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Abstract

In this thesis we give two applications of Alexander ideals to knotted surfaces in S4. First

we prove that the Alexander ideal induces a homomorphism from the 0-concordance monoid

C0 of oriented surface knots in S4 to the ideal class monoid of Z[t±1]. Consequently, any

surface knot with nonprincipal Alexander ideal is not 0-slice and in fact, not invertible in

C0. This proves that the submonoid of 2-knots is not a group and reproves the existence of

infinitely many linearly independent 0-concordance classes.

The second application is to regular homotopies of 2-knots in S4, and is joint work with

Michael Klug, Benjamin Ruppik, and Hannah Schwartz. Analogous to classical unknotting

number, we define the Casson-Whitney number of a 2-knot as the minimal number of Whit-

ney moves during any regular homotopy to the unknot, and prove that if K1 and K2 each

have nontrivial determinant, then the Casson-Whitney number of K1 #K2 is at least 2. A

corollary is that the Casson-Whitney number is not equal to the stabilization number, the

minimal number of 1-handle stabilizations needed to produce an unknotted surface. We

also prove a strong version of nonadditivity for both the Casson-Whitney number and the

stabilization number.
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Chapter 1

Introduction

The goal of this thesis is to study closed surfaces smoothly embedded in S4. The main tools

we will utilize are knot groups and the Alexander module, which are classical invariants but

contain much information. The Alexander ideal ∆(K) of a knotted surface K is the first

elementary ideal of its Alexander module. It is well known that this ideal may fail to be

principal, in which case K ‘has no Alexander polynomial’. The first recorded instance of

this was Example 12 of A Quick Trip Through Knot Theory by Ralph Fox [Fox62]; later

this 2-knot was identified with the 2-twist-spun trefoil of Zeeman. Hence many authors

define the Alexander polynomial of a knotted surface to be a generator of the smallest

principal ideal which contains the Alexander ideal, thereby obtaining a polynomial at the

expense of throwing away information. One goal of this thesis is to promote the study of

the Alexander ideal as is. Indeed, the ideal class monoid of a PID is trivial, so Theorem 1.1

would be completely missed if one only considered principal ideals. The impetus for studying

these comes from the ribbon obstruction for 2-knots: any ribbon 2-knot has a Wirtinger

presentation of deficiency 1, and all such knot groups have principal Alexander ideals. What

we show here is that having a nonprincipal ideal is in fact a 0-sliceness obstruction, which

unlike the ribbon obstruction generalizes to any genus.
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A 2-knot in S4 is a smooth embedding of a 2-sphere into the 4-sphere, considered up to

isotopy. Kervaire proved that all 2-knots in S4 are slice (concordant to the unknot) [Ker65],

so it is natural to seek restricted forms of concordance. Paul Melvin introduced the notion of

0-concordance in his thesis [Mel77]. Two 2-knots are 0-concordant if there is a concordance

between them such that each regular level set consists of only spheres. Melvin proved that

0-concordant 2-knots have diffeomorphic Gluck twists in 1977, but it was unknown until

recently if any 2-knots in S4 were not 0-slice, i.e. 0-concordant to the unknot. This is

Problem 1.105a on the Kirby problem list [Kir97].

Question (Melvin). Is every 2-knot 0-slice?

Sunukjian showed in [Sun15] that all genus g surface knots in S4 are concordant and

extended the notion of 0-concordance to higher genus surfaces. The set of all oriented

surface knots in S4 modulo 0-concordance forms a commutative monoid under connected

sum, which we denote C0. The set of all 2-knots modulo 0-concordance is an important

submonoid of C0, which we denote K0.

We produce a 0-concordance obstruction by determining exactly how the Alexander ideal

can change during such a concordance. Namely, any surface knot which is 0-slice must have

a principal ideal. This is analogous to the Fox-Milnor theorem, which says that if a clas-

sical knot is slice, its Alexander polynomial must factor as f(t)f(t−1). More generally, the

Alexander ideals of 0-concordant surface knots are equivalent in the ideal class monoid of

Z[t±1]. This comes from a useful factoring of 0-concordances into two opposing ribbon con-

cordances, and the key lemma for Theorem 1.1 which shows that during a ribbon concordance

the Alexander ideal changes by multiplication by a principal ideal. The ideal class monoid

of an integral domain R, denoted I(R), is a quotient of the monoid of nonzero ideals of R

under multiplication, by the equivalence relation I ∼ J if there exist nonzero x, y ∈ R such

that (x)I = (y)J . The Alexander ideal of a connected sum is the product of the individual

ideals, so the operations on these monoids are compatible.
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Theorem 1.1. The Alexander ideal induces a homomorphism ∆ : C0 → I(Z[t±1]).

By definition, 0-concordant surface knots have the same genus; still we say a surface knot

K is 0-slice if it is 0-concordant to the unknotted surface of the same genus, and invertible

if there exists a surface knot J so that K#J is 0-slice. Since the ideal class monoid of Z[t±1]

has no inverses, any surface knot with a nonprincipal Alexander ideal is not invertible in C0.

Corollary 1.2. If a surface knot K has a nonprincipal Alexander ideal, then it has no

inverse in C0, i.e. for all surface knots J , K#J is not 0-slice.

As we have already observed, there exist 2-knots with nonprincipal Alexander ideals; this

proves that K0 is not a group. Next we analyze the effect of twist-spinning on the Alexander

ideal to prove that infinitely many twist-spins of the same classical knot have nonprincipal

ideals, as long as the knot’s determinant is not a unit. The n-twist-spin of a classical knot

K in S3 is denoted τnK.

Theorem 1.3. If K is a classical knot such that |∆K(−1)| 6= 1, then there exist infinitely

many n ∈ Z such that ∆(τnK) is not principal. In particular, if n is even and ∆(τnK) is

principal, then ∆K(t) has a root z such that zn = 1.

In the special case of 2-twist-spins of 2-bridge knots, the determinant is an invariant of

0-concordance.

Corollary 1.4. Any 2-twist-spin of a 2-bridge knot is not invertible in C0. If K and J are

2-bridge knots and their 2-twist-spins are 0-concordant, then |∆K(−1)| = |∆J(−1)|.

The structure of the ideal class monoid is in general quite complicated, although in the

case of ideals which admit a prime factorization we understand the situation completely.

In particular, the maximal ideals of Z[t±1] independently generate a free commutative sub-

monoid of the ideal class monoid of infinite rank. If K is a 2-bridge knot with prime

determinant p = |∆K(−1)|, then the Alexander ideal of its 2-twist-spin is the maximal ideal
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(p, t + 1). Hence any collection of 2-twist-spun 2-bridge knots with pairwise distinct, prime

determinants yields a basis for a free commutative submonoid of K0.

Theorem 1.5. K0 contains a submonoid isomorphic to N∞.

These techniques provide a very different answer to the 0-concordance problem than was

provided recently by several authors [Sun19], [DM19]. However, all of these approaches

utilize the factoring of a 0-concordance into two ribbon concordances. This was first made

explicit by Sunukjian in [Sun19], and is also essentially pointed out in [Kir97].

Sunukjian used this and techniques from Heegaard Floer homology, applied to Seifert

3-manifolds of 2-knots, to produce a 0-concordance obstruction, proving the existence of

infinitely many 0-concordance classes [Sun19]. This line of attack was strengthened by Dai

and Miller using spin rational homology cobordism, and enabled them to find infinitely

many linearly independent 0-concordance classes [DM19]. It is interesting to note that

these approaches are independent of ours, in that each works to obstruct 0-concordance

in situations where the other fails (see Remark 4.17). Furthermore, while Dai and Miller

had already established the existence of infinitely many linearly independent 0-concordance

classes, Theorem 1.1 provides the only known method to obstruct invertibility in the 0-

concordance monoid. These are also the only techniques known to generalize to higher

genus surfaces.

Understanding the image of ∆ gives us information about C0. We determine its image

by characterizing the ideals which occur as Alexander ideals of knotted surfaces. Kinoshita

proved that any polynomial f(t) ∈ Z[t±1] satisfying f(1) = ±1 is the Alexander polynomial of

a ribbon 2-knot [Kin61]. For an ideal I ⊆ Z[t±1] and a = ±1, let I|a denote the nonnegative

generator of the ideal {f(a) : f(t) ∈ I} ⊆ Z. We prove the following generalization of

Kinoshita’s theorem to arbitrary genus.

Theorem 1.6. An ideal I of Z[t±1] is the Alexander ideal of a surface knot if and only if
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I|1 = 1.

The last chapter of this thesis concerns regular homotopies of 2-knots in S4, and is

joint work with Michael Klug, Benjamin Ruppik, and Hannah Schwartz [JKRS20]. Smale

proved that all 2-knots are regularly homotopic [Sma58]. Additionally, any generic regular

homotopy can be decomposed into a finite sequence of finger and Whitney moves. Given a

2-knot K, we consider the minimal number of Whitney moves (or equivalently finger moves)

in any regular homotopy from K to the unknot. This is an invariant of K, which we call the

Casson-Whitney number of K, denoted ucw(K).

There is another notion of an unknotting number for 2-knots, namely the minimal num-

ber of 1-handle stabilizations needed to produce an unknotted surface. We call this the

stabilization number of a 2-knot, denoted ust(K). The goal of [JKRS20] is to study the

relationship between these unknotting numbers. In this thesis we will present several theo-

rems from that paper which draw on algebraic techniques. The main theorem of this chapter

is that the unknotting numbers are not equal.

Theorem 1.7. There are infinitely many 2-knots K for which ust(K) = 1 and ucw(K) = 2.

Miyazaki found examples of 2-knots K1 and K2 for which ust(K1) = ust(K2) = 1 =

ust(K1 #K2) [Miy86]. In these same examples, and more generally whenever the determi-

nants of K1 and K2 are nontrivial, we prove that ucw(K1 #K2) is at least 2.

Theorem 1.8. Let K1, K2 be 2-knots with determinants ∆(Ki)|−1 6= 1. Then

ucw(K1#K2) ≥ 2.

The previous theorem suggests the possibility that the Casson-Whitney number of a

connected sum is at least as large as the number of summands. We conclude by proving,

on the contrary, a strong form of nonadditivity for both the stabilization number and the

Casson-Whitney number.

5



Theorem 1.9. Let υ = ust or ucw. For any c, n ∈ N, there exist 2-knots K1, . . . , Kn with

υ(Ki) = c for all i, and

c ≤ υ(K1# · · ·#Kn) ≤ 2c
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Chapter 2

Background

2.1 Knotted surfaces in 4-space

Throughout we will consider smoothly embedded, closed, connected surfaces K : Σg ↪→ S4,

considered up to smooth isotopy. We will assume Σ is oriented except when noted otherwise.

When g = 0, K is called a 2-knot. An embedded surface K is unknotted if K bounds a

smoothly embedded handlebody. Up to isotopy, there is only one unknotted surface for each

genus, which we denote Ug, with U = U0 the unknotted sphere. An unlink is an embedding

L : tS2 ↪→ S4 such that each component of L bounds a 3-ball, disjoint from all the other

3-balls.

The first examples of 2-knots are due to Artin in [Art25]. Artin described a way to

start with a classical knot K, i.e. a smoothly embedded circle in the 3-sphere, and produce

a 2-knot Spin(K) via a process called spinning. This was generalized to twist-spinning

and eventually deform-spinning, by Fox, Litherland, Zeeman, et al [Zee65], [Lit79]. These

techniques provide many examples of knotted spheres and tori, although they all ‘come from’

classical knots and are a small subset of all knotted surfaces. Indeed, enumerating knotted

surfaces is a difficult task and even a rough classification seems very difficult.
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The situation with classical knots is much simpler. Whitten proved that prime knots

whose complements have isomorphic fundamental groups must have homeomorphic comple-

ments [Whit85], and Gordon and Luecke proved that knots with homeomorphic complements

are isotopic [GL89]. Indeed, classical knots admit prime factorizations, a topic which is very

much open for knotted surfaces. In both contexts, however, the knot group, which is the

fundamental group of the exterior of the knotted manifold, plays a central role in determining

many of its interesting properties.

We begin by introducing ribbon surface knots and twist-spun knots, which will be the

main examples considered in this thesis. Then we review some important properties of knot

groups and introduce the Alexander module, a powerful invariant which comes from the knot

group. The Alexander ideal is the first elementary ideal of this module and will be our

main tool in most of the results herein.

2.1.1 Ribbon surface knots

A particularly simple and easy to visualize class of knotted surfaces is the class of ribbon

surfaces.

Definition 2.1. A ribbon presentation of a knotted surface K : Σg ↪→ S4 is obtained

from an unlink L of n components by fusing along n−1+g 3-dimensional 1-handles embedded

in S4, whose S0 ×D2 boundary components are embedded in L and equal the intersection

of the 1-handles with L, in such a way as to produce an orientable surface of genus g. Any

surface knot K admitting such a presentation is called ribbon .

This definition is analogous to ribbon 1-knots, which are obtained from an unlink of

n components by fusing along n − 1 bands (2-dimensional 1-handles), and bound obvious

ribbon-immersed disks in S3 with only ribbon singularities. Indeed, a ribbon knotted surface

bounds a ribbon-immersed handlebody in S4 with only ‘ribbon’ self-intersections: disks

8



Figure 2.1: A ribbon presentation for a ribbon 2-knot.

embedded in S4 whose preimages in the handlebody consist of the disjoint union of a properly

embedded disk and a disk embedded in the interior of the handlebody.

These surfaces are convenient for computations involving knot groups, as meridians to the

unknots generate the knot group and each fusion tube gives a Wirtinger relation. Conversely,

given a Wirtinger presentation which abelianizes to Z, one can always create a ribbon surface

with unknots corresponding to generators and fusion bands corresponding to relations which

has exactly this presentation for its knot group.

2.1.2 Twist-spun knots

The first examples of knotted spheres are due to Artin [Art25]. Note that S4 admits

an open book decomposition with binding the unknotted S2, which we call S: S4 \ S is

fibered by 3-ball pages Bθ, θ ∈ S1. Explicitly, start with B3 × S1 and form the quotient

9



Figure 2.2: A (3-ball, knotted arc) pair used in the spinning construction.

space B3 × S1/(p, 0) ∼ (p, θ) for all p ∈ ∂B3, θ ∈ S1. This space is diffeomorphic to S4, the

images of B3 × {θ} are the Bθ, and the common boundary sphere ∂Bθ is the binding S.

Starting with a classical knot k, Artin described a way to ‘spin’ a (3-ball, knotted arc)

pair through this decomposition, producing a knotted sphere [Art25]. Given k : S1 ↪→ S3,

remove a small 3-ball neighborhood B of a point on k to obtain k◦ : I ↪→ S3 \ B. Identify

S3 \B with B3 so that ∂k◦ is exactly the north and south pole of the unit ball B3 ⊆ R3.

Definition 2.2 (Artin). The spin of k, denoted Spin(k), is the image of k◦ × S1 in S4,

thought of as the above quotient space.

Artin proved that the group of Spin(k) is isomorphic to the group of k, showing that

every 1-knot group is also a 2-knot group. It can be calculated from the complement of the

knotted arc inside of B3, as in Figure 2.2.

