Currently, only sporadic H5N1 infections have been reported in Asia and Egypt [21]. There is little 

evidence to support human-to-human transmission. H5N1 has been studied intensely, and many 

of the viral determinants of severity are well understood as well as the relatively few mutations 

required to allow for probable human-to-human transmission [23,24]. The variability of the virus 

requires constant surveillance since the consequences of not being prepared could be grave. 

1.4 Clinical Prediction Rules  

 In most cases of disease in a healthy person the infected will resolve without any 

complications. Due to the large numbers of infections each year there is also a considerable amount 

of morbidity and excess mortality that is attributed to influenza. Estimates of the number of 

infections, hospitalization, and deaths have a huge range. One study estimates that in the US over 

five flu seasons (2010-2015) 9.2 million to 35.6 million experienced illness related to Influenza 

[25]. The same study estimated that during the same time period there were 139,000 to 708,000 

flu related hospitalizations and 4,000 to 56,000 deaths depending on the complications considered 

[25]. The most commonly reported estimate is that influenza causes 36,000 deaths and 50,000 to 

400,000 hospitalizations annually [26,27]. Despite the indirect methods used to generate the 

estimates most remain relatively consistent between different models [28]. 

The severe complications of influenza have been divided into 4 categories; primary viral 

pneumonia, secondary bacterial pneumonia, pneumonia due to unusual pathogens, and finally 

exacerbation of underling pulmonary disease [3,4,29]. These complications often result in 

hospitalizations and deaths. During seasonal epidemics and pandemics the ability to provide the 
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best care often requires choices to maximize the utility of limited resources to treat these severe 

cases [30]. Current methods of triage of patients utilize clinical prediction rules adapted for triage 

of patients with pneumonia such as the SOFA, CURB-65, or PMEWS scores [7,31–33]. There are 

a number of clinical prediction rules (CPRs) that have been explored for severe influenza 

complications such as hospitalization, ICU admission, and death among children, patients already 

hospitalized, and patients presenting to the ER [34,35], and summarized in previous reviews 

[1,36]. Among the studies included in these reviews only one looked patients who presented to the 

emergency department [34]. The study population was mostly pediatric patients and 70% of them 

had some underlying illness and 39% were hospitalized. The outcomes of interest for all the CPRs 

included in the review are rare and severe such as hospitalization, ICU admission or death [1]. 

Complications related to influenza have been associated with a number of host factors and 

are used to access the risk of a having a severe outcome. Age is one of the most commonly 

discussed predictors but, it is important to realize that there are a number of chronic medical 

conditions independent of age that increase the risk of hospitalizations and death [27,37,38]. 

Beyond chronic conditions there are also those who are immune suppressed such as pregnant 

women, patients infected with human immunodeficiency virus (HIV), and transplant recipients are 

all at greater risk [39–45]. Those infected by HIV are not only at greater risk of infection but the 

influenza vaccine does not provide them with same level of protection even when the HIV is well 

managed [44,46]. Transplant recipients seem to be especially susceptible to viral or secondary 

bacterial pneumonia [39,47,48]. There is also some evidence that sex may be related to the risk of 

severe complication is some instances [36,49–51]. During epidemic the resources need to provide 

care for critically ill patients are often stretched thin [52] and the outpatient system will experience 

similar choices about who should receive what level of care. 
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1.5 Inoculum Dose 

Inoculum dose refers to the quantity of pathogens a host is exposed to at the beginning of 

an infection. It plays an important role in infection outcomes. Inoculum dose can effect the within 

host dynamics of the pathogen once they are infected. Such as the peak levels, and the duration of 

time it takes to reach the peak [53–57]. Beyond the pathogen dynamics the host immune response 

is affected as well [58–61]. The immune response plays a role in morbidity and mortality 

experience by a host. [62–68]. A study has shown that an increase in exposure of the amount of 

wild-type influenza virus leads to an increase in infection rate for an individual[8], not much is 

known about the impact virus dosage has on the other infection outcomes in humans. 

1.6 Virulence Trade-off 

 Many infectious diseases cause symptoms in at least some of their hosts. Often, those 

symptoms increase the host’s infectiousness and facilitate the transmission of the pathogen 

[12,69,70]. Coughing and sneezing for respiratory infections are prime examples. On the other 

hand, symptoms that are too severe may reduce host activity or in extreme cases cause host death, 

reducing transmission opportunities. The trade-off hypothesis describes the relationship between 

virulence and transmission potential [71–77] and predicts that an intermediate level of virulence 

leads to maximum fitness (usually quantified by the reproductive number) for the pathogen. At 

such an optimal level of virulence, the pathogen maximizes transmission by inducing symptoms 

that increase a host’s infectiousness, while minimizing transmission-reducing morbidity 

symptoms. The optimal virulence level can depend on both population-level and within-host level 

processes, the implications of which have been theoretically explored previously [71,72,79–89]. 

The most commonly discussed and studied trade-off is between increasing transmission 

potential due to increased host infectiousness and decreasing transmission potential due to host 
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mortality [72]. While, this likely applies to many animal diseases and some human diseases (e.g., 

viral hemorrhagic diseases [90]), for most human pathogens mortality is low, and it is more likely 

that increased virulence leads to reduced host activity and thus reduced transmission opportunities. 

Sub-lethal impacts such as weight loss and effects on host fitness have been suggested 

[72,73,91,92], and interactions between symptoms, activity, and transmission potential have been 

recognized [93]. Despite this, there is very little data available for human pathogens. One study on 

Plasmodium falciparum infections in humans showed an increase in transmission potential as 

virulence, quantified by mortality, increased, with no apparent trade-off [94]. A study in HIV 

infected individuals showed a negative relationship between duration of asymptomatic infection 

and viral load and a positive relationship between infectiousness and viral load with optimal 

transmission potential occurring at an intermediate viral load [95]. As far as we are aware, no 

studies for any other human pathogens have examined data to directly determine the relationship 

between virulence and transmission. 

1.7 Viral Load at Diagnosis 

 Diagnostic polymerase chain reaction (PCR) tests are a sensitive and specific method for 

determining the presence of many pathogens. Until recently, PCR methods were expensive, time-

consuming, and required specialized equipment and staff. As a result, the application of PCR tests 

for diagnostic purposes is limited. There are two Clinical Laboratory Improvement Amendments 

(CLIA)-waived point-of-care (POC) PCR systems, Xpert Xpress by Cepheid, and cobas Liat by 

Roche [96,97], available to physicians. These systems can provide highly accurate results in 20-

30 minutes without the need for a laboratory or highly trained staff. As the price decreases and the 

number of pathogens that can be detected increases, these systems will likely have a positive 

impact on the care of patients. 
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Currently, the cobas Liat system is only used to produce a qualitative result based on the 

internal threshold of optical brightness. The system provides the result as either positive (present) 

or negative (absent) for the pathogen. While these systems are not currently used to estimate the 

viral load in the sample, it is possible to estimate the viral load using the number of cycles required 

to generate a positive test, with more cycles associated with a lower viral load [98–100]. This 

quantitative measurement could potentially give a physician additional information that could help 

determine the appropriate treatment and advice regarding prognosis for patients. For both influenza 

and other pathogens, the pathogen load correlates with factors such as disease severity, treatment 

success, and risk of transmission [9,101–108]. 

Previous studies have looked at the relationship of a single measure of viral load at 

diagnosis and the characteristics of the disease and patients with seasonal influenza [99,109–113]. 

The results of these studies have been mixed with some reporting associations [109–111,113,114], 

and others reporting no associations with clinical characteristics of disease [99,112]. The time 

since onset of disease and the viral load has been explored in 5 studies [99,109–111,113], and all 

but one found a relationship [113]. Only one study has looked at disease outcomes of hospitalized 

patients with influenza [113]. Analyses from other seasonal influenza infection studies based on 

repeated measurement of viral load show a reduction of viral load correlates with a decrease in 

symptoms as well as other clinical outcomes [114–119]. All of the previous studies relied on 

standard quantitative PCR methods that require significant resources to implement. 
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CHAPTER 2 

CLINICAL PREDICTION RULES TO PREDICT COMPLICATIONS AMONG PATIENTS 

WITH INFLUENZA LIKE ILLNESS AND INFLUENZA1 

  

                                                 
1 McKay B, Ebell M, Shen Y, and Handel A. To be submitted to Journal of the American Board of Family 
Medicine. 
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2.1 Abstract 

Background: Currently, there are not clinic prediction rules that predict influenza complications 

in the outpatient setting. Implementation of a valid prognostic score in this setting could help 

identify patients most in need of treatment. 

Methods: We used data from 4103 patients with influenza-like illness (ILI) enrolled in 11 

clinical trials from 1997-2001 to develop prognostic scores for three composite complication 

outcomes: 1) serious complications (hospitalization, pneumonia, or sepsis) 2) complications that 

can be treated with antibiotics and 3) complications that required additional treatment. Multivariate 

logistic regression was used to identify independent predictors of influenza complications. Scores 

were developed based on the multivariate models for patients with ILI and for the subset that were 

PCR positive (FLU) for influenza. Finally, we used fast and frugal trees to see if a straightforward 

model could be created that would be simple to use in a clinical setting. 

Results: Using a simple score based clinical prediction rule (CPR), we were able to create 

low, moderate, and high risk groups for both the FLU and ILI populations. The score for serious 

complications was able to place 19% of FLU and 33.9% of ILI patients in low risk groups who 

could be reassured.  In general, the scores showed consistent performance with likelihood ratios 

of less than 1 for the low-risk group and more than 1 in the high risk groups. The decision trees 

developed performed well in both populations for the serious complications capturing 66% of 

patients with a complication with 32% of the ILI and 28% FLU patients classified as high risk. 

Conclusions: We have developed and tested the internal validity of 6 clinical prediction 

scores that successfully classifies patients as being at low, moderate, and high risk for three 
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complications, as well as fast and frugal decision trees. Further work is need to determine the 

clinical impact of the scores and decision trees through prospective validation. 

2.2 Introduction 

In most cases of influenza in a healthy person, the infection will resolve without any 

complications. However, due to the large numbers of infections, each year, influenza causes a 

considerable amount of morbidity and excess mortality. One study estimates that in the United 

States over five flu seasons (2010-2015), 9.2 million to 35.6 million experienced illness related to 

influenza [25]. Of those infected it is estimated that during the same time period there were 139,000 

to 708,000 flu related hospitalizations and 4,000 to 56,000 deaths [25]. Given the common nature 

of flu, it would be very useful to have an easy and accurate method to categorize patients based on 

their expected risk to develop complications, so low risk patients can be reassured while high risk 

patients can be monitored more closely. 

Decision aids, such as clinical prediction rules (CPRs) have been shown to have a positive 

impact on clinical care [5] and are used in a variety of clinical settings [6]. Several clinical 

prediction rules (CPRs) for severe influenza outcomes such as hospitalization, ICU admission, and 

death among children, hospitalized patients, and ICU patients have been developed [34,35], and 

summarized in previous reviews [1,36]. Among the studies included in these reviews only one 

looked patients who presented to the emergency department [34]. The study population was mostly 

pediatric patients and 70% of them had some underlying illness and 39% were hospitalized. The 

outcomes of interest for all the CPRs included in the review are rare and severe such as 

hospitalization, ICU admission or death [1]. A CPR that could be used to triage patients and focus 

resources on those most likely to develop complications and need further attention would be very 

valuable [30]. Conversely, identifying patients at low risk of complications can help clinicians 
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reassure these patients and avoid over-treatment. Current methods of triage for patients with ILI 

utilize CPRs adapted for triage of patients with pneumonia, such as the SOFA, CURB-65, or 

PMEWS scores [7,31–33]. These CPRs have been shown to be more accurate than clinical 

judgment alone for the prediction of complications [7]. 

Less severe complications that require additional treatment or those that can be treated with 

an antibiotic occur in approximately 10% of those infected with influenza [2]. Currently, there are 

no CPRs to help identify adult patients in the outpatient setting who are likely to have 

complications, or a low risk who are likely to do well. The purpose of this study is to develop 

CPRs based on logistic regression and simple heuristic decision trees to create a set of tools that 

can effectively triage adult patients with ILI and confirmed influenza in the outpatient setting. 

2.3 Methods 

Data 

This study will develop and validate a clinical prediction rule using data from 11 published 

and unpublished clinical trials (Table 2.1). All studies obtained institutional review board approval. 

We received the data from Roche through ClinicalStudyDataRequest.com, a registry of individual 

patient level data from clinical trials. All of the studies are randomized, blinded, placebo-

controlled, phase III trials for oseltamivir (Tamiflu). The studies were conducted in outpatient 

settings, and enrollment was open to individuals presenting within 36 hours of the onset of 

influenza-like illness. We reviewed the study protocol for data collection before pooling the data 

for the analysis. 

Outcomes of Interest 

There are three outcomes of interest that we hope to predict using a CPR (Table 2.1). The 

first is a serious complication, the second are complications of the ears or respiratory tract that can 
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be treated with an antibiotic, and the third is complications of the ears or respiratory tract that 

required follow up treatment as a result of the complication. 

Predictor Variables 

Since no previous CPR’s have tried to predict the outcomes of interest in an outpatient 

population, we initially considered all biologically plausible demographics, signs, symptoms, and 

elements of the medical history that would be available or could be easily obtained by a doctor or 

nurse during an initial visit or possibly a phone or telemedicine-based triage (SM Table 2.2) 

[120,121]. As a result, data from laboratory tests (i.e., white blood cell count) were not considered 

for use as predictors. To ensure that the score would be practical, variables that were poorly defined 

or judged to be overly subjective were not considered. We included predictor variables with data 

collected at the baseline visit for each of the 11 trials. Symptom variables are reported by the 

patients using a severity score. The score values ranged from 0 to 3, with 0 being absent and 3 

being severe. Two new variables were created by dichotomizing the scores. The first is absent 

(score 0) or present (score 1-3), and the second is absent/mild (scores of 0 or 1) or moderate/severe 

(scores of 2 or 3). 

Populations of Interest 

A CPR for each outcome will be created for two populations, patients presenting with 

influenza-like illness (ILI), and the subset of ILI patients who were PCR confirmed (FLU). Patients 

with missing values for the 28 baseline variables were excluded from the analysis. Additionally, 

patients who received the 150mg dose twice daily of Tamiflu are also excluded. This dose has 

been recommended for hospitalized patients [122–124] and is not representative of the treatment 

a patient would have received in an outpatient setting. 

Internal Validation 
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The data for ILI and FLU patients were both randomly split into two independent samples. 

The training data set consists of 70% of the original data set, with the remaining 30% used as the 

test data set to internally validate the models [125]. The selection of predictors for inclusion, the 

final model selection, and the selection of cut points for the low, moderate, and high risk groups 

were all completed in the training data sets. The models, scores, and trees were then applied to the 

test data to validate the models. 

Data analysis 

The bivariate regression analysis included all of the eligible predictors in both groups of 

patients for each of the three outcomes. All variables with p<0.2 were considered for inclusion in 

the multivariate model. The treatment variable (Tamiflu 75mg vs Placebo) was forced into the 

multivariate model, regardless of statistical significance. 

We constructed a logistic regression model for each population and outcome using 

stepwise backward elimination based on AIC [126]. The cut off for the risk groups was created 

using two methods. First, a data-driven approach was used where high or low-risk groups were 

determined by the point that minimizes the distance between the ROC curve and the top left corner 

(point(0,1)) of the ROC plot [127,128] using the OptimalCutpoints package in R [129]. The second 

method determined the cut points based on clinical considerations and created high, moderate, and 

low-risk groups. We did not create high, moderate, and low-risk groups if the distribution of 

predicated risk was too narrow to make such distinctions meaningful. For each group we report 

the likelihood ratios and prevalence on the outcomes for each The calibration of the model was 

tested using the Hosmer and Lemeshow (HL) test and plotting the observed vs the model 

predictions [130,131]. The model we developed in the training data set was applied to the test data 
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set and checked for differences in performance. Confidence intervals for the AUC and comparison 

between AUCs were calculated using the Delong non-parametric methods [132,133]. 

We produced 6 CPRs based on scores generated using the final regression model for each 

of the three outcomes for both populations. The scores are based on regression beta coefficients of 

the variables included in the final model. The coefficients were converted to points using the 

Sullivan scoring system [134,135], where the beta coefficients are divided by the smallest absolute 

value of the regression coefficient and rounded to the nearest integer. If any continuous variables 

were included in the regression model, the scores were created based on categorization based on 

clinical considerations to make the score simple to implement in clinical settings. The cut points 

for the risk groups will be determined using the same methods described above. The high, 

moderate, and low-risk categories corresponded to the clinical decision thresholds of no 

intervention required, more information required, and consider empiric therapy based on expert 

clinical opinion and previous studies of test and treatment thresholds [136] 

In addition to the logistic model-based scores, a simple heuristic fast and frugal decision 

tree will also be generated using the ifan algorithm [137] using the variables indicated in the 

univariate analysis. Fast and frugal trees rarely overfit the data [138] and are easy to interpret and 

implement in clinical practice [139,140]. The R package FFTrees [137] was used to generate 

decision trees. All analyses were performed in R (version 3.4.3). 

2.4 Results 

Of the 4287 patients with ILI enrolled in the studies, 453 received the 150mg dose of 

Tamiflu and were excluded. Of the remaining 3834 patients, a total of 3684 had complete baseline 

data for the variables of interest of which 2394 were PCR confirmed.  The data for both the PCR 

confirmed flu and ILI patients was randomly split 70/30 into training and test data sets, 
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respectively.  The distribution of variables between the training and test data sets is similar for 

both populations (SM Table 2.1). The number of observations and variable distributions 

contributed from each study are shown in the supplementary material (SM Table 2.2 and 2.3). 

Bivariate Analysis 

The odds ratios for all of the candidate variables for each of the three outcomes are in the 

supplementary material (SM Table 2.4 - 2.9).  Variables with p<0.2 for each population and 

outcome are used to generate the full model.  The treatment variable indicating if a patient received 

placebo or oseltamivir 75mg was forced into every final model to account for any effects of the 

treatment.  The following abbreviations were used to when referring to different patient 

populations or outcomes: PCR confirmed patients (FLU), patients with influenza like illness (ILI), 

serious complications (C-S), complications requiring an antibiotic (C-AB), complications 

requiring further treatment (C-FT). 

Regression Models  

Serious Complications 

Very few FLU patients had serious complications with a prevalence of 1.8% in the training 

data and 2.5% in the test data.  Among the ILI patients serious complications occurred in 2.4% of 

patients in the train data and 2.7% of patient in the test data. The FLU C-S final logistic regression 

model developed in the training data included 4 of the 6 variables indicated by the bivariate 

analysis (SM Table 2.10). The ILI C-S final logistic regression model developed in the training 

data included all the variables indicated by the bivariate analysis (SM Table 2.10).  

The FLU C-S model performed similarly in the test (AUC=0.77, 95%CI (0.67, 0.87)) and 

train (AUC=0.69, 95%CI (0.59, 0.79)) data and there was not an indication of a significant 

difference between the AUCs using DeLong nonparametric test (D=-0.256, df=1496.6, p=0.79).  
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The cut off associated with the point on the curve closest to the top left corner is a probability of a 

serious complication greater than 1.7%. Detailed results for the FLU C-S model performance in 

the test and training data are provided in the supplement (SM Table 2.10-2.11).  In the ILI patients 

the ILI C-S model performed similarly in the test (AUC=0.69, 95%CI (0.59, 0.79)) and train 

(AUC=0.66, 95%CI (0.59, 0.73)) data and there was no indication of a significant difference 

between the AUCs (D= 0.49, df= 2202.1, p = 0.62) (SM Table 2.11). The cut associated with the 

point on the curve closest to the top left corner is a probability of a serious complication greater 

than 2.8%. Detailed results for ILI C-S model performance in the test and training data are provided 

in the supplement (SM Table 2.10-2.11).  

Among the FLU patients the distribution of predicted probabilities was wide enough that 

we were able to divide the population into low, moderate, and high-risk groups for C-S.  For the 

ILI patients the predicted probability range was narrow (0.011 to 0.069), and we could only create 

a low and high risk group.  Since this outcome is serious it is important that most of the cases are 

caught.  We therefore chose the cut offs to ensure that as few of the complications would be 

included in the low risk group as possible favoring sensitivity over specificity. Posttest 

probabilities and likelihood ratios for the training and test data are shown in Table 2.3. 

Complications requiring an antibiotic 

Complications requiring an antibiotic (C-AB) occurred more often than the more serious 

complications with a prevalence of 4.8% in the train data and 5.8% in the test data for FLU patients.  

Among ILI patients the prevalence was 5.1% in the train data and 7.0% in the test data.  Among 

the FLU patients the final model (FLU C-AB) developed in the training data included 7 of the 11 

variables indicated by the bivariate analysis (SM Table 2.12). For the ILI patients the final model 

developed in the training data included 6 of the 13 variables indicated (SM Table 2.12).  
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The FLU C-AB model performed similarly in the test (AUC=0.64, 95%CI (0.55, 0.73)) 

and train (AUC=0.657, 95%CI (0.59, 0.72)) data and there was not an indication of a significant 

difference between the AUCs (D=-0.261, df=1526.8, p=0.794).  The cut off associated with the 

point on the curve closest to the top left corner is a probability of a complication of 4.7% of greater. 

Detailed results for the FLU C-AB model performance in the test and training data are provided 

in the supplement (SM Table 2.6-2.7, Figure 2.5-2.6).  In the ILI patients the ILI C-AB model 

performed similarly in the test (AUC=0.59, 95%CI (0.53, 0.66)) and train (AUC=0.642, 95%CI 

(0.59, 0.69)) data and there was not an indication of a significant difference between the AUCs (D 

= -1.09, df = 2316.6, p = 0.27) (SM Table 2.12).    The cut associated with the point on the curve 

closest to the top left corner is a probability of a complication of 4.8% or higher. Detailed results 

for the ILI C-AB model performance in the test and training data are provided in the supplement 

(SM Table 2.12-2.13, SM Figure 2.7-2.8).   

The predicted probability was wide enough for both the FLU and ILI patients and we 

divided the populations into low, moderate, and high risk groups. Posttest probabilities and 

likelihood ratios for the training and test data are shown in Table 2.4. 

Complications requiring further treatment 

Among the FLU patients, complications that require further treatment occurred more often 

than any of the other composite outcomes with a prevalence of 15.8% in the training data and 

17.0% in the test data. In the ILI population the prevalence was nearly identical with 15.7% in the 

train data and 16.6% in the test data. Among the FLU patients the final model (FLU-FT) developed 

in the training data included 10 of the 16 variables indicated by the bivariate analysis (SM Table 

2.14).  For the ILI patients the final model (ILI-FT) included 9 of the 14 variables indicated by the 

bivariate analysis (SM Table 2.14).   
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The FLU-FT model performed similarly in the test (AUC=0.65, 95%CI (0.60, 0.71)) and 

train (AUC=0.66, 95%CI (0.63, 0.70)) data and there was not an indication of a significant 

difference between the AUCs (D= -0.253, df= 1372.7, p= 0.799).  The cut off associated with the 

point on the curve closest to the top left corner is a probability of a complication greater than 

16.8%. Detailed results for the FLU-FT model performance in the test and training data are 

provided in the supplement (SM Table 2.14-2.14, SM Figure 2.9-2.10).  In the ILI patients the ILI-

FT model performed similarly in the test (AUC=0.63, 95%CI (0.59, 0.68)) and train (AUC=0.63, 

95%CI (0.60, 0.66)) data and there was not an indication of a significant difference between the 

AUCs (D = -0.0117, df = 2177.4, p = 0.99) (SM Table 2.15). The cutoff associated with the point 

on the curve closest to the top left corner is p>=0.156. Detailed results for the ILI-FT model 

performance in the test and training data are provided in the supplement (SM Table 2.14-2.15, SM 

Figure 2.11-2.12). 

The range of predicted probability was wide enough for both the FLU and ILI patients and 

we divided both populations into low, moderate, and high-risk groups.  Posttest probabilities and 

likelihood ratios for the training and test data are shown in Table 2.5. 

Clinical Scores 

Hospitalization, Sepsis, or Pneumonia 

Using the beta coefficients of FLU C-S and ILI C-S models we developed a score for both 

patient populations (Table 2.6).  Use the training data we created low, moderate, and high-risk 

groups based on the scores. Posttest probabilities and likelihood ratios for the training and test data 

are shown in Table 2.7. 

Complications Requiring an Antibiotic 
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Using the beta coefficients of FLU C-AB and ILI C-AB models we developed a score for 

both patient populations (Table 2.8).  Use the training data we created low, moderate, and high-

risk groups based on the scores. Posttest probabilities and likelihood ratios for the training and test 

data are shown in Table 2.9. 

Complications Requiring Further Treatment 

Using the beta coefficients of FLU C-FT and ILI C-FT models we developed a score for 

both patient populations (Table 2.10).  Use the training data we created low, moderate, and high-

risk groups based on the scores. Posttest probabilities and likelihood ratios for the training and test 

data are shown in Table 2.11. 

Fast and Frugal Decision Trees  

Hospitalization, Sepsis, or Pneumonia 

Among FLU patients the FLU C-S-tree developed in the training data was able to identify 

over half of the patients with complications while greatly reducing the number patients at risk. 

Among the 476 high risk patients the proportion of complication was 3.9% compared to 1.0% in 

the low risk group (SM Figure 2.12). The FLU C-S-tree performed similarly well in the test data 

capturing a third of patient with complications (Figure 2.2). Among the 204 patients identified as 

high risk the proportion of complications is 6.25% compared to 1.1% among the 514 classified as 

low risk. 

