
Exploring the feasibility of using
artificial neural networks for

cognitive diagnostic modeling: two
case studies

by

Kang Xue
(Under the Direction of Laine P. Bradshaw)

Abstract

As a new research area, Arti�cial Neural Networks (ANNs) begins to at-
tract some research attention for cognitive diagnostic classi�cation. In my dis-
sertation, we explore the feasibility of using ANNs for CDM. The dissertation
consists of two research studies. In the �rst study, we �rstly designed an unsu-
pervised learning ANN for attribute estimation which does not rely on a spe-
ci�c assumption of item response function and just requires partial Q-matrix
information (simple items’ q-vectors); secondly, we proposed a Q-matrix recon-
struction method using K-means clustering algorithms to correct or reconstruct
the mis-speci�ed or missing elements of the Q-matrix. In the second case study,
we combined ANN with a semi-supervised learning method, the Co-Training
method. To hold the two assumptions of successfully applying Co-Training, we
used two theoretical diagnostic classi�cation models, DINA and DINO models,
as the two classi�ers. In these two research studies, we systematically describe
how to construct ANN for diagnostic classi�cation and deal with the issues and
challenges in the existed research studies. In the designed simulated study,we
test the two method under di�erent test conditions and make comparison with
several widely used theoretical diagnostic classi�cation models. The experimen-
tal results show the advantages of the proposed methods in dealing with the
noises contained in assessments, such as low diagnostic quality, misspeci�ed
elements in Q-matrix. We also discuss the limits of the proposed methods and
some future research directions of using ANN and machine learning for CDM
and psychometrics.

Index words: Cognitive Diagnostic Modeling, Arti�cial Neural
Networks, Unsupervised Leaning, Semi-Supervised
Leaning, Q-Matrix Reconstruction

Exploring the feasibility of using artificial neural
networks for cognitive diagnostic modeling: two

case studies

by

Kang Xue

B.S., Beijing Institute of Technology, China, 2006
PH.D., Beijing Institute of Technology, China, 2013

A Dissertation Submitted to the Graduate Faculty of the
University of Georgia in Partial Ful�llment of the Requirements for the

Degree

Doctor of Philosophy

Athens, Georgia

2020

©2020
Kang Xue

All Rights Reserved

Exploring the feasibility of using artificial neural
networks for cognitive diagnostic modeling: two

case studies

by

Kang Xue

Major Professor: Laine P. Bradshaw

Committee: April Galyardt
Seock-Ho Kim
Shiyu Wang

Electronic Version Approved:

Ron Walcott
Interim Dean of the Graduate School
The University of Georgia
August 2020

Acknowledgments

I would like to thank to my PhD advisors, Dr. Laine Bradshaw, for support-
ing me during these past three years. Laine has been supportive and has given
me the freedom to pursue research project I am interested and gave me lots of
opportunities in her research projects to help me understand the theory and
application in real psychometric problems. She has also provided insightful
discussions about the research and the dissertation.

I am also very grateful to my former PhD advisor, Dr. April Galyardt, for
her support and advisory in my �rst two years at the University of Georgia. April
also helped me build up academic network with other famous researchers in
the �eld educational data mining. She provided lots of constructive suggestions
in my dissertation and my future research. I also have to thank the members
of my PhD committee, Drs. Seock-Ho Kim and Shiyu Wang for their helpful
career advice and suggestions in general.

I especially thank my parents and parents in law. They have sacri�ced their
retire lives to support me during these �ve years. I love them so much, and my
wife and I would not have made it this far without them.

Special thanks to my wife Kuo and our sons, Edgar and Aiden. Although
it is truly a serious challenge for two PhD students with two little monsters,
we make it �nally with our cooperation and mutual support in these �ve years.
Also thanks to Edgar and Aiden for bringing us hope and happiness.

2020 is really a tough year because of the Covid-19. I deeply appreciate
everyone who is helping people through this pandemic.

iv

Contents

Acknowledgments iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Theoretic psychometrics 1
1.2 Machine learning and deep learning 2
1.3 Deep learning-based computational psychometric methods . . 4

2 Introduction 6
2.1 Theoretic Psychometric Models 6
2.2 Machine Learning . 10
2.3 Arti�cial Neural Networks and Deep Learning 14
2.4 The General Idea of Deep Learning-based Computational Psy-

chometric Methods . 26

3 An Unsupervised Learning Arti�cial Neural Network for Cog-
nitive Diagnostic Measurement 29
3.1 Introduction . 29
3.2 Method . 32
3.3 Simulation Study . 39
3.4 Conclusion . 46
3.5 Discussion . 47

4 A Semi-Supervised Learning-based Diagnostic Classi�cation Method
using Arti�cial Neural Networks 56
4.1 Introduction . 56
4.2 Method . 59
4.3 Experimental Study . 65

v

4.4 Conclusion . 71
4.5 Discussion . 72

5 Conclusion and Discussion 77
5.1 Application 1: An Unsupervised Learning Arti�cial Neural

Network for Cognitive Diagnostic Measurement 77
5.2 Application 2: Semi-supervised deep Co-Training method for

CDM . 78
5.3 Exploration of Using ANNs for Diagnostic Classi�cation . . 79
5.4 Future Directions . 80

Appendices 81

A Π matrix of Item pool 1 81

B IRP1 of Item Pool 1 83

C True Values of λs1 under the LCDM for Item Pool 1 85

D Π matrix of Item pool 2 87

E IRP1 of Item Pool 2 89

F True Values of λs1 under the LCDM for Item Pool 2 91

G Q-matrix for 3 Attribute, 20 Items Test. 93

H Q-matrix for 4 Attribute, 20 Items Test. 94

I Q-matrix for 4 Attribute, 30 Items Test. 95

J IRP* Table of 3 Attribute, 20 Items, High Discrimination Test. 97

K IRP* Table of 3 Attribute, 20 Items, Mixed Discrimination Test. 98

L IRP* Table of 4 Attribute, 20 Items, High Discrimination Test. 99

M IRP* Table of 4 Attribute, 20 Items, Mixed Discrimination Test. 100

N IRP* Table of 4 Attribute, 30 Items, High Discrimination Test. 101

O IRP* Table of 4 Attribute, 30 Items, Mixed Discrimination Test. 103

P Π of 3 Attribute, 20 Items, High Discrimination Test. 105

vi

Q Π of 3 Attribute, 20 Items, Mixed Discrimination Test. 107

R Π of 4 Attribute, 20 Items, High Discrimination Test. 109

S Π of 4 Attribute, 20 Items, Mixed Discrimination Test. 111

T Π of 4 Attribute, 30 Items, High Discrimination Test. 113

U Π of 4 Attribute, 30 Items, Mixed Discrimination Test. 115

V R Code of Data Simulation 117

W R Code of DCMs �tting 124

X Python Code of MAEN in Chapter 3 128

Y Python Code of DFN in Chapter 4 137

Bibliography 143

vii

List of Figures

2.1 Example of a biological neuron. 16
2.2 Perceptron is the name of a single neuron in deep learning. . . 17
2.3 A simple arti�cial neural network with 3 layers. 18
2.4 An example of feature hierarchy in the human face recognition

tasks. 24
2.5 The diagram of the proposed family of Deep Learning-based

Computational Psychometric Models (DLCPMs). 27

3.1 Example of a simple arti�cial neural network (ANN). 31
3.2 Structure of the proposed method. 33
3.3 Example of Autoencoder 34
3.4 Structure of the proposed modi�ed autoencoder network (MAEN) 35

4.1 The structure of the proposed semi-supervised learning ANN 62

viii

List of Tables

2.1 An example of Q-matrix. 7

3.1 Q-matrix for creating two item pools. 50
3.2 The table of selecting πi,c for item by class matrix. 51
3.3 Item selection under di�erent test conditions. 51
3.4 Comparisons of attribute estimation accuracy under the short

assessment length (10 items). 52
3.5 Comparisons of attribute estimation accuracy under the short

assessment length (15 items). 53
3.6 Comparisons of attribute estimation accuracy under the short

assessment length (20 items). 54
3.7 Q-matrix reconstruction accuracy under di�erent assessment

conditions. 55

4.1 The table of selecting πi,c for item by class matrix. 67
4.2 Comparison of classi�cation rates for 3 attributes using 20 items. 74
4.3 Comparison of classi�cation rates for 4 attributes using 20 items. 75
4.4 Comparison of classi�cation rates for 4 attributes using 30 items. 76

ix

Chapter 1

Introduction

As a �eld of study concerned with the theory and technique of psychological
measurement, psychometrics is concerned with the objective measurement of
skills and knowledge, abilities, attitudes, personality traits, and educational
achievement through designed assessment (Aiserman et al., 1964). Over the
past several decades, researchers have developed a number of di�erent statisti-
cal functions or theoretic psychometric models under di�erent measurement
theories. These theoretic psychometric models are widely used for analyzing
students’ responses in both assessment and virtual learning environment to de-
termine both item parameters and person parameters (e.g., latent trait, latent
class).

1.1 Theoretic psychometrics
Classical test theory (CTT; Crocker and Algina, 1986) is a traditional test theory
which assumes a test taker’s observed test score is the sum of the true test score
and the error. The higher test score means a higher ability, and test score is a
continuous variable. CTT treats the test takers with the same observed test score
as having equal ability because CTT assumes each item has the same di�culty
in a single assessment. Rooted in CTT, item response theory (IRT; Embretson
and Reise, 2013), also known as the latent trait theory (Levine, 1982), refers to a
family of mathematical models that attempt to explain the relationship between
latent traits (unobservable characteristic or attribute) and their manifestations
(i.e., observed outcomes, responses or performance) using di�erent statistical
functions (e.g., Rasch Model, 2-Parameter IRT model, 3-Parameter IRT model).
In contrast to CTT for which results cannot be compared under two sample
groups, the IRT models are not sample dependent and can locate test takers on
the same continuous scale. According to this advantage, IRT models are widely

1

used for measurement for standardized assessment and data analysis in visual
learning environments (VLEs; Britain and Liber, 2004), a Web-based platform
which delivers learning materials via a digital space.

Cognitive Diagnostic Modeling (CDM; J. Templin, Henson, et al., 2010)
is an area of psychometric research that has seen substantial growth over the
past decade. It has been receiving more attention in many assessment situations
because it has the ability to provide a �ner evaluation of the examinees’ trait
instead of a simple overall score. In contrast to IRT, which provides a contin-
uous unidimensional trait for each examinee, as a part of latent class theory,
CDM uses diagnostic classi�cation models (DCMs) to assign examinees into
multiple latent groups by determining whether they have mastered a number
of attributes. Recent studies have shown that DCMs had uniformly greater re-
liability for examinees’ latent attribute estimation compared to IRT under the
same test length condition (J. Templin & Bradshaw, 2013). In addition, the la-
tent classi�cation results are more interpretable than using a continuous latent
variable for students, teachers and education administrators.

1.2 Machine learning and deep learning
The technological changes across learning, instruction and assessment start to
bring machine learning techniques into psychometrics. For example, IRT psy-
chometric models are usually based upon logistic regression techniques which
are used to be popular in solving classi�cation problem in machine learning (Martınez-
Plumed et al., 2016).

Machine learning (Bishop, 2006) is an application of arti�cial intelligence
(AI) that provides computers/systems the ability to learn and complete tasks
without explicitly being programmed. Instead of inference, machine learning
provides a series of algorithms and methods that focus on prediction. Generally,
machine learning algorithms are categorized as supervised learning, unsuper-
vised learning, semi-supervised learning and reinforcement learning (Chapelle
et al., 2009) according to di�erent kinds of data and tasks. Generally, in the
machine learning �eld, there are two kinds of data: labeled data and unlabeled
data. Typically, unlabeled data consists of samples of raw data that you can
obtain relatively easily from the world (e.g., a student’s raw score, or a student’s
response pattern). Labeled data typically takes a set of unlabeled data and aug-
ments each piece of that unlabeled data with some sort of meaningful label,
such as the latent class and the latent trait of a student. Supervised learning
algorithms (e.g., Lasso logistic regression, random forests) can be learned from
the labeled data and applied to new unlabeled data to predict future events by

2

learning through labeled examples in the past; in contrast, unsupervised learn-
ing algorithms (e.g., K-means, Principle Components Analysis) are to explore
the unlabeled data and draw inferences from datasets to describe hidden struc-
ture (e.g., no labeled past data is available or provided); semi-supervised learning
algorithms lay between supervised and unsupervised learning and use unlabeled
data in conjunction with a small amount of labeled data to produce consider-
able improvement in model training accuracy and robustness.

As a sub�eld of machine learning, deep learning methods are widely applied
to extract latent variables or features from the input distribution based on arti-
�cial neural networks (ANNs). An ANN is a computational system inspired
by biological neural networks (LeCun et al., 2015). In the last several years, the
arti�cial intelligence systems which rely on deep learning achieved impressive
achievements in di�erent research �elds, such as computer vision, natural lan-
guage processing and speech recognition. In educational research area, deep
learning has been applied for di�erent tasks, such as automatic item generation
(AIG; von Davier, 2018), automated scoring (Taghipour & Ng, 2016), and item
characteristics prediction (Xue et al., 2020).

Generally, due to the characteristics of deep learning, there are three poten-
tial advantages to applying deep learning techniques to psychometric applica-
tions. More details of deep learning techniques will be described in Chapter
2.

1. Deep learning techniques are used to exploit di�erent latent variables
concerned with di�erent psychometric theories from the observed distri-
bution, often at multiple levels;

2. Deep learning has proven to be a good solution for approximate com-
puting (Hanin, 2019; Lu et al., 2017), which is a promising computation
technique that relies on the ability of many systems to tolerate some loss
of quality or optimality in computed results;

3. As a sub�eld of machine learning, deep learning based psychometric
methods are also expected to be robust to the noises contained in the
data when explaining the training dataset and doing prediction on new
dataset.

In last several years, some types of ANNs, the basic computational systems
in deep learning, were used for psychometrics, especially for cognitive diagnostic
modeling. However, all the existing methods introduced ANNs as a compu-
tational approach in isolated application of psychometrics compared with the
theoretic psychometric models.

3

1.3 Deep learning-based computational psycho-
metric methods

Due to the development of techniques in instruction and assessment over past
decade, large data sets and high dimensional data have become available for edu-
cational research. In contrast to traditional assessment data for theoretic psycho-
metric models, the new data contains more noise and the prior knowledge of
the data (e.g., for CDM, Q-matrix which represents the relationships between
attributes and items) might be incomplete or mis-speci�ed. In order to e�ec-
tively apply theoretic psychometric models, statistical testing (e.g., ANOVA)
was required to determine the item response function. Machine learning and
deep learning could be another option to improve the robustness of the data ex-
ploration from such kinds of data and also extract new abstractive information
which might be ignored by human.

In this research, to explore the feasibility of using deep learning techniques
to extract latent person variables (e.g., latent trait, latent class) concerned by
psychometrics, a family of Deep Learning-based Computational Psychomet-
ric Methods (DLCPMs) were proposed. To explain data for psychometrics
and prediction on new dataset simultaneously, all DLCPMs in this research
integrated deep learning and theoretic psychometrics in one system. DLCPMs
could be applied under either unsupervised learning or semi-supervised learn-
ing frameworks by modifying the deep learning architecture. The unsupervised
DLCPMs are used to do data exploration for further psychometric applications,
and the semi-supervised DLCPMs are used to improve the performance and ro-
bustness of applying psychometrics. Generally, DLCPMs consist of three parts:
observed inputs, feature extraction (or latent variable extraction), and targeting.

Observed inputs refers to the observed data such as students’ responses to
items in a designed assessment or interactions within an online learning envi-
ronment, such as raw text, log data and sequential data. The feature extraction
refers to the process of converting the observed response pattern to latent per-
son variables that psychometric models are concerned with using deep learning
techniques. For IRT, this latent variable refers to students’ abilities (contin-
uous variables) and for CDM the latent variable is attribute pro�les (discrete
variables). To extract di�erent types of latent variables from the inputs, the
structures of the deep learning architecture di�er by the feature hierarchy: in
deep learning, di�erent features are learned at di�erent levels from the same
observation. We will discuss the feature hierarchy in detail in Chapter 2. The
third part, targeting, has to do with both training and explaining. Like typical
machine learning tasks, the process of training is to estimate appropriate pa-

4

rameters contained in the deep learning architecture for future prediction on a
new dataset; the process of explaining is to make the latent variables exploited
by the deep learning-based feature extraction have the same interpretation as
the theoretic psychometric models.

In the experimental test, unsupervised deep learning algorithms and semi-
supervised deep learning algorithms will be applied to extract the person pa-
rameters (i.e., attribute pro�les, latent classes and latent trait) under di�erent
psychometric theories. The proposed deep learning-based computational psy-
chometric methods (DLCPMs) could be used to extract both continuous latent
variables (i.e., latent trait) and discrete latent variables (i.e., latent class, latent
attribute mastery status). In Chapter 3 and 4, two applications using DLCPMs
for Cognitive Diagnostic Modeling (CDM) are described in detail.

5

Chapter 2

Introduction

In this chapter, we present an introduction and overview of the theories and
existing literature related to this research. This chapter will cover the following
three parts: some basic concepts of cognitive diagnostic modeling (CDM) and
item response theory (IRT); unsupervised learning and semi-supervised learn-
ing in machine learning; the feature hierarchy and approximate computing of
deep learning. The chapter provides a theoretical foundation of the proposed
DLCPMs.

2.1 Theoretic Psychometric Models

2.1.1 Cognitive Diagnostic Modeling
The purpose of cognitive diagnostic modeling (CDM) or diagnostic measure-
ment is to provide students’ knowledge mastery states through their responses
to items from carefully designed assessments. Because of the ability to provide
educators diagnostic feedback from students’ assessment result, CDM have
been the focus of much research in the last decade. Various types of diagnostic
classi�cation models (DCMs), such as the deterministic inputs, noisy "and"
gate (DINA; Junker and Sijtsma, 2001), the reparametrized uni�ed model/fu-
sion model (RUM; Hartz, 2002) and the log-linear cognitive diagnosis model
(LCDM; Henson et al., 2009), are designed based on di�erent cognitive theories
or hypotheses about how attributes behave, or interact, to produce individual
item responses.

Attribute Pro�le and Latent Class

In CDM, an attribute pro�le is aA-dimensional vector,α = [α1, α2, ..., αA]′,
for which the ath element indicates the ath attribute, for a ∈ {1, 2, ..., A}.

6

In most DCMs, the attribute mastery levels are dichotomous, where αa = 1

indicates mastery of Attribute a andαa = 0 indicates non-mastery of Attribute
a. The number of latent classes C equals to 2A, and students within a latent
class c have same attribute pro�le αc.

Q-matrix

Theoretically, the speci�cation of which attributes are measured by each item
is done numerically in a table called the Q-matrix (Tatsuoka, 1983). DCMs are
speci�ed based on a Q-matrix. A Q-matrix traditionally contains the items in
the rows and the attributes in the columns. 1s and 0s in the Q-matrix indicates
whether or not an attribute is measured by an item. Also taking the math cogni-
tive diagnostic assessment as an example, a sample Q-matrix is shown in Table 2.1.
This Q-matrix shows the relationship between four items and four attributes
(add, subtract, multiply and divide). The �rst three items are simple structure
items or simple items because each of them only measures single attribute. The
last item (16− 2× 3 =?) is a complex structure item or complex item because
it measures more than one attribute. Each row of a Q-matrix is called a q-vector
which indicates which attribute(s) the item is designed to measure.

Table 2.1: An example of Q-matrix.

Item Add Subtract Multiply Divide
4 + 4 =? 1 0 0 0
12/2 =? 0 0 0 1
8× 2 =? 0 0 1 0
16-2×3 =? 0 1 1 0

A Q-matrix shows the relationship between four items and four attributes.

In addition, Q-matrix can also indicate the hierarchical structure of at-
tributes intuitively. The attribute hierarchies represent the hypotheses of the
attribute dependencies in the population of examinees. For example, if an at-
tribute hierarchy speci�ed that mastery of Attribute 1 is prerequisite to mastery
of Attribute 2, in other word, Attribute 1 is generally acquired by population
before Attribute 2. In the Q-matrix, if an item measures Attribute 2, it must
measure Attribute 1 at the same time. Whereas the reverse is not true. It means
that there are only 3 types of q-vectors indicating the relationship between items
and two attributes (Attribute 1 and Attribute 2) in the Q-matrix: (0, 0) refers to
that the item measures none of the two attributes; (1, 0) refers to that the item
measures only Attribute 1; (1, 1) means the item measures both two attributes.
However, the q-vector pattern (0, 1) cannot be observed in the Q-matrix.

7

Although Q-matrices are often designed carefully by assessment experts,
some existing research and their experimental results have been shown that
Q-matrices constructed by content experts do not always re�ect the relation-
ship precisely and may require empirically-driven modi�cations (Bradshaw et
al., 2014; Tjoe & de la Torre, 2014). The misspeci�cation can hardly be ig-
nored, and several researchers have already shown the e�ects of the Q-matrix
misspeci�cation on di�erent types of diagnostic classi�cation models from ex-
periments (Kunina-Habenicht et al., 2012; R. Liu et al., 2017; Madison & Brad-
shaw, 2015; A. A. Rupp & Templin, 2007). A number of studies have proposed
automated methods to search or correct the Q-matrix with some constraints:
Most of them require knowing the parametric item response function (John-
son, 2009), work only under conditions where an assessment contains a small
number of items (Desmarais, 2012), or allow re�nement to the Q-matrix in
which only a small proportion of elements are mis-speci�ed or missing (Chiu,
2013).

Typical Diagnostic Classi�cation Models

There are two types of latent variable combinations in DCMs: (1) noncompen-
satory latent variable models where a low value on one latent variable cannot
be compensated by a high value on another latent variable, and (2) compen-
satory latent variable models where a low value on one latent variable can be
compensated for by a high value on another latent variable.

Deterministic inputs, noisy “and” gate model (DINA) A simple ex-
ample of noncompensatory models is the DINA model (Junker & Sijtsma,
2001). The item response function of the DINA model for the ith item and
latent class c is de�ned in terms of two parameters, slipping parameters si and
guessing parameters gi:

πi,c = P (Xi,c = 1|αc) = (1− si)ηi,cg
1−ηi,c
i (2.1)

whereαc is the attribute pattern for latent class c, and ηi,c =
∏A

a=1 α
qi,a
c,a

(and-gate) indicates whether examinees in latent class c have mastered all at-
tributes measured by ith item (ηi,c = 1) or not (ηi,c = 0) based on conjunctive
condensation rule. In current research studies, DINA model is widely chosen
for simulation test because of the simplicity. For each item, there are only two
potential P (Xi,c = 1) for ηi,c = 1 and ηi,c = 0 respectively. The probabil-
ity that an examinee can answer an item correctly drops severely if any of the
measured attributes are not mastered. Due to the simplicity of DINA, a large

8

number of simulated studies for CDMs were conducted based on the DINA
assumption (Chiu et al., 2009; Cui et al., 2012; Cui et al., 2016; De La Torre,
2008).

Deterministic, noisy “or” gate model (DINO) In contrast to noncom-
pensatory models, DINO is a type of compensatory model (J. L. Templin &
Henson, 2006). Like the DINA model, there are also two item parameters,
slipping parameters si and guessing parameter gi, contained in the mathematic
representation of DINO model, but DINO model uses or-gate ωi,c instead of
and-gate ηi,c in DINA:

πi,c = P (Xi,c = 1|αc) = (1− si)ωi,cg
1−ωi,c
i (2.2)

whereωi,c = 1−
∏A

a=1(1−ac,a)qi,a indicates whether examinees in latent class
c have mastered at least one of the attributes measured by ith item (ωi,c = 1)
or not (ωi,c = 0).

Because di�erent models, such as DINA and DINO, require di�erent as-
sumptions and have various levels of complexity, researchers have to select the
appropriate model before conducting an analysis. Inappropriate model selec-
tion will in�uence the analysis results. According to this issue, some more gen-
eral models are proposed (von Davier, 2005).

Log-linear cognitive diagnosis model (LCDM) As a general DCM,
the log-linear cognitive diagnosis model (LCDM) is designed to represent diag-
nostic classi�cation models as a log-linear model with latent attributes (Henson
et al., 2009; J. Templin, Henson, et al., 2010). The LCDM models the condi-
tional probability that examinees in cth latent class with attribute pro�le αc
obtain a correct response to ith item as follows:

πi,c = P (Xi,c = 1|αc) =
exp(λi,0 + λTi h(αc, qi))

1 + exp(λi,0 + λTi h(αc, qi))
(2.3)

which could also be represented through a logit form:

log

(
P (Xi,c = 1|αc)

1− P (Xi,c = 1|αc)

)
= λi,0 + λTi h(αc, qi) (2.4)

In the logit equation, the linear combination on the right side is also called
the kernel. In a kernel, qi = qi,a is the q-vector for ith item. The intercept, λi,0,
represents the logit of a response from an examinee whose status of attributes
mastery isαc = 0. λi is the vectorial representation of the coe�cients of main

9

and interaction e�ects, and h(αc, qi) is a vector which contains all types of
linear combination between cth latent class attribute pro�leαc and ith item’s
Q-matrix entries qi. The mathematical function ofλTi h(αc, qi) is as follows:

λTi h(αc, qi) =
A∑
a=1

λi,1,(a)αc,aqi,a +
A∑
a=1

A∑
a′>a

λi,2,(a,a′)c,aαc,a′qi,aqi,a′ + · · ·

(2.5)
where λi,1,(a) represents the main e�ects of attribute a, andλi,2,(a,a′) a two-way
interaction between ath and a′th attributes.

2.2 Machine Learning
Machine learning is a sub�eld of arti�cial intelligence (AI) that provides sys-
tems the ability to automatically learn and improve from experience without
being explicitly programmed (Evans & Ossorio, 2018). As described in Chapter
1, generally, machine learning algorithms are categorized as supervised learning,
unsupervised learning, semi-supervised learning and reinforcement learning ac-
cording to di�erent kinds of data and tasks. Supervised learning algorithms are
to learn a function that maps an input to an output based on example input-
output pairs to produce an inferred function for new datasets. Supervised learn-
ing algorithms can be applied for both regression and classi�cation tasks but
require the observed input and desired output values or labels (e.g., continuous
variables for regression, discrete variables for classi�cation). Supervised learning
is widely applied for language modeling, visual object recognition, and mak-
ing forecasts on businesses data. However, in assessments, the latent variables,
including both person and item parameters, cannot be observed directly. In
other words, the data collected from the assessments are regarded as unlabeled
in machine learning �eld. This is the reason why a well-de�ned model with
theoretical reasons are relied on to �t the observed data in psychometrics, and
very few research studies have used supervised learning for psychometric appli-
cations (Cui et al., 2016; Karaca & Hayta, 2016).

2.2.1 Unsupervised Learning and clustering-based psycho-
metric applications

In contrast to supervised learning algorithms, the unsupervised learning algo-
rithms are used to draw inferences from the inputs without labels and �nd
hidden patterns or classes in datasets. The main methods used for unsuper-

10

vised learning are categorized into two groups: dimensionality reduction and
clustering.

Principle components analysis (PCA; Jolli�e, 2002) is one typical and widely
used method for dimensionality reduction. The aim of PCA is to extract the fea-
tures from high dimensional observations to represent the original content (Abedi
et al., 2019). PCA can be de�ned as the orthogonal projection of the data onto
a lower dimensional linear space, also known as principal subspace, in which
the variance of the projected data is maximized (Hotelling, 1933). PCA can also
be expressed as the maximum likelihood solution of a probabilistic latent vari-
able model. This reformulation of PCA is called probabilistic PCA (Tipping
& Bishop, 1999) and it is related to factor analysis (Basilevsky, 1994). When
replacing the scalar products in PCA using a nonlinear kernel, the nonlinear
generalization, known as kernel PCA (Schölkopf et al., 1998), can be obtained
to do the nonlinear dimensionality reduction.

Rule space method (RSM; Tatsuoka, 2009) �rstly estimates a traditional
unidimensional IRT model, then classi�ed test takers into one of the attribute
pro�les using the Mahalanobis distance measure. As an extension of the RSM,
the attribute hierarchy method (AHM; Leighton et al., 2004) attempts to use a
di�erent probabilistic approach (e.g., neural networks; Gierl, Cui, et al., 2008)
to classify test takers by putting the relationship between attributes explicitly in
the foreground which is ignored in many applications of RSM. The di�erence
between RSM and AHM is that the IRT model in the RSM is calibrated using
the observed response pattern, but the IRT model in the AHM is calibrated
using the expected response data. Generally, both RSM and AHM impose
weaker requirements on the data structure to arrive at test takers classi�cation,
but also yields weaker statistical inference.

The clustering, or cluster analysis, is another common technique of unsu-
pervised learning for statistical data analysis used in many �elds. Given a set
of data observation, the clustering algorithms are to classify each data into a
speci�c group. The data in the same group should have similar properties and
observations in di�erent groups should have highly dissimilar properties. In
CDM, some clustering methods were introduced to classify test takers into dif-
ferent latent groups based on their responses to the designed item. Chiu et al.
(2009) tested the performance of K-means clustering method (Jain, 2010) taking
Euclidean distance as instance and hierarchical agglomerative cluster analysis
(HACA or HAC; Rokach and Maimon, 2005) using di�erent linkages (e.g.,
complete linkage, single linkage, average linkage and centroid linkage). Com-
pared with the DCM-based methods (e.g., DINA, RUM), the results showed
that although DCM-based methods always achieved more accurate classi�ca-

11

tion when the Q-matrix is correctly speci�ed, the K-means clustering methods
are attractive because of its simplicity. In addition to K-means, Brusco et al.
(2017) also compared K-median method with latent class model (LCM) to clus-
ter dichotomous data. The experimental results (Brusco et al., 2017) showed
that both LCM and K-median methods are �exible and can be adapted easily to
accommodate other objectives. Although the accessibility and generalizability
of K-median clustering is less than that of LCM, the K-median showed a better
classi�cation performance than LCM when the number of latent groups K was
known. Cui et al. (2016) used self-organizing map (SOM; Kohonen, 2001) to in-
terpret student performance under CDM. The SOM had an input layer, which
was composed of large number of input nodes, and an output layer, which was
composed of small number of output nodes. Each observed response pattern
was �rstly put into one input node and then classi�ed into one output node,
the one in the closest proximity to it. In their research, the Euclidean distance
was used to measure the distance between two vectors. The simulated study
based on the framework of DINA showed that the SOM and DINA models are
mostly comparable on classi�cation accuracy and consistency for tests with high
discriminating items and the advantages of SOM approach become apparent
when the model-data mis�ts are present. Chen and Li (2019) introduced spec-
tral clustering method to do exploratory cluster analysis of items for large-scale
assessments supported by a large item pool. The spectral clustering algorithm
can deal with the responses from an assessment contains a large number of items
(i.e., high dimensional responses) and handle missing data by extracting item
clusters via a graphical structure which characterized the similarity structure
among items.

Generally speaking, the unsupervised learning methods showed their advan-
tages in simplicity, computational e�ciency and handling noises (e.g., missing
data, model-data mis-�tting) for psychometric applications. However, in con-
trast to the theoretic psychometric models, the unsupervised learning methods
cannot yield comparable classi�cation results when the appropriate theoretic
psychometric models are known. Another disadvantage of unsupervised learn-
ing method is that some further data analysis approaches are required to label
the clusters. For example, although cluster analysis can place test takers into dif-
ferent latent groups, post hoc techniques are required to discern the attributes
from these latent groups.

2.2.2 Semi-supervised Learning
In machine learning �eld, semi-supervised learning (X. J. Zhu, 2005) concerns
with the study of how computers and natural systems learn in the presence

12

of both labeled and unlabeled data, and it is somewhere between supervised
learning (with completely labeled training data; e.g., regression, classi�cation)
and unsupervised learning (without any labeled training data; e.g., clustering,
dimensional reduction). The research goal of semi-supervised learning is to un-
derstand how combining labeled and unlabeled data change the learning behav-
ior, and design algorithms that take advantage of such a combination (X. Zhu
& Goldberg, 2009). In a wide range of applications, such as image search (Fer-
gus et al., 2009), natural language parsing (Liang, 2005), and speech analysis (Y.
Liu & Kirchho�, 2014), the semi-supervised learning attracts a great interest
because the labeled data is scarce or expensive.

To handle the incomplete labels, the simplest algorithm for semi-supervised
learning is based on a self-training (Ha�ari & Sarkar, 2012; Rosenberg et al.,
2005) scheme using bootstrapping with additional labeled data obtained from
its own highly con�dent prediction. Self-training is a wrapper method for semi-
supervised learning. This process �rstly builds an initial classi�er using the
correctly labelled examples, and then iteratively classi�ed unlabeled/mislabeled
examples, updating the rules for the classi�er using the expanded training data,
and repeating these steps until some termination condition is reached. The
assumption of self-training is that its own prediction tends to be correct. The
major advantages of self-training are its simplicity. It works well for the case
when the data come from well-separated clusters. However, these methods
are heuristic and prone to early error that can reinforce itself by generating
incorrectly labeled data. Re-training with this data will lead to an even worse
predictor in the next iteration.

Co-Training (Nigam & Ghani, 2000) methods use a pair of classi�ers with
separate views of the data to iteratively learn and generate additional training
labels. When doing diagnostic classifying to a single response pattern, DINA
model and DINO model could be viewed as a pair of classi�ers with separate
views because DINA model assumes that one attribute required by each item
cannot be compensated by other required attributes but DINO model assumes
that the required attributes can be compensated by others. Like self-training
scheme, Co-Training is a wrapper method and widely applicable to many tasks.
Co-Training bears strong resemblance to self-training scheme because each clas-
si�er uses its most con�dent predictions on unlabeled instances to teach itself.
Two classi�ers operate on di�erent views of an observation and the success of
Co-Training depends on the following two assumptions (X. Zhu & Goldberg,
2009): 1) each view alone is su�cient to make good classi�cations, given enough
labeled data; 2) the two views are conditionally independent given the class la-

13

bel. However, practically, it is di�cult to �nd tasks in practice that completely
satisfy the conditional independence assumption.

There are some other semi-supervised learning models. Graph-based semi-
supervised learning (Fergus et al., 2009) models are applied though e�cient
spectral methods requiring eigen-analysis of the graph Laplacian and have been
shown to be one of the most e�ective approaches for classi�cation tasks from
a wide range of domains; transudative SVMs (Joachims, 1999) extend SVMs
with the aim of max-margin classi�cation while ensuring that there are as few
unlabeled observations near the margin as possible.