Twist-spinning was introduced by Zeeman in [Zee65] as a generalization of the spinning

construction (this was further generalized by Litherland to deform spun knots, but in this
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thesis we will not consider these). Let ρθ : B3 → B3 be the self-diffeomorphism which

rotates B3 about the vertical axis through an angle of θ radians. Fix n ∈ Z and consider the

quotient space B3 × S1/(p, 0) ∼ (ρnθ(p), θ) for all p ∈ ∂B3, θ ∈ S1.

Definition 2.3 (Zeeman). The n-twist-spin of k, denoted τnk, is the image of k◦ × S1 in

S4, thought of as the above quotient space.

By definition τ 0k ∼= Spin(k). Zeeman proved that if the number of twists n is not 0, the

resulting 2-knot is fibered by the n-fold cyclic branched cover of k. Thus τ±1k = U for any

k, as this 2-knot is fibered by 3-balls. By the homotopy exact sequence, the commutator

subgroup of π(τnk) is the fundamental group of the fiber, the n-fold cyclic branched cover

of k, for n 6= 0. Twist-spun knots provide a large generalization of spun knots which are

fairly well understood and display many interesting properties. Cochran proved that any

twist-spun knot τnk for k nontrivial and n 6= 0,±1 is not ribbon [Coc83], in contrast to spun

knots, which are always ribbon.

2.2 Knot groups

The knot group of a knotted surface is the fundamental group of its complement. This is a

powerful invariant for studying knotted surfaces. The spinning construction of Artin shows

that all 1-knot groups are also 2-knot groups, but there are many interesting group theoretic

properties that 2-knot groups can have which 1-knot groups never do.

Definition 2.4. Let K be a surface knot. A meridian of K is an element of πK which

can be represented by a simple closed curve γ : S1 ↪→ S4 \ K bounding a disk in S4 that

transversely intersects K in a single point.

The set of positively oriented meridians of a knotted surface forms a conjugacy class of

its group. That is, x is a meridian of K if and only if w−1xw is as well, for any w ∈ πK.
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The meridians of a surface knot K generate πK, so any meridian normally generates it, i.e.

πK/〈〈x〉〉 ∼= 1.

Definition 2.5. Let K be a surface knot. The minimal number of meridians of K which

generate πK is called the meridional rank of K.

Knot groups admit special presentations called Wirtinger presentations which are gener-

ated by meridians. These can be calculated from a projection to R3 in a manner analogous

to the Wirtinger algorithm for classical knots, or can be obtained from the motion picture

method, by performing the Wirtinger algorithm on the central cross-section of the normal

form described in [Kaw96], then adding relations for each band which identify the meridians

on either end of it.

Definition 2.6. Let G be the group of a surface knot. A Wirtinger presentation of G

is a presentation of G of the form 〈x1, . . . , xn|r1, . . . rm〉, where each ri = x−1
i1
w−1
i xi2wi, for

some wi ∈ G, ij ∈ {1, . . . , n}.

Although not all 2-knot groups are 3-knot groups, every knot group of an orientable

knotted manifold Mn ↪→ Sn+2 is the group of some knotted surface. Indeed, in [Kam01]

it is shown that all these knotted manifold knot groups admit Wirtinger presentations.

Conversely, any Wirtinger presentation is realizable as the knot group of a knotted surface,

by first starting with an unlink of 2-spheres whose meridians will be x1, . . . , xn, and then

performing m 1-handle stabilizations along tubes which link these spheres to carry out the

relations.

If K : Σg ↪→ S4 is any embedded, closed, oriented surface, then by Alexander duality

H1(S4 \K;Z) ∼= H2(Σg;Z) ∼= Z, so all knot groups abelianize to the integers. A simple but

useful fact is that knot groups are semidirects products of their commutator subgroups with

their abelianizations. Let K be a knotted surface with group πK. The abelianization short

exact sequence

12



1→ (πK)′ → πK → Z→ 1

is easily seen to be split exact, as sending a generator of Z back to a meridian of K commutes

with the abelianization. Thus, πK ∼= (πK)′ o Z, where the semidirect product structure is

induced by conjugation by a meridian. Understanding this action is critical to understanding

the knot group: for example, any two fibered 1-knots of the same genus g have a free group of

rank 2g as the commutator subgroup of their knot group, but prime 1-knots are determined

by their groups and so must have different semidirect product structures.

It is worth noting that the preimage in πK of 1 ∈ Z has in general many distinct

conjugacy classes, only one of which is the conjugacy class of positively oriented meridians.

For example, Suciu showed that there are infinitely many ribbon 2-knots, all with the group

of the trefoil, no two of which have the same meridians [Suc85]. In fact he shows there is no

automorphism of the trefoil group carrying the meridians of one of these 2-knots to another,

so the semidirect product structures must be distinct. This semidirect product structure

guarantees that any g ∈ πK may be written as xnw, where x is a meridian of K (or indeed

any element which abelianizes to 1), n ∈ Z, and w ∈ (πK)′.

Example 2.7 (Twist-spun knots). The knot group of τnK is obtained as a quotient of πK by

making the nth power of a meridian lie in the center of the group. To see why, consider two

meridians x and y of K, where x is drawn near the north pole as in Figure 2.3. Isotoping

y through the twist-spin, keeping the basepoint fixed, we see that it gets caught n times

around the axis of twisting. Thus x−nyxn = y in the group of the twist-spin, or equivalently

xn commutes with y. Repeating this argument with x and a generating set of meridians we

see that xn is in the center of the group of the n-twist-spin of K.

Let 〈x0, . . . , xm|r1, . . . , rm〉 be a Wirtinger presentation for πK (such a presentation can

be obtained from any diagram for K). Then 〈x0, . . . , xm|r1, . . . , rm, [x
n
0 , x1], . . . , [xn0 , xm]〉 is

13



x

y

Figure 2.3: An illustration of the knot group calculation for the 3-twist-spun trefoil. After
isotoping the meridian y around the twist-spin, we see it is isotopic rel basepoint to the red
meridian x−3yx3.

a Wirtinger presentation for π(τnK). Sometimes it will be convenient to use the equivalent

presentation 〈x0, . . . , xm|r1, . . . , rm, x
n
0x
−n
1 , . . . , xn0x

−n
m 〉. These are equivalent because all the

meridians of πK are conjugate (any two elements which are conjugate and in the center of a

group must be equal, and conversely if xn0 = xni , then xn0xi = xn+1
i = xix

n
0 ). In Theorem 1.3

we work out the ideals of these 2-knots explicitly.

2.3 The Alexander module

As noted in Section 2.2, the group πK of any knotted surface K abelianizes to Z. Thus, as

in the case of classical knots, it makes sense to study the commutator subgroup C := (πK)′

of the knot group, together with the action of conjugation by a meridian. The covering

14



space corresponding to the commutator subgroup of the knot group is called the infinite

cyclic cover X̃, or universal abelian cover, of the knot complement. It admits a Z[t±1]

module structure, induced by the action of conjugation by a meridian of K. This is called

the Alexander module of K. To make this precise, let K be a knotted surface and let x

be a meridian. For any element α ∈ H1(X̃,Z), t · α is defined as [x−1ax], where a is any lift

of α to C and brackets denote equivalence class in C/C ′ (which is canonically isomorphic to

H1(X̃;Z) as a group). This does not depend on the choice of a because if [a′] = α as well,

then a′ = aa′′ for a′′ ∈ C ′, so [x−1a′x] = [x−1aa′′x] = [x−1ax] + [x−1a′′x] = [x−1ax] (note

that [x−1a′′x] = 0 because x−1a′′x ∈ C ′, as C ′ is a characteristic, hence normal subgroup of

πK). Lastly, if y is any other meridian of K, then y = cx for some c ∈ C, so [y−1ay] =

[x−1c−1acx] = −[x−1cx] + [x−1ax] + [x−1cx] = [x−1ax], so this action is well defined.

Our main method of computing a presentation matrix for the Alexander module will be

Fox’s free differential calculus, which we now describe. For more details see [CF63], [Fox62],

[Fox53]. Any group homomorphism G→ H has a unique extension to a ring homomorphism

between the group rings ZG → ZH. When G is a knot group, expressed as a presentation

〈x1, . . . , xn|r1, . . . , rm〉, the two homomorphisms we will consider are the quotient map F →

G which defines G from a free group F on n generators, and the abelianization map G →

〈t〉 ∼= Z. The benefit of this last homomorphism is that all knot groups abelianize to

Z ∼= H1(S4 \ Σg), so we have a well defined universe in which to compare, and since Z is

abelian, its group ring is commutative, so one can define determinants and elementary ideals.

Of course, commutative rings are far better understood than noncommutative ones, and the

ring Z[t±1] has some additional nice properties which will be exploited in Chapter 4.

A derivative is a linear mapping D : ZF → ZF which obeys a Leibniz rule. On elements

of F , this takes the form D(g1g2) = Dg1 + g1Dg2, and then one extends linearly to define D

on all of ZF . We are concerned with the case that F is a free group, generated by x1, . . . , xn.

Then for each free generator xj there is a unique derivative ∂/∂xj satisfying ∂xi/∂xj = δij.
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Note that ∂1/∂x = 0 and ∂x−1/∂x = −x−1.

The Alexander matrix A corresponding to a knot group presentation

P = 〈x1, . . . , xn|r1, . . . , rm〉 has entries the images of the ri under the composition

ZF
∂/∂xj−−−→ ZF γ−→ ZG a−→ Z〈t〉

where F
γ−→ F/R ∼= G is the canonical homomorphism defining G from P and G

a−→ 〈t〉 is

the abelianization. So A = (aij), where aij = aγ(∂ri/∂xj). It is a presentation matrix for

the Alexander module. Two matrices are considered equivalent if one is obtained from the

other by a sequence of row and column operations, adding a row of zeroes, or stabilization:

A→

A ~0

~0 1

. Different presentations of the same group give rise to equivalent Alexander

matrices.

Starting with P as before, A will be an (m× n)-matrix. The kth elementary ideal εk

of A is the ideal of Z〈t〉 generated by the determinants of the square (n − k)-minors of A.

When n− k ≤ 0, εk = (1). The Alexander ideal is the first elementary ideal. Equivalent

matrices define the same chain of elementary ideals, so these are invariants of the oriented

knot K. Since t encodes an orientation, these are really invariants of the pair (πK, ε), where

ε is an orientation of K.

Recall that P is a Wirtinger presentation if all generators xi abelianize to t, the generator

of H1(S4 \ K), and all relations are of the form xi = wxjw
−1, where i, j ∈ {1, . . . , n} and

w is a word in the xi. A nice consequence of all generators abelianizing to t is that the

sum across any row of the Alexander matrix is zero, so we can always replace one column

with a column of zeroes when working with Wirtinger presentations (Theorem 8.3.7 [CF63]).

When K is a classical knot or a ribbon n-knot, it has a Wirtinger presentation with m + 1

generators and m relations. After replacing one column with zeroes, we see that there is

only one (m ×m)-minor with a nonzero determinant, so these knots always have principal
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Alexander ideals. In this case a generator of the ideal is called the Alexander polynomial of

K.

Example 2.8. To illustrate these techniques we use the 2-twist-spun trefoil as an example,

with its standard Wirtinger presentation 〈x, y|xyxy−1x−1y−1, x2yx−2y−1〉.

∂r1
∂x

∂r1
∂y

∂r2
∂x

∂r2
∂y

 =

 1 + xy − xyxy−1x−1 x− xyxy−1 − xyxy−1x−1y−1

1 + x− x2yx−1 − x2yx−2 x2 − x2yx−2y−1


aγ−→

 1 + t2 − t t− t2 − 1

1 + t− t2 − t t2 − 1

 ∼
t2 − t+ 1 0

1− t2 0


Since there are 2 columns, the Alexander ideal is generated by the (1 × 1)-minors, and

∆(K) = (t2 − t + 1, t2 − 1). One can check this is equal to (3, t + 1), which makes it clear

that the quotient Z[t±1]/(3, t + 1) ∼= Z3, so ∆(K) is maximal. Z[t±1] is a regular ring of

Krull dimension 2, so every maximal ideal is minimally generated by 2 elements. Thus the

2-twist-spun trefoil is not ribbon.

Example 2.9 (Twist-spun 2-bridge knots). Generalizing the previous example, we show that

if k is a 2-bridge knot then the Alexander ideal of τnk is (∆k(t), t
n− 1). Since k is 2-bridge,

πK has a Wirtinger presentation 〈x, y|r〉, and π(τnK) is then presented by 〈x, y|r, [xn, y]〉 ∼=

〈x, y|r, xny−n〉. The Alexander ideal, as computed from these presentations, is (∆k(t), t
n −

1) = (∆k(t),
tn−1
t−1

), where ∆k(t) is the Alexander polynomial of k.

Alexander ideals are multiplicative under connected sum, which is of critical importance

to Theorem 1.1.

Proposition 2.10. Let K and J be surface knots. Then ∆(K#J) = ∆(K)∆(J).

Proof. Let 〈x1, . . . , xn|r1, . . . , rk〉 and 〈y1, . . . , ym|s1, . . . , sl〉 be Wirtinger presentations for

πK and πJ . Then 〈x1, . . . , xn, y1, . . . , ym|x1y
−1
1 , r1, . . . , rk, s1 . . . , sl〉 is a Wirtinger presenta-
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tion for K#J . Let aij = aγ
(
∂ri
∂xj

)
and bij = aγ

(
∂si
∂yj

)
. Then the Alexander matrix for K is

A = (aij) and the matrix for J is B = (bij), so the matrix for K#J is:



1 0 . . . 0 −1 0 . . . 0

a11 a12 . . . a1n 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

ak1 ak2 . . . akn 0 0 . . . 0

0 0 . . . 0 b11 b12 . . . b1m

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 bl1 bl2 . . . blm


As usual, we replace a column by zero, the sum of all columns. It is convenient to replace

the (n+ 1)st column with zeroes, resulting in



1 0 . . . 0 0 0 . . . 0

a11 a12 . . . a1n 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

ak1 ak2 . . . akn 0 0 . . . 0

0 0 . . . 0 0 b12 . . . b1m

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 bl2 . . . blm



∼



1 0 . . . 0 0 0 . . . 0

0 a12 . . . a1n 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

0 ak2 . . . akn 0 0 . . . 0

0 0 . . . 0 0 b12 . . . b1m

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 bl2 . . . blm


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∼



a12 . . . a1n 0 0 . . . 0

...
. . .

...
...

...
. . .

...

ak2 . . . akn 0 0 . . . 0

0 . . . 0 0 b12 . . . b1m

...
. . .

...
...

...
. . .

...

0 . . . 0 0 bl2 . . . blm


In the last step we used the inverse of the stabilization move. To simplify things further,

we delete the column of zeroes and remember to take the square minors which use all of the

columns, i.e. the minors of size n+m− 2.



a12 . . . a1n 0 . . . 0

...
. . .

...
...

. . .
...

ak2 . . . akn 0 . . . 0

0 . . . 0 b12 . . . b1m

...
. . .

...
...

. . .
...