The ILI C-S tree developed in the training data performed similarly well, identifying over 

half of the patients with a complication and reducing the number of patients at risk. Among the 

834 patients identified as high risk the proportion with complication was 4.5% compared to 1.3% 

in the low risk group (SM Figure 2.14). The ILI C-S tree performed equally well in the test data, 

correctly classifying more than half of the patients with complications as high risk and greatly 
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reducing the number of patients to be considered. Among the 356 high risk patients, the proportion 

of complications is 5.6% compared to 1.3% among 749 patients in the low risk group (Figure 2.2). 

Complications requiring an antibiotic 

The FLU C-AB-tree developed in the PCR patient training data performed poorly 

misclassifying over half of those with complications (SM Figure 2.15). Among the high risk the 

proportion of complication is 8.7% compared to 3.3% in the low risk group. The tree also 

performed poorly in the test data missing more than half of the complications (SM Figure 2.16).   

The ILI C-AB-tree developed in the training data was able to greatly reduce the number of 

patients that would need to be followed up. Out of 2579 patients it classified 920 as high risk. 

Among those high risk patients the proportion of complications was 7.8% compared to 3.6% in 

the low risk group. Unfortunately it still missed nearly half of the patients with these complications 

(SM Figure 2.17).  The ILI C-AB-tree performance in the test data was poor. The tree was only 

marginally better than guessing with the high risk group having 7.5% complications compared to 

6.5% in the low risk group (SM Figure 2.18). 

Complications requiring further treatment 

The FLU-FT tree developed in the training data performed poorly in overall accuracy 

missing classifying about half of patients. Among those identified as high risk the proportion of 

complications is 22.2% compared to 12.2% in the high risk group (SM Figure 2.19). Performance 

in the test data was similar to the train data. Of those identified as high risk 24.1% had a 

complication compared to 13.1% in those that are low risk (SM Figure 2.20).    

The ILI-FT tree developed in the training data for the ILI population misclassified more 

60% of the outcomes. Among the patients classified as high risk the proportion of complications 

is 24.7% compared to 12.9% in the low risk group (SM Figure 2.21). The ILI-FT tree performance 
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in the training data was similar to the training data. Again more than 60% of the complications are 

misclassified. Among the high risk patients the proportion of complication is 23.7% compared to 

14.2% in the low risk group (SM Figure 2.22). 

2.5 Discussion 

Using data from 3684 patients with influenza-like illness, we were able to develop clinical 

prediction scores that allowed us to stratify non-hospitalized adult patients into low, moderate, and 

high-risk groups for all three composite complication outcomes that we considered. Finally, we 

developed a simple decision tree for each outcome in both populations that classified patients as 

high or low risk. We included the ILI population since it is a common presenting complaint, and 

allows the score to be used in the absence of a confirmatory test. The PCR confirmed population 

(FLU) represents the best-case scenario, which are patients with ILI who have their diagnosis 

confirmed with a PCR test. The score in the FLU patients will still have practical applications, 

especially as the availability of highly accurate point of care PCR tests for influenza increases. The 

results were generally better in the PCR population compared to the ILI population. The 

performance of the models, scores, and trees was similar in the testing and training populations, 

indicating good internal validity. The calibration of the models varied between the outcomes. For 

complications requiring an antibiotic or further treatment the lack of calibration may be due to 

patient demand and rather than proper application of antibiotic treatment based on suspected 

bacterial infection [141]. 

The final models for the three outcomes in both patient populations included predictors 

previously shown to have associations with influenza complications such as age, asthma, COPD, 

and sex [3,4,7,36,49–51], but many of the clinical signs and symptoms included have not 

previously been explored. Throat related signs and symptoms have not been described as a risk 
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factor for the serious (C-S) complications we explored, but all of the final models except one had 

at least one predictor related to throat symptoms or signs. Throat related symptoms are present in 

many cases of influenza, and it has been shown to be associated with a reduced odds of actually 

having influenza [142,143]. Sore throat and the associated signs of inflammation are also 

commonly associated with bacterial infections [144]. In our study, this may indicate the presence 

of a bacterial co-infection, which could lead to the complications we included in our analysis. The 

other symptom-based predictors of cough, myalgia, chills/sweats, and fatigue are all common 

symptoms associated with influenza infection and are used in many clinical decision rules for the 

diagnosis of influenza, but unlike sore throat, they are all positively associated with influenza 

infection [142,143,145]. All of the models were forced to include the treatment variable since there 

is evidence that treatment with Tamiflu helps prevents some but not all complications [3,4,7,146–

149]. 

The clinical prediction rules for serious complications (C-S) can accurately identify a 

subset of patients as being high risk. Using the FLU C-S score in the training data was able place 

19% of patients in a low risk group who can be reassured, while 36% of the patients in the high 

risk group are identified as likely benefiting from a follow up or being encouraged to seek care is 

they get worse. The moderate-risk group for FLU consisted of 45% of the patients who had a post-

test probability nearly the same as the pretest. Using the ILI C-S score in the training data was able 

to place 34% of patients in the low risk group, and 43% in the high risk group that require future 

follow up or should seek care if they began to feel worse. The ILI C-S score placed 23% of patients 

in the moderate risk group who had a post-test risk approximately the same as the pretest. In both 

patient populations, the score reduced the number of patients that should be followed up by more 

than half. 
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Complications that can be treated with antibiotics and those that require further treatment 

are more common than the serious and severe complications that are generally included in the 

clinical prediction rules. These complications also represent a significant burden to the outpatient 

system, and being able to limit the number of patients targeted for follow up could help improve 

the efficient use of resources. Unfortunately both the ILI and FLU C-FT and C-AB scores lacked 

the ability to create low, moderate, and high-risk groups with a meaningful difference in risk. The 

use of high and low risk groups for maybe better based on the similarity of the risk in the low and 

moderate groups. 

The trees that we developed may be simpler than the scores for clinicians use, and could 

be built into a telephone triage system for prioritizing access to an outpatient visit during a 

pandemic. For the serious outcomes, the same cues were used for both FLU C-S and ILI C-S. Only 

the order of the cues was different. The FLU C-S tree correctly captured 66% the patients with a 

serious complication, with only 204 of 718 patients in the test data set being classified as high risk. 

The ILI C-S tree successfully captured 66% of the patients with a serious complication, with only 

356 of 1105 patients in the test data classified as high risk. Unfortunately, the trees for outcomes 

C-AB and C-FT could not reliably classify patients as high or low risk. 

Out study has several limitations. First, while we did test the internal validity by randomly 

splitting the data into a training and testing data set, we could not complete an external validation. 

Additionally, we combined data from 11 studies, and while they all had remarkably similar 

inclusion criteria and protocols, the primary goal of the analysis was not to study the outcomes we 

examined in our analysis. We did benefit from the fact that the data was collected over four 

different flu seasons (1997-2001) from more than five different countries. Finally, the data used in 

this analysis consisted of patients 18 and older who presented for care within 36 hours of symptom 
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onset. Therefore our results may not apply to adult patients presenting much later in the course of 

their disease or in younger patients. 

2.6 Conclusion 

We have developed and test the internal validity of a clinical prediction score that 

successfully classifies patients as being at low, moderate, and high risk for three complications 

associated with influenza infection. These scores are based on simple questions that can easily be 

assessed in a clinical setting to identify patients’ risk. We also developed fast and frugal trees for 

serious complications based on three simple questions that were able to capture the majority of the 

complications while greatly reducing the number of patients at risk. Based on the results of this 

study both the FLU and ILI C-S score and tree warrant further study and prospective validation. 
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2.7 Figures and Tables 

Table 2. 1 Description of the included clinical trials of Tamiflu included in the analysis. 
Roche Trial 

ID 
Study 

Location 
Data Collection 

Dates Study Inclusion Criteria 
Patients 
Enrolled 

M76001 USA 
24 December 1998 

to 19 February 
1999 

Adults age 13 to 80 with ILI (fever + 
one respiratory and one constitutional 
symptom) presenting within 36 hours. 

1459 

WV15670 
(Nicholson et 

al.) 

Europe, 
China, and 

Canada 

12 December 1997 
to 18 April 1998 

Adults age 18 to 65 with ILI (fever + 
one respiratory and one constitutional 
symptom) presenting within 36 hours. 

726 

WV15671 
(Treanor et al.) USA 23 December 1997 

to 20 April 1998 

Adults age 18 to 65 with ILI (fever + 
one respiratory and one constitutional 
symptom) presenting within 36 hours. 

629 

WV15707 

Australia, 
South Africa, 

and South 
America 

20 July 1998 to 16 
November 1998 

Elderly adults over 65 years of age 
with ILI (fever + one respiratory and 

one constitutional symptom) presenting 
within 36 hours. 

27 

WV15730 
Australia, 
and South 

Africa 

1 July 1998 to 21 
September 1998 

Adults age 18 to 65 with ILI (fever + 
one respiratory and one constitutional 
symptom) presenting within 36 hours. 

60 

WV15812 
USA, 

Canada, and 
Europe 

5 January 1999 to 
12 April 1999 

Adults age 13+ with chronic cardiac or 
respiratory disease and ILI (fever + one 

respiratory and one constitutional 
symptom) presenting within 36 hours. 

304 

WV15819 

Europe, 
USA, 

Canada, and 
Israel 

1998 to 1999 
(exact dates are not 

provided) 

Elderly adults age 65 or older with ILI 
(fever ≥ 37.5°C + one respiratory and 

one constitutional symptom) presenting 
within 36 hours. 

168 

WV15872 

Australia, 
New Zealand 

and South 
Africa 

2 June 1999 to 2 
October 1999 

Adults age 13+ with chronic cardiac or 
respiratory disease and ILI (fever + one 

respiratory and one constitutional 
symptom) presenting within 36 hours. 

100 

WV15876 
South Africa, 
New Zealand 
and Australia 

1999 
(exact dates are not 

provided) 

Elderly adults age 65 or older with ILI 
(fever ≥ 37.5°C + one respiratory and 

one constitutional symptom) presenting 
within 36 hours. 

99 

WV15978 
Europe, 

USA, and 
Canada 

1999 to 2000 
(exact dates are not 

provided) 

Elderly adults age 65 or older with ILI 
(fever ≥ 37.5°C + one respiratory and 

one constitutional symptom) presenting 
within 36 hours. 

468 

WV16277 Europe 4 January 2001 to 
23 March 2001 

Age ≥ 13 years (or ≥ 18 years in 
countries with local IRB requirements) 
Sudden onset of fever (≥37.8°C) and at 
least two of the following symptoms: 
nasal congestion, sore throat, cough, 

myalgia, fatigue, headache, 
chills/sweats presenting within 36 

hours. 

451 

 
 
  



 

28 

Table 2. 2 Definition for the three complications used in the study. 
Outcome  Outcome definitions  
Complications requiring an 
antibiotic (AB) 

Among patients with a complication of the ears, lower or upper respiratory 
who receive a diagnosis of; sinusitis, tonsillitis, bacterial pharyngitis, otitis 
media, pneumonia, sinus pain, peritonsillar abscess, mycoplasma infection, 
streptococcal infection, lower respiratory tract infection, sepsis, or 
crepitation. Only diagnosis that occurred on or after study day 1 are counted. 
(note: Symptoms reported by physicians during follow up were indicated as 
not being related to suspected flu infection.) 

Complications requiring 
follow up treatment (FT) 

Among patients with a complication of the ears, lower or upper respiratory 
who received additional treatment as a result of the complication.  Treatment 
was not necessarily with an antibiotic. Only complications and treatments 
that occurred on or after study day 1 are counted.  

Serious complications (C-S) Patients with a diagnosis of pneumonia or sepsis or were hospitalized. Only 
complications and treatments that occurred on or after study day 1 are 
counted. 

 
 
Table 2.3 Accuracy of CPRs for predicting serious complications in the FLU and ILI patients 

FLU C-S  Model 
Training Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.01) 5 569 0.87% (34.3%) 0.46 
Moderate (.011-0.03) 11 829 1.31% (50.1%) 0.70 
High (> 0.03) 15 247 5.72% (15.6%) 3.22 

Test Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.01) 1 295 0.33% (41.2%) 0.13 
Moderate (.011-0.03) 6 231 2.53% (33.0%) 1.01 
High (> 0.03) 11 174 5.94% (25.8%) 2.45 
ILI C-S Model 

Training Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.028) 19 1479 1.27% (58.1%) 0.53 
High (>0.028) 42 1039 3.88% (41.9%) 1.66 

Test Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.028) 13 802 1.59% (73.8%) 0.58 
High (>0.028) 17 273 5.96% (26.2%) 2.23 
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Table 2.4 Accuracy of CPRs for predicting complications requiring an antibiotic in the FLU and 
ILI patients 

FLU C-AB Model 
Training Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.045) 27 909 2.88% (55.9%) 0.59 
Moderate (.0451-0.055) 12 228 5.00% (14.4%) 1.05 
High (> 0.055) 41 459 8.20% (29.9%) 1.78 

Test Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.045) 9 296 2.95% (42.5%)  0.48 
Moderate (.0451-0.055) 4 82 4.65% (11.9%) 0.78 
High (> 0.055) 29 298 8.86% (45.5%) 1.56 
ILI C-AB Model   

Training Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.025) 8 283 2.74% (11.3%) 0.52 
Moderate (0.0251-0.06) 65 1509 4.12% (61.0%) 0.79 
High (> 0.06) 59 655 8.26% (27.7%) 1.66 

Test Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.025) 0 0 NA (NA) NA 
Moderate (0.0251-0.06) 26 491 5.02% (46.8%) 0.70 
High (> 0.06) 51 537 8.67% (53.2%) 1.26 
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Table 2.5 Accuracy of CPRs for predicting complications requiring additional treatment in the 
FLU and ILI patients 

FLU-FT Model  
Training Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.10) 36 401 8.97% (26.1%) 0.47 
Moderate (.10-0.20) 106 697 15.2% (47.9%) 0.80 
High (> 0.20) 123 313 39.2% (26.0%) 2.09 

Test Data 

Risk Group (Probability 
complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-0.10) 11 108 9.24% (16.6%) 0.49 
Moderate (.10-0.20) 55 349 13.6% (56.3%) 0.76 
High (> 0.20) 56 139 28.7% (27.2%) 1.96 
ILI-FT Model  

Training Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients 
in risk group) 

Likelihood 
ratio 

Low (0-0.07) 3 93 3.12% (3.7%) 0.17 
Moderate (0.07-0.14) 141 1091 11.4% (47.8%) 0.69 
High (> 0.14) 261 990 20.8% (48.5%) 1.41 

Test Data 

Risk Group (Probability 
of complication 0-1.0) Complication No 

Complication 

Complication % 
(% of patients 
in risk group) 

Likelihood 
ratio 

Low (0-0.07) 1 25 3.84% (2.4%) 0.20 
Moderate (0.07-0.14) 51 387 11.6% (39.6%) 0.66 
High (> 0.14) 131 510 20.4% (58.0%) 1.29 

 

Table 2.6 Model coefficients and corresponding point value for the clinical prediction score 
Model and Included Variables Beta Coefficients Points 
FLU C-S Score 
Tamiflu = No  0.65 3 
Asthma = Yes  1.04 4 
Sore Throat = Severe 0.61 3 
Age (40,65]  0.24 1 
Age (65,100] 0.98 4 
ILI C-S Score 
Tamiflu = No 0.24 1 
COPD = Yes 0.93 4 
Asthma or COPD Rx = Yes 0.67 3 
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Table 2.7 Score cut points developed in training data then applied to the test data for FLU and 
ILI-models. 

FLU C-S Likelihood Ratios 
Training Data 

Risk group 
Complication No Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-1 points) 2 323 0.61% (19.4%) 0.32 
Moderate (2-4 points) 9 696 1.27% (42.1%) 0.68 
High (>4 points) 20 626 3.09% (38.5%) 1.69 

Test Data 
Risk group 

Complication No Complication 
Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-1 points) 0 137 0% (19.1%) 0 
Moderate (2-4 points) 8 315 2.47% (45.0%) 0.98 
High (>4 points) 10 248 3.87% (35.9%) 1.56 
ILI C-S Likelihood Ratios 

Training Data 
Risk group 

Complication No Complication 
Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0 points) 9 854 1.04% (33.5%) 0.43 
Moderate (1-3 points) 10 625 1.57% (24.6%) 0.66 
High (>4 points) 42 1039 3.88% (41.9%) 1.66 

Test Data 
Risk group 

Complication No Complication 
Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0 points) 4 371 1.06% (33.9%) 0.38 
Moderate (1-3 points) 5 251 1.95% (23.2%) 0.71 
High (>4 points) 21 453 4.43% (42.9%) 1.66 
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Table 2.8 FLU C-AB and ILI C-AB model coefficients and corresponding point value for the 
clinical prediction score. 

Model and Included Variables Beta Coefficients Points 
FLU C-AB Score 
Tamiflu = No 0.05 1 
Throat Physical = Abnormal 0.47 8 
Asthma = Yes  0.65 11 
Nasal Symptoms = Severe 0.51 9 
Myalgia = Severe 0.67 12 
Age (40,65]  0.36 6 
Age (65,100] 0.51 9 
Sex = Female 0.42 7 
ILI C-AB Score 
Tamiflu = No 0.10 1 
Sex = Female 0.59 5 
Throat Physical = Abnormal 0.34 3 
Asthma or COPD Rx = Yes 0.73 7 
Sore Throat = Absent 0.39 4 
Cough = Absent 0.46 4 
Fatigue = Severe 0.50 5 

Table 2.9 FLU C-AB and ILI C-AB score cut points developed in training data then applied to 
the test data. 

FLU C-AB Score Likelihood Ratios 
Training Data 

Risk group 
Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-18 points) 7 246 2.76% (15.1%) 0.56 
Moderate (19-28 points) 22 626 3.39% (38.7%) 0.70 
High (>28 points) 51 724 6.58% (46.2%) 1.40 

Test Data 
Risk group 

Complication No 
Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-18 points) 3 102 2.85% (14.6%) 0.47 
Moderate (19-28 points) 15 260 5.45% (38.3%) 0.92 
High (>28 points) 24 314 7.10% (47.1%) 1.23 
ILI C-AB Likelihood Ratios 

Training Data 
Risk group 

Complication No 
Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-4 points) 1 122 0.81% (4.8%) 0.15 
Moderate (5-10 points) 42 1241 3.27% (49.7%) 0.62 
High (>10 points) 89 1084 7.58% (45.48%) 1.52 

Test Data 
Risk group 

Complication No 
Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-4 points) 3 47 6.00% (4.5%) 0.85 
Moderate (5-10 points) 35 516 6.35% (49.9%) 0.90 
High (>10 points) 39 465 7.73% (45.6%) 1.11 
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Table 2.10 FLU-FT and ILI-FT model coefficients and corresponding point value for the clinical 
prediction score. 

Model and Included Variables Beta Coefficients Points 
FLU-FT Score 
Tamiflu = No 0.26 1 
Throat Physical = Abnormal 0.34 1 
Asthma = Yes  0.52 2 
Nasal Symptoms = Severe 0.36 1 
Sore Throat = Absent 0.54 2 
Cough = Severe 0.33 1 
Fatigue = Severe 0.44 2 
Chills or Sweats = Severe 0.28 1 
Myalgia = Severe 0.48 2 
Age (40,65]  0.32 1 
Age (65,100] 0.98 4 
ILI-FT Score 
Tamiflu = No 0.21 2 
Sex = Female 0.20 2 
Asthma = Yes 0.32 3 
COPD = Yes 0.35 3 
Asthma or COPD Rx = Yes 0.45 4 
Nasal Symptoms = Severe 0.16 1 
Sore Throat = Absent 0.41 4 
Fatigue = Severe 0.69 6 
Age (40,65]  0.11 1 
Age (65,100] 0.24 2 
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Table 2.11 FLU-FT and ILI-FT score cut points developed in training data then applied to the 
test data. 

FLU-FT Likelihood Ratios 
Training Data 

Risk group 
Complication No 

Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-5 Points) 18 232 7.20% (14.9%) 0.41 
Moderate (6-8 Points) 115 807 12.47% (55.0%) 0.75 
High (>8 Points) 132 372 26.19% (30.1%) 1.88 

Test Data 
Risk group 

Complication No 
Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-5 Points) 8 86 8.51% (13.1%) 0.45 
Moderate (6-8 Points) 68 363 15.77% (60.0%) 0.91 
High (>8 Points) 46 147 23.83% (26.9%) 1.52 
ILI-FT Likelihood Ratios 

Training Data 
Risk group 

Complication No 
Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-4 points) 3 96 3.03% (3.8%) 0.16 
Moderate (5-10 points) 125 1003 11.08% (43.7%) 0.66 
High (>10 points) 277 1075 20.48% (52.5%) 1.38 

Test Data 
Risk group 

Complication No 
Complication 

Complication % 
(% of patients in 
risk group) 

Likelihood 
ratio 

Low (0-4 points) 2 37 5.12% (3.5%) 0.27 
Moderate (5-10 points) 69 428 13.88% (45.0%) 0.81 
High (>10 points) 112 457 19.68% (51.5%) 1.23 
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Figure 2.1 FLU C-S decision tree for hospitalization, pneumonia, and sepsis in PCR test data. 

   

Figure 2.2 ILI C-S decision tree for hospitalization, pneumonia, and sepsis in test data. 
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CHAPTER 3 

THE IMPACT OF INOCULUM DOSE ON INFECTION AND IMMUNITY OUTCOMES 

FOR INFLUENZA VIRUS2 

  

                                                 
2 McKay B, Ebell M, Shen Y, and Handel A. To be submitted to American Journal of Epidemiology. 
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3.1 Abstract 

Introduction: Inoculum dose is the quantity of pathogens a host is exposed to at the beginning of 

an infection. Understanding the relationship between inoculum dose, viral dynamics, and infection 

outcomes in humans infected with influenza is critical to creating effective control measures and 

identifying important clinical aspects of the disease. 

Methods: We completed a systematic literature review to identify influenza challenge 

studies conducted in humans. Data on the dose, viral, and symptom outcomes were abstracted. 

Using the data gathered we described the relationship between the inoculum dose and outcomes 

related to within host viral dynamic, immune response, and symptoms using traditional dose 

response models as natural splines so that non-monotonic non-linear trend could be detected. 

Results: We identified 149 influenza challenge studies conducted in 7821 individual 

volunteers published between 1943 and 2016. We found that dose response was similar to a past 

study in regards to probability of infection. Surprisingly we did find a number of decreasing trends 

for both mean viral peak and proportion of individuals with systemic symptoms. For immune 

response there was a clear increasing trend for the proportion of individuals with a significant 

increase in HAI titers but when looking as the ratio of before and after there did not seem to be 

any relationship with the dose. 

Conclusion: Parametric dose response models are biologically based and their use for 

modeling the probability of infection is justified, but for some outcomes a function that assumes 

an increasing relationship may be misleading. The inoculum dose does play a role in infection 

outcomes and a greater understanding of the effects will lead to the creation of more effective 

controls. 

3.2 Introduction 
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Inoculum dose is the quantity of pathogens a host is exposed to at the beginning of an 

infection. Inoculum dose can affect the within host dynamics of the pathogen once they are 

infected, such as the peak levels and the duration of time it takes to reach the peak [53–57]. Beyond 

the pathogen dynamics the host immune response can also be affected [58–61]. There are also 

changes in the immune response as well as the impact they have on the morbidity and mortality 

experience an infected individual. [62–68]. 

Understanding the relationship between inoculum dose, viral dynamics, and infection 

outcomes in humans infected with influenza is critical to creating effective control measures and 

identifying important clinical aspects of the disease. The application of sigmoidal functions in dose 

response analysis has clear biologic meaning in terms of infection. The exponential, Weibull, and 

other functions commonly used assume that when no virus is present, infection cannot occur and 

as virus increases so does the probability of infection until saturation [150]. In the case of infection 

these assumptions are reasonable, but for other outcomes related to viral dynamics, immune 

response, and morbidity increasing the dose may not always lead to an increase in the outcome 

[152–156]. Modeling these infection outcomes using the traditional dose response models may 

miss important relationships between the dose and outcome. 

Influenza infections are common around the world and are often characterized by sudden 

onset of symptoms such as fever, myalgia, and headache [145]. The natural history and the within 

host viral dynamics influenza have been studied [9,157,158]. As well as the role inoculum dose 

plays in the probability of infection [8]. The objective of this meta-analysis, using results from 

human influenza challenge studies, is to determine the impact inoculum dose has on influenza viral 

dynamics, within host immune response, and symptom outcomes in healthy humans. Not much is 

known about the impact the dose has on the symptom outcome [8]. We considered data from 
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challenge studies that were not included in previous studies [8,9] where individuals are challenged 

by live attenuated influenza virus often used in influenza vaccines [159]. By fitting nonlinear 

models to data we hope to provide a better understanding of the impact inoculum dose has on 

disease outcomes beyond the probability of infection. 

3.3 Methods 

Systematic Review 

Following PRISMA guidelines we conducted a systematic literature search for human 

influenza challenge studies published from January 1st, 1946 to January 15th, 2017 was carried 

out using the PubMed, and Web of Science databases. Studies included met the following criteria: 

Study was conducted in human volunteers, a living virus was used, and data are reported for at 

least one infection outcome. Studies were not excluded based on language unless reasonable 

attempts to have it translated failed. Citations of all included articles and reviews identified in the 

search were hand searched for additional articles that should be considered for inclusion. Only 

published data was used; we did not request access to the original data for any of the included 

studies. Study titles were initially screened by two researchers independently. The abstracts and 

full text of the remaining studies where then reviewed for final inclusion by two researchers 

independently. Any disagreement was resolved by consensus. 

Data Abstraction 

Data were abstracted from each study by two researchers independently and then compared 

for agreement. Any disagreement was resolved by consensus after reviewing the full text of the 

study in question. Data for the following variables were collected: year of publication, size of the 

study, age range, mean age, median age, proportion male, proportion female, virus name, viral 

preparation, viral subtype, viral type, pre-challenge HAI, per-challenge NAI, inoculum dose, 
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inoculum dose units, inoculum volume, inoculum route, and many others. Outcomes were 

recorded by challenge group where the group was defined by the dose and the virus given.  

