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Abstract

Light interception is a key ecological indicator that is strongly related to forest produc-

tivity. Its application has increased over the last few decades with the advent of process

based models. Evaluating light interception requires an assessment of the amount of leaves

present in a given forest plantation. This assessment is done with indirect methods such as

spectral indices derived from satellite data, that empirically relate different satellite bands

with ground based leaf area measurements. These indices are not exempt from measure-

ment error, due to the many factors affecting light reflection, refraction, and scattering in

its path between the leaves and the satellite sensor. As a result, the assumption of error

free predictors is violated, resulting in a biased estimator for leaf area. This is also known

as an error-in-variable problem. To bridge this gap, a modeling framework is presented that

account for stochastic deviations in the independent predictors, resulting in an improved

model when compared to other published research.

Leaf area, as an indicator of site productivity is a function of climate and soil factors.

Many of the relations between these environmental predictors are described through complex

relations inside process based models, with assumptions like carbon partitioning fractions,



instantaneous carbon allocation and fixed respiration costs. These models trade simplicity for

comprehensiveness, finding low acceptance from practitioners interested in operational appli-

cations. To bridge this gap, a semi-empirical model was developed to allow the description of

foliage display in loblolly pine, as a function of environmental variables. The model was able

to predict leaf area display, including a parameter responsible for foliage carrying capacity.

The model was parameterized using plot level observations from two research studies across

24 locations across the southeast US.

Finally, a mechanistic model is presented that utilizes the foliage display model and

relates it with a dominant height equation for loblolly pine. The model was fit as a system

of simultaneous differential equations using local and global parameters. The model was

able to correctly describe dominant height over age, bridging the gap between an empirical

growth and yield approach and an important ecological indicator, estimated with an unbiased

equation from satellite time series.

Index words: Loblolly pine, remote sensing, Kalman filter, environmental variables,
leaf area index, growth and yield
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Chapter 1

Introduction

1.1 Introduction

Understanding the relationships between stand productivity and the environment is essential

for developing models that relate the two components. Stand productivity, the result of

physiological processes, relates annual growth observed in plantations to the environment

that supports it. One method of estimating stand productivity uses leaf area index, the

dimensionless quantity representing the amount of one-sided leaf surface area over unit area

of soil (Allen et al., 1998; Peduzzi et al., 2012; Waring, 1983). Leaf area index is an indicator

of the ability of a stand to exchange material and energy with its environment (Grier and

Running, 1977; Vose et al., 1994). Prior studies have supported the positive relationship

between leaf biomass and productivity in loblolly pine stands (Teskey et al., 1987; Vose and

Allen, 1988; Albaugh et al., 1998; Jokela and Martin, 2000). Using the dynamic properties

of leaf area, it has been shown to respond to cultural treatments, including fertilization and

weed control, increasing the leaf area a stand can support (Colbert et al., 1990; Vose and

Allen, 1988; Dalla-Tea and Jokela, 1991; Jokela and Martin, 2000).

Forest management is traditionally an economically driven process, sometimes yielding

to auxiliary constraints such as wildlife habitat or recreation, that requires long term projec-

tions of stand attributes to define current management decisions. Typically these projections

require the modeling of a response to silvicultural activities and productivity is governed

by a stand’s estimated site index. Site index, the average height of the dominant and co-

dominant trees at a base age, serves as the integrator of all environmental processes observed

in a stand’s rotation and their effect on dominant height, projected to the selected base age.
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Inherent to this methodology is its inability to differentiate environmentally induced changes

in productivity and the lasting effects it has on a stand’s overall yield at rotation. Utilizing

a biophysical variable, such as leaf area index, to be the underlying productivity driver of

stand growth and yield systems can provide increased access to modeling scenarios in which

a changing climate alters stand level processes, effectively reorienting the growth trajectory

and associated variability (Vose and Swank, 1990; Sampson et al., 1997). The results of

this research aim to: 1) explore methods to enhance leaf area index estimation accuracy, 2)

understand the effects of environment on leaf area index across a stand’s rotation, and 3)

understand how leaf area index and light interception can be used to facilitate a dominant

height growth model.

1.2 Literature Review

While theoretical limitations of leaf area index in loblolly pine in the southeastern United

States have been predicted to be up to 5 m2/m2, field measurements have found that stands

are routinely well below these limits (Jarvis and Leverenz, 1983; Gholz, 1986). Environmental

factors, such as temperature, nutrient availability, water availability, and radiation, have been

suggested to be the limiting factors keeping observed leaf area from its theoretical limits

(Linder, 1987; Vose and Allen, 1988). Because leaf area indices for loblolly pine vary across

the natural range, it has been hypothesized that climatic differences between the sites are

the source of variability (Gholz et al., 1991; Benson et al., 1992).

Leaf area index dynamics have been proven to be influenced by several environmental

and atmospheric conditions. These conditions not only affect the maximum leaf area index

achieved in a stand, but also the seasonal variation observed (Vose et al., 1994). While

temperature has been hypothesized to be influential on leaf area index (Gholz, 1986), calls

for further research into the subject matter have been promoted due to mainly anecdotal

evidence being reported (Vose et al., 1994). Model simulations have provided evidence for

temperature influences on leaf area, showing that sites with lower nighttime temperatures

2



having lower maintenance respirations rates, increasing the available carbon for allocation to

total leaf area (Cropper and Gholz, 1994). Temperature also affects the rate of leaf occurrence

and growth, increasing up to an optimal temperature and decreasing thereafter (Monteith,

1977). Trees grown under warmer climates have been modeled to have greater leaf mass, leaf

number, and leaf area (Way and Oren, 2010). In evergreen species, these responses were not as

distinct as deciduous species, but trends continued to be positive as temperatures increased,

suggesting that many temperate forests are operating below optimal temperatures (Way and

Oren, 2010; Ryan, 2010).

Differences in leaf extension rates are shown by species in whether they are greater in

day or night temperatures, how easily accessible nitrogen is, or during light or dark periods

(McDonald et al., 1992). Additional research supported the idea that leaf area index is

affected by temperature, showing that warmer sites had a higher change in annual foliage

respiration relative to change in assimilation compared with cooler sites (Ryan et al., 1994).

Previous studies show a positive linear relationship between growth rate and radiation

interception (Monteith, 1977; Jarvis and Leverenz, 1983). Leaf area reaches its optimum

when the leaves at the bottom of the canopy can utilize radiation to, at minimum, maintain

a balance between dry matter assimilation and respiration loss (Saeki, 1959). As leaf area

increases, attenuation of photosynthetically active radiation increases, resulting in an increase

in efficiency in conversion to stemwood (McCrady and Jokela, 1998). It has been shown that

species with greater tolerances to shade are able to achieve higher peak leaf area indices

(Vose et al., 1994). In other species, it has been shown that increasing levels of radiation

increases the optimal leaf area index that maximizes growth (Black, 1963; Monsi and Saeki,

1953). Radiation is the driving force behind the seasonality seen in the natural range of

loblolly pine, affecting the day length, temperature, evaporation, and humidity (Jarvis and

Leverenz, 1983).

Increased availability of nutrients, mainly nitrogen, on limiting sites showed positive

responses in leaf area (Fox et al., 2007; Jokela et al., 2004; Samuelson et al., 2008; Gholz

3



et al., 1991; Colbert et al., 1990; Campoe et al., 2013; Vose and Allen, 1988). This increase

in leaf area index may result from the increased total number of fascicles per tree and mass

per unit length of needles that results from increased nutrient availability, needle size, total

number of needles, and decreased mortality (Gholz, 1986; Linder, 1987; Raison et al., 1992a).

Other studies have shown that in the southeast United States, nutrient availability is the

main driver of leaf area development (Fox et al., 2007). Increased leaf area may result from

changes in crown structure that have been reported on resulting from increased availability

to phosphorus at stand establishment (Jokela et al., 1989). Increasing availability of nutrients

modifies the proportion of carbon allocation between above and below ground sinks, favoring

aboveground processes (Albaugh et al., 1998; Vose and Allen, 1988; Cannell, 1989). Within

year peak leaf area index, usually achieved in August, has been shown to maintain this

positive relationship with stem volume increment and total biomass production across a

range of nutrient and water availability (Albaugh et al., 1998).

Increased water availability has been shown to increase leaf area index in coniferous forests

(Grier and Running, 1977). This relationship may be a result from increases in needle length

in response to increased water availability (Raison et al., 1992b). In response to water stress,

trees close stomata and senesce leaves, thus reducing the leaf area of a stand (Linder, 1987).

The efficiency of energy conversion is influenced by water availability, decreasing under stress

and increasing under availability until the optimum is reached (Linder, 1987). In areas with

limiting water, irrigation treatments were shown to increase the growing period for carbon

assimilation under optimal temperature conditions for eucalyptus, thus allowing for higher

rates of leaf production and ultimately higher leaf area indices (Pereira et al., 1994). In the

southeastern U.S., available water is not the most limiting resource, thus irrigation treat-

ments have shown insignificant effect on peak leaf area (Campoe et al., 2013). Interactions

between nutrient and water availability are displayed since adequate water availability is

necessary for trees to utilize available soil nitrogen (Benson et al., 1992). These interactions

have been shown to affect leaf area index in other species through effects on leaf size and
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expansion (Pereira et al., 1994). These variables and their associated effects on leaf area

all affect the amount of light intercepted by the canopy, which has been shown to have a

strong linear relationship to total biomass production (Linder, 1987; Monteith, 1977; Vose

and Allen, 1988). Cultural treatments, including fertilization, competition control, initial

planting density, and thinning, can be used to manipulate the leaf area in each stand to

promote increased growth rates. Timing is essential and the faster a stand reaches its peak

leaf area, the more growth that can occur.

With the understanding of how these environmental variables affect leaf area and ulti-

mately stand growth, process based models attempt to simulate the theoretical relationships

between the stand and its environment. Process based models have been used for decades

to promote understanding of the systems that drive growth (Running and Coughlan, 1988;

Landsberg and Waring, 1997; Sands, 2003, 2004). Process based models, in comparison to

empirically based models, are easily able to incorporate many site factors, including changes

in site conditions, insect and disease effects, and risk (Sands, 2004). FOREST-BCG incorpo-

rated leaf area index as one of its primary independent variables, used to estimate the tran-

spiration, photosynthesis, carbon allocation, respiration, and litterfall of the canopy structure

(Running and Coughlan, 1988). In their research, Running and Coughlan (1988) found that

leaf area index had different effects on the model in varying climates. One of the most

popular processed based models utilizing the dynamics controlling leaf area development in

loblolly pine stands is Physiological Principles in Predicting Growth (3-PG) (Landsberg and

Waring, 1997). This model utilizes input variable modifiers to impose the ecophysiological

constraints and established ecological constants on forest growth (Landsberg and Waring,

1997). In relation to leaf area, 3-PG utilizes environmental modifiers to impose constraints

on leaf area development in stands, thus affecting overall projected productivity. Leaf area

is also a function of allocation parameters in 3-PG, all which can be parameterized for spe-

cific species and situations. Other simulations, using process model BIOMASS, showed that
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the long-term average productivity of loblolly pine was best predicted by leaf area index as

compared with soil available water-holding capacity (Sampson and Allen, 1999).

Empirical methods, which utilize the statistical relationships between variables’ behavior

to model leaf area index development, have been developed for several agricultural species

(Korzukhin et al., 1996; Chen et al., 2014; Schultz, 1992). To predict changes in leaf area

of maize, researchers modeled leaf expansion and senescence were modeled as a function of

species variety, leaf characteristics, planting density, and fertilization rates (Chen et al., 2014).

A Vitis model utilized thermal time, canopy structure, and hedging effects to successfully

simulate leaf area development throughout the growing season (Schultz, 1992). Tesemma

et al. (2014) incorporated environmental variables in predicting the development of leaf area

index for crops, pastures, and trees in southern Australia using empirical models. Process and

empirical models can be appropriate methods for modeling different circumstances. While

process models are less variable and can be used across a wide range of conditions, when

predictions are made in a new condition, questions concerning the accuracy arise (Korzukhin

et al., 1996). A criticism of empirical methods is the lack of explanation for a given process,

only the statistical relationship between variables presented, thus extrapolation outside the

conditions is limited (Korzukhin et al., 1996). It has been shown that loblolly pine leaf area

can be fit to an empirical dynamic equation across a variety of conditions in soil fertility

and water availability (Montes, 2012). The need exists for empirical leaf area equations to

incorporate environmental variables to predict stand leaf area development in loblolly pine.

With the understanding of the importance of leaf area in relating the productivity of a site,

incorporation of leaf area into an empirical yield model may provide a better projection of

stand growth with lower variation. Understanding of the environmental variables that affect

leaf area on a site may aid in the prediction of the peak leaf a site can sustain, helping

foresters to best choose silvicultural plans on a site-specific basis.
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1.3 Rationale and Significance

Advances in the availability and ease of access to large collections of remotely sensed data

have allowed for forest practitioners and researchers to gain a better understanding of how

forested stands develop and change over time. Coupled with growth data obtained from long

term, remeasured permanent sampling plots, the ability to understand the effects of climatic

variations on forest productivity have greatly increased. The ability to estimate biophysical

variables from remotely sensed data that provide insight into the health and structure of any

given stand across the world is a powerful tool that can be used to model past, present, and

future biological and economical scenarios.

The Landsat program has provided an outstanding amount of data since it’s inception

in the 1970s. The Landsat 5 and 7 platforms have provided essentially continuous high

resolution, multi-spectral earth observation from 1984 to current (2020) on relatively short

8-16 day revisit period. The synchronicity of the specifications between these two platforms

has allowed for cross-platform analysis of the data, providing almost forty years of imagery

that can be used in long term growth and yield studies established by organizations, such

as university research cooperatives. Provisions of the Landsat program include similarities

in sensor specifications such that newer (Landsat 8) and future sensors can be used with

models designated for Landsat 5 and/or 7 through tuning and reparameterization.

Using the remotely sensed data comes with the responsibility of understanding the

assumptions and limitations to how it was observed, manipulated through processing tech-

niques, and provided to the end user. Coupled with the knowledge of modeling assumptions

in the statistical framework, using appropriate techniques to reduce or remove the effects of

observation and modeling errors is essential to formulating unbiased models.

Using growth models to understand the complex dynamics of the biophysical variables

under analysis provides a more cause and effect comprehension rather than correlation.

Growth models provide the ability to test hypotheses on the effects of external forces on

a system and to provide the long term trends that result from these scenarios outside of
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what we have observed. Using leaf area index as the productivity driver of a forest growth

system is not a new nor original idea. But with the massive sets of environmental variables,

remotely sensed imagery, and long term forest growth and yield data now widely available,

the ability to look at trends across a wide geographical range with high temporal and spatial

resolution can provide new insights or reinforce currently held beliefs to our understanding

of the uncertainty surrounding forest productivity.

1.4 Goals, Objectives, and Hypotheses

1.4.1 General Goal

To understand the effects of environmental variables on leaf area index and how that relates

to forest productivity.

1.4.2 Study objectives

1. To provide an unbiased model that estimates leaf area index in loblolly pine plantations

from satellite imagery.

(a) Hypothesis: No relationship between vegetation indices derived from remotely

sensed data and leaf area index will be identified.

(b) Methodological objective: Account for observation and process errors in the mod-

eling framework by using error invariable methods to reduce the effects of errors

on estimated parameter values.

2. To determine the influence of environmental variables on loblolly pine leaf area index

growth and development in the southeastern U.S.

(a) Hypothesis: No effect of the environment will be present on leaf area index growth

and development.
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(b) Methodological objective: Construct a mechanistic model describing leaf area

index growth and test the effects of environmental variables on the growth model.

3. To evaluate dominant height as a function of leaf area index and its interaction with

the environment.

(a) Hypothesis: No relationship between leaf area index and dominant height growth

will be identified.

(b) Methodological objective: Using a mechanistic model of leaf area index growth,

imposed environmental modifiers, and monthly solar radiation data, calculate

intercepted radiation and tests its effects on a dominant height growth model.
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Chapter 2

A Model to Estimate Leaf Area Index in Loblolly Pine Plantations in the

Southeastern United States1

1Kinane, S.M., T.J. Albaugh, D. Mishra, and C.R. Montes. To be submitted to Remote Sensing.
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Abstract

Vegetation indices calculated from remotely sensed satellite imagery are commonly used

within empirically derived models to estimate leaf area index in loblolly pine plantations

in the southeastern United States. The vegetation index data used to parameterize the

models typically comes with observation errors, resulting in biased parameters. Using error-

in-variable methods, we evaluated multiple vegetation indices, calculated errors associated

with their observations, and corrected for them in the modeling process. We found that the

normalized difference moisture index provided the best correlation with below canopy leaf

area index measurements. A nonlinear model that accounts for the fertilization status of

the stand was found to provide the best estimates of leaf area index. The analysis in this

research provides a more extensive evaluation on common vegetation indices used to estimate

leaf area index in loblolly pine plantations and a modeling framework that extends beyond

the typical linear framework used.
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2.1 Introduction

Foliage biomass is an ecological parameter often used as an indicator of forest productivity

in commercial forest plantations (Waring, 1983; Shi and Cao, 1997). Its direct determination

requires expensive destructive sampling methods that are difficult to measure and laborious

to acquire which is why practitioners turned to indirect biomass estimation methods that rely

on light reflectance as captured by remote sensing devices for its determination (Gower et al.,

1999). The increased availability of surface reflectance products has allowed for the use of

higher quality data in biophysical modeling due to the correction of atmospheric distortions,

providing more consistent and less variable data (Claverie et al., 2015; Masek et al., 2006).