0 . . . 0 bl2 . . . blm


=

A′ 0

0 B′



Note that A′, B′ are obtained from A, B by deleting the first column, which may as

well have been zero anyway. The claim now is that unless we choose a minor with (n − 1)

rows from A′ and (m − 1) rows from B′, we will get a determinant of zero. Without loss

of generality, suppose that we chose at least n rows from A′. This minor is of the formA′′ 0

F C

, where both A′′ and C are square and the matrix C has a row of zeroes. The

determinant of this minor is |A′′|·|C| = |A′′|·0 = 0. Therefore, the only minors with nonzero

determinants are of the form

A′′ 0

0 B′′

, where A′′ and B′′ are (n− 1) and (m− 1)-minors

of A′ and B′, respectively. The determinant is |A′′| · |B′′|. Note that |A′′| is a generator

19



of ∆(K) and |B′′| is a generator of ∆(J). By choosing all possible minors of this form, we

obtain a generating set for ∆(K#J), each generator equal to the product of a generator

of ∆(K) and a generator of ∆(J). Since ranging through all A′′ provides a generating set

for ∆(K), and likewise with all B′′ and ∆(J), ∆(K#J) is equal to the product of ideals

∆(K)∆(J).

2.4 Regular homotopies of 2-spheres in 4-space

Part of Smale’s classification of immersions of spheres in Euclidean spaces of dimensions at

least 3 proves that all 2-spheres embedded in R4 are regularly homotopic, i.e. homotopic

through immersions [Sma58]. Given two knotted spheres K0 and K1, embedded in S4, any

generic regular homotopy between them can be decomposed into a sequence of finger moves,

Whitney moves, and isotopies. A Whitney move is a standard model for a regular homotopy

which removes a pair of transverse double points of the immersion of opposite sign. The

reverse homotopy is called a finger move, because a ‘finger’ of the surface pokes out and

intersects itself, introducing two transverse double points, as in Figure 2.4. More details can

be found in [FQ90], as well as Casson’s lectures in [Cas86].

Definition 2.11. The local model for the regular homotopy removing a pair of double

points is called a Whitney move ; this homotopy is supported in the regular neighborhood

of a Whitney disk W . The inverse to this homotopy is called a finger move , which is

supported in a regular neighborhood of a guiding arc α.

Given a knotted sphere K, counting the minimal possible number of Whitney moves in a

generic regular homotopy as above to the unknotted 2-sphere U is an invariant of K, which

we call the Casson-Whitney number.

Definition 2.12. LetK be a 2-knot in S4. The Casson-Whitney number of K, ucw(K),
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W

α

ω2

ω1

Finger move

Whitney move

Figure 2.4: The local model of a finger move along the guiding arc α, and Whitney move
along the Whitney disk W . These are 3-dimensional slices of a local 4-ball neighborhood,
shown at key stages of the homotopy.

is the minimal number of Whitney moves taken over all regular homotopies from K to the

unknot.

By a standard reordering argument, it is possible to perform all the finger moves first and

then all the Whitney moves, without changing the numbers of these moves. The immersion

in the central cross section, which we call Σ and occurs just after all the finger moves have

been performed on K but before the Whitney moves, can also be thought of as the result of

finger moves on the unknot U , since U is obtained from Σ by a sequence of Whitney moves

(see Figure 2.5). This is the situation in which the knot group provides a lower bound on

ucw(K), but we first need to understand the effect of a finger move on the knot group. We

follow Casson’s notes [Cas86].

Let K be an immersed sphere in S4, and let K ′ be the effect of performing a single finger

move on K. We can isotope the base of the finger to lie very near where the finger move
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K UΣ Σ

FM

WM

WM

FM

Figure 2.5: Decomposing a regular homotopy from a 2-knot K to the unknot U . The
immersed sphere Σ obtained after the finger moves and before Whitney moves on K is
drawn from two different perspectives (middle left and middle right) to show the knotted
and standard Whitney disks (red and blue respectively).

is performed, so that the guiding arc for the finger move is really a loop w ∈ πK. If x

is the meridian of K at the base of the finger, then the group of K ′ is obtained from the

group of K by adding the relation [x, xw] = 1, where xw = w−1xw. To see why, consider a

small arc A from the tip of the finger to K just before the finger move is performed, as in

Figure 2.6. Let W be the Whitney disk inverse to the finger move, which appears just after

the finger move is performed. The fundamental groups of the complements of K, K ∪ A,

and K ′ ∪W are isomorphic: removing an arc from a 4-manifold does not change π1, and

the complements of K ∪ A and K ′ ∪W are homotopy equivalent. To obtain the group of

K ′, we need to add the interior of W back into the complement before taking π1. Adding in

this disk will add the specified relation. Consider a regular D2 ×D2 neighborhood of one of

the double points of the finger move. The two local sheets of K ′ can be identified with the

unit disks x2 + y2 ≤ 1, z2 + t2 ≤ 1, intersecting at (0, 0)× (0, 0). Consider the Clifford torus

∂D2 × ∂D2. This is disjoint from K ′ and punctures the Whitney disk W in a single point.

Note that the meridian and longitude of this torus represent the meridians x and xw of the

knot group. Adding W back into the complement “unpunctures” this torus, thus adding the

commutator relation [x, xw] = 1 to the knot group.
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K K K ′

x

w

A W

x

xw

Figure 2.6: A schematic for the effect of a finger move on the knot group. The Clifford torus
is pictured as four red dots.

Thus the group of Σ is obtained from the group of K by adding one such relation for

each finger move. However, it is also obtained from the group of the unknot, Z, by adding

(trivial) commutator relations. Thus πΣ ∼= Z, and the finger move relations performed on K

had the effect of abelianizing πK. Thus the minimal number of finger move relations which

abelianize the knot group of K is a lower bound for ucw(K). This motivates the definition

below, which is defined for general n-knots because we will show in Section 5.3 that it is a

lower bound for the classical unknotting number of 1-knots.

Definition 2.13. Let K be an n-knot. The minimal number of relations of the form xy = yx

which abelianize the knot group, where x, y are meridians of K, is called the algebraic

Casson-Whitney number acw(K) of K.

Proposition 2.14. If K is a 2-knot, then acw(K) ≤ ucw(K).
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This is the sharpest lower bound we are aware of for the Casson-Whitney number. In

Section 5.1 we will use it to prove that the Casson-Whitney number of a 2-knot is not equal

to the stabilization number for infinitely many 2-knots. The stabilization number is a more

well-studied invariant of a 2-knot; see e.g. [HK79], [Miy86].

Definition 2.15. Let K : Σg ↪→ S4 be an orientable surface knot and let h : D1×D2 ↪→ S4

be an embedding such that K ∩h = ∂D1×D2 and such that the surface K +h := (K \h)∪

D1 × ∂D2 is orientable. The operation of replacing K with K + h is called a stabilization

of K, and the minimal number of stabilizations necessary to produce an unknotted surface

is called the stabilization number of K, denoted ust(K).

Note that this quantity is always finite, since knotted surfaces bound Seifert 3-manifolds.

Drilling out the cocores of the 2-handles in any Seifert 3-manifold results in a new surface

which bounds a solid handlebody and is thus unknotted. Hence this is often called the

unknotting number of a surface in the literature. The main goal of [JKRS20] is to compare

these two notions of unknotting number, and in it the inequality ust(K) ≤ ucw(K) + 1 is

shown for any 2-knot K. The main difficulty in proving ust 6= ucw is that most of the lower

bounds we are aware of for ucw are also lower bounds for ust. The algebraic Casson-Whitney

number, however, can be strictly greater than ust, as we will see in Section 5.2.

Since it will appear in Chapter 5, we briefly introduce the algebraic stabilization number

here. Stabilizing a knotted surface also adds a commutator relation to the knot group. Let

K be a knotted surface and x a meridian of K. If the stabilization is performed along a

loop w ∈ πK, the meridian x at the base of the tube and xw at the opposite end will now

cobound a cylinder in the complement and therefore be identified in the knot group. So, in

contrast to finger move relations, which force meridians to commute, stabilization relations

identify two meridians. This is considerably stronger, and this difference is how we will show

ust 6= ucw.
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Definition 2.16. Let K be an n-knot. The minimal number of relations of the form x = y,

where x, y are meridians of K, which abelianize the knot group is called the algebraic

stabilization number ast(K) of K.

Another important fact we will use in Section 5.4 is that if the knot group of a knotted

surface or immersed 2-knot K is Z, there is only one stabilization, resp. finger move, which

can be performed on K, up to isotopy. This was first proved for stabilizations in [HK79];

the corresponding statement for finger moves is proved in [JKRS20].

25



Chapter 3

Alexander ideals of knotted surfaces

In this chapter we characterize the ideals which occur as Alexander ideals of knotted surfaces

and generalize the determinant of a knotted surface to the case of nonprincipal ideals.

3.1 Characterization

In 1960, Kinoshita proved that any polynomial f(t) ∈ Z[t±1] with f(1) = ±1 is the Alexander

polynomial of a ribbon 2-knot [Kin61]. Yajima strengthened this theorem by achieving the

same result with 2 generator, 1 relator Wirtinger presentations [Yaj69]. In Theorem 3.1

below we provide a new proof of this fact, which improves upon Yajima’s in that it solves for

the Alexander polynomial of any 2 generator, 1 relator Wirtinger presentation explicitly in

one general formula. This result allows us to generalize Kinoshita’s theorem to a complete

characterization of which ideals occur as the Alexander ideals of surface knots. If I ⊆ Z[t±1]

is an ideal and a = ±1, let I|a denote the nonnegative generator of the ideal {f(a) : f(t) ∈

I} ⊆ Z.

Theorem 1.6. An ideal I of Z[t±1] is the Alexander ideal of a surface knot if and only if

I|1 = 1.
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Theorem 3.1. If f(t) ∈ Z[t±1] satisfies f(1) = ±1, then there is a ribbon 2-knot K of

meridional rank 2 with ∆(K) = (f(t)).

Proof. Our basic strategy is the same as Kinoshita’s, but we achieve f(t) as the Fox derivative

of a single Wirtinger relator as opposed to the determinant of a large matrix. We will

construct a Wirtinger presentation 〈x, y|r〉, where r = xwy−1w−1 for some word w ∈ 〈x, y〉.

Any such presentation presents the knot group πK of a ribbon 2-knot K (see [Kaw96]). The

Jacobian is

(
∂r
∂x

∂r
∂y

)
.

Let rx denote ∂r
∂x

. Since this is a Wirtinger presentation, x and y abelianize to t as before.

Likewise, after abelianization the sum across the row is zero, so aγ(ry) = −aγ(rx). The

Alexander ideal of K is then generated by the abelianization of rx = 1+xwx−xwy−1w−1wx,

i.e. ∆(K) = (1 + aγ(wx)(t− 1)).

Since the Alexander polynomial is only defined up to a unit, we may assume f(1) = 1, so

that f(t) = 1 + g(t)(t− 1) for some polynomial g(t). We will show that w can be chosen so

that aγ(wx) = g, i.e. so that the abelianized matrix is

(
f(t) −f(t)

)
and ∆(K) = (f(t)).

For clarity, we first point out that for any w = yn1xn2 . . . yn2k−1xn2k , ni ∈ Z, the Alexander

polynomial calculated from this presentation will be

1 + tn1(tn2 − 1) + tn1+n2+n3(tn4 − 1) + · · ·+ tn1+···+n2k−1(tn2k − 1),

as can be checked directly (note that dxn

dx
(x − 1) = xn − 1 for all n ∈ Z). We will only

need the case n2i = ±1, and add the desired terms tni(t− 1) and tni(t−1− 1) = −tni−1(t− 1)

as many times as needed. In particular, if

f(t) = 1 + tm1(tm2 − 1) + tm3(tm4 − 1) + · · ·+ tm2k−1(tm2k − 1),
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then by letting


n1 = m1

n2i = m2i i ≥ 1

n2i+1 = m2i+1 − (m2i−1 +m2i) i ≥ 1

we arrive at the desired form for w = yn1xn2 . . . yn2k−1xn2k .

Proof of Theorem 1.6. Let I be an ideal such that I|1 = 1. Since Z[t±1] is Noetherian, I

admits a finite generating set g1(t), . . . , gm(t), so by assumption

(g1(1), . . . , gm(1)) = (1). This implies there is a linear combination f0(t) =
∑
aigi(t), ai ∈

Z, such that f0(1) = 1. Let fi(t) = gi(t) − (gi(1) − 1)f0(t), 1 ≤ i ≤ m. Then I =

(g1(t), . . . , gm(t)) = (f0(t), g1(t), . . . , gm(t)) = (f0(t), f1(t), . . . , fm(t)) has a generating set

such that each generator evaluates to 1 at 1.

Then, as in Theorem 3.1, we can build a relation ri for each fi to obtain a Wirtinger pre-

sentation 〈x, y|r0, . . . , rm〉 for a knot group G, from which we can construct a genus m ribbon

surface knot K with πK ∼= G. To do this, first construct a 2-knot K0 with presentation

〈x, y|r0〉, then attach a 1-handle to K0 for each additional relation. The resulting Alexander

matrix is (m + 1) × 2, and the Alexander ideal is then ∆(K) = (aγ(r0x), . . . , aγ(rmx)) =

(f0(t), . . . , fm(t)) = I.

It remains to show that if K is a surface knot, then ∆(K)|1 = 1. This will follow from

the observation that we can compute ∆(K)|1 by evaluating the entries of the Alexander

matrix at 1 before taking determinants of minors, and by using an especially nice Wirtinger

presentation for πK.

Let P be a Wirtinger presentation for πK. Since K is connected, all of the generators

x0, . . . , xn of P are conjugate. Therefore we can rewrite the relations to obtain a presentation

of the form 〈x0, . . . , xn|r1, . . . rn, sn+1, . . . , sm〉, such that ri = xiwix
−1
0 w−1

i , 1 ≤ i ≤ n, and

si = x0wix
−1
0 w−1

i , n + 1 ≤ i ≤ m. If r is any Wirtinger relation, then aγ(rxi)|t=1 is equal
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to the exponent sum of xi in r (this is shown in one case in the proof of Theorem 3.1. The

other cases are similar, but note that aγ(w) = tN for some N , since w is an arbitrary word

in x and y. So aγ(w)|t=1 = 1). Therefore, when we form the Alexander matrix for K and

evaluate the entries at 1, we obtain the matrix:



r1x0 . . . r1xn

r2x0 . . . r2xn

...
. . .

...

rnx0 . . . rnxn

s1x0 . . . s1xn

...
. . .

...

smx0 . . . smxn



→



−1 1 0 . . . 0 0

−1 0 1 . . . 0 0

−1 0 0
. . .

...
...

...
...

... 1 0

−1 0 0 . . . 0 1

0 . . . 0 . . . 0 0

...
. . .

...
. . .

...
...

0 . . . 0 . . . 0 0


Since the identity matrix is an (n× n)-minor, ∆(K)|1 = 1.

Corollary 3.2. Let I be an ideal of Z[t±1] such that I|1 = 1. If I is minimally generated

by g elements, then there is a ribbon surface knot K of genus g and meridional rank 2 with

∆(K) = I.

In particular, any maximal ideal m is minimally generated by two elements f(t), g(t).

The gcd of f(1) and g(1) is 1 if and only if m is the ideal of a surface knot, and the above

construction yields a surface of genus 2 realizing this ideal. If m can be written as (f(t), g(t))

such that f(1) = 1, then m is the ideal of a knotted torus.
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3.2 The determinant of a surface knot

The definition below generalizes the notion of determinant to the case of nonprincipal ideals.