Data Processing 

Data was cleaned and variables correctly formatted before being analyzed. A single data 

set was created and included all the outcomes. Meta-data such as study title, publishing journal, 

general comments, and others were removed. Variables were then formatted as appropriate as 

numeric, character, or categorical. Missing data for each variable was investigated to ensure they 

were not the result of data entry error. Only data from studies that reported an inoculum dose and 

outcome of interest were included in the quantitative analysis. Once the data set was cleaned 

subsets were created based on virus preparation (wild type or attenuated) and then further stratified 

by subtype. 

Statistical Analysis 

The data was pooled with careful consideration for differences in the virus prep. The 

proportion infected data was initially fitted using a two parameter exponential as well as a two 

parameter approximate beta-Poisson [150,160,161]. Model parameters were selected using 

NLOPTR, a non-linear optimization package in R [162]. To explore the trends observed in the 

outcomes a generalized additive model using natural splines was used [163]. The degrees of 

freedom for the splines were tuned using Monte Carlo cross validation with 25 re-samples splitting 

the data in to 75% train and 25% test using the caret package in R [164,165]. In the stratified 

analysis of virus subtype the strata was only included if 5 or more observations where present. 

Time trends were also assessed using linear models. 

3.4 Results 

Systematic Review 
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Our search results included 1351 unique results with 134 full text articles being included 

after reviewing 378 full texts. Review of the included texts citations yielded an additional 15 

studies (Figure 1.1). 

Data Description 

In the 149 included studies there were 495 challenge groups consisting of 7821 individual 

volunteers these studies were published between 1943 and 2016. Median tissue culture infectious 

dose (TCID50) and median egg infectious dose (EID50) were the unit used to verify viral titer in 

61% and 36% of challenge groups respectively. The route used to inoculate volunteers was almost 

exclusively described as intranasal (Table 1). The volume used for inoculation was 0.5 ml for 44% 

and 1.0 ml in 19% of the groups. Infection was the most commonly reported outcome and was 

reported in all but 16 of the challenge groups. The mean peak titer was reported for 176 challenge 

groups of which 164 used log10 TCID50/ml as the unit. The presence of any systemic symptom 

was reported in 204 challenge groups. Increase in antibodies to hemagglutinin (HA) was reported 

in 403 groups. The use of the 4 fold change in the pre and post hemagglutination inhibition (HAI) 

assay was used in 343 of the challenge groups. In 59 studies the patients were classified based on 

a “significant” change and the definition of significant was not always apparent. 

Infection Outcomes 

We investigated the impact of inoculum dose on different infection outcomes. We looked 

at the proportion infected, the mean peak viral titer, the proportion of patients with systemic 

symptoms, and immune response in regards to the change in HAI and NAI titers. Table 3.2 

summarizes the number of observations that are included in the analysis for each of the different 

outcomes. 

Proportion Infected 
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 The range of inoculum doses was narrow. There seemed to be a clear difference between 

attenuated and wild type clear (Figure 3.2). Differences between the subtypes of both attenuated 

and wild type viruses were less apparent (Figures 3.3-3.4)  

Mean peak titer 

 The general additive model fit with two degrees of freedom for both the attenuated and 

wild type viruses. The fit for these were only marginally better than a simpler linear model.  In the 

case of the wild type virus the impact of the dose seems to reverse directions while for the 

attenuated there is a steady increase (Figure 3.5). For the wild type H1N1 virus the model used 

three degrees of freedom and indicated a negative trend (Figure 3.6). The wild type H3N2 model 

used 2 degrees of freedom and while it initially increases it levels off as dose increases (Figure 

3.6). Both of the subtypes for attenuated show increasing trends (Figure 3.7) 

Proportion with Systemic Symptoms  

 The models for both attenuated and wild type used 2 degrees of freedom and show a 

negative trend (Figure 3.8). For the wild type subtypes H1N1 and H3N2 a model with 1 degree of 

freedom was selected by cross validation and both so a negative trend (Figure 3.9). Similarly the 

subtypes for the attenuated viruses also fit with a single degree of freedom and no trends were 

apparent (Figure 3.10). 

Immune Response 

 The models for both the attenuated and wild type fit best with a single degree of freedom 

and while the wild type indicated a strong positive correlation the wild type showed almost none 

in either direction (Figure 3.11). The both of the wild type subtypes indicated almost no effect at 

different doses (Figure 3.12). In the case of the attenuated subtypes a strong positive correlation 
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was observed (Figure 3.13).  We also looked at the ratio between pre and post vaccine HAI titers. 

In all cases dose seemed to have little to no effect on the outcome (SM Figures 3.17-3.19). 

Change over time 

There has been an increase in the inoculum dose used over time for challenge with wild-

type virus, and while there is a slight upward trend in the attenuated virus it is not present when 

stratified by the subtypes (SM Figure 3.20). The mean peak titers have little to no change among 

wild type virus either as a group or when stratified by subtype (SM Figure 3.21). On the other hand 

there is a strong decline among the attenuated group which is unsurprising since the goal of live 

vaccine is to not be transmittable. In regards to the proportion of patients with systemic symptoms 

there is a negative trend in both the wild type and attenuated viruses that is still present when 

stratified by subtype (SM Figure 3.22). Again for the attenuated group this is expected as 

improvements to live vaccines were being made over time. In proportion with 4 fold increase there 

is not much change in the wild type virus but interestingly there is in the attenuated (SM Figure 

3.23).  

3.5 Discussion 

We completed an extensive systematic literature review and created a data base of 

published challenge studies published from 1943 to 2016. Using this data we hope to further our 

understanding of the impact inoculum dose has on infection outcomes in humans. 

We did find some evidence that for some of the outcomes a sigmoidal curve would not be 

able to detect relevant relationships in the data. In the case of dose and mean peak titer for wild-

type influenza there does seem to be an initial increase but it does not continue as the dose 

increases. In the case of the attenuated virus there is a general increasing trend as dose increases. 

When both the wild-type and attenuated viruses are stratified by subtype the same general trends 
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between the dose and mean viral peak. For among patients challenged with a wild-type virus the 

proportion with systemic symptoms had a negative relationship with dose. The same trends were 

observed when the wild-type virus was stratified by subtype. A previous study that looked a similar 

outcome fitted a beta-Poisson model which would be unable to detect a negative trend in the data 

[8]. The existence of a negative relationship between dose and fever, which is the primary systemic 

symptom has been observed in the past [9]. The trend between dose and proportion of patients 

challenged for the attenuated virus was less clear. When stratified by subtype there did not appear 

to be any trend at all. 

Understanding the impact the inoculum dose has on the immune response is important as 

we work to develop better vaccines [166–168]. In particular for live vaccines, knowing the right 

balance between enough inoculum to trigger a robust immune response, and low enough inoculum 

to prevent potential side effects is crucial [169]. Our results show that increasing dose does lead to 

an increase in the proportion of patients with a significant increase in HAI titers when using 

attenuated viruses. In the case of the wild type virus there seems to be no change as dose increases. 

It is important to note that the range of doses is limited ranging from approximately 3 to 8 log10 

TCID50 for the attenuated viruses and 3 to 7 log10 TCID50 for the wild-type. 

We did find some evidence that the wild-type strains used for challenge studies are 

becoming less virulent over time. With a general trend of increasing dose and decreasing measures 

of viral load and symptoms. It is interesting to note that in terms of immune response there seems 

to be very little change. This is not too surprising since the development of wild type challenge 

stains does require the virus have a moderate pathogenicity while still being infective [9,170]. 

Decrease in the morbidity associated with attenuated viruses was expected since the goal is to 

produce a vaccine with as few side effects as possible while still eliciting an immune response. 
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Further analysis and modeling of this data to provide a better understanding of the impact 

that influenza inoculum dose has on disease outcomes and can provide important information to 

the optimal dosage for maximizing immune response while minimizing symptom outcome in in 

future vaccine development. 

3.6 Figures and Tables 

 

Figure 3.1: PRISMA flowchart for systematic literature review. 
 

 

 

 



 

46 

 

 

 

 

 

Table 3.1: Summary of the exposures across all groups 

   

Challenge Groups  495 

Group size (mean (SD))  15.80 (16.71) 

Inoculum Dose (mean (SD)) 

[Log10 TCID50 or EID50] 

 5.91 (1.47) 

Inoculum Volume (mean (SD))  0.72 (0.46) 

Route of inoculation (%) aerosol 1 ( 0.2) 

 inhalation 1 ( 0.2) 

 intranasal 411 (93.0) 

 intranasal/oral 14 ( 3.2) 

 nasopharyngeal 12 ( 2.7) 

 oral 3 ( 0.7) 

Virus (%) Attenuated 362 (73.1) 

 Wild-Type 133 (26.9) 

Virus type (%) A 458 (92.5) 

 B 37 ( 7.5) 
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Table 3.2: Summary for each outcome 

Outcomes Proportion Infected Mean Viral 
Peak  

Proportion 
Systemic 

Significant 
increase HAI titer 

Challenge Groups 479 162 204 188 
Mean group size (mean (SD)) 15.35 (16.05) 15.26 (9.24) 15.80 (11.99) 14.58 (8.91) 
Mean inoculum dose (mean (SD)) 
[Log10 TCID50 or EID50] 

5.93 (1.48) 6.15 (1.25) 6.03 (1.27) 6.17 (1.21) 

Inoculum volume (mean (SD)) 0.73 (0.46) 0.53 (0.12) 0.68 (0.52) 0.65 (0.38) 
Route of inoculation (%) 

inhalation 1 ( 0.2) 0 ( 0.0) 1 ( 0.5) 0 ( 0.0) 
intranasal 396 (93.0) 151 (100.0) 182 (93.3) 175 (98.3) 

intranasal/oral 14 ( 3.3) 0 ( 0.0) 6 ( 3.1) 0 ( 0.0) 
nasopharyngeal 12 ( 2.8) 0 ( 0.0) 4 ( 2.1) 3 ( 1.7) 

oral 3 ( 0.7) 0 ( 0.0) 2 ( 1.0) 0 ( 0.0) 
Virus preparation (%) 

Attenuated 349 (72.9) 105 ( 64.8) 139 (68.1) 153 (81.4) 
Wild-Type 130 (27.1) 57 ( 35.2) 65 (31.9) 35 (18.6) 

Virus Type (%) 
A 446 (93.1) 148 ( 91.4) 197 (96.6) 182 (96.8) 
B 33 ( 6.9) 14 ( 8.6) 7 ( 3.4) 6 ( 3.2) 
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Figure 3.2: Impact of Inoculum Dose on proportion infected stratified by wild-type and 
attenuated. Weighted fit using approximate beta Poison function. 

 

Figure 3.3: Impact of Inoculum Dose on proportion infected wild-type stratified by subtype. 
Weighted fit using approximate beta Poison function. 
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Figure 3.4: Impact of Inoculum Dose on proportion infected wild-type stratified by subtype. 
Weighted fit using approximate beta Poison function. 
 

 

Figure 3.5: Impact of Inoculum Dose on mean peak viral titer Weighted. Stratified by wild type 
vs attenuated 
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Figure 3.6: Impact of Inoculum Dose on mean peak viral titer Weighted. Wild type stratified by 
subtype 
 

 

Figure 3.7: Impact of Inoculum Dose on mean peak viral titer Weighted. Attenuated stratified by 
subtype 
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Figure 3.8: Impact of Inoculum Dose on Proportion Systemic Weighted. Stratified by wild type 
vs attenuated. 

 

Figure 3.9: Impact of Inoculum Dose on Proportion Systemic Weighted. Wild type virus 
stratified by subtype. 
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Figure 3.10: Impact of Inoculum Dose on Proportion Systemic Weighted. Attenuated virus 
stratified by subtype. 

 

Figure 3.11: Impact of Inoculum Dose on proportion of patients with 4-fold or significant 
increase in HAI. Stratified by wild type vs attenuated. 
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Figure 3.12: Impact of Inoculum Dose on proportion of patients with 4-fold or significant 
increase in HAI. Stratified by wild type vs attenuated 
 
 

 

Figure 3.13: Impact of Inoculum Dose on proportion of patients with 4-fold or significant 
increase in HAI. Wild type virus stratified by subtype 
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CHAPTER 4 

VIRULENCE-MEDIATED INFECTIOUSNESS AND ACTIVITY TRADE-OFFS AND 

THEIR IMPACT ON TRANSMISSION POTENTIAL OF PATIENTS INFECTED WITH 

INFLUENZA3 

  

                                                 
3 McKay B, Ebell M, Dale AP, Shen Y, and Handel A. Submitted to Proceedings of the Royal Society B, 08/27/19. 
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4.1 Abstract 

Most communicable diseases have some amount of virulence that induces infectiousness-

enhancing symptoms. However, too much virulence can cause host morbidity and a reduction in 

transmission potential. For human diseases, the reduction in transmission opportunities is 

commonly caused by reduced activity. There is limited data regarding the potential impact of 

virulence on transmission potential. We analyzed data of 326 influenza patients at a university 

health center during the 2016/2017 influenza season. We classified symptoms as infectiousness-

related or morbidity-related and calculated two scores. The scores were used to explore the 

relationship between infectiousness, morbidity, and activity levels. We found a decrease in activity 

levels with increasing morbidity scores. There was no consistent pattern between activity level and 

infectiousness score. We also found a positive correlation between the morbidity and 

infectiousness scores. Our results provide evidence that for influenza, increasing virulence leads 

to increased infectiousness and reduced activity. This trade-off determines the transmission 

potential. Our findings suggest that a reduction of systemic symptoms may increase host activity 

without reducing infectiousness. Therefore interventions should target both systemic and 

infectiousness related symptoms to reduce overall transmission potential. Our findings can also 

inform simulation models to investigate the impact of different interventions on transmission. 

4.2 Introduction 

 Many infectious diseases cause symptoms in at least some of their hosts. Often, those 

symptoms increase the host’s infectiousness and facilitate the transmission of the pathogen 

[12,69,70]. Coughing and sneezing for respiratory infections are prime examples. On the other 

hand, symptoms that are too severe may reduce host activity or in extreme cases cause host death, 

reducing transmission opportunities. The trade-off hypothesis describes the relationship between 
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virulence and transmission potential [71–77] and predicts that an intermediate level of virulence 

leads to maximum fitness (usually quantified by the reproductive number) for the pathogen. At 

such an optimal level of virulence, the pathogen maximizes transmission by inducing symptoms 

that increase a host’s infectiousness, while minimizing transmission-reducing morbidity 

symptoms. The optimal virulence level can depend on both population-level and within-host level 

processes, the implications of which have been theoretically explored previously [71,72,79–89]. 

The most commonly discussed and studied trade-off is between increasing transmission 

potential due to increased host infectiousness and decreasing transmission potential due to host 

mortality [72]. While, this likely applies to many animal diseases and some human diseases (e.g., 

viral hemorrhagic diseases [90]), for most human pathogens mortality is low, and it is more likely 

that increased virulence leads to reduced host activity and thus reduced transmission opportunities. 

Sub-lethal impacts such as weight loss and effects on host fitness have been suggested 

[72,73,91,92], and interactions between symptoms, activity, and transmission potential have been 

recognized [93]. Despite this, there is very little data available for human pathogens. One study on 

Plasmodium falciparum infections in humans showed an increase in transmission potential as 

virulence, quantified by mortality, increased, with no apparent trade-off [94]. A study in HIV 

infected individuals showed a negative relationship between duration of asymptomatic infection 

and viral load and a positive relationship between infectiousness and viral load with optimal 

transmission potential occurring at an intermediate viral load [95]. As far as we are aware, no 

studies for any other human pathogens have examined data to directly determine the relationship 

between virulence and transmission. 

Here, we investigate this relationship for influenza. Influenza induces symptoms in around 

84% of infected individuals [10]. Some of the symptoms, such as coughing and sneezing, likely 
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enhance transmission by increasing infectiousness of a host. A recent study provided estimates for 

the transmission potential of symptomatic versus asymptomatic individuals and found that 

individuals with symptomatic infections are about 3-12 times as infectious as persons with 

asymptomatic infections [11]. Other symptoms, such as fever, body aches, and general malaise are 

more likely to lead to a reduction in transmission by reducing host activity. A previous study on 

influenza in 146 adults and children in the United Kingdom found that healthy individuals had a 

mean of 12.72 contacts per day, while sick individuals only had a 3.58 [12]. The study also showed 

that the number of contacts decreased as the number of symptoms increased. These studies suggest 

that there might be a trade-off between infectiousness and activity for influenza, which together 

determines overall transmission. In this study, we investigate this relationship. 

4.3 Methods 

Data Collection 

Our patient population consisted of students who made an appointment at the university 

health center of a large research university from December 2016 to February 2017. The study 

participants were selected sequentially and included all patients with a primary complaint of 

respiratory infections. All participants were required to fill out an electronic questionnaire. The 

questionnaire collected data about their current symptoms and activity level. A response was 

required for all symptom-related questions when they scheduled their appointments. We included 

all symptoms collected by the questionnaire in this analysis. The complete questionnaire is 

available in the supplementary material. 

For the symptoms of weakness and body aches, the patient graded the severity of the 

symptom as none, mild, moderate, and severe. The patient recorded all other symptom data as 

present or absent. The patient also reported any changes in their normal behavior. Patients describe 
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their activity level as a number between 0 and 10, with 10 indicating no change in regular activity 

and 0 being bedridden. 

The study population includes all patients with a diagnosis of influenza. The data and 

results presented in the main text includes patients diagnosed with a rapid antigen or rapid PCR 

test. To address the impact of the influenza diagnosis method we performed the same analyses for 

all patients diagnosed with influenza regardless of the method used. The results are in the 

supplementary material. 

The institutional review board approved the study protocol. Data on PCR results for 

patients is from a study funded by Roche Diagnostics. 

Data Cleaning 

 We cleaned the data to format the variables and to check for variables with potential errors 

or missing entries. During the cleaning process, we removed uninformative variables which we 

defined as any symptoms found to occur in less than 5% of patients. The symptoms of blurred 

vision and hearing loss both had a prevalence of less than 5%, so they were not considered for 

further analysis. To allow easy comparison of all symptom variables, we dichotomized weakness 

and body aches to "absent" or "present".   

Analysis 

We assessed the univariate relationships between activity and each symptom using linear 

regression treating activity level as a continuous variable. We also performed multiple linear 

regression. We determined the variables to include in our final model with a sequential forward 

floating selection, minimizing the root mean square error (RMSE) on test data through a 5-fold 

cross validation (20 times repeated) [171]. 
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Next, we constructed two cumulative scores, one for overall infectiousness and one for 

overall morbidity. To that end, we divided all symptoms into those related to infectiousness and 

those related to morbidity. We defined morbidity symptoms as symptoms that influence overall 

feelings of well-being but are not associated with infectiousness. Infectiousness symptoms are any 

symptoms that could plausibly contribute to passing the virus from an infected host to another. 

Importantly, the grouping of variables to either one of these categories and inclusion of symptoms 

in the scores was based on a priori medical and biologic considerations, independently of any 

observed correlation with activity level. Doing so prevents any circular reasoning since only 

including symptoms correlated with activity would, of course, generate a score which would match 

the impact on activity level. These scores are similar to systemic and respiratory scores used in 

past studies [9,108]. 

To prevent redundant variables from being included in the score, we calculated Yule’s Q 

between symptoms within each category [172]. Only one of a pair of symptoms was incorporated 

in the score if the correlation coefficient was higher than 0.9 [173]. We also performed a sensitivity 

analysis using 0.75 as the cut off for identifying redundant symptoms. The results of this sensitivity 

analysis is in the supplementary material. 

For highly correlated symptom pairs, we included the one in the score with the best balance 

(closest to 50%) of symptom presence or absence. We summed the symptoms in each category 

based on absence or presence, creating two scores. Correlations between the infectiousness score, 

morbidity score, and activity were assessed using Spearman correlation [174,175] and the 

generalized Mantel–Haenszel procedure [176,177]. Linear regression lines are included in the 

plots to help visualize the relationships. 
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All analyses were completed using R (version 3.5.3). We used the mlr package for cross-

validation [178], vcdExtra to compute Yule’s Q and the CHM trend test [179], DescTools to 

compute Spearman’s rank correlation coefficient and corresponding confidence intervals [180].  

     

4.4 Results 

Study Population 

During the study period, 2326 patients had a respiratory complaint and filled out the 

questionnaire. Among those, 326 had a lab-based diagnosis of influenza (PCR or rapid antigen). 

The following analyses focus on those patients since they are most likely to actually be infected 

with influenza. For analyses of patients who received a flu diagnosis with either the tests or 

empirically from a physician, see the supplemental material. 

Those patients with influenza reported activity levels ranging from 0 to 10 with a median 

of 4 (SM Figure 4.1). All of the patients reported symptoms, with only 14% reporting 10 or fewer 

(out of a total of 25). The most common symptom was coughing and the least common was 

abdominal pain (Table 4.1). 

Univariate and subset selection 

We assessed correlations between activity level and each symptom in a univariate linear 

analysis (Table 4.2). All of the statistically significant symptoms had a negative correlation with 

activity level (Table 4.2). Next, we considered a multi-variable regression model and performed 

variable selection based on cross-validated minimization of RMSE. We found that the best 

performing model was one that included chest congestion, headache, sleeplessness, subjective 

fever, vomiting, and weakness (Table 4.2). While vomiting is not a common symptom of influenza, 

in those patients who did report vomiting it lead to major reductions in their activity. 
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Computation of Infectiousness and morbidity scores 

We divided symptoms into infectiousness-related and morbidity-related and used them to 

construct an infectiousness and morbidity score. To prevent circular reasoning regarding 

associations between those scores and activity, the division and potential inclusion of symptoms 

into each score was done based purely on biological considerations, without regard for any 

associations with activity found in the previous analysis. We classified coughing, chest congestion, 

sneezing, runny nose, and nasal congestion as infectiousness related symptoms. The symptoms of 

subjective fever, having chills and or sweats, body aches, weakness, headache, fatigue, 

sleeplessness, breathlessness, wheezing, chest pain, sore throat, abdominal pain, diarrhea, nausea, 

vomiting, ear pain, tooth pain, eye pain, itchy eyes, and swollen lymph nodes were classified as 

morbidity related symptoms. 

Among the symptoms related to infectiousness only cough and chest congestion correlated 

with each other at a level of greater than 0.9 (SM Figure 4.2). We kept chest congestion since it 

was more balanced then cough, which was present in 94% of patients. Among the morbidity 

symptoms, only vomiting and weakness correlated greater than 0.9 (SM Figure 4.3). Vomiting was 

included in the score since it was more balanced then weakness, which was present in 94% of 

patients. For the results of the sensitivity analysis using 0.75 as the cut off for identifying redundant 

symptoms, see the supplementary material. 

The infectiousness score included all the candidate symptoms except cough, and the 

morbidity score included all the candidate symptoms except weakness. Each symptom present in 

a patient, contributed one point to its respective score. The calculated infectiousness score had a 

possible range of 0 to 4, and the morbidity score had a possible range of 0 to 19. 
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The median infectiousness score was 3. Only 17 patients had an infectiousness score of 0, 

39% had a score of 2 or less, and 29% of patients had the maximum possible score of 4 (Figure 

4.1A). The mean morbidity score was 8.6, and no patients had a morbidity score of 0, 1, 18 or 19 

(Figure 4.1B). The centered distribution was expected since all the patients felt sick enough to seek 

medical care, but none were sick enough to require urgent care or hospitalization. 

Impact of Infectiousness Score on Activity 

Analysis of the association between the infectiousness score and the patient’s self-reported 

activity level suggests that the value of this score has a small impact on the activity level of a 

patient, with higher infectiousness correlating with reduced activity. Spearman’s rank correlation 

indicates negative relationship (r= -0.18 (95% CI: -0.28, -0.07)) and the Cochran-Mantel-Haenszel 

trend test is statistically significant (χ^2= 8.56, df= 1, p < 0.01) (Figure 4.2). Note however that 

the data suggest that the relationship between infectiousness and activity is not linear, but instead 

curved, with lower activity at both the low and high infectiousness score and maximum activity at 

intermediate infectiousness. We cannot think of a biological mechanism that might lead to this 

pattern. The reason the overall trend is negative is likely due to the larger sample sizes for 

infectiousness scores 2-4. Given that the observed negative trend is small and doesn’t show a 

monotone decline, it is most reasonable to assume based on this data that there is no meaningful 

relationship between infectiousness score and activity level. 

Impact on Morbidity Score on Activity 

Analysis of the association between the morbidity score and the patient’s self-reported 

activity level suggests that higher morbidity score is associated with reduced activity levels. 

Spearman’s rank correlation indicates negative relationship (r= -0.33 (95% CI: -0.42, -0.23)) and 

the Cochran-Mantel-Haenszel trend test is statistically significant (χ^2= 39.34, df= 1, p < 0.01) 
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(Figure 4.3). The observed pattern is consistent and clear, with a reduction of 85% in mean activity 

level going from the lowest to the highest morbidity score. 

Impact of Morbidity Score on Infectiousness Score 

Analysis of the relationship between the morbidity and infectiousness scores show a 

positive correlation. Spearman’s rank correlation indicates positive relationship (r= 0.28 (95% CI: 

0.17, 0.37)) and the Cochran-Mantel-Haenszel trend test is statistically significant (χ^2= 24.45, 

df= 1, p < 0.01) (Figure 4.4). Apart from the mean activity levels for very low morbidity score 

values (with very small sample sizes), the pattern is consistent and clear, with an increase of 33% 

in the mean infectiousness score going from the lowest to the highest morbidity score. 