Over the last two decades, use of remotely sensed data has increased as products become

more readily available, allowing commercial forest plantation managers to use it as part of

their decision making process (Flores, 2003; Fox et al., 2007; Oswalt et al., 2014; Parresol

et al., 2017). Estimates of structure, productivity, disturbance, and phenology of loblolly

pine (Pinus taeda L.) plantations are some of the applications for these data (Coleman et al.,

1990; Flores et al., 2006; Iiames et al., 2008; Iverson et al., 1989; Sivanpillai et al., 2006; Stein

et al., 2014; Yang et al., 2017). Nevertheless the application, most indirect methods aim at

estimating leaf area index (LAI). LAI, the one-sided leaf surface area over a fixed ground

area, is a biophysical parameter that has been used to understand productivity drivers in

loblolly pine stands (Vose and Allen, 1988; Albaugh et al., 1998; Peduzzi et al., 2012; Waring,

1983). LAI serves as a proxy for the processes involving intercepted photosynthetically active

radiation (PAR) and atmospheric gas and moisture exchange (Monteith, 1972; Vose and

Swank, 1990; Mahowald et al., 2016). As an indicator for stand productivity, LAI has shown

a positive correlation with stem volume increment, biomass production, site index, basal

area, and stand density index (Albaugh et al., 1998; Vose and Allen, 1988; Teskey et al.,

1987; Jokela and Martin, 2000; Gonzalez-Benecke et al., 2012; Dalla-Tea and Jokela, 1991).

Similarly, LAI is responsive to changes in resource availability due to silvicultural inputs like

fertilization (Albaugh et al., 2004; Jokela et al., 2004; Sampson et al., 2011).
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Previous models to estimate LAI from passive remotely sensed data have utilized varying

spectral, spatial, and temporal resolutions of satellite imagery and different modeling tech-

niques to estimate in situ LAI measurements (Wenze Yang et al., 2006; Qi et al., 2000;

Flores et al., 2006; Peduzzi et al., 2012; Shoemaker and Cropper, 2008). Estimation of LAI

and other biophysical parameters from satellite imagery rely on the algebraic manipulation

of spectral reflectance bands to form vegetation indices (VI) which are then used to model

ecological processes. VIs, such as the normalized difference vegetation index (NDVI) and

the simple ratio (SR), are used to separate vegetation dynamics from background processes

allowing researchers to use remotely sensed data to model the underlying biological phe-

nomena (Wang et al., 2005; Flores et al., 2006; Qu and Zhuang, 2018). To better understand

the behavior of canopy spectral reflectance as sampled from satellite imagery, we need to

start at the underlying structure of the individual leaf and the behavior of electromagnetic

energy. Whether it is reflected, absorbed, or transmitted, the behavior of electromagnetic

energy in a specific wavelength depends on the surface with which it interacts (Curran, 1980).

At the individual leaf level, physiological properties, including cell structure, concentration

of pigments, air, and water within the leaf determine the reflectance behavior (Knipling,

1970). When scaled to the canopy level, orientation and concentration of leaves, type and

concentration of background matter, and the angle of illumination affect reflectance behavior

due to the potential for shadows (Knipling, 1970). With these sources of potential variation

in mind, measuring leaf and canopy reflectance to estimate biophysical parameters must take

advantage of known spectral responses to remove noise. One common source of variation in

spectral reflectance is a function of the atmospheric scattering which vary spatially and tem-

porally (Masek et al., 2006; Roy et al., 2016). To reduce the effects of these perturbations,

surface reflectance data in satellite imagery is created from top of atmosphere reflectance

using radiative transfer models and information about atmospheric variables to correct for

absorption and scattering of radiation as it passes through the atmosphere (Vermote et al.,

1997). Furthermore, variations in sensor and solar angles can lead to directional effects in the
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observed reflectance values (Roy et al., 2016). These effects can be reduced using ansiotropic

functions, such as the bidirection reflectance distribution function (BRDF), to normalize all

the pixels in a image to nadir reflectance. After outside influences of radiation are corrected,

VIs such as NDVI work by associating known reflectance characteristics, such as high absorp-

tion of visible light and high reflectance of near infrared, to build ratio equations that relate

in situ conditions to remotely sensed estimates (Knipling, 1970; Rouse et al., 1974). In this

case, NDVI provides an estimate of the sample area chlorophyll concentration from healthy,

green vegetation having high reflectance rates for near infrared and high absorption rates for

green visible light.

Other considerations for developing a prediction model based on remotely sensed data

include selection of a VI that best relates in situ conditions to the dependent variable. VIs

commonly suffer from saturation effects in densely vegetated stands where light in the red

bands is absorbed by chlorophyll resulting in losses of sensitivity in sites with LAIs greater

than 2 (Huete et al., 1997; Huete and Justice, 1999; Mutanga and Skidmore, 2004). To

avoid issues with saturation, (Gitelson et al., 1996) recommended the use of VIs constructed

without bands in the red portion of the spectrum. Other considerations for selection of a

VI include the ability to differentiate changes in leaf physical properties (i.e. changes in

concentration of pigments due to stress) and changes in amount of leaf area (i.e. reduction

of foliage biomass, increasing amount of background reflectance) (Knipling, 1970).

The most commonly used model for predicting loblolly pine LAI in the southeastern

United States utilized a linear model framework and the simple ratio vegetation index (Flores

et al., 2006). In spite of the large coefficient of determination found for the model in (Flores

et al., 2006), some sources of error were omitted in model development that influence its

practical application. These errors include data acquisition errors in the sensors and pro-

cessing errors from geometric or radiometric rectifications which lead to biased predictions

(Flores et al., 2006; Lunetta et al., 1991; Fernandes and G. Leblanc, 2005). Curran and

Hay discussed the inadequacies of simple regression for remote sensing modeling resulting
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from violation of the measurements without errors assumption, and when that assumption is

violated, parameter estimates will be underestimated (Curran and Hay, 1986). To overcome

this limitation, parametric and non-parametric techniques, including modified least squares,

Thiel-Sen, and Simulation-Extrapolation (SIMEX), have been used to quantify and reduce

measurement error effects (Fernandes and G. Leblanc, 2005; Cook and Stefanski, 1994)

SIMEX was chosen as the methodology to solve this errors-in-variables issue due to

its heuristic based approach for reducing biased parameters (Ponzi et al., 2019). SIMEX

permits flexibility in modeling because it does not require specifying an error structure

model or a ranking of groups (Ponzi et al., 2019; Fernandes and G. Leblanc, 2005). SIMEX,

a simulation-based, error invariant method of manipulating the estimated model parameters

to reduce the effects of measurement errors, can reduce bias in models with measurement

error-prone variables (Cook and Stefanski, 1994; Misumi et al., 2017; He et al., 2007). One

method for obtaining initial estimates of the measurement variance is through the use of the

Kalman filter. The Kalman filter, a recursive algorithm for data processing, provides mean

and variance estimates of a known process under the influence of process and measurement

errors through an iterative modeling process (Kalman, 1960; Maybeck, 1979; Montes, 2012).

The objective of this research was to develop an unbiased satellite-to-LAI calibration

model using Landsat 5 and 7 images, and to test different spectral indices in their ability

to predict Li-Cor 2000 Plant Canopy Analyzer LAI values. The novelty of this research was

using error-in-variable methods to correct for the quantified measurement error associated

with an observation on the model parameters.

2.2 Methods

2.2.1 Study Site

For this study, we used leaf area index measurements taken at the Southeast Tree Research

and Education Site (SETRES) study. The study was established in 1992 on a loblolly pine

plantation in Scotland County, North Carolina with an initial density of 1,667 trees per
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hectare (2 m x 3 m spacing). A total of sixteen 50 m x 50 m treatment plots were installed to

cover four replications of a 2 x 2 factorial of irrigation and fertilization (Albaugh et al., 1998).

Individual plot LAI measurements were made using a Li-Cor 2000 Plant Canopy Analyzer

from March 1992 to September 2004 for a total of 1673 samples (Albaugh et al., 1998; Li-

Cor, 1991). The age range covered by the in situ LAI measurements was between 7 and 20

years old. Treatments applied to the study site included complete continuous mechanical and

chemical competition control. The fertilization treatment applied was determined by foliar

analysis to maintain predefined foliar concentrations of nitrogen, phosphorus, potassium,

calcium, magnesium, and boron as needed (Albaugh et al., 1998). The irrigation treatment

consisted of additional water added to the plot in excess of naturally occurring precipitation

via plot level irrigation system to maintain targeted soil water content (Albaugh et al., 1998).

Further details of the fertilization and irrigation treatments can be seen in Albaugh et al.

(1998). There were four replicates of each treatment of the fertilization by irrigation factorial

design.

2.2.2 Satellite Data

Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)

imagery were selected for this study due to the temporal overlap between in situ measure-

ments and image dates. Landsat Level-1 Tier 1 products were used to ensure the highest

radiometric and geometric calibration across sensors for time-series analysis. The Landsat

Level-1 Tier 1 products were atmospherically corrected to provide surface reflectance data,

correcting for atmospheric distortions and allowing for the comparison with the in situ mea-

surements (Masek et al., 2006). U.S. Geological Survey (USGS) Landsats 5 and 7 Surface

Reflectance Level 1 Tier 1 data were queried in the Google Earth Engine from January 1,

1991 to December 31, 2005 (Gorelick et al., 2017). Nadir BRDF-adjusted reflectance values

were calculated using the c-factor approach to provide temporal and geographic consistency

across the thirteen years of observation (Roy et al., 2016). Data were further filtered to
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remove cloud and shadow anomalies based on quality assurance bands and excessive hazi-

ness based on the atmospheric opacity band. Using individual polygons for the 16 study

plots, the weighted average of the within plot pixel values was calculated and returned.

Above canopy satellite observations were paired to the in situ LAI estimates by matching

observation dates. To account for the below canopy in situ LAI measurements that did not

have matching satellite imagery sample dates, the four most previous and the four following

satellite observations were subset and fitted with a thin plate spline. The thin plate spline was

weighted by the associated standard deviation of the plot level reflectance summarization.

The interpolated VI estimates and associated interpolation standard errors were extracted

from the thin plate spline model for the in situ observation date. Using the interpolated and

matched values, multiple vegetation indices were calculated using the individual band values

for the polygons (Table 2.1) and fit to the paired in situ LAI estimate in a simple linear

model form.

2.2.3 LAI Estimation Model Building

The model used the annual peak leaf area index (pLAI) values for each plot (Figure 2.1).

The pLAI values, which typically occurred in August or September of any given year in the

study, were identified and subset at the individual plot and year level to provide a series

of pLAI values for each of the 16 plots, for a total of 208 pLAI observations. The pLAI

data were randomly split into individual training (n=156) and validation (n=52) sets. Using

the selected VI and observed pLAI, several linear, segmented, and nonlinear models were fit

to the training data using the maximum likelihood framework (Table 2.2). Two segmented

regression models were fit to the data set (Models 2 and 3, Table 2.3). These segmented

models included a linear and non-linear component, joined at a common point (θ) such that

the line is continuous and smooth. Additional variables were included in the model form to

test performance. The variance structure was assumed to be non-constant for all but two

models, Models 0 and 2 (Table 2.2). Model selection was based on information criterion
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(Akaike’s and Bayesian) and minimizing root mean square error (RMSE). During the model

testing and diagnostics procedures, one pLAI observation was found to be highly influential

and was removed from the training pLAI data set (n=155).

2.2.4 Measurement Error Estimation

To estimate the amount of measurement error associated with the selected VI, the Kalman

filter was used to step through the individual plot level observations to determine the amount

of error associated with the measurements and selected model. The selected VI values were

fit to a three-parameter logistic equation (Equation 2.1) to model the overall trend of the

asymptotic VI development observed at the plot level (Montes, 2012):

V (t) =
α

1 + e(
β−t
γ

)
(2.1)

Where α is the asymptotic maximum value for VI, β is the location parameter for rate

increase, and γ is the shape parameter of the relation, t is time, and V is the VI. The Kalman

filter utilized the algebraic differenced form of the equation (Equation 2.2) to provide one

step ahead estimates of VI for data with different starting points:

V (t+ i) = V (t) ∗
α

1 + e
(
β−t
γ )

α

1 + e
(
β−(t+i)

γ )

(2.2)

The generalized form of model was used to incorporate process error into the formula:

V (tn) ∼ N

 V (t) ∗

α

1 + e
(
β−tn−1

γ )

α

1 + e
(
β−tn
γ )

, σ2
proc

 (2.3)

Using the generalized formulation (Equation 2.3), the VI for time n was projected using

initial starting parameters, followed by an updated variance estimate. A new VI measurement

was observed and input into the system. The observed measurement and projected estimate

were assimilated, weighted by the inverse of their variances. The assimilated value was the

new estimate of VI and the process was repeated by projecting it forward in time along
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with a variance update until the next VI observed measurement time. The recursive process

was repeated until the system state was optimal given a set of constraints, which in this

case minimized the negative log-likelihood. Output from the Kalman filter included updated

estimates of the equation parameters in addition to estimates of the process and observation

error.

2.2.5 Bias Correction

To correct for the effects of measurement error on the parameter estimates from VI obser-

vations, an error invariable approach was used to account for the fact that observations in

the analysis come with errors. The Kalman filter estimate of observation error associated

with the selected VI time series for all 16 plots was used in conjunction with the interpo-

lation errors in the SIMEX algorithm to correct for bias in the initial model parameters.

SIMEX works with two main steps, a simulation step and an extrapolation step. Using the

initial estimate of measurement variance and fitted parameters, SIMEX simulates increasing

amounts of variance in the data and re-parameterizes the model. After several iterations of

re-parameterizing the model with inflated variance, SIMEX extrapolates across the estimated

(and biased) parameters to find the parameters with no variance (Cook and Stefanski, 1994;

Misumi et al., 2017). To implement the SIMEX algorithm, the selected model and framework

were refit with modified observations simulated to represent the inflated observation error

estimate (Lederer and Seibold, 2013). To create these modified observations, synthetic noise

(U∗(λl)) was generated following U∗(λl) ∼ IID N(0, λlσ
2) and was added to the observation

(Lederer and Seibold, 2013). The values for λl ranged from 0 to 2 and were used to weight the

amount of generated noise being added to the observation. A total of twenty steps between

0 and 2 were simulated 1000 times each for λl. After simulating the observation error infla-

tion, the refit coefficients were averaged for each λl and plotted against the observation error

values. A quadratic linear model was fit to correlate the new coefficient values to the λl.
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The unbiased estimates were then extrapolated from the trend to the value of -1, as if the

observations were measured completely without error.

To evaluate the robustness of the methodology and the predictive power of the model, the

SIMEX parameter estimates were used to calculate mean square error (MSE) on the training

data set and mean square prediction error (MSPR) on the validation data set. If MSE and

MSPR comparisons are reasonable, the methodology is repeated with a combination of the

two data sets.

To compare the proposed model to the current industry standard for LAI estimation from

Landsat 5/7 imagery, the same procedures for handling in situ LAI measurements without

exact satellite imagery matches were followed, Landsat 5 and 7 Top of Atmosphere (TOA)

data were queried, matched, and interpolated to find corresponding SR values. Using the

Flores et al. (2006) model, LAI was estimated and compared to observed LAI.

2.3 Results

2.3.1 Relationship between leaf area index and vegetation indices

A total of 1673 measured observations were used to test the relationship between in situ LAI

and the individual vegetation indices. Of the 1673 observations, 1546 did not have exact day

matches between in situ LAI measurements and satellite imagery (92%). The VI with the

highest correlation with LAI was the normalized difference moisture index (NDMI), with a

value of 0.765, indicating a strong positive relationship, followed by simple ratio 2 (SR2),

-0.756, and the simple ratio (SR), 0.735 (Figure 2.2). When fitted to the 1673 observations,

the relationship between NDMI and LAI had an adjusted R2 of 0.6172 (Figure 2.3). For

this study, we shifted NDMI by one to be in the positive domain. September (n=125) and

August (n=54) had the highest frequency of pLAI values (Figure 2.1).

Little improvement was observed in model performance as order increased and form

changed as compared to the simple linear model until the treatment variable was included

(Table 2.3). The model that best predicted pLAI based on lowest AIC, BIC, and RMSE using
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was Model 9 (Table 2.3, Figure 2.4). In addition to including NDMI, Model 9 included an

indicator variable for FERT, referring to the optimum nutrition treatment that was applied

to the fertilization and combination plots. With FERT in the model, a slight curvilinear

relationship between NDMI and LAI was observed in the unfertilized plots (Figure 2.4).

The fertilized plots maintained an overall linear relationship between the two variables, with

higher expected LAI for a given NDMI as compared to the unfertilized plots.

The addition of FERT into the model improved performance as seen by reductions in

AIC and RMSE (Table 2.3). Using Model 6 as an example, the addition of FERT (Model 7)

reduced RMSE by 0.0877 units of LAI, decreasing the AIC from 221.74 to 173.42. A further

reduction in AIC and RMSE occurred from the change in how FERT was incorporated into

the model (Table 2.3). Model 9 used a nonlinear function of the VI to model the effect of

FERT rather than as a constant, reducing the overall RMSE to 0.3947 and AIC to 163.15

(Table 2.3).