More recently, the techniques to solve the training using noisy labels using
arti�cial neural networks have begun to receive attention. To improve labeling
of aerial images, Mnih and Hinton (2012) also developed the deep neural net-
work with a robust loss function to handle label-omission and registration error
(or label-error). Larochelle and Bengio (2008) developed Restricted Boltzmann
Machine (RBM) for classi�cation that uses a hybrid generative and discrimina-
tive training objective. In other words, the RBM classi�er learns how to explain
observations and how to make predictions simultaneously. Deep Boltzmann
Machine (DBM; Salakhutdinov and Hinton, 2009) can also be trained in a semi-
supervised manner with labels connected to the top layer. Multi-prediction
DBM training (I. J. Goodfellow et al., 2013) and Generative Stochastic Net-
works (Bengio et al., 2014) improved the performance. In addition, follow-
ing the idea of minimum entropy regularization (Grandvalet & Bengio, 2005),
which performs semi-supervised learning training on unlabeled examples with-
out a generative model, D.-H. Lee (2013) proposed generating “pseudo-labels”
as training target for unlabeled data and showed improved performance on
MNIST (Modi�ed National Institute of Standards and Technology database)
digits recognition with few labeled examples.

2.3 Arti�cial Neural Networks and Deep Learn-
ing

During the last decade, considering the rapidly increasing of data size and de-
velopment of computational power, research studies and applications using
deep learning were growing rapidly. Especially in computer vision, nature lan-
guage processing and speech recognition (I. Goodfellow et al., 2016; LeCun
et al., 2015) methods based on deep learning achieved impressive performances.
Deep learning, which is also known as multi-layer arti�cial neural network, is a
speci�c new sub�eld of machine learning. The goal of deep learning is to learn
representations from data by putting emphasis on learning successive layers

14

of increasingly meaningful representation (Chollet & Allaire, 2018). In deep
learning, the layered representation is learned via models called Arti�cial Neural
Networks (ANNs). The original ANN, arti�cial neuron or perceptron (Aiser-
man et al., 1964), was developed to solve problem as the same way of a human
brain over 70 years ago. Due to some technology limits, there were not many
real applications using ANNs in arti�cial intelligence (AI) area. Most of the
research focused on creating computational models and optimization methods
for ANNs. Various types of networks have already been developed according
to various types of data (e.g., speech signal, image) and tasks (e.g., classi�cation,
prediction, clustering).

2.3.1 Related Concepts of ANNs and Deep Learning
An ANN is a computational system inspired by biological neural systems for
information processing in animals’ brains. Figure 2.1 shows a biological neuron
model and its signal �ow from input at dendrites to output at axon terminals.
Like a biological neuron model, an ANN is a network of arti�cial neuron or
perceptron (shown in Figure 2.2) and can be characterized as L layers of mul-
tiple perceptron (or cells). The lth layer is typically arranged and notated as
a vector hl = [hl1, hl2, . . . , hlkl]. Layer hl receives input from the previous
layerhl−1 and passes its output to the next layer hl+1. The observation vector
x is identi�ed as the ANN’s �rst layer h0 and the output last layer y = hL
is denoted as the output of the ANNs. Figure 2.3 is a simple example of an
ANN with 3 perceptrons in the input layer x = h0, one hidden layer h1 with
four perceptrons and one output layer y = h2 with two perceptrons. In this
example, input of the ANN is a 3-dimensional variable and output of the ANN
is a 2-dimensional variable.

In practice, one perceptron hli in layerhl is calculated using the perceptron
in layerhl−1 =

[
h(l−1)1, h(l−1)2, . . . , h(l−1)k(l−1)

]
as input:

hli = fl

k(l−1)∑
j=1

w
[(l−1)l]
ji h(l−1)j + bli

 (2.6)

where w[(l−1)l]
ji is the connection weight from perceptron h(l−1)j to hli, bli in-

dicates the bias of hli. The calculation in the bracket is a simple linear weighted
combination of the perceptron in layer hl−1. fl(·) is the activation function
transforms the summed weighted input to an output signal.

Activation functions are important for an ANN to learn and represent com-
plicated and non-linear complex functional mapping between the inputs and

15

Figure 2.1: Example of a biological neuron.
A biological neuron has dendrites to receive signals, a cell body to process them, and
an axon to send signals out to other neurons, the arti�cial neuron has a number of
input channels, a processing stage, and one output that can fan out to multiple other
arti�cial neurons. Source: https://en.wikipedia.org/wiki/Biological_neuron_model

outputs variables. One typical activation function is the logistic function (or
sigmoid function in deep learning area):

fl(x) =
exp(x)

1 + expx
(2.7)

which maps real value x to the interval [0, 1], and in deep learning area the
sigmoid function is usually used to convert the input to output in a binary clas-
si�cation problem. And the sigmoid function can also be extended to softmax
activation function in the multiclass problem as:

fl(xc) =
exp(xc)∑C
k expxk

(2.8)

Hyperbolic Tangent function or Tanh is a type of activation function which
convert the input to a zero centered output with range between−1 and 1 (i.e.,
−1 < output < 1) using the following equation:

fl(xc) =
1− exp(−2x)

1 + exp(−2x)
(2.9)

16

https://en.wikipedia.org/wiki/Biological_neuron_model

Figure 2.2: Perceptron is the name of a single neuron in deep learning.
It is a linear binary classi�er that works for supervised learning to classify the input data.
It contains four parts, inputs, weights and bias, net sum and activation function.

However, both sigmoid function and Tanh su�er from Vanishing gradient
problem. The problem is that as more layers using certain activation functions
are added to ANN, the gradients of the loss function approaches zero, making
the network hard to train. To solve the Vanishing gradient problem, currently,
most deep learning systems use other activation functions, such as Recti�ed
linear unit (ReLU; I. Goodfellow et al., 2016), in the hidden layers between
input layerh0 and output layerhL to avoid a small derivative. The ReLU could
be represented as following:

fl(x) = max(0, x) (2.10)

if x < 0, fl(x) = 0 and if x ≤ 0, fl(x) = x. From the mathematical form of
ReLU we can see it is very simple and e�cient. The only limits of ReLU is that
it should only be used with the hidden layer in deep learning systems. For the
output layer hL, a sigmoid function should be used for a binary classi�cation
problem, softmax function should be used for a multi-classi�cation problem
and a simple linear function or Tanh function should be used for a regression
problem.

17

Figure 2.3: A simple arti�cial neural network with 3 layers.
There are 3 perceptron in the input layer x = h0, one hidden layer h1 with four
perceptron and one output layerh2 with two perceptron. In this example, input of the
ANN is a 3-dimensional variable and output of the ANN is a 2-dimensional variable.

Backpropagation and Optimization The training of deep learning is im-
plemented as minimizing the di�erence between target y and deep learning
output ŷ(x) to estimate the connection weightsw and the biases b. Because
the deep learning structure contains multiple layered ANN, the number of un-
known parameters is very large and the mathematic representation of y (x) is too
complicated to directly use the traditional optimization method. Deep learning
widely uses backpropagation (BP; Touretzky and Hinton, 1989; Hinton et al.,
2006) method to train and estimate the unknown parameters using di�erent
kinds of loss functions and optimization algorithms.

Backpropagation BP computes the gradient of the loss function (will
be covered in the following section) with respect to the weights and biases for a
single input–output example. Unlike a naive direct computation of the gradient
with respect to each unknown parameter individually, BP provides an e�cient
way to use gradient methods using the chain rule of di�erentiation through the
layers of multilayer ANNs.

In the case of a single hidden layer, we can write the hidden vectors as
h1 = g(x;wx1, b1) which represents h1 as a function of the input layer

18

h0 = x. The output layer is denoted as ŷ = f(h1;w1y, by) which repre-
sents the predicted output vector ŷ as a function of the hidden layer h1. We
have the following combined equation that describes the output vector as a
function of input vector:

ŷ = f(g(x;wx1, b);w1y, by) = f ◦ g(x) (2.11)

Let the loss function be J(W , b), then we can estimate the connection
weight vector between hidden layerh1 and output layer ŷ the using the gradient
decent method as:

∂J(W , b)

∂w1y
=
∂J(W , b)

∂ŷ
× ∂ŷ

∂w1y
(2.12)

and w1y could be updated as w1y = w1y − η ∂J(W ,b)
∂w1y with a learning rate

η. Therefore, the connection weight vector between input layer x and hidden
layerh1 can be estimated using the chain rule as:

∂J(W , b)

∂wx1
=
∂J(W , b)

∂ŷ
× ∂ŷ

∂h1

× ∂h1

wx1
(2.13)

andwx1 = wx1−η ∂J(W ,b)
∂wx1 . To estimate biases by and b1, we could use similar

training procedure. Training deep learning structure using BP can be accel-
erated dramatically using modern parallel programming paradigms through
multi-core CPU, Graphic Processing Unit (GPU) or Tensor Processing Unit
(TPU) when the deep learning contains multiple layers and many perceptron.

Loss function Generally, the loss functions used in deep learning could
be divided with regard to the data analyzed. The task to predict discrete vari-
ables (e.g., dichotomous and polychotomous responses, latent classes, attribute
mastery status) is a classi�cation problem. In machine learning, the method
is “one-hot” coding which is also known as dummy coding in psychometrics.
A discrete output variable with Kpossible states y ∈ {1, 2, . . . , K} is recoded
as y∗ = [y∗1, y

∗
2, . . . , y

∗
K] with y∗j = 1 and y∗k 6=j = 0 if y = j. For a binary

classi�cation problem, the output uses a sigmoid activation function, and a
multi-classi�cation problem uses softmax activation function to predict the
output. Then the predicted y∗k = P (y∗k = 1|x) are the probability of the clas-
si�cation represented by the output neurons given input data x. To measure
the di�erence between predicted output ŷ∗ = {ŷ∗k} and the observed output

19

ŷ∗, the loss function can be de�ned as:

L =
1

N

N∑
n=1

[−
K∑
k=1

y∗kn log ŷ∗kn] (2.14)

which is referred to as cross-entropy (I. Goodfellow et al., 2016; Murphy, 2012)
as this function relates to the measure of entropyH(p, q) = −

∑
i pi log qi in

information theory. N is number of observations.
For continuous variables, such as the latent ability of students in IRT model,

the task of prediction is a regression problem. Training is implemented as min-
imizing the mean squared error (MSE) between the observed output y and
predicted output ŷ as following:

MSE = arg min

{
1

N

N∑
n=1

(yn − ŷn)2

}
(2.15)

Typical Deep Learning Architectures In the �eld of deep learning, during
the past decade, a large number of deep neural networks (DNNs) with di�erent
architectures, algorithms and names were designed to solve various tasks. ¬Here,
four basic types of the deep learning architectures will be discussed, and they
are: Autoencoder (AE), Deep Feedforward Network (DFN), Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN).

Autoencoder (AE) Autoencoder (AE; Liou et al., 2008) is a type of neu-
ral network which focuses on unsupervised learning and extracting latent infor-
mation (or features) from the observation. The goal of an AE is to compress
data into a lower dimensional feature/code and reconstruct outputs that closely
matches the original input from that code. Architecturally, an autoencoder has
an input layer, an output layer and one or more hidden layers connecting them.
The input layer and output layer have the same number of arti�cial neurons.
Generally, an autoencoder always consists of two parts, the encoder and the
decoder. Encoder is to �nd the low dimensional code and decoder is to decom-
press that code into reconstructed outputs. Both of the two parts can be de�ned
as transitions Φ and Ψ mathematically:

Φ : X → F
Ψ : F →X ′

(2.16)

where Φ indicates a dimensional reduction from high dimensional observation
spaceX to a low dimensional feature/code spaceF by removing the noises or

20

redundant information, and Ψ indicates a reconstruction process to output
X ′ = Ψ ◦ Φ(X) which has the same dimension as X , the autoencoder is
trained via BP by minimizing the target function as following:

Φ,Ψ = arg min ||X −X ′||2 (2.17)

where the L-2 Regularization or Euclidean distance can be replaced by L-1 Reg-
ularization or cross entropy for di�erent kinds of data and measurement. When
implementing an autoencoder, there are some “tricky” things to make the au-
toencoder to learn useful features. The �rst one is to keep the coder layer small;
the second one is to add random noise to the inputs of autoencoder; and the
third one is to use a sparsity constraint by using regularization.

Deep Feedforward Network (DFN) Feedforward neural network is an
arti�cial neural network wherein connections between neurons do not form
a cycle (Zell, 1994). The feedforward neural network is the �rst and simplest
type of ANN. A perceptron is a kind of feedforward neural network. Deep
Feedforward Network (DFN) is a class of ANNs that consists of multiple layers
of arti�cial neurons and represents multilayer network architecture with many
hidden layers (Schmidhuber, 2015). In DFN structure, each neuron in one layer
has directed connection to the neurons of the subsequent layer. The input
layer constitutes the observed input, and the hidden layer characterizing the
abstract description of this input. The goal of the output layer is to only perform
the prediction or classi�cation. In practice, DFNs are applied for supervised
learning and trained through the backpropagation algorithm.

Convolutional Neural Network (CNN) In DFNs, one neuron in one
layer are connected with all the neurons of the adjacent layers. This architecture
is also known as fully connected deep networks. However, applying a DFN with
fully connected structure to high dimensional observation, such as image which
may contain millions of pixels, is not practical because such high dimensional
inputs requires huge number of parameters to be optimized. Inspired by biolog-
ical processes of the visual cortex (Matsugu et al., 2003), Convolutional Neural
Networks (CNNs) bring a solution by applying a convolution operation to the
input. A typical CNN consists of three kinds of layers: convolutional layer,
pooling layer and dense layer (or full connected layer).

Taking 2D image as input, the convolutional layer can be viewed as con-
verting a current pixel’s value to a linear combination of itself and its neigh-
bors within a speci�c distance. In other words, the convolution operation is to

21

extract more abstract information and remove high-frequency noise through
imitating the receptive �eld of a single sensory neuron of human vision.

The pooling layers (subsampling layers) in the CNN architecture are used
to subsample the feature maps by combining the outputs of neuron clusters
at its prior layer (convolutional layer) into a single neuron in the pooling layer.
There are two common pooling methods, max pooling and average pooling.
Max pooling uses the maximum value from each cluster of neurons at the prior
layer. Average pooling uses the average value from each cluster of neurons at
the prior layer.

The full connected layer is to obtain high-level reasoning after several con-
volutional and pooling layers. Neurons in a fully connected layer have connects
to all neurons in the adjacent layers. The full connected layers are to perform
some speci�c tasks (e.g., classify, predict) on the features extracted by the con-
volutional and pooling layers.

As the founder of CNN and deep learning pioneer, LeCun et al. (1999) de-
veloped one of the very �rst successful applications of CNNs, named LeNet5,
to classify hand-written numbers. Currently, some other common CNN ap-
plications are AlexNet (Krizhevsky et al., 2012), ZF Net (Zeiler & Fergus, 2014),
GoogLeNet (Szegedy et al., 2015), and ResNet (He et al., 2016).

Recurrent Neural Network (RNN) RNNs (Graves et al., 2013) are a
type of ANNs that turned out to be particularly suitable for modeling sequence
data such as language, text, music, or �nical data. In contrast to the previous
ANN types, RNNs has two advantages: �rst one is that RNNs can accumulate
the previous information of input from each time step in sequence data into a
hidden state to model the problems within time; the second advantage is that
RNNs has the ability to learn representations from sequences with variable
length (e.g., sentences, documents, item stem).

In RNNs, the input for the next state t+ 1 (i.e., the output of the current
state ot orht) consists of the observation xt from state t and the hidden state ht.
Therefore, the current hidden state ht has summarized the information from
the current observation xt and the previous historical information in ht−1:

ot = ht = f(xt, ht−1) = f(Uxt +Wht−1) (2.18)

with ht−1 = g(xt−2, xt−3, . . . , x0). U andW are weight matrices. In RNNs,
sigmoid function, tanh function or ReLU are often used as the activation func-
tion f . The state value of the hidden layer in turn can be viewed as a function
of all previous observed values xt−2, xt−3, . . . , x0. This essentially produces a
distribution of the next observation given all previous observations as follow-

22

ing (von Davier, 2018):

p(x0, . . . , xt) = p(x0)
t∏
i=1

p(xi|xi−1, . . . , x0) (2.19)

In contrast to Hidden Markov Model (HMM; Beal et al., 2002) which also
contains hidden states, RNNs do not hold the Markov assumption. HMM
is much simpler than RNN and relies on strong assumptions. The Markov
assumption makes HMM be e�cient on learning and inference. RNN is more
complicated but more powerful. The distributed hidden state that allows RNN
to store a lot of information about the past, and the arti�cial neural network
allows them to update their hidden state in complicated ways.

Strengths and Challenges to the Use of Deep Learning in Psychometrics

Deep learning is largely responsible for the growth in the use of AI. This tech-
nology has given computer programs the ability to complete some tasks, such
as recognizing speech and human face detection, as good as a human being. It
is now being used to guide and enhance all sorts of key processes in medicine, �-
nance and marketing. ANNs (Gierl, Cui, et al., 2008; Gierl, Wang, et al., 2008)
have also been proposed as an attractive approach to convert a response pattern
into defensible latent variables (e.g., latent trait, latent class). In this session,
we will discuss the strengths and advantages that have earned deep learning the
popular status as well as current challenges that need to be addressed in psycho-
metrics.

Strengths of deep learning

Feature hierarchy As one pioneer of deep learning, Bengio gave a de�ni-
tion of deep learning: “Deep learning algorithms seek to exploit the unknown
structure in the input distribution in order to discover good representations,
often at multiple levels, with higher-level learned features de�ned in terms of
lower-level features (Bengio, 2012, p. 1)” From his de�nition, we know that one
advantage of deep learning is to represent the input distribution at multiple
levels, which is also known as feature hierarchy or hierarchical feature repre-
sentation. Figure 2.4 shows an example of feature hierarchy in the human face
recognition tasks (H. Lee et al., 2009). With those face images as input, deep
learning is able to represent brightness contrast in the �rst hidden layer. The
brightness contrast represented some common image features, such as corner,
edges or special texture. From that, it matches the contrast with known objects

23

like eyes or nose as the output of the hidden layer 2. In the hidden layer 3, deep
learning could extract more abstractive human face in terms of the facial or-
gans learned in the hidden layer 2. Generally speaking, the feature hierarchy of
deep learning is to use layers of data representation to make sense of seemingly
unrelated data. In psychometrics, the deep learning with an appropriate archi-
tecture is also expected to output di�erent latent variables at di�erent hidden
layers from the observed response patterns. Like the example of human face
detection in Figure 2.4, the �rst layer (or input layer) of the deep learning ar-
chitecture is the observed response patterns; and the second layer derives lower
level patterns/features from the observation; then the third layer uses these
lower level features to gradually identify higher level features, through many
layers, hierarchically.

Figure 2.4: An example of feature hierarchy in the human face recognition tasks.
An example of feature hierarchy in the human face recognition tasks (H. Lee et al.,
2009). With those face images as input, deep learning is able to represent brightness
contrast in the �rst hidden layer. The brightness contrast represented some common
image features, such as corner, edges or special texture. From that, it matches the con-
trast with known objects like eyes or nose as the output of the hidden layer 2. In the
hidden layer 3, deep learning could extract more abstractive human face in terms of
the facial organs learned in the hidden layer 2. Source: https://medium.com/@leishi_
51564/deep-learning-619fe06a3fd8

General approximation In mathematical theory of ANNs, the univer-
sal approximation theory states that a feed-forward depth-2 network, which
contains a single hidden layer, with a �nite number of neurons and suitable
activation function can approximate any continuous function on a compact
domain to any desired accuracy (Csáji et al., 2001; Hornik et al., 1994). In these

24

https://medium.com/@leishi_51564/deep-learning-619fe06a3fd8
https://medium.com/@leishi_51564/deep-learning-619fe06a3fd8

classical research work of universal approximation theory, the sigmoid function
was chosen as the activation function (Barron, 1994; Cybenko, 1989). Since the
e�ciency of computation, ReLU networks are used more and more in current
deep learning research. Lu et al. (2017) showed a universal approximation theo-
rem for width-bounded ReLU networks: width-(d+4) ReLU networks, where
d is the input dimension, are universal approximators. Hanin (2019) also proved
that ReLU nets with width-(d + 1) can approximate any continuous convex
function of d variables arbitrarily well. Their results also gave quantitative depth
estimates for the rate of approximation of any continuous scalar function on
the d-dimenstional cube [0, 1]d by ReLU nets with width-(d+3). The current
research work stated that the width and the depth are two key components in
the design of a deep learning architecture. In summary, deep learning provides
information-theoretically optimal approximation of a very wide range of func-
tions and function classes used in mathematical signal processing (Grohs et al.,
2019).

No need for feature engineering As a fundamental job in machine
learning to improve model accuracy, feature engineering is the process to ex-
tract features from raw data to provide better representation of the underlying
problem. The process sometimes requires domain knowledge about a given
problem. For example, the knowledge of the automobile industry when work-
ing with the relevant data can be used to specify two features Horsepower (HP)
and revolutions per minute (RPM) to then to create an additional feature like
Torque from the formula TORQUE = HP× 5252/RPM. One advantage of
deep learning’s main advantages over other machine learning algorithms is its
capacity to execute feature engineering without relying on domain knowledge.
From the data, deep learning algorithm can explore the features that correlate
and combine them to achieve prediction or classi�cation tasks without being
explicitly programmed. This ability means that sometimes deep learning algo-
rithm can save months of work and the features extracted are more robust than
the outputs of manual feature engineering especially when these features are
new or more complex that human might miss.

Challenges for Psychometrics As a new research area, there are some chal-
lenges that need to be addressed in deep learning �eld. The �rst challenge is
that training deep learning algorithms requires a large data set. The reason of
large data requirement is that deep learning needs to learn about the domain
and then solve the problem. When the training of deep learning begins, the
algorithm starts from scratch. In contrast to other machine learning algorithm

25

requiring domain knowledge, the deep learning algorithm needs a huge num-
ber of parameters to tune to achieve the tasks in a domain. For example, Deep
Patient (Miotto et al., 2016) was a deep learning program that was applied to
patient records of more than 700, 000 individuals at Mount Sinai Hospital in
New York. After a long training period, Deep Patient was able to detect certain
illnesses better than human doctors.

The second challenge is that the computation of deep learning is known as a
“Black Box” and the output of deep learning is uninterpretable. Although deep
learning-based AI systems obtained impressive achievement in some domains,
such as Alpha Go and its successors, how these systems achieved their outputs
is hard to be explained like other machine learning algorithms (e.g., support
vector machine, tree-based methods). Given the aim of successful prediction
or classi�cation in supervised learning, the black box nature of deep learning is
not problematic. For good practice, the deep learning applications involve data
with correct labels that can be split into three sets for training, validation and
testing data. The training set is used to train the parameters in the deep learning
architecture; the validation set is used to examine the parameter estimation of
the deep learning to avoid over-�tting; and the testing set is used to evaluate the
prediction accuracy of the deep learning.

In contrast, because psychometrics focuses on exploring the underlying
distribution (i.e., latent variables) by analyzing the observed response data, it
is not possible to evaluate a deep learning model just using empirical data as
is common in deep learning applications. Cui et al. (2016) suggested the po-
tential exploratory use of an unsupervised ANN known as a “self-organizing
map” (SOM; Kohonen, 2001) in CDM and training a multiple layered percep-
tron (MLP) using simulated data based on expected response patterns. Briggs
and Circi (2017) also suggested to gather data with the most common observed
student response patterns and then have content experts to give each pattern a
holistic score with respect to each attribute of interest regarding to the Q-matrix.
Compared with the expected response patterns, the uncertainty of deep learning
training might be reduced because the training set would more closely resem-
ble the type of data for which estimates of attribute probabilities are desired in
theoretical psychometric models.

2.4 The General Idea of Deep Learning-based Com-
putational Psychometric Methods

This research is to explore the feasibility of using deep learning to extract la-
tent person variables (e.g., latent trait, latent class) concerned by psychomet-

26

rics. In contrast to the previous research work using ANNs (e.g., Briggs and
Circi, 2017; Cui et al., 2016; Paulsen, 2019), this research is to propose a general
deep learning-based method, which is named as Deep Learning-based Com-
putational Psychometric Methods (DLCPMs). As shown in Figure 2.5, the
proposed family of DLCPMs generally consist of three parts: observed inputs,
feature extraction (or latent variable extraction), and targeting.

Figure 2.5: The diagram of the proposed family of Deep Learning-based Com-
putational Psychometric Models (DLCPMs).
DLCPMs generally consist of three parts: observed inputs, feature extraction
and targeting.

Observed inputs indicates the observed data such as students’ responses to
items in a designed assessment, or interactions within an online learning envi-
ronment such as raw text, log data and sequential data. In this research, because
we are focusing on exploring the feasibility of using deep learning to determine
the latent person variables that psychometric models are concerned with, the
inputs are the students’ dichotomous responses to items.

Feature extraction or latent variable extraction is to convert the observed
response pattern to latent person variables that psychometric models are con-
cerned with using deep learning techniques. For IRT, this latent variable refers

27

to students’ ability (continuous variables) and for CDM the latent variable is
attribute pro�les (discrete variables). Due to feature hierarchy of deep learning,
the structures of the deep learning architecture di�ered according to di�erent
types of latent variables we wanted to exploit from the inputs.

To consider both prediction on a new dataset and explaining on current
training dataset simultaneously, the targeting is two-folded: training and ex-
plaining. Like typical machine learning tasks, process of training is to estimate
appropriate parameters contained in the deep learning architecture for future
prediction on new dataset; process of explaining is to make the latent variables
exploited by the deep learning-based feature extraction have the same interpreta-
tion as the theoretic psychometric models. According to di�erent research goals,
the targeting could be modi�ed for unsupervised learning for data exploration
(e.g., determining Q-matrix or the hierarchical structure of attributes) from
the raw data, or for semi-supervised learning for obtaining more robust latent
variable estimation when there is noise contained in the data (e.g., inaccurate
Q-matrix, large amount of non-ignorable missing values).

In this research, there are two applications of using DLCPMs for cognitive
diagnostic modeling, the �rst one is an unsupervised deep clustering method
for CDM and Q-matrix reconstruction; the second one is a semi-supervised
learning Co-Training method for CDM. The detailed methods of these two
applications will be described respectively in Chapter 3 and Chapter 4.

28

Chapter 3

An Unsupervised
Learning Artificial
Neural Network for

Cognitive Diagnostic
Measurement

3.1 Introduction
The purpose of cognitive diagnostic modeling (CDM) or diagnostic measure-
ment is to provide students’ knowledge mastery states based on their responses
to items from carefully designed assessments. Because of the ability to provide
educators diagnostic feedback from students’ assessment results, CDM has been
the focus of much research in the last decade. Various types of diagnostic clas-
si�cation models (DCMs); such as the deterministic inputs, noisy "and" gate
(DINA; Junker and Sijtsma, 2001) model, the reparametrized uni�ed model/fu-
sion model (RUM; Hartz, 2002), and the log-linear cognitive diagnosis model
(LCDM; Henson et al., 2009); are designed based on di�erent cognitive theo-
ries or assumptions about the relationship between item response patterns and
attribute patterns, or based on the item response function.

Although di�erent DCMs have various item response functions, all recent
DCMs can be categorized into two groups. The �rst group of DCMs is built
with a fully probabilistic model (parametric) structure and rely on latent vari-
ables (e.g., item parameters, guessing parameter, slipping parameter), such as the
DINA, DINO, RUM and LCDM (A. Rupp et al., 2010). When given a speci�c
DCM and response data, current methods use maximum likelihood estimation

29

(MLE; Chiu et al., 2016; Junker and Sijtsma, 2001) or Bayesian techniques in-
cluding Markov chain Monte Carlo (MCMC) methods (Henson et al., 2009)
to estimate both item and person parameters by �tting the given DCMs. To
classify the examinees into one of several latent groups, the second group of
DCMs is designed based on classi�cation without requiring fully probabilistic
models. These classi�cation-based approaches include Rule-Space Methodol-
ogy (RSM; Tatsuoka, 2009), the attribute Hierarchy Method (AHM; Gierl,
Cui, et al., 2008), and cluster analysis (Brusco et al., 2017; Chiu et al., 2009).

A Q-matrix indicates the relationship between items and attributes in an as-
sessment. Q-matrices are often carefully designed by assessment experts. Some
existing research and their experimental results, however, have shown that Q-
matrices constructed by content experts do not always re�ect the relationship
precisely and may require empirically-driven modi�cations (Bradshaw et al.,
2014; Tjoe & de la Torre, 2014). Items within an assessment may vary with
respect to their diagnostic quality, or the discriminating power of the item to
determine the success of the diagnosis. An item with high discrimination is one
on which students who have mastered the attributes required by the item are
expected to have a high probability of responding to the item correctly, while
students who have not are expected to have a low probability. Items with low
discriminating power contribute less statistical information to the estimate of
student attribute mastery. In the previous research studies, the performances
of all DCMs are sensitive to the diagnostic quality of items and the accuracy of
Q-matrices (Kunina-Habenicht et al., 2012; R. Liu et al., 2017).

Due to the impressive achievement of deep learning and Arti�cial Neural
Networks (ANNs) in other research �elds (e.g., natural language processing,
computer vision), ANNs have been proposed as an attractive approach in some
research studies (Cui et al., 2017; Cui et al., 2016; Paulsen, 2019) to convert a
pattern of item responses into a diagnostic classi�cation, or attribute pro�les.
As shown in Figure 3.1, an ANN is a computational system inspired by biologi-
cal neural systems for information processing in animals’ brains. An ANN is
built on inputs being translated to outputs through a series of neuron layers. It
consists of three types of layers: an input layer, a hidden layer(s), and an output
layer. Each layer consists of some neurons (or nodes), which are connected to
the nodes in the next layer. The value of a node is calculated using the values
of nodes in the previous layer. Each layer, except for the input layer, uses the
output of its previous layer as the input.

Both supervised learning ANNs and unsupervised learning ANNs were ap-
plied in some CDM research studies (Cui et al., 2017; Cui et al., 2016; Paulsen,
2019). To train the supervised learning ANNs, the ideal response patterns

30

Figure 3.1: Example of a simple arti�cial neural network (ANN).
A basic ANN architecture is formed by one input layer, one hidden layer, and
one output layer. Each circle indicates the arti�cial neuron or node, and an
arrow indicates the weights between two nodes.

were required to be set as the input layer and the associated attribute pro�les
as the output layer. Cui et al. (2016) and Paulsen (2019) hypothesized the
DINA model with both slipping and guessing equalling to 0 to synthesize ideal
responses to train a multilayer perceptron (MLP). The experimental results
showed that the classi�cation accuracy of the supervised learning ANNs was
not appreciated even in the simulated study. A disadvantage of applying super-
vised learning ANNs for CDM is the di�culty in determining how to create the
ideal response patterns using a DCM because both the DCM and its parameter
values are di�cult to hypothesize. In addition to supervised learning ANNs,
Cui et al. (2016) used one type of unsupervised learning ANN, self-organizing
map (SOM; Kohonen, 2001), to classify test-takers into di�erent latent groups
for CDM. One disadvantage of the unsupervised learning ANNs is that some
further data analysis approaches are required to label the latent groups, or the
clusters. For example, although cluster analysis can place test-takers into dif-
ferent latent groups, post hoc techniques are required to discern the attributes
from these latent groups. Additionally, the ANN methods can produce very
unstable and unappreciated estimation unless a great deal of care is taken to
conduct sensitivity analyses (Briggs & Circi, 2017).

31

The motivation of this research comes from the following three issues among
the existing research studies of CDM: (1) the quality of Q-matrix and the dis-
criminating power of items impacts the diagnostic classi�cation of DCMs; (2)
the current supervised leaning ANN methods for CDM requires assumption of
a speci�c, known item response function; (3) the unsupervised learning ANNs
method for CDM requires further data analysis to interpret the results. To solve
these three issues, we sought to design a general approach to estimate attribute
pro�les and to reconstruct an inaccurate Q-matrix. The proposed method con-
tains two steps: (1) an unsupervised learning ANN to estimate student attribute
pro�les only requiring partial Q-matrix information without an assumption of
an item response function; (2) Q-matrix reconstruction using the item response
data and the attribute estimates.

This paper contains three sections. In the �rst part, the designed method for
unsupervised learning ANN attribute estimation and Q-matrix reconstruction
is described. In the second part, a simulation study is conducted to test three
test factors’ e�ects on the performance of the designed method and to make a
comparison with latent class model-based methods. In the last part, the bene�ts
and challenges of our methodology are summarized, and future research is also
outlined.

3.2 Method
The diagram of the proposed method is shown in Figure 3.2. In this research, we
�rstly designed an unsupervised learning ANN to estimate the attribute pro�les
of test-takers without hypothesizing the item response function. Secondly, we
proposed a Q-matrix reconstruction algorithm to correct or reconstruct the mis-
speci�ed or missing elements of the Q-matrix (i.e., the complex items’ q-vectors)
through applying a K-means clustering algorithm.

To successfully apply our method to CDM, the proposed method assumed
that three test conditions hold. First, the number of attributes is known. This
is a typical assumption of all DCMs. Second, the q-vectors of simple items are
correctly speci�ed. This assumption re�ects many real-world scenarios where
simple structure items are easier for domain experts to specify in comparison to
complex structure items. It may not be realistic that the elements for all simple
structure items of a Q-matrix are correctly speci�ed, but that is an assumption
we will make here. The last assumption is that, for each attribute, at least one
simple item with high discrimination measures it, which is a similar but less
complex mathematical constraint on the Q-matrix for completeness (Chiu et
al., 2009; DeCarlo, 2011).

32

Figure 3.2: Structure of the proposed method.
The proposed method consisted of an unsupervised learning algorithm (modi-
�ed autoencoder network)

3.2.1 Unsupervised Learning ANN for Attribute Pro�le
Estimation - MEAN

The proposed unsupervised learning ANN was conducted based on an autoen-
coder, which is an ANN used for unsupervised learning of e�cient code/feature
extraction (Chiu et al., 2009; DeCarlo, 2011; Liou et al., 2008). The reason for
introducing an autoencoder was based on the assumption that when extract-
ing the latent person variables (i.e., the attribute pro�le for each examinee), the
observed responses could be reconstructed using these estimates of latent per-
son variables. An autoencoder (as shown in Figure 3.3) consists of two neural
networks, the encoder and the decoder. The widths (i.e., number of nodes) of
the input layer and output layer of an autoencoder are the same. The encoder
and decoder can be de�ned as transitions Φ and Ψ:

Φ : X → F
Ψ : F →X ′

(3.1)

where Φ indicates a dimensional reduction from high dimensional observation
spaceX to a low dimensional feature/code spaceF by removing the noises or
redundant information, and Ψ indicates a reconstruction process to output
X ′ = Ψ ◦ Φ(X) which has the same dimension as X , the autoencoder is

33

trained via BP by minimizing the target function as following:

Φ,Ψ = arg min ||X −X ′||2 = arg min ||X −Ψ ◦ Φ(X)||2 (3.2)

where the L-2 Regularization or Euclidean distance can be replaced by L-1 Reg-
ularization or cross entropy for di�erent kinds of data and measurement. When
implementing an autoencoder, there are some “tricky” things to make the au-
toencoder to learn useful features. The �rst one is to keep the coder layer small;
the second one is to add random noise to the inputs of autoencoder; and the
third one is to use a sparsity constraint by using regularization.