Conceptualizing Our Results 

The hypothesis of virulence-transmission trade-off as explained in the introduction 

assumes that increasing levels of virulence lead initially to an increase in transmission-enhancing 

symptoms, but at some point, virulence leads to transmission-reducing symptoms, with an 

optimum for the pathogen at some intermediate level. One can quantify this by considering overall 

transmission potential, T, to be proportional to the product of per-contact transmission potential, 

p, contact-rate among infected and susceptible, c, and the duration of infectiousness d. All 3 

quantities can potentially be impacted by virulence, v i.e. T∼p(v)×c(v)×d(v). Unfortunately, for 

our study we do not have information on the duration of infectiousness. While it is quite likely that 

virulence can impact the duration of infectiousness, for the following discussion we assume d to 

be constant. In that case we have T∼p(v)×c(v). Overall transmission potential is optimized when 

p×c is maximized. Figure 4.5 illustrates graphically a relation for contact rate, per-contact 

transmission potential and overall transmission potential as a function of virulence. 
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4.5 Discussion 

We believe that this is the first study that investigates a trade-off between contact-rate and 

per contact transmission potential for influenza in humans [72,73,181,182]. We showed that for 

our population, activity decreased as the morbidity score increased, and we found a positive 

association between morbidity and infectiousness symptoms. 

Limitations of the study include not knowing the flu sub-type for those infected. The type 

and sub-type of the virus can affect the epidemiological features of the disease [16]. Based on 

influenza surveillance data for the 2016/17 season only 22.1% was influenza B with 77.9% 

influenza A with the subtype H3N2 making up 97.2% with H1N1 making up the remaining 2.8% 

[183]. Additionally, we only collected data on individuals who were experiencing symptoms 

severe enough to seek care. As a result, we do not have data on individuals with low virulence 

infections. As explained above, such data would allow for a complete exploration across the full 

range of virulence and to determine relationships between transmission, morbidity, and 

infectiousness. Finally, our study population was made up of college students, i.e., generally young 

and healthy individuals. As such their symptoms, infectiousness, and activity behavior 

distributions might not fully apply to a more general population. 

Despite these potential limitations, our study provides valuable information that can be 

useful to inform current and future interventions targeting influenza. For example, our results 

suggest that a treatment that only reduces those symptoms that are part of our morbidity score, 

without affecting symptoms that make up our infectiousness score, could lead to increased 

transmission. While from the perspective of a patient or clinician a reduction in any symptom may 

be viewed as a positive, such an intervention might lead to worse outcomes on the population level. 

Current FDA approval of anti-influenza drugs rely on showing an impact on the symptoms, with 
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a focus on more severe and systemic (i.e., morbidity) symptoms [143,184,185]. From a population 

perspective, it is essential that such drugs also reduce host infectiousness [185–187]. Some 

evidence for this has been found in previous studies[187–190] as well as being explored in 

mathematical models [191,192]. 

Population-level control of infectious diseases makes increasing use of mathematical 

models [193]. The need for these models to be accurate is critical. Researchers have increasingly 

recognized that capturing human behavior changes during an infectious disease outbreak, both for 

uninfected and infected individuals is relevant [194,195]. As far as we are aware, only one previous 

modeling study for influenza has tried to capture the impact of infection on behavior [196]. 

Previous studies have shown that symptoms aid infectiousness and impact the number of contacts 

[11,12]. In our analysis, we found an 85% reduction in mean activity as a result of increased 

morbidity. Using data from our study and past studies [11,12] is a starting point for future models 

that can explore the impacts of infectiousness and contact behavior of infected hosts [93]. 
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4.5 Figures and Tables 

Table 4.1. Symptoms of the 326 patients. The table shows the number of patients who reported 
having the following symptoms and the corresponding percentage. 

Symptom Present n (%) 
Abdominal Pain  39 (12.0) 
Breathlessness  131 (40.2) 
Chest Congestion  197 (60.4) 
Chest Pain  110 (33.7) 
Chills/Sweats  287 (88.0) 
Cough  308 (94.5) 
Diarrhea  40 (12.3) 
Ear Pain  59 (18.1) 
Eye Pain  47 (14.4) 
Fatigue  304 (93.3) 
Headache  272 (83.4) 
Itchy Eyes  73 (22.4) 
Myalgia  290 (89.0) 
Nasal Congestion  257 (78.8) 
Nausea  119 (36.5) 
Runny Nose  235 (72.1) 
Sleeplessness  183 (56.1) 
Sneeze  179 (54.9) 
Sore Throat  268 (82.2) 
Subjective Fever  242 (74.2) 
Swollen Lymph Nodes  131 (40.2) 
Tooth Pain  60 (18.4) 
Vomiting  44 (13.5) 
Weakness  307 (94.2) 
Wheezing  106 (32.5) 
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Table 4.2. Results of the univariate and multivariate linear regression of symptoms and activity. 
The coefficients are the estimated effect on activity when the symptom is present. The 
multivariate model was selected with a sequential forward floating selection, minimizing the 
RMSE on test data through a 5-fold cross validation (20 times repeated). 95%CI = The 95% 
confidence interval for the coefficient. 

Symptom 
Univariate analysis Multivariate analysis model 

Coefficient (95%CI, P value) Coefficient (95%CI, P value) 
Abdominal Pain -1.02 (-1.91 to -0.14, p=0.023)  
Breathlessness -0.22 (-0.81 to 0.37, p=0.466)  
Chest Congestion -0.72 (-1.31 to -0.14, p=0.016) -0.54 (-1.08 to 0.01, p=0.052) 
Chest Pain -0.43 (-1.05 to 0.18, p=0.162)  
Chills/Sweats -1.66 (-2.53 to -0.78, p<0.001)  
Cough 0.10 (-1.17 to 1.37, p=0.877)  
Diarrhea -0.72 (-1.60 to 0.15, p=0.106)  
Ear Pain -0.69 (-1.44 to 0.06, p=0.070)  
Eye Pain 0.17 (-0.66 to 0.99, p=0.689)  
Fatigue -1.67 (-2.81 to -0.53, p=0.004)  
Headache -1.57 (-2.33 to -0.81, p<0.001) -1.15 (-1.89 to -0.42, p=0.002) 
Sleeplessness -1.17 (-1.74 to -0.60, p<0.001) -0.93 (-1.47 to -0.40, p=0.001) 
Itchy Eyes -0.74 (-1.43 to -0.05, p=0.035)  
Myalgia -1.24 (-2.15 to -0.32, p=0.008)  
Nasal Congestion -0.24 (-0.95 to 0.47, p=0.507)  
Nausea -1.06 (-1.65 to -0.47, p<0.001)  
Sore Throat -0.37 (-1.13 to 0.38, p=0.330)  
Runny Nose -0.55 (-1.20 to 0.09, p=0.091)  
Sneeze -0.71 (-1.29 to -0.14, p=0.015)  
Subjective Fever -1.32 (-1.96 to -0.67, p<0.001) -0.93 (-1.56 to -0.30, p=0.004) 
Swollen Lymph 
Nodes 

-0.54 (-1.13 to 0.05, p=0.073)  

Tooth Pain -0.28 (-1.03 to 0.47, p=0.463)  
Vomiting -1.67 (-2.49 to -0.84, p<0.001) -1.46 (-2.24 to -0.68, p<0.001) 
Weakness -2.46 (-3.67 to -1.26, p<0.001) -1.40 (-2.57 to -0.23, p=0.019) 
Wheezing -0.54 (-1.16 to 0.08, p=0.085)  
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Figure 4.1: (A) The distribution of infectiousness score with counts for each level. (B) The 
distribution of the morbidity score with counts for each level. There are no patients with a score 
of 0, 1, 18, and 19. 
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Figure 4.2: Activity level for each level of the infectiousness score. Red diamonds indicate the 
mean. The solid blue line is the linear regression fit. The shaded area is the 95% confidence 
interval for the linear regression. 

 

Figure 4.3: Activity level for each level of the morbidity score. Red diamonds indicate the mean. 
The solid blue line is the linear regression fit. The shaded area is the 95% confidence interval for 
the linear regression. 
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Figure 4.4: Infectiousness score for each level of the morbidity score. Red diamonds indicate the 
mean. The solid blue line is the linear regression fit. The shaded area is the 95% confidence 
interval for the linear regression. 

 
Figure 4.5: This figure illustrates conceptually the hypothetical impact of virulence on total 
transmission potential (T) resulting from a trade-off between per-contact transmission potential 
(p) and contact-rate (c). The lines are for illustrative purposes only and not fitted to the data. We 
are using morbidity as a proxy for virulence. We placed our data in the middle of the full 
virulence scale since we did not capture anyone not sick enough to seek care nor did we capture 
anyone who was so ill they were hospitalized or died. The values for infectiousness and activity 
are re-scaled to allow better visualization. The actual mapping between our measured quantities 
and the theoretical contact rate and per-contact infectiousness are not known, but based on past 
research it is feasible to expect that a proportional relationship exists. 
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CHAPTER 5 

ASSOCIATIONS BETWEEN RELATIVE VIRAL LOAD AT DIAGNOSIS AND 

INFLUENZA A INFECTION SEVERITY AND RECOVERY4 

  

                                                 
4 McKay B, Ebell M, Billings WZ, Dale AP, Shen Y, and Handel A. To be submitted to Journal of Clinical Virology 
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5.1 Abstract 

 Introduction: Rapid point of care PCR diagnostic tests are more accurate than current 

antigen-based tests. Currently, these tests provide a qualitative result of positive or negative, but 

additional information about the relative viral load could be calculated. Such quantitative 

information might be useful for making treatment decisions. We perform an analysis to evaluate 

the viral load from a rapid PCR test at diagnosis in non-hospitalized patients to predict symptom 

resolution and disease impact. 

 Methods: We sequentially enrolled 300 students at a university health center who presented 

with cough and one additional flu-like symptom from December 2016 to February 2017. Data 

were collected before, during, and five days after the clinic visit. All those enrolled in the study 

received a point of care PCR test (cobas Liat) to determine the presence or absence of influenza 

(A or B). The relative viral load was calculated for patients with a positive test for influenza A. 

We then assessed the relationship between the relative viral load and patient-reported activity, 

symptom scores, fever, duration of fever, improvement in cough, days of work or class missed, 

and duration of symptoms. 

 Results: Of the 289 students with a valid test, 136 were positive for influenza A. We found 

a positive correlation between viral load and body temperature at the clinic visit. The duration of 

symptoms appeared to have a negative correlation but was not statistically significant likely due 

to a potential lack of power. We did not find any correlation between viral load and patient-

reported activity, symptom scores, duration of fever, improvement in cough, or days of work or 

class missed. 



 

73 

 Discussion: While we found a correlation between relative viral load and body 

temperature, overall, for our study population of young, overall healthy adults, we did not find that 

viral load provided additional information that could help in determining treatment and disease 

outcome. It is important to note that this may not generalize to other populations. It could be that 

viral load contains important independent information for specific groups of patients, like young 

children or older adults. Further studies on those populations are warranted. 

5.2 Introduction 

 Diagnostic polymerase chain reaction (PCR) tests are a sensitive and specific method for 

determining the presence of many pathogens. Until recently, PCR methods were expensive, time-

consuming, and required specialized equipment and staff. As a result, the application of PCR tests 

for diagnostic purposes is limited. There are two Clinical Laboratory Improvement Amendments 

(CLIA)-waived point-of-care (POC) PCR systems, Xpert Xpress by Cepheid, and cobas Liat by 

Roche [96,97], available to physicians. These systems can provide highly accurate results in 20-

30 minutes without the need for a laboratory or highly trained staff. As the price decreases and the 

number of pathogens that can be detected increases, these systems will likely have a positive 

impact on the care of patients. 

Currently, the cobas Liat system is only used to produce a qualitative result based on the 

internal threshold of optical brightness. The system provides the result as either positive (present) 

or negative (absent) for the pathogen. While these systems are not currently used to estimate the 

viral load in the sample, it is possible to estimate the viral load using the number of cycles required 

to generate a positive test, with more cycles associated with a lower viral load [98–100]. This 

quantitative measurement could potentially give a physician additional information that could help 

determine the appropriate treatment and advice regarding prognosis for patients. For both influenza 
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and other pathogens, the pathogen load correlates with factors such as disease severity, treatment 

success, and risk of transmission [9,101–108]. 

Previous studies have looked at the relationship of a single measure of viral load at 

diagnosis and the characteristics of the disease and patients with seasonal influenza [99,109–113]. 

The results of these studies have been mixed with some reporting associations [109–111,113,114], 

and others reporting no associations with clinical characteristics of disease [99,112]. The time 

since onset of disease and the viral load has been explored in 5 studies [99,109–111,113], and all 

but one found a relationship [113]. Only one study has looked at disease outcomes of hospitalized 

patients with influenza [113]. Analyses from other seasonal influenza infection studies based on 

repeated measurement of viral load show a reduction of viral load correlates with a decrease in 

symptoms as well as other clinical outcomes [114–119]. All of the previous studies relied on 

standard quantitative PCR methods that require significant resources to implement. 

We set out to study outpatient based PCR results from the cobas Liat POC test to determine 

if viral load measurement provided useful additional information about a patient’s disease 

progression or recovery. Our study is unique in that our study population was from a primary care 

setting, use of a POC PCR test, and the inclusion of outcomes for disease resolution five days after 

the patients visit. The goal of our analysis was to describe the relative viral load at diagnosis based 

on POC PCR and its potential relevance to physicians. 

5.3 Methods 

Data Collection 

 The study used a prospective, non-randomized, sequential-patient design. Participants were 

recruited from patients who scheduled a clinical appointment due to an upper respiratory complaint 

at the student health center at the University of Georgia during the 2016-17 flu season from 
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December 2016 to February 2017. Patients eligible for the study had an upper-respiratory chief 

complaint before their clinic visit, exhibited cough and one other symptom of influenza-like 

illness, and were seen at the clinic within a week of symptom onset. If all criteria were met and 

patients gave informed consent, they were enrolled in the study at the start of their clinic visit. The 

enrolled patients received a POC PCR (Roche cobas Liat) diagnostic test for influenza. Study 

inclusion and exclusion criteria have been previously published [197]. All eligible patients were 

enrolled in the study sequentially until 300 study participants were enrolled. The study population 

for our analysis consists of the 136 patients from the study who had a positive PCR test for 

influenza A. 

We obtained data from patients at the time they scheduled an appointment, during their 

visit, and five days after their visit. Patients with an upper respiratory chief complaint who tried to 

make an appointment with the health center were required to fill out a survey before a clinic visit. 

Responses were required for all the survey questions, and once submitted, the answers were 

captured in the patient’s electronic health record. During the clinical visit, a healthcare provider 

recorded signs and symptoms, lab results, diagnosis, and prescribed treatments in the patient’s 

electronic health record (EHR). Finally, five days after the clinic visit, each patient was sent a link 

to a follow-up survey (the link closed 24 hours after the email was sent). All PCR results were 

joined to the EHR and follow-up survey data using an anonymized identifier, which was unique 

to every clinical visit. Copies of the redacted data collection forms are available in the 

supplementary material (SM). 

Data Cleaning 

Of the 300 patients enrolled, 289 had valid PCR test results. For this analysis, only data 

from the 136 participants with a positive PCR result for influenza A are included. One patient's 
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test was run twice for confirmation, and since both results were identical, we removed one. All of 

the variables recorded by the previsit survey were considered for inclusion. For the data collected 

during the clinical visit, only variables regarding symptoms and disease characteristics are 

included. Symptoms of rash and tooth pain were never recorded as being present and were 

removed. We only included the three variables from the follow-up survey that each deal with 

symptom resolution or disease impact. In total, we included 49 variables that measure disease 

characteristics and patient outcomes. 

PCR Data Checking and Processing 

We completed univariate analyses of all included variables. The results between the two 

PCR machines used and the two lots of sample tubes were compared to ensure no artifacts were 

introduced into the data. The cycle threshold (CT) is the number of amplification cycles the 

machine ran before a sample was judged to be positive can be used to estimate the viral load from 

the sample [98,100]. The CT values are inversely proportional to the amount of RNA target present 

in the sample. The Roche cobas Liat machine performs a set number of amplification cycles; 

therefore, each patient’s relative viral load was calculated using the equation 2(𝑥𝑥−𝑐𝑐𝑐𝑐) (x was 

provided by Roche). All comparisons were made against the base-10 logarithm of the relative viral 

load (RVL), as it spans multiple orders of magnitude. 

Constructing Symptom Scores 

As a measure of disease severity, we constructed a total symptom score [108]. Two 

versions of the total symptom score were created. One of the scores used the patient-reported data 

from the pre-visit questionnaire. The second score used the symptoms noted by the physicians 

during the visit. A single point is added for each symptom that was recorded as present. For the 

patient based score 27 symptoms were considered, and for the physician based score 29 symptoms 
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were considered resulting in maximum scores of 27 and 29, respectively. Physicians were required 

to provide an answer for some but not all symptoms. As a result, we classified symptoms as 

reported or not reported. We calculated the two total symptom scores, one based on the number of 

symptoms reported by the patient and the other based on the symptoms reported by the physician 

for each patient. 

To account for the potential of strong correlations between symptoms and the ‘double 

counting’, we also performed a sensitivity analysis for which we computed the total symptom 

scores in a somewhat more complicated manner. Details are provided in the SM. 

Statistical Analysis 

To determine the relationship between numeric variables and the relative viral load, we 

used simple linear regression to look for trends. Difference between the relative viral load of 

different categorical variables was assessed with ANOVA. For dichotomous variables, the 

difference in mean viral load was assessed with a t-test. All analyses were completed in R version 

3.6.0.  

5.4 Results 

Study Population 

All participants enrolled in the study were college students, age 18 to 25 years, at a major 

public university. Data were collected at three different times. First patients completed a previsit 

electronic survey, then data from the visit was recorded in the electronic health record, and finally, 

a post-visit survey was sent five days after the visit. For our analysis, only patients with a positive 

test result for influenza A were included, resulting in 136 observations. Out of the 136 records we 

included in our analysis, 123 had complete data for the pre-visit survey. Thirteen patients enrolled 

in the study did not fill out the previsit survey when they made their appointment. The enrollment 
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of these 13 patients likely the result of including patients with two influenza-like symptoms instead 

of cough plus one additional influenza-like symptom. Second patients may have reported cough 

verbally to the enrollment staff but not to the physicians. Data recorded during the visit was 

available for all 136 patients. Finally, 115 out of the 136 completed the post-visit survey. Among 

the positive patients, the survey had a response rate of 84.6%. Complete tables for each point of 

data collection are provided in the SM (SM Table 5.1-5.3). 

Correlation of Viral Load with Activity Level 

There is no relationship between the relative viral load at diagnosis and the patient’s level 

of activity reported on the pre-visit survey (reported between 1-24 hours before the visit) (Figure 

5.1). The linear model between the relative viral load at diagnosis and activity level did not indicate 

any statistically significant trends (β= 0.01 (95% CI: -0.07, 0.09), p= 0.88). 

Correlation of Viral Load with Total Symptom Scores 

We use the total symptom scores we constructed as a measure of overall disease severity. 

Since the symptoms, the doctor asks a patient about is not always exhaustive, we use patient-

reported symptom data from the pre-visit as well as doctor reported symptoms from the visit data 

to create two scores. 

Total Symptom Scores 

We created the total symptom scores as a measure of disease severity. One is based on the 

symptoms reported by the physician at the time, the diagnostic test was given, and the other based 

on the patients’ self-reported symptoms (1-24 hours) before the diagnostic test was given. 

The patients reported scores are on average higher than those reported by the physician 

with means of 13.45 points and 11.54 points, respectively. Based on visual inspection, there was 

no apparent relationship between RVL and either of the scores (Figure 5.2). 
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The linear regression for the physician score did not show any significant trends (β= 0.03 

(95% CI: -0.03, 0.09), p= 0.36). Similarly, there was no apparent relationship between the patient 

reported symptom score and RVL (β= 0.01 (95% CI: -0.05, 0.07), p= 0.78). 

The sensitivity analysis of the symptom scores which did not include correlated symptoms 

showed the same results. Detailed results are shown in the SM. 

Correlation of Viral Load with Fever 

A previous study showed a relationship between viral load and subjective fever [111]. No 

subsequent studies have included subjective fever, so we included it see if a relationship would be 

present in our data. Similarly, a previous study investigated the relationship between RVL and 

actual body temperature dichotomized as fever or no fever [117]. So, we looked if there was a 

trend present using body temperature as a continuous value. 

There is a positive relationship between the patient temperature taken during the clinic visit 

and the log10 relative viral load (Figure 5.3). The linear model indicated a statistically significant 

trend (β= 0.25 (95% CI: 0.10, 0.40), p= 0.001). In the pre-visit survey, patients also reported 

subjective fever. Mean relative viral load in those with or without subjective fever are 5.18 and 

5.55 (log10 RVL), respectively, and the difference is not statistically significant (t= 1.6, df= 54.52, 

p= 0.12). 

Correlation of Viral Load with Symptom Resolution and Disease Impact 

Arguably the most useful information would be if the relative viral load as obtained from 

the PCR test at the visit was predictive of disease progression and outcomes and could provide the 

physician with additional useful prognostic information. To investigate this, we explored if the 

relative viral load was predictive of disease impact as well as symptom resolution, using the data 

from the post-visit survey. 
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There was no clear relationship between the days of work or class missed by a patient and 

their relative viral load (Figure 5.4A). The linear regression did not indicate a statistically 

significant trend (β= -0.17 (95% CI: -0.93, 0.59), p= 0.40). 

There was no relationship between patient reported cough recovery and relative viral load 

at diagnosis (Figure 5.4B). The ANOVA did not have a significant F-test result (F= 0.4976, p= 

0.61). 

Finally, there was no relationship between a patient’s relative viral load and the number of 

days the patient reported a subjective fever on the follow-up questionnaire. (Figure 5.4C). The 

linear regression did not indicate a statistically significant trend (β= 0.01 (95% CI: -0.15, 0.18), 

p= 0.87). 

Correlation of Viral Load and Duration of Symptoms 

Previous studies have shown a reduction in average viral load as days since symptom onset 

increases. We see a similar pattern in our data based on visual inspection (Figure 5.5). The linear 

model did not indicate a statistically significant negative trend (β= -0.15 (95% CI: -0.30, 0.01), p= 

0.07). The lack of statistical significance is possibly due to a lack of power. 

5.5 Discussion 

In both seasonal and experimental infection studies, relationships between viral load and 

disease caused by influenza have been identified, but the utility of viral load at diagnosis is less 

clear. Our study is the first we are aware of to use the internal data of a CLIA-waived, POC PCR 

assay to assess the relative viral load in patients seeking care in a primary care setting. By using a 

POC PCR assay, it was possible to conduct our study and provide results in a clinically relevant 

time frame in a primary care facility, for otherwise healthy individuals. Our study is also notable 
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for the investigation of novel outcomes related to symptom resolution, impact on the days of 

missed work or class, and patient activity. 

Among the new outcomes we investigated, none had a statistically significant correlation 

with the relative viral load at diagnosis. We found a positive correlation between the relative viral 

load and body temperature, which has been shown previously for body temperature dichotomized 

as febrile and afebrile [117]. For subjective fever, we did not see a statistically significant 

difference in viral load, which had been found in a previous study [111]. The negative relationship 

between how long a patient has had symptoms and viral load has been shown previously [115–

117], while there does seem to be a trend in the figure we did not find a statistically significant 

negative trend. We also saw that there was not a relationship between relative viral load and the 

patients’ total symptom score regardless if the symptoms were reported by the patient or physician. 

The relationship between symptom scores and viral load has been demonstrated in both 

experimental and natural infection studies [9,118]. 

There are limitations to our current study. The study population only included students who 

are in general healthier than other individuals the same age. While the study was conducted in a 

primary care setting, only students enrolled in the university could use the facilities, which could 

introduce a healthy work type bias. We also do not know the sub-type of the viruses. Our 

estimation of relative viral load is based on the assumption that everyone was infected with the 

same sub-type. The sub-type likely has an impact on the cycle time, but we do not have the 

information required to make these adjustments. Based on national and state surveillance, we can 

be reasonably confident that the majority of our patients were infected with the same sub-type. 

During the 2016/17 influenza season, CDC surveillance found that 97.2% of the samples sub-

typed were H3N2 [183]. In the state of Georgia, surveillance up to week 8 of the flu season showed 
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that among all the samples positive for influenza A 97.8% were H3N2 [198]. Another limitation, 

we were not able to make any assessment of the sample quality, which can impact the number of 

cycles required to reach a positive threshold [99]. Samples of inferior quality may result in an 

artificially reduced estimate of viral load. The final limitation of our analysis is that the data was 

not collected with the primary goal of performing an analysis of the viral load. As such, the post-

visit questions were not as detailed and focused as they could have been if the data was collected 

primarily for the analysis of clinical outcomes. The results of the primary analysis are published 

[197]. 

Regardless of the utility of viral load at diagnosis, POC PCR testing is vastly superior to 

the current rapid antigen tests for accurately diagnosing influenza. These tests are currently more 

expensive, but the cost is likely to decline in the future. The high sensitivity and specificity of the 

tests qualitative results provided to the clinical staff can help improve physicians’ confidence in 

their diagnosis and hopefully increase the chance of proper treatment [197,199]. Based on our 

analysis, it seems that providing quantitative data in the form of the viral load from these tests 

might not provide useful additional information for the physician. However, it is important to note 

that our findings may not generalize to other populations. It could be possible that viral load 

contains important independent information for specific groups of patients like young children or 

older adults. Further studies on those populations are warranted. 
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5.6 Figures and Tables 

 

Figure 5.1: Distribution of log10 relative viral load for varying patient-reported activity levels 
within 24 hours of the test. 