Estimated observation error for the individual treatments were combined following addi-

tive error propagation protocol to a final estimate of 0.0019 units NDMI (σ2
obs). The SIMEX

algorithm modified and unbiased the intercept and slope coefficient values to reduce the

effects of measurement error in the NDMI model (Figure 2.5). The effects of increasing the

amount of measurement error, or noise, on the individual parameters influenced how the

parameters behaved, with well-defined trends in not only the mean value from the simula-

tions, but also in the distribution of the parameter values in the simulations. For example,

for β0, as λ increases from 0 to 2, the mean estimates for β0 increase from approximately

-4.12 to -2.91 while standard deviations increased from approximately 0.04 to 0.10 (Figure

2.5).

The calculated training dataset MSPR was 0.1431, and smaller than the calculated MSE

on the training data set (0.1651), indicating that the model provided reasonable predictions.

The combined model including the training and validation data (n=207) provided the final

model with unbiased parameters:
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LAI =
−4.520 + 4.930 ∗ NDMI +

(
0.271 ∗ NDMI1.816

)
∗ FERT

1 − 0.149 ∗ NDMI
(2.4)

With a model for the associated errors:

SD(LAI) = 0.156∗NDMI0.165 (2.5)

Residual analysis for the model showed no heteroscedasticity and no obvious bias com-

paring predicted and observed LAI across all observed levels of LAI (Figures 2.6 and 2.7).

The final MSE for the unbiased model was 0.1748 units of LAI (m2/m2) and RMSE was

0.4181 units of LAI (m2/m2).

Comparisons to the Flores et al. model showed an overall underprediction of LAI as

compared to the observed, with a calculated RMSE of 1.47 (Flores et al., 2006) (Figure 2.7.

2.4 Discussion

NDMI was a better predictor of LAI in loblolly pine plantations in the southeastern United

States when compared to more commonly used vegetation indices, such as NDVI and SR,

supporting the findings by Blinn et al. (2019). Whereas literature has supported the use of

NDMI to predict vegetation density and canopy moisture, Horler and Ahern (1986) hypothe-

sized that the shortwave infrared band reflectance is more sensitive to shadows in the image,

warranting further investigation of the various influences of canopy geometry on NDMI

(Hardisky et al., 1983). NDMI, calculated by the difference ratio between near infrared

(0.76-0.90 µm) and shortwave infrared (1.55-1.75 µm) bands, was a good predictor of live

leaf biomass, total aboveground biomass, leaf moisture, and canopy moisture in other species

(Tucker, 1980; Hardisky et al., 1983; Gao, 1996; Ahamed et al., 2011). Compared with the

near infrared band’s propensity to be reflected by the canopy, the shortwave infrared band

wavelengths are absorbed by water, providing a measure of water (or moisture) content on

the surface of interest (Wilson and Sader, 2002; Cibula et al., 1992). The shortwave infrared
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band is sensitive to vegetation density in forests and to total biomass (biomass and necro-

mass), which is what plant canopy analyzers, such as the Li-Cor 2000, are influenced by in

their measurements of intercepted light (Horler and Ahern, 1986). It is important to make the

distinction that while LAI was the biophysical variable under analysis in this research, limita-

tions of the plant canopy analyzer include not separating out leaf area from additional plant

matter, so plant area index may be the more appropriate designation. Optimum nutrition

management influenced the behavior of the vegetation indices. Changes in the relationship

between the VI and LAI when under optimum nutrition management may be a result of the

increased photosynthetic capacity of the canopy, changes in leaf morphology, or allometric

changes within stand (Maier et al., 2008; Gough et al., 2004; King et al., 1999). Physical

or physiological changes, such as transpiration, chlorophyll concentrations, foliar elemental

concentrations, radiation use efficiency, or leaf size and orientation may be the driving force

behind the fertilization effect (Al-Abbas et al., 1974; Knipling, 1970; Martin and Jokela,

2004; Wightman et al., 2016; Gough et al., 2004). In other crops, a fertilization effect on

plant spectral reflectance properties has been observed in the near infrared and middle

infrared wavelengths, with increases in reflectance for the middle infrared and decreases for

the near infrared when nitrogen fertilization had been applied (Walburg et al., 1982; Ahlrichs

and Bauer, 1983; Hinzman et al., 1986). Using the study level average reflectance for plots

receiving (1) and not receiving (0) fertilization treatments, our study showed similar results,

with decreased reflectance of the middle infrared band (Band 5 in Landsat 5 and 7), and

increased reflectance in in the near infrared (Band 4) (Figure 2.10).

Using error invariable methods to correct for observations with error is a necessary step

to provide unbiased estimators for modeling remotely sensed data. The SIMEX algorithm

provided a flexible method for estimating the effects of increasing amounts of error on the

individual parameters for the selected model, allowing for the extrapolation of the trend to

find the value of the unbiased parameter. Including the estimated error for the interpolated

values due to temporal misregistration and the overall process error were two ways to account

29



for the several sources of error that may affect remotely sensed data (Curran and Hay, 1986).

Overall, estimated errors from the Kalman filter and thin plate spline interpolations were

relatively low, resulting in a slight change in model fit (Figure 2.8). Accounting for the errors

in remotely sensed data provides the means to avoid violating the basic assumptions of linear

modeling and reduces the influence of error prone variables.

While the data in this study come from a relatively small geographical area, the high tem-

poral sampling provided a great number of LAI observations for the 16 plots. It is important

to note that the treatments applied in this study are not considered operational for loblolly

pine plantations in the southeastern U.S. Consequently, our results may not well represent

the relationship between remotely sensed VIs and observed LAI measurements in opera-

tional settings. The long timeline of this study may also introduce errors due to orbit drift

in Landsat 5 for which we did not explicitly manage (Zhang and Roy, 2016; Roy et al.,

2020). The study plots were relatively small compared to the pixel size used by Landsat

imagery. The 50 m by 50 m measurement plot size did not allow for adequate sampling of

the 30 m Landsat pixels to reduce spatial autocorrelation between pixels, for which a 3 by

3 pixel sampling area is recommended (Curran and Hay, 1986). New sensors with higher

resolution imagery will provide better sampling of the small study plots typically used for

forestry research and should avoid this issue. While the weighted average of the pixels falling

within the study plot were used to calculate the VIs, a further potential source of errors may

come from interference in reflectance from areas surrounding the study plot under evalua-

tion. Results from Cohrs et al. (2020) corroborate the general underprediction of the LAI

model in Flores et al. (2006), thus the model presented in this research (Equation 2.4) should

provide an update to sites relying on legacy data from Landsat 5 and 7 ETM+.

2.5 Conclusions

Overall we identified NDMI as the best VI for predicting LAI in loblolly pine plantations in

the southeastern United States using Landsat 5 and 7 surface reflectance data. A model form
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including an indicator variable for optimum nutrition management was the best framework

for modeling the relationship between NDMI and LAI. SIMEX probed to be an effective

methodology for reducing the effects of measurement error associated with the VI on the

final parameter estimates.
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2.8 Tables and Figures
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Table 2.1: Vegetation indices evaluated in the analysis. Near-infrared (NIR), band 4 in Landsat 5 and 7 ETM+; Shortwave-
infrared (SWIR), band 5 in Landsat 5 and 7 ETM+; Shortwave-infrared 2 (SWIR2), band 7 in Landsat 5 and 7 ETM+

Vegetation Index Equation Source
Normalized Difference
Moisture Index (NDVI)

NIR−Red
NIR+Red

(Rouse et al., 1974)

Simple Ratio
(SR)

NIR
Red

(Chen and Cihlar, 1996)

Simple Ratio 2
(SR2)

SWIR
NIR

(Shibayama et al., 1999)

Enhanced Vegetation Index
(EVI)

2.5 ∗
(

NIR−Red
NIR+6∗Red−7.5∗Blue+1

)
(Huete et al., 2002)

Soil Adjusted
Vegetation Index (SAVI)

1.5 ∗ NIR−Red
NIR+Red+0.5

(Huete, 1988)

Modified Soil Adjusted
Vegetation Index (MSAVI)

2∗NIR+1−
√

(2∗NIR+1)2−8∗(NIR−Red)

2
(Qi et al., 1994)

Normalized Difference
Moisture Index (NDMI)

NIR−SWIR
NIR+SWIR

(Hardisky et al., 1983)

Normalized Burn Index
(NBI)

NIR−SWIR2
NIR+SWIR2

(Key and Benson, 2006)

Chlorophyll Index Green
(CIG)

NIR
Green

− 1 (Gitelson et al., 2003)

Modified Chlorophyll Absorption
in Reflectance Index (MCARI)

1.2 ∗ (2.5 ∗ (NIR− Red)− 1.3 ∗ (NIR−Green)) (Haboudane, 2004)

Modified Chlorophyll Absorption
in Reflectance Index 2 (MCARI2)

1.5 ∗
(

2.5∗(NIR−Red)−1.3∗(NIR−Green)√
(2∗NIR+1)2−(6∗NIR−5∗

√
Red−0.5)

)
(Haboudane, 2004)

Pan Normalized Difference
Vegetation Index (PanNDVI)

NDVI−(Blue+Green+Red)
NDVI+(Blue+Green+Red)

(Wang et al., 2007)

Green Ratio
Vegetation Index (GR)

NIR
Green

(Gitelson et al., 2002)
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Table 2.2: Model forms and error structure evaluated using the normalized difference moisture
index (NDMI) to predicted leaf area index (LAI). An indicator variable, FERT, is used to
denote if the area under evaluation is under optimum nutrition management (1) or not (0).
Model Number Model Form Error Model

0 yi = β0 + β1 ∗ NDMI ρ

1 yi = β0 + β1 ∗ NDMI ρ1 ∗ NDMIρ2

2 yi =

{
β0 + β1Xi if Xi ≤ θ
γ0X

γ1
i if Xi > θ

ρ

3 yi =

{
β0 + β1Xi if Xi ≤ θ
γ0X

γ1
i if Xi > θ

ρ1 ∗ NDMIρ2

4 yi = β0 + β1 ∗ NDMIβ2 ρ1 ∗ NDMIρ2

5 yi = β0 + β1 ∗ NDMI + β2 ∗ NDMI2 ρ1 ∗ NDMIρ2

6 yi = β0+β1∗NDMI
1+β2∗NDMI ρ1 ∗ NDMIρ2

7 yi = β0+β1∗NDMI+β2∗FERT
1+β3∗NDMI ρ1 ∗ NDMIρ2

8 yi = β0 + β1 ∗ NDMI + β2 ∗ NDMI2 + β3 ∗ FERT ρ1 ∗ NDMIρ2

9 yi = β0+β1∗NDMI+(α1∗NDMIα2 )∗FERT
1+β2∗NDMI

ρ1 ∗ NDMIρ2
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Figure 2.1: Peak leaf area index values for the sixteen plots. Peak leaf area index typically
occurred in August or September of any given year.

Table 2.3: Associated fit statistics and evaluation criteria for the models evaluated using the
training data (n=155). Negative log-likelihood (-loglik).

Model Number AIC BIC RMSE Bias -LogLik
Number of
Parameters

0 227.74 236.87 0.4948 2.05E-07 110.87 3
1 225.13 237.30 0.4954 -0.00117 108.57 4
2 233.94 249.16 0.4983 -0.00421 111.97 5
3 227.14 245.40 0.4993 -6.99E-05 107.57 6
4 223.92 239.14 0.4947 2.15E-05 106.96 5
5 223.60 238.81 0.4948 -1.74E-05 106.80 5
6 224.46 239.68 0.4950 -4.29E-05 107.23 5
7 176.74 195.00 0.4118 -0.0004 82.37 6
8 175.83 194.09 0.4136 7.34E-03 81.91 6
9 167.82 189.12 0.3988 8.28E-04 76.91 7
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Figure 2.2: Correlation matrix for selected vegetation indices under analysis and their rela-
tionship to in situ leaf area index (LAI) for the SETRES data. Normalized difference moisture
index (NDMI); simple ratio - 2 (SR2); SR (simple ratio); modified chlorophyll absorption in
reflectance index 2 (MCARI2), normalized burn ratio (NBR); normalized difference vegeta-
tion index (NDVI); soil adjusted vegetation index (SAVI); modified soil adjusted vegetation
index (MSAVI). Axis values are determined by the units for LAI (m2/m2) and for the vege-
tation indices. Where the variable on the x and y axis is equivalent, the distribution of values
is returned.

47



●● ●

●
●

● ●
●

●● ●
●
●●●●

●
●

●●
●

●
●●

●
●●

●
●
●●

●
●●

●●
●

● ●●●
●

●
●

●●● ●● ●●
●

● ●

●
● ●

●

●

●

●
●
●

●

● ●●
●●

● ●●
●

●

● ●●
●

●

●
● ●

● ●●
●

●●
●

●

●
●

● ●
● ●

●
●

● ●
●

●

●●
●

●●

●●
●●

●

●

●

● ●●

●

●●

●

●
●

●● ●

●

●

● ●

●

●
●

●

●
●

●

●● ●

●●

●
●

●
●

●●●

●

●
●

●

●●

●●●

●
●

●
●

●

●●

●

●
●

●

●
●

●
●●

●

●

●●

●●
●

●

●●

●

●
●

●

●●

●
●

●●

●
●

●

●

● ●

●

●●

●●●

● ●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●●

●

●●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●●

●
●

●

●

●
●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●
●

●

●

●●

●

●

●

●

●
●

●

● ● ●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

●●

●

●

● ●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

● ●

●

●

●●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

● ●

●
●

●

●

●●

●●

●

●

●
●

●
●

● ●

●
●

●

●

●●

●●

●

●

●
●

●●

●
●

●
●

●

●

●●

●
●

●

●

●●

●
●

● ●

●
●

●

●

●
●

●●

●

●

●●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

● ●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

● ●●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

● ●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

● ●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

0.9 1.0 1.1 1.2 1.3 1.4 1.5

0
1

2
3

4

Normalized Difference Moisture Index

Le
af

 A
re

a 
In

de
x 

 (m
2  / 

m
2 )

Figure 2.3: Relationship between the normalized difference moisture index and leaf area index
data fit to a simple linear model for all observed measurement points (n=1673). Adjusted
R2 for this relationship was 0.5837 and root mean square error was 0.5049.
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Figure 2.4: Model 10 fit using the unbiased parameters estimated using the SIMEX method-
ology.
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Figure 2.6: Studentized residuals for predictions.
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Figure 2.7: Predicted vs. measured leaf area index from the SIMEX bias corrected model.
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Figure 2.8: Comparison of the unbiased and biased model fits for the unfertilized (FERT =
0) model.
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Figure 2.9: Trend comparison for LAI and NDMI for the SETRES data across the ages of
observation. PLOTID indicates the (replication) - (treatment), where treatment 1 = control,
2 = irrigation only , 3 = fertilization only , and 4 = irrigation x fertilization.
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Chapter 3

Influence of Environmental Variables on Leaf Area Index in Loblolly

Pine Plantations1

1Kinane, S.M., M. Zapata, B.P. Bullock, R.L. Cook, D. Mishra, and C.R. Montes. To be sub-
mitted to Agricultural and Forest Meteorology.
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Abstract

Variation in radiation interception is a considerable source of the variability observed in

forest productivity. Leaf area index is an important biophysical variable that serves as the

surface in which energy is exchanged in the canopy. To adequately capture the variability in

radiation interception, we proposed a model that describes leaf area index growth in loblolly

pine plantations in the southeastern United States using a delayed differential equation

and periodic coefficients to enforce the seasonality of resource availability. Furthermore,

productivity modifiers were incorporated to test the effect of different environmental variables

on capturing additional variability observed in leaf area index time series. Monthly maximum

temperature and monthly excess water were found to influence the leaf area index of stands

and modifiers were included improve overall model performance.
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3.1 Introduction

Variability in forest productivity has largely been attributed to the variation in radiation

interception (Monteith, 1972; Grier and Running, 1977; Jarvis and Leverenz, 1983; Vose

and Allen, 1988; Leverenz and Hinckley, 1990). Substantiating the variability in radiation

interception is a multifaceted issue; with potential changes being driven by the environment

(Vose et al., 1994; Dougherty et al., 1995), phenology (Vose et al., 1994), stand composi-

tion (Pretzsch, 2014), crown structure/architecture (Leverenz and Hinckley, 1990; Stenberg

et al., 1994; McCrady and Jokela, 1998; Falster and Westoby, 2003; Niinemets et al., 2004;

Binkley et al., 2010; Duursma et al., 2012), species (Chmura and Tjoelker, 2008), genotype

(Jayawickrama et al., 1998; Chmura and Tjoelker, 2008), or silvicultural practices (Vose

and Allen, 1988; Zhang et al., 1997; Will et al., 2005; Chmura and Tjoelker, 2008; Campoe

et al., 2013). While other factors, such as light use efficiency and available photosynthetically

active radiation, are necessary components in determining a forest’s productivity (Martin

and Jokela, 2004; Reich, 2012), leaf area index (LAI) is a popular subrogate for radiation

interception due to its ecological significance as the surface that energy, carbon dioxide, and

oxygen are exchanged between the environment (Grier and Running, 1977; Vose et al., 1994;

Dougherty et al., 1995) and its ability to be estimated using readily available remotely sensed

data (Badhwar and MacDonald, 1986; Spanner et al., 1990; Chen and Cihlar, 1996; Flores

et al., 2006; Peduzzi et al., 2012; Savoy and Mackay, 2015; Blinn et al., 2019). LAI is the

single-sided sum of the leaf surface area per unit ground area (m2/m2) and has been used

in process models to assist in modeling energy fluxes, most successfully with physiological

responses to climate (Running et al., 1989). Solar radiation is an essential source of energy

for many biological processes and governs plant growth and development.