This will be an odd integer, which, as in the case of a single generator, follows from the fact

that ∆(K)|1 = 1.

Definition 3.3. Let K be a surface knot. The determinant of K is ∆(K)|−1.

Proposition 3.4. The determinant of a surface knot is odd.

Proof. Let K be a surface knot. We saw in Corollary 3.2 that ∆(K) has a generating

set (f1(t), . . . , fn(t)) where each fi(1) = 1. Thus fi(t) = (t − 1)gi(t) + 1 for some gi(t).

Therefore fi(−1) = −2gi(−1) + 1 is odd for each i, so ∆(K)|−1, the positive generator of

(f1(−1), . . . , fn(−1)), is odd as well.

Proposition 3.5. Let K be a classical knot. The determinant of τnK is equal to the deter-

minant of K, |∆K(−1)|, if n is even and 1 if n is odd.

Proof. We will show in the proof of Theorem 1.3 that if 〈x1, . . . , xm+1|r1, . . . , rm〉 is a

Wirtinger presentation for πK, then ∆(τnK) =
m+1∑
j=1

((tn − 1)j−1)εj(K). When n is even,

(−1)n − 1 = 0, so ∆(τnK)|−1 = ε1(K)|−1 = |∆K(−1)|, and when n is odd (−1)n − 1 = −2,

so ∆(τnK)|−1 has both ∆K(−1), which is odd, and (−2)m as generators, hence the determi-

nant is 1.

Remark 3.6. The previous corollary shows that this definition contains more information

than evaluating the usual definition of the Alexander polynomial of a surface knot at t = −1.

The usual definition of the jth Alexander polynomial of K is to take a generator of the

smallest principal ideal which contains εj(K). When K is a 2-bridge knot with determinant

|∆K(−1)| = p > 1, the ideal of its 2-twist-spin is (∆K(−1), t + 1) = (p, t + 1), and the

only principal ideal which contains it is the unit ideal (1). Its first Alexander polynomial is
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therefore 1, as is its determinant. With our definition, however, (∆K(−1), t+ 1)|−1 = p 6= 1.

This is the more desirable answer, since a nontrivial Fox p-coloring of K extends to one of

τ 2K in the obvious way.

Proposition 3.7. Let K be a classical knot with a nontrivial Fox p-coloring φ : πK → Dp.

Then φ factors through the quotient map πK → π(τnK) if and only if n is even.

Proof. Let φ : πK → Dp be a nontrivial p-coloring and 〈x0, . . . , xm|r1, . . . , rm〉 a Wirtinger

presentation of πK. As discussed previously, we can form π(τnK) from πK by adding the

relations xn0xi = xix
n
0 , 1 ≤ i ≤ m, or equivalently xn0 = xni , 1 ≤ i ≤ m. The condition

for φ to factor through the natural quotient map is for the images of these equations to be

satisfied in φ(πK). We use the latter set of equations. When n is even, this is automatic,

since Fox colorings map meridians to reflections, which are of order 2. When n is odd, the

highest even power of φ(xj)
n will vanish by the above observation, leaving φ(x0) = φ(xi),

1 ≤ i ≤ m. Thus the only colorings which factor through the group of an odd twist-spin

were trivial to begin with.

A classical knot K admits a Fox p-coloring for a prime p if and only if p divides the

determinant |∆K(−1)|. We end this section by noting that this fact generalizes to the case

of nonprincipal ideals as well. The proof is the same as the classical case: given a knot group

presentation, one sets t = −1 in the Alexander matrix and then reduces modulo p to obtain

a system of linear equations over Zp whose solution set is in 1-1 correspondence with the

space of Fox p-colorings. As in the classical case, the determinant (which is the generator

of the first elementary ideal of the Alexander matrix evaluated at t = −1) is equivalent to 0

mod p if and only if the knot admits more than just the trivial constant p-colorings. This is

equivalent to evaluating the Alexander module at t = −1 to obtain a torsion Z-module, i.e.

a finite abelian group G, then checking whether |G| ≡ 0 mod p.
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Proposition 3.8. Let K be a surface knot and p prime. Then K admits a Fox p-coloring if

and only if p divides ∆(K)|−1.
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Chapter 4

0-Concordance of knotted surfaces in

4-space

4.1 Concordance of surface knots

In this section we define the various notions of concordance which will be of interest. Let

K0 and K1 be oriented surface knots of genus g in S4.

Definition 4.1. A concordance between K0 and K1 is a smooth embedding

C : Σg × I ↪→ S4 × I such that C|Σg×{i} = Ki for i = 0, 1, and such that projection onto the

I factor is Morse.

Definition 4.2. A ribbon concordance K0 → K1 is a concordance C with critical points

of index 0 and 1 only.

Note that ribbon concordance is not symmetric. The historical terminology for K0 → K1

is “K1 is ribbon concordant to K0”, denoted K1 ≥ K0. The arrow in our notation is to

indicate the direction of time during the concordance. Also note that a 2-knot K is ribbon

if and only if there is a ribbon concordance U → K.
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Definition 4.3. A 0-concordance between K0 and K1 is a concordance C such that at

each regular level set, S4
t ∩C consists of a connected genus g surface and possibly some genus

0 components.

So far all of the theorems in the literature which obstruct 0-concordance between sur-

face knots utilize the following factorization of a 0-concordance into two opposing ribbon

concordances.

Proposition 4.4 (Sunukjian [Sun15]). If K0 and K1 are 0-concordant surface knots, then

there exists a surface knot J and ribbon concordances K0 → J ← K1.

Proof. Let C : Σg× I ↪→ S4× I be a 0-concordance. We can isotope C ambiently so that all

index 0 and 1 critical points occur before any index 2 or 3 critical points. So C has a handle

decomposition where we attach all 0-handles and 1-handles before any 2 or 3-handles. If a

1-handle was cancelled by a 2-handle, then its feet were attached to a single component of

the level set in which it was attached, thereby increasing the genus of that component, hence

C is not a 0-concordance. Therefore, all 1-handles are cancelled by 0-handles, and since

the concordance is connected there must be the same number of 0 and 1-handles. Turning

the concordance upside down, the same must be true of the 2 and 3-handles, which form a

ribbon concordance in the reversed direction.

4.1.1 Ribbon concordance

In [Gor81], Gordon proved that for a ribbon concordance C : S1 × I ↪→ S3 × I from K1

to K0, or in our notation K0 → K1, the knot groups of K0, C, and K1 obey

(i) πK0 ↪→ πC and (ii) πK1 � πC.

The following proposition displays the difference between ribbon concordance in the clas-

sical case with all higher dimensions, and suggests that the knot groups of K0 and K1 should
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play a fundamental role. Namely, the surjection above becomes an isomorphism, so by com-

posing with its inverse there is a homomorphism from the group of K0 to the group of K1,

which in many cases remains injective. Let Xi = (S4 × {i}) \ νKi and Y = (S4 × I) \ νC

(so πKi = π1Xi, πC = π1Y ).

Proposition 4.5. A ribbon concordance K0 → K1 induces a homomorphism

φ : πK0 → πK1.

Proof. We recall Gordon’s proof; the only change is due to the dimension of the cobordism

being one higher. Let C be a ribbon concordance K0 → K1. Since the projection onto I is

Morse, Y can be built from X0 × I by adding handles. Every time we pass a critical point

of index 0, respectively 1, of C, we get a critical point of index 1, respectively 2, in Y . From

this perspective

Y = (X0 × I) ∪ (1-handles) ∪ (2-handles)

In order for C to be a concordance, we must have added the same number of 0 and 1-handles.

Therefore, πC = πK0∗〈z1,...,zn〉
〈〈r1,...,rn〉〉 , where each ri is of the form ziwix

−1w−1
i , for some meridian x

of K0 (each ri can be chosen to be a Wirtinger relator).

Turning the cobordism upside down, we have

Y = (X1 × I) ∪ (3-handles) ∪ (4-handles)

Thus the inclusion X1 ↪→ Y induces an isomorphism on fundamental groups: πK1
∼= πC.

The inclusion X0 ↪→ Y induces a homomorphism πK0 → πC, so composing with the inverse

of the isomorphism yields a homomorphism φ : πK0 → πK1 induced by these inclusions.

Remark 4.6. It is conjectured that the homomorphism φ is always injective; this is a strong

form of the Kervaire conjecture. Gordon’s original proof of injectivity applies whenever πK0

is residually finite, so in this case φ will be injective for any ribbon concordance K0 → K1. All
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3-manifold groups are residually finite, so for classical ribbon concordance this is sufficient.

Moreover, cyclic extensions of residually finite groups are residually finite, so the group of

any fibered 2-knot is as well. Together these include all spun and twist-spun knots. Gordon

points out that πK0 locally indicable is also sufficient. Thus the group map can obstruct some

ribbon concordances; for instance it gives an easy proof of Corollary 2.1(i) of [CSS06], which

states that for p, q distinct primes, there is no ribbon concordance τ 2T (2, p) → τ 2T (2, q)

(the group of τ 2T (2, p) is isomorphic to Zp o Z).

Remark 4.7. The homomorphism φ sends meridians of K0 to meridians of K1, so in fact a

ribbon concordance K0 → K1 induces a quandle homomorphism ϕ : Q(K0)→ Q(K1), where

Q(K) is the fundamental quandle. This is equivalent to the diagrammatic interpretation in

[CSS06], where it is shown that a coloring of K1, i.e. a quandle homomorphism Q(K1)→ X,

induces a coloring of K0. The induced coloring is the composition Q(K0)
ϕ−→ Q(K1)→ X.

The proof of Proposition 4.5 shows that, given any presentation for πK0, we can obtain a

presentation for πK1 by adding the same number of generators and relations. The deficiency

of a finitely presentable group G is the maximal difference g − r between the number of

generators and relators, taken over all finite presentations 〈x1, . . . , xg|s1, . . . , sr〉 of G.

Corollary 4.8. If K0 → K1 is a ribbon concordance, then def(πK0) ≤ def(πK1).

We end this section with the key lemma for Theorem 1.1. This is a generalization of the

fact that ribbon 2-knots have principal Alexander ideals, because every ribbon 2-knot K is

the result of a ribbon concordance U → K.

Key Lemma. Let K0 → K1 be a ribbon concordance. Then ∆(K1) = (f)∆(K0), for some

f ∈ Z[t±1].

Proof. By Proposition 4.5, a Wirtinger presentation for the knot group of K1 can be ob-

tained from a Wirtinger presentation for πK0 by adding m generators and m relations,
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corresponding to the index 0 and 1 critical points of the concordance, respectively. So if

πK0
∼= 〈x1, . . . , xn|r1, . . . , rj〉 = P0 is Wirtinger, then there is a Wirtinger presentation

P1 = 〈x1, . . . , xn, z1, . . . , zm|r1, . . . , rj, s1, . . . , sm〉 for the knot group of K1. From this pre-

sentation we compute the Alexander ideal of K1 using Fox calculus. Below A is the Jacobian

corresponding to P0, which gives rise to the matrix on the right hand side for P1. ∆(K1)

is the ideal of Z[t±1] generated by the determinants of all of the (n + m − 1)-minors of the

abelianized matrix. Since this is a Wirtinger presentation, we can replace the first column

with a column of zeroes. This amounts to the realization that we may as well leave the first

column out of any of our chosen minors, which leaves only the last n+m− 1 columns.


∂r1
∂x1

. . . ∂r1
∂xn

...
. . .

...

∂rj
∂x1

. . .
∂rj
∂xn

→




∂r1
∂x1

. . . ∂r1
∂xn

...
. . .

...

∂rj
∂x1

. . .
∂rj
∂xn

 0


∂s1
∂x1

. . . ∂s1
∂xn

...
. . .

...

∂sm
∂x1

. . . ∂sm
∂xn




∂s1
∂z1

. . . ∂s1
∂zm

...
. . .

...

∂sm
∂z1

. . . ∂sm
∂zm




aγ−→

A 0

F B



When choosing n + m− 1 rows, we will only obtain a nonzero determinant by choosing

all of the bottom m rows, i.e. all the rows of the m×m matrix B. Otherwise, we obtain a

minor of the form

X 0

F Y

, where X is an (n − 1) × (n − 1) matrix and Y is an m ×m

matrix with a row of zeroes, so the determinant of this minor is |X| · |Y| = |X| · 0 = 0.

So any minor of the right size with nonzero determinant is of the form

A′ 0

F B

, where

A′ is a square (n − 1)-minor of A. The determinant of this minor is |A′| · |B|. Since the

Alexander ideal of K0 is generated by exactly the determinants of these A′, we have that
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∆(K1) = (|B|)∆(K0).

Remark 4.9. It is interesting to compare with the recent result of Friedl and Powell on

homotopy ribbon concordances of classical knots. They prove that if K0 → K1 is a homotopy

ribbon concordance of classical knots, then the Alexander polynomial of K0 divides that of

K1 [FP19]. It is not clear that the corresponding result holds in this dimension, for a

homotopy ribbon concordance of surface knots, i.e. a smooth concordance between K0 and

K1 such that the group of K1 is isomorphic to the group of the concordance exterior. The

key lemma stated above does hold (by the same proof) for an in-between notion called handle

ribbon concordance, which is defined as a smooth concordance whose exterior can be built

with only 1-handles and 2-handles.

4.2 The ideal class monoid of Z[t±1]

In this section we define the ideal class monoid of a ring and prove some fundamental

properties in the case of Z[t±1]. Let R be an integral domain. The set of nonzero ideals

of R, denoted I(R), forms a commutative monoid under ideal multiplication. Say I ∼ J

if there exist nonzero x, y ∈ R such that (x)I = (y)J . The quotient monoid I(R)/ ∼ is

called the ideal class monoid of R, denoted I(R). The identity element of this monoid is

precisely the set of principal ideals of R. Hence an ideal class [I] is nontrivial if and only if

any representative I is not principal.

A useful characterization of this equivalence relation is that I ∼ J if and only if I ∼= J as

an R-module. Therefore the minimal number of generators of an ideal I is an invariant of its

ideal class. The way we will produce an infinite rank submonoid of K0 is by showing that any

set of maximal ideals independently generates a free commutative submonoid of I(Z[t±1]),

and then find an infinite family of 2-knots with distinct, maximal Alexander ideals. The
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main goal of this section is to prove the statement about the ideals in detail.

The group of units of I(R) is the set of ideal classes [I] such that there exists a class

[J ] so that [IJ ] = [(1)]; i.e. so that IJ is principal. This is called the Picard group of

R, denoted Pic(R), and whenever R is a Noetherian UFD it is trivial. This will enable us

to prove that any surface knot K with nonprincipal Alexander ideal is not invertible in C0

(where by K is invertible we mean that for any surface knot J , K#J is not 0-concordant to

the unknotted surface of the same genus). We refer the reader to Section 20 of [Mat86] for

details. In brief, the divisor class group C(R) of a Krull ring R is trivial if and only if R is

a UFD. Now let R = Z[t±1]. Since R is Noetherian and integrally closed, it is Krull, and of

course it is a UFD as well. Furthermore, when R is a Krull domain, Pic(R) is naturally a

subgroup of C(R), hence is trivial for any Noetherian UFD.