Figure 3.3: Example of Autoencoder
An autoencoder consists of two networks: encoder neural network
from the input layer to the code layer, and decoder neural network
from the code layer to the output layer. The encoder is to com-
press the observation to code, but the decoder is to reconstruct
the output from code. Source: https://towardsdatascience.com/
applied-deep-learning-part-3-autoencoders-1c083af4d798

As shown in Figure 3.4, the proposed method, a modi�ed autoencoder
network (MAEN), consisted of three parts: observed input, feature extraction,
and targeting.

Observed Input The observed input is the input layer of the MAEN, and
each node indicates a student’s dichotomous response to one item. The width
(i.e., number of nodes) of the input layer is equal to the number of items con-

34

https://towardsdatascience.com/applied-deep-learning-part-3 -autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3 -autoencoders-1c083af4d798

Figure 3.4: Structure of the proposed modi�ed autoencoder network (MAEN)
This is the structure of the propose modi�ed autoencoder network for estimat-
ing attribute pro�les.

tained in the assessment. For example, if an assessment consisted of 20 items,
the width of the input layer equaled 20.

Feature Extraction The feature extraction, which is also the encoder of the
MAEN, had a similar function as the encoder of a typical autoencoder. The
target of feature extraction is to convert the observed input to the attribute pro-
�le for each test-taker. The feature extraction contained two hidden layers, an
encoder hidden layer and a code layer. We used the Recti�ed Linear Unit func-
tion (ReLU; Nair and Hinton, 2010) as the activation function for the �rst two
hidden layers, and the sigmoid function as the activation function for the code
layer. The reasons of using ReLU in the �rst two hidden layers are (1) ReLU
function is very simple; (2) using ReLU can �x the vanishing gradients problem
(Ide & Kurita, 2017). Using sigmoid function as the activation function of the
output layer is that sigmoid function is to compress the inputs into the 0 to 1
range which indicates the probability of correct response to items.

The output of the code layer was the estimation of attribute pro�le, and
the width of the code layer is equal to the number of attributes measured in
the assessment. For example, when analyzing data from an assessment that

35

measures three attributes, the width of the code layer is 3. The widths of the
encoder hidden layers were set as 100 because of the following two reasons. The
�rst reason was the approximation theory of ANN has indicated that width-
bounded ReLU networks, at least width-(d + 4) ReLU networks, where d
is the observation dimension, are universal approximators hanin2019universal,
lu2017expressive. In the training procedure, we set the dropping out ratio equals
to .3 to avoid over-training and to improve the generalization of arti�cial neural
networks. The dropping out ration is the percentage of nodes that are ran-
domly selected to be deactivated in the training procedure. Some research stud-
ies (Dahl et al., 2013) show that dropping out in a neural network is a simple
and e�ective regularization method. The �rst thing needed to be considered
in seting the number of hidden nodes is to make sure the number of activated
nodes in the hidden layers in the training is greater than width-(d +4). The
second thing need to be considered is that the size of observations is relatively
small compared with the number of parameters in the ANNs, the width of the
hidden layer cannot be too wide. After comparing the 200, 100, and 50 hidden
nodes structure in the training, the 100 hidden nodes was chosen for a trade-o�.
The number of activated nodes (i.e., 70) holds that the width of encoder hid-
den layer is wider than (d+4), and the number of parameters for each training is
1470 which is less than the number of observations (i.e., 2000) in each training
iteration.

Targeting The third part was targeting, which worked as the decoder in a typ-
ical autoencoder. It used the output of the code layer as the input to reconstruct
the item responses. As shown in Figure 3.4, the targeting consisted of the code
layer, one decoder hidden layer, and the output layer. In the previous research
studies of using supervised ANNs, the item response functions (i.e., DINA
model) were required to be hypothesized. In contrast, the decoder could recon-
struct the observed inputs from the coder layer outputs without specifying the
item response function, because the mathematical theory of ANNs states that
a feed-forward depth-2 network, which contains a single hidden layer, with a
�nite number of neurons and suitable activation function can approximate any
continuous function on a compact domain to any desired accuracy (Csáji et al.,
2001; Hornik et al., 1994).

As mentioned before, one disadvantage of the existing unsupervised learn-
ing ANNs for CDM is that some further data analysis approaches are required
to label the clusters. The reason causing that issue is the full connection be-
tween the attribute pro�les and the response patterns in those ANN structures.
In our method, we overcame this disadvantage by modifying the decoder net-

36

work by using a sparse connection strategy according to the partially known
Q-matrix: (1) for each simple item of which the q-vector is known, the corre-
sponding reconstructed output is connected directly to the code node which
corresponds to the attribute this item measures; and (2) for each complex item
of which the q-vector is unspeci�ed, the corresponding reconstructed output
node is fully connected to all decoder hidden nodes because the relationship be-
tween complex and attributes cannot be determined without knowing q-vector.
The advantages of using a sparse connection are (1) not requiring strong prior
knowledge of the relationship between item and attributes, (2) not causing clas-
si�cation switching compared with the fully connected structure (i.e., each code
node and all output nodes are connected), and (3) providing the interpretable
coder layer outputs.

LetHd
h and x′i denote the hth node in the decoder hidden layer and the

ith node in the output layer, respectively. This strategy can be mathematically
represented as follows:

x′i = p(x = 1|F)

=

{
σ(wa,iFa + bi) ith item only measure ath attribute

σ(
∑50

h=1wh,iHd
h + bi) ith item is complex item

(3.3)
and

Hd
h = max

(
A∑
a=1

wa,hFa + bh, 0

)
(3.4)

wherewa,h is the connection weight from the ath code node to the hth decoder
hidden node,wa,i is the connection weight from the ath code node to the ith
output node,wh,i is the connection weight from the hth decoder hidden node
to the ith output node, and bi and ba are biases of the nodes. The width of the
output layer equaled the number of items, and the width of the decoder hidden
layers was set to 50.

After constructing the structure of the MAEN, the stochastic gradient de-
scent (SGD; Vincent et al., 2008) algorithm was used to train the network using
examinees’ responses to items by minimizing the cost function shown in Equa-
tion (2). When inputting the eth test-taker’s response vector e into the trained
MAEN, α̂e = Fe can be obtained from the output of the code layer as the esti-
mate of the attribute pro�le. For example, if α̂e = [1, 1, 0], the eth examinee is
estimated to have mastered attribute 1 and 2 and to have not mastered attribute
3.

37

3.2.2 Q-matrix Reconstruction Algorithm
The second part of our method is for Q-matrix reconstruction. Since the q-
vectors for simple items were assumed to be speci�ed correctly, only the Q-
matrix entries for complex items were estimated and reconstructed. Like IRT,
CDM also assume local independence (i.e., responses given to the separate items
in a test are mutually independent given a certain attribute pro�le); thus, the q-
vectors for all complex items were computed one-by-one. Consider one complex
item as an example to describe the reconstruction algorithm. Suppose there
were totalA attributes measured in the assessment, in other words, the number
of columns in the Q-matrix was A. For complex item i, we �rstly categorized
the students to two groups, G0a and G1a , according to the mastery status of ath
attribute (a ∈ {1, . . . , A}). Then the proportions of examinees answering
the ith item correctly for these two groups, X̄G

0
a

i and X̄G
1
a

i , are calculated. The
di�erence ofX̄G

0
a

i andX̄G
1
a

i was denoted as ∆pi,a. After repeating this procedure
A times for the ith item, an A-dimensional vector pi = {∆pi,a}, which was
viewed as A observations, could be obtained. ∆pi,a indicates the di�erence of
correct response rate of ith item between the mastery group and non-mastery
group of an attribute a.

If ∆pi,a was “signi�cantly large”, we could infer that the di�erence of cor-
rect response rate of the ith item between the mastery group and non-mastery
group was signi�cant and the ith item measures the ath attribute. To determine
if ∆pi,a was “signi�cantly large”, we conducted the K-Means clustering (Harti-
gan & Wong, 1979) onpi. The number of clustersKi indicated the consistency
of the elements in vector pi. For the vector pi, if the intra-vector similarity was
very high, the value of Ki is 1, and if the intra-vector similarity was low, Ki is
larger than 1. Because δpi,a could be either “signi�cantly large” or not “signif-
icantly large”, Ki could equal either 1 or 2 for each vector pi. If Ki = 1, it
meant all elements of pi were “signi�cantly large” or not “signi�cantly large”.
IfKi = 2, some elements of pi were “signi�cantly large”, and the rest were not
“signi�cantly large”. To determine Ki, we used Calinski-Harabasz pseudo-F
statistic (CH-index) as follows:

CH(Ki) =
(SST −WCSS(Ki))(Ki − 1)

WCSS(Ki)/(N −Ki)
, Ki ∈ {1, 2} (3.5)

whereWCSS(Ki) was the within-cluster sum of square, SST was computed
as:

SST =
A∑
a=1

||∆pi,a − µ||2 (3.6)

38

where µ = 1
A

∑A
a=1 ∆pi,a was the average of all elements in pi, andAwas the

number of attributes. The selection of Ki was to maximize the CH index. If
Ki = 1, all ∆pi,a were labelled as cluster 1. IfKi = 2, we compared the values
of the two cluster centers. The cluster center with smaller value was denoted
as cluster 1, and the cluster center larger value was denoted as cluster 2. The
clustering results of each pi could be used to reconstruct q-vector qi = {qi,a}.

In CDM, qi = {qi,a} can be either 0 or 1, and an item is assumed to measure
at least one attribute in an assessment. If qi,a = 1, the ith item measures the ath
attribute, and the di�erence of correct response rate between the mastery group
and non-mastery group of the ath attribute is signi�cant. While, if qi,a = 0, ith
item does not measure the ath attribute, and there is no signi�cant di�erence of
correct response rate between the mastery group and non-mastery group of the
ath attribute. WhenKi = 1 in clusteringpi, the ith item measures all attributes
(e.g., qi = [1, 1, 1]) because an item measured at least one attribute. When
Ki = 2, the ith item only measured a subset of attributes (e.g., qi = [1, 0, 1]),
and the qi,a was determined as follows:

qi,a =

{
0, if ∆pia belongs to cluster 1
1, if ∆pia belongs to cluster 2

(3.7)

For example, for an assessment which measures 3 attributes (i.e., A = 3),
the q-vector of the ith item may be speci�ed as qi = [1, 1, 0] after completing
the Q-matrix reconstruction. This q-vector indicates that the ith item measures
the 1st and 2nd attribute.

3.3 Simulation Study
The aims of the experiment were (1) to examine the attribute pro�le estimation
of the proposed method under di�erent test factors which are expected to a�ect
the estimates’ accuracy, (2) to test the performance of Q-matrix reconstruction
under these factors, and (3) to compare the proposed method with the perfor-
mance of two DCMs: the DINA model and the LCDM. Thus, we conducted
a simulation study under di�erent assessment conditions with a variety of �xed
factors and three manipulated factors.

3.3.1 Design
Fixed factors included the number of attributes measured by the test, the cor-
relation among the attributes, and the sample size. The number of attributes

39

was 3 with correlations equal to 0.5 between each attribute pair. The number
of students was 2000.

Manipulated factors. In the simulation, three factors were manipulated:
Test length, test complexity, test quality. Varying these three factors created 24
test conditions in the simulation.

Test length.The �rst test factor is test length which contained 3 levels. Test
lengths of 10, 15 and 20 items are used to represent short, medium and long test
conditions, respectively.

Test Complexity.The second test factor is the complexity of the Q-matrix.
Simpler Qmatrices include more simple items. We varied the number of simple
items per attribute from 1 to 3; this factor could also be viewed as how many
identity matrices were in the Q-matrix. The Q-matrix used to generate items
for di�erent test conditions is shown in Table 3.1. There are 12 simple items (4
simple items per attribute) and 18 complex items (13, 12, 12 complex items for
attribute 1, 2, 3 respectively). Items from this Q-matrix were used to create tests
with di�erent test lengths and complexities, based on how many and what types
of items were on the test.

Test Diagnostic Quality. The last test factor is test diagnostic quality,
which was manipulated by varying test discrimination. We varied test discrimi-
nation by varying the proportion of items with high discrimination a test con-
tained, where di is calculated as di = p(x = 1|α1) − p(x = 1|α0). α0 is
the attribute pattern where none of the attributes measured by the ith item are
mastered, and α1 is the attribute pattern where all attributes measured by the
ith item are measured. Two levels of item discrimination were examined: high
discrimination values were between .3 and .75 (.3 ≤ di < .75); low discrimi-
nation values were less than .3 (0 < di < .3). The reason of choosing .3 as the
threshold of the discrimination is based on the previous research studies (Chiu
et al., 2009; Cui et al., 2016).

For the simulation, we created two item pools. The items in item pool 1
had high discrimination, and items in item pool 2 were had low discrimination.
Both item pools contained 30 items with item-attribute relationships given by
the same Q-matrix that is shown in Table 3.1. Tests that varied by diagnostic
quality were created by drawing di�erent proportions of items from pool 1 and
pool 2, with tests having a higher proportion of items from item pool 1 having
better diagnostic quality. Three levels of item discrimination 50%, 70%, and
90% at the test level were set to be low, medium and high levels; these levels rep-
resent the proportion of high discrimination items on the test, or test diagnostic
quality.

40

Generating Item Response Probabilities for Item Pools. The true class
probabilities of correct response for the items in the item pools were simulated
using the logic of a DCM with respect to the Q-matrix de�ning the item-class
relationships and the probabilities following monotonicity constraints across
non-equivalence classes on an item (i.e., masters of all attributes measured by the
item having a higher probability of correct response than masters of a proper
subset of these attributes; masters of no attributes measured by the item hav-
ing a lower probability of correct response than masters of a proper subset of
these attributes), but did not follow a particular existing DCM item response
function (e.g., the LCDM or DINA function). Current DCM item response
functions constrain the item response probabilities to be equal within all equiv-
alence classes; our simulated data did not. Item-based equivalence classes are
latent classes that have the same attribute pro�le, or the same pattern of mas-
tery, for all attributes that are measured by the item. Conversely, item-based
non-equivalence classes di�er on the mastery status of one or more attributes
measured by the item.

We simulated response data using an item by latent class matrix (Xu &
Zhang, 2016) as follows:

Π =


π1,1 π1,2 . . . π1,C
π2,1 π2,2 . . . π2,C

...
...

πI,1 πI,2 . . . πI,C

 . (3.8)

where the conditional probability that students in cth latent class answer ith
item correctly P (xi = 1c) = πi,c. I indicated the number of items; C indi-
cated the number of latent classes.

We denote πi,α0 , πi,α1 , and πi,αp as the item response probabilities (IRPs)
for the nonmastery group, mastery group, and partial mastery group respec-
tively. The mastery group contained students who mastered all of the attributes
required by ith item, the partial mastery group contains students who only mas-
tered a proper subset of attributes required by ith item, and the non-mastery
group contained students who mastered none of the attributes required by ith
item.

As shown in Table 3.2, when simulating response patterns to high discrim-
ination items for item pool 1, for the mastery group πi,α1 were drawn from a
uniform distribution U [.65, .90]; for the non-mastery group πi,α0 were drawn
from a uniform distributionU [.15, .35]; and for the partial mastery groupπi,αp

were drawn from a uniform distribution U [.40, .60]. These draws yielded an
average item discrimination value of .526 for item pool 1 (see values for each item

41

in Appendix ??); the drawn values are provided in Appendix ?? for each item
and class. When simulating response patterns to low discrimination items for
item pool 2, for the non-mastery group πi,α0 were drawn from a uniform distri-
butionU [.20, .40]; for partial mastery group πi,αp were drawn from a uniform
distributionU [πi,α0 , πi,α0 + 0.15]; lastly for the mastery group (students who
mastered all the attributes required by ith item) πi,α1 were based on a uniform
distribution U [πi,αp,πi,α0+.3]

for complex items and U [πi,α0,πi,α0+.3]
for simple

items. This yielded an average item discrimination value of .189 for item pool 2
(see values in Appendix ??); the drawn values are provided in Appendix ?? for
each item and class.

By drawing true item parameters in this way, the πi,cs in our simulated data
di�ers from IRPs simulated from the LCDM in that partial mastery classes with
the same attribute pattern with respect to the measured attributes on a given
item (the partial mastery item-based equivalence classes) have di�erent true item
response probabilities. The item response probabilities for these classes are,
however, drawn from the same uniform distribution, so while they may be
di�erent values, they will be in the same range. As an example, consider Item
14 that measures Attribute 2 and 3, as shown in Table 3.1. Classes 3, 4, 5, and 6
are all partial mastery classes with respect to this item: Class 3 and 4 both have
mastered Attribute 2 but not Attribute 3, and Class 5 and 6 has both mastered
Attribute 3 and not Attribute 2. Under the LCDM, Class 3 and 4 would have the
same IRP, while Class 5 and 6 would have the same IRP; under our generating
model, the IRP for all four classes were drawn from the same interval, but the
draws were di�erent, resulting in, for item pool 1, Class 3 having an IRP of
.53, Class 4 having an IRP of .464, Class 5 having an IRP of .462, and Class 6
having an IRP of .444 (see Appendix ??). For non-mastery equivalence classes
and mastery equivalence classes, the true model did constrain draws to be equal
within the interval (i.e., Class 1 and 2 have IRP values of .225 and Class 7 and
8 have IRP values of .874). Only for partial mastery item-based equivalence
classes were they allowed to di�er. The purpose of allowing this di�erence was
to add some noise in the datawhile still controlling the item discrimination level
(IRP of mastery group minus IRP of nonmastery group)—so that the LCDM,
or any particular DCM, was not perfectly matching the true model.

The values in the item by latent class matrix Π for the two item pools were
shown in Appendix ?? and ??, respectively. The IRPs for the non-mastery group
and the mastery group are shown in Appendix B and E. These appendices show
this simulation procedure �rstly held that .3 ≤ di < .75 for high discrimina-
tion item pool (item pool 1) and 0 < di < .3 for low discrimination item pool
(item pool 2); it also held for the LCDM primary monotonicity assumptions

42

(i.e., the mastery group has the greatest IRP, the non-mastery group has the
lowest IRP, and the IRP of partial mastery group lay between them).

Generating test forms for di�erent conditions. For each test condition,
the items were chosen from the two item pools according to the condition’s
values for the test discrimination, test complexity, and test length. Item selection
ensured the required condition of the proposed method was met. Namely, that
for each attribute, at least one simple item with high discrimination measures it.
The items that were selected for each test condition are given in Table 3. Items
from item pool 1 are presented without an asterisk and items from item pool 2
are presented with an asterisk. For example, when test conditions are medium
test length (15 items), have 2 simple items per attribute, and have medium test
discrimination (70% of items have high test discrimination), we �rstly selected 6
simple items (2 for each attribute) with high discrimination and 4 complex items
with high discrimination from item pool 1, then the remaining �ve complex
items with low discrimination were randomly selected from item pool 2. This
condition contained 10 items with high discrimination and 5 items with low
discrimination (see row 11 in Table 3). In contrast, when test condition are
still medium test length (15 items), 2 simple item per attribute, but low test
discrimination (50% items are highly discriminative), the assessment consists of
3 highly discriminative items (item 1-3), 3 low discriminating items (item 1*-3*),
4 complex item with high discrimination, and 5 items with low discrimination
(row 10 in Table 3.3).

Estimation and analysis procedures. We conducted a comparison between
our method and two theoretical DCMs, the LCDM and the DINA model, un-
der the 24 test conditions in the simulation. Each condition was analyzed using
3 models: two DCMs, the LCDM and the DINA model, and the proposed
ANN method. For each condition, each DCM was run under two Qmatrix
conditions: model �tting with the full, correct Q-matrix and model �tting with
the partially-known Q-matrix. When using the partially-known Q-matrix for
DCMs model �tting, the response data to the items whose q-vectors were un-
known were not used to estimate the parameters in the DCMs. In other words,
using the partially-known Q-matrix for DCMs means only using a subset of
the items: the simple items with the known q-matrix values. When using the
partially known Q-matrix for ANN model �tting, all simple and complex items
were used, but only the simple item Q-matrix values were known and used. The
Q-matrix entries for the complex items were considered unknown and were
missing, or blank. For example, in Table 4, under test condition 1, the number

43

of items equals to 3 when �tting the DINA model using partially-known Q-
matrix (DINA* shown in Table 3.4), but the number of items equals 10 when
using the full, correct Q-matrix for DINA (DINA shown in Table 3.4). In that
test condition, the ANN method used all 10 items.

Results will be analyzed in terms of classi�cation accuracy of the DCM and
ANN model and, for the ANN model, the ability to reconstruct the Q-matrix
missing values for the complex items.

The data simulation and DCM model �tting was implemented in R with
the “CDM” package (George et al., 2016). The proposed method was pro-
gramed using the “Tensor�ow” library (Abadi et al., 2016) in Python. In the
simulation study, we conducted 50 replications. In each replication, the same
set of items were used (the selected items under same test conditions as shown
in Table 3.3), and new response patterns were created based on the �xed true
response probability values given in the item by latent class matrices in Appen-
dices ?? and ?? for each replication.

3.3.2 Experimental Results
First, we tested the e�ects of the three assessment factors of test length, text
complexity, and test diagnostic quality on the accuracy of the attribute pro�le
estimation for proposed method. Then, we compared results from the pro-
posed method to the two completing DCMs, under conditions of complete,
accurate Q-matrices and incomplete Q-matrices. Results are given in Tables 3.4,
3.5, and 3.6 for the short, medium, and long test lengths, respectively.

Classi�cation Accuracy and Three Assessment Factors. We �rst focus on
results for the proposed method. Results show that the method works reason-
ably well and has classi�cation accuracy values greater than 65% for conditions
where the test length is 15 or greater, the number of simple items are 2 or greater,
and the text complexity has 50% or higher percentage of highly discriminating
items. Results show classi�cation accuracy increased in expected ways for the
proposed method. Namely, accuracy increases as test length increases, as the
number of simple items per attribute increases, and as the test diagnostic qual-
ity increases. We can see that for test length, the proposed method achieves
classi�cation accuracy greater than 65% under 2 out of 6 test conditions when
test length is 10, 6 out of 9 test conditions when test length is 15, and 8 out
of 9 test conditions. For simple item per attribute, the proposed method has
classi�cation accuracy greater than 65% under 2 out of 9 test conditions when
the number of simple item per attribute is 1; under 8 out of 9 test conditions
when the number is 2, the proposed method’s classi�cation rate is greater than

44

65%; all classi�cation rates are greater than 65% under 6 test conditions when
the number is 3. For the percentage of highly discriminating items, the classi�-
cation rate is greater than 65% under only 4 out of 8 test conditions when the
percentage is 50%; the classi�cation rate is greater than 65% under 6 out of 8 test
conditions when the percentage increases to either 70% or 90%.

Next, we examine the results for the DCM methods. Results show that
when the Q-matrix is complete and known, the LCDM model works reasonable
well and has classi�cation accuracy values greater than 65% for conditions where
the test length is 15 or greater, the number of simple items are 2 or greater, and
the text complexity has 50% or higher percentage of highly discriminating items
(total 17 out of 24 test conditions), and DINO model achieves 65% and greater
classi�cation under 13 out of 24 test conditions. When the Q-matrix values
are partially known, the accuracy of the methods decrease because only part of
items could be used for model �tting. Neither LCDM nor DINA can achieve
a 65% classi�cation accuracy when given partially-known Q-matrix. This was
negligible (not greater than 5%) for the DINA model under test condition 1, 4,
5, 10, 13, and 22, and for the LCDM model under test condition 4 and 13. This
decrease was larger and ranged from 6% to 12% for the DINA model under the
rest test conditions and from 6% to 26% for the LCDM model under the rest
test conditions.

From the classi�cation results shown in Table 3.4, 3.5, and 3.6, we could ob-
serve that longer test length has improved the classi�cation accuracy, even with
the additional items were not of highly discriminating level. For example, the
number of items with high discrimination contained in the short length test (10
items) with medium test discrimination (70%) equals to the one of the medium
length test (15 items) with low test discrimination (50%). Under test condition 2
in Table 4 and test condition 7 in Table 5, the attribute estimation accuracies of
the proposed method are [.83, .82, .76, .54] and [.83, .83, .78, .56] corresponding
to attribute 1 (A1), attribute 2 (A2), attribute 3 (A3) and attribute pattern (Class).
Although either test condition 2 or 7 consisted of 7 highly discriminating items,
all accuracies other than attribute 1 (A1) under the second test condition are
higher than the �rst one. The improvement under test condition 7 is caused by
the ability of unsupervised learning in exploring the features from the 5 more
items whose q-vectors are unknown and discriminating levels are not high.

Comparison Attribute Pro�les Estimation with DINA and LCDM. Ta-
ble 3.4, 3.5, and 3.6 also show the comparison results. LCDM and DINA in-
dicate the results using correct Q-matrix, LCDM* and DINA* indicate results
using partial known Q-matrix, and ANN refers to the proposed method.

45

From this comparison, there are some observations: (1) Like the �ndings
from previous research (Brusco et al., 2017; Cui et al., 2016), our results also
prove that when giving the correct Q-matrix, theoretical DCMs always achieve
the best estimation accuracy; (2) Only under test condition 4, LCDM using
partial Q-matrix can obtain a better classi�cation accuracy (1% higher) than the
proposed ANN; in other test conditions, the proposed ANN could achieve
more accurate estimation results compared to the theoretical DCMs using par-
tial Q-matrix. This observation shows the power of the proposed unsupervised
learning ANN in attribute estimation for large scale assessments without accu-
rate Q-matrix. However, one disadvantage of the proposed ANN method is
that the estimation consistence is not as consistent as the theoretical DCMs.

Evaluation of Q-matrix Reconstruction Algorithm. In addition, we tested
the e�ects of the 3 assessment factors on Q-matrix reconstruction (as shown
in Table 3.7). The best reconstruction accuracy is 99% (3 simple items per at-
tribute, high diagnostic quality 90%, and medium test length 15). Only 6 of 24
conditions achieved the reconstruction accuracy less than 80%. From the table
of reconstruction accuracy under di�erent test conditions (Table 3.7), we can
�nd that the Q-matrix reconstruction results achieved under condition 13 (15, 3,
50%) was better than the one under test condition 22 (20, 3, 50%), because the
unknown elements proportion under the �rst condition is lower than the one
under the second condition.

3.4 Conclusion
The object of this paper is to propose an unsupervised learning ANN with fewer
constraints according to two potential issues in model based cognitive diagnosis:
model selection and Q-matrix misspeci�cation. To achieve this target, we �rstly
designed a unsupervised learning ANN for attribute estimation which does not
rely on speci�c assumption of item response function and just require partial
Q-matrix information (simple items’ q-vectors); secondly, we proposed a Q-
matrix reconstruction method using K-means clustering algorithms to correct
or reconstruct the mis-speci�ed or missing elements of the Q-matrix.

We tested our methodology and compared with two theoretical DCMs
(DINA and LCDM) under 24 types of simulated test conditions according
to test length, number of simple items per attribute, and the test discriminating.
The results showed some advantages of our proposed method.

The primary advantage of the proposed method is that it provides an option
for users to apply cognitive diagnostic classi�cation to large scale assessment

46

responses data when lacking prior knowledge about a part of the items (i.e.,
unknown Q-matrix). The proposed method does not rely on pre data analysis
to determine the Q-matrix before doing diagnostic classi�cation and provide a
reasonable classi�cation accuracy.

In addition to being able to get models results without full item informa-
tion, the second advantage of the proposed method is that it has the ability to
reconstruct the item-attribute relationship (Q-matrix) only using limited infor-
mation. The results show that the method could reconstruct well when the test
contains 15 or more items and 70% or higher diagnostic quality.

Both the �rst and second advantages make the outputs (e.g., classi�cation
and reconstructed Q-matrix) of the proposed method be able to help to de-
termine which DCM is the appropriate model for the current data. In other
words, when we have the classi�cation results from ANN results, for each item
we could choose the appropriate item response function and determine which
DCM is the true model by considering the reconstructed Q-matrix and com-
paring the item response probability of di�erent groups.

The last advantage of the proposed methodology demonstrated by the ex-
perimental results is that unlike the typical DCMs which removes the items
with low discriminating power or the items with unknown q-vector, the pro-
posed method don’t removing such items because the MAEN structure in the
proposed method has the ability to explore useful information from these items
which cannot be used in typical DCMs.

3.5 Discussion
The study demonstrates promise for using unsupervised learning arti�cial neu-
ral networks to achieve cognitive diagnostic classi�cation and Q-matrix recon-
struction. However, our method has some limitations. First, this method can-
not determine the number of attributes. We assumed the number of attributes
was known and accurate in this study. Second, the proposed method requires
at least 1 simple item for each attribute. Thus, the proposed method cannot
be used as a method to determine the number of attributes, or to explore the
item attribute relationship if the three assumptions (i.e., number of attributes
is known, Q-matrix of all simple items is known, at least a high discriminating
simple item measures each attribute) cannot be hold. Third, as shown in the
experimental results, the classi�cation accuracy is not as high as the DINA and
LCDM when the Q-matrix is completely known. Thus, when item-attribute
information is known, the proposed method does not have an advantage over
existing DCMs.

47

In addition to the attribute pro�le estimation method, there is one concern
for the Q-matrix reconstruction method. Although the experimental results
showed the propose K-means based method achieved a reasonable reconstruc-
tion accuracy for Q-matrix unknown elements, but the K-means assumptions
(e.g., each cluster has roughly equal number of observations, the variance of the
distribution of each variable is spherical) are hard to be hold because the input
size of the K-means, which equals to the number of attributes, is very small (i.e.,
3 in this study). It means that the proposed Q-matrix reconstruction cannot be
always guaranteed to be applied successfully.

In this study, we consider a small number of key factors to manipulate and
examine. Other factors may also be examined. For example, we did not consider
a hierarchical attribute structure. The proposed method may or may not be
applicable when such structure is present and future research is needed to un-
derstand its performance in that scenario. Other future research may focus on
the in�uence of other factors of diagnostic assessment design on the method’s
performance.

In addition, future research may extend this topic in three directions. The
�rst direction would be to extend the methodology to have the capability of
determining the number of attributes. This would remove the assumption that
the number of attributes is known. This topic will be very helpful when doing
explorative analysis on a new assessment. One potential method is to introduce
the number of attributes as an hyperparameters into constructing arti�cial neu-
ral networks and then using validating test to determine the appropriate value.

A second direction would be to adjust the activation function. In the pro-
posed method, we used the sigmoid function (logistic function) as the activa-
tion function of the output nodes. Although for complex items, we added an
hidden layer to approximate the relationship between attribute pro�le and the
item response probability, for simple items, the reconstruction of the item re-
sponse is still using a logit probability (i.e., we choose the sigmoid function as
the activation function of the output nodes in the ANNs). Such item response
function may not be accurate because it still holds a constrain that the IRP of
classes with the same attribute pattern with respect to the measured attributes
on a given simple item are equal. In the future, the activation function could
be replaced using a softmax function to convert the binary classi�cation to a
multiple classi�cation and would be expected to increase the classi�cation accu-
racy because the softmax activation function could provide each class a unique
IRP with regard to an item.

In addition, considering the concern of the proposed K-means based Q-
matrix reconstruction method, in the future, the Q-matrix reconstruction method

48

would be updated by directly using the trained ANN. One potential further
application is to tune the values of the code layer nodes and compare the output
results. Taking the test measures 3 attributes as an example, we �rstly give an
attribute pro�les [0, 0, 0] as the input of output layer and get the IRP for all
items from the output of the trained ANN. Then, we give an attribute pro�les
[0, 0, 1] as the input of output layer and get the second IRP for all items. By
comparing these two IRPs, we could determine the relationship between the
Attributes 3 and items and �gure out which item measures the third attribute.

Lastly, the method may be extended to have the capability to detect hierar-
chical attribute structures. To achieve this, the Q-matrix reconstruction com-
ponent of the method would be redesigned to determine the attributes relation-
ships by using classi�cations from the arti�cial neural networks. Then, such
attribute relationships can be used to adjust the connection between the output
nodes and attribute nodes, which would better model the assessment data and,
thus, lead to improved classi�cation accuracy for test-takers.

49

Table 3.1: Q-matrix for creating two item pools.

Item ID Attribute 1 Attribute 2 Attribute 3
Item 1 1 0 0
Item 2 0 1 0
Item 3 0 0 1
Item 4 1 0 0
Item 5 0 1 0
Item 6 0 0 1
Item 7 1 0 1
Item 8 0 1 1
Item 9 1 1 0
Item 10 0 1 1
Item 11 1 1 0
Item 12 1 0 1
Item 13 1 1 0
Item 14 0 1 1
Item 15 1 0 1
Item 16 1 1 0
Item 17 0 1 1
Item 18 1 0 1
Item 19 1 1 1
Item 20 1 0 0
Item 21 0 1 0
Item 22 0 0 1
Item 23 0 1 1
Item 24 1 0 1
Item 25 1 1 0
Item 26 1 0 1
Item 27 0 0 1
Item 28 0 1 0
Item 29 1 1 0
Item 30 1 0 0

50

Table 3.2: The table of selecting πi,c for item by class matrix.

Latent Groups High Low
Discrimination Discrimination

Non-mastery πi,α0 U[.15, .35] U[.20, .40]
Partial-mastery πi,αp U[.40, .60] U[πi,α0 , πi,α0 + .15]

Mastery πi,α1 U[.65, .90]

{
U [πi,αp,πi,α0+.30],

complex items
U [πi,α0 , πi,α0 + .30], simple items

Note. For each item, πi,α0 , πi,α0 , and πi,αp indicate the πi,c for non-mastery group,
mastery group, and partial mastery group, respectively.

Table 3.3: Item selection under di�erent test conditions.