In regards to loblolly pine (Pinus taeda L.), the concentration of leaf area in a stand at

any given time is a function of stand structure, nutrient availability, annual phenology, and

environmental trends pertaining to the current year’s leaf biomass and, further complicating

the matter, the same trends’ effects in the year prior due to the carryover of the newest age
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class of needles (Dougherty et al., 1995). Structure of the stand has a fundamental influence

on how the foliage is distributed within the canopy, affecting the probability that radiation

passing through the canopy will intercepted (Russell et al., 1989). Among the structural

factors affecting that probability besides the amount of leaf area include the grouping and

orientation of foliage throughout the canopy (Russell et al., 1989). Simulations have shown

that the non-uniform distribution of leaves within a canopy and with a range of leaf incli-

nation angles can intercept more radiation and assimilate more carbon dioxide compared to

a uniformly distributed canopy of the same leaf area (Russell et al., 1989). This increase in

radiation interception is a result of more needles intercepting radiation as the solar incident

angle changes throughout the day (Russell et al., 1989).

The phenology of loblolly pine needles is an environmentally driven process that repre-

sents a flux of nutrients within a given tree and corresponds to changes in growth rates on an

intra-annual seasonal basis (Dougherty et al., 1995; Jayawickrama et al., 1998; Albaugh et al.,

2012). The phenological process relies on genetics, temperature, photoperiod, water avail-

ability, and nutrient availability to stimulate the hormones that spur physiological changes

(Dougherty et al., 1994; Bahuguna and Jagadish, 2015; Forrest and Miller-Rushing, 2010;

Quesada et al., 2017). The annual phenological trend of loblolly pine needles has been char-

acterized as a system of three stages: 1) a period of rapid needle accretion, followed by

2) a reduction in growth in which the needles reach their final length, and 3) a period of

needle abscission (Sampson et al., 2003). Needle elongation follows the onset of bud break

and shoot elongation, which can be temporally related to thermal units (Dougherty et al.,

1994; Teskey et al., 1987; Russell et al., 1989), but not necessarily affected by fertilization

status (Zhang et al., 1997). Multiple flushes of foliage occur throughout the growing sea-

sons for loblolly pine, with later flushes attaining similar elongation rates but not overall

lengths as first flushes (Dougherty et al., 1994). In other pine species, determination of final

needle length was greater from droughts occurring earlier in the growing season (Dougherty

et al., 1994) while overall leaf area levels were lower on sites with reduced water availability
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(Teskey et al., 1987; Vose and Swank, 1990). Nutritional status has been shown to affect

needle elongation rates and overall needle length (Zhang et al., 1997). The overall duration

for needles is a function of the environment, nutrition status, and genetics (Vose and Allen,

1988; Dougherty et al., 1994; Zhang et al., 1997; Gholz et al., 1991; Hennessey et al., 1992).

Fertilized stands have been shown to retain foliage longer as compared to unfertilized stands

(Zhang et al., 1997). Needle abscission introduces a higher degree of variability into the

system as compared to accretion and has been shown to be affected by site nutritional and

water status, density, and environmental variables (Hennessey et al., 1992; Vose and Allen,

1988). Longer growing seasons, a function of the number of frost free days observed, pro-

vide more time for suitable growing conditions but may increase the respiration losses due

to higher temperatures (Teskey et al., 1987). Understanding the environmental drivers of

loblolly pine foliage provides a necessary understanding of the factors that promote or limit

growth within and between years, and contribute to the variability observed in radiation

interception. Environmental regulation of leaf area has been reported to be influenced by

temperature, water availability, and site available nutrients (Waring et al., 1978; Vose and

Allen, 1988; Hennessey et al., 1992; Dougherty et al., 1995; Zhang et al., 1997; Savoy and

Mackay, 2015).

The goal of many forest management cultural treatments is to increase the availability

of limiting resources on the site to improve conditions and promote growth. With a better

understanding of the factors that affect loblolly pine productivity, we can improve the effec-

tiveness of forest management goals and practices by providing tools for simulation purposes

to understand the potential effects of a changing climate on the mechanisms that govern

growth.

The objective of this research was to model the phenological development and trends

of LAI in loblolly pine stands in the southeastern United States and to identify and model

the effects of environmental variables on LAI development. The two main objectives of this

research were to:
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• Derive a model that accurately describes the development of LAI in a loblolly pine

plantation

• Incorporate environmental variables to account for variations in LAI

3.2 Materials and Methods

3.2.1 Data

Data from the Plantation Management Research Cooperative’s (PMRC) Coastal Plain Cul-

ture Density (CPCD) and South Atlantic Gulf Slopes (SAGS) studies were selected for this

analysis. The CPCD study was installed in 1995 and 1996 as a split-plot design to study

the effects of two cultural regimes (main plot) across a range of planting densities (subplot)

in seventeen installations throughout the lower coastal plain of Florida, Georgia, and South

Carolina (Zhao et al., 2011). The cultural regimes for the CPCD study included: 1) opera-

tional, consisting of bedding and banded chemical site preparation, herbaceous weed control

after the first growing season, and fertilization at planting, before the 8th growing season, and

before the 12th growing season and 2) intensive, consisting of bedding and broadcast chem-

ical site preparation, tip moth control, complete vegetation control, and multiple fertilization

treatments throughout the first twelve growing seasons (Zhao et al., 2011). The planting den-

sities ranged from 741 to 4448 trees per hectare on study plots sized from 0.12 to 0.23 hectares

to accommodate the minimum number of measurement trees. Further details for the CPCD

study can be seen in Harrison and Kane (2008). Complementary to the CPCD, the SAGS

study was installed in 1997 and 1998 at 23 installations throughout the Piedmont/Upper

Coastal Plain physiographic region across five southeastern states (Zhao et al., 2010). Exper-

imental design for the SAGS study was similar to the design of the CPCD study, testing the

effects of cultural treatments (plot) across planting densities (subplot). For further details

on the SAGS experimental design and treatments, see Zhao et al. (2008). A total of 24 sites,

11 from the CPCD study and 13 from the SAGS study were selected for analysis (Figure
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3.1). Only plots under the intensive treatment were selected to remove potential sources of

variability associated from differing treatment responses.

Due to the range of subplot size in the CPCD and SAGS studies, subplots from the 741

trees per hectare planting density (3.66 m x 3.66 m spacing) receiving intensive treatments

were selected to maximize the subplot size (0.23 hectares) to increase the geographic footprint

for remotely sensed data acquisition. All available surface reflectance scenes from the Landsat

5 TM and Landsat 7 ETM+ sensors were queried in the Google Earth Engine platform from

site establishment to end of year 2019, masked for clouds, and exported as individual band

values averaged for the subplot (Gorelick et al., 2017). Data were further filtered based upon

cloud quality attributes, pixel quality attributes, and radiometric saturation. Using near-

infrared (band 4) and short-wave infrared (band 5) bands, the normalized difference moisture

index (NDMI) was calculated. Estimates of LAI were produced from an empirical model

using the NDMI values. The number of available scene observations per study plot ranged

from 334 to 1005 from plot establishment to December 31, 2019. Additionally, erroneous and

outlying plots within the first five years of development were removed to reduce the amount

of noise observed in the time series. The time series of individual plots were shortened to

remove any observations that included post-thinning or increased mortality to insects. To

provide increased temporal consistency and determine the underlying LAI development trend

and seasonality, a thin plate spline (TPS) from the fields package was used to smooth the

observed data (Savoy and Mackay, 2015; Nychka et al., 2017). LAI time series for each plot

were fitted using the TPS function with the cost function set to 1.2. Using the fitted TPS

model, a new time series for each plot was created on a 0.05 year time step for the age range

observed at each plot.

Environmental variables for the individual study sites were sourced from the University

of East Anglia’s Climate Research Unit (CRU) (Harris et al., 2020). Using CRU’s TS v.

4.04 NetCDF product, monthly values at the individual study plots were acquired from

establishment to December 2019. Water storage capacity for the first 1.5 meters of soil
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was estimated at the individual site using data from SSURGO spatial data base. Additional

indices, including water deficit, water deficit index, excess water, and excess water index were

calculated from the environmental variables in association with water storage capacity at the

individual study plots. Water deficit for the site is calculated by subtracting the monthly

precipitation from the monthly estimated potential evapotranspiration. Conversion of water

deficit to water deficit index incorporates subtracting out the water storage capacity and

summing the water deficits (Ojeda et al., 2018). Excess water and its index are calculated in

similar fashion by subtracting the monthly potential evapotranspiration from the monthly

precipitation.

3.2.2 Model Formulation

To provide more insight into the development trends of LAI and potential for influence by

environmental variables, a growth model was developed to understand some of the under-

lying mechanisms (Zeide, 1993). Differential equations have been used to model growth,

among many other things, as a rate of change of one variable in relation to another, pri-

marily time (Fulford et al., 1997). These equations provide a mechanistic hypothesis for how

systems interact and their parameterization can provide biological interpretation, which is

paramount to understanding the complex dynamics that factor into tree growth (Zeide, 1993;

Garcia, 2001). From observing many LAI time series for plantations across the southeast,

several overarching trends were distinguished. Overall, LAI increases from stand initiation

until some upper asymptote is reached and is maintained with some variations until a dis-

turbance removes a significant portion of leaf area (e.g. thinning, harvest, pests or disease)

(Switzer et al., 1966; Jarvis and Leverenz, 1983). To further the biological applicability and

interpretation of our model, we proposed a delayed differential equation (DDE) to model

the growth and development of LAI in loblolly pine plantations in the southeast United

States. DDEs provide unique insight into biological systems by using the current state and a

historical state to determine the future state. DDEs are a common way of modeling biolog-
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ical systems that tend to rely on pasts states due to delays in development, such as sexual

maturity, energy fluxes, overlapping populations, or predator/prey dynamics (Hutchinson,

1948; Wright, 1955; Nisbet and Gurney, 1976; Gopalsamy et al., 1990; Gopalsamy, 1992;

Gallegos et al., 2008; Ghil et al., 2008; Keane et al., 2017). The common theme for use of

DDEs is the understanding that feedback mechanisms that occur in nature typically come

with some delay. DDEs have been used in forestry to model competition for light (Magal

and Zhang, 2017, 2018) and forest planning (Garcia, 2001; Chaudhary and Pathak, 2017).

In our case of modeling loblolly pine LAI, DDEs provide the ability to model the effect of

prior and current leaf area states on future states, an important feature since loblolly pine

canopies feature delays in physiological and phenological processes. Furthermore, historical

trends provide influence on current canopy dynamics due to foliage in loblolly pines typically

last for two years, providing up to two concurrent age classes of needles occupying the canopy

at any given time, and a cause of great variability observed in canopies (Dougherty et al.,

1995; Sampson et al., 2003). Additionally, the environmental regulation of LAI provides a

scenario in which a delay between a LAI altering event and the resulting reaction in LAI may

occur. DDEs are typically formulated as: xt+1 = f(xt, xt−τ ), where τ is the lag determining

the location of the prior state. An effective DDE provides a glimpse into the dynamics of a

given population, which in this case is leaf area, and can provide a cause and effect analysis

into the factors determining growth (Kuang, 1993). The baseline model form proposed to

represent the development of LAI is:

dL

dt
= r ∗ Lt ∗

(
1− Lt−τ

K + A ∗ sin (ω ∗ t+ µ)

)
− h ∗ Lt (3.1)

Where L is LAI, r is the growth rate parameter, Lt is the current state at time t,

Lt−τ is the previous state τ units ago, K is the carrying capacity parameter, A is the

amplitude, ω is period, µ is the phase shift, and h is another parameter to denote mortality.

Equation 3.1 is split into three main components, 1) logistic equation (r ∗Lt ∗ (1− Lt−τ
K

)), 2)

seasonal component (A∗ sin (ω ∗ t+ µ)), and 3) a mortality component (h∗Lt). The logistic
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equation provides the underlying trend of growth and development approaching an upper

asymptote, typically referred to as a carrying capacity in the literature and denoted by K

in the model. The r parameter provides a measure as to how quickly the trend reaches the

upper asymptote. This particular implementation of the logistic model, sometimes referred

to as the Hutchinson model, uses a prior state Lt−τ to provide reference and determine the

trajectory of the current state Lt. As Lt−τ approaches K, the relative growth rate decreases,

indicating that the carrying capacity has been met. In this case, we are proposing that our

delay is discrete, as opposed to vanishing, neutral, or distributed delays that are used in

other DDEs (Kuang, 1993).

Seasonal forcing was imposed through the use of a trigonometric function to provide the

phenological representation of the leaf development and senescence annual cycle as a result

of changing resource availability and reflected on the K parameter. With this formulation,

K serves as the vertical shift in the periodic function. The final component, mortality, pro-

vides an accounting of additional biomass mortality that occurs outside of the seasonal leaf

component.

Inclusion of Environmental Variables

Extendability of the DDE to relate to environmental conditions that govern growth can be

implemented by establishing the model parameters as functions of environmental variables

(Powers et al., 2003; Kramer, 1994). It has been well established that environmental vari-

ables, such as temperature and water, are important drivers of loblolly pine productivity

and regulate the annual phenological processes that determine the annual growth (Albaugh

et al., 2012; Dougherty et al., 1994). To incorporate these environmental variables as growth

regulators into the system, several model forms were evaluated for the individual compo-

nents, including the beta equation (Equation 3.2), the logistic equation (Equation 3.3), the

double logistic equation (Equation 3.4), the Arrenhius equation (Equation 3.5), the Heaviside

equation (Equation 3.6, and a simple linear equation (Equation 3.7).
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f(env(t)) = exp(µ) ∗ (env(t)− Tb)α ∗ (Tc − env(t))β (3.2)

f(env(t)) = α

(
1

1 + exp(−b ∗ (env(t)−m))

)
(3.3)

f(env(t)) = α

(
1

(1 + exp(−b ∗ (env(t)−m)))(1 + exp(d ∗ (env(t)− n))

)
(3.4)

f(env(t)) = α

(
exp( −b

env(t)
)

1 + c ∗ exp( −d
env(t)

)

)
(3.5)

f(env(t)) = α(env(t)− Tb) ∗H(env(t)− Tb)

where H(env(t)− Tb) =

1 if env(t) ≥ Tb

0 if env(t) < Tb

(3.6)

f(env(t)) = β0 + β1 ∗ env(t) (3.7)

3.2.3 Model Parameterization

The DDE model proposed was parameterized using maximum likelihood estimation. To

account for differences between the individual plots, parameterization included global vari-

ables for the base model and modifier components and local variables for initial starting

values at the individual plot level. The model relied on 33 parameters: eight for the LAI

equation, one for the standard deviation for the maximum likelihood procedure, and 24 local

variables describing the starting points for each time series. Using the environmental modi-

fiers to calculate a productivity adjustment factor for the base model, the relationship was

assumed to be interactive, so the base model and environmental models were formulated in a

multiplicative fashion (e.g. dL
dt

= f(ENV ) ∗ g(L)). The dede function in the deSolve package

was used to solve the DDE model and a combination of the BFGS, Nelder-Mead, and CG
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methods were used for optimization methods to maximize the log likelihood of the functions

as implemented in the optimx package (Soetaert et al., 2010; Nash and Varadhan, 2011).

Starting values for the local parameters were defined by the first observations of LAI at the

individual plot level. For the models using local K values, starting values were the global

K parameterized in the model fitting procedure. Global parameters starting values were

selected through a trial and error approach to define the model form and starting values for

the environmental modifiers were selected based on the reported literature response between

the environment and loblolly pine (Nedlo et al., 2009; Albaugh et al., 2004; Teskey et al.,

1987). Addition of the environmental variables and their subsequent model form were eval-

uated on reductions of root mean square error (RMSE) and Akaike’s Information Criterion

(AIC) to account for the additional parameters for the given model. Evaluations for param-

eter uncertainty estimates required the fixing of local variables to allow for the final standard

error calculations. To evaluate model robustness, k-fold (k=9) cross validation was used. The

24 plots were randomly assigned to one of nine groups. For each of the nine groups, the plots

in the group were withheld from the training data set, the model was fit on the training data

set and then evaluated on the withheld group. The process was repeated for each group.

3.3 Results

3.3.1 Base Model Parameterization

Parameterization of the base model (Equation 3.1) resulted in an overall root mean square

error (RMSE) for the 24 plots of 0.4427 and an AIC of 12496.7 (Table 3.1). Estimated

standard errors for the individual parameter estimates indicate little variability with the

exception of the K parameter. At the individual plot level, RMSE ranged from 0.2594 to

0.6158 LAI m2/m2. Inspection of the residuals showed little evidence of heteroscedacity

(Figure 3.2) and comparison of the observations to predictions showed an adequate 1:1

relationship (Figure 3.3). Model predictions show a defined upper limit at approximately

3.72 m2/m2, where the base model limits the overall LAI production (Figure 3.3). Annual
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seasonality was adequately captured by the trigonometric portion of the base model, with

peak LAI occurring in September/October every year (Figure 3.4). The τ estimate indicated

little importance of the prior state, with a value of 0.0002 (Table 3.1). Without a considerable

lag effect, the relationship between the current and prior state maintained linearity (Figure

3.5). The K parameter showed an overall estimated carrying capacity for LAI at 4.7760

m2/m2, subject to the model formulated constraints and imposed seasonality. Systematic

patterns were observed in the residuals as LAI increased, an artefact of the model reaching

a global steady state with no outside forces imposing individuality at the plot level (Figure

3.2). The base level model was inadequate in capturing the seasonality and trend of LAI in

the formative years of stand development, common to all observed plots (Figure 3.4). While

the underlying development trend was captured with the inclusion of the local initial value

at the individual plot level, the base model provided a gross simplification of the system. The

amplitude of seasonality in the parameterized model showed large variations as compared

to amplitude of seasonality in the observed plots and their subsequent smoothed spline time

series.