Corollary 4.10. No nontrivial ideal class of I(Z[t±1]) is invertible, i.e. for any nonprincipal

ideal I and any nonzero ideal J , IJ is not principal.

Now we turn our attention to the minimal number of generators of an ideal I ⊆ Z[t±1].

One elementary observation is that if I is a proper ideal and |R/I| is finite, I cannot be

principal. Indeed, if I = (n), n ≥ 2, then R/I ∼= Zn[t±1] is infinite because it has polyomials

of arbitrary degree. On the other hand, if I = (f(t)), where deg(f) ≥ 1, then R/I is infinite

because it has Z as a subring. This gives a quick test to check if an ideal I is nonprincipal

(see Corollary 1.4), but to distinguish nontrivial ideal classes from each other we will need

more sophisticated tools.

Note that R = Z[t±1] is a regular ring of dimension 2. This means that for any maximal

ideal m, the localization (Rm,m) is a regular local ring of dimension 2, i.e. the unique

maximal ideal m of Rm is minimally generated by 2 elements. In fact, the maximal ideals of

Z[t±1] can be described explicitly: they are of the form (p, f(t)), where p is a prime integer

and f(t) is irreducible mod p.
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Let m be a maximal ideal of R, and consider the localization Rm. If I ⊆ R is an

ideal, then the pushforward of I is an ideal of Rm, denoted IRm. The minimal number of

generators of IRm is a lower bound for the minimal number of generators of I as an ideal

of R, since the image of a generating set of I generates IRm. The benefit of working in the

localization is that Rm is a local ring, i.e. it has a unique maximal ideal, mRm. Now assume

(R,m) is a local ring. This allows some powerful techniques for computing lower bounds

for the minimal number of generators of mn. In this case, Nakayama’s lemma implies that

the minimal number of generators of mn is equal to the minimal number of generators of

mn/mn+1. Since m annihilates this R-module, it is a vector space over the field R/m, so

its minimal number of generators is equal to its dimension. In general, if M is a finitely

generated R-module, the Hilbert function HM(n) of M is:

HM(n) := dimR/mm
nM/mn+1M

The following theorem is a combination of Theorems 1.11 and 12.1 from [Eis95].

Theorem 4.11 (Hilbert). There is a polynomial PM(n), of degree dim(R)− 1, which agrees

with HM(n) for sufficiently large n.

We are interested in the case HR(n) = dimR/mm
n/mn+1, where R is the localization of

Z[t±1] at a maximal ideal m. The dimension of such an R is 2 (= dim(Z[t±1])), so PR(n) is

a linear polynomial, which after some N > 0 agrees with HR(n). Thus the minimal number

of generators of mn/mn+1, and therefore of mn, eventually agrees with a linear polynomial.

A priori the minimal number of generators of mn as an ideal of Z[t±1] may not agree with

these values, but is certainly bounded below by them.

Corollary 4.12. If m ⊆ Z[t±1] is a maximal ideal, then the minimal number of generators

of mn grows arbitrarily large as n approaches infinity.
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Corollary 4.13. Let R = Z[t±1]. The maximal ideals of R form a basis for a free commu-

tative submonoid of I(R), isomorphic to N∞.

Proof. Let m1, . . . , mn be any finite set of maximal ideals in R. The claim to be proved is

that for any two vectors i = (i1, . . . , in), j = (j1, . . . , jn),

mi1
1 m

i2
2 · · ·min

n ∼ mj1
1 m

j2
2 · · ·mjn

n implies i = j. Suppose on the contrary that the ideals are

related but i 6= j, so there exist f, g ∈ Z[t±1] such that

(f)mi1
1 m

i2
2 · · ·min

n = (g)mj1
1 m

j2
2 · · ·mjn

n (∗)

and k so that ik 6= jk. Now localize at mk. The equation (∗) pushes forward to the equation

(f)mik
k = (g)mjk

k (†) in Rmk
, since all other mα contain an element in the complement of

mk. (Rmk
,mk) is a local ring of dimension 2, so by Corollary 4.12 there exists N > 0 such

that for all distinct α, β ≥ N , mα
k and mβ

k have a different minimal number of generators.

Multiply both sides of (†) by mN to obtain (f)mN+ik
k = (g)mN+jk

k . Since the left hand side

and right hand side of this equation have the same minimal number of generators as mN+ik
k

and mN+jk
k , respectively, this is a contradiction.

This proves that the maximal ideals generate a free commutative submonoid of I(R).

Since there are infinitely many maximal ideals, this submonoid is isomorphic to N∞.

Remark 4.14. Restricting to maximal ideals may seem rather restrictive; however in terms

of I(Z[t±1]) it is the same as restricting to ideals which admit prime factorizations. This

is because every height 1 prime ideal in Z[t±1] is principal, so the only nonprincipal prime

ideals are height 2 = dim(Z[t±1]), hence are maximal. So, as long as an ideal admits a prime

factorization, we can pin down its ideal class uniquely by looking at the multiplicities of the

maximal ideals in that factorization.

Remark 4.15. There is another, in some sense easier, way to prove Corollary 4.13. One can

show that, in a Noetherian domain R: if an ideal I admits a prime factorization, then that
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factorization is unique. Then, by a similar localization argument one quickly shows that

distinct products of maximal ideals lie in different ideal classes. We included the previous

argument because the minimal number of generators of an ideal, though hard to compute,

gives more of a quantitative sense of how ideal classes can differ than simply resorting to

uniqueness of prime factorizations. Also, our main corollary applies to surface knots with

nonprincipal ideals, so by establishing that there are 2-knots whose ideals require arbitrar-

ily many generators we are putting this requirement in some perspective. Classical knots

(and ribbon 2-knots) have principal Alexander ideals for the special reason that they have

deficiency 1 Wirtinger presentations, while Levine showed in [Lev78] that a 2-knot group

can have any deficiency less than 1 (see also [Kan83]). Certainly a 2-knot taken ‘at random’

should not be expected to have a deficiency 1 knot group nor a principal Alexander ideal.

4.3 0-Concordance and Alexander ideals

In this section we prove the main theorem and applications. Recall that C0 denotes the

monoid of oriented surface knots in S4 modulo 0-concordance. The 0-concordance monoid

of 2-knots, K0, is a submonoid of C0. A surface knot K is 0-slice if it is 0-concordant to the

unknotted surface of the same genus, and invertible if there exists a surface knot J so that

K#J is 0-slice. Note that this is looser than the usual meaning of invertibility; indeed only

a genus 0 surface has a chance at having a true inverse. As a warmup to the main theorem,

we carry out an example from first principles.

Example 4.16. LetK be the 2-twist-spun trefoil. Then ∆(K) = (3, t+1) is maximal, as shown

in Example 2.8, hence minimally generated by 2 elements. Suppose that K is 0-concordant

to the unknot U . Then there exists a 2-knot J and ribbon concordances K → J ← U .

Since J is ribbon concordant to a ribbon knot, J is ribbon. On the other hand, by the

key lemma K → J implies ∆(J) = (f)∆(K) = (f)(3, t + 1) for some nonzero f ∈ R.
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Notice (f)(3, t+ 1) ∼= (3, t+ 1) as an R-module, therefore has the same minimal number of

generators. Thus ∆(J) is not principal, but J was supposed to be ribbon.

Theorem 1.1. The Alexander ideal induces a homomorphism ∆ : C0 → I(Z[t±1]).

Proof. Suppose K0 is 0-concordant to K1. Then by Proposition 4.4 there exists a surface knot

J with ribbon concordances K0 → J ← K1. So, by the key lemma there exist f, g ∈ Z[t±1]

such that (f)∆(K0) = ∆(J) = (g)∆(K1), thus ∆(K0) and ∆(K1) are equivalent in I(Z[t±1]).

As shown in Proposition 2.10, ∆(K#J) = ∆(K)∆(J), so the map [K] → [∆(K)] is a

homomorphism.

Since an ideal class is nontrivial if and only if it consists of nonprincipal ideals, this

gives an easily computable obstruction to being 0-slice. In fact, since the group of units of

I(Z[t±1]) is trivial (see Corollary 4.10), any surface knot with nonprincipal Alexander ideal

is not invertible in C0.

Corollary 1.2. If a surface knot K has a nonprincipal Alexander ideal, then it has no

inverse in C0, i.e. for all surface knots J , K#J is not 0-slice.

Twist-spun knots provide many examples of 2-knots with nonprincipal ideals. Together

with the previous corollary, this proves that the 0-concordance monoid of 2-knots, K0, is not

a group.

Theorem 1.3. If K is a classical knot such that |∆K(−1)| 6= 1, then there exist infinitely

many n ∈ Z such that ∆(τnK) is not principal. In particular, if n is even and ∆(τnK) is

principal, then ∆K(t) has a root z such that zn = 1.

Proof. First we compute the Alexander ideal of τnK. Let 〈x0, . . . , xm|r1, . . . , rm〉 be a

Wirtinger presentation for πK. As discussed in Subsection 2.1.2,

〈x0, . . . , xm|r1, . . . , rm, [x
n
0 , x1], . . . , [xn0 , xm]〉 is a Wirtinger presentation for π(τnK). The
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Alexander matrix calculated from this presentation is equivalent to the following matrix,

which we get by replacing the first column with zeroes as before.



0 a11 . . . a1m

...
...

. . .
...

0 am1 . . . amm

0

... (tn − 1)Im

0


By deleting the first column altogether and remembering to take determinants of minors

of size m, we arrive at the following convenient form

 A

(tn − 1)Im

. Note that |A| = ∆K(t)

is the generator of ε1(K) = ∆(K). Then the Alexander ideal is

m+1∑
j=1

((tn − 1)j−1)εj(K) = (∆K(t), (tn − 1)ε2(K), . . . , (tn − 1)m−1εm(K), (tn − 1)m)

(recall that εj(K) need not be principal and that εm+1(K) is (1) by definition). What we

need here is that ∆K(t) and (tn − 1)m are in ∆(τnK).

We will actually prove that such a K has infinitely many even twist-spins with non-

principal ideal (cf Proposition 3.5). Suppose n is even and ∆(τnK) = (fn(t)) is principal.

Evaluating the above equation at t = 1 we obtain (fn(1)) = (∆K(1)) = (1), and at t = −1,

(fn(−1)) = (∆K(−1)) 6= (1) by assumption. Therefore fn has degree at least one.

Since ∆K and (tn−1)m are in (fn), there exist gn, hn such that ∆K = gnfn and (tn−1)m =

hnfn. The second equation implies that all the roots of fn are nth roots of unity. The first

equation implies that they are also roots of ∆K . This proves the theorem.

Note that n = 2 always works, since ∆K(±1) is odd. If we list the primitive mth
i roots of
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unity which are roots of ∆K , then as long as 0 6= n ∈ 2Z \ {kmi : k ∈ Z}, we are guaranteed

that ∆(τnK) is nonprincipal, and thus τnK is not invertible in C0. In particular, if ∆K has

no roots of unity as roots, then all of its nonzero even twist-spins are not invertible.

Corollary 1.4. Any 2-twist-spin of a 2-bridge knot is not invertible in C0. If K and J are

2-bridge knots and their 2-twist-spins are 0-concordant, then |∆K(−1)| = |∆J(−1)|.

Proof. Notice that (f(t), t−a) = (f(a), t−a). This is because f(t)−f(a) is divisible by t−a.

When K is a 2-bridge knot, ∆(τ 2K) = (∆K(t), t+ 1) = (∆K(−1), t+ 1), so the ideal of the

2-twist-spin of K is generated by t+ 1 and the determinant of K. When |∆K(−1)| = n > 1,

the quotient Z[t±1]/(n, t+ 1) ∼= Z/nZ is finite and nonzero, hence (n, t+ 1) is not principal.

The proof will be finished once we establish the following claim.

Claim: Let n,m ≥ 0 be odd integers. If (n, t+ 1) ∼ (m, t+ 1), then n = m.

Suppose the ideals are related, then there exist f, g so that (f)(n, t+ 1) = (g)(m, t+ 1).

Localize by inverting the multiplicative set {(t+1)k|k ≥ 0}: in the localization, this equation

becomes (f) = (g). Since t+ 1 is irreducible, there exist j, k so that in Z[t±1], ((t+ 1)jf) =

((t+ 1)kg). Multiplying the original equation by (t+ 1)j, we see that

((t+ 1)jf)(n, t+ 1) = ((t+ 1)kg)(n, t+ 1) = ((t+ 1)jg)(m, t+ 1)

Evaluating both sides of this equation at t = 1, we obtain:

(2k · g(1))(1) = (2j · g(1))(1)

Therefore j = k. Then ((t+1)jg)(n, t+1) = ((t+1)jg)(m, t+1) implies (n, t+1) = (m, t+1),

which implies n = m (by looking at quotients, or by evaluating at t = −1).
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Remark 4.17. The Stevedore knot 61 has determinant 9, so ∆(τ 261) = (2t2− 5t+ 2, t+ 1) =

(9, t+ 1) is not principal. Since the Stevedore knot is slice, its double branched cover (which

is the fiber of its 2-twist-spin) is spin rational homology cobordant to S3. This can be

seen by capping off a concordance (S3 × I, C) between the Stevedore and the unknot with

(B4, Seifert surface) pairs on both sides to get a closed surface in S4, then taking the double

branched cover of S4 over this surface. This is a spin 4-manifold, and by restricting to the

relevant pieces we get a spin rational homology cobordism from the double branched cover

of the Stevedore knot to S3. Also, the double branched cover of a knot in S3 has a unique

spin structure, so this agrees with the one induced by S4 on the fiber of the 2-twist-spin

of the Stevedore. Thus this is an example where the techniques of [Sun19], [DM19] cannot

obstruct 0-concordance, but Alexander ideals can. There are infinitely many slice 2-bridge

knots with any given nonunit, square determinant, so all of their double branched covers

share this property. Conversely, the 5-twist-spun trefoil has ∆(τ 531) = (1), but a Seifert solid

(the Poincaré homology sphere) with nonzero d-invariant [Sun19]. Dai-Miller also produce

many examples where their invariant distinguishes 0-concordance but the Alexander ideal is

trivial. This shows that the homomorphism ∆ is not injective. We will determine its image

in Subsection 4.3.1.

We turn now to identify an infinite rank submonoid of K0.

Theorem 1.5. K0 contains a submonoid isomorphic to N∞.

Proof. In Corollary 4.13 we showed that any set of maximal ideals is linearly independent in

I(Z[t±1]). Therefore any set of 2-knots with distinct, maximal Alexander ideals is linearly

independent in C0, by Theorem 1.1.

Let Kp be any 2-bridge knot with prime determinant p = ∆Kp(−1). Then the 2-twist-

spin of Kp has maximal Alexander ideal: ∆(τ 2Kp) = (∆Kp(−1), t + 1) = (p, t + 1), as in

Corollary 1.4. For instance, Kp could be the 2-twist-spin of the (2, p)-torus knot. For any
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set of odd prime numbers {pi}, the corresponding 2-knots τ 2Kpi form the basis for a linearly

independent submonoid of K0.