Test # Simple Discrimination Item ID
Length Items Per (% High

Attribute Discrim) Simple Item Complex Item
10 1 50% 1:3 7, 8, 9*:13*

70% 1:3 7:10, 11*:13*
90% 1:3 7:12, 13*

2 50% 1:3, 1*:3* 7, 8*:10*
70% 1:6 7, 8*:10*
90% 1:6 7:9, 10*

15 1 50% 1:3 7:10, 7*:14*
70% 1:3 7:13, 7*:11*
90% 1:3 7:16, 7*, 8*

2 50% 1:3, 4*:6* 7:10, 7*:11*
70% 1:6 7:10, 7*:11*
90% 1:6 7:13, 7*, 8*

3 50% 1:6, 1*:3* 7, 7*:11*
70% 1:6, 20:22 7, 7*:11*
90% 1:6, 20:22 7:10, 7*, 8*

20 1 50% 1:3 7:13, 7*:16*
70% 1:3 7:17, 7*:12*
90% 1:3 7:19, 23, 24, 7*, 8*

2 50% 1:6 7:10, 7*:16*
70% 1:6 7:14, 7*:12*
90% 1:6 7:18, 7*, 8*

3 50% 1:6, 20:22 7, 7*:16*
70% 1:6, 20:22 7:11, 7*:12*
90% 1:6, 20:22 7:15, 7*, 8*

Note. * indicates the item ID of items with low discrimination (item pool 2).

51

Table 3.4: Comparisons of attribute estimation accuracy under the short assess-
ment length (10 items).

Test # Simple Discrim Methods # Items Attribute 1 Attribute 2 Attribute 3 Class
Condition Itmes (% High for

per Discrim) Model
Attribute Fitting

1 1 50% ANN 10 .82 (.04) .81 (.03) .75 (.03) .50 (.03)
DINA 10 .81 (.01) .81 (.01) .75 (.00) .50 (.00)
DINA* 3 .82 (.00) .82 (.00) .72 (.01) .47 (.01)
LCDM 10 .84 (.01) .84 (.00) .78 (.00) .54 (.00)
LCDM* 3 .77 (.01) .78 (.01) .69 (.00) .45 (.01)

2 70% ANN 10 .83 (.03) .82 (.04) .76 (.03) .54 (.04)
DINA 10 .85 (.01) .84 (.00) .75 (.01) .54 (.01)
DINA* 3 .82 (.00) .82 (.00) .72 (.01) .47 (.01)
LCDM 10 .85 (.01) .85 (.00) .80 (.00) .57 (.00)
LCDM* 3 .77 (.01) .78 (.01) .69 (.00) .45 (.01)

3 90% ANN 10 .85 (.03) .85 (.03) .79 (.03) .57 (.03)
DINA 10 .84 (.01) .83 (.00) .76 (.00) .54 (.00)
DINA* 3 .82 (.00) .82 (.00) .72 (.01) .47 (.01)
LCDM 10 .86 (.01) .85 (.00) .81 (.00) .61 (.01)
LCDM* 3 .77 (.01) .78 (.01) .69 (.00) .45 (.01)

4 2 50% ANN 10 .88 (.03) .81 (.02) .81 (.03) .60 (.03)
DINA 10 .89 (.02) .82 (.00) .82 (.01) .63 (.01)
DINA* 6 .88 (.01) .82 (.01) .81 (.00) .60 (.01)
LCDM 10 .90 (.00) .83 (.00) .84 (.00) .64 (.00)
LCDM* 6 .88 (.01) .82 (.01) .81 (.00) .61 (.01)

5 70% ANN 10 .90 (.03) .84 (.02) .83 (.02) .65 (.02)
DINA 10 .90 (.01) .84 (.00) .84 (.00) .65 (.00)
DINA* 6 .88 (.01) .82 (.01) .81 (.00) .60 (.01)
LCDM 10 .90 (.00) .84 (.00) .85 (.01) .67 (.00)
LCDM* 6 .88 (.01) .82 (.01) .81 (.00) .61 (.01)

6 90% ANN 10 .91 (.02) .88 (.02) .86 (.02) .70 (.03)
DINA 10 .90 (.01) .87 (.00) .85 (.00) .68 (.01)
DINA* 6 .88 (.01) .82 (.01) .81 (.00) .60 (.01)
LCDM 10 .92 (.00) .89 (.00) .88 (.01) .73 (.00)
LCDM* 6 .88 (.01) .82 (.01) .81 (.00) .61 (.01)

Note. “# Items for Model Fitting” indicates the number of items used to �t the model
for each method. ANN: the proposed MAEN; DINA: DINA �tting with correct Q-
matrix; LCDM: LCDM �tting with correct Q-matrix; DINA*: DINA model �tting
with partially-known Q-matrix; LCDM*: LCDM model �tting with partially-known
Q-matrix.

52

Table 3.5: Comparisons of attribute estimation accuracy under the short assess-
ment length (15 items).

Test # Simple Discrim Methods # Items Attribute 1 Attribute 2 Attribute 3 Class
Condition Itmes (% High for

per Discrim) Model
Attribute Fitting

7 1 50% ANN 15 .83 (.03) .83 (.03) .78 (.03) .56 (.03)
DINA 15 .83 (.01) .82 (.00) .78 (.01) .56 (.01)
DINA* 3 .82 (.01) .82 (.00) .72 (.00) .47 (.01)
LCDM 15 .85 (.00) .84 (.00) .80 (.00) .59 (.00)
LCDM* 3 .77 (.01) .78 (.00) .69 (.00) .45 (.01)

8 70% ANN 15 .85 (.03) .85 (.02) .81 (.03) .60 (.04)
DINA 15 .84 (.01) .85 (.00) .79 (.00) .58 (.00)
DINA* 3 .82 (.01) .82 (.00) .72 (.00) .47 (.01)
LCDM 15 .88 (.00) .86 (.00) .84 (.00) .63 (.00)
LCDM* 3 .77 (.01) .78 (.00) .69 (.00) .45 (.01)

9 90% ANN 15 .86 (.02) .87 (.03) .83 (.03) .62 (.03)
DINA 15 .84 (.00) .85 (.01) .78 (.01) .57 (.00)
DINA* 3 .82 (.01) .82 (.00) .72 (.00) .47 (.01)
LCDM 15 .88 (.00) .88 (.00) .85 (.00) .66 (.00)
LCDM* 3 .77 (.01) .78 (.00) .69 (.00) .45 (.01)

10 2 50% ANN 15 .89 (.03) .84 (.02) .83 (.02) .65 (.03)
DINA 15 .89 (.00) .83 (.00) .82 (.01) .63 (.00)
DINA* 6 .88 (.02) .82 (.02) .81 (.00) .62 (.02)
LCDM 15 .91 (.00) .85 (.00) .85 (.01) .68 (.00)
LCDM* 6 .88 (.01) .82 (.01) .81 (.00) .62 (.01)

11 70% ANN 15 .91 (.02) .86 (.02) .86 (.01) .68 (.03)
DINA 15 .91 (.00) .86 (.00) .85 (.01) .66 (.01)
DINA* 6 .88 (.02) .82 (.02) .81 (.00) .62 (.02)
LCDM 15 .92 (.00) .87 (.00) .88 (.01) .69 (.00)
LCDM* 6 .88 (.01) .82 (.01) .81 (.00) .62 (.01)

12 90% ANN 15 .92 (.01) .88 (.03) .89 (.02) .71 (.03)
DINA 15 .91 (.00) .87 (.00) .87 (.00) .68 (.01)
DINA* 6 .88 (.02) .82 (.02) .81 (.00) .62 (.02)
LCDM 15 .92 (.00) .91 (.00) .91 (.01) .73 (.00)
LCDM* 6 .88 (.01) .82 (.01) .81 (.00) .62 (.01)

13 3 50% ANN 15 .90 (.02) .85 (.03) .86 (.02) .66 (.02)
DINA 15 .90 (.00) .86 (.01) .86 (.00) .67 (.00)
DINA* 9 .89 (.00) .84 (.01) .82 (.01) .64 (.01)
LCDM 15 .90 (.00) .86 (.01) .86 (.00) .67 (.00)
LCDM* 9 .89 (.02) .84 (.01) .82 (.01) .63 (.01)

14 70% ANN 15 .91 (.01) .88 (.02) .87 (.02) .70 (.02)
DINA 15 .91 (.00) .88 (.00) .88 (.01) .71 (.00)
DINA* 9 .89 (.00) .84 (.01) .82 (.01) .64 (.01)
LCDM 15 .92 (.00) .88 (.00) .89 (.00) .73 (.00)
LCDM* 9 .89 (.02) .84 (.01) .82 (.01) .63 (.01)

15 90% ANN 15 .92 (.01) .90 (.01) .89 (.01) .73 (.01)
DINA 15 .91 (.01) .88 (.00) .88 (.00) .71 (.00)
DINA* 9 .89 (.00) .84 (.01) .82 (.01) .64 (.01)
LCDM 15 .93 (.00) .91 (.01) .90 (.00) .74 (.00)
LCDM* 9 .89 (.02) .84 (.01) .82 (.01) .63 (.01)

53

Table 3.6: Comparisons of attribute estimation accuracy under the short assess-
ment length (20 items).

Test # Simple Discrim Methods # Items Attribute 1 Attribute 2 Attribute 3 Class
Condition Itmes (% High for

per Discrim) Model
Attribute Fitting

16 1 50% ANN 20 .86 (.03) .86 (.02) .82 (.03) .58 (.04)
DINA 20 .87 (.00) .84 (.01) .80 (.01) .57 (.02)
DINA* 3 .82 (.02) .82 (.01) .72 (.01) .47 (.01)
LCDM 20 .89 (.00) .87 (.01) .84 (.01) .63 (.01)
LCDM* 3 .77 (.01) .78 (.01) .69 (.00) .45 (.01)

17 70% ANN 20 .87 (.02) .88 (.03) .84 (.02) .66 (.03)
DINA 20 .84 (.00) .87 (.00) .80 (.01) .59 (.00)
DINA* 3 .82 (.02) .82 (.01) .72 (.01) .47 (.01)
LCDM 20 .89 (.00) .89 (.00) .87 (.00) .69 (.00)
LCDM* 3 .77 (.01) .78 (.01) .69 (.00) .45 (.01)

18 90% ANN 20 .87 (.03) .87 (.02) .86 (.03) .67 (.03)
DINA 20 .84 (.01) .86 (.00) .80 (.00) .59 (.01)
DINA* 3 .82 (.02) .82 (.01) .72 (.01) .47 (.01)
LCDM 20 .89 (.01) .89 (.00) .89 (.01) .71 (.01)
LCDM* 3 .77 (.01) .78 (.01) .69 (.00) .45 (.01)

19 2 50% ANN 20 .91 (.04) .86 (.04) .86 (.02) .69 (.03)
DINA 20 .91 (.01) .85 (.01) .85 (.01) .65 (.01)
DINA* 6 .88 (.01) .82 (.00) .81 (.02) .62 (.01)
LCDM 20 .91 (.00) .86 (.01) .88 (.00) .70 (.00)
LCDM* 6 .88 (.02) .82 (.02) .81 (.01) .62 (.01)

20 70% ANN 20 .92 (.03) .88 (.02) .88 (.03) .71 (.03)
DINA 20 .91 (.00) .88 (.01) .86 (.00) .69 (.01)
DINA* 6 .88 (.01) .82 (.00) .81 (.02) .62 (.01)
LCDM 20 .93 (.00) .89 (.00) .88 (.00) .73 (.00)
LCDM* 6 .88 (.02) .82 (.02) .81 (.01) .62 (.01)

21 90% ANN 20 .92 (.03) .91 (.02) .90 (.02) .74 (.03)
DINA 20 .92 (.01) .88 (.00) .87 (.00) .70 (.01)
DINA* 3 .88 (.01) .82 (.00) .81 (.02) .62 (.01)
LCDM 20 .93 (.01) .92 (.00) .91 (.00) .77 (.01)
LCDM* 3 .88 (.02) .82 (.02) .81 (.01) .62 (.01)

22 3 50% ANN 20 .92 (.02) .88 (.02) .88 (.03) .69 (.03)
DINA 20 .91 (.01) .86 (.01) .87 (.00) .68 (.01)
DINA* 9 .89 (.02) .84 (.01) .82 (.02) .64 (.02)
LCDM 20 .92 (.00) .87 (.01) .88 (.00) .72 (.00)
LCDM* 9 .89 (.02) .84 (.02) .82 (.01) .63 (.01)

23 70% ANN 20 .92 (.03) .90 (.02) .88 (.02) .73 (.03)
DINA 20 .92 (.01) .89 (.00) .87 (.01) .71 (.01)
DINA* 9 .89 (.02) .84 (.01) .82 (.02) .64 (.02)
LCDM 20 .93 (.00) .89 (.01) .89 (.00) .74 (.01)
LCDM* 9 .89 (.02) .84 (.02) .82 (.01) .63 (.01)

20 90% ANN 20 .92 (.03) .91 (.02) .90 (.03) .77 (.03)
DINA 20 .91 (.01) .88 (.00) .88 (.00) .72 (.01)
DINA* 9 .89 (.02) .84 (.01) .82 (.02) .64 (.02)
LCDM 20 .93 (.00) .92 (.00) .92 (.00) .79 (.00)
LCDM* 9 .89 (.02) .84 (.02) .82 (.01) .63 (.01)

54

Table 3.7: Q-matrix reconstruction accuracy under di�erent assessment condi-
tions.

Test Test # Simple Discrim Column 1 Column 2 Column 3 Q-matrix
Condition Length Items (% High (Attribute 1) (Attribute 2) (Attribute 3)

Per Discrim)
Attribute

1 10 1 50% .58 (.05) .70 (.04) .58 (.02) .62 (.03)
2 70% .80 (.02) .75 (.03) .66 (.02) .72 (.03)
3 90% .86 (.01) .85 (.01) .82 (.02) .84 (.02)
4 2 50% .81 (.02) .67 (.02) .60 (.03) .68 (.03)
5 70% .89 (.01) .82 (.01) .83 (.03) .81 (.02)
6 90% .99 (.01) .97 (.01) .99 (.00) .98 (.01)
7 15 1 50% .72 (.02) .72 (.03) .68 (.01) .71 (.01)
8 70% .80 (.00) .76 (.02) .77 (.01) .78 (.02)
9 90% .85 (.01) .88 (.01) .86 (.00) .87 (.01)
10 2 50% .84 (.01) .83 (.03) .87 (.04) .85 (.02)
11 70% .92 (.04) .86 (.03) .87 (.03) .87 (.05)
12 90% .94 (.03) .93 (.00) .98 (.00) .95 (.02)
13 3 50% .95 (.02) .93 (.02) .97 (.01) .95 (.01)
14 70% .96 (.01) .96 (.01) .97 (.01) .97 (.01)
15 90% .99 (.00) .99 (.00) .99 (.00) .99 (.01)
16 20 1 50% .75 (.03) .75 (.03) .74 (.04) .75 (.03)
17 70% .81 (.04) .82 (.01) .80 (.02) .81 (.01)
18 90% .86 (.02) .86 (.01) .87 (.02) .86 (.01)
19 2 50% .78 (.03) .74 (.02) .75 (.04) .80 (.00)
20 70% .93 (.01) .93 (.01) .90 (.02) .93 (.01)
21 90% .94 (.01) .90 (.01) .97 (.00) .94 (.01)
22 3 50% .83 (.01) .80 (.03) .83 (.03) .85 (.03)
23 70% .97 (.01) .96 (.01) .98 (.00) .97 (.02)
24 90% .97 (.00) .97 (.01) .99 (.00) .98 (.01)

55

Chapter 4

A Semi-Supervised
Learning-based

Diagnostic
Classification Method
using Artificial Neural

Networks

4.1 Introduction
The purpose of cognitive diagnostic modelling (CDM; J. L. Templin and Hen-
son, 2006) or diagnostic measurement is to provide students’ skill/knowledge/at-
tributes mastery status (mastery or non-mastery) through their responses to
items from carefully designed assessments. Because of the ability to provide ed-
ucators diagnostic feedback from students’ assessment results, CDM has been
the focus of much research in the last decade. Various types of theoretical diag-
nostic classi�cation models (TDCMs), such as the deterministic inputs, noisy
and gate (DINA; Junker and Sijtsma, 2001), the reparametrized uni�ed mod-
el/fusion model (RUM; Hartz, 2002) and the log-linear cognitive diagnosis
model (LCDM; Henson et al., 2009), are designed based on di�erent cognitive
theories or assumptions about the relationship between a student’s response
pattern and attribute pro�le.

When analysing a particular assessment dataset, selecting inappropriate TD-
CMs (model misspeci�cation) impacts the classi�cation accuracy and param-
eter estimation. For example, when the attributes measured by an assessment

56

are non-compensatory, which indicates that nonmastery on one attribute can-
not be compensated by mastery on another attribute, selecting a compensatory
model will decrease the performance of classi�cation and measurement. DINA
model and DINO (J. L. Templin & Henson, 2006) model achieved worse �t
than did the other more relaxed TDCMs, such as G-DINA (DeCarlo, 2011),
LCDM, and RUM because both DINA and DINO might be too restrictive to
re�ect actual students’ knowledge status (Yamaguchi & Okada, 2018). Thus, a
principal research question of the previous research studies in CDM is which
model better describes the data.

A Q-matrix indicates the relationship between items and attributes in an as-
sessment. Q-matrices are often carefully designed by assessment experts, whereas
some existing research and their experimental results have shown that Q-matrices
constructed by content experts do not always re�ect the relationship precisely
and may require empirically-driven modi�cations (Bradshaw et al., 2014; Tjoe
& de la Torre, 2014). In CDM, the diagnostic quality of an item indicates the
discriminating power of the item to determine the success of the diagnosis. The
item with high discriminating refers to that students who have mastered the
attributes required by the item are expected to have a high probability of re-
sponding to the item correctly, while students who have not are expected to
have a low probability. Items with low discriminating power compromise the
accuracy of the estimate of student attribute mastery. In the previous research
studies, the performances of all TDCMs are sensitive to either the diagnostic
quality of items or the accuracy of Q-matrices (Kunina-Habenicht et al., 2012;
R. Liu et al., 2017).

Because of the increase of data size and development of computational
power, arti�cial neural networks (ANNs; I. Goodfellow et al., 2016) have been
proposed as an attractive approach to convert a pattern of item responses into
a diagnostic classi�cation (Cui et al., 2017; Cui et al., 2016; Paulsen, 2019; Xue,
2019). An ANN is a computational system inspired by biological neural systems
for information processing in animals’ brains. An ANN is built on inputs being
translated to outputs through a series of neuron layers. It consists of three types
of layers: an input layer, hidden layer(s), and an output layer. Each layer consists
of a number of neurons (or nodes), and each node is connected to the nodes in
the next layer. Each layer (except for the input layer) uses the output of its previ-
ous layer as the input. Supervised learning ANNs were applied in some research
studies (Cui et al., 2017; Cui et al., 2016; Paulsen, 2019). To train the supervised
learning ANNs, the ideal response patterns were set as the input layer and the
associated attribute pro�les as the output layer. Cui et al. (2016) hypothesized
DINA model with both slipping and guessing equalling to 0 to synthesize ideal

57

responses to train a multilayer perceptron (MLP). The experimental results
showed that the classi�cation accuracy of the supervised learning ANNs was
not appreciated even in the simulated study. Another disadvantage of apply-
ing supervised learning ANNs for CDM is how to create the ideal response
patterns using a TDCM because both TDCM and parameters are di�cult to
hypothesize. In addition to supervised learning ANNs, Cui et al. (2016) used
one type of unsupervised learning ANNs, self-organizing map (SOM), to clas-
sify test-takers into di�erent latent groups for CDM. One disadvantage of the
unsupervised learning ANNs is that some further data analysis approaches are
required to label the clusters. For example, although cluster analysis can place
test-takers into di�erent latent groups, post hoc techniques are required to dis-
cern the attributes from these latent groups. To do cluster labelling, Xue (2018)
proposed a modi�ed autoencoder network with a sparsely connected decoder
explained the code layer outputs by using a part of the Q-matrix information.
However, in both research studies, the unsupervised learning ANNs cannot
yield comparable classi�cation results compared with the TDCMs, especially
when the diagnostic quality of the assessment was not high. In addition, the
ANNs methods produced very unstable and unappreciated estimation unless
a great deal of care was taken to conduct sensitivity analyses (Briggs & Circi,
2017).

Regarding the disadvantages in supervised leaning ANNs and unsupervised
learning ANNs, in this research, the purpose of using semi-supervised learning
thinking is to provide reasonable labels for ANN training and provide accu-
rate and robust classi�cation under di�erent test conditions. In this research,
we �rstly applied the semi-supervised learning thinking into the ANNs-based
CDM. Two typical TDCMs, DINA model and DINO model, were contained
in the proposed framework to improve the accuracy and consistency of the
ANN’s classi�cation. In the following sections, we will �rstly give a brief intro-
duction to semi-supervised learning and the Co-Training method we used in
this framework. Then, the structure of the ANN will be described. Addition-
ally, the experimental results under both simulated experiments are illustrated
to compare the proposed method and 5 di�erent TDCMs. Lastly, the bene�ts
and challenges of this methodology are summarized, and future research is also
outlined.

4.1.1 Semi-supervised Learning
In the machine learning �eld, semi-supervised learning (X. J. Zhu, 2005) con-
cerns the study of how computers and natural systems learn in the presence of
both labelled and unlabelled data, and it is somewhere between supervised learn-

58

ing and unsupervised learning. The research goal of semi-supervised learning is
to understand how combining labelled and unlabelled data change the learning
behaviour, and design algorithms that take advantage of such a combination.
Semisupervised learning is a great interest in a wide range of applications, such
as image search (Fergus et al., 2009), natural language parsing (Liang, 2005), and
speech analysis (Y. Liu & Kirchho�, 2014) because the labelled data is scarce or
expensive.

In semi-supervised learning, to handle the incomplete labels, the most straight-
forward algorithm for semi-supervised learning is based on a self-training (Haf-
fari & Sarkar, 2012; Rosenberg et al., 2005) scheme using bootstrapping with
additional labelled data obtained from its own highly con�dent prediction.
Graph-based semi-supervised learning (Fergus et al., 2009) models are applied
through e�cient spectral methods requiring eigen analysis of the graph Lapla-
cian and have been shown to be one of the most e�ective approaches for clas-
si�cation tasks from a wide range of domains. Transudative SVMs (Joachims,
1999) extend SVMs with the aim of max-margin classi�cation while ensuring
that there are as few unlabelled observations near the margin as possible. More
recently, the techniques to solve the training using noisy labels using arti�cial
neural networks have begun to receive attention, such as Restricted Boltzmann
Machine (RBM; Larochelle and Bengio, 2008) and Generative Stochastic Net-
works (Bengio et al., 2014); Mnih and Hinton (2012) also developed the deep
neural network with robust loss function to handle label-omission and registra-
tion error.

4.2 Method

4.2.1 Co-Training Methods of using DINA Model and DINO
Model

As one typical semi-supervised learning method, Co-Training (Nigam & Ghani,
2000) methods use a pair of classi�ers with separate views of the data to itera-
tively learn and generate additional training labels. Like the self-training scheme,
Co-Training is a wrapper method and widely applicable to many tasks. Co-
Training bears a strong resemblance to the self-training scheme because each
classi�er uses its most con�dent predictions on unlabelled instances to teach
itself. Two classi�ers operate on di�erent views of one observation, and the
success of CoTraining depends on the following two assumptions (X. Zhu &
Goldberg, 2009): 1) each view alone is su�cient to make good classi�cations,

59

given enough labelled data; 2) the two views are conditionally independent
given the class label.

Inspired by the typical Co-Training method, in this research, we chose the
DINA model and DINO model as two classi�ers to operate on di�erent views
of one response pattern to an item. The DINA model is a non-compensatory, or
conjunctive TDCM means that a lack of one attribute cannot be compensated
by the mastery of another attribute measured by an item. For each item, the
DINA model classi�es students into two groups: those who have mastered
all the attributes required by the item and those who have not. The jth item
response probability of the ith student can be written as:

P (yij = 1|ξij, sj, gj) = (1− sj)ξijg1−ξijj (4.1)

where ξij = 1 indicates the ith student has mastered all required attributes of
jth item, and ξij = 0 refers to non-mastery status; sj and gj are the slipping
parameter and guessing parameter of the jth item.

In contrast to the DINA model, the DINO model is a compensatory or
disjunctive TDCM, which means that a non-mastery on one latent attribute
can be compensated for by a mastery status on another attribute. The jth item
response probability of the ith student can be written as:

P (yij = 1|ωij, sj, gj) = (1− sj)ωijg1−ωijj (4.2)

where the latent response ωij = 0 indicates that the ith student has mastered
at least one attribute measured by jth item, and ωij = 1 indicates the absence
of all required attributes. Like DINA, sj and gj are the slipping parameter and
guessing parameter of the jth item.

Regarding the two assumptions of successfully applying Co-Training method,
the reasons for selecting the DINA model and the DINO model are two-fold.
First, in an assessment, either the DINA model or the DINO model can be a
true model for di�erent items. For example, both the DINA and DINO mod-
els are true models for a simple structure item, which only measures a single
attribute. Thus, using either the DINA model or the DINO model is su�cient
to make reasonable classi�cation results. The second reason is that as described
above, the item response functions of the DINA model and DINO model
are represented based on di�erent assumptions on the relationship between re-
sponse patterns and attribute pro�les. In other words, the classi�cation results
of using the DINA model and the DINO model are independent.

In this paper, given the response data and Q-matrix, the DINA model and
the DINO model were �tted. For an individual test-taker, we use two labels

60

cDINA and cDINO. cDINA was the estimated latent class under the assumption
of using the DINA model, and cDINO was the estimated latent class under
the assumption of using the DINO model. cDINA and cDINO could be either
the same or di�erent. In this research, the One-Hot encoding method was
applied to the integer encoding cDINA and cDINO to create two new One-Hot
representation vectors cDINA = {ckDINA} and cDINA = {ck′DINA}. ckDINA
and ck′DINA ∈ {0, 1}, and

∑
k c

k
DINA =

∑
k′ c

k′
DINA = 1. For example, if

there are 4 latent classes, the integer encoding labels 1, 2, 3 and 4 are converted
to One-Hot encoding [0001], [0010], [0100], and [1000], respectively.

4.2.2 Semi-supervised Learning ANN for Diagnostic Clas-
si�cation

As shown in Figure 4.1, like the supervised learning ANNs, the proposed semi-
supervised learning ANN also consisted of three parts: the input layer, hidden
layers, and the output layer. The number of nodes (the circles in Figure 4.1) on
the input layer was equal to the number of items contained in the assessment.
The number of nodes on the output layer was equal to the number of latent
classes. To establish the relationship between the input and output nodes, we
used three hidden layers to convert observed response patterns to latent classes.
The numbers of nodes at these two hidden layers are 200, 100, and the number
of latent classes, respectively. We use the Recti�ed linear unit (ReLU; I. Good-
fellow et al., 2016) as the activation function for the �rst two hidden layers and
softmax function as the activation function for the third hidden layer. In the
supervised learning ANNs, the number of output nodes was equal to the num-
ber of latent classes or number of attributes. The output layers in our proposed
semi-supervised learning ANN consisted of two parts. The �rst part (output 1)
corresponded to the DINA model classi�cation, and the second part (output 2)
corresponded to the DINO model classi�cation. The total number of output
nodes was equal to two times of the number of hidden classes. For example,
consider an assessment with 30 items that measured a total of 4 attributes, the
input layer consisted of 30 input nodes (30 items), the third hidden layer con-
sisted of 16 nodes (2×4 = 16 latent classes), and the output layer consisted of 32
nodes (2×16).

In the supervised learning ANNs in CDM, only a single label was used for
each observation. For example, when only using DINA classi�cation as labels,
the supervised learning ANN was used to train the standard softmax regression
or a sigmoid regression (Pang et al., 2020) inputs to outputs without taking into
account incorrect labels. In contrast, the proposed semi-supervised learning

61

Figure 4.1: The structure of the proposed semi-supervised learning ANN
The proposed semi-supervised learning ANN consisted of one input layer, two
hidden layer, one class layer and one output layer.

added the second label as a regularization term encouraging the classi�cation to
be perceptually consistent. As mentioned in the previous session, in addition
to DINA classi�cation, we also choose the DINO classi�cation as the second
label concerning the two assumptions of the Co-Training method.

Letx ∈ {0, 1}I be the response patterns (I is the number of items), cDINA
and cDINO be the One-Hot encoding of the DINA class labels and DINO
class labels, respectively. Then we introduced into our ANN model the “true”
latent class label (as opposed to the DINA and DINO class labels) as a latent
multinomial variable t ∈ {0, 1}C ,

∑C
j tj = 1, where C is the number of

latent classes. Like cDINA and cDINO, t was also a One-Hot encoding label
for each response pattern. The output of the third hidden layers (or the input
of the output layer) of our ANN was the posterior over t using the softmax
regression:

P (tj = 1|x) =
P̃ (tj = 1|x)∑C
j′=1 P̃ (tj′ = 1|x)

=
φj(x)∑C
j′=1 φj′(x)

(4.3)

where P̃ denotes the unnormalized probability distribution, Φ = φj(x), j ∈
{1, . . . , C} indicates the calculation from the input layer to third hidden layer’s
output, and φj(x) indicates the jth node’s values on the third hidden layer.

62

Given the true label t, the output 1 (DINA model classi�cation) and output 2
(DINO model classi�cation) can be modeled using another softmax with logits
as follows:

logit(P (ckDINA = 1|x)) =
C∑
j=1

wkjtj

logit(P (ck
′

DINO = 1|x)) =
C∑
j=1

wk′jtj

(4.4)

where thewkj andwk′j learn the log-probability of the “true” label j as DINA
class label k (the kth class in DINA classi�cation) and as DINO class label
k′ (the k′th class in DINA classi�cation), respectively. Thus, in the proposed
ANN, the joint relationship between input layer x and the kth node of output
1 and k′th node of output 2 can be represented as follows:

P (ckDINA = 1, ck
′

DINO = 1|x) =

C∑
j=1

P (ckDINA = 1, ck
′

DINO = 1, tj = 1|x) =

C∑
j=1

P (ckDINA = 1|tj = 1)P (ck
′

DINO = 1|tj = 1)P (tj = 1|x)

(4.5)

where (tj = 1|x), P (ck
′
DINO = 1|tj = 1), P (ckDINA = 1|tj = 1) were

de�ned in equation 4.3, and 4.4. Then, we could perform training via stochastic
gradient descent on logit of the equation 4.5 to minimize the following cost
function:

{w} = arg min{H(Y1, cDINA) +H(Y2, cDINO)} (4.6)

where {w} indicates the parameters contained in the ANNs, H is the cross-
entropy to calculate the di�erence between Y1 (output 1) and DINA labels
cDINA, and the di�erence betweenY2 (output 2) and DINA labels cDINO.

In addition to Y1 and Y2 , as what we did in the unsupervised learning
framework, we added a regularization term, H(x, x̃), into equation 4.6 to
encourage the classi�cation to be perceptually consistent. x is the observed
response pattern, and x̃ is the reconstructed response pattern corresponding to
the estimated latent class. A general I ×C item by latent class matrix Π (Xu &
Zhang, 2016) was used to determine the conditional probability that students

63

in cth latent class answer ith item correctly P (xi = 1|c) = πi,c, and

Π =


π1,1 π1,2 . . . π1,C
π2,1 π2,2 . . . π2,C

...
...

πI,1 πI,2 . . . πI,C

 . (4.7)

where I indicated the number of items,C indicated the number of latent classes.
Then the reconstructed response pattern are calculated as following:

x̃ = {xi} = {
c∑
j=1

P (tj = 1|x)πi,j} (4.8)

After adding the regularization term, equation 4.6 can be represented as:

{w} = arg min{H(Y1, cDINA) +H(Y2, cDINO) + λH(x, x̃)} (4.9)

where λ is a scaling parameter which was determined through a validation test.
Because of the large number of parameters contained in the deep learning

structure, the random initialization of parameters may impact the optimization
when the training sample size is not large enough. Thus, one concern of using
ANNs for CDM is that using the feature extracted by deep learning through a
single training is risky or sensitive to the starting points of the parameters (Briggs
& Circi, 2017). Cui et al. (2016) only set a maximum number of iterations (e.g.,
10,000) to stop training the supervised learning ANN in their research study.
We applied two methods to deal with this issue. The �rst method was the early
stopping, which is a simple, e�ective, and widely used approach to avoid over-
training the ANNs. The early stopping method is used to train on the training
dataset but to stop training at the point when performance on a validation
dataset starts to degrade. In addition, through the validating, we determined
the scaling parameter in equation 10. In our method, the whole data set was di-
vided into two parts: the training dataset consisted of 80% observations, and the
validating dataset consisted of the rest 20% observations. The second method
was that we conducted 100 ANN trainings individually, produced a probability
of latent class for each training, and then averaged the 100 probabilities as the
�nal probability of the latent class for each test-taker.

64

4.3 Experimental Study
The aims of the experiment were (1) to examine the attribute pro�le estimation
and classi�cation accuracy of the proposed method under di�erent test factors
which are expected to a�ect the estimates’ accuracy, and (2) to compare the
proposed method with the performance of �ve TDCMs: the DINA, DINO,
G-DINA (De La Torre, 2011), LCDM (Henson et al., 2009), and RUM (Hartz,
2002). Thus, we conducted a simulation study under di�erent assessment con-
ditions with a variety of �xed factors and four manipulated factors.

4.3.1 Method
Manipulated Factors. Using item by latent class matrix, we manipulated
three assessment factors in the data generation for the simulation, including
the number of items (20 or 30), number of attributes (three or four), and test
diagnostic quality (high or mixed). When estimating the conditions, we also
manipulated the Q-matrix accuracy (100% and 90% correct) as another factor
expected to impact classi�cation accuracy.

Test length and number of attributes. The number of items (20 or 30)
and the number of attributes were selected to re�ect the current real assessment
applications, which often contained between 20 to 30 items and measured three
or four attributes (e.g., MELAB data, Li and Suen, 2013; DTMR data, Bradshaw
et al., 2014). For three attributes, we generated 20 items, and for four attributes,
20 and 30 items were generated, respectively. The three Q-matrices (i.e., 20 items
measured 3 attributes, 20 items measured 4 attributes, and 30 items measured
4 attributes) for these conditions are shown in the Appendix ??, ??, and ??,
respectively.