3.3.2 Inclusion of Environmental Variables

Temperature was found to be the most influential on improving the LAI, with monthly max-

imum temperature having the greatest effect. The logistic, double logistic, and beta model

forms proved to be the most flexible in parameterizing for inclusion of the environmental

variables. Maximum monthly temperature in the beta form showed the greatest increase in

model performance when included as a modifier to the base LAI model. RMSE decreased to

0.4299 and AIC decreased to 11891.71. Addition of the environmental modifier increased τ

to 0.1148, or approximately 41 days, indication of past state dependency and a delayed reac-

tion in physiological response to temperature (Table 3.2). Base level carrying capacity (K)

decreased from 4.7760 to 4.5565 while the rate parameter (r) showed a slight increase from

1.0750 to 1.1109, a result of the modifier imposing changes to the base level productivity
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at the individual sites (Table 3.2). Across the individual plots, inclusion of the temperature

modifier produced a range of 0.2616 to 0.5846 RMSEs, indicating adverse effects on some

plots and benefits to others. Fourteen of the 24 plots saw reductions in RMSE with the addi-

tion of the temperature modifier. Comparisons between the trend and the model showed an

increase in the model’s ability to react to environmental conditions, capturing some of the

changes in the observed points and smooth trend (Figure 3.8). The resulting parameterized

beta monthly maximum temperature modifier showed an asymmetrical modifier across the

range of observed monthly maximum temperatures, displaying a slow modifier rate increase

from the lower bound (≈10◦C) to a peak of approximately 30◦C, and a sharp decline in

modifier value following the peak as temperature increased to beyond 35◦C (Figure 3.10).

Increase of the τ parameter provided a relatively stable limit cycle relating the current and

past states as LAI developed and reached its upper asymptote (Figure 3.9). Cycles around

a central point, ≈ 3.1 LAI m2/m2 showed slight temperature induced deviations but overall

stable process.

Evaluation of additional modifiers and their interactions with the beta monthly maximum

temperature modifier focused primarily on water relations variables to reduce to collinearity

between monthly maximum temperature and the other temperature variables under consid-

eration. Examination of the water relations variables and their interactions with the monthly

maximum temperature modifier found that monthly excess water in the double logistic model

form to be the most influential for improving the model fit. Inclusion of excess water as an

additional modifier had modest improvements in model fit as compared to monthly max-

imum temperature’s effect on the base model, with the largest decrease of RMSE at the

individual plot being 0.03 units of LAI. The updated parameter values for the base model

and beta monthly maximum temperature modifier showed slight changes as compared to the

temperature - modifier only model, and a slight overall decrease in RMSE to 0.4257 and AIC

to 11684.19. The newly parameterized monthly maximum temperature modifier displayed

a similar trend as the previous model (Figure 3.15, Table 3.3). The excess water modi-
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fier displayed a symmetrical shape centered about approximately 175 mm of excess water

(Figure 3.15). As excess water increased from 0 mm to the peak, the modifier increased

from a baseline of approximately 0.70 to approximately 0.9. Following the peak, the modifier

value began to decline to approximately 0.75 as the excess water value reached the end of its

natural range of 350 mm observed in the data. When the two environmental modifiers’ inter-

actions were calculated, a defined area of increased productivity above the baseline model

(modifier > 1) was observed at the peaks of temperature and excess water (Figure 3.16). A

large area within the interaction plot indicates that a wide range of conditions can satisfy

the conditions necessary for peak LAI growth.

3.3.3 Addition of Local Carrying Capacity

To test the effect of a local carrying capacity parameter compared with a global parameter,

the final model was refitted with the addition of a local K parameter for each individual

plot and dropping the global K, increasing the number of parameters by 23. RMSE across

all observations decreased to 0.3802 accompanied by a decrease in AIC to 9383.04 (Table

3.3. Values for K ranged from 3.59 to 4.40, which had a weak positive relationship with

estimated site index (Figure 3.23). As compared to the base model, the largest decrease in

RMSE due to the local K parameter was a 0.29 reduction.

Model validation through k-fold (k=9) cross validation showed overall support for the

proposed models (Table 3.5). Improvement was made with the inclusion of environmental

variables as compared to the base model, while the addition of a second environmental

variable showed minimal declines in RMSE in training and validation data sets (Table 3.5).

Inclusion of the local parameter K showed a considerable decline in RMSE for both the

training and validation data sets, indicating the importance of local features on LAI growth

and development and its overall interaction with environmental variables.
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3.4 Discussion

Dependency of the future state based on the current and prior states, denoted by τ , showed

varying conditions based on whether additional information, such as temperature, was pro-

vided in terms of a productivity modifier. In the base model, τ proved to be quite small, an

indication that, as modeled, LAI followed the development and seasonal trend defined by

the periodic and rate parameters and didn’t require further information from prior states. It

has been shown that at sufficiently small τ , the Hutchinson model is equivalent to the tradi-

tional logistic, providing a simplified model (Gopalsamy, 1992). As additional variability in

the modeled system was introduced by the environmental modifiers, a dependence on those

prior states proved influential, indicating that the state at time t − τ is necessary in deter-

mining the future state. These larger lags produce a feedback loop, which can be visualized

in Figures 3.9 and 3.14, where oscillations about the equilibrium point of the solution for the

individual parameterized equations occurs as t increases and the population (LAI) reaches

steady state (Gopalsamy, 1992). Fluctuations in the oscillations about the equilibrium point

indicate the influence of the environment, but overall LAI shows to be a relatively stable

process, or one that is able to return to its equilibrium (May, 1973).

Differences in the observed equilibrium point in the two models incorporating environ-

mental effects and their individual parameterized K values shows a defined difference, with

the equilibrium point far below the K. This difference is likely due to the fluctuations in

K, which is representative of the carrying capacity but now defined as the vertical shift in

our periodic coefficient, a representation of the changing resource availability and addition-

ally influenced by the environmental variables, which has been reported to be the case in

other population studies (May, 1973; Roff, 1974). Stability and persistence of a given popu-

lation has been shown to have direct correlations with the heterogeneity of the population’s

environment, with the probability of persistence decreasing with increased environmental

variability (Roff, 1974; Levins, 1969).
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While the base model overall has adequate fit and conceptually represents LAI growth,

the steady state reached does not provide an accurate understanding of the observed LAI

dynamics, as once net growth for a period is zero, we see no changes to the dynamics, which

is unlikely in any ecosystem. The mechanisms proposed to model LAI development were not

able to fully capture the observed dynamics, especially in the early stages prior to reaching

steady state (Figures 3.4, 3.8, and 3.11). Large changes between years in the seasonality,

peak, and minimums observed were glossed over by the proposed model form, with poor

representation of those early stand dynamics. From the remote sensing and LAI estimation

standpoint, this portion of the individual time series provided great difficulty in providing

a smooth seasonal trend due to a large number of erratic and outlying estimates from the

Landsat 5 and 7 ETM+ imagery. Potential sources of this variability may be from pixel

level saturation of neighboring plots, large amounts of competing vegetation present in the

stand prior to treatment, among others. The oscillations observed between the prior and

current state for the second, third, and fourth models about their equilibrium indicated a

stable process with τ sufficiently large enough to provide adequate feedback (Figures 3.9,

3.14, 3.20) (Gopalsamy, 1992).

Monthly maximum temperature provided the greatest increase in model performance

for capturing the dynamics of loblolly pine LAI. Similar to the results presented in Savoy

and Mackay (2015), many of the sites evaluated in this study were highly influenced by

the temperature modifier. Increased rates at the cellular level at higher temperatures have

been reported to provide increases in photosynthesis and respiration, leading to greater

increase of carbon assimilation rates (Way and Oren, 2010). More specifically, Way and

Oren (2010) found that evergreens increased leaf mass, among other allometric changes,

when temperatures were increased. This change may be driven by greater leaf elongation

rates from increases in division and expansion at the cellular level (Ryan, 2010).

Large decreases observed in the time series data at individual plots may have been caused

by interaction effects of environmental stress with disease or pests, clearly not captured in
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the models proposed here. While these biotic effects can cause large variations in observed

leaf area, further modeling developments can be used to incorporate the probability of these

interactions affecting the system given environmental inputs and the magnitude of their

potential effects. Providing insight on the conditions that cause fluctuations of LAI outside

of the base model, shown here with maximum temperature and excess water, allow for a more

systematic understanding of forest productivity and provide tools for management planning

to account for potential disturbances to the population (Gopalsamy, 1992).

Further analysis into periodic coefficients may provide additional insight into the season-

ality of growth, the effects of the environment on the fluctuations of growth and its effects on

individual model parameters (Gopalsamy et al., 1990; Lisena, 2007). Additionally, periodic

coefficients may provide the necessary switching of the modifier to correctly adjust the growth

given the forced seasonality of the model, i.e. promote growth when conditions are adequate

and restrict declines in growth when the seasonality begins its annual decline. Potential

improvements in model and computation efficiency may be had from implementing neural

or universal ordinary differential equations to handle the various data on different time steps

to provide a better adapting system (Rackauckas et al., 2020). Recent advances in neural

ODEs may provide additional insight to the noisy environment observed within. Examining

the lag component as a neutral DDE, where τ is used to define historical derivatives as

opposed to past states may increase the ability to adequately capture the changes imposed

by environmental modifiers. Formulation of the model imposed seasonality based on the sine

component, a product allowing for the capture of seasonal changes in LAI throughout the year

and the observation series for the plots. Further investigation into more parsimonious model

forms may provide accurate mechanistic options into the foundations of LAI development.

Following the methodology used by Powers et al. (2003), we incorporated our environmental

variable modifier on the entire state rather than individual parameters. While future work

will investigate the environmental influences individually on the parameters, earlier work has

shown that in the logistic model form (Levins, 1969), the current state will follow a weighted
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harmonic mean of K. Further inquiries into the effect of additional delays (n≥2) and com-

binations of positive and negative feedback may provide a more thorough investigation into

environmental induced dynamics of the LAI system on an annual and lifespan basis (Keane

et al., 2017).

A sensitivity analysis into the size of time step selected in the splined LAI and environ-

mental variables used for the modeling purposes should be undertaken to verify that the

underlying system being modeled isn’t affected by the timing and amount of observations

(Powers et al., 2003). Splining the data and providing a discrete time step between interpo-

lated observations improved the model fitting procedure by ensuring adequate observations

across the observation period. LAI observations proved to quite noisy and provide a suit-

able medium for future improvements by incorporating stochastic methods to handle the

erratic time series observed. Additionally, using annual peaks and minimums may provide

an alternative to capture the true amplitude of the seasonality component. While Powers

et al. (2003) recommended a backwards selection approach to inclusion of environmental

variables, computational demand of the DDE and the large amount of data used for model

fitting prohibited that methodology from being completed considering reasonable time con-

straints.

Interpretability of the formulated model allows for our increased understanding of the

dynamics that govern forest productivity and how they interact with resource availability,

which is observed in annual seasonal cycles and interactions with the local environment.

Here we defined the carrying capacity of our system as a periodic coefficient to represent the

changes in available resources throughout the year. When imposed, environmental modifiers

retard annual growth of the system and we see an overall decline in the carrying capacity,

which may affect other physiological changes associated with forest growth. When defining

the carrying capacity of a forested stand, using shorter-term phenomena that pair resource

availability and consumption, such as leaf area index, as opposed to cumulative basal area

yield or stand density index that is typically reported, may provide a better biological repre-
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sentation of a dynamical system. Further investigations into the regional effects of different

environmental variables may provide more insight into the factors limiting growth across the

loblolly pine spatial extent.

3.5 Conclusions

Overall it was shown that a mechanistic derived model can describe aspects of the growth

and development of LAI in loblolly pine plantations and provide additional insight into the

seasonal and environmental dynamics that affect the current state. We were able to provide

improvements in a base loblolly pine LAI growth model by incorporating environmental

variables for 24 sites across a wide geographic range in the southeastern United States.

Monthly maximum temperature and monthly water deficit were shown to be influential in

the development and long term trends of loblolly pine LAI in the southeastern United States.

By using the environmental modifiers to adjust the system, we are accounting for the

changes in resource availability due to the stochastic environment, resulting in changes of the

carrying capacity. As resources and conditions becoming limiting to the biological processes,

we are able to model the effects on how much leaf area a stand can support at any given

time. Periodicity was forced by the inclusion of a periodic coefficient for the K parameter,

resulting in forced oscillations on the basis of resources are limited seasonally, affecting overall

carrying capacity and driving the observed patterns.
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Figure 3.1: Site locations for the Plantation Management Research Cooperative’s Coastal
Plain Culture Density (CPCD) and South Atlantic Gulf Slopes (SAGS) installations used in
analysis.

Table 3.1: Global parameter estimates and associated uncertainty for the base leaf area index
model (Equation 3.1) fitted to 24 plots across the southeastern United States. Root mean
square error (RMSE) was calculated across all observations.

Parameter Estimate
Standard

Error
Model Form

Environmental
Variables

r 1.0750 0.0014

Base N/A

τ 0.0002 0.0012
K 4.7760 0.0016
A 3.1199 0.0036
ω 6.2933 0.0012
µ −1.8875 0.0016
h 0.0961 0.0004

RMSE 0.4427
AIC 12 496.7
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Figure 3.2: Studentized residuals for the base model.
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Figure 3.3: Observations vs predictions for base model. The abrupt termination of predicted
leaf area index values is due to the model reaching the estimated carrying capacity.
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Figure 3.4: Results for the base model compared to the smoothed trend and observations.
Root mean square error for this observed plot was 0.3398.
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Figure 3.5: Results for the base model lag history trend. The x-axis shows the current state
L(t) and its relationship with the historical state on the y-axis defined by τ . State units are
LAI m2/m2.
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Table 3.2: Global parameter estimates and associated uncertainty for the base leaf area index
model (Equation 3.1) with monthly maximum temperature (◦C) as a beta modifier fitted
to 24 plots across the southeastern United States. Root mean square error (RMSE) was
calculated across all observations.

Parameter Estimate
Standard

Error
Model Form

Environmental
Variables

r 1.1109 0.0006

Base N/A

τ 0.1148 0.0004
K 4.5565 0.0010
A 3.0997 0.0005
ω 6.2948 0.0012
µ −1.8663 0.0009
h 0.0885 0.0006
µ2 −5.7533 0.0009

Beta
Monthly

Maximum
Temperature

Tb 1.4255 0.0005
α 1.4832 0.0006
Tc 36.7020 0.0006
β 0.3782 0.0011

RMSE 0.4299
AIC 11 891.71
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Figure 3.6: Standardized residuals for the model parameterized in Table 3.2 using monthly
maximum temperature (◦C) in beta form as a modifier.
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Figure 3.7: Observations vs. predictions for the model parameterized in Table 3.2 using
monthly maximum temperature (◦C) in beta form as a modifier.
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Figure 3.8: Results for the model parameterized in Table 3.2 using monthly maximum tem-
perature (◦C) in beta form as a modifier compared to the smoothed trend and observations.
Root mean square error for this plot was 0.3171.
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Figure 3.9: Results for the maximum monthly temperature model lag history trend. The
x-axis shows the current state L(t) and its relationship with the historical state on the y-axis
defined by τ . State units are LAI m2/m2.
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Figure 3.10: Evaluation of the parameterized monthly maximum temperature beta modifier
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Table 3.3: Global parameter estimates and associated uncertainty for the base leaf area
index model (Equation 3.1) fitted to 24 plots across the southeastern United States with the
monthly maximum temperature (◦C) included as a beta function and monthly excess water
(mm) included as a double logistic function. Root mean square error (RMSE) was calculated
across all observations.

Parameter Estimate SE Model Form
Environmental
Variable

r 1.1175 0.0060

Base N/A

τ 0.1148 0.0011
K 4.5535 0.0073
A 3.1052 0.0004
ω 6.2973 0.0061
µ −1.8661 0.0457
h 0.088 48 0.0024
µ2 −5.5757 0.0876

Beta
Monthly

Maximum
Temperature

Tb 1.4248 0.1920
α 1.5219 0.0185
Tc 37.018 63 0.2095
β 0.3799 0.0045
α 1.5082 0.0007

Double
Logistic

Monthly
Excess
Water

β 0.0067 0.0004
δ 0.0072 0.0004
Tb −0.0005 0.000 04
Tc 320.0497 0.0359

RMSE 0.4257
AIC 11 684.19
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Figure 3.11: Results for the model parameterized in Table 3.3 using monthly maximum
temperature (◦C) in beta form and monthly excess water in double logistic form as modifiers
compared to the smoothed trend and observations. Root mean square error for this plot was
0.3096.
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Figure 3.12: Observations vs. predictions for the model parameterized in Table 3.3 using
monthly maximum temperature (◦C) in logistic form and monthly excess water (mm) in
double logistic form as modifiers.
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Figure 3.13: Results for the model parameterized in Table 3.3 using monthly maximum
temperature (◦C) in beta form and monthly excess water in double logistic form as modifiers
compared to the smoothed trend and observations.
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Figure 3.14: Results for the maximum monthly temperature and excess water interaction
model lag history trend. The x-axis shows the current state L(t) and its relationship with
the historical state on the y-axis defined by τ . State units are LAI m2/m2.
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Figure 3.15: Evaluation of the parameterized modifiers for A) monthly maximum tempera-
ture (◦C) in beta form and B) monthly excess water (mm) double logistic form across the
ranges of observed values for the individual variable.
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Figure 3.16: Resulting interaction modifier between the monthly maximum temperature beta
modifier and the monthly excess water double logistic modifier across the ranges of observed
values for the 24 study plot across the southeastern United States.
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Table 3.4: Global parameter estimates and associated uncertainty for the leaf area index
model (Equation 3.1) fitted to 24 plots across the southeastern United States with the envi-
ronmental variables included as a beta and double logistic function, and a local carrying
capacity parameter (K). Root mean square error (RMSE) was calculated across all observa-
tions.