 

Figure 5.2: A: Relationship between the log10 relative viral load at diagnosis of the patients and 
the calculated total symptom scores, using symptoms reported by the patient. B: Relationship 
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between the log10 relative viral load at diagnosis of the patients and the calculated total 
symptom scores, using symptoms reported by the physician. 
 

 

Figure 5.3: Relationship between log10 relative viral load and patient temperature at the clinic 
visit. 

 

Figure 5.4: A: Relationship between log10 relative viral load and days of work or class missed. 
B: Relationship between log10 relative viral load and reported recovery from cough five days 
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after the clinic visit. C: Relationship between log10 relative viral load and reported days fever 
was present five days after the clinic visit. 

 

Figure 5.5: Duration of symptoms the patient reported during the visit. 
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CHAPTER 6 

DISSERTATION CONCLUSIONS 

This chapter summarizes the conclusions of the research topics covered in the dissertation. 

No additional results are presented below which have not been covered in the preceding chapters. 

This is a required summary of the results of the analysis presented in this dissertation.  

Chapter 2 

A clinic prediction rule did not exist for predicting influenza complications in the outpatient 

setting. We used data from 4103 patients with influenza-like illness (ILI) enrolled in 11 clinical 

trials from 1997-2001 to develop prognostic scores for three composite complication outcomes: 1) 

serious complications (hospitalization, pneumonia, or sepsis) 2) complications that can be treated 

with antibiotics and 3) complications that required additional treatment.  

The scores we developed were based on the multivariate models for patients with ILI and 

for the subset that were PCR positive for influenza. We also developed fast and frugal trees since 

they generally the simplest to implement in a clinical setting.  

The simple score based clinical prediction rule (CPR), we developed was able to create low, 

moderate, and high risk groups for both the FLU and ILI populations. The score for serious 

complications was able to place 19% of FLU and 33.9% of ILI patients in low risk groups who 

could be reassured of their low risk of complications. The scores showed consistent performance 

with likelihood ratios of less than 1 for the low-risk group and more than 1 in the high risk groups. 

The decision trees developed performed well in both populations for hospitalization, pneumonia, 

and sepsis capturing 66% of patients with a complication with 32% of the ILI and 28% FLU 
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patients classified as high risk. We have developed and tested the internal validity of 6 clinical 

prediction scores that successfully classifies patients as being at low, moderate, and high risk for 

three complications, as well as fast and frugal decision trees.  

Further work is need to determine the clinical impact of the scores and decision trees 

through prospective validation. 

Chapter 3 

  We performed a systematic review of the literature to identify published challenge studies 

and collect data that would help increase our understanding of the relationship between inoculum 

dose, viral dynamics, and infection outcomes in humans infected with influenza is critical to 

creating effective control measures and identifying important clinical aspects of the disease.  

We identified 149 influenza challenge studies conducted in 7821 individual volunteers 

published between 1943 and 2016. We fit both parametric and non-parametric models to the data. 

To find our best fit parameters we used nonlinear optimization to and cross validation was used to 

identify the best tuning values for our non-parametric models. 

We found that dose response was similar to past studies in regards to probability of 

infection. Surprisingly we did find a number of decreasing trends for both mean viral peak and 

proportion of individuals with systemic symptoms when using non-parametric methods. For 

immune response there was a clear increasing trend for the proportion of individuals with a 

significant increase in HAI titers but when looking as the ratio of before and after there did not 

seem to be any relationship with the dose. 

Parametric dose response models are biologically based and their use for modeling the 

probability of infection is justified, but for some outcomes a function that assumes an increasing 
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relationship may be misleading. The inoculum dose does play a role in infection outcomes and a 

greater understanding of the effects will lead to the creation of more effective controls. 

Chapter 4 

Most communicable diseases have some amount of virulence that induces infectiousness-

enhancing symptoms. However, too much virulence can cause host morbidity and a reduction in 

transmission potential. For human diseases, the reduction in transmission opportunities is 

commonly caused by reduced activity. There is limited data regarding the potential impact of 

virulence on transmission potential. We analyzed data of 326 influenza patients at a university 

health center during the 2016/2017 influenza season. We classified symptoms as infectiousness-

related or morbidity-related and calculated two scores. The scores were used to explore the 

relationship between infectiousness, morbidity, and activity levels.  

We found a decrease in activity levels with increasing morbidity scores. There was no 

consistent pattern between activity level and infectiousness score. We also found a positive 

correlation between the morbidity and infectiousness scores. Our results provide evidence that for 

influenza, increasing virulence leads to increased infectiousness and reduced activity. This trade-

off determines the transmission potential. Our findings suggest that a reduction of systemic 

symptoms may increase host activity without reducing infectiousness. Therefore interventions 

should target both systemic and infectiousness related symptoms to reduce overall transmission 

potential. Our findings can also inform simulation models to investigate the impact of different 

interventions on transmission. 

Chapter 5 

 There has been as significant increase in the availability of rapid point of care PCR 

diagnostic tests are more accurate than current antigen-based tests. Currently, these tests provide 



 

89 

a qualitative result of positive or negative. We wanted to investigate if any additional information 

about the relative viral load could be calculated.  Since in the case of other disease quantitative 

information about the viral load is used in making treatment decisions and understanding disease 

severity. We perform an analysis to evaluate the viral load from a rapid PCR test at diagnosis in 

non-hospitalized patients to predict symptom resolution and disease impact. 

 We sequentially enrolled 300 students at a university health center who presented with 

cough and one additional flu-like symptom from December 2016 to February 2017. Data were 

collected before, during, and five days after the clinic visit. All those enrolled in the study received 

a point of care PCR test (cobas Liat) to determine the presence or absence of influenza (A or B). 

We calculated the relative viral load was calculated for patients with a positive test for influenza 

A using information provided by Roche diagnostics. We then assessed the relationship between 

the relative viral load and patient-reported activity, symptom scores, fever, duration of fever, 

improvement in cough, days of work or class missed, and duration of symptoms. 

 Of the 289 students with a valid test, 136 were positive for influenza A. We found a positive 

correlation between viral load and body temperature at the clinic visit. The duration of symptoms 

appeared to have a negative correlation but was not statistically significant likely due to a potential 

lack of power. We did not find any correlation between viral load and patient-reported activity, 

symptom scores, duration of fever, improvement in cough, or days of work or class missed. 

 While we found a correlation between relative viral load and body temperature, overall, 

for our study population of young, overall healthy adults, we did not find that viral load provided 

additional information that could help in determining treatment and disease outcome. It is 

important to note that this may not generalize to other populations. It could be that viral load 
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contains important independent information for specific groups of patients, like young children or 

older adults. Further studies on those populations are warranted. 
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CHAPTER 2 SUPPLEMENTAL MATERIAL 

 

CLINICAL PREDICTION RULE FOR COMPLICATIONS AMONG PATIENTS WITH 

INFLUENZA LIKE ILLNESS AND INFLUENZA POSITIVE PATIENTS 
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SM Table 2.1 Description of study population and predictor variables. 

Variable 

FLU (PCR confirmed infection) ILI (Influenza like illness) 
Test Data 
N=718 

Train Data 
N=1676 

Test Data 
N=1105 

Train Data 
N=2579 

Age (mean (sd)) 45.02 (18.71) 45.33 (18.66) 45.59 (18.96) 45.62 (18.68) 
Sex 
Female 380 (52.9) 787 (47.0) 603 (54.6) 1403 (54.4) 
Male 338 (47.1) 889 (53.0) 502 (45.4) 1176 (45.6) 
Tamiflu Treatment 
Placebo 316 (44.0) 759 (45.3) 486 (44.0) 1144 (44.4) 
75 mg  402 (56.0) 917 (54.7) 619 (56.0) 1435 (55.6) 
Outcome: Hospitalization, Sepsis, or Pneumonia (C-S) 
Yes 18 (2.5) 31 (1.8) 30 (2.7) 61 (2.4) 
No 700 (97.5) 1645 (98.2) 1075 (97.3) 2518 (97.6) 
Outcome: Complications requiring an antibiotic (C-AB) 
Yes 42 (5.8) 80 (4.8) 77 (7.0) 132 (5.1) 
No 676 (94.2) 1596 (95.2) 1028 (93.0) 2447 (94.9) 
Outcome: Complications requiring follow up treatment (C-FT) 
Yes 122 (17.0) 265 (15.8) 183 (16.6) 405 (15.7) 
No 569 (83.0) 1411 (84.2) 922 (83.4) 2174 (84.3) 
Nasal Symptoms (0 or 1 = Moderate, 2 or 3=Severe) 
Moderate 316 (44.0) 754 (45.0) 506 (45.8) 1173 (45.5) 
Severe 402 (56.0) 922 (55.0) 599 (54.2) 1406 (54.5) 
Nasal Symptoms (0 = Absent, 1, 2 or 3=Present) 
Absent 85 (11.8) 223 (13.3) 147 (13.3) 346 (13.4) 
Present 633 (88.2) 1453 (86.7) 958 (86.7) 2233 (86.6) 
Sore Throat (0 or 1 = Moderate, 2 or 3=Severe) 
Moderate 366 (51.0) 815 (48.6) 516 (46.7) 1232 (47.8) 
Severe 352 (49.0) 861 (51.4) 589 (53.3) 1347 (52.2) 
Sore Throat (0 = Absent, 1, 2 or 3=Present) 
Absent 133 (18.5) 316 (18.9) 195 (17.6) 475 (18.4) 
Present 585 (81.5) 1360 (81.1) 910 (82.4) 2104 (81.6) 
Cough (0 or 1 = Moderate, 2 or 3=Severe) 
Moderate 120 (16.7) 305 (18.2) 293 (26.5) 665 (25.8) 
Severe 598 (83.3) 1371 (81.8) 812 (73.5) 1914 (74.2) 
Cough (0 = Absent, 1, 2 or 3=Present) 
Absent 30 (4.2) 56 (3.3) 84 (7.6) 204 (7.9) 
Present 688 (95.8) 1620 (96.7) 1021 (92.4) 2375 (92.1) 
Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 
Moderate 124 (17.3) 275 (16.4) 179 (16.2) 465 (18.0) 
Severe 594 (82.7) 1401 (83.6) 926 (83.8) 2114 (82.0) 
Myalgia (0 = Absent, 1, 2 or 3=Present) 
Absent 40 (5.6) 87 (5.2) 54 (4.9) 138 (5.4) 
Present 678 (94.4) 1589 (94.8) 1051 (95.1) 2441 (94.6) 
Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 
Moderate 70 (9.7) 164 (9.8) 115 (10.4) 255 (9.9) 
Severe 648 (90.3) 1512 (90.2) 990 (89.6) 2324 (90.1) 
Fatigue (0 = Absent, 1, 2 or 3=Present) 
Absent 17 (2.4) 22 (1.3) 19 (1.7) 43 (1.7) 
Present 701 (97.6) 1654 (98.7) 1086 (98.3) 2536 (98.3) 
Headache (0 or 1 = Moderate, 2 or 3=Severe) 
Moderate 205 (28.6) 503 (30.0) 322 (29.1) 802 (31.1) 
Severe 513 (71.4) 1173 (70.0) 783 (70.9) 1777 (68.9) 
Headache (0 = Absent, 1, 2 or 3=Present) 
Absent 68 (9.5) 181 (10.8) 127 (11.5) 273 (10.6) 
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Present 650 (90.5) 1495 (89.2) 978 (88.5) 2306 (89.4) 
Chills/Sweats (0 or 1 = Moderate, 2 or 3=Severe) 
Moderate 100 (13.9) 298 (17.8) 208 (18.8) 491 (19.0) 
Severe 618 (86.1) 1378 (82.2) 897 (81.2) 2088 (81.0) 
Chills/Sweats (0 = Absent, 1, 2 or 3=Present) 
Absent 23 (3.2) 60 (3.6) 42 (3.8) 122 (4.7) 
Present 695 (96.8) 1616 (96.4) 1063 (96.2) 2457 (95.3) 
Mean Body Temperature (SD) 101.00 (1.01) 100.99 (0.97) 100.86 (1.01) 100.85 (0.98) 
Physician Reported Signs: Ears  
Normal 648 (90.3) 1515 (90.4) 1004 (90.9) 2336 (90.6) 
Abnormal 70 (9.7) 161 (9.6) 101 (9.1) 243 (9.4) 
Physician Reported Signs: Nose  
Normal 455 (63.4) 1084 (64.7) 714 (64.6) 1613 (62.5) 
Abnormal 263 (36.6) 592 (35.3) 391 (35.4) 966 (37.5) 
Physician Reported Signs: Throat  
Normal 341 (47.5) 831 (49.6) 540 (48.9) 1237 (48.0) 
Abnormal 377 (52.5) 845 (50.4) 565 (51.1) 1342 (52.0) 
Physician Reported Signs:  Lymph node  
Normal 636 (88.6) 1468 (87.6) 960 (86.9) 2270 (88.0) 
Abnormal 82 (11.4) 208 (12.4) 145 (13.1) 309 (12.0) 
Medical History Question: Asthma  
No 665 (92.6) 1549 (92.4) 1016 (91.9) 2387 (92.6) 
Yes 53 (7.4) 127 (7.6) 89 (8.1) 192 (7.4) 
Medical History Question: COPD 
No 445 (62.0) 1043 (62.2) 634 (57.4) 1517 (58.8) 
Yes 273 (38.0) 633 (37.8) 471 (42.6) 1062 (41.2) 
 Medical History Question: Any Allergies or Atopies   
No 647 (90.1) 1499 (89.4) 999 (90.4) 2316 (89.8) 
Yes 71 (9.9) 177 (10.6) 106 (9.6) 263 (10.2) 
Medical History Question: Taking Medication for Asthma or COPD  
No 643 (89.6) 1509 (90.0) 989 (89.5) 2305 (89.4) 
Yes 75 (10.4) 167 (10.0) 116 (10.5) 274 (10.6) 
Medical History Question: Taking Medication for Diabetes  
No 701 (97.6) 1624 (96.9) 1068 (96.7) 2486 (96.4) 
Yes 17 (2.4) 52 (3.1) 37 (3.3) 93 (3.6) 
Medical History Question: Any Current Prescriptions 
No 503 (70.1) 1173 (70.0) 764 (69.1) 1762 (68.3) 
Yes 215 (29.9) 503 (30.0) 341 (30.9) 817 (31.7) 

 

SM Table 2.2 FLU Population outcomes and predictors stratified by study 

Study ID M76001 WV15670 WV15671 WV15707 WV15730 WV15812 WV15819 WV15872 WV15876 WV15978 WV16277 

Study size 894 318 241 12 38 193 116 50 44 300 188 

Age (mean (sd)) 37.82 
(13.46) 

38.37 
(11.78) 

32.51 
(10.64) 

70.67 
(5.07) 

34.47 
(10.40) 

52.91 
(15.72) 

73.29 
(6.31) 

47.20 
(19.25) 

73.48 
(6.06) 

71.97 
(5.91) 

34.04 
(11.19) 

Sex 

Female 477 
(53.4) 158 (49.7) 122 (50.6) 4 (33.3) 17 (44.7) 119 (61.7) 65 (56.0) 19 (38.0) 28 (63.6) 166 (55.3) 94 (50.0) 

Male 417 
(46.6) 160 (50.3) 119 (49.4) 8 (66.7) 21 (55.3) 74 (38.3) 51 (44.0) 31 (62.0) 16 (36.4) 134 (44.7) 94 (50.0) 

Tamiflu Treatment 

Placebo 303 
(33.9) 159 (50.0) 124 (51.5) 6 (50.0) 19 (50.0) 103 (53.4) 65 (56.0) 29 (58.0) 19 (43.2) 158 (52.7) 90 (47.9) 

75 mg 591 
(66.1) 159 (50.0) 117 (48.5) 6 (50.0) 19 (50.0) 90 (46.6) 51 (44.0) 21 (42.0) 25 (56.8) 142 (47.3) 98 (52.1) 
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Outcome: Hospitalization, Sepsis, or Pneumonia 

Yes 15 (1.7) 2 (0.6) 0 (0.0) 2 (16.7) 0 (0.0) 7 (3.6) 6 (5.2) 4 (8.0) 2 (4.5) 9 (3.0) 2 (1.1) 

No 879 
(98.3) 316 (99.4) 241 

(100.0) 10 (83.3) 38 (100.0) 186 (96.4) 110 (94.8) 46 (92.0) 42 (95.5) 291 (97.0) 186 (98.9) 

Outcome: Complications requiring an antibiotic 

Yes 68 (7.6) 2 (0.6) 3 (1.2) 1 (8.3) 0 (0.0) 20 (10.4) 7 (6.0) 0 (0.0) 5 (11.4) 11 (3.7) 5 (2.7) 

No 826 
(92.4) 316 (99.4) 238 (98.8) 11 (91.7) 38 (100.0) 173 (89.6) 109 (94.0) 50 (100.0) 39 (88.6) 289 (96.3) 183 (97.3) 

Outcome: Complications requiring follow up treatment 

Yes 175 
(19.6) 10 (3.1) 9 (3.7) 1 (8.3) 1 (2.6) 55 (28.5) 26 (22.4) 14 (28.0) 15 (34.1) 67 (22.3) 14 (7.4) 

No 719 
(80.4) 308 (96.9) 232 (96.3) 11 (91.7) 37 (97.4) 138 (71.5) 90 (77.6) 36 (72.0) 29 (65.9) 233 (77.7) 174 (92.6) 

Nasal Symptoms (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 368 
(41.2) 163 (51.3) 100 (41.5) 6 (50.0) 18 (47.4) 81 (42.0) 54 (46.6) 21 (42.0) 15 (34.1) 161 (53.7) 83 (44.1) 

Severe 526 
(58.8) 155 (48.7) 141 (58.5) 6 (50.0) 20 (52.6) 112 (58.0) 62 (53.4) 29 (58.0) 29 (65.9) 139 (46.3) 105 (55.9) 

Nasal Symptoms (0 = Absent, 1, 2 or 3=Present) 

Absent 77 (8.6) 49 (15.4) 19 (7.9) 4 (33.3) 5 (13.2) 26 (13.5) 29 (25.0) 6 (12.0) 7 (15.9) 57 (19.0) 29 (15.4) 

Present 817 
(91.4) 269 (84.6) 222 (92.1) 8 (66.7) 33 (86.8) 167 (86.5) 87 (75.0) 44 (88.0) 37 (84.1) 243 (81.0) 159 (84.6) 

Sore Throat (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 425 
(47.5) 143 (45.0) 107 (44.4) 5 (41.7) 18 (47.4) 111 (57.5) 61 (52.6) 20 (40.0) 25 (56.8) 168 (56.0) 98 (52.1) 

Severe 469 
(52.5) 175 (55.0) 134 (55.6) 7 (58.3) 20 (52.6) 82 (42.5) 55 (47.4) 30 (60.0) 19 (43.2) 132 (44.0) 90 (47.9) 

Sore Throat (0 = Absent, 1, 2 or 3=Present) 

Absent 157 
(17.6) 43 (13.5) 28 (11.6) 2 (16.7) 6 (15.8) 47 (24.4) 35 (30.2) 7 (14.0) 7 (15.9) 70 (23.3) 47 (25.0) 

Present 737 
(82.4) 275 (86.5) 213 (88.4) 10 (83.3) 32 (84.2) 146 (75.6) 81 (69.8) 43 (86.0) 37 (84.1) 230 (76.7) 141 (75.0) 

Cough (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 149 
(16.7) 69 (21.7) 56 (23.2) 5 (41.7) 15 (39.5) 21 (10.9) 20 (17.2) 4 (8.0) 10 (22.7) 28 (9.3) 48 (25.5) 

Severe 745 
(83.3) 249 (78.3) 185 (76.8) 7 (58.3) 23 (60.5) 172 (89.1) 96 (82.8) 46 (92.0) 34 (77.3) 272 (90.7) 140 (74.5) 

Cough (0 = Absent, 1, 2 or 3=Present) 

Absent 22 (2.5) 18 (5.7) 11 (4.6) 1 (8.3) 4 (10.5) 3 (1.6) 6 (5.2) 2 (4.0) 1 (2.3) 5 (1.7) 13 (6.9) 

Present 872 
(97.5) 300 (94.3) 230 (95.4) 11 (91.7) 34 (89.5) 190 (98.4) 110 (94.8) 48 (96.0) 43 (97.7) 295 (98.3) 175 (93.1) 

Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 81 (9.1) 48 (15.1) 22 (9.1) 4 (33.3) 8 (21.1) 30 (15.5) 40 (34.5) 4 (8.0) 10 (22.7) 109 (36.3) 43 (22.9) 

Severe 813 
(90.9) 270 (84.9) 219 (90.9) 8 (66.7) 30 (78.9) 163 (84.5) 76 (65.5) 46 (92.0) 34 (77.3) 191 (63.7) 145 (77.1) 

Myalgia (0 = Absent, 1, 2 or 3=Present) 

Absent 21 (2.3) 14 (4.4) 2 (0.8) 1 (8.3) 2 (5.3) 6 (3.1) 18 (15.5) 0 (0.0) 3 (6.8) 46 (15.3) 14 (7.4) 

Present 873 
(97.7) 304 (95.6) 239 (99.2) 11 (91.7) 36 (94.7) 187 (96.9) 98 (84.5) 50 (100.0) 41 (93.2) 254 (84.7) 174 (92.6) 

Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 67 (7.5) 46 (14.5) 20 (8.3) 3 (25.0) 6 (15.8) 14 (7.3) 17 (14.7) 4 (8.0) 4 (9.1) 37 (12.3) 16 (8.5) 

Severe 827 
(92.5) 272 (85.5) 221 (91.7) 9 (75.0) 32 (84.2) 179 (92.7) 99 (85.3) 46 (92.0) 40 (90.9) 263 (87.7) 172 (91.5) 

Fatigue (0 = Absent, 1, 2 or 3=Present) 

Absent 10 (1.1) 7 (2.2) 2 (0.8) 0 (0.0) 2 (5.3) 4 (2.1) 3 (2.6) 0 (0.0) 2 (4.5) 9 (3.0) 0 (0.0) 

Present 884 
(98.9) 311 (97.8) 239 (99.2) 12 (100.0) 36 (94.7) 189 (97.9) 113 (97.4) 50 (100.0) 42 (95.5) 291 (97.0) 188 

(100.0) 

Headache (0 or 1 = Moderate, 2 or 3=Severe) 
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Moderate 228 
(25.5) 88 (27.7) 65 (27.0) 5 (41.7) 4 (10.5) 58 (30.1) 52 (44.8) 16 (32.0) 17 (38.6) 130 (43.3) 45 (23.9) 

Severe 666 
(74.5) 230 (72.3) 176 (73.0) 7 (58.3) 34 (89.5) 135 (69.9) 64 (55.2) 34 (68.0) 27 (61.4) 170 (56.7) 143 (76.1) 

Headache (0 = Absent, 1, 2 or 3=Present) 

Absent 71 (7.9) 28 (8.8) 21 (8.7) 1 (8.3) 2 (5.3) 24 (12.4) 24 (20.7) 5 (10.0) 5 (11.4) 58 (19.3) 10 (5.3) 

Present 823 
(92.1) 290 (91.2) 220 (91.3) 11 (91.7) 36 (94.7) 169 (87.6) 92 (79.3) 45 (90.0) 39 (88.6) 242 (80.7) 178 (94.7) 

Chills/Sweats (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 127 
(14.2) 49 (15.4) 48 (19.9) 6 (50.0) 3 (7.9) 28 (14.5) 38 (32.8) 6 (12.0) 10 (22.7) 59 (19.7) 24 (12.8) 

Severe 767 
(85.8) 269 (84.6) 193 (80.1) 6 (50.0) 35 (92.1) 165 (85.5) 78 (67.2) 44 (88.0) 34 (77.3) 241 (80.3) 164 (87.2) 

Chills/Sweats (0 = Absent, 1, 2 or 3=Present) 

Absent 19 (2.1) 12 (3.8) 7 (2.9) 0 (0.0) 0 (0.0) 6 (3.1) 17 (14.7) 3 (6.0) 1 (2.3) 17 (5.7) 1 (0.5) 

Present 875 
(97.9) 306 (96.2) 234 (97.1) 12 (100.0) 38 (100.0) 187 (96.9) 99 (85.3) 47 (94.0) 43 (97.7) 283 (94.3) 187 (99.5) 

Body Temperature 

Mean (SD) °F 101.08 
(0.95) 

101.41 
(0.98) 

100.84 
(0.90) 

101.28 
(1.44) 

101.30 
(0.85) 

100.95 
(0.96) 

100.71 
(0.99) 

100.65 
(1.16) 

100.56 
(0.96) 

100.77 
(0.97) 

100.77 
(0.93) 

Physician Reported Signs: Ears 

Normal 771 
(86.2) 298 (93.7) 210 (87.1) 9 (75.0) 29 (76.3) 181 (93.8) 104 (89.7) 43 (86.0) 42 (95.5) 289 (96.3) 187 (99.5) 

Abnormal 123 
(13.8) 20 (6.3) 31 (12.9) 3 (25.0) 9 (23.7) 12 (6.2) 12 (10.3) 7 (14.0) 2 (4.5) 11 (3.7) 1 (0.5) 

Physician Reported Signs: Nose 

Normal 554 
(62.0) 201 (63.2) 155 (64.3) 11 (91.7) 28 (73.7) 130 (67.4) 67 (57.8) 19 (38.0) 17 (38.6) 224 (74.7) 133 (70.7) 

Abnormal 340 
(38.0) 117 (36.8) 86 (35.7) 1 (8.3) 10 (26.3) 63 (32.6) 49 (42.2) 31 (62.0) 27 (61.4) 76 (25.3) 55 (29.3) 