Test diagnostic quality. Item discriminating power is another factor im-
pact performance of TDCMs shown in previous research studies (e.g., Cui et
al., 2016; Roussos et al., 2005). The item discriminating power di is calculate
as di = p(x = 1|α1) − p(x = 1|α0). α0 is the attribute pattern where
none of the attributes measured by the ith item are mastered, and α1 is the
attribute pattern where all attributes measured by the ith item are mastered. If
.3 ≥ di < .75, the Item i is a highly discriminating item, and if 0 < di ≤ .3,
the Item i is a lowly discriminating item. In the assessments with high diagnos-
tic quality, all items are of high discriminating power; in the assessments with
mixed diagnostic quality, 50% items are of high discriminating power, and 50%
items are of low discriminating power.

Accuracy of Q-matrix. Since the Q-matrices constructed by content ex-
perts do not always re�ect the relationship precisely and may require empirically-

65

driven modi�cations (Bradshaw et al., 2014; Tjoe & de la Torre, 2014) , two
levels of Q-matrix accuracy were also created for TDCMs model �tting and Co-
Training methods: 100% accuracy indicated that the Qmatrix were completely
known; 90% accuracy indicated that 10% of elements in each Q-matrix were
incorrect. We mis-speci�ed the 10% elements in Q-matrix randomly drawing
a Q-matrix entries and changing its value, with the constraint that each item
must measure at least one attribute (i.e., a randomly drawn value of “1” for a
simple structure item could not be changed to “0”). Such constrain makes there
is no all zero q-vector (e.g., [0, 0, 0], [0, 0, 0, 0]) in Q-matrix.

Generating item response probabilities. Sample sizes of 1000 were used
for all conditions. The true class probabilities of correct response for the items
in the item pools were simulated using the logic of a DCM with respect to
the Q-matrix de�ning the item-class relationships and the probabilities follow-
ing monotonicity constraints across non-equivalence classes on an item (i.e.,
masters of all attributes measured by the item having a higher probability of
correct response than masters of a proper subset of these attributes; masters
of no attributes measured by the item having a lower probability of correct re-
sponse than masters of a proper subset of these attributes), but did not follow
a particular existing DCM item response function (e.g., the LCDM or DINA
function). Current DCM item response functions constrain the item response
probabilities to be equal within all equivalence classes; our simulated data did
not. Item-based equivalence classes are latent classes that have the same attribute
pro�le, or the same pattern of mastery, for all attributes that are measured by
the item. Conversely, item-based nonequivalence classes di�er on the mastery
status of one or more attributes measured by the item.

We simulated data using a general I × C item by latent class matrix (Xu &
Zhang, 2016) according to TDCM logic (i.e., de�ning latent classes by attribute
pro�les and specifying itemlatent class relationships by the Q-matrix) without
the speci�c mathematic representation of the item response function:

Π =


π1,1 π1,2 . . . π1,C
π2,1 π2,2 . . . π2,C

...
...

πI,1 πI,2 . . . πI,C

 . (4.10)

where the conditional probability that students in lth latent class answer ith
item correctly P (xi = 1|c) = πi,c, which is also known as item response
probability (IRP) for each class. I indicated the number of items,C indicated
the number of latent classes.

66

We denote πi,α0 , πi,α1 , and πi,αp as the IRPs for non-mastery group, mas-
tery group, and partial mastery group respectively. The mastery group con-
tained students who mastered all of the attributes required by ith item, the
partial mastery group contains students who only mastered a proper subset of
attributes required by ith item, and the non-mastery group contained students
who mastered none of the attributes required by ith item.

As shown in Table 4.1, when simulating response patterns to high discrimi-
nation items for the mastery group πi,α1 were drawn from a uniform distribu-
tionU [.65, .9]; for the non-mastery groupπi,α0 were drawn from a uniform dis-
tributionU [.15, .35]; and for the partial mastery group πi,αp were drawn from
a uniform distribution U [.4, .6]. These draws yielded an average item discrim-
ination value of .530 in 3 highly discriminating assessments (see values of IRP
tables in Appendix ??, ?? and ??). When simulating response patterns to low
discrimination items, for the non-mastery group πi,α0 were drawn from a uni-
form distribution U [.2, .4]; for partial mastery group πi,αp were drawn from a
uniform distributionU [πi,α0 , πi,α0 + .2]; lastly for the mastery group (students
who mastered all the attributes required by ith item) πi,α1 were based on a uni-
form distributionU [πi,αp , πi,α0 +.3] for complex items andU [πi,α0 , πi,α0 +.3]

for simple items. This yielded an average item discrimination value of .387 in 3
mixed discriminating assessments (see values of IRP tables in Appendix ??, ??
and ??).

Table 4.1: The table of selecting πi,c for item by class matrix.

Latent Groups High Low
Discrimination Discrimination

Non-mastery πi,a0 U[.15, .35] U[.20, .40]
Partial-mastery πi,αp U[.40, .60] U[πi,a0 , πi,a0 + .15]

Mastery πi,a1 U[.65, .90]

{
U [πi,αp , πi,a0 + .30], complex items
U [πi,a0 , πi,a0 + .30], simple items

Note. For each item, πi,a0 , πi,a1 , and πi,αp indicate the πi,c for non-mastery group,
mastery group, and partial mastery group, respectively.

By drawing true item parameters in this way, the πi,cs in our simulated data
di�ers from IRPs simulated from the LCDM in that partial mastery classes with
the same attribute pattern with respect to the measured attributes on a given
item (the partial mastery item-based equivalence classes) have di�erent true item
response probabilities. The item response probabilities for these classes are,
however, drawn from the same uniform distribution, so while they may be
di�erent values, they will be in the same range. Taking Item 10 that measures
Attribute 1 and Attribute 2 as an example (as shown in Appendix ??), Classes C2,

67

C3, C6 and C7 are all partial mastery classes with respect to this item: Class C2
and C6 both have mastered Attribute 1 but not Attribute 2, and Class C3 and C7
has both mastered Attribute 2 and not Attribute 1. Under the LCDM, Class C2
and C6 would have the same IRP, while Class C3 and C7 would have the same
IRP; under our generating model, the IRP for all four classes were drawn from
the same interval, but the draws were di�erent, resulting in, Class C2 having an
IRP of .509, Class C3 having an IRP of .519, Class C6 having an IRP of .458, and
Class C7 having an IRP of .429 (see Appendix ??). For non-mastery equivalence
classes and mastery equivalence classes, the true model did constrain draws to
be equal within the interval (i.e., Class C1 and C5 have IRP values of .33 and
Class C4 and C8 have IRP values of .891). Only for partial mastery item-based
equivalence classes were they allowed to di�er. The purpose of allowing this
di�erence was to add some noise in the data while still controlling the item
discrimination level (IRP of mastery group minus IRP of non-mastery group).

The values in the item by latent class matrix Π for the 6 item pools are shown
in Appendix ??, ??, ??, ??, ??, and ??, respectively. These appendices showed
that the DCMs primary monotonicity assumptions held. Namely, the mastery
group has the greatest IRP, the non-mastery group has the lowest IRP, and the
IRP of partial mastery groups lie between them.

The IRPs for the non-mastery group and the mastery group are shown in
Appendix D to I. These appendices show this simulation procedure �rstly held
that .3 ≤ di < .75 for high discrimination items and .3 < di < .75 for low
discrimination items; it also again shows the DCM monotonicity assumptions
that the mastery group has a greater IRP than the non-mastery group held.

Estimation. In our simulated study, as a comparison, �ve types of widely
used TDCMs were introduced as baselines to evaluate the diagnostic classi�-
cation performance of the proposed framework. DINA and DINO models
were selected as two baselines because they were the two classi�ers used for
Co-Training method. In addition, we chose three more general models, the
G-DINA with identity link function (De La Torre, 2011), the LCDM with the
logit link function (Henson et al., 2009), and the RUM (Hartz, 2002).

Results were analyzed in terms of classi�cation accuracy of the �ve TDCMs
and proposed method under 12 di�erent test conditions. Since in the proposed
method, a validation test was introduced for early stop in the training procedure
to avoid overtraining, the whole data set was divided to two parts: training
dataset which contains 80% observations; and validating dataset which contains
20% observations. In the results shown in Table 4.2, 4.3, and 4.4, we list three
types of the results of using the proposed ANN method:

68

1. ANN: the classi�cation results of applying the trained ANN structure
to the whole dataset containing training set and validation set;

2. ANN*: the classi�cation results of applying the trained ANN structure
to the training dataset;

3. ANN**: the classi�cation results of applying the trained ANN structure
to the validating dataset.

The data simulation and �ve TDCMs were conducted using the “CDM”
package (George et al., 2016) in R. The proposed semi-supervised learning
ANN was conducted using the "tensor�ow" library (Pang et al., 2020) in Python.
In the experimental study, we conducted 100 replications. In each replication,
new response patterns were created based on the �xed values in the item by
latent class matrices in Appendices ?? to ??.

4.3.2 Results
First, we tested the e�ects of the four assessment factors of test length, number
of attributes, test diagnostic quality, and Q-matrix accuracy on the attribute
pro�le and classi�cation accuracy for the proposed method. Then we compared
the proposed method to the �ve TDCMs, under 12 di�erent test conditions.
Results are given in Table 4.2, 4.3, and 4.4.

Classi�cation Accuracy and Four Assessment Factors We �rst focus on
results for the proposed method. As mentioned in the Estimation session,
ANN, ANN* and ANN** in Table 4.2, 4.3, and 4.4 indicate the classi�cation
accuracy on whole dataset (including training set and validating set), the train-
ing set and validating set, respectively. Results show that the proposed method
(ANN) works reasonably well and has classi�cation accuracy values greater than
70% under 6 out of 12 assessment conditions (condition 1, 2, 3, 4, 9 and 10) when
applying the trained ANN to the whole data set (i.e., ANN). Condition 1 to
4 are all four test conditions for the assessment measures 3 attributes using 20
items with either highly diagnostic quality or mixed diagnostic quality. Condi-
tion 9 and 10 are the two test conditions for assessment measures 4 attributes
using 30 items with highly diagnostic quality. Results show classi�cation ac-
curacy increased in expected ways for the proposed method. Namely, average
classi�cation accuracy increases from .670 to .722 as test length increases from
20 to 30 for assessments measure 4 attributes (there is only one test length of
assessment that measures 3 attributes); when the number of attribute measured

69

decreases from 4 to 3 in assessment with 20 items, the average classi�cation ac-
curacy increases from .670 to .834; when the test diagnostic quality increases
from mixed to high, the average classi�cation accuracy increases from .621 to
.736; and when the accuracy of Q-matrix increases from 90% to 100%, the av-
erage accuracy increases slightly from .675 to .682. In addition, we can see that
ANN* always achieves the best performance with average classi�cation accuracy
.692, ANN** always achieves the worst performance with average classi�cation
accuracy . 661, and ANN falls between ANN* and ANN** with average classi�-
cation accuracy .678. The reason is that the parameters of ANN structure were
trained based on the training dataset but not considered the validation dataset.

Next, we examine the results for the �ve TDCMs. Results show that DINA
model has classi�cation accuracy values greater than 70% under 2 out of 12 assess-
ment conditions (condition 1 and 2); DINO model has classi�cation accuracy
values greater than 70% under 2 out of 12 assessment conditions (condition 1
and 2); G-DINA has classi�cation accuracy values greater than 70% under 5
out of 12 test conditions (condition 1, 2, 3, 9, and 10); LCDM has classi�cation
accuracy values greater than 70% under 5 out of 12 test conditions (condition
1, 2, 3, 9, and 10); and RUM has classi�cation accuracy values greater than 70%
under 5 out of 12 test conditions (condition 1, 2, 3, 9, and 10). Condition 1 and
2 are two tests (high and mixed diagnostic quality) with 20 items measures 3
attributes and the Q-matrix accuracy is 100%; condition 3 is a test with high
diagnostic quality consists of 20 items to measure 3 attribute but the Q-matrix
accuracy is 90%; condition 9 and 10 are two tests (high and mixed diagnostic
quality) with 30 items measures 4 attributes and the Q-matrix accuracy is 100%.
We could also notice that the G-DINA and LCDM achieved almost the same
classi�cation results because the only di�erence between G-DINA and LCDM
in the CDM::gdina() is the link function. We chose ‘identity’ function for G-
DINA and ‘logit’ function for LCDM. In addition, like the proposed method,
results show classi�cation accuracy increased in expected way for the 5 TDCMs.
Namely, accuracy increases as test length increases, as the number of attribute
measured decreases, as the test diagnostic quality increases, and as the accuracy
of Q-matrix increases.

Comparison Classi�cation with 5 TDCMs Simulation results indicated
that when using the proposed ANN, the classi�cation rates were higher than
rates from the DINA and DINO models, the two initial classi�ers used in Co-
Training. Compared to DINA and DINO models, at the attribute level, the
average improvements of classi�cation using ANN was .0218 and .0140, and at
the class level (i.e., attribute pro�les level), the average improvements were .0589

70

and .0432. Compared to the general models LCDM and G-DINA, which often
achieved the best performance in classi�cation, the performance of ANN was
also better than these two methods. The improvements at the attribute level
were .0056 and .0055 compared with LCDM and G-DINA models, respectively.
At the class level, the improvements were .0130 and .0132.

The simulated study also indicated that when the Q-matrix became less ac-
curate, the classi�cation accuracy for each method dropped at both attribute
level and latent class level when holding other test assessment factors. When
the Q-matrix accuracy decreased to 90% accurate, at the attribute level, the av-
erage reductions of classi�cation accuracy were .0071, .0055, .0114, .0114, .0095,
and .0038 corresponding to DINA, DINO, LCDM, G-DINA, RUM, and our
ANN methods respectively. At the attribute pattern level, the average accuracy
reductions were .0163, .0138, .0298, .0302, .0243, and .0075 for DINA, DINO,
LCDM, G-DINA, RUM and, our ANN methods respectively. From this ob-
servation, we could �nd that �rstly, the relaxed models (LCDM, G-DINA, and
RUM) were more sensitive to the accuracy of Q-matrix; secondly, the proposed
ANN was more robust to the noise within the Q-matrix compared to the �ve
TDCMs.

Besides, high item discriminating was a positive impact on the classi�ca-
tion accuracy of all six methods. When the discrimination of items decreased
(from high to mixed), the classi�cation rate dropped .0301, .0383, .0458, .0458,
.0392, and .0397 for DINA, DINO, LCDM, G-DINA, RUM and our ANN
at the attribute level. The reductions were .0780, .1095, .1318, .1318, .1137 and
.1158 for DINA, DINO, LCDM, G-DINA, RUM, and our ANN at the la-
tent class level. The reason that our ANN method dropped more than DINA,
DINO, and RUM (only at the attribute level) was that when the items were
high discriminating, the improvement of classi�cation rate using our ANN was
more signi�cant than using mixed discriminating items. Even though the per-
formance of our ANN at both the attribute level and the latent class level was
the best among the six diagnostic classi�cation methods.

4.4 Conclusion
The purpose of this research is to solve two problems that exist in current su-
pervised learning ANN methods and unsupervised learning ANNs: the super-
vised learning method requires ideal response pattern to train the model; the
classi�cation accuracy of unsupervised learning methods was not as good as
TDCMs. We designed a novel semi-supervised learning ANN to do diagnostic
classi�cation and evaluated the performances of the proposed method through

71

a simulation study. In the proposed framework, we combined ANN with a
semi-supervised learning method, the Co-Training method. To hold the two as-
sumptions of successfully applying Co-Training, we used two TDCMs, DINA
and DINO models, as the two classi�ers.

In the simulated study, we compared the proposed method with �ve widely
used TDCMs, DINA, DINO, LCDM, G-DINA, and RUM. By varying the
four assessment factors (item discrimination, Q-matrix accuracy, number of at-
tributes and items) which impact the performance of TDCMs, the comparison
results indicated some advantages of the proposed method.

The �rst advantage is that the proposed ANN method achieved comparable
performance compared with the �ve TDCMs even under the ideal assessment
condition (high diagnostic quality and 100% Q-matrix accuracy). It means that
the proposed ANN method could be used for providing reasonable cognitive di-
agnostic classi�cation result without an appropriate TDCM for an assessment.

The second advantage is that proposed ANN was robust to the Q-matrix
misspeci�cation because the classi�cation rate dropped less than the other �ve
TDCMs when the Q-matrix accuracy decreased to 90% accuracy. This advan-
tage make the proposed method can be used for real large scale assessment be-
cause the Q-matrix of a large number of items can hardly be guaranteed to be
100% accurate.

The last advantage is that although the classi�cation rates of the proposed
method dropped more than DINA and DINO when the item discriminating
power reduced, the proposed method was still more robust to the item discrim-
inating reduction than the general TDCMs. In other words, the proposed
method �nds a trade-o� between classi�cation accuracy and robustness to the
noise.

Generally, the proposed method could demonstrated the ability to provide a
reasonably accurate classi�cation results which can be used for either providing
diagnostic classi�cation. In addition, the classi�cation can be used to determine
the relationship between items and latent class. Then, the relationship can help
researchers to choose the appropriate TDCM to �t the data and estimate both
personal variable and item variables.

4.5 Discussion
Although the study demonstrates promise for using the proposed semi-supervised
learning arti�cial neural networks, there are still some limitations. One concern
of this study is that the current analysis only focused on the classi�cation rate
but not consider the item parameters, which are very important to provide ap-

72

propriate item matching students’ ability in an computer adaptive test or online
adaptive learning environment. Another concern of this study is that the miss-
ing response was not considered in the proposed ANN. In the simulation, we
assumed that all test-takers responded all items, but in real assessment, the miss-
ing ness is a very common issue in CDM. The last concern is that although we
introduced the validating test for early stop to avoid over training, this research
did not evaluate the prediction performance of the proposed method. The rea-
son is that in current CDM area, the research studies focus on explaining data
not doing prediction on a new dataset. With regard to these three concerns,
there will be three future research topics.

The �rst future study is that the classi�cation results could be used to de-
termine the item parameters to evaluate item discriminating power among stu-
dents’ mastery level for speci�c attributes or determine the relationship between
items and attributes to explore the attribute structures. An appropriate di�-
culty that matches a student’s momentary attribute pro�le is expected to en-
courage the student to complete the item.

The second future research direction is to convert the dichotomous re-
sponse patterns to polychotomous response patterns by considering missing
values into the input response pattern. Then a multiclass classi�cation algo-
rithm is applied to classify the latent classes by considering the missing values
even the missingness is related to the latent class (i.e., non-ignorable missing-
ness).

The last future research is to evaluate the prediction performance of the
arti�cial neural network based cognitive diagnostic classi�cation method, and
compare the performance with the TDCMs in doing prediction on new dataset.
With regard to the knowledge in educational data mining (EDM), the predic-
tion will consist of two directions: (1) how is the model’s performance on pre-
dicting new test-takers’ latent variables; (2) how is the model’s performance on
estimating new item’s characteristics. For di�erent directions, the ANN based
method will be built up using di�erent architecture.

73

Table 4.2: Comparison of classi�cation rates for 3 attributes using 20 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Class
Condition Accuracy
1 DINA High 100% .949 (.00) .864 (.02) .957 (.01) .778 (.02)

DINO .953 (.01) .871 (.02) .952 (.02) .784 (.04)
LCDM .96 (.00) .917 (.00) .957 (.00) .842 (.01)
G-DINA .96 (.00) .917 (.00) .957 (.01) .842 (.00)
RUM .953 (.01) .91 (.00) .958 (.00) .827 (.00)
ANN .956 (.01) .915 (.01) .957 (.01) .834 (.02)
ANN* .962 (.01) .921 (.01) .964 (.02) .851 (.02)
ANN** .945 (.01) .901 (.02) .942 (.01) .818 (.03)

2 DINA 90% .944 (.00) .824 (.01) .957 (.00) .741 (.02)
DINO .946 (.01) .852 (.01) .944 (.01) .757 (.02)
LCDM .956 (.00) .897 (.00) .958 (.00) .819 (.00)
G-DINA .956 (.00) .897 (.00) .958 (.01) .819 (.00)
RUM .949 (.00) .879 (.01) .958 (.00) .794 (.01)
ANN .955 (.01) .900 (.02) .958 (.02) .821 (.02)
ANN* .962 (.01) .910 (.02) .969 (.02) .831 (.03)
ANN** .945 (.01) .881 (.02) .932 (.04) .807 (.04)

3 DINA Mixed 100% .875 (.00) .859 (.01) .914 (.00) .693 (.01)
DINO .863 (.01) .864 (.00) .896 (.01) .665 (.01)
LCDM .879 (.01) .884 (.00) .913 (.00) .712 (.01)
G-DINA .879 (.00) .884 (.00) .913 (.00) .712 (.00)
RUM .873 (.01) .9 (.00) .917 (.01) .724 (.00)
ANN .883 (.01) .884 (.02) .915 (.01) .720 (.01)
ANN* .892 (.01) .896 (.01) .929 (.02) .730 (.02)
ANN** .868 (.01) .878 (.02) .911 (.01) .704 (.02)

4 DINA 90% .878 (.01) .85 (.01) .906 (.00) .676 (.02)
DINO .869 (.00) .861 (.00) .908 (.00) .679 (.01)
LCDM .878 (.00) .85 (.00) .918 (.00) .685 (.01)
G-DINA .877 (.00) .85 (.01) .918 (.00) .684 (.00)
RUM .877 (.00) .85 (.01) .915 (.00) .685 (.01)
ANN .874 (.01) .888 (.02) .908 (.02) .704 (.02)
ANN* .889 (.01) .901 (.01) .923 (.01) .719 (.01)
ANN** .867 (.04) .871 (.04) .890 (.03) .683 (.03)

Note. ANN indicate the attribute pro�le estimation using the proposed method on
whole data set; ANN* indicate the attribute pro�le estimation using the proposed
method on the training data set; ANN** indicate the attribute pro�le estimation using
the proposed method on the validation data set.

74

Table 4.3: Comparison of classi�cation rates for 4 attributes using 20 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Attribute 4 Class
Condition Accuracy
5 DINA High 100% .908 (.02) .924 (.03) .79 (.02) .893 (.02) .591 (.03)

DINO .909 (.04) .928 (.05) .858 (.02) .899 (.03) .653 (.04)
LCDM .918 (.01) .929 (.02) .858 (.00) .919 (.01) .67 (.01)
G-DINA .918 (.01) .929 (.01) .858 (.01) .919 (.00) .67 (.01)
RUM .923 (.02) .921(.01) .853 (.02) .917 (.01) .664 (.03)
ANN .919 (.01) .925 (.01) .858 (.03) .922 (.04) .67 (.03)
ANN* .931 (.02) .942 (.01) .870 (.03) .941 (.01) .691 (.03)
ANN** .909 (.03) .918 (.02) .861 (.01) .912 (.04) .655 (.03)

6 DINA 90% .909 (.04) .922 (.04) .74 (.02) .886 (.02) .56 (.03)
DINO .903 (.04) .924 (.02) .852 (.03) .879 (.04) .621 (.04)
LCDM .904 (.01) .922 (.00) .824 (.01) .887 (.01) .616 (.01)
G-DINA .904 (.01) .922 (.01) .824 (.01) .887 (.02) .616 (.01)
RUM .905 (.02) .922 (.02) .8 (.02) .884 (.01) .599 (.03)
ANN .912 (.04) .923 (.01) .862 (.03) .89 (.02) .648 (.03)
ANN* .924 (.02) .931 (.01) .877 (.01) .901 (.02) .657 (.02)
ANN** .903 (.01) .917 (.02) .853 (.03) .883 (.02) .632 (.03)

7 DINA Mixed 100% .854 (.01) .836 (.03) .824 (.02) .851 (.03) .503 (.02)
DINO .863 (.02) .817 (.04) .854 (.02) .816 (.04) .484 (.04)
LCDM .867 (.01) .823 (.01) .855 (.02) .84 (.03) .509 (.01)
G-DINA .867 (.01) .824 (.02) .855 (.04) .84 (.03) .51 (.01)
RUM .878 (.03) .831 (.02) .856 (.03) .837 (.04) .522 (.03)
ANN .864 (.04) .842 (.02) .857 (.03) .859 (.02) .531 (.02)
ANN* .879 (.01) .855 (.03) .870 (.02) .871 (.01) .550 (.02)
ANN** .853 (.03) .839 (.02) .826 (.02) .850 (.04) .504 (.05)

8 DINA 90% .856 (.04) .826 (.02) .744 (.01) .854 (.01) .448 (.02)
DINO .854 (.02) .817 (.02) .855 (.01) .851 (.04) .503 (.05)
LCDM .865 (.00) .817 (.01) .776 (.02) .844 (.01) .469 (.01)
G-DINA .865 (.02) .817 (.01) .776 (.00) .844 (.01) .469 (.01)
RUM .864 (.03) .821 (.01) .855 (.04) .84 (.01) .509 (.03)
ANN .852 (.02) .871 (.02) .855 (.03) .852 (.01) .542 (.04)
ANN* .869 (.03) .883 (.02) .867 (.01) .870 (.00) .558 (.03)
ANN** .850 (.04) .851 (.02) .855 (.02) .854 (.03) .512 (.05)

Note. ANN indicate the attribute pro�le estimation using the proposed method on
whole data set; ANN* indicate the attribute pro�le estimation using the proposed
method on the training data set; ANN** indicate the attribute pro�le estimation using
the proposed method on the validation data set.

75

Table 4.4: Comparison of classi�cation rates for 4 attributes using 30 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Attribute 4 Class
Condition Accuracy
9 DINA High 100% .937 (.04) .938 (.03) .814 (.06) .892 (.02) .641 (.05)

DINO .942 (.01) .941 (.08) .854 (.11) .902 (.08) .681 (.12)
LCDM .947 (.01) .949 (.00) .873 (.02) .925 (.02) .732 (.02)
G-DINA .947 (.00) .949 (.01) .873 (.02) .925 (.03) .732 (.02)
RUM .948 (.02) .945 (.00) .872 (.04) .917 (.03) .719 (.05)
ANN .949 (.01) .944 (.02) .872 (.03) .916 (.02) .722 (.03)
ANN* .955 (.01) .952 (.01) .880 (.02) .935 (.01) .741 (.02)
ANN** .942 (.02) .940 (.02) .860 (.04) .903 (.03) .711 (.04)

10 DINA 90% .934 (.03) .94 (.02) .853 (.04) .853 (.03) .64 (.04)
DINO .935 (.02) .924 (.03) .855 (.08) .874 (.03) .644 (.06)
LCDM .948 (.00) .946 (.01) .858 (.02) .92 (.03) .708 (.04)
G-DINA .948 (.02) .946 (.01) .859 (.03) .92 (.03) .709 (.03)
RUM .945 (.01) .945 (.01) .869 (.02) .915 (.01) .713 (.03)
ANN .952 (.02) .948 (.01) .873 (.02) .916 (.01) .723 (.02)
ANN* .960 (.02) .954 (.02) .890 (.01) .926 (.01) .733 (.02)
ANN** .935 (.03) .940 (.04) .860 (.02) .902 (.04) .703 (.04)

11 DINA Mixed 100% .903 (.03) .876 (.03) .801 (.01) .882 (.02) .56 (.02)
DINO .911 (.03) .884 (.05) .858 (.06) .858 (.04) .586 (.07)
LCDM .912 (.03) .886 (.02) .857 (.02) .88 (.02) .616 (.03)
G-DINA .912 (.02) .886 (.01) .858 (.02) .88 (.01) .617 (.02)
RUM .9 (.02) .884 (.01) .858 (.02) .871 (.03) .592 (.03)
ANN .91 (.01) .889 (.02) .862 (.01) .881 (.01) .616 (.02)
ANN* .916 (.02) .898 (.01) .869 (.02) .900 (.01) .623 (.02)
ANN** .905 (.02) .881 (.03) .850 (.02) .881 (.03) .605 (.03)

12 DINA 90% .908 (.03) .887 (.03) .847 (.01) .876 (.03) .603 (.02)
DINO .906 (.03) .883 (.07) .852 (.08) .836 (.07) .566 (.09)
LCDM .908 (.02) .891 (.01) .863 (.03) .868 (.01) .605 (.02)
G-DINA .908 (.01) .891 (.02) .863 (.03) .868 (.01) .605 (.02)
RUM .905 (.02) .891 (.01) .864 (.03) .861 (.03) .602 (.03)
ANN .909 (.01) .885 (.02) .859 (.01) .871 (.02) .61 (.02)
ANN* .921 (.01) .903 (.02) .869 (.01) .878 (.01) .624 (.01)
ANN** .901 (.03) .889 (.02) .850 (.01) .857 (.03) .603 (.03)

Note. ANN indicate the attribute pro�le estimation using the proposed method on
whole data set; ANN* indicate the attribute pro�le estimation using the proposed
method on the training data set; ANN** indicate the attribute pro�le estimation using
the proposed method on the validation data set.

76

Chapter 5

Conclusion and
Discussion

As a new research area, Arti�cial Neural Networks (ANNs) begins to attract
some research attention for cognitive diagnostic classi�cation. However, some
research studies showed that there are some challenges of applying ANN to
CDM: (1) the current supervised leaning ANNs methods for CDM required
assumption of the item response function; (2) the unsupervised learning ANNs
method for CDM requires further data analysis; (3) the ANNs methods pro-
duced very unstable and unappreciated estimation unless a great deal of care
was taken to conduct sensitivity analyses. To solve these current disadvantages,
in my dissertation, we tried to explore the feasibility of combining ANNs with
TDCMs under both unsupervised learning and semi-supervised learning frame-
work. In particular, this dissertation is comprised of two separate but related
applications. The �rst application is an unsupervised learning ANNs for CDM
and Q-matrix reconstruction; the second application is a semi-supervised learn-
ing ANNs combining with TDCMs to improve the classi�cation accuracy.

5.1 Application 1: An Unsupervised Learning Ar-
ti�cial Neural Network for Cognitive Diag-
nostic Measurement

The research aim was to propose an unsupervised learning ANN with fewer
constraints according to two potential issues in model-based cognitive diagnosis:
model selection and Q-matrix misspeci�cation. To achieve this target, we �rstly
designed an unsupervised learning ANN for attribute estimation which did
not rely on a speci�c assumption of a selected item response function and only

77

requires partial Q-matrix information (i.e., accurate simple items’ q-vectors);
secondly, we proposed a Q-matrix reconstruction method using K-means clus-
tering algorithms to correct or reconstruct the mis-speci�ed or missing elements
of the Q-matrix. We tested our methodology and compared it with two theo-
retical DCMs (DINA and LCDM) under 24 types of simulated test conditions
according to test length, number of simple items per attribute, and the diagnos-
tic quality of the test. The results showed that our methodology provided an
option for users to analyze large scale assessment responses data when lacking
prior knowledge about the items, and also could reconstruct the item-attribute
relationship (Q-matrix) only using limited information. Another advantage
of this methodology showed in experimental results is that unlike the typical
DCMs which removes the items with low discriminating power or the items
with unknown q-vector, the proposed method did not remove such items be-
cause the MAEN structure in the proposed method had the ability to explore
useful information from these items which could not be used in typical DCMs.

But there are still some limits to our method. First, this method cannot
determine the number of attributes. Second, as shown in experimental results,
di�erent types of test conditions, such as test length, simple item proportion,
and diagnostic quality of a test, a�ect the estimation results. The last limit is
when the number of items is small, the theoretical DCMs using partial Q-matrix
provided better performance than the proposed one.

5.2 Application 2: Semi-supervised deep Co-Training
method for CDM

The purpose of this application is to solve two problems that exist in current
supervised learning ANN methods and unsupervised learning ANNs: the su-
pervised learning method requires ideal response pattern to train the model;
the classi�cation accuracy of unsupervised learning methods was not as good
as TDCMs.. We designed a novel semi-supervised learning ANN to do diag-
nostic classi�cation and evaluated the performances of the proposed method
through a simulation study. In the proposed framework, we combined ANN
with a semi-supervised learning method, the Co-Training method. To hold the
two assumptions of successfully applying Co-Training, we used two TDCMs,
DINA and DINO models, as the two classi�ers.

In the simulated study, we compared the proposed method with �ve widely
used TDCMs, DINA, DINO, LCDM, G-DINA, and RUM. By varying the
four assessment factors (item discrimination, Q-matrix accuracy, number of
attributes and items) which impact the performance of TDCMs, the compar-

78

ison results indicated that the proposed ANN method achieved comparable
performance compared with the �ve TDCMs even under the ideal assessment
condition (high diagnostic quality and 100% Q-matrix accuracy). Also, the
proposed ANN was robust to the Q-matrix misspeci�cation because the clas-
si�cation rate dropped less than the other �ve TDCMs when the Q-matrix
accuracy decreased to 90% accuracy. Although the classi�cation rates of the
proposed method dropped more than DINA and DINO when the item dis-
criminating power reduced, the proposed method was still more robust to the
item discrimination reduction than the general TDCMs. In other words, the
proposed method �nds a trade-o� between classi�cation accuracy and robust-
ness to the noise. The classi�cation results could also be useful to update the
item response functions of TDCMs when giving a new assessment dataset.

One concern of this study is that the current analysis only focused on the
classi�cation rate of the proposed method. In the future study, the classi�cation
results could be used to analyze item parameters to evaluate item discriminating
power among students’ mastery level for speci�c attributes or determine the
relationship between items and attributes to explore the attribute structures.
Another concern of this study is that the missing response was not considered
in the proposed ANN.

5.3 Exploration of Using ANNs for Diagnostic
Classi�cation

Together, these two studies show that ANN are a feasible method for cogni-
tive diagnostic modeling. Both unsupervised learning ANN method and semi-
supervised learning ANN method could provide reasonable classi�cation accu-
racy. The classi�cation accuracy of unsupervised learning ANN could be used
to determine the relationship between item and attribute and determine which
TDCM is appropriate for the assessment data. The semi-supervised learning
ANN could provide appreciable classi�cation accuracy as the TDCMs.

In addition, since ANN is a kinds of machine learning method which could
explore useful information from observation, the proposed ANN based meth-
ods are more robust to the noises contained in the assessment, such as items
with low discriminative power, or inaccurate elements in Q-matrix. It provides
ANN based advantages to explore useful information that might be ignored by
human from the observations.

79

5.4 Future Directions
With regard to the limitation of applying ANNs in these two applications, the
future research direction can be divided into two parts: (1) explore the num-
ber of attributes for CDM; (2) consider missing responses in the ANNs; (3)
integrate data analyzing for future psychometric application.

The �rst future research topic would be an investigation into a determi-
nation on the number of attributes before doing cognitive diagnostic classi�-
cation. In the applications of this research, both unsupervised learning and
semi-supervised learning ANNs for CDM held the assumption that the num-
ber of attributes and latent traits is known. Thus, the structures of these two
kinds of ANNs cannot be directly built up for new assessment without the
number of attributes.