Example 4.18. Another interesting family is the p-twist-spins of (2, p)-torus knots, with p an

odd prime. The Alexander ideal of τ pT (2, p) is Ip = (Φ2p(t),Φp(t)). Note this is equal to

(2,Φp(t)), since 2 = (1 + t)Φ2p(t) + (1− t)Φp(t), and Φ2p(t) = Φp(t)− 2(tp−2 + · · ·+ t3 + t).

The quotient Z[t±1]/Ip has order 2p−1, so none of these 2-knots are 0-slice. When 2 is a

primitive root mod p, Φp(t) is irreducible mod 2, so Ip is maximal. If the Artin conjecture

is true, then 2 is a primitive root for infinitely many primes p, so this would give an infinite

basis for another linearly independent family. It would also show that one can obtain finite

fields of order 2k for arbitrarily large k as Z[t±1]/∆(K) with K a 2-knot.

4.3.1 The image of ∆

Let IK = {I ⊆ Z[t±1] : I|t=1 = 1}, i.e. IK is the set of surface knot ideals. Let IK = {[I] : I ∈

IK} be the submonoid of I(Z[t±1]) of classes with a representative in IK . This is manifestly

the image of the homomorphism ∆ : C0 → I(Z[t±1]).

Theorem 4.19. The image of ∆ is IK.

There is another monoid one might consider. Its construction is the same as the ideal

class monoid, but we restrict the equivalence relation ∼ to IK : for ideals I, J ∈ IK , I ∼K J

if there exist f(t), g(t) ∈ Z[t±1] such that f(1) = 1 = g(1) (which is the same as requiring

(f), (g) ∈ IK) and (f)I = (g)J . Then IK/ ∼K is the monoid of interest. In fact this

is isomorphic to the monoid IK above. In the ideal class monoid, I ∼ J if there exist

f(t), g(t) ∈ Z[t±1] so that (f)I = (g)J , and this is equivalent to the existence of a Z[t±1]-

module isomorphism φ : I → J . The less obvious direction of the equivalence is that if φ is

such an isomorphism, then for any f ∈ I, (φ(f))I = (f)J . When I ∈ IK , I contains some
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element f such that f(1) = 1, so I ∼= J implies I ∼K J . Thus I ∼ J if and only if I ∼K J ,

and IK is canonically isomorphic to IK/ ∼K .

A harder question is determining the image when restricted to 2-knots. In Corollary 4.21

we will point out out some ideals in IK which, due to a theorem of Gutiérrez, are not the

Alexander ideals of any 2-knots; it seems likely that these ideal classes are also missed in the

image of ∆ restricted to the 2-knot monoid K0.

When I ∈ IK and f(1) = 1, we showed how to construct a surface knot K with ∆(K) = I

and a ribbon 2-knot J with ∆(J) = (f). Connect summing with a ribbon 2-knot is always

a ribbon concordance, so we have a ribbon concordance K → K#J realizing these ideals.

Question 4.20. If I0, I1 ∈ IK and I0 ∼ I1, do there exist 0-concordant surface knots K0,

K1 such that ∆(K0) = I0, ∆(K1) = I1?

If there exists an ideal J such that I0 = (f)J , I1 = (g)J for some f , g, then this is clearly

true: by Theorem 1.6 there is a surface knot K such that ∆(K) = J , and by Theorem 3.1

there are ribbon 2-knots Kf , Kg with ∆(Kf ) = (f), ∆(Kg) = (g). Thus there are ribbon

concordances

K#Kf#Kg

K#Kf K#Kg

K

so K0 = K#Kf is 0-concordant to K1 = K#Kg, and ∆(Kj) = Ij.

When there exists no such ideal J , the situation is unclear; however we do not know of

any ideals I0 ∼ I1 for which this is the case.
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4.3.2 Inversion of t

Reversing the orientation of a surface knot K amounts to changing t to t−1 in H1(S4 \K).

This change is not detected by the Alexander polynomial of a classical knot, since these

polynomials are all symmetric. For surface knots this is not the case, and in fact the ideal

class of a surface knot can be distinct from that of its reverse.

Corollary 4.21. There exist infinitely many ribbon tori in S4 which are not 0-concordant

to their reverses.

Proof. Let I = (f(t), p) be an ideal of Z[t±1] satisfying:

1) p is prime and f(t) is irreducible mod p.

2) f(t) is not symmetric mod p.

3) f(1) = 1.

Then I = ∆(K) for a ribbon torus knot K which is not 0-concordant to −K. Since

f(1) = 1, I = (f(t), p − (p − 1)f(t)) is of the right form to apply Corollary 3.2 and build

a ribbon torus K with ∆(K) = I (if f(1) 6= 1 but f(1) and p are coprime, then a genus 2

surface not 0-concordant to its reverse can be constructed). Condition 1 guarantees that I

is maximal. Reversing the orientation of K has the effect of changing t to t−1, so condition

2 guarantees that ∆(K) = (f(t), p) 6= (f(t−1), p) = ∆(−K), so these tori are not isotopic.

In fact (f(t−1), p) is also maximal, since t → t−1 is an automorphism of Z[t±1], so K and

−K are not 0-concordant by Corollary 4.13.

Let p be an odd prime. Then Ip = (2t− 1, p) satisfies 1-3, so this is one infinite family of

examples.

Many more examples could be constructed along these lines. Of course, achieving the

result for tori implies it for any higher genus, since adding trivial handles does not change

the knot group nor the ideal. We remark that any ideal of the form (f(t), p), where p is
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prime and (f(t)) 6= (f(t−1)) as ideals of Zp[t±1], is not the ideal of a 2-knot [Gut72]. Indeed,

knot groups giving rise to these ideals are prototypical examples of 3-knot groups which are

not 2-knot groups [Kaw96].

There are 2-knots whose ideals are not invariant under inverting t, for instance any f(t)

with f(1) = 1 and (f(t)) 6= (f(t−1)) is the Alexander polynomial of such a 2-knot, but these

ideals all represent the trivial ideal class.

Question 4.22. Is there a 2-knot K such that the ideal class of ∆(K) is not equal to the

ideal class of ∆(−K)?

No twist-spun knot has this property, which we prove now.

Proposition 4.23. If K is a classical knot, then ∆(τnK) = ∆(−τnK).

Recall from Theorem 1.3 that if 〈x0, . . . , xm|r1, . . . , rm〉 is a Wirtinger presentation for

πK, then the Alexander ideal of τnK is

m+1∑
j=1

((tn − 1)j−1)εj(K) = (∆K(t), (tn − 1)ε2(K), . . . , (tn − 1)m−1εm(K), (tn − 1)m).

For a classical knot K, all of the elementary ideals εj(K) are invariant under inversion of t

(Theorem 9.2.3, [CF63]). Since (tn−1) is as well, we see directly that ∆(τnK) = ∆(−τnK).

4.4 0-Concordance and peripheral subgroups

In this section we show that under a mild condition on the knot group, the peripheral

subgroup of a surface knot is also a 0-concordance invariant. All 2-knots have infinite cyclic

peripheral subgroup, so this invariant is only useful for higher genus surfaces.

Definition 4.24. For a surface knot K : Σg ↪→ S4, the peripheral subgroup P (K) is the

image of i∗ : π1(∂X) → π1(X), where X = S4 \ νK is the exterior and i : ∂X ↪→ X is the

inclusion.
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Note that νK ∼= Σg ×D2, so ∂X ∼= Σg × S1. Therefore P (K) ∼= Z ⊕ G, where the first

factor is generated by a meridian of K and the second factor is some quotient of π1(Σg).

The unknot Ug of genus g always has peripheral subgroup Z. When g = 1, it is known that

G can be 0,Z, Zn, Z⊕ Zn, or Z⊕ Z [KK94].

Recall from Proposition 4.5 that a ribbon concordance K0 → K1 induces a homomor-

phism φ : πK0 → πK1.

Lemma 4.25. If K0 → K1 is a ribbon concordance, then the induced homomorphism φ :

πK0 → πK1 restricts to a surjection P (K0)� P (K1).

The proof comes down to a diagrammatic method of writing a generating set for P (K),

which we now introduce. A similar method is outlined in [Yaj69]. Let D be a broken surface

diagram for K. Write down the Wirtinger presentation for πK induced by D. Choose

a basepoint region and record the meridian corresponding to that region, say x. Draw a

generating system of curves for π1(Σg) on the surface. For each such curve γ, we can write

a pushoff of γ into the exterior of K in the Wirtinger generators in a manner analogous

to writing the longitude of a classical knot group. First orient gamma, then traverse the

curve once, starting at the basepoint. When passing through a double curve crossing while

on the undersheet, write down the generator corresponding to the oversheet, raised to the

sign of the crossing. The sign of the crossing is +1 if the normal to the oversheet agrees

with the orientation of γ, and −1 if not. After traversing the curve, multiply by x raised to

the negative of the exponent sum of the word just created. If {γ1, . . . , γ2g} is a generating

system of curves, then 〈x, γ1, . . . , γ2g〉 ≤ πK is the peripheral subgroup of K.

This method of calculation and the following proof were inspired by the quandle 2-cocycle

invariant of [CSS06]. Indeed, the proof below is very similar to the proof of Theorem 1.2

in [CSS06], and prompts the subsequent question. In the quandle 2-cocycle calculation,

one chooses a curve λ representing a homology class on a diagram of a surface knot, then
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Figure 4.1: The spun torus of the figure 8 knot, represented as a tube [Sat00], with longitude
λ = z−1yx−1tx0.

computes a quandle cocycle calculation with respect to a fixed 2-cocycle θ at each double

curve undercrossing.

Proof of Lemma 4.25. Let D0 be a diagram for K0. Then a diagram D1 for K1 is obtained

from D0 by taking a split union of D0 with an unlink of 2-spheres, and joining them along

the boundaries of some 3-dimensional 1-handles which are allowed to link the rest of the

diagram. The solid 1-handles intersect the rest of the surface in disks, which can be assumed

to be as small as we like, hence miss any double curve crossings.

Now, we can choose a generating system of curves for π1 of the surface on D0 which miss

all of the double curve crossings from the 1-handles to be joined. Call this system of curves

{γ1, . . . , γ2g}. Since this is a ribbon concordance, the same system of curves generates π1

of the surface on D1. Moreover, the image of γi under the homomorphism φ is the ‘same’

curve γi considered on D1. Therefore every γi on D1 is in the image of φ|P (K0). If x is the

meridian for the basepoint region on K0, then φ(x) is the corresponding meridian for K1, so
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φ(P (K0)) = P (K1).

Question 4.26. Let λ be a curve on a diagram for a surface knot. If the 2-cocycle invariant

θλ(K) is nontrivial, must it be the case that λ 6= 1 ∈ P (K)?

If the answer to this question is no, then the quandle 2-cocycle invariant could theo-

retically detect irreducibility of knotted surfaces when the peripheral subgroup fails (see

Example 3 below). For instance, the standard way to show a knotted torus is not a 2-knot

with a trivial handle attached is to show that the peripheral subgroup is bigger than Z. It

would be remarkable if the quandle invariant could be nontrivial even when the peripheral

subgroup is infinite cyclic. On the other hand, if the answer is yes then this would provide

an interesting link between quandle cocycle invariants and the peripheral subgroup.

Now, if K0 → K1 is any ribbon concordance and πK0 is residually finite or locally

indicable, then φ is injective, as pointed out in Remark 4.6, so by the previous lemma

P (K0) ∼= P (K1).

Theorem 4.27. If K0 is 0-concordant to K1 and the knot groups of K0 and K1 are residually

finite or locally indicable, then P (K0) ∼= P (K1).

Proof. If K0 is 0-concordant to K1, then there exists a surface knot J and ribbon concor-

dances K0 → J ← K1. Each of the induced homomorphisms πK0 → πJ ← πK1 is injective,

so P (K0) ∼= P (J) ∼= P (K1).

Since 0-concordance doesn’t involve the genus of a knotted surface in any significant way,

this is not surprising. We conjecture that the hypothesis on the groups may be removed.

Example 4.28. First we note some examples of surface knots whose knot groups are residually

finite. The twist-spun torus knots and turned twist-spun torus knots of Boyle [Boy93] have

the same groups as the twist-spun 2-knots of Zeeman. Since these 2-knots are fibered [Zee65],

their groups are residually finite, so this gives a large number of knotted tori for which the
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peripheral subgroup is a 0-concordance invariant. Moreover, the property of being residually

finite for knot groups is closed under taking connected sums: if πK and πJ are residually

finite, then π(K#J) is residually finite as well [BE73].

In the next examples we show that peripheral subgroups and ideal classes each can

distinguish some 0-concordance classes when the other cannot. We also point out that there

are many ribbon knotted tori which are not 0-concordant to the unknot, in contrast with

the case of 2-knots.

Example 4.29. 1. Let K be a nontrivial classical knot. Then the spun torus knot of K is a

knotted torus with peripheral subgroup Z2 (for K = 41, see Figure 1, pictured as the “tube”

of K). This is a ribbon torus knot which is not 0-concordant to the unknotted torus. Since

it has a classical knot group, its Alexander ideal is principal.

2. Let K be a 2-bridge knot with nonunit determinant and let J be the 2-twist-spun torus

knot of K. Boyle proved that these tori are reducible, so P (J) ∼= Z, however ∆(J) is

nonprincipal by Corollary 1.4, so J is not 0-slice because its ideal class is nontrivial (more

generally, attach a trivial handle to any 2-knot with nonprincipal ideal).

3. The twist-spun torus knots of the previous example can all be replaced with ribbon torus

knots, by starting with the spun 2-knot of K and attaching a handle to effect the relation

y−2xy2 = x. One can check that the longitude of this handle is trivial.

Remark 4.30. The ribbon tori of Example 3 are most likely irreducible, although this is

difficult to prove. A ribbon torus has peripheral subgroup at most Z2, but in [Lit81] there

are examples of tori with peripheral subgroup Z3. It seems likely that these tori are not

0-concordant to any ribbon torus.
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4.5 Questions

It is interesting to consider the directed graph of ribbon concordances. The vertices are

surface knots, and there is a directed edge from K0 to K1 whenever there is a ribbon con-

cordance K0 → K1. Two surface knots are 0-concordant if and only if they are in the

same connected component of the ribbon concordance graph. We say K is a root of the

graph if whenever J → K, J ∼= K (such a K is called minimal in [Gor81]). A chain of

ribbon concordances · · · → K−1 → K0 → K1 gives rise to an ascending chain of ideals

∆(K1) ⊆ ∆(K0) ⊆ ∆(K−1) ⊆ · · · by the key lemma. Since Z[t±1] is Noetherian, this

chain must stabilize. This is some suggestion that the ribbon concordance graph has roots.

Question 4.20 is related to the following question:

Question 4.31. Does any connected component of the ribbon concordance graph have more

than one root?

For instance, if ∆(K) is a maximal ideal, then by the key lemma it must be true that for

any ribbon concordance J → K, ∆(J) = ∆(K). Of course this does not imply that J ∼= K,

but under some additional assumption this is perhaps the case, e.g. when πK is prime. A

knot group πK is prime if πK = π(J#J ′) implies πJ or πJ ′ is infinite cyclic, e.g. if its

commutator subgroup is indecomposable as a free product. One such family of examples is

the 2-twist-spins of (2, p)-torus knots, Kp, for p an odd prime. In this case the knot group

has a simple decomposition: πKp
∼= 〈x, a|xax−1 = a−1, ap = 1〉 ∼= Zp o Z, with commutator

subgroup Zp.