Physician Reported Signs: Throat 

Normal 405 
(45.3) 161 (50.6) 104 (43.2) 10 (83.3) 16 (42.1) 93 (48.2) 46 (39.7) 8 (16.0) 14 (31.8) 200 (66.7) 115 (61.2) 

Abnormal 489 
(54.7) 157 (49.4) 137 (56.8) 2 (16.7) 22 (57.9) 100 (51.8) 70 (60.3) 42 (84.0) 30 (68.2) 100 (33.3) 73 (38.8) 

Physician Reported Signs:  Lymph node 

Normal 759 
(84.9) 275 (86.5) 206 (85.5) 11 (91.7) 31 (81.6) 173 (89.6) 104 (89.7) 43 (86.0) 40 (90.9) 292 (97.3) 170 (90.4) 

Abnormal 135 
(15.1) 43 (13.5) 35 (14.5) 1 (8.3) 7 (18.4) 20 (10.4) 12 (10.3) 7 (14.0) 4 (9.1) 8 (2.7) 18 (9.6) 

Medical History Question: Asthma 

No 850 
(95.1) 317 (99.7) 236 (97.9) 12 (100.0) 37 (97.4) 102 (52.8) 115 (99.1) 22 (44.0) 43 (97.7) 294 (98.0) 186 (98.9) 

Yes 44 (4.9) 1 (0.3) 5 (2.1) 0 (0.0) 1 (2.6) 91 (47.2) 1 (0.9) 28 (56.0) 1 (2.3) 6 (2.0) 2 (1.1) 

Medical History Question: COPD 

No 891 
(99.7) 

318 
(100.0) 

241 
(100.0) 0 (0.0) 38 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Yes 3 (0.3) 0 (0.0) 0 (0.0) 12 (100.0) 0 (0.0) 193 
(100.0) 

116 
(100.0) 50 (100.0) 44 (100.0) 300 

(100.0) 
188 

(100.0) 

Medical History Question: Any Allergies or Atopies 

No 735 
(82.2) 299 (94.0) 218 (90.5) 11 (91.7) 37 (97.4) 167 (86.5) 109 (94.0) 49 (98.0) 44 (100.0) 292 (97.3) 185 (98.4) 

Yes 159 
(17.8) 19 (6.0) 23 (9.5) 1 (8.3) 1 (2.6) 26 (13.5) 7 (6.0) 1 (2.0) 0 (0.0) 8 (2.7) 3 (1.6) 

Medical History Question: Taking Medication for Asthma or COPD 

No 850 
(95.1) 317 (99.7) 237 (98.3) 12 (100.0) 37 (97.4) 86 (44.6) 108 (93.1) 16 (32.0) 43 (97.7) 268 (89.3) 178 (94.7) 

Yes 44 (4.9) 1 (0.3) 4 (1.7) 0 (0.0) 1 (2.6) 107 (55.4) 8 (6.9) 34 (68.0) 1 (2.3) 32 (10.7) 10 (5.3) 

Medical History Question: Taking Medication for Diabetes 

No 874 
(97.8) 

318 
(100.0) 

241 
(100.0) 12 (100.0) 38 (100.0) 177 (91.7) 106 (91.4) 48 (96.0) 43 (97.7) 283 (94.3) 185 (98.4) 

Yes 20 (2.2) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 16 (8.3) 10 (8.6) 2 (4.0) 1 (2.3) 17 (5.7) 3 (1.6) 

Medical History Question: Any Current Prescriptions 
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No 753 
(84.2) 284 (89.3) 223 (92.5) 7 (58.3) 34 (89.5) 30 (15.5) 43 (37.1) 5 (10.0) 21 (47.7) 112 (37.3) 164 (87.2) 

Yes 141 
(15.8) 34 (10.7) 18 (7.5) 5 (41.7) 4 (10.5) 163 (84.5) 73 (62.9) 45 (90.0) 23 (52.3) 188 (62.7) 24 (12.8) 

 

 

SM Table 2.3 ILI Population outcomes and predictors stratified by study 

Study ID M76001 WV15670 WV15671 WV15707 WV15730 WV15812 WV15819 WV15872 WV15876 WV15978 WV16277 

Study size 1234 468 397 26 58 292 163 96 96 452 402 

Age 
mean(sd) 

37.79 
(13.35) 

37.78 
(11.47) 

32.72 
(10.49) 71.65 (5.40) 35.16 

(10.93) 
53.74 

(16.71) 73.50 (6.39) 48.64 
(18.05) 73.25 (6.00) 72.10 (5.71) 36.94 

(12.82) 

Sex 

Female 693 
(56.2) 234 (50.0) 210 (52.9) 12 (46.2) 28 (48.3) 173 (59.2) 89 (54.6) 45 (46.9) 67 (69.8) 248 (54.9) 207 (51.5) 

Male 541 
(43.8) 234 (50.0) 187 (47.1) 14 (53.8) 30 (51.7) 119 (40.8) 74 (45.4) 51 (53.1) 29 (30.2) 204 (45.1) 195 (48.5) 

Tamiflu Treatment 

Placebo 415 
(33.6) 229 (48.9) 197 (49.6) 9 (34.6) 27 (46.6) 147 (50.3) 90 (55.2) 50 (52.1) 42 (43.8) 226 (50.0) 198 (49.3) 

75 mg 819 
(66.4) 239 (51.1) 200 (50.4) 17 (65.4) 31 (53.4) 145 (49.7) 73 (44.8) 46 (47.9) 54 (56.2) 226 (50.0) 204 (50.7) 

Outcome: Hospitalization, Sepsis, or Pneumonia 

Yes 25 (2.0) 4 (0.9) 3 (0.8) 3 (11.5) 0 (0.0) 16 (5.5) 10 (6.1) 6 (6.2) 6 (6.2) 11 (2.4) 7 (1.7) 

No 1209 
(98.0) 464 (99.1) 394 (99.2) 23 (88.5) 58 (100.0) 276 (94.5) 153 (93.9) 90 (93.8) 90 (93.8) 441 (97.6) 395 (98.3) 

Outcome: Complications requiring an antibiotic 

Yes 104 (8.4) 6 (1.3) 5 (1.3) 1 (3.8) 0 (0.0) 35 (12.0) 11 (6.7) 3 (3.1) 10 (10.4) 19 (4.2) 15 (3.7) 

No 1130 
(91.6) 462 (98.7) 392 (98.7) 25 (96.2) 58 (100.0) 257 (88.0) 152 (93.3) 93 (96.9) 86 (89.6) 433 (95.8) 387 (96.3) 

Outcome: Complications requiring follow up treatment 

Yes 249 
(20.2) 17 (3.6) 15 (3.8) 3 (11.5) 2 (3.4) 79 (27.1) 32 (19.6) 35 (36.5) 28 (29.2) 85 (18.8) 43 (10.7) 

No 985 
(79.8) 451 (96.4) 382 (96.2) 23 (88.5) 56 (96.6) 213 (72.9) 131 (80.4) 61 (63.5) 68 (70.8) 367 (81.2) 359 (89.3) 

Nasal Symptoms (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 512 
(41.5) 253 (54.1) 174 (43.8) 12 (46.2) 32 (55.2) 124 (42.5) 80 (49.1) 41 (42.7) 34 (35.4) 228 (50.4) 189 (47.0) 

Severe 722 
(58.5) 215 (45.9) 223 (56.2) 14 (53.8) 26 (44.8) 168 (57.5) 83 (50.9) 55 (57.3) 62 (64.6) 224 (49.6) 213 (53.0) 

Nasal Symptoms (0 = Absent, 1, 2 or 3=Present) 

Absent 118 (9.6) 81 (17.3) 37 (9.3) 6 (23.1) 11 (19.0) 40 (13.7) 39 (23.9) 9 (9.4) 12 (12.5) 77 (17.0) 63 (15.7) 

Present 1116 
(90.4) 387 (82.7) 360 (90.7) 20 (76.9) 47 (81.0) 252 (86.3) 124 (76.1) 87 (90.6) 84 (87.5) 375 (83.0) 339 (84.3) 

Sore Throat (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 561 
(45.5) 197 (42.1) 170 (42.8) 14 (53.8) 26 (44.8) 163 (55.8) 88 (54.0) 33 (34.4) 45 (46.9) 249 (55.1) 202 (50.2) 

Severe 673 
(54.5) 271 (57.9) 227 (57.2) 12 (46.2) 32 (55.2) 129 (44.2) 75 (46.0) 63 (65.6) 51 (53.1) 203 (44.9) 200 (49.8) 

Sore Throat (0 = Absent, 1, 2 or 3=Present) 

Absent 203 
(16.5) 68 (14.5) 49 (12.3) 5 (19.2) 8 (13.8) 66 (22.6) 52 (31.9) 14 (14.6) 14 (14.6) 100 (22.1) 91 (22.6) 

Present 1031 
(83.5) 400 (85.5) 348 (87.7) 21 (80.8) 50 (86.2) 226 (77.4) 111 (68.1) 82 (85.4) 82 (85.4) 352 (77.9) 311 (77.4) 

Cough (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 292 
(23.7) 142 (30.3) 138 (34.8) 9 (34.6) 30 (51.7) 47 (16.1) 39 (23.9) 13 (13.5) 28 (29.2) 75 (16.6) 145 (36.1) 

Severe 942 
(76.3) 326 (69.7) 259 (65.2) 17 (65.4) 28 (48.3) 245 (83.9) 124 (76.1) 83 (86.5) 68 (70.8) 377 (83.4) 257 (63.9) 

Cough (0 = Absent, 1, 2 or 3=Present) 
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Absent 78 (6.3) 57 (12.2) 36 (9.1) 1 (3.8) 12 (20.7) 10 (3.4) 11 (6.7) 3 (3.1) 6 (6.2) 21 (4.6) 53 (13.2) 

Present 1156 
(93.7) 411 (87.8) 361 (90.9) 25 (96.2) 46 (79.3) 282 (96.6) 152 (93.3) 93 (96.9) 90 (93.8) 431 (95.4) 349 (86.8) 

Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 110 (8.9) 76 (16.2) 41 (10.3) 11 (42.3) 9 (15.5) 49 (16.8) 56 (34.4) 17 (17.7) 26 (27.1) 160 (35.4) 89 (22.1) 

Severe 1124 
(91.1) 392 (83.8) 356 (89.7) 15 (57.7) 49 (84.5) 243 (83.2) 107 (65.6) 79 (82.3) 70 (72.9) 292 (64.6) 313 (77.9) 

Myalgia (0 = Absent, 1, 2 or 3=Present) 

Absent 25 (2.0) 20 (4.3) 3 (0.8) 6 (23.1) 2 (3.4) 9 (3.1) 26 (16.0) 4 (4.2) 8 (8.3) 67 (14.8) 22 (5.5) 

Present 1209 
(98.0) 448 (95.7) 394 (99.2) 20 (76.9) 56 (96.6) 283 (96.9) 137 (84.0) 92 (95.8) 88 (91.7) 385 (85.2) 380 (94.5) 

Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 91 (7.4) 67 (14.3) 29 (7.3) 6 (23.1) 7 (12.1) 28 (9.6) 29 (17.8) 13 (13.5) 17 (17.7) 55 (12.2) 28 (7.0) 

Severe 1143 
(92.6) 401 (85.7) 368 (92.7) 20 (76.9) 51 (87.9) 264 (90.4) 134 (82.2) 83 (86.5) 79 (82.3) 397 (87.8) 374 (93.0) 

Fatigue (0 = Absent, 1, 2 or 3=Present) 

Absent 12 (1.0) 12 (2.6) 2 (0.5) 1 (3.8) 2 (3.4) 5 (1.7) 9 (5.5) 1 (1.0) 4 (4.2) 12 (2.7) 2 (0.5) 

Present 1222 
(99.0) 456 (97.4) 395 (99.5) 25 (96.2) 56 (96.6) 287 (98.3) 154 (94.5) 95 (99.0) 92 (95.8) 440 (97.3) 400 (99.5) 

Headache (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 310 
(25.1) 127 (27.1) 112 (28.2) 13 (50.0) 11 (19.0) 97 (33.2) 71 (43.6) 33 (34.4) 37 (38.5) 202 (44.7) 111 (27.6) 

Severe 924 
(74.9) 341 (72.9) 285 (71.8) 13 (50.0) 47 (81.0) 195 (66.8) 92 (56.4) 63 (65.6) 59 (61.5) 250 (55.3) 291 (72.4) 

Headache (0 = Absent, 1, 2 or 3=Present) 

Absent 105 (8.5) 37 (7.9) 38 (9.6) 4 (15.4) 3 (5.2) 37 (12.7) 36 (22.1) 12 (12.5) 14 (14.6) 81 (17.9) 33 (8.2) 

Present 1129 
(91.5) 431 (92.1) 359 (90.4) 22 (84.6) 55 (94.8) 255 (87.3) 127 (77.9) 84 (87.5) 82 (85.4) 371 (82.1) 369 (91.8) 

Chills/Sweats (0 or 1 = Moderate, 2 or 3=Severe) 

Moderate 203 
(16.5) 90 (19.2) 88 (22.2) 12 (46.2) 10 (17.2) 56 (19.2) 55 (33.7) 18 (18.8) 24 (25.0) 89 (19.7) 54 (13.4) 

Severe 1031 
(83.5) 378 (80.8) 309 (77.8) 14 (53.8) 48 (82.8) 236 (80.8) 108 (66.3) 78 (81.2) 72 (75.0) 363 (80.3) 348 (86.6) 

Chills/Sweats (0 = Absent, 1, 2 or 3=Present) 

Absent 42 (3.4) 25 (5.3) 17 (4.3) 1 (3.8) 0 (0.0) 13 (4.5) 25 (15.3) 7 (7.3) 3 (3.1) 23 (5.1) 8 (2.0) 

Present 1192 
(96.6) 443 (94.7) 380 (95.7) 25 (96.2) 58 (100.0) 279 (95.5) 138 (84.7) 89 (92.7) 93 (96.9) 429 (94.9) 394 (98.0) 

Body Temperature 

Mean (SD) 
°F 

100.97 
(0.94) 

101.36 
(0.95) 

100.69 
(0.91) 

100.80 
(1.25) 

101.27 
(0.91) 

100.84 
(0.97) 

100.56 
(0.96) 

100.45 
(1.03) 

100.21 
(0.99) 

100.58 
(1.00) 

100.69 
(0.94) 

Physician Reported Signs: Ears 

Normal 1063 
(86.1) 436 (93.2) 337 (84.9) 22 (84.6) 47 (81.0) 275 (94.2) 147 (90.2) 86 (89.6) 93 (96.9) 436 (96.5) 398 (99.0) 

Abnormal 171 
(13.9) 32 (6.8) 60 (15.1) 4 (15.4) 11 (19.0) 17 (5.8) 16 (9.8) 10 (10.4) 3 (3.1) 16 (3.5) 4 (1.0) 

Physician Reported Signs: Nose 

Normal 757 
(61.3) 297 (63.5) 256 (64.5) 19 (73.1) 42 (72.4) 194 (66.4) 92 (56.4) 30 (31.2) 31 (32.3) 328 (72.6) 281 (69.9) 

Abnormal 477 
(38.7) 171 (36.5) 141 (35.5) 7 (26.9) 16 (27.6) 98 (33.6) 71 (43.6) 66 (68.8) 65 (67.7) 124 (27.4) 121 (30.1) 

Physician Reported Signs: Throat 

Normal 550 
(44.6) 223 (47.6) 170 (42.8) 16 (61.5) 24 (41.4) 141 (48.3) 64 (39.3) 15 (15.6) 24 (25.0) 289 (63.9) 261 (64.9) 

Abnormal 684 
(55.4) 245 (52.4) 227 (57.2) 10 (38.5) 34 (58.6) 151 (51.7) 99 (60.7) 81 (84.4) 72 (75.0) 163 (36.1) 141 (35.1) 

Physician Reported Signs:  Lymph node 

Normal 1038 
(84.1) 403 (86.1) 329 (82.9) 22 (84.6) 46 (79.3) 260 (89.0) 151 (92.6) 85 (88.5) 92 (95.8) 441 (97.6) 363 (90.3) 

Abnormal 196 
(15.9) 65 (13.9) 68 (17.1) 4 (15.4) 12 (20.7) 32 (11.0) 12 (7.4) 11 (11.5) 4 (4.2) 11 (2.4) 39 (9.7) 

Medical History Question: Asthma 
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No 1168 
(94.7) 466 (99.6) 391 (98.5) 26 (100.0) 57 (98.3) 163 (55.8) 161 (98.8) 42 (43.8) 95 (99.0) 441 (97.6) 393 (97.8) 

Yes 66 (5.3) 2 (0.4) 6 (1.5) 0 (0.0) 1 (1.7) 129 (44.2) 2 (1.2) 54 (56.2) 1 (1.0) 11 (2.4) 9 (2.2) 

Medical History Question: COPD 

No 1228 
(99.5) 468 (100.0) 397 (100.0) 0 (0.0) 58 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Yes 6 (0.5) 0 (0.0) 0 (0.0) 26 (100.0) 0 (0.0) 292 (100.0) 163 (100.0) 96 (100.0) 96 (100.0) 452 (100.0) 402 (100.0) 

Medical History Question: Any Allergies or Atopies 

No 1007 
(81.6) 441 (94.2) 353 (88.9) 25 (96.2) 57 (98.3) 255 (87.3) 154 (94.5) 94 (97.9) 95 (99.0) 439 (97.1) 395 (98.3) 

Yes 227 
(18.4) 27 (5.8) 44 (11.1) 1 (3.8) 1 (1.7) 37 (12.7) 9 (5.5) 2 (2.1) 1 (1.0) 13 (2.9) 7 (1.7) 

Medical History Question: Taking Medication for Asthma or COPD 

No 1171 
(94.9) 464 (99.1) 393 (99.0) 26 (100.0) 56 (96.6) 135 (46.2) 147 (90.2) 27 (28.1) 92 (95.8) 402 (88.9) 381 (94.8) 

Yes 63 (5.1) 4 (0.9) 4 (1.0) 0 (0.0) 2 (3.4) 157 (53.8) 16 (9.8) 69 (71.9) 4 (4.2) 50 (11.1) 21 (5.2) 

Medical History Question: Taking Medication for Diabetes 

No 1206 
(97.7) 466 (99.6) 397 (100.0) 25 (96.2) 58 (100.0) 265 (90.8) 149 (91.4) 90 (93.8) 93 (96.9) 410 (90.7) 395 (98.3) 

Yes 28 (2.3) 2 (0.4) 0 (0.0) 1 (3.8) 0 (0.0) 27 (9.2) 14 (8.6) 6 (6.2) 3 (3.1) 42 (9.3) 7 (1.7) 

Medical History Question: Any Current Prescriptions 

No 1031 
(83.5) 415 (88.7) 372 (93.7) 11 (42.3) 52 (89.7) 40 (13.7) 59 (36.2) 8 (8.3) 39 (40.6) 159 (35.2) 340 (84.6) 

Yes  203 (16.5) 53 (11.3) 25 (6.3) 15 (57.7) 6 (10.3) 252 (86.3) 104 (63.8) 88 (91.7) 57 (59.4) 293 (64.8) 
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SM Table 3.4 Results for FLU C-AB bivariate logistic regression for all predictors. 

Variable [Reference level if categorical] Odds 
Ratio 

95% CI Lower 
bound 

95% CI Upper 
bound 

P-
value 

AGE 1.01 1.00 1.02 0.13 
SEX [Male] 1.59 1.01 2.56 0.05 
Tamiflu Treatment: [Placebo] 1.04 0.66 1.63 0.86 
Body Temperature 0.88 0.69 1.11 0.30 
Physician Reported Signs: Ears  [Normal] 1.20 0.55 2.34 0.61 
Physician Reported Signs: Nose [Normal] 1.17 0.73 1.84 0.51 
Physician Reported Signs: Throat [Normal] 1.59 1.01 2.54 0.05 
Physician Reported Signs:  Lymph node 
[Normal] 

1.13 0.56 2.09 0.71 

Medical History Question: Asthma [No] 2.27 1.14 4.17 0.01 
Medical History Question: COPD [No] 1.17 0.73 1.83 0.51 
Medical History Question: Any Allergies or 
Atopies  [No] 

1.53 0.77 2.79 0.19 

Medical History Question: Taking 
Medication for Asthma or COPD [No] 

2.00 1.06 3.54 0.02 

Medical History Question: Taking 
Medication for Diabetes [No] 

1.23 0.29 3.45 0.73 

Nasal Symptoms (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.74 1.09 2.85 0.02 

Nasal Symptoms (0 = Absent, 1, 2 or 
3=Present) [Absent] 

1.22 0.63 2.66 0.58 

Sore Throat (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.05 0.67 1.65 0.84 

Sore Throat (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.73 0.44 1.28 0.25 

Cough (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.27 0.71 2.50 0.45 

Cough (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.37 0.41 8.44 0.67 

Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

2.10 1.03 5.07 0.06 

Myalgia (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.04 0.42 3.48 0.94 

Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.36 0.63 3.54 0.48 

Fatigue (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

NA NA NA 0.98 

Headache (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.22 0.74 2.07 0.45 

Headache (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.09 0.55 2.50 0.81 

Chills/Sweats (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.02 0.58 1.92 0.95 

Chills/Sweats (0 = Absent, 1, 2 or 3=Present) 
[Moderate] 

0.54 0.23 1.57 0.19 

Medical History Question: Any Current 
Prescriptions [No] 

1.68 1.06 2.65 0.03 
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SM Table 2.5 Results for ILI C-AB bivariate logistic regression for all predictors. 

Variable [Reference level if categorical] Odds 
Ratio 

95% CI Lower 
bound 

95% CI Upper 
bound 

P-
value 

AGE 1.00 0.99 1.01 0.98 
SEX [Male] 1.85 1.28 2.72 0.00 
Tamiflu Treatment: [Placebo] 1.08 0.76 1.54 0.66 
Body Temperature 1.02 0.85 1.21 0.85 
Physician Reported Signs: Ears  [Normal] 1.25 0.69 2.11 0.43 
Physician Reported Signs: Nose [Normal] 1.20 0.84 1.71 0.31 
Physician Reported Signs: Throat [Normal] 1.35 0.95 1.94 0.10 
Physician Reported Signs:  Lymph node 
[Normal] 

1.33 0.79 2.13 0.25 

Medical History Question: Asthma [No] 2.06 1.19 3.39 0.01 
Medical History Question: COPD [No] 1.16 0.82 1.65 0.40 
Medical History Question: Any Allergies or 
Atopies  [No] 

1.42 0.82 2.31 0.18 

Medical History Question: Taking 
Medication for Asthma or COPD [No] 

2.17 1.36 3.35 0.00 

Medical History Question: Taking 
Medication for Diabetes [No] 

1.29 0.50 2.78 0.55 

Nasal Symptoms (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.18 0.83 1.69 0.37 

Nasal Symptoms (0 = Absent, 1, 2 or 
3=Present) [Absent] 

0.98 0.60 1.69 0.94 

Sore Throat (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.00 0.71 1.42 0.99 

Sore Throat (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.69 0.46 1.06 0.08 

Cough (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

0.96 0.65 1.45 0.84 

Cough (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.65 0.39 1.19 0.13 

Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.42 0.87 2.43 0.18 

Myalgia (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.46 0.65 4.17 0.42 

Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.74 0.90 3.91 0.14 

Fatigue (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

2.29 0.49 40.72 0.42 

Headache (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

0.97 0.67 1.42 0.85 

Headache (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.85 0.51 1.51 0.56 

Chills/Sweats (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.06 0.69 1.71 0.80 

Chills/Sweats (0 = Absent, 1, 2 or 3=Present) 
[Moderate] 

0.76 0.38 1.72 0.46 
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Medical History Question: Any Current 
Prescriptions [No] 

1.43 0.99 2.04 0.05 

 

SM Table 2.6 Results for FLU C-S bivariate logistic regression for all predictors. 

Variable [Reference level if categorical] Odds 
Ratio 

95% CI Lower 
bound 

95% CI Upper 
bound 

P-
value 

AGE 1.03 1.01 1.05 0.00 
SEX [Male] 1.62 0.79 3.53 0.20 
Tamiflu Treatment: [Placebo] 1.94 0.94 4.13 0.08 
Body Temperature 0.99 0.68 1.42 0.97 
Physician Reported Signs: Ears  [Normal] 1.40 0.41 3.65 0.53 
Physician Reported Signs: Nose [Normal] 1.16 0.54 2.38 0.69 
Physician Reported Signs: Throat [Normal] 1.20 0.59 2.48 0.62 
Physician Reported Signs:  Lymph node 
[Normal] 

1.05 0.31 2.71 0.93 

Medical History Question: Asthma [No] 2.40 0.80 5.87 0.08 
Medical History Question: COPD [No] 2.32 1.14 4.87 0.02 
Medical History Question: Any Allergies or 
Atopies  [No] 

1.26 0.37 3.27 0.67 

Medical History Question: Taking 
Medication for Asthma or COPD [No] 

1.35 0.39 3.50 0.58 

Medical History Question: Taking 
Medication for Diabetes [No] 

2.20 0.35 7.58 0.29 

Nasal Symptoms (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

0.76 0.37 1.56 0.46 

Nasal Symptoms (0 = Absent, 1, 2 or 
3=Present) [Absent] 

0.63 0.27 1.72 0.32 

Sore Throat (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.74 0.84 3.78 0.14 

Sore Throat (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.97 0.42 2.62 0.94 

Cough (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.51 0.59 5.14 0.44 

Cough (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.04 0.22 18.65 0.97 

Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.85 0.65 7.77 0.31 

Myalgia (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.79 0.23 4.94 0.75 

Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

0.73 0.28 2.48 0.56 

Fatigue (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

NA NA NA 0.99 

Headache (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

0.78 0.38 1.69 0.50 

Headache (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.81 0.31 2.78 0.70 

Chills/Sweats (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.47 0.57 5.00 0.48 
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Chills/Sweats (0 = Absent, 1, 2 or 
3=Present) [Moderate] 

1.12 0.23 20.04 0.91 

Medical History Question: Any Current 
Prescriptions [No] 

2.54 1.24 5.22 0.01 

 

SM Table 2.7 Results for ILI C-S bivariate logistic regression for all predictors. 