The second future research topic would be a combination of a multiclass
classi�cation with the ANNs architecture. The multiclass classi�cation consid-
ers the missing values as the third response type other than the correct response
and incorrect response. The advantage of this combination is that all students’
responses (including missingness) could be used in model training and parame-
ter estimation. In assessment and online learning environment, the missingness
may related to the latent variables (e.g., latent class, item parameters) measured
by CDM. Considering the missingness into the ANNs architecture will in-
crease the estimation accuracy and help to �nd out the relationship between
missing values and the latent variables.

The last future research topic would be introducing new machine learn-
ing techniques into the ANNs to help improve the research in psychometrics.
Transfer learning (TL; Pan and Yang, 2009) and item characteristic prediction
using natural language processing (NLP; Manning et al., 1999) are potentially
applicable. TL could provide a better start point and initialization of the pa-
rameters for training and decreasing the requirement of training sample size by
using the information we have achieved from the previous items with a large
number of responses. NLP could help to initialize the item parameters before
embedding the question in real exam as unscored items. Given the increased
assessment data, the generative and discriminative machine learning and deep
learning models are more e�cient for psychometric applications.

80

Appendix A

Π matrix of Item pool 1

81

Item Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
1 .308* .722*** .308* .722*** .308* .722*** .308* .722***
2 .327* .327* .752*** .752*** .327* .327* .752*** .752***
3 .159* .159* .159* .159* .885*** .885*** .885*** .885***
4 .328* .782*** .328* .782*** .328* .782*** .328* .782***
5 .241* .241* .788*** .788*** .241* .241* .788*** .788***
6 .241* .241* .241* .241* .889*** .889*** .889*** .889***
7 .158* .469** .158* .531** .464** .712*** .438** .712***
8 .349* .349* .556 .419 .493 .502 .81*** .81***
9 .179* .52** .467** .722*** .179* .498** .591** .722***
10 .246* .246* .497** .578** .583** .522** .656*** .656***
11 .233* .482** .429** .686*** .233* .587** .46** .686***
12 .243* .412** .243* .59** .544** .708*** .428** .708***
13 .174* .51** .591** .85*** .174* .517** .481** .85***
14 .225* .225* .53** .464** .462** .444** .874*** .874***
15 .24* .474** .24* .597** .431** .854*** .418** .854***
16 .276* .428** .538** .839*** .276* .524** .578** .839***
17 .273* .273* .535** .547** .504** .532** .745*** .745***
18 .308* .564** .308* .557** .596** .754*** .488** .754***
19 .281* .462** .482** .402** .437** .569** .446** .683***
20 .281* .736*** .281* .736*** .281* .736*** .281* .736***
21 .188* .188* .73*** .73*** .188* .188* .73*** .73***
22 .169* .169* .169* .169* .846*** .846*** .846*** .846***
23 .341* .341* .448** .415** .449** .546** .772*** .772***
24 .179* .569** .179* .5** .478 .753*** .449** .753***
25 .178* .422** .478** .83*** .178* .514** .443** .83***
26 .214* .489** .214* .444** .5** .812*** .471** .812***
27 .194* .194* .194* .194* .727*** .727*** .727*** .727***
28 .347* .347* .742*** .742*** .347* .347* .742*** .742***
29 .328* .53** .475** .805*** .328* .471** .507** .805***
30 .297* .818*** .297* .818*** .297* .818*** .297* .818***

Note. * indicates theπi,c for non mastery group, ** indicates theπi,c for partial mastery
group, *** indicates the πi,c for mastery group.

82

Appendix B

IRP 1 of Item Pool 1

83

Item IRP Non-Mastery Group IRP Mastery Group Discrimination
1 .308 .722 .414
2 .327 .752 .426
3 .159 .885 .726
4 .328 .782 .454
5 .241 .788 .547
6 .241 .889 .649
7 .158 .712 .553
8 .349 .810 .461
9 .179 .722 .543
10 .246 .656 .411
11 .233 .686 .453
12 .243 .708 .465
13 .174 .850 .675
14 .225 .874 .649
15 .24 .854 .614
16 .276 .839 .563
17 .273 .745 .472
18 .308 .754 .447
19 .281 .683 .402
20 .281 .736 .455
21 .188 .730 .543
22 .169 .846 .677
23 .341 .772 .431
24 .179 .753 .573
25 .178 .830 .652
26 .214 .812 .598
27 .194 .727 .533
28 .347 .742 .396
29 .328 .805 .477
30 .297 .818 .521

Note. 1. IRP indicates the item response probability, also known as correct response
rate.

84

Appendix C

True Values of λs 1 under
the LCDM for Item Pool 1

85

Item λ0 (Intercepts) λ1 λ2 λ3 λ12 λ13 λ23 λ123
1 -.811 1.765 0 0 0 0 0 0
2 -.724 0 1.834 0 0 0 0 0
3 -1.665 0 0 3.707 0 0 0 0
4 -.715 1.993 0 0 0 0 0 0
5 -1.145 0 2.458 0 0 0 0 0
6 -1.150 0 0 3.232 0 0 0 0
7 -1.670 1.770 0 1.671 0 -.869 0 0
8 -.624 0 .739 .859 0 0 .478 0
9 -1.520 1.600 1.642 0 -.766 0 0 0
10 -1.122 0 1.472 1.318 0 0 -1.021 0
11 -1.192 1.223 .970 0 -.221 0 0 0
12 -1.135 1.048 0 .850 0 .124 0 0
13 -1.555 1.277 1.676 0 .334 0 0 0
14 -1.237 0 1.144 1.189 0 0 .839 0
15 -1.154 1.057 0 1.017 0 .844 0 0
16 -.965 1.208 1.067 0 .338 0 0 0
17 -.982 0 .864 .859 0 0 .331 0
18 -.811 .595 0 .776 0 .563 0 0
19 -.941 .621 .889 1.259 -.176 -.626 -1.468 1.209
20 -.938 1.962 0 0 0 0 0 0
21 -1.466 0 2.461 0 0 0 0 0
22 -1.595 0 0 3.295 0 0 0 0
23 -.659 0 .651 .632 0 0 .597 0
24 -1.520 1.671 0 1.731 0 -.769 0 0
25 -1.527 1.525 1.628 0 -.040 0 0 0
26 -1.301 1.504 0 1.297 0 -.038 0 0
27 -1.425 0 0 2.404 0 0 0 0
28 -.633 0 1.691 0 0 0 0 0
29 -.716 .433 .627 0 1.073 0 0 0
30 -.860 2.364 0 0 0 0 0 0

Note. 1. λ0 is intercept; λ1, λ2, and λ3 are main e�ects; λ12, λ13, λ23, and λ123 are
interaction e�ects..

86

Appendix D

Π matrix of Item pool 2

87

Item Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
1 .304* .502*** .304* .502*** .304* .502*** .304* .502***
2 .364* .364* .6*** .6*** .364* .364* .6*** .6***
3 .396* .396* .396* .396* .528*** .528*** .528*** .528***
4 .262* .385*** .262* .385*** .262* .385*** .262* .385***
5 .202* .202* .257*** .257*** .202* .202* .257*** .257***
6 .369* .369* .369* .369* .438*** .438*** .438*** .438***
7 .248* .359** .248* .281** .31** .461*** .288** .461***
8 .278* .278* .372** .306** .408** .39** .41*** .41***
9 .289* .389** .382** .462*** .289* .345** .368** .462***
10 .271* .271* .402** .358** .397** .318** .432*** .432***
11 .326* .432** .366** .561*** .326* .415** .398** .561***
12 .274* .314** .274* .359** .411** .458*** .409** .458***
13 .342* .383** .39** .55*** .342* .49** .435** .55***
14 .383* .383* .524** .453** .444** .482** .625*** .625***
15 .387* .41** .387* .473** .423** .602*** .531** .602***
16 .248* .338** .325** .529*** .248* .308** .38** .529***
17 .273* .273* .328** .316** .299** .299** .403*** .403***
18 .243* .315** .243* .281** .275** .428*** .344** .428***
19 .364* .371** .469** .417** .425** .487** .502** .57***
20 .296* .464*** .296* .464*** .296* .464*** .296* .464***
21 .34* .34* .614*** .614*** .34* .34* .614*** .614***
22 .324* .324* .324* .324* .452*** .452*** .452*** .452***
23 .308* .308* .35** .452** .417** .411** .568*** .568***
24 .231* .239** .231* .29** .303** .465*** .315** .465***
25 .262* .367** .399** .52*** .262* .355** .326** .52***
26 .251* .332** .251* .26** .29** .506*** .311** .506***
27 .234* .234* .234* .234* .355*** .355*** .355*** .355***
28 .294* .294* .555*** .555*** .294* .294* .555*** .555***
29 .385* .415** .51** .618*** .385* .408** .506** .618***
30 .267* .371*** .267* .371*** .267* .371*** .267* .371***

Note. * indicates theπi,c for non mastery group, ** indicates theπi,c for partial mastery
group, *** indicates the πi,c for mastery group.

88

Appendix E

IRP 1 of Item Pool 2

89

Item IRP Non-Mastery Group IRP Mastery Group Discrimination
1 .304 .502 .198
2 .364 .600 .236
3 .396 .528 .132
4 .262 .385 .123
5 .202 .257 .055
6 .369 .438 .069
7 .248 .461 .213
8 .278 .410 .132
9 .289 .462 .173
10 .271 .432 .161
11 .326 .561 .235
12 .274 .458 .184
13 .342 .550 .208
14 .383 .625 .242
15 .387 .602 .214
16 .248 .529 .281
17 .273 .403 .13
18 .243 .428 .185
19 .364 .570 .206
20 .296 .464 .168
21 .340 .614 .275
22 .324 .452 .129
23 .308 .568 .26
24 .231 .465 .234
25 .262 .520 .258
26 .251 .506 .255
27 .234 .355 .121
28 .294 .555 .26
29 .385 .618 .233
30 .267 .371 .104

Note. 1. IRP indicates the item response probability, also known as correct response
rate.

90

Appendix F

True Values of λs 1 under
the LCDM for Item Pool 2

91

Item λ0 (Intercepts) λ1 λ2 λ3 λ12 λ13 λ23 λ123
1 -.827 .836 0 0 0 0 0 0
2 -.557 0 .963 0 0 0 0 0
3 -.422 0 0 .534 0 0 0 0
4 -1.034 .566 0 0 0 0 0 0
5 -1.373 0 .313 0 0 0 0 0
6 -.539 0 0 .289 0 0 0 0
7 -1.110 .125 0 .562 0 .267 0 0
8 -.957 0 .130 .336 0 0 .127 0
9 -.901 .200 .391 0 .158 0 0 0
10 -.989 0 .442 .228 0 0 .047 0
11 -.726 .3 .489 0 .183 0 0 0
12 -.972 .480 0 .486 0 -.161 0 0
13 -.656 .240 .275 0 .341 0 0 0
14 -.478 0 .361 .400 0 0 .228 0
15 -.458 .269 0 .249 0 .351 0 0
16 -1.111 .526 .37 0 .331 0 0 0
17 -.980 0 .167 .233 0 0 .186 0
18 -1.135 .265 0 .389 0 .192 0 0
19 -.557 .565 .179 .451 -.154 -.591 -.596 .984
20 -.869 .723 0 0 0 0 0 0
21 -.665 0 1.131 0 0 0 0 0
22 -.737 0 0 .545 0 0 0 0
23 -.808 0 .109 .201 0 0 .771 0
24 -1.205 .504 0 .318 0 .242 0 0
25 -1.034 .583 .475 0 .056 0 0 0
26 -1.091 .300 0 .295 0 .520 0 0
27 -1.188 0 0 .591 0 0 0 0
28 -.875 0 1.094 0 0 0 0 0
29 -.468 .558 .365 0 .027 0 0 0
30 -1.009 .483 0 0 0 0 0 0

Note. 1. λ0 is intercept; λ1, λ2, and λ3 are main e�ects; λ12, λ13, λ23, and λ123 are
interaction e�ects.

92

Appendix G

Q-matrix for 3 Attribute,
20 Items Test.

Item Attribute 1 Attribute 2 Attribute 3
1 1 0 0
2 0 1 0
3 0 0 1
4 1 0 0
5 0 1 0
6 0 0 1
7 0 1 1
8 1 1 0
9 0 0 1
10 1 1 0
11 1 1 1
12 1 0 0
13 1 1 0
14 1 0 1
15 1 1 0
16 0 0 1
17 0 1 0
18 1 0 0
19 1 0 1
20 1 0 1

93

Appendix H

Q-matrix for 4 Attribute,
20 Items Test.

Item Attribute Attribute 2 Attribute 3 Attribute 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 0 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 0 1
9 0 1 1 1
10 1 1 0 1
11 0 0 1 0
12 1 1 0 0
13 1 1 1 1
14 1 0 0 1
15 1 1 0 1
16 1 0 1 0
17 1 1 0 0
18 0 0 1 1
19 0 0 0 1
20 0 1 0 1

94

Appendix I

Q-matrix for 4 Attribute,
30 Items Test.

95

Item Attribute Attribute 2 Attribute 3 Attribute 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 0 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 0 1
9 0 1 1 1
10 1 1 0 1
11 0 0 1 0
12 1 1 0 0
13 1 1 1 1
14 1 0 0 1
15 1 1 0 1
16 1 0 1 0
17 1 1 0 0
18 0 0 1 1
19 0 0 0 1
20 0 1 0 1
21 1 0 0 0
22 1 0 1 1
23 1 0 1 1
24 0 1 0 1
25 0 0 1 0
26 1 1 1 1
27 0 0 0 1
28 0 1 1 1
29 0 1 0 1
30 1 0 0 1

96

Appendix J

IRP* Table of 3 Attribute,
20 Items, High

Discrimination Test.

Item Non-Mastery Group IRP Mastery Group IRP Discrimination
1 .324 .699 .375
2 .342 .757 .415
3 .172 .878 .706
4 .357 .821 .465
5 .234 .771 .537
6 .246 .887 .641
7 .151 .698 .547
8 .334 .816 .482
9 .295 .823 .527
10 .3 .898 .598
11 .197 .729 .533
12 .25 .697 .447
13 .261 .703 .441
14 .212 .853 .641
15 .218 .877 .66
16 .145 .828 .682
17 .218 .754 .536
18 .256 .855 .598
19 .289 .822 .533
20 .27 .751 .481

Note. * IRP indicates the item response probability, also known as correct response
rate.

97

Appendix K

IRP* Table of 3 Attribute,
20 Items, Mixed

Discrimination Test.

Item Non-Mastery Group IRP Mastery Group IRP Discrimination
1 .354 .586 .232
2 .364 .814 .45
3 .366 .507 .141
4 .288 .776 .488
5 .167 .731 .563
6 .39 .63 .24
7 .208 .795 .586
8 .213 .758 .545
9 .205 .678 .473
10 .248 .467 .218
11 .225 .856 .631
12 .331 .35 .019
13 .296 .87 .574
14 .159 .83 .671
15 .306 .412 .106
16 .308 .694 .386
17 .273 .463 .19
18 .224 .342 .119
19 .417 .674 .257
20 .202 .856 .654

Note. * IRP indicates the item response probability, also known as correct response
rate.

98

Appendix L

IRP* Table of 4 Attribute,
20 Items, High

Discrimination Test.

Item Non-Mastery Group IRP Mastery Group IRP Discrimination
1 .33 .711 .381
2 .35 .778 .428
3 .159 .892 .733
4 .336 .75 .415
5 .252 .796 .544
6 .239 .896 .657
7 .274 .819 .545
8 .328 .705 .378
9 .205 .697 .492
10 .238 .762 .524
11 .192 .692 .501
12 .195 .803 .608
13 .302 .818 .516
14 .261 .726 .465
15 .184 .739 .555
16 .356 .757 .402
17 .172 .829 .657
18 .319 .754 .436
19 .175 .683 .508
20 .303 .839 .537

Note. * IRP indicates the item response probability, also known as correct response
rate.

99

Appendix M

IRP* Table of 4 Attribute,
20 Items, Mixed

Discrimination Test.

Item Non-Mastery Group IRP Mastery Group IRP Discrimination
1 .394 .57 .176
2 .35 .794 .444
3 .335 .526 .19
4 .254 .762 .508
5 .208 .715 .507
6 .396 .662 .266
7 .331 .823 .492
8 .278 .642 .363
9 .388 .73 .342
10 .186 .422 .236
11 .253 .881 .627
12 .436 .522 .086
13 .265 .723 .458
14 .198 .777 .579
15 .273 .406 .134
16 .372 .753 .381
17 .23 .475 .244
18 .351 .55 .199
19 .242 .262 .02
20 .189 .794 .604

Note. * IRP indicates the item response probability, also known as correct response
rate.

100

Appendix N

IRP* Table of 4 Attribute,
30 Items, High

Discrimination Test.

101

Item Non-Mastery Group IRP Mastery Group IRP Discrimination
1 .307 .736 .429
2 .349 .774 .425
3 .141 .898 .757
4 .333 .745 .412
5 .248 .782 .535
6 .248 .878 .63
7 .256 .846 .59
8 .324 .68 .356
9 .199 .738 .539
10 .236 .78 .544
11 .175 .702 .527
12 .188 .791 .603
13 .251 .869 .617
14 .283 .722 .439
15 .215 .694 .479
16 .343 .739 .396
17 .171 .836 .665
18 .376 .742 .365
19 .167 .685 .518
20 .282 .842 .56
21 .229 .898 .668
22 .211 .753 .542
23 .189 .872 .683
24 .261 .717 .457
25 .263 .867 .603
26 .219 .884 .665
27 .297 .744 .447
28 .234 .792 .558
29 .331 .734 .403
30 .245 .795 .55

Note. * IRP indicates the item response probability, also known as correct response
rate.

102

Appendix O

IRP* Table of 4 Attribute,
30 Items, Mixed

Discrimination Test.

103

Item Non-Mastery Group IRP Mastery Group IRP Discrimination
1 .405 .681 .275
2 .325 .828 .504
3 .197 .366 .169
4 .195 .856 .661
5 .21 .69 .481
6 .248 .347 .099
7 .214 .756 .541
8 .195 .683 .488
9 .199 .898 .699
10 .379 .455 .076
11 .195 .786 .592
12 .264 .539 .274
13 .179 .805 .627
14 .202 .89 .688
15 .2 .502 .302
16 .265 .787 .522
17 .347 .593 .246
18 .26 .408 .148
19 .307 .364 .057
20 .193 .827 .634
21 .216 .76 .544
22 .216 .88 .664
23 .271 .784 .513
24 .224 .782 .558
25 .173 .727 .553
26 .296 .677 .381
27 .276 .768 .491
28 .264 .833 .568
29 .255 .403 .148
30 .334 .532 .198

Note. * IRP indicates the item response probability, also known as correct response
rate.

104

Appendix P

Π of 3 Attribute, 20 Items,
High Discrimination

Test.

105

Item C1 C2 C3 C4 C5 C6 C7 C8
000 100 010 110 001 101 011 111

1 .308* .722*** .308* .722*** .308* .722*** .308* .722***
2 .327* .327* .752*** .752*** .327* .327* .752*** .752***
3 .159* .159* .159* .159* .885*** .885*** .885*** .885***
4 .328* .782*** .328* .782*** .328* .782*** .328* .782***
5 .241* .241* .788*** .788*** .241* .241* .788*** .788***
6 .241* .241* .241* .241* .889*** .889*** .889*** .889***
7 .158* .158* .536** .515** .421** .58** .712*** .712***
8 .349* .466** .591** .81*** .349* .578** .539** .81***
9 .292* .292* .292* .292* .814*** .814*** .814*** .814***
10 .33* .509** .519** .891*** .33* .458** .429** .891***
11 .196* .538** .559** .405** .496** .552** .443** .73***
12 .233* .686*** .233* .686*** .233* .686*** .233* .686***
13 .243* .483** .474** .708*** .243* .43** .428** .708***
14 .174* .453** .174* .572** .409** .85*** .488** .85***
15 .225* .512** .441** .874*** .225* .426** .551** .874***
16 .169* .169* .169* .169* .816*** .816*** .816*** .816***
17 .205* .205* .746*** .746*** .205* .205* .746*** .746***
18 .24* .854*** .24* .854*** .24* .854*** .24* .854***
19 .276* .562** .276* .562** .559** .839*** .488** .839***
20 .273* .542** .273* .4** .495** .745*** .444** .745***

Note. * indicates the πic for non mastery group, ** indicates the πic for partial mastery
group, *** indicates the πic for mastery group. The binary vector (e.g., 001) under class
name (e.g., C5) indicates the attribute pro�le of the latent class.

106

Appendix Q

Π of 3 Attribute, 20 Items,
Mixed Discrimination

Test.

107

Item C1 C2 C3 C4 C5 C6 C7 C8
000 100 010 110 001 101 011 111

1 .378* .579*** .378* .579*** .378* .579*** .378* .579***
2 .349* .349* .81*** .81*** .349* .349* .81*** .81***
3 .331* .331* .331* .331* .537*** .537*** .537*** .537***
4 .269* .786*** .269* .786*** .269* .786*** .269* .786***
5 .179* .179* .722*** .722*** .179* .179* .722*** .722***
6 .393* .393* .393* .393* .654*** .654*** .654*** .654***
7 .193* .193* .538** .559** .405** .496** .84*** .84***
8 .224* .464** .446** .753*** .224* .429** .483** .753***
9 .178* .178* .178* .178* .688*** .688*** .688*** .688***
10 .247* .317** .287** .447*** .247* .375** .253** .447***
11 .225* .56** .424** .512** .441** .426** .551** .874***
12 .333* .361*** .333* .361*** .333* .361*** .333* .361***
13 .312* .477** .455** .853*** .312* .563** .49** .853***
14 .15* .559** .15* .488** .551** .828*** .526** .828***
15 .295* .328** .352** .409*** .295* .387** .348** .409***
16 .284* .284* .284* .284* .711*** .711*** .711*** .711***
17 .284* .284* .512*** .512*** .284* .284* .512*** .512***
18 .221* .347*** .221* .347*** .221* .347*** .221* .347***
19 .397* .531** .397* .53** .423** .633*** .417** .633***
20 .169* .469** .169* .531** .464** .846*** .438** .846***

Note. * indicates the πic for non mastery group, ** indicates the πic for partial mastery
group, *** indicates the πic for mastery group. The binary vector (e.g., 001) under class
name (e.g., C5) indicates the attribute pro�le of the latent class.

108

Appendix R

Π of 4 Attribute, 20 Items,
High Discrimination

Test.

109

Item
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

10
C

11
C

12
C

13
C

14
C

15
C

16
0000

1000
0100

1100
0010

1010
0110

1110
0001

1001
0101

1101
0011

1011
0111

1111
1

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

2
.327*

.327*
.752***

.752***
.327*

.327*
.752***

.752***
.327*

.327*
.752***

.752***
.327*

.327*
.752***

.752***
3

.159*
.159*

.159*
.159*

.885***
.885***

.885***
.885***

.159*
.159*

.159*
.159*

.885***
.885***

.885***
.885***

4
.328*

.328*
.328*

.328*
.328*

.328*
.328*

.328*
.782***

.782***
.782***

.782***
.782***

.782***
.782***

.782***
5

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

6
.241*

.241*
.889***

.889***
.241*

.241*
.889***

.889***
.241*

.241*
.889***

.889***
.241*

.241*
.889***

.889***
7

.265*
.265*

.265*
.265*

.819***
.819***

.819***
.819***

.265*
.265*

.265*
.265*

.819***
.819***

.819***
.819***

8
.33*

.33*
.33*

.33*
.33*

.33*
.33*

.33*
.676***

.676***
.676***

.676***
.676***

.676***
.676***

.676***
9

.179*
.179*

.449**
.408**

.466**
.591**

.578**
.539**

.528**
.599**

.531**
.542**

.509**
.519**

.722***
.722***

10
.224*

.593**
.58**

.538**
.224*

.559**
.405**

.496**
.552**

.443**
.464**

.753***
.446**

.429**
.483**

.753***
11

.178*
.178*

.178*
.178*

.688***
.688***

.688***
.688***

.178*
.178*

.178*
.178*

.688***
.688***

.688***
.688***

12
.191*

.447**
.493**

.79***
.191*

.453**
.572**

.79***
.191*

.409**
.488**

.79***
.191*

.56**
.424**

.79***
13

.276*
.426**

.551**
.579**

.475**
.533**

.419**
.477**

.455**
.563**

.49**
.562**

.562**
.559**

.488**
.839***

14
.284*

.542**
.284*

.4**
.284*

.495**
.284*

.444**
.476**

.711***
.523**

.711***
.47**

.711***
.422**

.711***
15

.188*
.484**

.558**
.421**

.188*
.487**

.597**
.579**

.577**
.435**

.426**
.73***

.531**
.469**

.531**
.73***

16
.328*

.556**
.328*

.419**
.493**

.771***
.502**

.771***
.328*

.52**
.328*

.467**
.498**

.771***
.591**

.771***
17

.178*
.583**

.522**
.83***

.178*
.482**

.429**
.83***

.178*
.587**

.46**
.83***

.178*
.412**

.59**
.83***

18
.347*

.347*
.347*

.347*
.51**

.591**
.517**

.481**
.53**

.464**
.462**

.444**
.742***

.742***
.742***

.742***
19

.168*
.168*

.168*
.168*

.168*
.168*

.168*
.168*

.689***
.689***

.689***
.689***

.689***
.689***

.689***
.689***

20
.307*

.307*
.428**

.538**
.307*

.307*
.524**

.578**
.535**

.547**
.855***

.855***
.504**

.532**
.855***

.855***

N
ote.*indicatesthe

π
ic fornon

m
astery

group,**indicatesthe
π
ic forpartialm

astery
group,***indicatesthe

π
ic form

astery
group.T

hebinary
vector

(e.g.,0010)underclassnam
e(e.g.,C

5)indicatestheattributepro�leofthelatentclass.

110

Appendix S

Π of 4 Attribute, 20 Items,
Mixed Discrimination

Test.

111

Item
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

10
C

11
C

12
C

13
C

14
C

15
C

16
0000

1000
0100

1100
0010

1010
0110

1110
0001

1001
0101

1101
0011

1011
0111

1111
1

.378*
.579***

.378*
.579***

.378*
.579***

.378*
.579***

.378*
.579***

.378*
.579***

.378*
.579***

.378*
.579***

2
.349*

.349*
.81***

.81***
.349*

.349*
.81***

.81***
.349*

.349*
.81***

.81***
.349

.349
.81***

.81***
3

.331*
.331*

.331*
.331*

.537***
.537***

.537***
.537***

.331*
.331*

.331*
.331*

.537***
.537***

.537***
.537***

4
.269*

.269*
.269*

.269*
.269*

.269*
.269*

.269*
.786***

.786***
.786***

.786***
.786***

.786***
.786***

.786***
5

.179*
.722***

.179*
.722***

.179*
.722***

.179*
.722***

.179*
.722***

.179*
.722***

.179*
.722***

.179*
.722***

6
.393*

.393*
.654***

.654***
.393*

.393*
.654***

.654***
.393*

.393*
.654***

.654***
.393*

.393*
.654***

.654***
7

.309*
.309*

.309*
.309*

.823***
.823***

.823***
.823***

.309*
.309*

.309*
.309*

.823***
.823***

.823***
.823***

8
.246*

.246*
.246*

.246*
.246*

.246*
.246*

.246
.656***

.656***
.656***

.656***
.656***

.656***
.656***

.656***
9

.322*
.322*

.552**
.443**

.464**
.446**

.429**
.483**

.483**
.474**

.43**
.428**

.447***
.493

.716***
.716***

10
.209*

.275**
.329**

.227**
.209*

.293**
.24**

.228**
.322**

.343***
.265**

.386***
.309**

.223**
.267**

.386***
11

.24*
.24*

.24*
.24*

.854***
.854***

.854***
.854***

.24*
.24*

.24*
.24*

.854***
.854***

.854***
.854***

12
.362*

.484**
.481**

.521***
.362*

.428**
.475**

.521***
.362*

.456**
.469**

.521***
.362*

.362*
.433**

.521***
13

.281*
.476**

.523**
.47**

.422**
.449**

.534**
.484**

.558**
.421**

.487**
.597**

.579**
.577**

.435**
.683***

14
.217*

.469**
.217*

.531**
.217*

.464**
.217*

.438**
.556**

.8***
.419**

.8***
.493**

.8***
.502**

.8***
15

.298*
.441**

.37**
.431**

.298*
.435**

.389**
.359**

.32**
.438**

.343
.462***

.307**
.44**

.406**
.462***

16
.347*

.51**
.347*

.591**
.517**

.742***
.481**

.742***
.347*

.53**
.347*

.464
.462**

.742***
.444**

.742***
17

.231*
.244**

.252**
.468***

.231*
.334**

.324**
.468***

.231*
.365**

.332
.468***

.231*
.341**

.309**
.468***

18
.364*

.364*
.364*

.364*
.482**

.511**
.43**

.411**
.426**

.366**
.392

.491
.544***

.544***
.544***

.544***
19

.248*
.248*

.248*
.248*

.248*
.248*

.248*
.248*

.27***
.27***

.27***
.27***

.27***
.27***

.27***
.27***

20
.193*

.193*
.449**

.546**
.193*

.193*
.569**

.5**
.478**

.449**
.793***

.793***
.422**

.478**
.793***

.793***

N
ote.*indicatesthe

π
ic fornon

m
astery

group,**indicatesthe
π
ic forpartialm

astery
group,***indicatesthe

π
ic form

astery
group.T

hebinary
vector

(e.g.,0010)underclassnam
e(e.g.,C

5)indicatestheattributepro�leofthelatentclass.

112

Appendix T

Π of 4 Attribute, 30 Items,
High Discrimination

Test.

113

Item
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

10
C

11
C

12
C

13
C

14
C

15
C

16
0000

1000
0100

1100
0010

1010
0110

1110
0001

1001
0101

1101
0011

1011
0111

1111
1

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

.308*
.722***

2
.327*

.327*
.752***

.752***
.327*

.327*
.752***

.752***
.327*

.327*
.752***

.752***
.327*

.327*
.752***

.752***
3

.159*
.159*

.159*
.159*

.885***
.885***

.885***
.885***

.159*
.159*

.159*
.159*

.885***
.885***

.885***
.885***

4
.328*

.328*
.328*

.328*
.328*

.328*
.328*

.328*
.782***

.782***
.782***

.782***
.782***

.782***
.782***

.782***
5

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

.241*
.788***

6
.241*

.241*
.889***

.889***
.241*

.241*
.889***

.889***
.241*

.241*
.889***

.889***
.241*

.241*
.889***

.889***
7

.265*
.265*

.265*
.265*

.819***
.819***

.819***
.819***

.265*
.265*

.265*
.265*

.819***
.819***

.819***
.819***

8
.33*

.33*
.33*

.33*
.33*

.33*
.33*

.33*
.676***

.676***
.676***

.676***
.676***

.676***
.676***

.676***
9

.179*
.179*

.449**
.408**

.466**
.591**

.578**
.539**

.528**
.599**

.531**
.542**

.509**
.519**

.722***
.722***

10
.224*

.593**
.58**

.538**
.224*

.559**
.405**

.496**
.552**

.443**
.464**

.753***
.446**

.429**
.483**

.753***
11

.178*
.178*

.178*
.178*

.688***
.688***

.688***
.688***

.178*
.178*

.178*
.178*

.688***
.688***

.688***
.688***

12
.191*

.447**
.493**

.79***
.191*

.453**
.572**

.79***
.191*

.409**
.488**

.79***
.191*

.56**
.424**

.79***
13

.276*
.426**

.551**
.579**

.475**
.533**

.419**
.477**

.455**
.563**

.49**
.562**

.562**
.559**

.488**
.839***

14
.284*

.542**
.284*

.4**
.284*

.495**
.284*

.444**
.476**

.711***
.523**

.711***
.47**

.711***
.422**

.711***
15

.188*
.484**

.558**
.421**

.188*
.487**

.597**
.579**

.577**
.435**

.426**
.73***

.531**
.469**

.531**
.73***

16
.328*

.556**
.328*

.419**
.493**

.771***
.502**

.771***
.328*

.52**
.328*

.467**
.498**

.771***
.591**

.771***
17

.178*
.583**

.522**
.83***

.178*
.482**

.429**
.83***

.178*
.587**

.46**
.83***

.178*
.412**

.59**
.83***

18
.347*

.347*
.347*

.347*
.51**

.591**
.517**

.481**
.53**

.464**
.462**

.444**
.742***

.742***
.742***

.742***
19

.168*
.168*

.168*
.168*

.168*
.168*

.168*
.168*

.689***
.689***

.689***
.689***

.689***
.689***

.689***
.689***

20
.307*

.307*
.428**

.538**
.307*

.307*
.524**

.578**
.535**

.547**
.855***

.855***
.504**

.532**
.855***

.855***
21

.238*
.895***

.238*
.895***

.238*
.895***

.238*
.895***

.238*
.895***

.238*
.895***

.238*
.895***

.238*
.895***

22
.199*

.462**
.199*

.482**
.402**

.437**
.569**

.446**
.448**

.415**
.449**

.546**
.569**

.747***
.5**

.747***
23

.194*
.422**

.194*
.478**

.514**
.443**

.489**
.444**

.5**
.471**

.53**
.475**

.471**
.835***

.507**
.835***

24
.256*

.256*
.483**

.453**
.256*

.256*
.526**

.437**
.573**

.549**
.743***

.743***
.534**

.524**
.743***

.743***
25

.266*
.266*

.266*
.266*

.869***
.869***

.869***
.869***

.266*
.266*

.266*
.266*

.869***
.869***

.869***
.869***

26
.243*

.568**
.462**

.542**
.453**

.519**
.496**

.453**
.513**

.583**
.58**

.455**
.464**

.597**
.524**

.884***
27

.282*
.282*

.282*
.282*

.282*
.282*

.282*
.282*

.752***
.752***

.752***
.752***

.752***
.752***

.752***
.752***

28
.201*

.201*
.43**

.515**
.448**

.592**
.52**

.503**
.481**

.576**
.473**

.458**
.434**

.434**
.771***

.771***
29

.342*
.342*

.443**
.535**

.342*
.342*

.41**
.54**

.47**
.482**

.721***
.721***

.564**
.584**

.721***
.721***

30
.236*

.546**
.236*

.537**
.236*

.411**
.236*

.479**
.496**

.805***
.512**

.805***
.54**

.805***
.583**

.805***

N
ote.*indicatesthe

π
ic fornon

m
astery

group,**indicatesthe
π
ic forpartialm

astery
group,***indicatesthe

π
ic form

astery
group.T

hebinary
vector

(e.g.,0010)underclassnam
e(e.g.,C

5)indicatestheattributepro�leofthelatentclass.