Proposition 4.32. Let J → Kp be a ribbon concordance. If the induced homomorphism

φ : πJ → πKp is injective, then it is an isomorphism preserving meridians.

Proof. By Proposition 4.5, the induced map φ always takes meridians to meridians. Now, φ

restricts to an injection of commutator subgroups, so (πJ)′ ∼= 1 or Zp. It can’t be 1, since
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then πJ ∼= Z, so ∆(Kp) = (f)∆(J) = (f) would be principal. So (πJ)′ ∼= Zp, and φ maps

this isomorphically onto (πKp)
′. Therefore the image of φ contains Zp and a meridian, but

this is enough to generate πKp, so φ is surjective as well as injective.

Note that since the group map φ is injective and preserves meridians, the induced quandle

map ϕ is also an isomorphism. By Theorem 1.1 of [CSS06], J would also have a nontrivial

output with the quandle 3-cocycle invariant. It seems likely this would necessarily be the

same output as for Kp; this is the case when p = 3, since the tricoloring quandle R3 is triply

symmetric and so the output under each nontrivial coloring is the same.

Conjecture 4.33. For p prime, the 2-twist-spin of T (2, p) is a root of the ribbon concordance

graph.

Modulo the unknotting conjecture, it seems likely that the unknots Ug are roots as well.

If there exists a ribbon concordance K → Ug, then πK ∼= Z or is not residually finite (see

Remark 4.6).

As pointed out in the introduction, 0-concordance is the smallest equivalence relation

generated by ribbon concordance, which parallels the case of classical knot concordance

precisely. Therefore, both cases have a natural slice-ribbon problem. Cochran produced

nonribbon 2-knots in [Coc83] which are 0-null-bordant (allowing for 3-manifolds with 2

boundary components besides S2 × I), but as far as we know there are no examples of 0-

slice, nonribbon 2-knots. Such a 2-knot K would have a ribbon concordance K → J , where

J is ribbon.

Question 4.34. Is every 0-slice 2-knot ribbon?

The techniques of this paper show that if a 2-knot K is invertible in K0, then ∆(K) must

be principal.

Question 4.35. Is any nontrivial 0-concordance class invertible?
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Chapter 5

Unknotting numbers of 2-knots in

4-space

This chapter is joint work with Michael Klug, Benjamin Ruppik, and Hannah Schwartz.

In [JKRS20] we compare two unknotting operations on 2-knots, the stabilization number

ust and the Casson-Whitney number ucw. See Section 2.4 for definitions and background.

In this chapter we analyze various algebraic lower bounds for these invariants, prove that

ust 6= ucw, and prove a strong nonadditivity theorem for both invariants.

We will use the following results from [JKRS20] without proof.

Corollary 5.1. For any twist-spin τnk, ucw(τnk) ≤ u(k), for u(k) the classical unknotting

number of k.

Theorem 5.2. Any non-trivial twist-spin τnk of a 2-bridge knot k has ucw(τnk) = 1.

5.1 Algebraic lower bounds

In this section, we discuss the algebraic Casson-Whitney number acw(K) of a 2-knot K, the

minimal number of meridian-commuting relations which abelianize the knot group of K (see
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Definition 2.13 for the precise definition). This algebraic invariant is the sharpest lower bound

we are aware of for the Casson-Whitney number ucw, and in Section 5.3 we show that it is

also a lower bound for the classical unknotting number. It is clear that ast(K) ≤ acw(K), as

stabilization relations identify two meridians, while finger move relations merely force them

to commute. This subtle difference is used to prove Theorem 1.7, in which we give 2-knots

for which ast(K) < acw(K), and for which this difference is realized geometrically.

The minimal number of generators of the Alexander module, called the Nakanishi

index m(K), is a classical lower bound for the unknotting number of 1-knots [Nak81]. In

[Miy86], [MP19] it is shown that the Nakanishi index is also a lower bound for the stabilization

number ust(K) of 2-knots. A subtler but sharper bound for the classical unknotting number

is the Ma-Qiu index a(K), defined as the minimal number of relations needed to abelianize

the knot group [MQ06].

A similar yet sharper bound for the classical unknotting number is the algebraic stabiliza-

tion number ast(K) (Definition 2.16), the minimal number of stabilization relations needed

to abelianize the knot group, which is a natural lower bound for the stabilization number

ust(K). This is defined in [Kan96], where it is called the weak unknotting number. The proof

in [MQ06] actually shows that ast is a lower bound for the classical unknotting number as

well, since the relations they obtain identify meridians. In this section, we investigate the

algebraic Casson-Whitney number, which is a natural lower bound for the Casson-Whitney

number. By Corollary 5.1 it is also a lower bound for the classical unknotting number, but

not the stabilization number ust(K). We summarize the previously known results regarding

these invariants in the proposition below.

Proposition 5.3 (Kanenobu, Ma-Qiu, Miyazaki, Nakanishi). If k is a 1-knot, then

m(k) ≤ a(k) ≤ ast(k) ≤ u(k).
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If K is a 2-knot, then

m(K) ≤ a(K) ≤ ast(K) ≤ ust(K).

As pointed out in [MQ06], the first inequality above is often strict: the Ma-Qiu index

is positive whenever πK is not abelian, but the Alexander module and hence the Nakan-

ishi index can be zero for nontrivial knots, e.g. Alexander polynomial one 1-knots. While

m(K), a(K), and ast(K) are known to be nonadditive on certain classical knots (see the end

of Section 5.2), we are unaware of any classical knots for which acw is nonadditive. We show

in Section 5.4 that is nonadditive on certain 2-knots.

5.2 The algebraic Casson-Whitney number

Recall from Section 2.4 that each finger move on a 2-knot K adds a relation of the form

[x, y] = 1, where x, y are meridians of K. As noted in Section 2.2, y is equal to xw for some

w ∈ (πK)′. Therefore, the algebraic Casson-Whitney number acw(K) is equal to the minimal

number of elements wi ∈ (πK)′ such that the relations {[x, xwi ] = 1} abelianize πK.

These finger move relations are ‘weaker’ than the relations induced by stabilizations, in

that every finger move relation is also a stabilization relation. Recall from Definition 2.16

that ast(K) denotes the minimal number of stabilization relations needed to abelianize the

knot group; these relations are of the form x = y, where x and y are meridians, or equivalently

[x,w] = 1, where w ∈ (πK)′ and y = xw. Thus ast(K) is the minimal number of elements

wi ∈ (πK)′ such the relations {[x,wi] = 1} abelianize πK. Although xw is not in the

commutator subgroup, xw = x[x,w], so the finger move relation [x, xw] = 1 is equivalent to

the stabilization relation [x, [x,w]] = 1, and we see that ast(K) ≤ acw(K).

On the other hand, an obvious upper bound for acw(K) is µ(K)− 1, where µ(K) is the

meridional rank of K: forcing any single meridian to commute with the rest of a generating

set of meridians will force that meridian into the center of the group. Since all knot groups

59



are normally generated by any meridian, this abelianizes the group. We summarize the

relationships between these invariants below, which are defined for n-knots because we will

later refer to the case n = 1 as well as our usual case n = 2 (although these invariants are

well defined for all n ≥ 1 because they only depend on the knot group and the information

of a meridian).

Proposition 5.4. For any n-knot K,

m(K) ≤ a(K) ≤ ast(K) ≤ acw(K) ≤ µ(K)− 1.

In Theorem 1.8 we show that the inequality ast(K) ≤ acw(K) can be strict. In fact,

we find infinitely many 2-knots K with ast(K) = ust(K) = 1 and acw(K) = 2, enabling

us to prove in Theorem 1.7 that ust(K) < ucw(K) for infinitely many 2-knots K. The last

inequality may also be strict: in [BK20] there are examples of 1-knots of arbitrarily large

meridional rank and unknotting number equal to one. Spinning these examples produces

2-knots of arbitrarily large meridional rank (equal to the original knot’s meridional rank)

and Casson-Whitney number one, by Corollary 5.1.

Proposition 5.5. For α ∈ {a, ast, acw} and for n-knots K1 and K2,

max{α(K1), α(K2)} ≤ α(K1#K2) ≤ α(K1) + α(K2).

Proof. The proof is the same in all three cases; we follow Kanenobu in [Kan96] for α = ast.

Let g1, . . . , gn be a minimal set of relators of the required form (depending on α) which

abelianize π(K1#K2). Let φ be a surjection φ : π(K1#K2)� πK1 which sends all meridians

of K2 to a fixed meridian of K1. Notice that πK1/〈〈φ(g1), . . . , φ(gn)〉〉 ∼= Z and that each

φ(gi) is a relator of the required form for computing α(K1). Therefore, α(K1#K2) ≥ α(K1).

Repeating the argument for K2 obtains the desired result.
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As a first application of Proposition 5.4, we show that any natural number can occur as

the Casson-Whitney number of a 2-knot.

Proposition 5.6. Let n ∈ N. Then there exists a 2-knot K with ucw(K) = n.

Proof. Let J be any 2-knot with ucw(J) = 1 and m(J) = 1, for instance J could be any even

twist-spin of a 2-bridge knot, by Theorem 5.2: 2-bridge knots have nontrivial determinants,

which are preserved by even twist-spinning by Proposition 3.5. Since the Alexander module is

nontrivial, it must be cyclic since the original 2-bridge knot had a cyclic module. Then letting

K = nJ obtains the desired result, since m(nJ) = n ≤ ucw(K) and K can be unknotted in

n pairs of finger and Whitney moves by performing the optimal regular homotopy for J on

each summand.

Scharlemann proved that unknotting number one knots are prime, i.e. if K1 and K2 are

nontrivial classical knots, then the unknotting number of K1#K2 is at least 2 [Sch85]. Here

we prove a special case of the analogous statement for ucw, which works whenever the 2-knots

in question have nontrivial determinants, or equivalently whenever their knot groups admit

nontrivial Fox colorings. This reproves the same special case of Scharlemann’s theorem for

classical knots, via the bound given by Corollary 5.1. The technical core of our proof is a

Freiheitssatz for one-relator quotients of free products of cyclic groups due to Fine, Howie,

and Rosenberger [FHR88].

Theorem (Fine, Howie, Rosenberger). Suppose G = 〈a1, . . . , an|ae11 , . . . , a
en
n , R

m〉, where

n ≥ 2, m ≥ 2, ei = 0 or ei ≥ 2 for all i, and R(a1, . . . , an) is a cyclically reduced word which

involves all of a1, . . . , an. Then the subgroup of G generated by a1, . . . , an−1 is isomorphic to

〈a1, . . . , an−1|ae11 , . . . , a
en−1

n−1 〉.

Their result generalizes the more well-known Freiheitssatz for one-relator groups, a clas-

sical result in combinatorial group theory characterizing the torsion in a one-relator group.

It is proved by finding explicit representations of these groups into PSL2(C).
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The determinant of a 2-knot K is defined in Section 3.2 as the nonnegative generator of

the evaluation of the Alexander ideal at t = −1. As with classical knots this is always an odd

integer, and in Section 3.2 it is shown that even twist-spinning preserves the determinant,

while odd twist-spins always have determinant 1. The classical fact that a 1-knot k admits

a Fox p-coloring for a prime p if and only if p divides the classical determinant |∆k(−1)|,

where ∆k(t) is the Alexander polynomial of k, carries over without change to this definition

of determinant for nonprincipal ideals.

Theorem 1.8. Let K1, K2 be 2-knots with determinants ∆(Ki)|−1 6= 1. Then

ucw(K1#K2) ≥ 2.

Proof. Let x be a meridian of K1#K2. The claim to be proved is that for any w ∈

C := π(K1#K2)′, the relation [x, xw] = 1 does not abelianize π(K1#K2), since then

ucw(K1#K2) ≥ acw(K1#K2) ≥ 2.

Let p1 and p2 be prime divisors of ∆(K1)|−1 and ∆(K2)|−1, respectively. Then Ki admits

a Fox pi-coloring φi : πKi � Dpi
∼= Zpi o Z2. Let xi be a meridian of Ki such that φi(xi) is

the generator of Z2. Then the group of the connected sum π(K1#K2) ∼= πK1∗πK2

〈〈x−1
1 x2〉〉

admits a

surjection φ onto the group

G := 〈z, a1, a2 | z2 = ap11 = ap22 = 1, za1z = a−1
1 , za2z = a−1

2 〉 ∼= (Zp1 ∗ Zp2) o Z2.

This is obtained by first defining φ1∗φ2 : πK1∗πK2 → Dp1 ∗Dp2 in the obvious way and then

noticing that this descends to the quotients. Notice that G can be formed from Dp1 ∗Dp2 by

identifying the images of the meridians: G ∼= Dp1∗Dp2

〈〈φ1(x1)−1φ2(x2)〉〉 . We will show that π(K1#K2)
〈〈[x,xw]〉〉 is

not abelian by showing that its induced image G/〈〈φ([x, xw])〉〉 is not abelian.

We can assume x is the meridian of amalgamation, i.e. x is the image of x1 and x2 in
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π(K1 #K2). Notice that φ(x) = z and φ([x, xw]) = [z, zv], where v = φ(w) is in the commu-

tator subgroup Zp1 ∗Zp2 of G. Then G/〈〈[z, zv]〉〉 is the image of the induced homomorphism

which we would like to show is nonabelian. We will do this by showing that its commutator

subgroup is nontrivial. Let N = 〈〈[z, zv]〉〉, the normal closure of [z, zv] in G. As [z, zv] is a

commutator, N is contained in the commutator subgroup Zp1 ∗ Zp2 of G. The goal is now

to show that (Zp1 ∗ Zp2)/N is not the trivial group.

Note that [z, zv] = z(v−1zv)z(v−1zv) = (zv−1zv)2 = [z, v]2. It will be convenient to

describe N as the normal closure in Zp1 ∗Zp2 of some elements of Zp1 ∗Zp2 . Denote g = [z, v].

N is the normal closure of all elements of the form h−1g2h, where h ∈ G is arbitrary. Any

h ∈ G can be written as znc, where n = 0 or 1 and c ∈ Zp1 ∗Zp2 . Then h−1g2h = c−1zng2znc.

Since c−1g2c is already in the normal closure of g2 in Zp1 ∗ Zp2 , it suffices to consider n = 1,

i.e. h = zc. Notice that zg2z = (zgz)2 = (z[z, v]z)2 = (v−1zvz)2 = [v, z]2 = [z, v]−2 = (g2)−1.

Then c−1zg2zc = c−1g−2c = (c−1g2c)−1, so in fact N is the normal closure in Zp1 ∗Zp2 of just

g2. By the Freiheitssatz, (Zp1 ∗ Zp2)/〈〈g2〉〉 is nontrivial for any element g ∈ Zp1 ∗ Zp2 .

Corollary 5.7. Let k1 and k2 be classical knots with determinants |∆ki(−1)| 6= 1. Then

ucw(τnk1#τmk2) ≥ 2 for any even integers n,m.

Corollary 5.8. Let K1 and K2 be even twist-spins of 2-bridge knots. Then ucw(K1#K2) = 2.