Variable [Reference level if categorical] Odds Ratio 95% CI 
Lower bound 

95% CI Upper 
bound 

P-
value 

AGE 1.02 1.01 1.04 0.00 
SEX [Male] 1.06 0.64 1.78 0.83 
Tamiflu Treatment: [Placebo] 1.40 0.84 2.33 0.20 
Body Temperature 1.13 0.88 1.45 0.32 
Physician Reported Signs: Ears  [Normal] 0.67 0.20 1.65 0.44 
Physician Reported Signs: Nose [Normal] 1.01 0.59 1.69 0.97 
Physician Reported Signs: Throat [Normal] 1.25 0.75 2.10 0.40 
Physician Reported Signs:  Lymph node 
[Normal] 

0.95 0.39 1.97 0.90 

Medical History Question: Asthma [No] 1.91 0.83 3.86 0.09 
Medical History Question: COPD [No] 3.01 1.77 5.26 0.00 
Medical History Question: Any Allergies or 
Atopies  [No] 

0.96 0.37 2.08 0.92 

Medical History Question: Taking 
Medication for Asthma or COPD [No] 

2.84 1.52 5.05 0.00 

Medical History Question: Taking 
Medication for Diabetes [No] 

1.92 0.57 4.79 0.22 

Nasal Symptoms (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

0.75 0.45 1.25 0.27 

Nasal Symptoms (0 = Absent, 1, 2 or 
3=Present) [Absent] 

0.70 0.37 1.42 0.29 

Sore Throat (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

0.94 0.57 1.57 0.82 

Sore Throat (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.75 0.42 1.43 0.36 

Cough (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.29 0.72 2.50 0.42 

Cough (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.96 0.42 2.78 0.93 

Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.00 0.54 2.04 1.00 

Myalgia (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.80 0.32 2.67 0.67 

Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.58 0.64 5.24 0.38 

Fatigue (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

NA NA NA 0.98 

Headache (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

0.92 0.54 1.62 0.77 

Headache (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.59 0.31 1.26 0.14 
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Chills/Sweats (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

0.71 0.41 1.33 0.27 

Chills/Sweats (0 = Absent, 1, 2 or 
3=Present) [Moderate] 

0.70 0.28 2.34 0.50 

Medical History Question: Any Current 
Prescriptions [No] 

2.28 1.37 3.80 0.00 

 

SM Table 2.8 Results FLU-FT bivariate logistic regression for all predictors. 

Variable [Reference level if categorical] Odds Ratio 95% CI 
Lower bound 

95% CI Upper 
bound 

P-
value 

AGE 1.02 1.01 1.03 0.00 
SEX [Male] 1.19 0.91 1.55 0.21 
Tamiflu Treatment: [Placebo] 1.31 1.01 1.70 0.04 
Body Temperature 0.94 0.82 1.07 0.35 
Physician Reported Signs: Ears  [Normal] 0.78 0.47 1.23 0.31 
Physician Reported Signs: Nose [Normal] 1.25 0.95 1.63 0.11 
Physician Reported Signs: Throat [Normal] 1.27 0.98 1.66 0.07 
Physician Reported Signs:  Lymph node 
[Normal] 

0.85 0.55 1.26 0.43 

Medical History Question: Asthma [No] 1.73 1.11 2.63 0.01 
Medical History Question: COPD [No] 1.71 1.31 2.22 0.00 
Medical History Question: Any Allergies or 
Atopies  [No] 

1.25 0.82 1.85 0.28 

Medical History Question: Taking 
Medication for Asthma or COPD [No] 

2.01 1.37 2.90 0.00 

Medical History Question: Taking 
Medication for Diabetes [No] 

1.63 0.81 3.05 0.15 

Nasal Symptoms (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.43 1.09 1.87 0.01 

Nasal Symptoms (0 = Absent, 1, 2 or 
3=Present) [Absent] 

0.94 0.65 1.39 0.73 

Sore Throat (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.15 0.89 1.50 0.29 

Sore Throat (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.65 0.48 0.89 0.01 

Cough (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.68 1.15 2.51 0.01 

Cough (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.13 0.56 2.61 0.75 

Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.51 1.04 2.28 0.04 

Myalgia (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.31 0.72 2.65 0.41 

Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.97 1.18 3.54 0.02 

Fatigue (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

NA NA NA 0.96 

Headache (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.29 0.96 1.75 0.09 
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Headache (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.03 0.68 1.61 0.89 

Chills/Sweats (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.45 1.01 2.14 0.05 

Chills/Sweats (0 = Absent, 1, 2 or 
3=Present) [Moderate] 

0.74 0.40 1.48 0.37 

Medical History Question: Any Current 
Prescriptions [No] 

1.98 1.51 2.60 0.00 

 

SM Table 3.9 Results ILI-FT bivariate logistic regression for all predictors. 

Variable [Reference level if categorical] Odds Ratio 95% CI 
Lower bound 

95% CI Upper 
bound 

P-
value 

AGE 1.01 1.01 1.02 0.00 
SEX [Male] 1.30 1.05 1.61 0.02 
Tamiflu Treatment: [Placebo] 1.26 1.02 1.55 0.04 
Body Temperature 0.97 0.87 1.08 0.59 
Physician Reported Signs: Ears  [Normal] 0.80 0.53 1.16 0.25 
Physician Reported Signs: Nose [Normal] 1.28 1.03 1.59 0.02 
Physician Reported Signs: Throat [Normal] 1.27 1.03 1.57 0.03 
Physician Reported Signs:  Lymph node 
[Normal] 

0.88 0.62 1.22 0.45 

Medical History Question: Asthma [No] 2.20 1.56 3.07 0.00 
Medical History Question: COPD [No] 1.86 1.50 2.30 0.00 
Medical History Question: Any Allergies or 
Atopies  [No] 

1.16 0.82 1.61 0.40 

Medical History Question: Taking 
Medication for Asthma or COPD [No] 

2.36 1.76 3.13 0.00 

Medical History Question: Taking 
Medication for Diabetes [No] 

1.12 0.62 1.89 0.69 

Nasal Symptoms (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.18 0.96 1.47 0.12 

Nasal Symptoms (0 = Absent, 1, 2 or 
3=Present) [Absent] 

0.94 0.69 1.28 0.67 

Sore Throat (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

0.93 0.75 1.15 0.48 

Sore Throat (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.64 0.50 0.82 0.00 

Cough (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.28 1.00 1.66 0.06 

Cough (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.83 0.58 1.22 0.32 

Myalgia (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.15 0.87 1.55 0.32 

Myalgia (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

1.26 0.78 2.15 0.38 

Fatigue (0 or 1 = Moderate, 2 or 3=Severe) 
[Moderate] 

1.98 1.30 3.17 0.00 

Fatigue (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

3.87 1.19 23.83 0.06 
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Headache (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.09 0.86 1.37 0.49 

Headache (0 = Absent, 1, 2 or 3=Present) 
[Absent] 

0.88 0.64 1.25 0.47 

Chills/Sweats (0 or 1 = Moderate, 2 or 
3=Severe) [Moderate] 

1.20 0.91 1.60 0.21 

Chills/Sweats (0 = Absent, 1, 2 or 
3=Present) [Moderate] 

0.89 0.56 1.48 0.64 

Medical History Question: Any Current 
Prescriptions [No] 

1.95 1.57 2.43 0.00 

 

SM Table 2.10 Final Model for PCR and ILI population. Outcome is hospitalization, sepsis, and 
pneumonia (C-S). 

FLU C-S Final Model 
Variable OR (95% CI) 
Age: 
(per year) 1.03 (1.01, 1.05) 
Asthma (Yes/No): 
Yes 2.85 (0.93, 7.15) 
Sore Throat (Mild/Severe):  
Severe 1.88 (0.91, 4.10) 
Tamiflu Rx (Placebo/75mg) 
Placebo 1.87 (0.91, 4.02) 
ILI C-S Final Model 
Variable OR (95% CI) 
COPD (Yes/No):  
Yes 2.54 (1.45, 4.55) 
Asthma or COPD RX: (Yes/No) 
Yes 1.95 (1.01, 3.58) 
Tamiflu Rx (Placebo/75mg) 
Placebo 1.28 (0.76, 2.14) 

 

SM Table 2.11 Model performance in test and train data from FLU and ILI patients for the 
serious outcomes (C-S). 

FLU C-S-Model 
Model (data) FLU C-S (train) FLU C-S (test) 
AUC (95%CI) 0.69 (0.59,0.79) 0.77 (0.67, 0.87) 
Cut-off probability 0.017 0.017 
Accuracy (95%CI) 0.62 (0.60, 0.64) 0.60 (0.56, 0.64) 
Sensitivity (95%CI) 0.74 (0.55, 0.88) 0.35 (0.28, 0.44) 
Specificity (95%CI) 0.62 (0.59, 0.64) 0.76 (0.73, 0.79) 
PPV (95%CI) 0.035 (0.032, 0.087) 0.25 (0.20, 0.32) 
NPV (95%CI) 0.992 (0.982, 0.993) 0.83 (0.80, 0.86) 
Likelihood (+) (95%CI) 1.97 (1.58, 2.44) 1.95 (1.49, 2.53) 
Likelihood (-) (95%CI) 0.41 (0.22, 0.75) 0.36 (0.15, 0.87) 
DOR (95%CI) 4.765 (2.11, 10.72) 5.28 (1.72, 16.21) 
HL GOF X^2= 11.4, df= 8, p = 0.18 X^2= 9.38, df= 8, p = 0.31 
Delong’s  AUC Test D=-0.256, df=1496.6, p=0.79 
ILI C-S-Model 
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Model (data) ILI C-S (train) ILI C-S (test) 
AUC (95%CI) 0.66 (0.59, 0.73) 0.69 (0.59, 0.79) 
Cut-off probability 0.028 0.028 
Accuracy (95%CI) 0.58 (0.57, 0.60) 0.74 (0.71, 0.76) 
Sensitivity (95%CI) 0.68 (0.55, 0.80) 0.56 (0.37, 0.74) 
Specificity (95%CI) 0.58 (0.56, 0.60) 0.74 (0.71, 0.77) 
PPV (95%CI) 0.03 (0.02, 0.05) 0.05 (0.3, 0.09) 
NPV (95%CI) 0.987 (0.980, 0.992 ) 0.98 (0.97, 0.99) 
Likelihood (+) (95%CI) 1.66 (1.40, 1.98) 2.23 (1.60, 3.10) 
Likelihood (-) (95%CI) 0.53 (0.36, 0.77) 0.58 (0.38, 0.87) 
DOR (95%CI) 3.14 (1.81, 5.44) 3.84 (1.84, 8.01) 
H-L GOF X^2= 0.609, df= 2, p = 0.73 X^2= 0.045, df= 2, p = 0.97 
Delong’s  AUC Test D= 0.49, df= 2202.1 , p = 0.62 

 

 

SM Table 2.12 Final Model for PCR and ILI population. Outcome is complication requiring an 
antibiotic (AB). 

FLU C-AB Final Model 
Variable OR (95% CI) 
Age: 
(per year) 1.01 (1.001, 1.02) 
Sex (Male/Female) 
Female 1.52 (0.95, 2.46) 
Throat Physical (Normal/Abnormal) 
Abnormal 1.63 (1.03, 2.63) 
Asthma (Yes/No): 
Yes 1.99 (0.99, 3.69) 
Nasal Symptoms (Mild/Severe):  
Severe 1.68 (1.05, 2.77) 
Myalgia (Mild/Severe):  
Severe 2.03 (0.97, 4.97) 
Tamiflu Rx (Placebo/75mg) 
Placebo 1.05 (0.66, 1.66) 
ILI C-AB Final Model 
Variable OR (95% CI) 
Sore Throat (Yes/No): 
Yes 0.67 (0.45, 1.04) 
Sex (Male/Female) 
Female 1.81 (1.25, 2.67) 
Throat Physical (Normal/Abnormal) 
Abnormal 1.63 (0.98, 2.04) 
Asthma or COPD RX (Yes/No): 
Yes 2.09 (1.30, 3.24) 
Cough (Yes/No):  
Yes 0.62 (0.36, 1.14) 
Fatigue (Mild/Severe):  
Severe 1.66 (0.84, 3.76) 
Tamiflu Rx (Placebo/75mg) 
Placebo 1.11 (0.78, 1.58) 
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SM Table 2.13 Model performance in test and train data from FLU and ILI patients for 
complications requiring an antibiotic (C-AB) 

FLU C-AB Model 
Model (data) FLU C-AB (train) FLU C-AB (test) 
Cut-off probability 0.047 0.047 
AUC (95%CI) 0.657 (0.59,0.72) 0.64 (0.55, 0.73) 
Accuracy (95%CI) 0.61 (0.59, 0.64) 0.48 (0.45, 0.52) 
Sensitivity (95%CI) 0.63 (0.52, 0.74) 0.78 (0.63, 0.89) 
Specificity (95%CI) 0.61 (0.59, 0.64) 0.46 (0.43, 0.50) 
PPV (95%CI) 0.077 (0.070, 0.12) 0.08 (0.05, 0.11) 
NPV (95%CI) 0.971 (0.954, 0.974) 0.97 (0.94, 0.98) 
Likelihood (+) (95%CI) 1.66 (1.39, 1.99) 1.47 (1.24, 1.75) 
Likelihood (-) (95%CI) 0.58 (0.43, 0.78) 0.45 (0.25, 0.81) 
DOR (95%CI) 2.84 (1.78, 4.43) 3.23 (1.52, 6.87) 
H-L GOF X^2= 15.3, df= 8, p = 0.053 X^2= 15.82, df= 8, p = 0.045 
Delong’s  AUC Test D=-0.261, df=1526.8, p=0.794 
ILI C-AB Model 
Model (data) ILI C-AB (train) ILI C-AB (test) 
AUC (95%CI) 0.642 (0.59, 0.69) 0.59 (0.53, 0.66) 
Cut-off probability 0.048 0.048 
Accuracy (95%CI) 0.59 (0.57, 0.60) 0.17 (0.15, 0.20) 
Sensitivity (95%CI) 0.65 (0.56, 0.73) 0.96 (0.89, 0.99) 
Specificity (95%CI) 0.58 (0.56, 0.60) 0.12 (0.10, 0.14) 
PPV (95%CI) 0.07 (0.06, 0.09) 0.07 (0.05, 0.09) 
NPV (95%CI) 0.96 (0.95, 0.97) 0.97 (0.93, 0.99) 
Likelihood (+) (95%CI) 1.58 (1.38, 1.80) 1.09 (1.03, 1.14) 
Likelihood (-) (95%CI) 0.59 (0.46, 0.75) 0.32 (0.10, 0.99) 
DOR (95%CI) 2.66 (1.84, 3.84) 3.38 (1.05, 10.89) 
H-L GOF X^2 = 11.84, df = 8, p = 0.15 X^2 = 13.94, df = 7, p = 0.052 
Delong’s  AUC Test D = -1.09, df = 2316.6, p = 0.27 
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SM Table 2.14 Final Model for PCR and ILI population. Outcome is complication requiring 
further treatment (C-FT). 

FLU C-FT Model 
Variable OR (95% CI) 
Age: 
(per year) 1.02 (1.015, 1.03) 
Throat Physical (Normal/Abnormal) 
Abnormal 1.42 (1.03, 2.63) 
Asthma (Yes/No): 
Yes 1.67 (1.05, 2.58) 
Nasal Symptoms (Mild/Severe):  
Severe 1.43 (1.08, 1.90) 
Sore Throat (Yes/No):  
Yes 0.59 (0.43, 0.82) 
Cough (Mild/Severe):  
Severe 1.35 (0.91, 2.05) 
Myalgia (Mild/Severe):  
Severe 1.62 (1.07, 2.54) 
Fatigue (Mild/Severe):  
Severe 1.55 (0.90, 2.86) 
Chills Sweats (Mild/Severe):  
Severe 1.33 (0.90, 2.02) 
Tamiflu Rx (Placebo/75mg) 
Placebo 1.29 (0.98, 1.69) 
ILI C-FT Model 
Variable OR (95% CI) 
Age: 
(per year) 1.01 (1.002, 1.017) 
Sex (Male/Female) 
Female 1.20 (0.96, 1.50) 
Asthma (Yes/No): 
Yes 1.49 (0.933, 2.37) 
Nasal Symptoms (Mild/Severe):  
Severe 1.19 (0.95, 1.49) 
Sore Throat (Yes/No):  
Yes 0.66 (0.51, 0.86) 
COPD (Yes/No):  
Yes 1.27 (0.96, 1.68) 
Fatigue (Mild/Severe):  
Severe 2.01 (1.31, 3.23) 
Asthma or COPD Rx (Yes/No):  
Yes 1.54 (1.02, 2.28) 
Tamiflu Rx (Placebo/75mg) 
Placebo 1.25 (1.009, 1.56) 
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SM Table 2.15 Model performance in test and train data from FLU and ILI patients for 
complications requiring further treatment (C-FT) 

 FLU C-FT Model  
Model (data) FLU-FT (train) FLU-FT (test) 
AUC (95%CI) 0.66 (0.63, 0.70) 0.65 (0.60, 0.71) 
Cut-off probability 0.168 0.168 
Accuracy (95%CI) 0.65 (0.62, 0.67) 0.61 (0.57, 0.65) 
Sensitivity (95%CI) 0.58 (0.52, 0.64) 0.57 (0.48, 0.66) 
Specificity (95%CI) 0.66 (0.63, 0.68) 0.62 (0.58, 0.66) 
PPV (95%CI) 0.24 (0.22, 0.29) 0.23 (0.19, 0.29) 
NPV (95%CI) 0.89 (0.86, 0.90) 0.87 (0.84, 0.90) 
Likelihood (+) (95%CI) 1.74 (1.53, 1.97) 1.52 (1.26, 1.83) 
Likelihood (-) (95%CI) 0.62 (0.53, 0.72) 0.68 (0.55, 0.84) 
DOR (95%CI) 2.78 (2.13, 3.64) 2.23 (1.50, 3.31) 
H-L GOF X^2= 10.18, df= 8, p = 0.21 X^2= 7.85, df= 8, p = 0.44 
Delong’s  AUC Test D= -0.253 , df= 1372.7, p= 0.799 
ILI C-FT Model  
Model (data) ILI-FT (train) ILI-FT (test) 
AUC (95%CI) 0.63 (0.60, 0.66) 0.63 (0.59, 0.68) 
Cut-off probability 0.156 0.156 
Accuracy (95%CI) 0.62 (0.60, 0.64) 0.56 (0.53, 0.59) 
Sensitivity (95%CI) 0.56 (0.51, 0.61) 0.61 (0.53, 0.68) 
Specificity (95%CI) 0.63 (0.61, 0.65) 0.55 (0.52, 0.58) 
PPV (95%CI) 0.22 (0.19, 0.25) 0.21 (0.18, 0.25) 
NPV (95%CI) 0.88 (0.87, 0.90) 0.87 (0.84, 0.90) 
Likelihood (+) (95%CI) 1.55 (1.40, 1.72) 1.37 (1.20, 1.58) 
Likelihood (-) (95%CI) 0.68 (0.60, 0.76) 0.69 (0.57, 0.84) 
DOR (95%CI) 2.27 (1.83, 2.82) 1.97 (1.43, 2.73) 
H-L GOF X^2 =5.61, df = 8, p = 0.68 X^2 = 11.27, df = 8, p = 0.18 
Delong’s  AUC Test D = -0.0117, df = 2177.4, p = 0.99 
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SM Figure 2.1 Observed versus expected for FLU C-S model in the training data. 

 

SM Figure 2.2 Observed versus expected for FLU C-S model in the test data. 
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SM Figure 2.3 Observed versus expected for ILI C-S model in the training data. 

 

SM Figure 2.4 Observed versus expected for ILI C-S model in the test data. 
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SM Figure 2.5 Observed versus expected for FLU C-AB model in the training data. 

 

 

SM Figure 2.6 Observed versus expected for FLU C-AB model in the test data. 
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SM Figure 2.7 Observed versus expected for ILI C-AB model in the training data. 

 

SM Figure 2.8 Observed versus expected for ILI C-AB model in the test data. 
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SM Figure 2.9 Observed versus expected FLU-FT model in the training data. 

 

 

SM Figure 2.10 Observed versus expected FLU-FT model in the test data. 
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SM Figure 2.11 Observed versus expected for ILI-FT model in the training data. 

 

 

SM Figure 2.12 Observed versus expected for ILI-FT model in the test data. 
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SM Figure 2.13 C-S-Tree developed in the training data to predict the serious complications. 
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SM Figure 2.14 ILI C-S tree developed in the training data to predict serious complications. 
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SM Figure 2.15 FLU C-AB tree developed in training data to predict complications that require 
antibiotics. 
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SM Figure 2.16 FLU C-AB tree applied to the test data to predict complications that require 
antibiotics. 
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SM Figure 2.17 ILI C-AB tree developed in training data to predict complications that require 
antibiotics. 
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SM Figure 2.18 ILI C-AB tree applied to the test data to predict complications that require 
antibiotics. 
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SM Figure 2.19 FLU-FT tree developed in the training data to predict complications that require 
further treatment. 

 



 

147 

 

SM Figure 2.20 FLU-FT tree applied to the test data to predict complications that require further 
treatment. 

 



 

148 

 

SM Figure 2.21 ILI-FT tree developed in the training data to predict complications that require 
further treatment. 
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SM Figure 2.22 ILI-FT tree applied to the test data to predict complications that require further 
treatment. 
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APPENDIX B 

 

CHAPTER 3 SUPPLEMENTARY MATERIAL 

 

THE IMPACT OF INOCULUM DOSE ON INFECTION AND IMMUNITY OUTCOMES 

FOR INFLUENZA VIRUS 
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SM Figure 3.14: Impact of Inoculum Dose on proportion infected stratified by wild-type and 

attenuated. Weighted fit using approximate beta Poison function minimizing sum of square 

residuals SSR 

 

SM Figure 3.15: Impact of Inoculum Dose on proportion infected wild-type stratified by 

subtype. Weighted fit using approximate beta Poison function minimizing sum of square 

residuals SSR 
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SM Figure 3.16: Impact of Inoculum Dose on proportion infected wild-type stratified by 

subtype. Weighted fit using approximate beta Poison function minimizing sum of square 

residuals SSR. 

Immune ratio 

 

SM Figure 3.17: Impact of Inoculum Dose on proportion Systemic Weighted. Stratified by wild 

type vs attenuated 



 

153 

 

SM Figure 3.18: Impact of Inoculum Dose on proportion of patients with 4-fold or significant 

increase in HAI. Wild type virus stratified by subtype 

 

SM Figure 3.19: Impact of Inoculum Dose on proportion of patients with 4-fold or significant 

increase in HAI. Attenuated virus stratified by subtype 

Changes over time 

Dose 
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SM Figure 3.20: Change in Dose over Time A: Stratified by Virus Prep, B: Wild-type Stratified 

by Virus Subtype, C: Attenuated Stratified by Virus Subtype 

Mean peak titer 

 

SM Figure 3.21: Proportion Systemic over Time A: Stratified by Virus Prep, B: Wild-type 

Stratified by Virus Subtype, C: Attenuated Stratified by Virus Subtype 

Proportion Systemic 
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SM Figure 3.22: Proportion Systemic over Time A: Stratified by Virus Prep, B: Wild-type 

Stratified by Virus Subtype, C: Attenuated Stratified by Virus Subtype 

Immune response 

 

SM Figure 3.23: Proportion with significant increase in HAI titers over Time A: Stratified by 

Virus Prep, B: Wild-type Stratified by Virus Subtype, C: Attenuated Stratified by Virus Subtype 
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APPENDIX C 

 

CHAPTER 4 SUPPLEMENTARY MATERIAL 

 

VIRULENCE-MEDIATED INFECTIOUSNESS AND ACTIVITY TRADE-OFFS AND 

THEIR IMPACT ON TRANSMISSION POTENTIAL OF PATIENTS INFECTED WITH 

INFLUENZA 
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Histogram of reported activity levels 

Reported activity levels ranging from 0 to 10 with a median of 4 for those patients with a lab 

diagnosis of influenza (SM Figure 4.1) 

 

SM Figure 4.1: Histogram of reported activity levels for patients with a lab diagnosis of 

influenza. 

Correlation of symptoms reported in the main text 

Infectiousness symptom correlation 

Cough and chest congestion had a Yule correlation coefficient greater than 0.9 (SM Figure 4.2). 
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SM Figure 4.2: Correlation of infectiousness symptoms for patients with a lab diagnosis of 

influenza. 

Morbidity symptom correlation 

Vomiting and weakness had a Yule correlation coefficient greater than 0.9 (SM Figure 3). 

 

SM Figure 4.3: Correlation of morbidity symptoms for patients with a lab diagnosis of influenza. 

Sensitivity Analyses 

Correlation Cut off of 0.75 vs. 0.9 

Summary of differences 

The overall conclusions and the infectiousness score did not change at all. The morbidity score 

changed with 7 symptoms being excluded. This new morbidity score included Abdominal Pain, 

Breathlessness, Chest pain, Diarrhea, Ear Pain, Headache, Itchy Eyes, Myalgia, Nausea, 

Sleeplessness, Subjective Fever, Swollen Lymph Nodes, and Wheezing. The new morbidity score 

had a possible range of 0 to 13. 