114

Appendix U

Π of 4 Attribute, 30 Items,
Mixed Discrimination

Test.

115

Item
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

10
C

11
C

12
C

13
C

14
C

15
C

16
0000

1000
0100

1100
0010

1010
0110

1110
0001

1001
0101

1101
0011

1011
0111

1111
1

.393*
.654***

.393*
.654***

.393*
.654***

.393*
.654***

.393*
.654***

.393*
.654***

.393*
.654***

.393*
.654***

2
.309*

.309*
.823***

.823***
.309*

.309*
.823***

.823***
.309*

.309*
.823***

.823***
.309*

.309*
.823***

.823***
3

.205*
.205*

.205*
.205*

.343***
.343***

.343***
.343***

.205*
.205*

.205*
.205*

.343***
.343***

.343***
.343***

4
.193*

.193*
.193*

.193*
.193*

.193*
.193*

.193*
.84***

.84***
.84***

.84***
.84***

.84***
.84***

.84***
5

.196*
.73***

.196*
.73***

.196*
.73***

.196*
.73***

.196*
.73***

.196*
.73***

.196*
.73***

.196*
.73***

6
.229*

.229*
.349***

.349***
.229*

.229*
.349***

.349***
.229*

.229*
.349***

.349***
.229*

.229*
.349***

.349***
7

.224*
.224*

.224*
.224*

.753***
.753***

.753***
.753***

.224*
.224*

.224*
.224*

.753***
.753***

.753***
.753***

8
.178*

.178*
.178*

.178*
.178*

.178*
.178*

.178*
.688***

.688***
.688***

.688***
.688***

.688***
.688***

.688***
9

.225*
.225*

.447**
.493**

.453**
.572**

.409**
.488**

.56**
.424**

.512**
.441**

.426**
.551**

.874***
.874***

10
.333*

.347**
.391**

.374**
.333*

.455***
.4**

.445**
.455***

.452**
.399**

.455***
.446**

.427**
.44**

.455***
11

.194*
.194*

.194*
.194*

.769***
.769***

.769***
.769***

.194*
.194*

.194*
.194*

.769***
.769***

.769***
.769***

12
.276*

.368**
.329**

.469***
.276*

.293**
.313**

.469***
.276*

.376**
.339**

.469***
.276*

.394**
.291**

.469***
13

.217*
.597**

.579**
.577**

.435**
.426**

.531**
.469**

.531**
.464**

.438**
.556**

.419**
.493**

.502**
.8***

14
.21*

.498**
.21*

.591**
.21*

.497**
.21*

.578**
.583**

.884***
.522**

.884***
.482**

.884***
.429**

.884***
15

.212*
.354**

.32**
.233**

.212*
.295**

.355**
.3**

.273**
.309**

.26**
.5***

.258**
.245**

.268**
.5***

16
.282*

.431**
.282*

.418**
.428**

.78***
.538**

.78***
.282*

.524**
.282*

.578**
.535**

.78***
.547**

.78***
17

.364*
.482**

.511**
.544***

.364*
.43**

.411**
.544***

.364*
.426**

.366**
.544***

.364*
.392**

.491**
.544***

18
.248*

.248*
.248*

.248*
.259**

.285**
.358**

.375**
.322**

.306**
.285**

.264**
.438***

.438***
.438***

.438***
19

.314*
.314*

.314*
.314*

.314*
.314*

.314*
.314*

.377***
.377***

.377***
.377***

.377***
.377***

.377***
.377***

20
.194*

.194*
.489**

.444**
.194*

.194*
.5**

.471**
.53**

.475**
.835***

.835***
.471**

.507**
.835***

.835***
21

.203*
.753***

.203*
.753***

.203*
.753***

.203*
.753***

.203*
.753***

.203*
.753***

.203*
.753***

.203*
.753***

22
.203*

.526**
.203*

.437**
.573**

.549**
.534**

.524**
.474**

.506**
.575**

.516**
.568**

.827***
.462**

.827***
23

.282*
.519**

.282*
.496**

.453**
.513**

.583**
.58**

.455**
.464**

.597**
.524**

.587**
.752***

.493**
.752***

24
.208*

.208*
.43**

.515**
.208*

.208*
.448**

.592**
.52**

.503**
.741***

.741***
.481**

.576**
.741***

.741***
25

.184*
.184*

.184*
.184*

.693***
.693***

.693***
.693***

.184*
.184*

.184*
.184*

.693***
.693***

.693***
.693***

26
.229*

.496**
.451**

.443**
.535**

.41**
.54**

.47**
.482**

.564**
.584**

.457**
.592**

.546**
.537**

.663***
27

.262*
.262*

.262*
.262*

.262*
.262*

.262*
.262*

.769***
.769***

.769***
.769***

.769***
.769***

.769***
.769***

28
.282*

.282*
.54**

.583**
.524**

.486**
.508**

.412**
.452**

.479**
.44**

.566**
.431**

.561**
.787***

.787***
29

.234*
.234*

.329**
.281**

.234*
.234*

.343**
.294**

.38**
.379**

.412***
.412***

.343**
.273**

.412***
.412***

30
.319*

.359**
.319*

.398**
.319*

.436**
.319*

.344**
.379**

.591***
.389**

.591***
.449**

.591***
.457**

.591***

N
ote.*indicatesthe

π
ic fornon

m
astery

group,**indicatesthe
π
ic forpartialm

astery
group,***indicatesthe

π
ic form

astery
group.T

hebinary
vector

(e.g.,0010)underclassnam
e(e.g.,C

5)indicatestheattributepro�leofthelatentclass.

116

Appendix V

R Code of Data
Simulation

l i b r a r y (r e a d r)
l i b r a r y (d p l y r)
l i b r a r y (p u r r r)
l i b r a r y (t i d y r)
l i b r a r y (g g p l o t 2)
l i b r a r y (g l m n e t)
l i b r a r y (p r o d l i m)
l i b r a r y (c o m p o s i t i o n s)

s o u r c e (" s imFun . R")

l i s t b a s e d f u n c t i o n m e t h o d
#
q−m a t r i x and a t t r i b u t e
p r o f i l e l o a d i n g and p a r a m e t e r i n i t i a l i z a t i o n

f i l e _path <− " 4_ 3 0 / "
q . mat <−

read _ c s v (p a s t e (f i l e _path , " Q m a t r i x . c s v " , s e p = ’ ’))
q . mat . f u l l <−

read _ c s v (p a s t e (f i l e _path , " f u l l _ Q m a t r i x . c s v " , s e p = ’ ’))

q . mat <− q . mat [1 : 3 0 ,]
q . mat . f u l l <− q . mat . f u l l [1 : 3 0 ,]
SET_DOUBLE_DISTRIBUTION <− FALSE
HIGH <− FALSE

117

s e t . s e e d (1 2 3)

i f (SET_DOUBLE_DISTRIBUTION) {
r e p 3 t i m e s f o r t w o t y p e s o f d i s c r i m i n a t i o n : h i g h l o w
q . mat <− b i n d _ r o w s (q . mat , q . mat)
q . mat . f u l l <− b i n d _ r o w s (q . mat . f u l l , q . mat . f u l l)
n . i t e m <− nrow (q . mat)
n . a t t r <− n c o l (q . mat)

d i s . i d x <− c (rep (TRUE, n . i t e m / 2) , rep (FALSE , n . i t e m / 2))
w r i t e _ c s v (d a t a . f r a m e (d i s . i d x) , p a s t e (f i l e _ p a t h ,
’ d i s _ i n d x . c s v ’ , s e p = ’ ’))

} e l s e {
n . i t e m <− nrow (q . mat)
n . a t t r <− n c o l (q . mat)

i f (HIGH) {
d i s . i d x <− rep (TRUE, n . i t e m)

} e l s e {
d i s . i d x <− sample (c (TRUE, FALSE) ,

s i z e = n . i t e m , r e p l a c e = TRUE,
p r o b = c (0 . 5 , 0 . 5))

}

w r i t e _ c s v (d a t a . f r a m e (d i s . i d x) , p a s t e (f i l e _ p a t h ,
’ d i s _ i n d x . c s v ’ , s e p = ’ ’))

}

d i s . i d x <− c (r e p (TRUE , 3 0) , r e p (FALSE , 3 0))
n . c l a s s <− 2^ n . a t t r
n . e x a m i n e e <− 1 0 0 0 # number o f e x m a i n e e s
cor . a t t r <− 0 . 5 # c o r r e l a t i o n b e t w e e n a t t r i b u t e s

a t t r <− map (1 : n . a t t r , f u n c t i o n (x) { 0 : 1 })
names (a t t r) <− p a s t e (" a t t r " , 1 : n . a t t r , s e p = " ")
a t t r . p r o f <− matrix (u n l i s t (expand . g r i d (a t t r)) ,
n c o l = n . a t t r)
co lnames (a t t r . p r o f) <− names (a t t r)

a t t r . p r o f . f u l l <− t (apply (a t t r . p r o f , 1 , comb1 , n = 3))
n = min (c (3 , n . a t t r))))

118

p r o b . i n i
f i r s t t w o c o l u m n s
p r o b . i n i <− c (0 . 9 , 0 . 6 5 , 0 . 7 0 , 0 . 5 5 ,

0 . 6 0 , 0 . 4 0 , 0 . 5 5 , 0 . 4 5 ,
0 . 3 5 , 0 . 1 5 , 0 . 4 , 0 . 2) %>%

matrix (n c o l = 4 , byrow = TRUE)
rownames (p r o b . i n i) <− c (" Mas " , " p a r M a s " , " noMas ")
co lnames (p r o b . i n i) <− c (" u p p e r " , " l o w e r " ,
" u p p e r−low " , " l o w e r−low ")
n o r m a l d i s c r i m i n a t i o n , l o w d i s c r i m i n a t i o n

mat . p r o b <− a t t r . p r o f . f u l l %*% t (a s . matrix (q . mat . f u l l))
i d e a l . p r o b <− apply (q . mat . f u l l , 1 , sum)
l a m b d a <− { }

s e t
f o r (i i n 1 : n . i t e m) {

i f (d i s . i d x [i]) {
mat . p r o b [! (mat . p r o b [, i] % i n % c (0 , i d e a l . p r o b [i])) , i] <−

r u n i f (sum (! (mat . p r o b [, i] % i n % c (0 , i d e a l . p r o b [i]))) ,
min = p r o b . i n i [’ p a r M a s ’ , ’ l o w e r ’] ,
max = p r o b . i n i [’ p a r M a s ’ , ’ u p p e r ’]) %>%

round (3)

mat . p r o b [mat . p r o b [, i] == i d e a l . p r o b [i] , i] <−
r u n i f (sum (mat . p r o b [, i] == i d e a l . p r o b [i]) ,

min = p r o b . i n i [’ Mas ’ , ’ l o w e r ’] ,
max = p r o b . i n i [’ Mas ’ , ’ u p p e r ’]) %>%

round (4)
mat . p r o b [mat . p r o b [, i] == 0 , i] <−

r u n i f (sum (mat . p r o b [, i] == 0) ,
min = p r o b . i n i [’ noMas ’ , ’ l o w e r ’] ,
max = p r o b . i n i [’ noMas ’ , ’ u p p e r ’]) %>%

round (5)
} e l s e {

p r o b . non <− r u n i f (sum (mat . p r o b [, i] == 0) ,
min = p r o b . i n i [’ noMas ’ , ’ l o w e r−low ’] ,
max = p r o b . i n i [’ noMas ’ , ’ u p p e r−low ’])

119

p r o b . p a r t <−
r u n i f (sum (! (mat . p r o b [, i] % i n % c (0 , i d e a l . p r o b [i]))) ,
min = max (p r o b . non) , max = max (p r o b . non) + 0 . 1 5)
i f (l e n g t h (p r o b . p a r t) > 0) {

p r o b . m a s t e r y <−
r u n i f (sum (mat . p r o b [, i] == i d e a l . p r o b [i]) ,
min = max (p r o b . p a r t) , max = max (p r o b . non) + 0 . 3 0)

} e l s e {
p r o b . m a s t e r y <−
r u n i f (sum (mat . p r o b [, i] == i d e a l . p r o b [i]) ,
min = max (p r o b . non) , max = max (p r o b . non) + 0 . 3 0)

}

mat . p r o b [! (mat . p r o b [, i] % i n % c (0 , i d e a l . p r o b [i])) , i] <−
p r o b . p a r t
mat . p r o b [mat . p r o b [, i] == 0 , i] <−p r o b . non
mat . p r o b [mat . p r o b [, i] == i d e a l . p r o b [i] , i] <−
p r o b . m a s t e r y

}

mat . k <− cbind (1 ,
a t t r . p r o f . f u l l *
matr ix (rep (u n l i s t (q . mat . f u l l [i ,]) , n . c l a s s) ,
nrow = n . c l a s s , byrow = TRUE))

p r o b <− mat . p r o b [, i]
l a m b d a <− cbind (lambda ,
round (MASS : : g i n v (mat . k) %*% l o g (p r o b / (1− p r o b)) , 4)
)

}

p i <− t (mat . p r o b) %>%
d a t a . frame ()

names (p i) <− 1 : n c o l (p i)

i f (HIGH) {
w r i t e _ c s v (round (p i , 3) ,
f i l e . path (f i l e _path , ’ p i _ h i g h . c s v ’))

} e l s e {
w r i t e _ c s v (round (p i , 3) ,
f i l e . path (f i l e _path , ’ p i _ low . c s v ’))

120

}

s e t d i f f e r e n t p r o b f o r d i f f e r e n t a t t r i b u t e

l a m b d a <− d a t a . frame (t (l a m b d a))
co lnames (l a m b d a) <− c (’ I n t e r c e p t ’ , co lnames (q . mat . f u l l))

s a v e t h e i t e m p a r a m e t e r s
i f (HIGH) {

w r i t e _ c s v (lambda ,
p a s t e (f i l e _path , ’ l a m b d a h i g h . c s v ’ , s e p = ’ ’))

} e l s e {
w r i t e _ c s v (lambda ,

p a s t e (f i l e _path , ’ l a m b d a m i x e d . c s v ’ , s e p = ’ ’))
}

#
S i m u l a t e A t t r i b u t e p r o f i l e and g e t t h e r e s p o n s e
#

a v g . a t t r <− rep (0 . 5 , n . a t t r)

s i g m a <− matrix (cor . a t t r , n . a t t r , n . a t t r)
d i a g (s i g m a) <− 1
e x a m i n e e . a t t r <− b i n d a t a : : r m v b i n (n . e x a m i n e e ,

m a r g p r o b = a v g . a t t r ,
s i g m a = s i g m a)

e x a m i n e e . c a t e g o r y <−
apply (e x a m i n e e . a t t r , 1 , p r o d l i m : : row . match , a t t r . p r o f)

e x a m i n e e . a t t r <−
cbind (e x a m i n e e . a t t r , e x a m i n e e . c a t e g o r y)

co lnames (e x a m i n e e . a t t r) <− c (names (q . mat) , ’ c l a s s ’)

i f (HIGH) {
w r i t e _ c s v (d a t a . frame (e x a m i n e e . a t t r) ,

p a s t e (f i l e _path , " a t t r i b u t e P r o f i l e h i g h . c s v " , s e p = ’ ’))
w r i t e _ c s v (d a t a . frame (a t t r . p r o f) ,

p a s t e (f i l e _path , " a t t r i b u t e P a t t e r n h i g h . c s v " , s e p = ’ ’))
} e l s e {

121

w r i t e _ c s v (d a t a . frame (e x a m i n e e . a t t r) ,
p a s t e (f i l e _path , " a t t r i b u t e P r o f i l e m i x e d . c s v " , s e p = ’ ’))

w r i t e _ c s v (d a t a . frame (a t t r . p r o f) ,
p a s t e (f i l e _path , " a t t r i b u t e P a t t e r n m i x e d . c s v " , s e p = ’ ’))

}
g e t t h e r e s p o n s e p e r i t e m
add c l a s s f o r e a c h e x a m i n e e

r e s p o n s e . p r o b <− mat . p r o b [e x a m i n e e . c a t e g o r y ,]
r e s p o n s e . p a t t e r n <−

(r e s p o n s e . p r o b > matrix (r u n i f (n . i t e m *n . e x a m i n e e , 0 , 1) ,
nrow = n . e x a m i n e e))

co lnames (r e s p o n s e . p a t t e r n) <− p a s t e (" I t e m " ,
s p r i n t f (" %02d " , 1 : nrow (q . mat)) , s e p = " _ ")

r e s p o n s e <− d a t a . frame (r e s p o n s e . p a t t e r n)
i f (HIGH) {

w r i t e _ c s v (r e s p o n s e ,
p a s t e (f i l e _path , ’ r e s p o n s e h i g h . c s v ’ , s e p = ’ ’))

} e l s e {
w r i t e _ c s v (r e s p o n s e ,

p a s t e (f i l e _path , ’ r e s p o n s e m i x e d . c s v ’ , s e p = ’ ’))
}

g 1 <− r e s p o n s e %>%
m u t a t e (C l a s s = e x a m i n e e . c a t e g o r y) %>%
g a t h e r (k e y = Item , v a l u e = R e s p o n s e , −C l a s s) %>%
g g p l o t (a e s (C l a s s , f i l l = R e s p o n s e)) +
geom_ b a r (p o s i t i o n = " f i l l ") +
f a c e t _wrap (~ Item , n c o l = 1 0)

i f (HIGH) {
g g s a v e (f i l e . path (f i l e _path , " I t e m _ r e s p o n s e _ h i g h . p d f ") ,

g 1 , w i d t h = 2 0 , h e i g h t = 4 0)

} e l s e {
g g s a v e (f i l e . path (f i l e _path , " I t e m _ r e s p o n s e _ m i x e d . p d f ") ,

g 1 , w i d t h = 2 0 , h e i g h t = 4 0)
}

122

s a v e IRP
IRP <− NULL
f o r (i i n 1 : n . i t e m) {

a t t r . names <− names (q . mat) [q . mat [i ,] == 1]
sub . e x a m i n e e . a t t r <− e x a m i n e e . a t t r [, a t t r . names] == 1
i f (l e n g t h (a t t r . names) > 1) {

m a s t e r y . g r o u p <− apply (sub . e x a m i n e e . a t t r , 1 , a l l)
n o n m a s t e r y . g r o u p <− apply (! sub . e x a m i n e e . a t t r , 1 , a l l)
p a r t i a l m a s t e r y . g r o u p <− ! n o n m a s t e r y . g r o u p & ! n o n m a s t e r y . g r o u p
sub . IRP <− c (mean (r e s p o n s e [n o n m a s t e r y . group , i]) ,

mean (r e s p o n s e [p a r t i a l m a s t e r y . group , i]) ,
mean (r e s p o n s e [m a s t e r y . group , i]))

IRP <− rbind (IRP , sub . IRP)
} e l s e {

m a s t e r y . g r o u p <− sub . e x a m i n e e . a t t r
n o n m a s t e r y . g r o u p <− ! sub . e x a m i n e e . a t t r
sub . IRP <− c (mean (r e s p o n s e [n o n m a s t e r y . group , i]) ,

−1 ,
mean (r e s p o n s e [m a s t e r y . group , i]))

IRP <− rbind (IRP , sub . IRP)
}

}

IRP <− d a t a . frame (IRP)
names (IRP) <−

c (" non−m a s t e r y g r o u p " ,
’ p a r t i a l l y m a s t e r y g r o u p ’ , ’ m a s t e r y g r o u p ’)

IRP <− IRP %>%
m u t a t e (D i s c r i m i n a t i o n =
‘ m a s t e r y group ‘ − ‘ non−m a s t e r y group ‘)

i f (HIGH) {
w r i t e _ c s v (x = round (IRP , 3) ,

path = p a s t e (f i l e _path , ’ IRP t a b l e h i g h . c s v ’))
} e l s e {

w r i t e _ c s v (x = round (IRP , 3) ,
path = p a s t e (f i l e _path , ’ IRP t a b l e m i x e d . c s v ’))

}

123

Appendix W

R Code of DCMs fitting

f i r s t t e s t o f e r r o r l a b e l i n g m e t h o d
l i b r a r y (CDM)
l i b r a r y (t i d y v e r s e)

num o f a t t r ,
num o f i t e m ,
l e v e l o f d i s c ,
q−m a t r i x a c c u r a c y ,
e x a m i n e e s

n_ a t t r <− 3
n_ i t e m <− 1 5
d i s c <− ’ h ’
a c c _q <− 1 0 0
n_ e x a m i n e e <− 1 0 0 0

f o l d e r _name <− p a s t e (n_ a t t r , # num o f a t t r
n_ i t e m , # num o f i t e m
d i s c , # l e v e l o f d i s c
a c c _q , # q−m a t r i x a c c u r a c y
s e p = " _ ")

s a v e _sub_path <− f i l e . path (s a v e _path , f o l d e r _name)
i f (! d i r . e x i s t s (s a v e _sub_path)) d i r . c r e a t e (s a v e _sub_path)

i t e m _ l i s t <− c (1 : 7 , 4 8 : 5 2 , 7 3 : 7 5)
s e t . s e e d (1 2 3)
index_ e x a m i n e e <−

sample (1 : 2 0 0 0 , 2 0 0 0 , r e p l a c e = FALSE) [1 : 1 0 0 0]

124

t r u e _ l a b e l <−
read _ c s v (f i l e . path (d a t a _path ,
" a t t r i b u t e P r o f i l e . c s v ")) [index_ e x a m i n e e ,]

t r u e _ a t t r i b u t e _ p r o f i l e <− t r u e _ l a b e l [, 1 : n_ a t t r]
t r u e _ c l a s s <− t r u e _ l a b e l [, n_ a t t r + 1]

a t t r _ p r o f <−
read _ c s v (f i l e . path (d a t a _path ,
" a t t r _ p r o f . c s v ")) [, − 1]

q_mat <−
read _ c s v (f i l e . path (d a t a _path ,
" Q m a t r i x . c s v ")) [c (1 : 1 2 , 3 3 : 3 5) ,]

r e s p o n s e <−
read _ c s v (f i l e . path (d a t a _path ,
" r e s p o n s e . c s v ")) [index_ e x a m i n e e , i t e m _ l i s t]

i f (a c c _q < 1 0 0) {
complex_index = apply (q_mat , 1 , sum) > 1
complex_q_mat = q_mat [complex_index ,] %>%

a s . matrix ()
e r r o r _ e l e m e n t =

round ((1 0 0− a c c _q) / 1 0 0 * nrow (q_mat) * n c o l (q_mat))
s e t . s e e d (1 2 3)
row_index = sample (x = 1 : nrow (complex_q_mat) ,

s i z e = e r r o r _ e l e m e n t ,
r e p l a c e = F)

c o l _index = sample (x = 1 : n c o l (complex_q_mat) ,
s i z e = e r r o r _ e l e m e n t ,
r e p l a c e = T)

complex_q_mat [cbind (row_index , c o l _index)] =
1 − complex_q_mat [cbind (row_index , c o l _index)]

q_mat [complex_index ,] = a s . matrix (complex_q_mat)
}

u s i n g DINA m o d e l t o e s t i m a t e
f i t _ d i n a <− g d i n a (r e s p o n s e * 1 ,

q . matrix = q_mat , r u l e = "DINA" , s e e d = 1 2 3)
p o s t _ a t t r _ d i n a <− f i t _ d i n a $ p a t t e r n %>%

d p l y r : : s e l e c t (s t a r t s _ w i t h (" p o s t . a t t r "))

a t t r _ d i n a <−

125

(p o s t _ a t t r _ d i n a > 0 . 5) * 1 == t r u e _ a t t r i b u t e _ p r o f i l e

u s i n g DINO m o d e l t o e s t i m a t e
f i t _ d i n o <−

g d i n a (r e s p o n s e * 1 , q . matrix = q_mat ,
r u l e = "DINO" , s e e d = 1 2 3)

p o s t _ a t t r _ d i n o <− f i t _ d i n o $ p a t t e r n %>%
d p l y r : : s e l e c t (s t a r t s _ w i t h (" p o s t . a t t r "))

a t t r _ d i n o <−
(p o s t _ a t t r _ d i n o > 0 . 5) * 1 == t r u e _ a t t r i b u t e _ p r o f i l e

u s i n g LCDM m o d e l t o e s t i m a t e
f i t _ lcdm <−

g d i n a (r e s p o n s e * 1 , q . matrix = q_mat ,
l i n k f c t = " l o g i t " , s e e d = 1 2 3)

p o s t _ a t t r _ lcdm <− f i t _ lcdm $ p a t t e r n %>%
d p l y r : : s e l e c t (s t a r t s _ w i t h (" p o s t . a t t r "))

a t t r _ lcdm <−
(p o s t _ a t t r _ lcdm > 0 . 5) * 1 == t r u e _ a t t r i b u t e _ p r o f i l e

u s i n g G−DINA m o d e l t o e s t i m a t e
f i t _ g d i n a <−

g d i n a (r e s p o n s e * 1 , q . matrix = q_mat , s e e d = 1 2 3)
p o s t _ a t t r _ g d i n a <− f i t _ g d i n a $ p a t t e r n %>%

d p l y r : : s e l e c t (s t a r t s _ w i t h (" p o s t . a t t r "))

a t t r _ g d i n o <−
(p o s t _ a t t r _ g d i n a > 0 . 5) * 1 == t r u e _ a t t r i b u t e _ p r o f i l e

u s i n g RRUM m o d e l t o e s t i m a t e
f i t _rrum <−

g d i n a (r e s p o n s e * 1 , q . matrix = q_mat ,
r u l e = "RRUM" , s e e d = 1 2 3)

p o s t _ a t t r _rrum <− f i t _rrum $ p a t t e r n %>%
d p l y r : : s e l e c t (s t a r t s _ w i t h (" p o s t . a t t r "))

a t t r _rrum <−
(p o s t _ a t t r _rrum > 0 . 5) * 1 == t r u e _ a t t r i b u t e _ p r o f i l e

126

u s i n g ACDM m o d e l t o e s t i m a t e
f i t _acdm <−

g d i n a (r e s p o n s e * 1 , q . matrix = q_mat ,
r u l e = "ACDM" , s e e d = 1 2 3)

p o s t _ a t t r _acdm <− f i t _acdm $ p a t t e r n %>%
d p l y r : : s e l e c t (s t a r t s _ w i t h (" p o s t . a t t r "))

a t t r _acdm <−
(p o s t _ a t t r _acdm > 0 . 5) * 1 == t r u e _ a t t r i b u t e _ p r o f i l e

#
c a t (" \ n DINA : " , apply (a t t r _ d i n a , 2 , mean) , " \ n " ,

"DINO : " , apply (a t t r _ d i n o , 2 , mean) , " \ n " ,
"LCDM: " , apply (a t t r _ lcdm , 2 , mean) , " \ n " ,
" g d i n a : " , apply (a t t r _ g d i n o , 2 , mean) , " \ n " ,
"RRUM: " , apply (a t t r _rrum , 2 , mean) , " \ n " ,
"ACDM: " , apply (a t t r _acdm , 2 , mean) , " \ n ")

s a v i n g t h e e r r o r l a b e l s and t r u e v a l u e a s c s v
w r i t e _ c s v (x = t r u e _ l a b e l ,

path = f i l e . path (s a v e _sub_path , " t r u e _ l a b e l . c s v "))
w r i t e _ c s v (x = q_mat ,

path = f i l e . path (s a v e _sub_path , " q_mat . c s v "))
w r i t e _ c s v (x = r e s p o n s e ,

path = f i l e . path (s a v e _sub_path , " r e s p o n s e . c s v "))

a l l _ a t t r <−
cbind (p o s t _ a t t r _ d i n a , p o s t _ a t t r _ d i n o , p o s t _ a t t r _ lcdm ,
p o s t _ a t t r _ g d i n a , p o s t _ a t t r _rrum , p o s t _ a t t r _acdm) %>%

d a t a . frame ()
names (a l l _ a t t r) <−

p a s t e (p a s t e (" a t t r " , c (1 : n c o l (q_mat)) , s e p = " _ ") ,
rep (c ("DINA" , "DINO" , "LCDM" , "GDINA" , "RRUM" , "ACDM") ,
e a c h = n c o l (q_mat)) , s e p = " _ ")

w r i t e _ c s v (a l l _ a t t r ,
path = f i l e . path (s a v e _sub_path , " e r r o r _ l a b e l . c s v "))

127

Appendix X

Python Code of MAEN in
Chapter 3

! / u s r / b i n / e n v p y t h o n 3
−*− c o d i n g : u t f −8 −*−
" " "
C r e a t e d on Wed Mar 2 8 1 1 : 4 9 : 1 4 2 0 1 8
T h i s v e r s i o n a s s u m e o n l y o n e h i d d e n l a y e r
b e t w e e n r e s p o n s e s (i n p u t)
and a t t r i b u t e (c o d e) ;
@ a u t h o r : Kang Xue
" " "

import t e n s o r f l o w a s t f
import numpy a s np
import p a n d a s a s pd
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
import o s
from s k l e a r n . c l u s t e r import KMeans

d i s _ i n d e x =
np . a r r a y (pd . r e a d _ c s v (’ i n p u t D a t a 2 / d i s _ i n d x . c s v ’))

q _ m a t r i x _ a l l =
np . a r r a y (pd . r e a d _ c s v (’ i n p u t D a t a 2 / Q m a t r i x . c s v ’))

q _ m a t r i x _ a l l = np . r o w _ s t a c k ((q _ m a t r i x _ a l l , q _ m a t r i x _ a l l))
s i m p l e _ i n d e x = np . a p p l y _ a l o n g _ a x i s (np . sum , 1 , q _ m a t r i x _ a l l) == 1

i t e m _ i n f o = np . c o l u m n _ s t a c k (
(range (q _ m a t r i x _ a l l . s h a p e [0]) , s i m p l e _ i n d e x ,

128

d i s _ i n d e x , q _ m a t r i x _ a l l))
itemID , s i m p l e , d i s c r i m i n a t i o n , Q−m a t r i x

c h o o s e t h e i t e m s
l o o p _ i n f o r m = pd . r e a d _ c s v (’ i n p u t D a t a 2 / i t e m _ s e l e c t i o n . c s v ’)

f o r f i l e N a m e , i t e m _ c h o i c e in l o o p _ i n f o r m . i t e m s () :
p r i n t (f i l e N a m e)
f i l e _ p a t h = ’ R e s u l t s / ’ + f i l e N a m e + ’ / ’
i f not o s . p a t h . e x i s t s (f i l e _ p a t h) :

o s . m k d i r (f i l e _ p a t h)

l o a d q m a t r i x , r e s p o n s e
q _ m a t r i x =

q _ m a t r i x _ a l l [i t e m _ c h o i c e , :]
r e s p o n s e =

np . a r r a y (pd . r e a d _ c s v (’ i n p u t D a t a 2 / r e s p o n s e . c s v ’))
[: , i t e m _ c h o i c e]

a t t r _ p r o f i l e =
np . a r r a y (pd . r e a d _ c s v (’ i n p u t D a t a 2 / a t t r i b u t e P r o f i l e . c s v ’))

n _ a t t r = q _ m a t r i x . s h a p e [1] # number o f a t t r i b u t e s
n _ e x a m i n e e = r e s p o n s e . s h a p e [0] # number o f e x a m i n e e s

s a m p l e _ i n d e x =
np . random . c h o i c e (n _ e x a m i n e e , 2 0 0 0)

r e s p o n s e = r e s p o n s e [s a m p l e _ i n d e x , :]
s i m p l e _ i n d e x = np . a p p l y _ a l o n g _ a x i s (np . sum , 1 , q _ m a t r i x) == 1

s i m p l e _ r e s p o n s e = r e s p o n s e [: , s i m p l e _ i n d e x]
s i m p l e _ q m a t = q _ m a t r i x [s i m p l e _ i n d e x , :]

c o m p l e x _ r e s p o n s e = r e s p o n s e [: , ~ s i m p l e _ i n d e x]
c o m p l e x _ q m a t = q _ m a t r i x [~ s i m p l e _ i n d e x , :]

T r a i n i n g P a r a m e t e r s
num_input = np . a p p l y _ a l o n g _ a x i s (sum , 0 , s i m p l e _ q m a t)
num_input = np . a p p e n d (num_input , c o m p l e x _ q m a t . s h a p e [0])
c u m _ i n p u t = np . cumsum (num_input)

num_hidden = 1 0 0
num_hidden_2 = 5 0

129

l e a r n i n g _ r a t e = 0 . 0 0 1
n u m _ s t e p s = 1 0 0 0
b a t c h _ s i z e = 200
l o o p _ m a x = 5 0

n _ c o d e = n _ a t t r

o r d e r _ i n d e x =
np . c o n c a t e n a t e ((
np . a r r a y (range (q _ m a t r i x . s h a p e [0]))
[s i m p l e _ i n d e x & q _ m a t r i x [: , 0] == 1] ,
np . a r r a y (range (q _ m a t r i x . s h a p e [0]))
[s i m p l e _ i n d e x & q _ m a t r i x [: , 1] == 1] ,
np . a r r a y (range (q _ m a t r i x . s h a p e [0]))
[s i m p l e _ i n d e x & q _ m a t r i x [: , 2] == 1] ,
np . a r r a y (range (q _ m a t r i x . s h a p e [0]))
[~ s i m p l e _ i n d e x]
) , a x i s = 0)

r e s p o n s e = r e s p o n s e [: , o r d e r _ i n d e x]

t f Graph i n p u t (o n l y p i c t u r e s)
X = t f . p l a c e h o l d e r (" f l o a t " , [None , c u m _ i n p u t [− 1]])

Y = t f . p l a c e h o l d e r (" f l o a t " , [None , c u m _ i n p u t [− 1]])

w e i g h t s = {
’ e n c o d e r _ h 1 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[c u m _ i n p u t [− 1] , num_hidden] ,
mean = 0)) ,
’ e n c o d e r _ h 2 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[num_hidden , n _ c o d e] , mean = 0)) ,

’ d e c o d e r _ h 1 _ 1 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[1 , num_input [0]] , mean = 1)) ,
’ d e c o d e r _ h 1 _ 2 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[1 , num_input [1]] , mean = 1)) ,