Parameter Estimate SE Model Form
Environmental
Variable

r 1.1968 0.0181

Base N/A

τ 0.1143 0.0080
A 2.6254 0.0237
ω 6.2877 0.0009
µ −1.7420 0.0062
h 0.0647 0.0041
µ2 −6.0359 0.0324

Beta
Monthly

Maximum
Temperature

Tb 1.4592 0.0093
α 1.5984 0.0081
Tc 44.69 0.0197
β 0.3419 0.0103
α 1.5984 0.0081

Double
Logistic

Monthly
Excess
Water

β 0.0063 0.0004
δ 0.0071 0.0006
Tb −0.0004 0.000 04
Tc 276.3619 0.0166

RMSE 0.3802
AIC 9383.04
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Figure 3.17: Results for the model parameterized in Table 3.3 using monthly maximum
temperature (◦C) in beta form, monthly excess water in double logistic form as modifiers and
a local LAI carrying capacity parameter compared to the smoothed trend and observations.
Root mean square error for this plot was 0.3096.
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Figure 3.18: Observations vs. predictions for the model parameterized in Table 3.3 using
monthly maximum temperature (◦C) in logistic form, monthly excess water (mm) in double
logistic form as modifiers and a local LAI carrying capacity parameter.
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Figure 3.19: Results for the model parameterized in Table 3.3 using monthly maximum tem-
perature (◦C) in beta form and monthly excess water in double logistic form as modifiers and
a local LAI carrying capacity parameter compared to the smoothed trend and observations.
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Figure 3.20: Results for the maximum monthly temperature and excess water interaction
model with local LAI carrying capacity parameter lag history trend. The x-axis shows the
current state L(t) and its relationship with the historical state on the y-axis defined by τ .
State units are LAI m2/m2.
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Figure 3.21: Evaluation of the parameterized modifiers for A) monthly maximum tempera-
ture (◦C) in beta form and B) monthly excess water (mm) double logistic form across the
ranges of observed values for the individual variable for the model fitted with a local LAI
carrying capacity parameter.
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Figure 3.22: Resulting interaction modifier between the monthly maximum temperature beta
modifier and the monthly excess water double logistic modifier across the ranges of observed
values for the 24 study plot across the southeastern United States fitted with a local LAI
carrying capacity parameter.
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Figure 3.23: Comparison between the fitted local K LAI carrying capacity parameter and
estimated site index (base age = 25) for the 24 plots.
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Table 3.5: Root mean square error (RMSE) results from the k-fold (k=9) cross validations
performed on the four models. Base indicates base model, Env1 indicates the inclusion of
monthly maximum temperature as a beta function, Env2 indicates monthly excess water as
a double logistic function, and Local K indicates the use of a local leaf area index carrying
capacity parameter.

Model
Training Validation

Min Max Avg Min Max Avg
Base 0.4270 0.4544 0.4422 0.3161 0.5508 0.4367
Base + Env1 0.4056 0.4489 0.4285 0.2885 0.5210 0.4283
Base + Env1 + Env2 0.4082 0.4419 0.4265 0.3209 0.5801 0.4319
Base + Env1 + Env2 + Local K 0.3658 0.3886 0.3796 0.3237 0.4709 0.3819
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Chapter 4

A Bio-physically Driven Dominant Height Model for Loblolly Pine

Plantations1

1Kinane, S.M., M. Zapata, B.P. Bullock, R.L. Cook, D. Mishra, and C.R. Montes. To be sub-
mitted to Forests.
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Abstract

Dominant height models are commonly used to serve as the productivity indicator in growth

and yield systems when defined at a base age. Many sources of variation can influence

dominant height estimates, leading to over or under estimates in long term projections. One

of the main sources of variability in productivity of loblolly pine plantations is the variation

in light interception. To account for that source of variation, the objective of this research was

to model dominant height as a function of leaf area index. Results showed that incorporating

estimated annual radiation intercepted using a leaf area index growth model improved the

performance of a dominant height growth model. By adjusting the asymptotic parameter

of a dominant height model as a function of predicted peak leaf area index and estimated

annual intercepted light, annual dominant height growth was regulated. Sites with higher

carrying capacities for leaf area index were shown to have higher dominants heights than

sites with lower carrying capacities.
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4.1 Introduction

Traditionally, forest growth for loblolly pine (Pinus taeda L.) in the southeastern United

States has been modeled through empirically derived and regionally parameterized stand

level equations to estimate attributes such as height, density, volume, and basal area (Lands-

berg and Sands, 2011). These models are formulated using the observed relationships between

time and the independent variable to explain forest growth. Dominant height is the primary

attribute for establishing stand level productivity at an individual site in these systems,

defined at a base age and typically referred to as site index. These site index driven models

of forest growth rely on the relative growth rate of dominant height over time to govern

growth rates of the remaining equations due to the observations of correlation between dom-

inant height and site productivity and its reported invariance to stand density. A variety of

empirical modeling approaches have been used to predict the dominant height - age rela-

tionship of stands, ranging from three parameter von Bertalanffy equations to more complex

generalized algebraic difference approaches. The definition of dominant height varies region-

ally and results can influence model predictions and overall assumptions of model responses.

The calculated site index serves as the integration of all biotic and abiotic forces acting upon

the stand throughout its lifetime rather than explicit individual inputs.

In contrast to the empirically derived models, processed-based or mechanistic models have

been created in a more theoretical sense; to model tree and stand growth based on known

biological phenomena and their responses to environmental processes rather than relying

on time (Landsberg and Waring, 1997; Landsberg and Sands, 2011). Generally composed

of many functional submodels that define physiological processes and their interactions at

a range of hierarchies, their required inputs include a variety of environmental variables to

drive the biological responses that are eventually summarized into measurable forest growth

(Makela et al., 2000). These models are heavily parameterized and require a plethora of data

and assumptions to function.
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To bridge the gap between the traditional empirical equations and the complex processed

based models, hybrid models have been invoked to provide more biologically sound equations

that are simpler in nature as compared to the processed based models but do have biological

interpretability in contrast with some empirically based models. A strong, well-accepted

relationship potentially defining forest productivity has been shown to be the correlation

between annual volume increase and the peak leaf area index observed (Albaugh et al.,

1998). Leaf area index, the one-sided summation of leaf surface area over a fixed ground

area, represents the surface in which energy is exchanged in the environment. Peak leaf area

index, the highest attained leaf area index on an annual basis, represents the maximum

amount of leaf surface area available to absorb incoming photosynthetically active radiation

(PAR). Consistently, variability in forest productivity has been attributed to variation in

radiation interception, which is a function of leaf area, stand structure, foliage orientation

and dispersion (Russell et al., 1989; Vose and Swank, 1990; Tang et al., 2019).

The objective of this research was to determine the effect of intercepted radiation as a

function of leaf area index on the growth and development of dominant height in loblolly

pine plantations across the southeastern United States. The two main sub-objectives of this

research were to derive a dominant height model that depends on intercepted radiation for

height growth and simultaneously fit a leaf area index and dominant height model.

4.2 Methods

4.2.1 Data

Data from the Plantation Management Research Cooperative’s (PMRC) Coastal Plain Cul-

ture Density (CPCD) and South Atlantic Gulf Slopes (SAGS) studies were selected for this

analysis. The CPCD study was installed in 1995 and 1996 as a split-plot design to study

the effects of two cultural regimes (main plot) across a range of planting densities (subplot)

in seventeen installations throughout the lower coastal plain of Florida, Georgia, and South
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Carolina (Zhao et al., 2011). The cultural regimes for the CPCD study included: 1) opera-

tional, consisting of bedding and banded chemical site preparation, herbaceous weed control

after the first growing season, and fertilization at planting, before the 8th growing season,

and before the 12th growing season and 2) intensive, consisting of bedding and broadcast

chemical site preparation, tip moth control, complete vegetation control, and multiple fer-

tilization treatments throughout the first twelve growing seasons (Zhao et al., 2011). The

planting densities ranged from 741 to 4448 trees per hectare on study plots sized from 0.12 to

0.23 hectares to accommodate the minimum number of measurement trees. Further details for

the CPCD study can be seen in (Harrison and Kane, 2008). Complementary to the CPCD,

the SAGS study was installed in 1997 and 1998 at 23 installations throughout the Pied-

mont/Upper Coastal Plain physiographic region across five southeastern states (Zhao et al.,

2010). Experimental design for the SAGS study was similar to the design of the CPCD

study, testing the effects of cultural treatments (plot) across planting densities (subplot).

Biennial field measurements for dominant height on both studies were collected between

ages 2 and 12, with some additional measurements occurring annually between ages 13 and

18, followed by a three year re-measurement period. The age range available for dominant

height measurements was 2-21, with dominant height being defined as the average height of

the measured study trees with diameters greater than the plot average diameter Zhao et al.

(2008). A total of 23 sites, 10 from the CPCD study and 13 from the SAGS study were

selected for analysis (Figure 3.1). Only plots under the intensive treatment were selected to

remove potential sources of variability associated from differing treatment responses.

Due to the range of subplot size in the CPCD and SAGS studies, subplots from the 741

trees per hectare planting density (3.66 m x 3.66 m spacing) receiving intensive treatments

were selected to maximize the subplot size (0.23 hectares) to increase the geographic footprint

for remotely sensed data acquisition. All available surface reflectance scenes from the Landsat

5 TM and Landsat 7 ETM+ sensors were queried in the Google Earth Engine platform from

site establishment to end of year 2019, masked for clouds, and exported as individual band
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values averaged for the subplot (Gorelick et al., 2017). Data were further filtered based

upon cloud quality attributes, pixel quality attributes, and radiometric saturation. Using

near-infrared (band 4) and short-wave infrared (band 5) bands, LAI was estimated using the

model proposed in the previous chapter. The number of available scene observations per study

plot ranged from 334 to 1005 from plot establishment to December 31, 2019. Additionally,

erroneous and outlying plots within the first five years of development were removed to reduce

the amount of noise observed in the time series. The time series of individual plots were

shortened to remove any observations that included post-thinning or increased mortality

to insects. To provide increased temporal consistency and determine the underlying LAI

development trend and seasonality, a thin plate spline (TPS) using the fields package was

used to smooth the observed data (Savoy and Mackay, 2015; Nychka et al., 2017). LAI time

series for each plot were fitted using the TPS function with the cost function set to 1.2.

Using the fitted TPS model, a new time series for each plot was created on a 0.05 year time

step for the age range observed at each plot.

Environmental variables for the individual study sites were sourced from the University

of East Anglia’s Climate Research Unit (CRU) (Harris et al., 2020). Using CRU’s TS v.

4.04 NetCDF product, monthly values at the individual study plots were acquired from

establishment to December 2019. Water storage capacity for the first 1.5 meters of soil

was estimated at the individual site using data from SSURGO spatial data base. Additional

indices, including water deficit, water deficit index, excess water, and excess water index were

calculated from the environmental variables in association with water storage capacity at the

individual study plots. Water deficit for the site is calculated by subtracting the monthly

precipitation from the monthly estimated potential evapotranspiration. Conversion of water

deficit to water deficit index incorporates subtracting out the water storage capacity and

summing the water deficits. Excess water and its index are calculated in similar fashion by

subtracting the monthly potential evapotranspiration from the monthly precipitation. High
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resolution daily solar radiation (W/m2) data was sourced from Daymet and summarized to

monthly and annual amounts for each plot (Thornton et al., 2016).

4.2.2 Model Formulation

To reflect the amount of energy captured by the stand, a LAI prediction model using a

delayed differential equation framework and environmental modifiers was used to provide

the trajectory of LAI growth and development (Equation 4.1).

dL

dt
=

[
r ∗ Lt ∗

(
1− Lt−τ

K + A ∗ sin (ω ∗ t+ µ)

)
− h ∗ Lt

]
∗ f(ENV1) ∗ f(ENV2) (4.1)

Where r, τ , A, ω, µ, and h are global parameters to be estimated,K is a local parameter to

be estimated at the individual plot level, f(ENVn) are environmental modifiers, and L is LAI.

The environmental modifiers chosen were monthly maximum temperature (◦C) and monthly

excess water (mm) included as a beta and double logistic function, respectively. Using the

predicted LAIs across the range of observations, peak LAI, the highest attained LAI value

within the year, was identified and selected for all years under observation at the plot level.

Using Beer’s law, the estimated amount of intercepted radiation (IPAR) was calculated with

the given peak LAI on an annual basis. The Chapman-Richards generalization of the von

Bertalanffy model was chosen for dominant height growth (Equation 4.2).

dH

dt
= η ∗Hm − κ ∗H (4.2)

Where η, m, and κ are estimated parameters. To test the effect of light interception

on dominant height growth, radiation interception, both total intercepted photosyntheti-

cally active radiation (IPAR) and the fraction intercepted photosynthetically active radi-

ation (FPAR) were evaluated on how they improved model fit by incorporating them as

an additional component in either the growth rate parameter (m + β1 ∗ PAR) or asymp-

tote parameter (η + β1 ∗ PAR). Converting the component to an interactive term was also

evaluated.
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4.2.3 Model Parameterization

The LAI and dominant height models were parameterized simultaneously using maximum

likelihood estimation. To account for differences between the individual plots, parameteri-

zation included global variables for the base models and local variables for initial starting

values for LAI and dominant height at the individual plot level. The total number of global

parameters for the two models was 21. A total of 69 local variables, 23 for local LAI car-

rying capacity K, 23 for LAI starting values, and 23 for dominant height starting values,

were estimated. The dede function in the deSolve package was used to solve the DDE model

and a combination of the BFGS, Nelder-Mead, and CG methods were used for optimiza-

tion methods to maximize the log likelihood of the functions as implemented in the optimx

package (Soetaert et al., 2010; Nash and Varadhan, 2011). Starting values for the local

parameters were defined by the first observations of LAI at the individual plot level. For

the models using local K values, starting values were the global K parameterized in the

model fitting procedure. Global parameters starting values were selected through a trial and

error approach to define the model form and starting values for the environmental modi-

fiers were selected based on the reported literature response between the environment and

loblolly pine (Nedlo et al., 2009; Albaugh et al., 2004; Teskey et al., 1987). Evaluations for

parameter uncertainty estimates required the fixing of local variables to allow for the final

standard error calculations.

4.3 Results

4.3.1 Simultaneous Model Parameterization

Incorporating radiation interception as an additive term rather than interactive proved to

be the most flexible option for both IPAR and FPAR at both locations. Evaluation of the

location to incorporate the radiation interception component found that incorporating it

in the m term, the growth rate of the Chapman-Richards model, to best increase model
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performance as compared to the other location. Simultaneous parameterization of the LAI

and dominant height models resulted in an overall RMSE for LAI of 0.36 m2/m2 and 1.10

m for dominant height with IPAR included as an additive term (Table 4.1). To improve

overall dominant height model performance, an additional parameter (β2) was added to

provide a power transformation to the entire dominant height model. Results from the power

transformation improved predictions of dominant height across the range of observed heights,

with a slight under-prediction at heights greater than 25 m (Figures 4.3, 4.4-B). Residuals

for both dominant height and LAI showed little evidence of heteroscedasticity (Figure 4.4).

RMSEs for the dominant height model at the individual plot level ranged from 0.52 to 2.69 m

while LAI ranged from 0.24 to 0.62 m2/m2. The site with the lowest RMSE for LAI coincided

with the site that had the lowest RMSE for dominant height, but that relationship did not

carry over to the sites with the highest LAI and dominant height RMSEs. Comparisons

between predictions and observations for both variables showed a strong 1:1 relationship

(Figures 4.2, 4.3).

Parameter estimates in the LAI model showed slight deviations in values as compared

to stand alone parameterizations. The r parameter showed an increase to 1.47 while the τ

declined to 0.03, an approximately 11-day delay (Table 4.1). The additive term to the m

parameter in the dominant height model showed an increase to the growth rate in conjunction

with the intercepted radiation, indicating that the growth rate will increase with increased

radiation interception, a relationship defined by the peak LAI (Table 4.1). The power trans-

formation of the mode (β2) approached a 2
3

transformation, helping reduce overpredictions

at lower heights and underpredictions at greater heights.

4.3.2 Theoretical Stands

To test the sensitivity of the parameterized model as a conceptual tool, two theoretical stands

with different long term LAI carrying capacity values (K parameter in the LAI model), 3.5 for

the low stand and 5.0 for the high stand, were evaluated with identical starting values to see
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the effect of the intercepted radiation component on dominant height growth. With starting

values, environmental variables, and global variables all held constant with the exception of

the K parameter, LAI and dominant height projections were made to determine the effect

of differences in radiation interception capabilities between the low and high LAI stands.

LAI trends for the low stand reached an upper asymptote that oscillated around an LAI

of approximately 2 m2/m2 while the high stand oscillated around approximately 4 m2/m2

(Figure 4.5). The resulting difference in radiation intercepted in the parameterized dominant

height model was approximately 3 m at age 23 (24.02 m for low, 27.02 m for high).