The distribution is similar in that is centered but there is a difference in the minimum and maximum 

score (1 compared to 2 and 11 compared to 17 respectively) (SM Figure 4). The observed 
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relationship the morbidity score had between activity and infectiousness score are unchanged (SM 

Figure 4.5 and 4.6). 

Calculating new morbidity score 

The morbidity score did change. When the cut off of 0.75 was applied, seven symptoms were 

dropped. Starting with the highest correlations first: Weakness/Vomit (Q=1) keep vomit, Tooth 

pain/Headache (Q=.87) keep Headache, Headache/Eye pain (Q=.83) keep Headache, swollen 

lymph nodes/SoreThroat (Q=.81) keep SwollenLympnodes, Fatigue/Myalgia (Q=.80) keep 

BodyAches, SubjectiveFever/ChillsSweats (Q=.78) keep SubjectiveFever, Vomit/Nausea (Q=.77) 

keep Nausea. The new morbidity score includes Abdominal Pain, Breathlessness, Chest pain, 

Diarrhea, Ear Pain, Headache, Itchy Eyes, Myalgia, Nausea, Sleeplessness, Subjective Fever, 

Swollen Lymph Nodes, and Wheezing. The new morbidity score ranges from 0 to 13. 

The mean morbidity score when 0.75 was used as the cut off was 5.51, and no patients had a 

morbidity score of 0, 12, or 13 (SM Figure 4.4). The distribution is still as expected since all the 

patients felt ill enough to seek medical care, but none were sick enough to require urgent care or 

hospitalization. 

 

SM Figure 4.4: Distribution of the morbidity score. 
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Impact of morbidity score on activity 

Analysis of the association between the new morbidity score and the patient’s self-reported activity 

level suggests that higher morbidity score is associated with a reduced activity. Spearman’s rank 

correlation indicates a negative relationship 𝑟𝑟 = -0.33 (95% CI: -0.42, -0.23) and the Cochran-

Mantel-Haenszel trend test is statistically significant (𝜒𝜒2 = 36.78, 𝑑𝑑𝑑𝑑 = 1, 𝑝𝑝 < 0.01) (SM Figure 

4.5). The observed pattern is consistent and clear, with a reduction of 67% in mean activity going 

from the lowest to the highest morbidity score. 

 

SM Figure 4.5: Activity level for each level of the morbidity score. Red diamonds indicate the 

mean. The solid blue line is the linear regression fit. The shaded area is the 95% confidence 

interval for the linear regression. 

Impact of morbidity score on infectiousness score 

Analysis of the relationship between the morbidity and infectiousness scores show a positive 

correlation. Spearman’s rank correlation indicates a positive relationship 𝑟𝑟 = 0.28 (95% CI: 0.18, 

0.38) and the Cochran-Mantel-Haenszel trend test is statistically significant (𝜒𝜒2 = 25.52, 𝑑𝑑𝑑𝑑 = 1, 

𝑝𝑝 < 0.01) (SM Figure 6). Apart from the activity levels for low morbidity score values (with small 
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sample sizes), the pattern is consistent and clear, with an increase of 33% in the infectiousness 

score going from the lowest to the highest morbidity score. 

 

SM Figure 4.6: Infectiousness score for each level of the morbidity score. Red diamonds indicate 

the mean. The solid blue line is the linear regression fit. The shaded area is the 95% confidence 

interval for the linear regression. 

Analysis using all patients diagnosed with influenza 

Summary of differences 

The overall conclusions remain the same when the empirically diagnosis patients are included. 

From here on the population used to generate the results in the main text will be referenced to as 

“lab diagnosis” and the population to generate the results below will be referenced to as “any 

diagnosis” 

There were no meaningful differences in the univariate analysis (SM Table 4.2). Among patients 

with any diagnosis the most predictive multi-variate model was different then the model selected 

using lab diagnosis and included chest congestion, headache, sleeplessness, subjective fever, 

vomiting, and weakness (SM Table 4.2). Both models included 6 symptoms, and 5 of the 

symptoms are in both (headache, sleeplessness, subjective fever, vomiting, and weakness). For 
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patients with any diagnosis chills/sweats was included while chest congestion was included for the 

patients with a lab diagnosis. 

Both of the scores were different for the any diagnosis patients compared to the lab diagnosis 

patients. The infectiousness score for the any diagnosis patients included all of the possible 

symptoms (SM Figure 7, 9), compared to the lab diagnosed patients where cough was removed. 

Among the morbidity symptoms for patients with any diagnosis none were had a correlation 

greater than 0.9. Compared to the patients with a lab diagnosis were the morbidity score excluded 

weakness. Based on these results two new scores were calculated for the patients with any 

diagnosis. The infectiousness score had a possible range of 0 to 5, and the morbidity score had a 

possible range of 0 to 20. 

Using the new scores we examined the relationships of the scores between each other and activity 

levels. We again found that the infectiousness score had a weak association with reported activity, 

while the morbidity score showed a clear correlation with both the reported activity level and 

infectiousness score (SM Figures 4.11 - 4.13 ). 

Description of the population 

Influenza diagnosis for our population is determined using three different methods; a rapid antigen 

test, a PCR test, or by a physician giving an empirical diagnosis. In the main text, we considered 

any person who was diagnosed by either a rapid antigen or PCR test as having influenza. Here we 

repeat the analyses completed in the main text with the addition of patients with a diagnosis of 

influenza empirically based on symptoms. Patients with an empirical diagnosis are generally 

defined as having influenza-like illness (ILI). In total there are 716 patients with any diagnosis of 

influenza. These Patients reported activity levels ranging from 0 to 10 with a mean of 4.46. All of 
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the patients had symptoms of disease with only 16% reporting 10 or fewer. The most common 

symptom is weakness, and the least common symptom is vomiting (SM Table 4.1). 

SM Table 4.1: Out of the 716 patients included the table shows the number of patients who 

reported having the following symptoms and the corresponding percentage. 

 Overall 

n 716 

Abdominal Pain = Yes (%) 91 (12.7) 

Breathlessness = Yes (%) 287 (40.1) 

Chest Congestion = Yes (%) 398 (55.6) 

Chest Pain = Yes (%) 224 (31.3) 

Chills/Sweats = Yes (%) 589 (82.3) 

Cough = Yes (%) 646 (90.2) 

Diarrhea = Yes (%) 98 (13.7) 

Ear Pain = Yes (%) 158 (22.1) 

Eye Pain = Yes (%) 112 (15.6) 

Fatigue = Yes (%) 653 (91.2) 

Headache = Yes (%) 604 (84.4) 

Itchy Eyes = Yes (%) 179 (25.0) 

Myalgia = Yes (%) 637 (89.0) 

Nasal Congestion = Yes (%) 550 (76.8) 

Nausea = Yes (%) 254 (35.5) 

Runny Nose = Yes (%) 511 (71.4) 

Sleeplessness = Yes (%) 409 (57.1) 
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Sneeze = Yes (%) 388 (54.2) 

Sore Throat = Yes (%) 598 (83.5) 

Subjective Fever = Yes (%) 493 (68.9) 

Swollen Lymph Nodes = Yes (%) 308 (43.0) 

Tooth Pain = Yes (%) 163 (22.8) 

Vomiting = Yes (%) 79 (11.0) 

Weakness = Yes (%) 667 (93.2) 

Wheezing = Yes (%) 217 (30.3) 

Univariate and Subset Selection 

We explored the univariate correlations between activity level and each symptom. All of the 

symptoms that were statistically significantly related to activity showed a negative correlation with 

activity level (SM Table 4.2). Based on cross-validated variable selection we found that a model 

that included chills/sweats, subjective fever, headache, weakness, sleeplessness, and vomiting 

creates the most predictive model (SM Table 4.2). 

SM Table 4.2: Results of the univariate and multivariate linear regression of symptoms and 

activity. The coefficients are the estimated effect on activity when the symptom is present. The 

multivariate model was selected with a sequential forward floating selection, minimizing the root 

mean square error on test data through a 5-fold cross validation (20 times repeated). 95%CI = 

The 95% confidence interval for the coefficient. 

Dependent: Activity 

Level  Mean (sd) Coefficient (univariable) Coefficient (multivariable) 

Abdominal Pain No 4.6 (2.6) - - 

 Yes 3.8 (2.7) -0.79 (-1.37 to -0.21, p=0.008) - 

Breathlessness No 4.6 (2.7) - - 
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 Yes 4.2 (2.6) -0.37 (-0.77 to 0.02, p=0.066) - 

Chest Congestion No 4.7 (2.7) - - 

 Yes 4.2 (2.5) -0.49 (-0.88 to -0.10, p=0.013) - 

Chest Pain No 4.6 (2.6) - - 

 Yes 4.1 (2.8) -0.45 (-0.87 to -0.03, p=0.035) - 

Chills/Sweats No 6.2 (2.6) - - 

 Yes 4.1 (2.5) -2.07 (-2.55 to -1.58, p<0.001) -1.27 (-1.77 to -0.77, p<0.001) 

Cough No 4.8 (2.8) - - 

 Yes 4.4 (2.6) -0.43 (-1.08 to 0.22, p=0.196) - 

Diarrhea No 4.6 (2.7) - - 

 Yes 3.7 (2.5) -0.82 (-1.38 to -0.26, p=0.004) - 

Ear Pain No 4.5 (2.6) - - 

 Yes 4.2 (2.6) -0.35 (-0.82 to 0.12, p=0.143) - 

Eye Pain No 4.4 (2.6) - - 

 Yes 4.5 (2.6) 0.04 (-0.49 to 0.58, p=0.876) - 

Fatigue No 5.5 (2.6) - - 

 Yes 4.4 (2.6) -1.19 (-1.87 to -0.51, p=0.001) - 

Headache No 5.6 (2.6) - - 

 Yes 4.2 (2.6) -1.31 (-1.84 to -0.79, p<0.001) -0.89 (-1.38 to -0.40, p<0.001) 

Sleeplessness No 5.0 (2.7) - - 

 Yes 4.1 (2.5) -0.94 (-1.32 to -0.55, p<0.001) -0.68 (-1.04 to -0.32, p<0.001) 

Itchy Eyes No 4.5 (2.7) - - 

 Yes 4.4 (2.5) -0.05 (-0.50 to 0.40, p=0.832) - 

Myalgia No 5.5 (2.7) - - 

 Yes 4.3 (2.6) -1.15 (-1.77 to -0.54, p<0.001) - 

Nasal Congestion No 4.8 (2.6) - - 

 Yes 4.4 (2.7) -0.39 (-0.85 to 0.07, p=0.098) - 

Nausea No 4.8 (2.7) - - 

 Yes 3.8 (2.5) -0.97 (-1.37 to -0.58, p<0.001) - 

Sore Throat No 4.5 (2.7) - - 

 Yes 4.4 (2.6) -0.07 (-0.60 to 0.45, p=0.782) - 
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Runny Nose No 4.6 (2.7) - - 

 Yes 4.4 (2.6) -0.15 (-0.58 to 0.27, p=0.479) - 

Sneeze No 4.6 (2.7) - - 

 Yes 4.4 (2.6) -0.22 (-0.61 to 0.17, p=0.273) - 

Subjective Fever No 5.6 (2.5) - - 

 Yes 3.9 (2.6) -1.64 (-2.04 to -1.24, p<0.001) -0.94 (-1.35 to -0.53, p<0.001) 

Swollen Lymph Nodes No 4.5 (2.6) - - 

 Yes 4.4 (2.6) -0.09 (-0.48 to 0.30, p=0.643) - 

Tooth Pain No 4.5 (2.6) - - 

 Yes 4.2 (2.7) -0.34 (-0.81 to 0.12, p=0.145) - 

Vomiting No 4.6 (2.6) - - 

 Yes 3.1 (2.3) -1.56 (-2.17 to -0.96, p<0.001) -1.27 (-1.83 to -0.71, p<0.001) 

Weakness No 6.3 (2.5) - - 

 Yes 4.3 (2.6) -1.99 (-2.74 to -1.23, p<0.001) -0.94 (-1.66 to -0.22, p=0.010) 

Wheezing No 4.7 (2.7) - - 

 Yes 4.0 (2.5) -0.69 (-1.11 to -0.27, p=0.001) - 

Computation of Transmission and Morbidity Scores 

We used the same symptom classification presented in the main text. 

None of the symptoms related to infectiousness were correlated with each other at a level of greater 

than 0.9 (SM Figure 4.7). This result differs from that in the main text where were cough was 

excluded. A new infectiousness score was calculated for this population ranging from 0 to 5. 

Among the morbidity symptoms none had a correlation greater than 0.9 (SM Figure 8). This result 

differs from the analysis in the main text where vomiting was retained, and weakness was 

excluded. A new morbidity score was calculated for this population ranging from 0 to 20. 
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SM Figure 4.7: Correlation of infectiousness symptoms for patients with any diagnosis of 

influenza 

 

SM Figure 4.8: Correlation of morbidity symptoms for patients with any diagnosis of influenza 

The median infectiousness score is 4, and only 13 patients have an infectiousness score of 0 (SM 

Figure 9). Only 23% of patients have a score of 3 or less (SM Figure 4.9). 
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Figure 4.9: Distribution of the infectiousness score. 

The median morbidity score is 9, and no patients have a morbidity score of 0, 1, 19, 20 (SM Figure 

4.10). Such a centered distribution is expected since all the patients felt ill enough to seek medical 

care, but none were sick enough to require urgent care or hospitalization. 

 

SM Figure 4.10: Distribution of the morbidity score. 

Impact of infectiousness score on activity 

Analysis of the impact of the infectiousness score on activity suggests that the value of this score 

has a negative correlation with the activity level. Spearman’s rank correlation is 𝑟𝑟 = -0.09 (95% 
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CI: -0.17, -0.02) and the Cochran-Mantel-Haenszel trend test is statistically significant (𝜒𝜒2 = 5.94, 

𝑑𝑑𝑑𝑑 = 1, 𝑝𝑝 = 0.01) (SM Figure 4.11). This is different from the main analysis were we did not 

observe a clear relationship between activity and the infectiousness score. 

 

SM Figure 4.11: Activity level for each level of the infectiousness score. The red diamond is the 

mean. The solid blue line is the linear regression fit. The shaded area is the 95% confidence 

interval for the linear regression. 

Impact of morbidity score on activity 

Analysis of the impact of the morbidity score on activity suggests that the value of this score is 

correlated with the activity level of a patient, with higher morbidity correlating with reduced 

activity. Spearman’s rank correlation indicates a negative relationship 𝑟𝑟 = -0.32 (95% CI: -0.38, -

0.25) and the Cochran-Mantel-Haenszel trend test is statistically significant (𝜒𝜒2 = 76.04, 𝑑𝑑𝑑𝑑 = 1, 

𝑝𝑝 < 0.01) (SM Figure 4.12). There is a reduction of 80% in mean activity going from the lowest to 

the highest morbidity score. 
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SM Figure 4.12: Activity level for each level of the morbidity score. The red diamond is the 

mean. The solid blue line is the linear regression fit. The shaded area is the 95% confidence 

interval for the linear regression. 

Impact of morbidity score on infectiousness score 

Analysis of the relationship between the morbidity and infectiousness scores show a positive 

correlation. Spearman’s rank correlation indicates a positive relationship (𝑟𝑟 = 0.26 (95% CI: 0.19, 

0.32)) and the Cochran-Mantel-Haenszel trend test is statistically significant (𝜒𝜒2 = 41.66, 𝑑𝑑𝑑𝑑 = 

1, 𝑝𝑝 < 0.01) (SM Figure 4.13). Apart from the values activity levels for low morbidity score (with 

small sample sizes), the pattern is consistent and clear, with an increase of 67% in the 

infectiousness score going from the lowest to the highest morbidity score. 
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SM Figure 4.13: Infectiousness score for each level of the morbidity score. The red diamond is 

the mean. The solid blue line is the linear regression fit. The shaded area is the 95% confidence 

interval for the linear regression. 
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APPENDIX D 

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

 

ASSOCIATIONS BETWEEN RELATIVE VIRAL LOAD AT DIAGNOSIS AND 

INFLUENZA A INFECTION SEVERITY AND RECOVERY 
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Univariate results 

Pre-visit Questionnaire Table 

The pre-visit questionnaire collected data on patient-reported activity level, symptom severity, and 

symptom evolution time. Activity levels in the 24 hours prior to the survey are reported on a Likert 

scale from 0 - 10, with 0 being bedridden, and 10 being normal levels of activity. Patient’s 

symptom severity for cough, weakness, and body aches were each recorded as none, mild, 

moderate, or severe. Additionally, patients were asked to assess their symptom evolution time 

(“How long it took to feel this bad”), providing an estimate of perceived disease acuteness. Patients 

also reported the presence/absence of 27 additional symptoms (SM Table 5.1). The redacted 

previsit survey is available in the SM. 

SM Table 5.1: Pre-visit questionnaire data. 

 level Overall 

n  123 

Patient sex (%) F 69 (56.1) 

 M 54 (43.9) 

Patient age (mean (SD))  20.02 (1.50) 

Activity level (mean (SD))  4.22 (2.59) 

Days since onset (%) 0-1 53 (43.1) 

 1-2 60 (48.8) 

 3+ 10 ( 8.1) 

Intensity of aches and pains (%) None 16 (13.0) 

 Mild 36 (29.3) 

 Moderate 48 (39.0) 
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 Severe 23 (18.7) 

Intensity of cough (%) None 3 ( 2.4) 

 Mild 18 (14.6) 

 Moderate 72 (58.5) 

 Severe 30 (24.4) 

Intensity of weakness (%) None 8 ( 6.5) 

 Mild 40 (32.5) 

 Moderate 54 (43.9) 

 Severe 21 (17.1) 

Abdominal pain (%) Present 18 (14.6) 

 Not reported 105 (85.4) 

Cough (%) Present 118 (95.9) 

 Not reported 5 ( 4.1) 

Chest congestion (%) Present 79 (64.2) 

 Not reported 44 (35.8) 

Chest pain (%) Present 44 (35.8) 

 Not reported 79 (64.2) 

Chills sweats (%) Present 112 (91.1) 

 Not reported 11 ( 8.9) 

Diarrhea (%) Present 10 ( 8.1) 

 Not reported 113 (91.9) 

Ear pain (%) Present 27 (22.0) 

 Not reported 96 (78.0) 
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Eye pain (%) Present 20 (16.3) 

 Not reported 103 (83.7) 

Fatigue (%) Present 116 (94.3) 

 Not reported 7 ( 5.7) 

Subjective fever (%) Present 92 (74.8) 

 Not reported 31 (25.2) 

Hearing loss (%) Present 5 ( 4.1) 

 Not reported 118 (95.9) 

Headache (%) Present 100 (81.3) 

 Not reported 23 (18.7) 

Insomnia (%) Present 64 (52.0) 

 Not reported 59 (48.0) 

Itchy eye (%) Present 25 (20.3) 

 Not reported 98 (79.7) 

Nasal congestion (%) Present 97 (78.9) 

 Not reported 26 (21.1) 

Nausea (%) Present 48 (39.0) 

 Not reported 75 (61.0) 

Myalgia (%) Present 107 (87.0) 

 Not reported 16 (13.0) 

Runny nose (%) Present 90 (73.2) 

 Not reported 33 (26.8) 

Sore throat (%) Present 103 (83.7) 
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 Not reported 20 (16.3) 

Shortness of breath (%) Present 55 (44.7) 

 Not reported 68 (55.3) 

Sneeze (%) Present 65 (52.8) 

 Not reported 58 (47.2) 

Swollen lymph nodes (%) Present 52 (42.3) 

 Not reported 71 (57.7) 

Tooth pain (%) Present 26 (21.1) 

 Not reported 97 (78.9) 

Vomiting (%) Present 15 (12.2) 

 Not reported 108 (87.8) 

Vision change (%) Present 1 ( 0.8) 

 Not reported 122 (99.2) 

Weakness (%) Present 115 (93.5) 

 Not reported 8 ( 6.5) 

Wheezing (%) Present 50 (40.7) 

 Not reported 73 (59.3) 

Visit Data Table 

During the visit, physicians assessed the presence or absence of 29 signs and symptoms, as well 

as the duration of symptoms, but no qualitative assessment was made. Unlike the patient surveys, 

responses were not required in the EHR. As a result, we classified symptoms as present or not 

present. Each patient’s body temperature was also measured during the visit (SM Table 5.2). The 

redacted electronic health record template is available in the SM. 
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SM Table 5.2: Data captured from the electronic health record of the patient’s clinical visit. 

 level Overall 

n  136 

Patient sex (%) F 75 (55.1) 

 M 61 (44.9) 

Patient age (mean (SD))  20.01 (1.47) 

Patient temperature (mean (SD))  99.14 (1.28) 

Days since onset of symptoms (mean (SD))  2.52 (1.24) 

Abdominal pain (%) Present 4 ( 2.9) 

 Not reported 132 (97.1) 

Cough (%) Present 131 (96.3) 

 Not reported 5 ( 3.7) 

Chest congestion (%) Present 34 (25.0) 

 Not reported 102 (75.0) 

Chest pain (%) Present 13 ( 9.6) 

 Not reported 123 (90.4) 

Chills (%) Present 121 (89.0) 

 Not reported 15 (11.0) 

Diarrhea (%) Present 7 ( 5.1) 

 Not reported 129 (94.9) 

Ear Pain (%) Present 8 ( 5.9) 

 Not reported 128 (94.1) 

Eye pain (%) Present 63 (46.3) 
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 Not reported 73 (53.7) 

Vomiting (%) Present 9 ( 6.6) 

 Not reported 127 (93.4) 

Eye irritation (%) Present 5 ( 3.7) 

 Not reported 131 (96.3) 

Face pain (%) Present 5 ( 3.7) 

 Not reported 131 (96.3) 

Fatigue (%) Present 117 (86.0) 

 Not reported 19 (14.0) 

Fever (%) Present 119 (87.5) 

 Not reported 17 (12.5) 

Headache (%) Present 117 (86.0) 

 Not reported 19 (14.0) 

Joint pain (%) Present 80 (58.8) 

 Not reported 56 (41.2) 

Myalgia (%) Present 109 (80.1) 

 Not reported 27 (19.9) 

Nasal discharge (%) Present 127 (93.4) 

 Not reported 9 ( 6.6) 

Nasal congestion (%) Present 129 (94.9) 

 Not reported 7 ( 5.1) 

Nausea (%) Present 34 (25.0) 

 Not reported 102 (75.0) 
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Post-nasal drip (%) Present 37 (27.2) 

 Not reported 99 (72.8) 

Sinus pressure (%) Present 27 (19.9) 

 Not reported 109 (80.1) 

Shortness of breath (%) Present 17 (12.5) 

 Not reported 119 (87.5) 

Sore throat (%) Present 125 (91.9) 

 Not reported 11 ( 8.1) 

Sneezing (%) Present 17 (12.5) 

 Not reported 119 (87.5) 

Sputum (%) Present 17 (12.5) 

 Not reported 119 (87.5) 

Substernal burning (%) Present 63 (46.3) 

 Not reported 73 (53.7) 

Swollen lymph nodes (%) Present 14 (10.3) 

 Not reported 122 (89.7) 

Voice loss (%) Present 4 ( 2.9) 

 Not reported 132 (97.1) 

Wheezing (%) Present 17 (12.5) 

 Not reported 119 (87.5) 

Post-visit Questionnaire Table 
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The post-visit survey was emailed to patients five days after their visit (SM Table 5.3). The patient 

had 24 hours to respond and then the link expired. The outcomes included symptom resolution and 

disease impact on school and work. The redacted post-visit survey is available in the SM. 

SM Table 5.3: Patient outcomes as reported on the follow-up questionnaire. 

 level Overall 

n  115 

Patient sex (%) F 64 (55.7) 

 M 51 (44.3) 

Patient age (mean (SD))  19.97 (1.44) 

Days of work/class missed (%) 0 17 (14.8) 

 1 27 (23.5) 

 2 35 (30.4) 

 3 25 (21.7) 

 4 7 ( 6.1) 

 5 4 ( 3.5) 

Recovery from cough in 5 days (%) I did not have a cough 6 ( 5.2) 

 No improvement 8 ( 7.0) 

 Improved somewhat 56 (48.7) 

 Improved dramatically 45 (39.1) 

Days fever was present after visit (mean (SD))  1.59 (1.21) 

Symptom Score Sensitivity Analysis 

Starting with the symptoms in the total symptom scores, we removed all symptoms, which were 

at least 95% yes or no responses. We then analyzed the remaining symptoms for pairwise 
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correlation, so redundant symptoms could be removed from the scores. We calculated Yule’s Q 

value for each pair of symptoms within the two total symptom scores [1,2]. For symptom pairs 

with a Q-value greater than 0.9, the symptom with the least amount of variation in the responses 

was removed. Pairs of symptoms were compared iteratively, starting with the pair with the highest 

absolute correlation; no distinction was made between pairs with the same absolute correlation. 

When no pairs had an absolute Yule’s Q value greater than 0.9, the remaining symptoms were 

summed to create a second reduced symptom score for each patient. 

Results of reduced symptom score 

There was no apparent relationship between RVL and the physician or patient reported reduced 

symptom scores (SM Figure 5.1). The linear regression for the physician score did not show any 

significant trends (𝛽𝛽 = 0.02 (95% CI: -0.13, 0.17), 𝑝𝑝 = 0.77). Similarly, there was no apparent 

relationship between the patient reported symptom score and RVL (𝛽𝛽 = 0.01 (95% CI: -0.06, 

0.08), 𝑝𝑝 = 0.75 ). 

 

SM Figure 5.1: A: Relationship between the log10 relative viral load at diagnosis of the patients 

and the calculated reduced symptom scores, using symptoms reported by the patient. B: 
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Relationship between the log10 relative viral load at diagnosis of the patients and the calculated 

reduced symptom scores, using symptoms reported by the physician 
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