Proof. Since 2-bridge knots have nontrivial determinants, ucw(K1#K2) ≥ 2 follows from

Theorem 1.8. The reverse inequality follows from Theorem 5.2 and the elementary fact that

ucw(K1#K2) ≤ ucw(K1) + ucw(K2).

It is interesting to note that in the case of 2-bridge knots k1, k2, the knot group π(τ 2k1#τ 2k2) ∼=

(Zp1 ∗ Zp2) o Z, where pi = |∆ki(−1)|, and that the proof of Theorem 1.8 goes through in

that setting without the further quotient to G. In fact, G arises naturally as the group of

τnk1#τmk2#RP 2, where n,m are even and RP 2 denotes a standard projective plane.
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For odd integers p, q ∈ Z, let Kp,q denote the spin of T (2, p)#T (2, q). Miyazaki proved

that ust(Kp,q) = 1, whenever q = p + 2, p + 4, or p + 6, when gcd(p, p + 6) = 1 [Miy86].

Therefore, ust fails to be additive in these cases. However, it follows from Corollary 5.8 that

ucw is additive in these cases, and in particular that ucw(Kp,q) = 2. This proves Theorem 1.7.

Theorem 1.7. There are infinitely many 2-knots K for which ust(K) = 1 and ucw(K) = 2.

The technique used in Theorem 1.8 to prove Theorem 1.7 does not obviously extend to

be able to show that the algebraic Casson-Whitney number of a 2-knot is at least 3, in the

absence of another lower bound like the Nakanishi index. It would be interesting to know if

the difference between ucw and ust is ever greater than 1.

Question 5.9. Does there exist a 2-knot K such that ucw(K)− ust(K) > 1?

As mentioned in Section 5.2, Theorem 1.8 is a partial result towards an ‘algebraic ana-

logue’ of the theorem of Scharlemann that unknotting number one knots are prime. As

prime factorizations are not proven to exist for smooth 2-knots, we can still ask if a 2-knot

with Casson-Whitney number one is prime on the level of knot groups.

Question 5.10. Are Casson-Whitney number one 2-knots K “algebraically prime”, i.e. if

K = K1#K2, then at least one of K1 or K2 has knot group Z?

5.3 Application to classical unknotting number

As noted at the start of Section 5.1, the Nakanishi index, Ma-Qiu index, and algebraic

stabilization number are all previously established lower bounds for the classical unknotting

number. In this section we point out that the algebraic Casson-Whitney number is also a

lower bound for the classical unknotting number, which is sharper than the aforementioned

invariants in many cases.
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Perhaps the most interesting reason to study acw as a lower bound for the unknotting

number is that the above three invariants all fail to be additive in many simple cases, such

as T (2, p)#T (2, q) when p, q are coprime [KY10]. By Theorem 1.8, acw(T (2, p)#T (2, q)) = 2

for all (odd) p, q. We do not know any cases where acw fails to be additive on classical knots,

although it seems difficult to prove this is always the case. Still, this poses a potentially

interesting avenue to study the classical unknotting number, via a lower bound which comes

from four dimensional techniques.

Let k be a 1-knot. Remembering that spinning preserves the knot group (and its meridi-

ans), acw(k) = acw(Spin(k)). Of course, acw(Spin(k)) ≤ ucw(Spin(k)), and by Corollary 5.1,

ucw(Spin(k)) ≤ u(k). Putting these facts together, we have:

Proposition 5.11. For any 1-knot k, acw(k) ≤ u(k).

As noted in Section 5.2, this reproves a special case of Scharlemann’s theorem that

unknotting number one knots are prime [Sch85]. Namely, if k1 and k2 are classical knots

with nontrivial determinants, then u(k1#k2) ≥ 2.

5.4 Strong non-additivity of ust and ucw

As noted in Section 5.2, Miyazaki was the first to prove that ust is non-additive. For certain

p, q (see section for precise description) he showed that ust(τ(T (2, p)#T (2, q))) = 1. As

pointed out by Kanenobu [Kan96], the Nakanishi index proves that taking iterated connected

sums of K = τ(T (2, p)#T (2, q)) has ust(nK) = n, while ust(nT (2, p)) + ust(nT (2, q)) = 2n.

This shows the existence of 2-knots K1, K2 with ust(K1) +ust(K2)−ust(K1#K2) arbitrarily

large. In this section we investigate and prove a stronger version of non-additivity for both

the stabilization and Casson-Whitney number. For notational convenience, throughout the

section we use α to denote either ast or acw, and υ to denote the corresponding ust or ucw.
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Our geometric study of strong non-additivity is inspired by Kanenobu’s work in [Kan96]

establishing the non-additivity of ast. In particular, for each n ≥ 1, Kanenobu gave examples

of 2-knots K1, . . . , Kn with ast(Ki) = 1 and ast(K1# · · ·#Kn) = 1.

Question 5.12 (Kanenobu). Is ust(K1# · · ·#Kn) = 1 as well?

We generalize Kanenobu’s result for ast and prove a corresponding result for acw. We

then prove analogous results for the geometric versions ust and ucw, answering Kanenobu’s

question in the affirmative at the expense of a small correction factor. In fact, Corollary 5.17

shows that the connected sums K1# · · ·#Kn in Kanenobu’s original examples have both

stabilization number and Casson-Whitney number at most 2.

Theorem 5.13. Let K1, . . . , Kn be 2-knots with α(Ki) ≤ c. Suppose that there exist meridi-

ans xi ∈ πKi and relatively prime integers ji ∈ Z such that each xjii lies in the center Z(πKi)

of the knot group of Ki. Then, α(K1# · · ·#Kn) ≤ c.

Proof. We will prove the case α = ast and c = 1 in detail, then point out the changes

necessary for the general result.

Since α(Ki) = 1, there exists an element wi ∈ (πKi)
′ such that πKi/〈〈[xi, wi]〉〉 ∼= Z. Let

K = K1# · · ·#Kn, and let x = xi be the meridian of amalgamation. We will show that

πK/〈〈[x,w1w2 · · ·wn]〉〉 ∼= Z. For m ≤ n, let

Rm = [x,w1w2 · · ·wm] and

Gm = π(K1# · · ·#Km)/〈〈Rm〉〉

Note that G1
∼= Z by assumption; we will show that Gm

∼= Gm−1, so that by induction

Gn
∼= Z.

Since j1 and j2j3 · · · jm are coprime, there exist integers s and t so that sj1 +tj2j3 · · · jm =

1. Notice that xsj1 ∈ Z(πK1) and xsj1−1 = x−tj2···jm ∈ Z(π(K2# · · ·#Km)). The relation
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Rm is equivalent to x = (w1 · · ·wm)−1x(w1 · · ·wm). Raising both sides to the sj1 we obtain:

xsj1 = (w2 · · ·wm)−1w−1
1 xsj1w1(w2 · · ·wm)

= (w2 · · ·wm)−1xsj1(w2 · · ·wm)

= (w2 · · ·wm)−1x(w2 · · ·wm)xsj1−1

which is equivalent to x = (w2 · · ·wm)−1x(w2 · · ·wm). We can repeat this procedure until we

reach x = w−1
m xwm, or [x,wm] = 1, the relation which abelianizes πKm. Since wm is in the

commutator subgroup of πKm, it is trivial in the abelianization. Thus

Gm = π(K1# · · ·#Km)/〈〈[x,w1w2 · · ·wm]〉〉

∼= π(K1# · · ·#Km−1)/〈〈[x,w1w2 · · ·wm−1]〉〉 = Gm−1.

Now, if c > 1, we simply repeat the previous argument c times, making a choice to group

the nc assumed relations into c relations, each one the combination of one of the assumed

relations from each knot group, as above.

The proof for α = acw is similar, so we only list the changes here. When c = 1, each πKi

has a finger move relation [xi, x
wi
i ] = 1 such that πKi/〈〈[xi, xwi

i ]〉〉 ∼= Z, for some wi ∈ (πKi)
′.

We combine these into one relation: [x, xwnwn−1···w1 ] = 1, which will abelianize the group of

K1# · · ·#Kn.

Let vi = wmwm−1 · · ·wi, so e.g. v1 = v2w1 and choose s and t as before. The relation
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K1 K2 · · · Kn

Figure 5.1: A schematic for the proof of Lemma 5.16, where ust(K1) = 2 and
ast(K1# · · ·#Kn) = 1. The blue handle abelianizes the group of K1# · · ·#Kn and the
trivial red handles allow us to inductively unknot each summand.

[x, xv1 ] = 1 is equivalent to x = (xv1)−1xxv1 . Raising both sides to the power sj1, we obtain

xsj1 = v−1
1 x−1v1x

sj1v−1
1 xv1

= v−1
1 x−1v2w1x

sj1w−1
1 v−1

2 xv1

= v−1
1 x−1v2x

sj1v−1
2 xv1

= v−1
1 x−1v2xv

−1
2 xv2x

sj1−1w1

= w−1
1 v−1

2 x−1v2xv
−1
2 xv2x

−1w1x
sj1

After canceling the xsj1 terms from both sides, we can further cancel the w1 terms to obtain

x = v−1
2 x−1v2xv

−1
2 xv2, or 1 = [x, xv2 ]. Repeating this procedure we eventually reach 1 =

[x, xvm ] = [x, xwm ], the relation which abelianizes πKm. Thus

Gm = π(K1# · · ·#Km)/〈〈[x, xwmwm−1···w1 ]〉〉

∼= π(K1# · · ·#Km−1)/〈〈[x, xwm−1···w1 ]〉〉 = Gm−1,

and by induction Gn
∼= Z. The adaptation to c > 1 is the same as in the previous case.
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Remark 5.14. There are many nontrivial examples of 2-knots K1, . . . , Kn satisfying the hy-

potheses of Theorem 5.13. For instance, the technical condition that the jth power of a

meridian is central is satisfied by any j-twist-spun knot (see Example 2.7). Indeed, Ka-

nenobu uses twist-spun knots with coprime twist indices to construct his examples of strong

algebraic non-additivity in [Kan96].

Recall Proposition 5.5, which says that for a pair of 2-knots K1, K2, the algebraic lower

bounds satisfy max{α(K1), α(K2)} ≤ α(K2#K2) ≤ α(K1) + α(K2). Kanenobu used the

nonadditivity result that he proved for ast to prove the following theorem. We note that by

Theorem 5.13, his original examples work to prove the following corollary for α = acw as

well.

Corollary 5.15 (Kanenobu). For any positive integers p1, . . . , pn and any integer q with

max{pi} ≤ q ≤ p1 + · · ·+ pn, there exist 2-knots K1, . . . , Kn satisfying:

1. ast(Ki) = acw(Ki) = pi for all i, and

2. ast(K1# · · ·#Kn) = acw(K1# · · ·#Kn) = q.

While these examples show that the algebraic finger-Whitney index acw is non-additive

on general 2-knot groups, we do not know of any classical knot groups for which this is the

case. This is in contrast with the algebraic stabilization number ast, which fails to be additive

for classical knots by [Miy86] (see the discussion at the end of Section 5.1). Now, to extend

these algebraic results on the non-additivity of ast and acw to their geometric counterparts

ust and ucw, we first relate these invariants through the following lemma.

Lemma 5.16. Let K = K1 # . . .#Kn. If υ(Ki) ≤ c for each i, then υ(K) ≤ c+ α(K).

Proof. We prove only the statement for α = ast and υ = ust by induction on the number n of

summands. Clearly, the result holds for n = 1. Indeed, it will be convenient for the inductive

step to prove a slightly stronger statement: K can be unknotted by first stabilizing ast(K)
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times to obtain a surface F with πF ∼= Z, and then by stabilizing c times along guiding

arcs which are necessarily trivial since πF is cyclic. This statement holds in the case n = 1

since the guiding arcs for the trivial stabilizations can be isotoped in the complement of F

to be guiding arcs for a collection of c stabilizations that smoothly unknot K = K1. So, we

proceed with the inductive step, and assume that n > 1.

Now, since πF ∼= Z, the guiding arcs for the c trivial stabilizations are isotopic in the com-

plement of F to guiding arcs for a different set of c stabilizations which unknot K1. Therefore,

the surface resulting from c trivial stabilizations of the surface F is isotopic to the surface

resulting from c trivial stabilizations of a surface F ′ obtained from K2 # . . .#Kn by the same

ast(K) stabilizations used to abelianize πK. It follows from the proof of Proposition 5.5 that

these stabilizations also abelianize π(K2# · · ·#Kn) once πK1 has been abelianized, and so

πF ′ ∼= Z. Therefore by induction, F ′ is unknotted by c trivial stabilizations.

Our first examples of the non-additivity of the stabilization and Casson-Whitney number

now follow as a corollary of Theorem 5.13 and Lemma 5.16.

Corollary 5.17. For n ≥ 1, consider the ji-twist-spins Ki = τ jiki of classical knots

k1, . . . , kn, where each ki is either 2-bridge or has unknotting number one, with pairwise

coprime twist indices ji ≥ 2. Then,

υ(Ki) = 1 for all i, and

υ(K1# · · ·#Kn) ≤ 2.

Proof. First note that by either Corollary 5.1 or Theorem 5.2 (depending on whether the

knot ki is 2-bridge or unknotting number one), ucw(Ki) = 1 for each i. So, it just remains to

show that ust(K1# · · ·#Kn) ≤ 2 and ucw(K1# · · ·#Kn) ≤ 2. This follows from the previous

results of this section. In particular, as noted in Remark 5.14 above, the twist-spins Ki

have ast(Ki) = 1 as well as meridians xi ∈ πKi such that xjii ∈ Z(πKi). Therefore, these
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knots satisfy the hypotheses of Theorem 5.13, and so ast(K) = acw(K) = 1 as well. Now

Lemma 5.16 applies, and we can conclude that both ust(K1# · · ·#Kn), ucw(K1# · · ·#Kn) ≤

2, as desired.

Moreover, using a different family of twist-spun 2-knots, we formulate the more general

non-additivity result featured in the introduction.

Theorem 1.9. Let υ = ust or ucw. For any c, n ∈ N, there exist 2-knots K1, . . . , Kn with

υ(Ki) = c for all i, and

c ≤ υ(K1# · · ·#Kn) ≤ 2c

Proof. For the ith prime pi ∈ N, let Ki be the connected sum of c copies of τ piT (2, pi), the pi-

twist-spin of the (2, pi)-torus knot. Since the Alexander module of each summand τ piT (2, pi)

is cyclic, the Nakanishi index m(Ki) of the connected sum is equal to c. This matches the

upper bound for υ given by Theorem 5.2, and so υ(Ki) = c. Now, each Ki can also be

thought of as a single pi-twist-spin of the connected sum of c copies of T (2, pi). Therefore

K = K1# · · ·#Kn is a connected sum of twist-spun knots with coprime twist indices, and

so Theorem 5.13 applies to show that ast(K) = c. Then by Lemma 5.16, υ(K) ≤ 2c.

The proof of the next corollary follows from Corollary 5.1, Theorem 5.2, and Lemma 5.16.

Corollary 5.18. Let n ∈ N and let k1, . . . , kn be 1-knots, each either 2-bridge or with

unknotting number one. Let j1, . . . , jn be coprime integers at least 2 and let Ki = τ jiki.

Then υ(Ki) = 1 for all i and υ(K1# · · ·#Kn) ≤ 2.
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