Additionally, to compare the effect of changing the long-term LAI carrying capacity

value on estimated base age 25 site index (m), stands with a range of K values from 3.7 to

5.0 were simulated under identical environmental conditions. The simulations were carried

out to age 25 to determine the resulting site index of the stands with varying Ks. The

relationship between estimated site index and K show a positive, curvilinear relationship

(Figure 4.6). The slope of the line decreases as K increases, indicating a saturation effect at

higher LAI carrying capacities, which is expected due to canopies with higher LAI becoming

less efficient from self-shading (Monsi and Saeki, 1953; Terashima et al., 2005). Simulations

to age 25 extrapolated outside the data set’s age range; older data must be utilized in the

model fitting procedure to verify results.

4.4 Discussion

While forest growth is a result of the interaction in resource availability, we were able to

show that light interception is a critical component of the equation in explaining variation

in forest productivity. Similar to Binkley et al. (2010); Teskey et al. (1987); Vose and Allen

(1988); Vose and Swank (1990), we found that stands with higher LAIs had greater growth.

While other factors, such as light use efficiency or other stand structural components, weren’t

considered in the modeling scheme, LAI was shown to be an adequate variable for relating
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stand level conditions to observed growth characteristics in dominant height (Stenberg et al.,

1994).

The relationship between the biophysical variable LAI and the dominant height growth

trajectory provided an increased understanding of the relationship between forest produc-

tivity and a stand’s ability to intercept light. As LAI increased and more light was estimated

to be intercepted by a stand’s canopy, an increase in dominant height growth was shown to

occur. Although the LAI model was not able to capture the magnitude of changes between

peak LAI and minimum LAI throughout the year, further research should focus on improving

the sensitivity of the LAI model. Further investigation to modeling non-dominant trees may

provide the necessary conditions in which intercepted radiation affects height growth, rather

than just focusing on dominant height of a stand, where it’s been shown that a trade-off

between light use efficiency and light interception efficiency exists between tall and short

trees (Onoda et al., 2014). Improvements in the availability of high resolution satellite data

can provide greater accuracy and precision of growth to occur at a pixel level rather than

summarized at a stand or tract level that is common in loblolly pine plantation systems.

Continued development of the system will investigate the effect of radiation interception on

other stand level variables, including basal area growth, diameter growth, volume growth,

and mortality to understand the relationship, if any, with radiation interception.

While LAI and the estimated intercepted radiation are relatively straightforward vari-

ables to acquire and estimate, other factors in determining productivity of trees remain fun-

damental to truly understanding the relationship between forest productivity and radiation

interception, such as light use efficiency and partitioning (Russell et al., 1989). Limitations

of the data set used in the study include the low trees per acre initial planting density (300

trees per acre) that may have introduced variation in the satellite imagery due to competing

vegetation, soil reflectance, etc.

The potential applications of this research for forest growth and yield modeling revolve

around the fundamental exchanges of energy between earth and the individual stand. Under-

118



standing the effect of silvicultural treatments, such as fertilization, thinning, or competi-

tion control on a stand’s LAI can provide a deeper understanding to how a stand’s growth

responds via light interception. Further development of this system to incorporate mortality,

basal area, and volume may gain additional insight into to the mechanisms of forest produc-

tivity and their relations to light interception (Courbaud, 2000). As future climate scenarios

remain uncertain in the potential magnitude of changes and the associated variability, the

modeling scheme proposed here allows for the testing of effects on loblolly pine plantation

productivity in the southeastern United States.

4.5 Conclusions

A simultaneous model for leaf area and dominant height was estimated to account for changes

in dominant height growth as a function of light interception. The model shows good agree-

ment between predicted values and field observations for both leaf area and dominant height

with no bias in the prediction. Environmental variables were incorporated into the leaf area

model to account for changes in leaf area growth over time, showing that monthly maximum

temperature and monthly excess water are able to explain some of the observed variation. It

was shown that accounting for annual intercepted radiation through a function of leaf area

index was important in determining dominant height growth in loblolly pine plantations,

opening a new avenue to develop simple models that include this ecological indicator.
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4.7 Tables and Figures

Table 4.1: Global parameter estimates for the leaf area index (Equation 4.1) and dominant
height (Equation 4.2) models fitted to 23 plots across the southeastern United States with
the environmental variables included as a beta and double logistic function, and a local
carrying capacity parameter (K). Root mean square error (RMSE) was calculated across all
observations.

Parameter Estimate Model Form
Environmental
Variable

r 1.4747

LAI Base N/A

τ 0.0344
A 2.9007
ω 6.3140
µ −2.0876
h 0.1561
µ2 −5.8073

Beta
Monthly

Maximum
Temperature

Tb 1.4637
α 1.4743
Tc 37.9576
β 0.3705
α 2.0187

Double
Logistic

Monthly
Excess
Water

β 0.0040
δ 0.0079
Tb −0.0005
Tc 329.9668
η 1.8660

Dominant
Height

Intercepted
Radiation

m 0.1960
κ 0.2013
β1 0.1293
β2 0.6212

RMSE-LAI 0.36
RMSE-HDOM 1.10
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Figure 4.1: Model results for one observed plot from the simultaneous fitting of A) leaf area index and B) dominant height
model. In addition to the model results, observed LAI and dominant heights are displayed. Root mean squared error (RMSE)
for dominant height was 0.67 m and LAI was 0.35 m2/m2.
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Figure 4.2: Observations vs. predictions for leaf area index values. A solid black line indicates
a 1:1 relationship.

126



0 5 10 15 20 25 30

0
5

10
15

20
25

30
O

bs
er

ve
d 

D
om

in
an

t H
ei

gh
t (

m
)

Predicted Dominant Height (m)

Figure 4.3: Observations vs. predictions for dominant height values. A solid black line indi-
cates a 1:1 relationship.

127



0 1 2 3 4 5

−
3

−
1

0
1

2
3

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Predicted Leaf Area Index  (m2 / m2)

A)

5 10 15 20 25

−
3

−
1

0
1

2
3

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Predicted Dominant Height (m)

B)

Figure 4.4: Studentized residuals for A) leaf area index (m2/m2) predictions and B) dominant
height predictions (m).
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Figure 4.5: Using the model estimated parameters, a sensitivity analysis was performed to
compare the dominant height growth trajectories for a site with low LAI (3.5 m2/m2) and
high LAI (5.0 m2/m2), with identical starting values.
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Chapter 5

Overall Conclusions

Understanding variability in forest productivity through its relationship with light intercep-

tion is essential for efficiently managing forest resources for current and future obligations.

As we gain increased understanding about the factors that influence light interception, man-

agement criteria can adapt to the factors that can be controlled while better predicting

the influence of exogenous factors . Before being able to study those influences, Chapter 2

provided a LAI estimation model that provided a way to correct for observation errors in

remotely sensed data to retrieve an unbiased model. The LAI estimation model provided

improvements over the current industry standard for Landsat 5 + 7 imagery, which now

allows for access to almost 40 years of imagery with unbiased estimates of loblolly pine LAI.

Novel to that chapter is the use of the Kalman filter to quantify observation errors and the

use of error-in-variable methods to reduce the influence of those observation errors on param-

eter estimates (Kalman, 1960; Cook and Stefanski, 1994). Use of the normalized difference

moisture index provided improvements in model fitting and prediction as compared to more

popular vegetation indices, such as the normalized difference moisture index or simple ratio.

Chapter 3 derived a LAI growth model with modifiers to account for influence of the

environment on LAI trends. Predictions from this model can provide a measure of produc-

tivity in areas with scant field data while relying on only remotely sensed imagery. Following

the framework outlined by Powers et al. (2003), various environmental variables and model

forms were evaluated on their effects of LAI growth and model improvement. The inclusion

of environmental variables, monthly maximum temperature and monthly excess water, pro-

vided an increased understand of the factors affecting light interception, while providing a
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way to model changes in future climate scenarios and how they might affect forest growth

and development.

Chapter 4 used the increased understanding of LAI growth and development to drive a

dominant height model by calculating the amount of radiation intercepted for a given year

to govern the anabolic term of the dominant height model. By accounting for the annual

intercepted light and the dominant height growth that occurred, we were able to provide an

updated measure of forest productivity that accounts for some of the biological processes

that determine forest growth. Quantifying the exchange of energy between the environment

and a forest provided biological significance to growth, allowing for the comparison of forests

with low and high light interception capabilities and determining the difference in dominant

height growth. While using LAI as a management tool has been a well-defined concept (Vose

and Swank, 1990; Sampson et al., 1997), we can now show the effects that changing LAI

have on forest productivity, defined by dominant height (Teskey et al., 1987; Vose and Allen,

1988; Albaugh et al., 1998).

The results from this research allows for researchers, forest managers, investors, and

other interested stakeholders to take advantage of the ever growing catalog of freely avail-

able, high resolution remotely sensed satellite imagery to improve and advance the decision

making process. Access to historical data will provide better understanding of long term

trends observed in loblolly pine productivity and how it relates to the environment. By

using remotely sensed data to estimate LAI and ecophysiological concepts to predict long

term trends, the productivity of future stands under different climate scenarios can be mod-

eled. The methods proposed in this research provide a framework to expand understanding

of light interception and forest productivity to other species and stand types.
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Appendix A

Chapter 2 Code

1

2 ## kalman filter on peak lai data
3

4 nlkflik = function(param , LAI , irrigate , fert , PLOTID ,age)
5

6 {
7 kfs <- foreach(dfs= levels(max_all_data$PLOTID), .combine = rbind , .

export = c("Kfilter")) %dopar%{
8 #nplots = as.numeric(dfs)
9 laiss = LAI[PLOTID == dfs]

10 agess = age[PLOTID == dfs]
11 pred = Kfilter(param = param ,
12 LAI = laiss ,
13 age = agess ,
14 PLOTID= dfs
15 )}
16

17 kfmean <<- unlist(kfs)[1: ndata]
18 kfvars <<- unlist(kfs)[( ndata +1) :(2*ndata)]
19

20 resu <- sum(dnorm(x = LAI ,
21 mean = kfmean ,
22 sd = sqrt(kfvars),
23 log = TRUE))
24 return(-resu)
25

26 }
27

28 Kfilter <- function(param , LAI , age ,PLOTID)
29 {
30 #param holds the list of parameters
31 #lai holds the LAI
32 #age holds age at which lai was measured
33 ndata1 <- length(LAI)
34 lai.nobs <- numeric(ndata1)
35 var.nobs <- numeric(ndata1)
36 proc.var <- exp(param["procvar"])
37 obs.var <- exp(param["obsvar"])
38 lai.n <- exp(param["M.lai.start"])
39 var.n <- exp(param["var.lai.start"])
40 xmid <- param["xmid"]
41 scale <- param["scale"]
42 lai.nobs [1] <- lai.n
43 var.nobs [1] <- var.n + obs.var
44

45
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46 for (i in 2: ndata1) {
47 #Specify growth function.
48 lai.ni <- (lai.n )*
49 (1+exp((xmid - age[i-1])/scale))/
50 (1+exp((xmid - age[i])/scale))
51 #Here the first derivative with respect
52 #of the variable to be increased.
53 slope <- (1+exp((xmid - age[i])/scale))/
54 (1+exp((xmid - age[i-1])/scale))
55 var.ni <- slope^2*var.n + proc.var
56 lai.nobs[i] <- lai.ni
57 var.nobs[i] <- var.ni + obs.var
58 lai.n <- lai.ni + var.ni /
59 var.nobs[i] * (LAI[i] - as.numeric(lai.nobs[i]))
60 var.n <- var.ni * (1- var.ni/var.nobs[i])
61 }
62 return(list(lai.est = lai.nobs , var.est = var.nobs))
63 }
64

65 ## starting values
66 param <- c(procvar =log (0.006) ,
67 obsvar =log (0.005) ,
68 M.lai.start =log (0.89) ,
69 var.lai.start =log (0.02) ,
70 xmid = 0.2,
71 scale = 8.0)
72

73 ## run filter in parallel environment
74 no_cores <- detectCores ()
75 cl <- makeCluster(no_cores , type="SOCK")
76 registerDoSNOW(cl)
77

78 reg.fit <-with(max_all_data ,
79 optim(param ,nlkflik ,
80 LAI = NDMI_shift ,
81 age = AGE ,
82 PLOTID = PLOTID ,
83 method = "BFGS",
84 control = list(maxit =10000)
85 ))
86 stopImplicitCluster ()
87

88

89

90 # simex for final model - using error estimate from Kalman output
91 loglik7.simex <-function(parameters ,LAI ,NDMI ,NDMI_error ,Fert ,noise.

level)
92 {
93 ndata <- (length(LAI))
94 B0 <-parameters [1]
95 B1 <-parameters [2]
96 B2 <-parameters [3]
97 A1 <-parameters [4]
98 A2 <-parameters [5]
99 sig1 <-parameters [6]

100 sig2 <-parameters [7]
101

102 total.noise <- sqrt(noise.level*NDMI_error)
103 means <- rep(0,ndata)
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104 NDMI2 <- rnorm(n=means ,mean=NDMI ,sd=total.noise) # create
pseudodata

105

106 exp.value <- ((B0+B1*NDMI2+Fert*(A1*NDMI2**A2))/(1+B2*NDMI2))
107 sigma <- (sig1*exp.value^sig2)
108

109

110 result <-sum(dnorm(LAI ,mean=exp.value ,sd=sigma ,log=T))
111 return(-result)
112 }
113

114 inits_noise1 <-c(B0= -32.2802480 ,
115 B1= 37.7618371 ,
116 B2= 5.8551406 ,
117 A1 = 1.7856614 ,
118 A2 = 5.3384160 ,
119 sig1= 0.3739386 ,
120 sig2= 0.1408014)
121

122 ## run simex for one level of noise
123 ## NDMI_var_Total includes combination of spline error and Kalman

Filter error - error
124

125 run_simex1 <- function(noise.amount){
126 maxlik.noise <-with(subset(vi_data ,!is.na(LAI)),
127 optim(inits_noise1 ,
128 loglik7.simex ,
129 LAI=LAI ,
130 NDMI=NDMI_shift ,
131 Fert=fert ,
132 NDMI_error=NDMI_var_Total ,
133 noise.level = noise.amount ,
134 method="SANN"))
135 return(c(noise.amount ,maxlik.noise$par))
136 }
137

138 noise.levels <- rep (0:20/10,each =1000)
139

140 # look at one level - need to repeat for all levels
141 noise.levels2 <- subset(noise.levels ,noise.levels ==0.1)
142

143 system.time(for (i in 1: length(noise.levels2)){
144 run_simex1 ((( noise.levels2)[i]))
145

146 if(i==1) simex_results2 <-(run_simex1 (( noise.levels2[i])))
147 if(i>1) simex_results2 <-rbind(simex_results2 ,(run_simex1 (( noise.

levels2[i]))))
148 })
149

150

151 simex_results2.df <- na.omit(as.data.frame(simex_results2))
152 names(simex_results2.df)<-c("V1","B0","B1","B2","A1","A2","sig1","

sig2")
153

154 # get updated estimates for one level of noise - repeat for all
levels

155 run2_summary <- ddply(simex_results2.df , .(V1), summarize ,
156 B0 = mean(B0),
157 B1 = mean(B1),
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158 B2 = mean(B2),
159 A1 = mean(A1),
160 A2 = mean(A2),
161 sig1=mean(sig1),
162 sig2=mean(sig2))
163

164

165 ## combine all runs in simex_results.df
166 simex_results.df$lambda <- simex_results.df$V1
167

168 simex_results.summary$lambda <- simex_results.summary$V1
169

170 # function to evaluate all runs - use quadratic model to
extrapolation to lambda=-1

171 simex_plotter <- function(df ,betas){
172 model <- lm(substitute(i ~ lambda + I(lambda ^2), list(i = as.name(

betas))), data = df)
173

174 new.df <- data.frame(lambda=c(-1))
175 unbiased <- predict(model , newdata=new.df)
176 xmin <- -1.01
177 xmax <- 2.05
178 plot(get(paste0(betas))~lambda ,data=df ,
179 type="p",pch=1,cex=.8,
180 xlim=c(xmin ,xmax),
181 xlab="", ylab="")
182 title(ylab = expression(paste("Estimated Parameter ", beta [0])),
183 xlab = expression(lambda),
184 cex =2)
185 newdata <- seq (from=0,to=3, by =0.01000)
186 newdata2 <- seq (from=-1,to=0, by =0.01000)
187 lines(newdata , predict(model , data.frame(lambda=newdata)), col=2,

lwd =2)
188 lines(newdata2 , predict(model , data.frame(lambda=newdata2)), col

=2,lwd=2,lty =3)
189 points(-1,as.numeric(unbiased),pch="+",cex =2)
190 #points(results.summary$V1,get(paste (" results.summary",sep =""))[[

as.name(betas)]],cex=2,pch="x",col="blue")
191 print(summary(model))
192 print(format(round(unbiased ,20),nsmall =20))
193 }
194

195 # run for B0 , repeat for other parameters , output returns unbiased
value

196 simex_plotter(simex_results.df,"B0")

138



Appendix B

Chapter 3 Code

1 library(deSolve)
2 library(numDeriv)
3 library(optimx)
4 library(doParallel)
5 library(doSNOW)
6 library(snow)
7 ## fit lai model to all plots
8 ## with local
9

10 ##-----------------------------
11 ## the derivative function
12 ##-----------------------------
13 logistic <- function(t, y, parms ,env ,env2) {
14 r = (parms["r"])
15 K = (parms["K"]) # this is local
16 tau = (parms["tau"])
17 h = (parms["h"])
18 A = (parms["A"])
19 omega = (parms["omega"])
20 mu = (parms["mu"])
21 mu2 = parms["mu2"]
22 temp.b = parms["temp.b"]
23 alpha = parms["alpha"]
24 temp.m = parms["temp.m"]*100
25 beta = parms["beta"]
26

27 temp.b2 <- parms["temp.b2"]
28 temp.c2 <- parms["temp.c2"]*100
29 alpha2 <- parms["alpha2"]
30 beta2 <- parms["beta2"]
31 delta2 <- parms["delta2"]
32

33

34 tlag = tau
35

36 lag =ifelse(tlag <= 0,0.0,
37 ifelse(t-tlag <=0, 0.0, lagvalue(t-tlag)))
38

39 # environmental modifier - beta function
40 H.temp <- exp(mu2) * (((env(t)-temp.b)**alpha)*((temp.m-env(t))**

beta))
41

42 # environmental modifier - double logistic
43 H.temp2 <- alpha2*(1/((1+ exp(-beta2*(env2(t)-temp.b2)))*(1+exp(

delta2*(env2(t)-temp.c2)))))
44
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45 dy <- (r*y[1]*(1-lag [1]/((K+A*sin(omega*t+mu)))) - h*y[1])*H.
temp*H.temp2

46

47 list(dy=dy ,lag=lag)
48 }
49

50

51

52 y.dinamic <-function(local.start ,times ,IDs ,m,interpol.env ,interpol.
env2){

53 y.d<- dede(y = local.start ,
54 times = times ,
55 func = logistic ,
56 parms = m,
57 env = interpol.env ,
58 env2= interpol.env2 ,
59 control=list(mxhist = 10000000))
60 return(y.d)}
61

62

63

64 global <- c( tau = 0.1142544229 ,
65 h = 0.0646616036 ,
66 A = 2.6254156196 ,
67 omega = 6.2876493039 ,
68 mu = -1.7420027704 ,
69 r = 1.1968129114 ,
70 sds = (0.3800999736 ))
71

72 local <-c( ystart = 0.3425833) # Local LAI starting value
73

74

75 local.K <-c( K = 4.065111 ) # LAI K starting value
76

77 # function imports parameters , LAI data , number of plots ,
environmental data

78 nlkflik.mon.tmx = function(parameters , data.LAI ,nplots ,data.clim ,
local.L,local.K){

79 if(parameters["tau"]<0|| parameters["r"]<0|| parameters["h"]<0||
parameters["A"]<0|| parameters["omega"]<0){ # enforce positive
values

80 value <- (-10e100)}
81 else{
82

83 ndata <- length(data.LAI$fit)
84 lower <- 17+1
85 upper <- 17+ nplots
86 local <- parameters[lower:upper] # Local lai starting value
87 lower.K <- 17+ nplots +1
88 upper.K <- 17 +nplots+nplots
89 local.K <- parameters[lower.K:upper.K]
90 m<-parameters [1:17] # global values for lai + environmental

modifiers
91 LAI <- data.LAI$fit
92 times <-data.LAI$new_x
93 IDPlots <-unique(data.LAI$Name)
94 IDs <-data.LAI$Name
95 IDclim = data.clim$Name
96 AGE = data.clim$AGE
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97 TEMP = data.clim$mon.tmx
98 TEMP2 = data.clim$mon.EW
99

100 kfs <- foreach(dfs= 1: length(IDPlots), .combine = rbind ,.
packages = c("deSolve") ,.export = c("y.dinamic","logistic"))
%dopar %{

101 plotid = IDPlots[dfs]
102 times.ss = times[IDs%in%plotid]
103 local.ss = local[dfs]
104 local.K.ss = local.K[dfs]
105 IDs.ss = IDs[IDs%in%plotid]
106

107 # pass environmental data as spline function - interpolates at
timestep

108 interpol.env <- approxfun(AGE[IDclim%in%plotid],TEMP[IDclim%in
%plotid],rule=2,method="linear")

109 interpol.env2 <- approxfun(AGE[IDclim%in%plotid],TEMP2[IDclim%
in%plotid],rule=2,method="linear")

110

111 pred = y.dinamic(local.start = local.ss , # this is the
localized starting value for LAI series

112 times = times.ss,
113 IDs = IDs.ss ,
114 m = c(m,local.K.ss),
115 interpol.env=interpol.env ,
116 interpol.env2=interpol.env2)
117 }
118

119 kfmean <<- kfs [1:ndata ,2]
120

121 value <- sum(dnorm(x = LAI ,
122 mean = kfmean ,
123 sd = (parameters["sds"]),
124 log = TRUE))
125 }
126 return(-value)
127

128 }
129

130 inits.mon.tmx = c(global ,
131 alpha =1.5926632564 ,
132 beta = 0.3418526183 ,
133 temp.b =1.4592300055 ,
134 temp.m = (0.4468866257 ) ,
135 mu2 = -6.0358585068 ,
136

137 alpha2 =1.5984363773 ,
138 beta2 = 0.0063069909 ,
139 delta2 =0.0070890486 ,
140 temp.b2 = -0.0003954878 ,
141 temp.c2 = (2.7636195940 ) )
142

143 # combine global model , environmental model , and local starting
values

144 all.inits <- c(inits.mon.tmx , local , local.K)
145

146 no_cores <- detectCores ()
147 cl <- makeCluster(no_cores , type="SOCK")
148 registerDoSNOW(cl)
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149

150 result.interaction <- optimx(par=all.inits ,
151 fn=nlkflik.mon.tmx ,
152 data.LAI=smooth_combine , # lai data
153 nplots=length(unique(smooth_combine$

Name)),
154 control=list(follow.on=T,trace=T,REPORT

=10, maxit =500,kkt=T,
155 parscale=round(sqrt(inits.

mon.tmx**2) ,5)),
156 data.clim = climate.dat , # east anglia

cru data
157 method=c("CG","Nelder -Mead","BFGS"))
158 print(result.interaction)
159

160 stopImplicitCluster ()
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Appendix C

Chapter 4 Code

1

2 library(deSolve)
3 library(numDeriv)
4 library(optimx)
5 library(doParallel)
6 library(doSNOW)
7 library(snow)
8 library(plyr)
9

10 # lai model
11 dL<- function(t, y, parms ,env ,env2) {
12 r = (parms["r"])
13 K = (parms["K"])*10
14 tau = (parms["tau"])
15 h = (parms["h"])
16 A = (parms["A"])
17 omega = (parms["omega"])
18 mu = (parms["mu"])
19

20 mu2 = parms["mu2"]
21 temp.b = parms["temp.b"]
22 alpha = parms["alpha"]
23 temp.m = (parms["temp.m"])*100
24 beta = parms["beta"]
25

26 temp.b2 <- parms["temp.b2"]
27 temp.c2 <- (parms["temp.c2"])*100
28 alpha2 <- parms["alpha2"]
29 beta2 <- parms["beta2"]
30 delta2 <- parms["delta2"]
31

32 tlag = tau
33

34 lag =ifelse(tlag <= 0,0.0,
35 ifelse(t-tlag <=0, 0.0, lagvalue(t-tlag)))
36

37 # environmental modifiers
38 H.temp <- exp(mu2) * (((env(t)-temp.b)**alpha)*((temp.m-env(t))**

beta))
39 H.temp2 <- alpha2*(1/((1+ exp(-beta2*(env2(t)-temp.b2)))*(1+exp(

delta2*(env2(t)-temp.c2)))))
40

41 dL <- (r*y[1]*(1-lag [1]/((K+A*sin(omega*t+mu)))) - h*y[1])*H.temp*
H.temp2

42

43 list(c(dL=dL))
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44 }
45

46 # dominant height model
47 dH<- function(t, y, parms ,env ,lai) {
48 eta = parms["eta"]
49 m = parms["m"]
50 kappa = parms["kappa"]
51 b1 = parms["b1"]
52 b2 = parms["b2"]
53

54 ipar <- env(t)-env(t)*exp(-0.5*(lai(t))) # calc intercepted
radiation

55

56 #fpar <- env(t) - ipar
57

58 dH <- ((eta)*y[1]**(b1*(ipar/100000)+m)-kappa*y[1])**b2 # dom
height model with IPAR scaled

59

60 list(c(dH=dH))
61 }
62

63 # dynamic LAI formulation for plot level
64 y.dinamic.L<-function(local.start ,times ,IDs ,m,model ,interpol.env ,

interpol.env2){
65 y.d <- dede(y = local.start ,
66 times = times ,
67 func = model ,
68 parms = m,
69 env = interpol.env ,
70 env2= interpol.env2 ,
71 control=list(mxhist = 1000000))
72 return(y.d)}
73

74 # dynamic HDOM formulation for plot level
75 y.dinamic.H<-function(local.start ,times ,IDs ,m,interpol.env ,lai ,model

){
76 y.d <- rk4(y = local.start ,
77 times = times ,
78 func = model ,
79 parms = m,
80 env = interpol.env ,
81 lai = lai)
82 return(y.d)}
83

84 nlkflik = function(parameters , data.LAI ,nplots ,data.clim ,data.clim.
lai ,data.Hdom ,y.dinamic.L,y.dinamic.H,model1 ,model2 ,local.vars ,
fixed.parms){

85

86 ndata <- length(data.LAI$fit)
87 ndataH <- length(data.Hdom$HDomM)
88 lower1 <- 23+1
89 upper1 <- 23+ nplots
90 lower2 <- 23+ nplots +1
91 upper2 <- 23+ nplots+nplots
92 lower3 <- 23+ nplots+nplots +1
93 upper3 <- 23+ nplots+nplots+nplots
94 local.L<-parameters[lower1:upper1] # Local parameters - LAI
95 local.H<-parameters[lower2:upper2] # Local parameters - Height
96 local.K<-parameters[lower3:upper3]
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97 m<-parameters [1:23] # global parameters
98 LAI <- data.LAI$fit # get all LAI data
99 Height <- data.Hdom$HDomM # get all HDom data (meters)

100 times <-data.LAI$new_x # get all the times for LAI observations
101 timesH <- data.Hdom$AGE # get times for HDom observations
102 IDPlots <-unique(data.LAI$Name) # list of all 23 plot names for "

foreach" cycle
103 IDs <-data.LAI$Name # list of all names associated to LAI data
104 IDsH <-data.Hdom$Name # list of all names associated to LAI data
105 IDclim = data.clim$Name # list of all names associated with

solar radiation data
106 AGE = data.clim$floorage # age associated with solar radiation

data
107 TEMP = data.clim$ann.Solrad # get the solar radiation data
108

109 IDclim.lai = data.clim.lai$Name ## lai env data
110 AGE.lai = data.clim.lai$AGE ## lai env data
111 TEMP.lai = data.clim.lai$mon.tmx## lai env data
112 TEMP2.lai = data.clim.lai$mon.EW## lai env data
113

114 kfs <- foreach(dfs= 1: length(IDPlots), .combine = rbind ,.
packages = c("deSolve","plyr"),

115 .export = c("dL","dH")) %dopar %{
116

117 PLOT.ID <- IDPlots[dfs]
118

119 analyze <- function(dfs){
120 plotid = IDPlots[dfs] # get plot id
121 times.ss = times[IDs%in%plotid] # subset times for plot id
122 local.ss = c(local.L[dfs]) # get the local starting values

for LAI and Height
123 local.K.ss = c(local.K[dfs]) # get the local starting

values for LAI and Height
124 IDs.ss = IDs[IDs%in%plotid] # get IDs but don ’t use
125 # spline the env data to pass as function
126 interpol.env <- approxfun(AGE.lai[IDclim.lai%in%plotid],TEMP.

lai[IDclim.lai%in%plotid],rule=2,method="linear")
127 interpol.env2 <- approxfun(AGE.lai[IDclim.lai%in%plotid],TEMP2

.lai[IDclim.lai%in%plotid],rule=2,method="linear")
128

129 pred = y.dinamic.L(local.start = local.ss ,
130 times = times.ss,
131 IDs = IDs.ss ,
132 m = c(m,local.K.ss),
133 model = model1 ,
134 interpol.env=interpol.env ,
135 interpol.env2=interpol.env2) #

interpol.env is the solar radiation
data in function form

136 return(pred)
137 }
138

139

140 kfsL <- analyze(dfs)
141

142 kfmeanL <- kfsL[,2] # get all the predicted LAI
143 LAI.plot <- LAI[IDs%in%PLOT.ID]
144 value.L <- ifelse(is.na(sum(dnorm(x = LAI.plot ,
145 mean = kfmeanL ,
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146 sd = (parameters["
sdsL"]),

147 log = TRUE)))==T,-10
e200 ,

148 sum(dnorm(x = LAI.
plot ,

149 mean = kfmeanL ,
150 sd = (parameters["

sdsL"]),
151 log = TRUE)))
152

153 LAI.E <- kfsL[,2]
154 LAI.E.time <- kfsL[,1]
155

156 LAI.estimated <- data.frame(kfsL)
157 LAI.estimated$age <- floor(LAI.estimated$time) # get rounded AGE

to summarize LAI
158 peak.lai <- ddply(LAI.estimated ,.( age),summarize ,
159 plai = max(ystart)) # identify peak LAI for

each AGE
160

161 analyze.H <- function(dfs){
162

163 plotid = IDPlots[dfs] # get plot id
164 local.ss = c(local.H[dfs]) # get the local starting values

for LAI and Height
165 IDs.ss = IDsH[IDsH%in%plotid] # get IDs but don ’t use
166 LAI.E.ss = peak.lai$plai # get the peak LAI for each age
167 LAI.E.time.ss= peak.lai$age # get the ages
168 timesH.ss = timesH[IDsH%in%plotid]
169

170 interpol.env <- approxfun(AGE[IDclim%in%plotid],TEMP[IDclim%in
%plotid],rule=2,method="linear",ties = mean) #
interpolation function to pass to dH for solar radiation
data at any timestep

171 interpol.lai <- splinefun(LAI.E.time.ss,LAI.E.ss,method="
natural") # interpolation function to pass to dH for peak
LAI data at any timestep

172

173 pred2 = y.dinamic.H(local.start = local.ss,
174 times = timesH.ss,
175 IDs = IDs.ss ,
176 m = m,
177 model = model2 ,
178 lai = interpol.lai ,
179 interpol.env=interpol.env) # interpol.

env is the solar radiation data in
function form

180

181 return(pred2)
182 }
183

184 kfsH <- analyze.H(dfs)
185

186 kfmeanH <- kfsH[,2] # get all the predicted HDom
187 Height.plot <- Height[IDsH%in%PLOT.ID]
188

189 value.H <- ifelse(is.na(sum(dnorm(x = Height.plot ,
190 mean = kfmeanH ,
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191 sd = (parameters["
sdsH"]),

192 log = TRUE)))==T,-10
e200 ,

193 sum(dnorm(x =
Height.plot ,

194 mean = kfmeanH ,
195 sd = (

parameters["sdsH"]),
196 log = TRUE)))
197

198

199 return(-(value.L+value.H))
200 }
201 big_data = sum(kfs)
202

203 return(big_data)
204 }
205

206

207

208

209

210 ### global starting values ###
211 global <- c(r =1.4746959081 ,
212 tau =0.0344250168 ,
213 h =0.1560551105 ,
214 A =2.9006717349 ,
215 omega =6.3139684502 ,
216 mu = -2.0875889025 ,
217 sdsL = 0.3615596429 ,
218 sdsH =1.1002179618 ,
219 eta =1.8659879902 ,
220 m =0.1960352862 ,
221 kappa =0.2012837343 ,
222 b1 =0.1292565632 ,
223 b2 =0.6212351008 ,
224 mu2 = -5.8073016794 ,
225 temp.b =1.4637299680 ,
226 alpha =1.4742685513 ,
227 temp.m =0.3791976448 ,
228 beta =0.3705493181 ,
229 temp.b2 = -0.0005003456 ,
230 temp.c2 =3.2927438890 ,
231 alpha2 =2.0186663774 ,
232 beta2 =0.0039990726 ,
233 delta2 =0.0079399434 )
234

235

236 ### local - dominant height starting values ###
237 ### these come from fitting the dominant height model independently
238 h.start.vals <- c(hstart = 3.1127218559 )
239

240 ### local - LAI starting values ###
241 ### these come from fitting the LAI model independently
242 l.start.vals <- c(ystart =0.2527804271)
243

244 ## local - K starting values
245 local.K <-c( K = 0.4503376466)
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246

247

248

249 ## merge the local starting values
250 local <- c(l.start.vals ,h.start.vals ,local.K)
251

252 ## combine the global and local starting values
253 inits <- c(global ,local)
254

255 scales <- round(sqrt(inits**2) ,4)
256

257 no_cores <- detectCores ()
258 cl <- makeCluster(no_cores -1, type="SOCK")
259 registerDoSNOW(cl)
260

261 result .2 <- optimx(par=inits , ## pass the inits
262 fn=nlkflik , ## overall function to minimize
263 data.LAI=smooth_combine , ## lai data to

pass
264 data.Hdom=study_data , ## hdom data to pass
265 nplots= length(unique(smooth_combine$Name))

, ## total number of plots - 23
266 y.dinamic.L = y.dinamic.L, ## pass function
267 y.dinamic.H = y.dinamic.H,
268 model1 = dL , ## pass function
269 model2 = dH , ## pass function
270 data.clim = env.data.ann , ## solar

radiation data to pass
271 data.clim.lai = climate.dat ,
272 control=list(trace=6,REPORT =10, maxit =1000,

follow.on=T,kkt=F,
273 parscale=scales),
274 hessian=F,
275 method=c("Nelder -Mead","CG","BFGS"))
276

277 stopImplicitCluster ()
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