130

’ d e c o d e r _ h 1 _ 3 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[1 , num_input [2]] , mean = 1)) ,
’ d e c o d e r _ h 1 _ 4 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[n_code , num_hidden_2] , mean = 1)) ,
’ d e c o d e r _ h 2 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[num_hidden_2 , num_input [3]] ,
mean = 1))
}

b i a s e s = {
’ e n c o d e r _ b 1 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[num_hidden] , mean = 0)) ,
’ e n c o d e r _ b 2 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[n _ c o d e] , mean = 0)) ,

’ d e c o d e r _ b 1 _ 1 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[num_input [0]] , mean = − 2 . 5)) ,
’ d e c o d e r _ b 1 _ 2 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[num_input [1]] , mean = − 2 . 5)) ,
’ d e c o d e r _ b 1 _ 3 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[num_input [2]] , mean = − 2 . 5)) ,
’ d e c o d e r _ b 1 _ 4 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[num_hidden_2] , mean = − 2 . 5)) ,
’ d e c o d e r _ b 2 ’ :
t f . V a r i a b l e (t f . r a n d o m _ n o r m a l (

[num_input [3]] , mean = − 2 . 5)) ,

}

def e n c o d e r (x) :
E n c o d e r Hidden l a y e r w i t h s i g m o i d a c t i v a t i o n # 1
l a y e r _ 1 = t f . nn . r e l u (

131

t f . add (t f . matmul (x , w e i g h t s [’ e n c o d e r _ h 1 ’]) ,
b i a s e s [’ e n c o d e r _ b 1 ’]))
l a y e r _ 2 = t f . nn . s i g m o i d (
t f . add (t f . matmul (t f . nn . d r o p o u t (l a y e r _ 1 , r a t e = 0 . 3) ,

w e i g h t s [’ e n c o d e r _ h 2 ’]) , b i a s e s [’ e n c o d e r _ b 2 ’]))
r e t u r n l a y e r _ 2

B u i l d i n g t h e d e c o d e r
def d e c o d e r (x) :

x = x > t f . c o n s t a n t (0 . 5 , s h a p e = x . s h a p e)
D e c o d e r Hidden l a y e r w i t h s i g m o i d a c t i v a t i o n # 1
l a y e r _ 1 _ 1 = t f . nn . s i g m o i d (
t f . add (t f . matmul (x [: , 0 : 1] , w e i g h t s [’ d e c o d e r _ h 1 _ 1 ’]) ,
b i a s e s [’ d e c o d e r _ b 1 _ 1 ’]))
l a y e r _ 1 _ 2 = t f . nn . s i g m o i d (
t f . add (t f . matmul (x [: , 1 : 2] , w e i g h t s [’ d e c o d e r _ h 1 _ 2 ’]) ,
b i a s e s [’ d e c o d e r _ b 1 _ 2 ’]))
l a y e r _ 1 _ 3 = t f . nn . s i g m o i d (
t f . add (t f . matmul (x [: , 2 : 3] , w e i g h t s [’ d e c o d e r _ h 1 _ 3 ’]) ,
b i a s e s [’ d e c o d e r _ b 1 _ 3 ’]))

l a y e r _ 1 _ 4 = t f . nn . r e l u (
t f . add (t f . matmul (x , w e i g h t s [’ d e c o d e r _ h 1 _ 4 ’]) ,
b i a s e s [’ d e c o d e r _ b 1 _ 4 ’]))

l a y e r _ 2 = t f . nn . s i g m o i d (
t f . add (t f . matmul (
t f . nn . d r o p o u t (l a y e r _ 1 _ 4 , r a t e = 0 . 3) ,
w e i g h t s [’ d e c o d e r _ h 2 ’]) , b i a s e s [’ d e c o d e r _ b 2 ’]))

l a y e r _ 3 = t f . c o n c a t ([l a y e r _ 1 _ 1 , l a y e r _ 1 _ 2 ,
l a y e r _ 1 _ 3 , l a y e r _ 2] , 1)

r e t u r n l a y e r _ 3

e n c o d e r _ o p = e n c o d e r (X)

d e c o d e r _ o p = d e c o d e r (e n c o d e r _ o p)

P r e d i c t i o n
y _ p r e d = d e c o d e r _ o p

132

T a r g e t s (L a b e l s) a r e t h e i n p u t d a t a .
y _ t r u e = Y

D e f i n e l o s s and o p t i m i z e r , m i n i m i z e t h e s q u a r e d e r r o r
l o s s = t f . r e d u c e _ m e a n (t f . pow (y _ t r u e − y _ p r e d , 2))
o p t i m i z e r =

t f . t r a i n . RMSPropOptimizer (l e a r n i n g _ r a t e) . m i n i m i z e (l o s s)

i n i t = t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ()

def q _ m a t r i x _ d e t e c t (a t t r _ e s t , i) :
noMas = np . a r r a y ([r e s p o n s e [~ a t t r _ e s t [: , 0] , i] . mean () ,

r e s p o n s e [~ a t t r _ e s t [: , 1] , i] . mean () ,
r e s p o n s e [~ a t t r _ e s t [: , 2] , i] . mean ()])

Mas = np . a r r a y ([r e s p o n s e [a t t r _ e s t [: , 0] , i] . mean () ,
r e s p o n s e [a t t r _ e s t [: , 1] , i] . mean () ,
r e s p o n s e [a t t r _ e s t [: , 2] , i] . mean ()])

d i f = Mas − noMas

k m e a n s = KMeans (n _ c l u s t e r s = 2) . f i t (d i f . r e s h a p e (− 1 , 1))

l a b e l s w i t c h
i f (d i f [k m e a n s . l a b e l s _ == 0] . mean () >

d i f [k m e a n s . l a b e l s _ == 1] . mean ()) :
k m e a n s . l a b e l s _ = np . abs (k m e a n s . l a b e l s _ − 1)

i f (k m e a n s . l a b e l s _ . sum () <= 1) :
k m e a n s . l a b e l s _ = (d i f > 0 . 1 5) * 1
i f (k m e a n s . l a b e l s _ . sum () <= 1) :

k m e a n s . l a b e l s _ [np . a r g s o r t (d i f) [[− 1 , −2]]] = 1

r e t u r n k m e a n s . l a b e l s _

p a t t e r n _ a c c u r a c y = []
a t t r i b u t e _ a c c u r a c y = []
Q _ e r r o r _ r a t e = []
l o o p = 0
whi le (l o o p < l o o p _ m a x) :

w i t h t f . S e s s i o n () a s s e s s :
Run t h e i n i t i a l i z e r

133

s e s s . r u n (i n i t)

T r a i n i n g
f o r i in range (1 , n u m _ s t e p s + 1) :

P r e p a r e Data
G e t t h e n e x t b a t c h o f r e s p o n s e d a t a

s t a r t = (i − 1) * b a t c h _ s i z e % r e s p o n s e . s h a p e [0]
i f (s t a r t == 0) :

r a n d _ i n d e x =
np . random . c h o i c e (r e s p o n s e . s h a p e [0] ,

r e s p o n s e . s h a p e [0])

b a t c h _ x =
r e s p o n s e [r a n d _ i n d e x [

s t a r t : (s t a r t + b a t c h _ s i z e)] , :]
b a t c h _ y =

r e s p o n s e [r a n d _ i n d e x [
s t a r t : (s t a r t + b a t c h _ s i z e)] , :]

Run o p t i m i z a t i o n o p (b a c k p r o p)
and c o s t o p (t o g e t l o s s v a l u e)
_ , l = s e s s . r u n ([o p t i m i z e r , l o s s] ,

f e e d _ d i c t ={X : b a t c h _ x , Y : b a t c h _ y })
D i s p l a y l o g s p e r s t e p
i f i %1000 == 0 :

p r i n t (’ S t e p % i : M i n i b a t c h L o s s : % f ’
% (i , l))

c o d e = s e s s . r u n (e n c o d e r _ o p ,
f e e d _ d i c t ={X : r e s p o n s e })

a t t r _ e s t = c o d e > 0 . 5
f a i l u r e = any (np . a p p l y _ a l o n g _ a x i s (np . mean , 0 , a t t r _ e s t) == 1) |
any (np . a p p l y _ a l o n g _ a x i s (np . mean , 0 , a t t r _ e s t) == 0)
i f (f a i l u r e == F a l s e) :
d e t e r m i n e t h e a t t r i b u t e t r u e o r f a l s e u s e s i m p l e i t e m

f o r i in range (a t t r _ e s t . s h a p e [1]) :
y 1 =

s i m p l e _ r e s p o n s e [a t t r _ e s t [: , i] , :] [: ,
s i m p l e _ q m a t [: , i] = = 1]

134

y 2 =
s i m p l e _ r e s p o n s e [~ a t t r _ e s t [: , i] , :] [: ,
s i m p l e _ q m a t [: , i] = = 1]

i f (np . mean (np . a p p l y _ a l o n g _ a x i s (np . mean , 1 , y 1)) <
np . mean (np . a p p l y _ a l o n g _ a x i s (np . mean , 1 , y 2))) :

a t t r _ e s t [: , i] = ~ a t t r _ e s t [: , i]

d =
a t t r _ e s t * 1 == a t t r _ p r o f i l e [s a m p l e _ i n d e x , 0 : n _ a t t r]

a c c u r a c y =
np . mean (np . a p p l y _ a l o n g _ a x i s (np . prod , 1 , d))

p a t t e r n _ a c c u r a c y =
np . a p p e n d (p a t t e r n _ a c c u r a c y , a c c u r a c y)

a t t r i b u t e _ a c c u r a c y =
np . a p p e n d (a t t r i b u t e _ a c c u r a c y ,

np . a p p l y _ a l o n g _ a x i s (np . mean , 0 , d) ,
a x i s = 0)

l o o p += 1
p r i n t (l o o p)

q _ m a t r i x _ e s t = []
f o r i in range (q _ m a t r i x . s h a p e [0]) :

i f (~ s i m p l e _ i n d e x [o r d e r _ i n d e x] [i]) :
q _ m a t r i x _ e s t =

np . a p p e n d (q _ m a t r i x _ e s t ,
q _ m a t r i x _ d e t e c t (a t t r _ e s t , i))

e l s e :
q _ m a t r i x _ e s t =

np . a p p e n d (q _ m a t r i x _ e s t ,
q _ m a t r i x [o r d e r _ i n d e x , :] [i , :])

p r i n t (q _ m a t r i x _ d e t e c t (a t t r _ e s t , i))
q _ m a t r i x _ e s t =

q _ m a t r i x _ e s t . r e s h a p e ([q _ m a t r i x . s h a p e [0] , − 1])

p r i n t (q _ m a t r i x _ e s t)
p r i n t (q _ m a t r i x [o r d e r _ i n d e x , :])

q _ d i f f =
q _ m a t r i x _ e s t − q _ m a t r i x [o r d e r _ i n d e x , :]

q _ d i f f =
q _ d i f f [np . a p p l y _ a l o n g _ a x i s (

sum , 1 , q _ m a t r i x) > 1 , :]

135

c h a g e e r r o r r a t e t o a t t r + t o t a l
Q _ e r r o r _ r a t e =

np . a p p e n d (Q _ e r r o r _ r a t e ,
np . a p p e n d (np . a p p l y _ a l o n g _ a x i s (
np . sum , 0 , q _ d i f f ! = 0) / q _ d i f f . s h a p e [0] ,
np . sum (q _ d i f f ! = 0) / (

q _ d i f f . s h a p e [0] * q _ d i f f . s h a p e [1])
))

p r i n t (’ Q−m a t r i x e r r o r r a t e : ’ , Q _ e r r o r _ r a t e [− 1])
p r i n t (a c c u r a c y)
p r i n t (np . a p p l y _ a l o n g _ a x i s (np . mean , 0 , d))

p r i n t (" P a t t e r n E s t i m a t i o n a c c u r a c y : " ,
np . mean (p a t t e r n _ a c c u r a c y))

p r i n t (" A t t r i b u t e E s t i m a t i o n a c c u r a c y : " ,
np . a p p l y _ a l o n g _ a x i s (np . mean , 0 ,

np . r e s h a p e (a t t r i b u t e _ a c c u r a c y , [− 1 , n _ a t t r])))
p r i n t (" Q _ m a t r i x e r r o r r a t e : " ,

np . mean (np . r e s h a p e (Q _ e r r o r _ r a t e , [− 1 , 4]) [: , − 1]))

np . s a v e t x t (
f i l e _ p a t h + ’ p a t t e r n _ a c c u r a c y . c s v ’ ,
p a t t e r n _ a c c u r a c y ,
d e l i m i t e r = ’ , ’)

np . s a v e t x t (
f i l e _ p a t h + ’ a t t r i b u t e _ a c c u r a c y . c s v ’ ,
np . r e s h a p e (a t t r i b u t e _ a c c u r a c y , [− 1 , 3]) ,
d e l i m i t e r = ’ , ’)

np . s a v e t x t (
f i l e _ p a t h + ’ Q _ e r r o r _ r a t e . c s v ’ ,

np . r e s h a p e (Q _ e r r o r _ r a t e , [− 1 , 4]) ,
d e l i m i t e r = ’ , ’)

136

Appendix Y

Python Code of DFN in
Chapter 4

! / u s r / b i n / e n v p y t h o n 3
−*− c o d i n g : u t f −8 −*−
" " "
C r e a t e d on F r i J a n 2 5 2 0 : 4 7 : 0 5 2 0 1 9

@ a u t h o r : k a n g x u e
" " "

from k e r a s . l a y e r s i m p o r t I n p u t , Dense ,
Dropout , C o n c a t e n a t e , Lambda , Add

from k e r a s . m o d e l s i m p o r t Model
from k e r a s i m p o r t r e g u l a r i z e r s , o p t i m i z e r s ,

c a l l b a c k s , i n i t i a l i z e r s
from k e r a s . c o n s t r a i n t s i m p o r t min_max_norm ,

u n i t n o r m , NonNeg
from k e r a s . b a c k e n d i m p o r t s l i c e
i m p o r t t e n s o r f l o w a s t f

from s k l e a r n . p r e p r o c e s s i n g i m p o r t M i n M a x S c a l e r ,
L a b e l B i n a r i z e r

from s k l e a r n . c l u s t e r i m p o r t KMeans

i m p o r t p a n d a s a s pd
i m p o r t numpy a s np
i m p o r t o s
i m p o r t m a t p l o t l i b . p y p l o t a s p l t

137

from s y s i m p o r t p l a t f o r m
i m p o r t t i m e i t

f i l e s = o s . l i s t d i r (D a t a _ p a t h)
s u b f i l e s = ’ 3 _20_m_90 ’

t r u e _ l a b e l _ d f =
pd . r e a d _ c s v (o s . p a t h . j o i n (D a t a _ p a t h ,
s u b f i l e s , " t r u e _ l a b e l . c s v "))

DCM_attr_df =
pd . r e a d _ c s v (o s . p a t h . j o i n (D a t a _ p a t h ,
s u b f i l e s , " e r r o r _ l a b e l . c s v "))

r e s p o n s e _ d f =
pd . r e a d _ c s v ((o s . p a t h . j o i n (D a t a _ p a t h ,
s u b f i l e s , " r e s p o n s e . c s v ")))

q_mat =
np . a r r a y (pd . r e a d _ c s v (o s . p a t h . j o i n (D a t a _ p a t h ,
s u b f i l e s , ’ q_mat . c s v ’)))

n _ a t t r = q_mat . s h a p e [1]
n _ i t e m = q_mat . s h a p e [0]

c o n v e r t t o numpy a r r a y

t r u e _ a t t r = np . a r r a y (t r u e _ l a b e l _ d f) [: , 0 : n _ a t t r]
DCM_attrs = (np . a r r a y (DCM_attr_df) >= 0 . 5) * 1
r e s p o n s e = np . a r r a y (r e s p o n s e _ d f) * 1

f u n c t i o n s f o r c r e a t e l a b e l s
d e f g e t _ l a b e l s (a t t r _ e s t) :

v a r = np . a r r a y ([] , d t y p e = ’ i n t ’)
f o r i i n r a n g e (a t t r _ e s t . s h a p e [1]) :

v a r = np . a p p e n d (a r r = v a r , v a l u e s = 2 * * i)
r e t u r n np . matmul (a t t r _ e s t ,

v a r . r e s h a p e ((− 1 , 1))) . r e s h a p e ((− 1 , 1)) + 1

t r u e _ l a b e l = g e t _ l a b e l s (t r u e _ a t t r) . r e s h a p e ((1 , − 1)) [0]
np . mean (g e t _ l a b e l s (DCM_attrs [: , 6 : 9]) == g e t _ l a b e l s (t r u e _ a t t r))

d e t e r m i n e t h e a l l 1 g r o u p and a l l 0 g r o u p
d e f g e t _ 2 _ g r o u p s (g r o u p s , r e s p o n s e) :

138

a v g _ s c o r e = np . a r r a y ([])
f o r g r o u p i n np . u n i q u e (g r o u p s) :

s c o r e = np . mean (r e s p o n s e [g r o u p s == group , :])
a v g _ s c o r e = np . a p p e n d (a v g _ s c o r e , s c o r e)

r e t u r n g r o u p s == np . a r g m a x (a v g _ s c o r e) + 1 ,
g r o u p s == np . a r g m i n (a v g _ s c o r e) + 1

c a l i b r a t e k m e a n s t o t r u e l a b e l s
d e f c a l _ k m e a n s (k m _ l a b e l , t r u e _ l a b e l) :

k m _ l a b e l _ 2 = k m _ l a b e l . c o p y ()
f o r l a b e l i n np . u n i q u e (k m _ l a b e l) :

t _ l a b e l , t _ c o u n t =
np . u n i q u e (t r u e _ l a b e l [k m _ l a b e l == l a b e l] ,

r e t u r n _ c o u n t s = True)
k m _ l a b e l _ 2 [k m _ l a b e l == l a b e l] =

t _ l a b e l [np . a r g m a x (t _ c o u n t)]

r e t u r n k m _ l a b e l _ 2

f o r i i n r a n g e (5) :
DCM_attr = DCM_attrs [: , n _ a t t r * i : n _ a t t r * (i + 1)]
i f i == 0 :

DCM_labels = g e t _ l a b e l s (DCM_attr)
e l s e :

DCM_labels =
np . h s t a c k ((DCM_labels , g e t _ l a b e l s (DCM_attr)))

LCDM_1 , LCDM_0 = g e t _ 2 _ g r o u p s (DCM_labels [: , 2] , r e s p o n s e)
GDINA_1 , GDINA_0 = g e t _ 2 _ g r o u p s (DCM_labels [: , 3] , r e s p o n s e)

c l u s t e r i n g KMeans
km = KMeans (n _ c l u s t e r s = 2 * * n _ a t t r)
k m _ l a b e l = (km . f i t (r e s p o n s e) . l a b e l s _ + 1)

k m _ l a b e l _ 3 = c a l _ k m e a n s (k m _ l a b e l , t r u e _ l a b e l)

km_1 , km_0 = g e t _ 2 _ g r o u p s (k m _ l a b e l , r e s p o n s e)

l a b e l b i n a r i z e r = L a b e l B i n a r i z e r ()
k m _ l a b e l _ 1 =

139

l a b e l b i n a r i z e r . f i t _ t r a n s f o r m (

np . random . s e e d (1 2 3 4)
i n d e x = np . random . p e r m u t a t i o n (l e n (r e s p o n s e))
x _ t r a i n = r e s p o n s e [i n d e x [: 8 0 0] , :]
y _ t r a i n = k m _ l a b e l _ 1 [i n d e x [: 8 0 0] , :]
x _ t e s t = r e s p o n s e [i n d e x [8 0 0 :] , :]
y _ t e s t = k m _ l a b e l _ 1 [i n d e x [8 0 0 :] , :]

r e g u l a r i z e r _ h 1 = [1 e−5 , 1 e − 10 , 1 e − 1 5]
I t e r _ m a x = 1 0
i t e r a t i o n = 0

f o r i t e r a t i o n i n r a n g e (0 , I t e r _ m a x) :
i n p u t s = I n p u t (s h a p e = (x _ t r a i n . s h a p e [1] ,))
f i r s t s u b n e t
h i d d e n _ 1 =

D e n s e (u n i t s = 2 0 0 , a c t i v a t i o n = ’ r e l u ’ , # 1 2 0
a c t i v i t y _ r e g u l a r i z e r =
r e g u l a r i z e r s . l 1 (r e g u l a r i z e r _ h 1 [0])) (i n p u t s)

d r o p 1 = Dropout (. 1) (h i d d e n _ 1)
h i d d e n _ 2 =

D e n s e (u n i t s = 1 0 0 , a c t i v a t i o n = ’ r e l u ’ , # 60
a c t i v i t y _ r e g u l a r i z e r =
r e g u l a r i z e r s . l 1 (r e g u l a r i z e r _ h 1 [0])) (h i d d e n _ 1)

t r u e _ l a b e l = D e n s e (u n i t s = 2 * * n _ a t t r ,
a c t i v a t i o n = ’ s o f t m a x ’) (h i d d e n _ 2)

r e c o n s t r u c t i o n =
D e n s e (x _ t r a i n . s h a p e [1] , a c t i v a t i o n = ’ l i n e a r ’ ,
k e r n e l _ c o n s t r a i n t = min_max_norm (m i n _ v a l u e = 0 ,

m a x _ v a l u e = 0 . 7) ,
u s e _ b i a s = F a l s e ,
k e r n e l _ i n i t i a l i z e r = i n i t i a l i z e r s . C o n s t a n t (v a l u e = 0 . 4)
) (t r u e _ l a b e l)

s e t u p w h o l e n e t w o r k
d e e p F o w a r d F e e d N e t s =

Model (i n p u t s , [t r u e _ l a b e l ,

140

r e c o n s t r u c t i o n]) # w h o l e n e t w o r k

e a r l y S t o p p i n g =
c a l l b a c k s . E a r l y S t o p p i n g (m o n i t o r = ’ v a l _ l o s s ’ ,

p a t i e n c e = 2 , v e r b o s e =0 , mode = ’ a u t o ’)

d e e p F o w a r d F e e d N e t s . c o m p i l e (o p t i m i z e r = o p t i m i z e r s . Adam () ,
l o s s = [’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,

’ b i n a r y _ c r o s s e n t r o p y ’] ,
l o s s _ w e i g h t s = [3 , 5] ,
m e t r i c s = [’ a c c u r a c y ’])

m a x _ e p o c h s = 3 0 0 0
b a t c h _ s i z e = 1 0 0

s t a r t i n g = t i m e i t . d e f a u l t _ t i m e r ()
h i s t o r y =

d e e p F o w a r d F e e d N e t s . f i t (x _ t r a i n , [y _ t r a i n , x _ t r a i n] ,
e p o c h s = m a x _ e p o c h s ,
b a t c h _ s i z e = b a t c h _ s i z e ,
s h u f f l e =True ,
v e r b o s e = 0 ,
v a l i d a t i o n _ d a t a =

(x _ t e s t , [y _ t e s t , x _ t e s t]) ,
c a l l b a c k s = [e a r l y S t o p p i n g])

p r i n t (t i m e i t . d e f a u l t _ t i m e r () − s t a r t i n g)

d f n _ l a b e l = n
p . a r r a y (d e e p F o w a r d F e e d N e t s . p r e d i c t _ o n _ b a t c h (r e s p o n s e) [0])

d f n _ l a b e l =
np . a p p l y _ a l o n g _ a x i s (f u n c 1 d =np . a r g m a x , a x i s = 1 ,

a r r = d f n _ l a b e l) + 1

p r i n t (np . mean (d f n _ l a b e l == t r u e _ l a b e l))

i f i t e r a t i o n == 0 :
d f n _ l a b e l _ i t e r a t i o n _ 1 , d f n _ l a b e l _ i t e r a t i o n _ 0 =
g e t _ 2 _ g r o u p s (g r o u p s = d f n _ l a b e l , r e s p o n s e = r e s p o n s e)

e l s e :
d f n _ l a b e l _ i t e r a t i o n _ 1 =

141

np . v s t a c k ((d f n _ l a b e l _ i t e r a t i o n _ 1 ,
g e t _ 2 _ g r o u p s (g r o u p s = d f n _ l a b e l ,

r e s p o n s e = r e s p o n s e) [0])
)

d f n _ l a b e l _ i t e r a t i o n _ 0 =
np . v s t a c k ((d f n _ l a b e l _ i t e r a t i o n _ 0 ,

g e t _ 2 _ g r o u p s (g r o u p s = d f n _ l a b e l ,
r e s p o n s e = r e s p o n s e) [1])
)

d f n _ 1 =
np . a p p l y _ a l o n g _ a x i s (a r r = d f n _ l a b e l _ i t e r a t i o n _ 1 ,

a x i s =0 , f u n c 1 d =np . mean) > . 5
d f n _ 0 =

np . a p p l y _ a l o n g _ a x i s (a r r = d f n _ l a b e l _ i t e r a t i o n _ 0 ,
a x i s =0 , f u n c 1 d =np . mean) > . 5

p r i n t (’ Kmeans : ’ ,
np . mean (km_1 == (t r u e _ l a b e l == 8)) ,
np . mean (km_0 == (t r u e _ l a b e l == 1)))

p r i n t (’DFN : ’ ,
np . mean (d f n _ 1 == (t r u e _ l a b e l == 8)) ,
np . mean (d f n _ 0 == (t r u e _ l a b e l == 1)))

p r i n t (’LCDM: ’ ,
np . mean (LCDM_1 == (t r u e _ l a b e l == 8)) ,
np . mean (LCDM_0 == (t r u e _ l a b e l == 1)))

p r i n t (’ GDINA : ’ ,
np . mean (GDINA_1 == (t r u e _ l a b e l == 8)) ,
np . mean (GDINA_0 == (t r u e _ l a b e l == 1)))

142

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., Et al. (2016). Tensor�ow: A
system for large-scale machine learning, In 12th {usenix} symposium on
operating systems design and implementation ({osdi} 16).

Abedi, M., Sun, B., & Zheng, Z. (2019). A sinusoidal-hyperbolic family of
transforms with potential applications in compressive sensing. IEEE
Transactions on Image Processing, 28(7), 3571–3583.

Aiserman, M., Braverman, È. M., & Rozonoer, L. (1964). Theoretical foun-
dations of the potential function method in pattern recognition. Av-
tomat. i Telemeh, 25, 917–936.

Barron, A. R. (1994). Approximation and estimation bounds for arti�cial neu-
ral networks. Machine learning, 14(1), 115–133.

Basilevsky, A. (1994). Statistical factor analysis and related methods. hoboken.
NJ, USA: John Wiley & Sons, Inc. DOI, 10, 9780470316894.

Beal, M. J., Ghahramani, Z., & Rasmussen, C. E. (2002). The in�nite hidden
markov model, In Advances in neural information processing systems.

Bengio, Y. (2012). Deep learning of representations for unsupervised and trans-
fer learning, In Proceedings of icml workshop on unsupervised and trans-
fer learning.

Bengio, Y., Laufer, E., Alain, G., & Yosinski, J. (2014). Deep generative stochas-
tic networks trainable by backprop, In International conference on ma-
chine learning.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
Bradshaw, L., Izsák, A., Templin, J., & Jacobson, E. (2014). Diagnosing teach-

ers’ understandings of rational numbers: Building a multidimensional
test within the diagnostic classi�cation framework. Educational mea-
surement: Issues and practice, 33(1), 2–14.

Briggs, D. C., & Circi, R. (2017). Challenges to the use of arti�cial neural net-
works for diagnostic classi�cations with student test data. International
Journal of Testing, 17(4), 302–321.

143

Britain, S., & Liber, O. (2004). A framework for pedagogical evaluation of
virtual learning environments.

Brusco, M. J., Shireman, E., & Steinley, D. (2017). A comparison of latent
class, k-means, and k-median methods for clustering dichotomous data.
Psychological methods, 22(3), 563.

Chapelle, O., Scholkopf, B., & Zien, A. (2009). Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on
Neural Networks, 20(3), 542–542.

Chen, Y., & Li, X. (2019). Exploratory data analysis for cognitive diagnosis:
Stochastic co-blockmodel and spectral co-clustering, In Handbook of
diagnostic classification models. Springer.

Chiu, C.-Y. (2013). Statistical re�nement of the q-matrix in cognitive diagnosis.
Applied Psychological Measurement, 37(8), 598–618.

Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive
diagnosis: Theory and applications. Psychometrika, 74(4), 633.

Chiu, C.-Y., Köhn, H.-F., Zheng, Y., & Henson, R. (2016). Joint maximum like-
lihood estimation for diagnostic classi�cation models. psychometrika,
81(4), 1069–1092.

Chollet, F., & Allaire, J. J. (2018). Deep learning mit r und keras: Das praxis-
handbuch von den entwicklern von keras und rstudio. MITP-Verlags
GmbH & Co. KG.

Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory.
ERIC.

Csáji, B. C. Et al. (2001). Approximation with arti�cial neural networks. Fac-
ulty of Sciences, Etvs Lornd University, Hungary, 24(48), 7.

Cui, Y., Guo, Q., & Cutumisu, M. (2017). A neural network approach to
estimate student skill mastery in cognitive diagnostic assessments.

Cui, Y., Gierl, M. J., & Chang, H.-H. (2012). Estimating classi�cation con-
sistency and accuracy for cognitive diagnostic assessment. Journal of
Educational Measurement, 49(1), 19–38.

Cui, Y., Gierl, M., & Guo, Q. (2016). Statistical classi�cation for cognitive diag-
nostic assessment: An arti�cial neural network approach. Educational
Psychology, 36(6), 1065–1082.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4), 303–314.

Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013). Improving deep neural
networks for lvcsr using recti�ed linear units and dropout, In 2013 ieee
international conference on acoustics, speech and signal processing. IEEE.

144

De La Torre, J. (2008). An empirically based method of q-matrix validation for
the dina model: Development and applications. Journal of educational
measurement, 45(4), 343–362.

De La Torre, J. (2011). The generalized dina model framework. Psychometrika,
76(2), 179–199.

DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The dina
model, classi�cation, latent class sizes, and the q-matrix. Applied Psy-
chological Measurement, 35(1), 8–26.

Desmarais, M. C. (2012). Mapping question items to skills with non-negative
matrix factorization. ACM SIGKDD Explorations Newsletter, 13(2),
30–36.

Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press.
Evans, B., & Ossorio, P. (2018). The challenge of regulating clinical decision

support software after 21st century cures. American journal of law &
medicine, 44(2-3), 237–251.

Fergus, R., Weiss, Y., & Torralba, A. (2009). Semi-supervised learning in gi-
gantic image collections, In Advances in neural information processing
systems.

George, A. C., Robitzsch, A., Kiefer, T., Groß, J., & Ünlü, A. (2016). The
r package cdm for cognitive diagnosis models. Journal of Statistical
Software, 74(2), 1–24.

Gierl, M. J., Cui, Y., & Hunka, S. (2008). Using connectionist models to evalu-
ate examinees’ response patterns to achievement tests. Journal of Mod-
ern Applied Statistical Methods, 7(1), 19.

Gierl, M. J., Wang, C., & Zhou, J. (2008). Using the attribute hierarchy method
to make diagnostic inferences about examinees’ cognitive skills in alge-
bra on the sat. Journal of Technology, Learning, and Assessment, 6(6),
n6.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y.
(2013). Maxout networks. arXiv preprint arXiv:1302.4389.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Grandvalet, Y., & Bengio, Y. (2005). Semi-supervised learning by entropy mini-

mization, In Advances in neural information processing systems.
Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with

deep recurrent neural networks, In 2013 ieee international conference on
acoustics, speech and signal processing. IEEE.

Grohs, P., Perekrestenko, D., Elbrächter, D., & Bölcskei, H. (2019). Deep neural
network approximation theory. arXiv preprint arXiv:1901.02220.

145

Ha�ari, G. R., & Sarkar, A. (2012). Analysis of semi-supervised learning with
the yarowsky algorithm. arXiv preprint arXiv:1206.5240.

Hanin, B. (2019). Universal function approximation by deep neural nets with
bounded width and relu activations. Mathematics, 7(10), 992.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means cluster-
ing algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1), 100–108.

Hartz, S. M. (2002). A bayesian framework for the unified model for assessing
cognitive abilities: Blending theory with practicality. (Doctoral disserta-
tion). ProQuest Information & Learning.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition, In Proceedings of the ieee conference on computer vision and
pattern recognition.

Henson, R. A., Templin, J. L., & Willse, J. T. (2009). De�ning a family of
cognitive diagnosis models using log-linear models with latent variables.
Psychometrika, 74(2), 191.

Hinton, G., Osindero, S., Welling, M., & Teh, Y.-W. (2006). Unsupervised dis-
covery of nonlinear structure using contrastive backpropagation. Cog-
nitive science, 30(4), 725–731.

Hornik, K., Stinchcombe, M., White, H., & Auer, P. (1994). Degree of ap-
proximation results for feedforward networks approximating unknown
mappings and their derivatives. Neural Computation, 6(6), 1262–1275.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6), 417.

Ide, H., & Kurita, T. (2017). Improvement of learning for cnn with relu acti-
vation by sparse regularization, In 2017 international joint conference on
neural networks (ijcnn). IEEE.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recogni-
tion letters, 31(8), 651–666.

Joachims, T. (1999). Chapter making large-scale svm learning practical. Ad-
vances in Kernel Methods: Support Vector Learning, 11.

Johnson, M. (2009). A note on the estimable attribute sets in cognitive diag-
nostic models. Unpublished Manuscript.

Jolli�e, I. T. (2002). Choosing a subset of principal components or variables.
Principal component analysis, 111–149.

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few as-
sumptions, and connections with nonparametric item response theory.
Applied Psychological Measurement, 25(3), 258–272.

146

Karaca, Y., & Hayta, Ş. (2016). Application and comparison of ann and svm
for diagnostic classi�cation for cognitive functioning. Appl. Math. Sci,
10(64), 3187–3199.

Kohonen, T. (2001). Self-organizing. Springer Berlin.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classi�cation

with deep convolutional neural networks, In Advances in neural infor-
mation processing systems.

Kunina-Habenicht, O., Rupp, A. A., & Wilhelm, O. (2012). The impact
of model misspeci�cation on parameter estimation and item-�t assess-
ment in log-linear diagnostic classi�cation models. Journal of Educa-
tional Measurement, 49(1), 59–81.

Larochelle, H., & Bengio, Y. (2008). Classi�cation using discriminative re-
stricted boltzmann machines, In Proceedings of the 25th international
conference on machine learning.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553),
436–444.

LeCun, Y., Ha�ner, P., Bottou, L., & Bengio, Y. (1999). Object recognition with
gradient-based learning, In Shape, contour and grouping in computer
vision. Springer.

Lee, D.-H. (2013). Pseudo-label: The simple and e�cient semi-supervised learn-
ing method for deep neural networks, In Workshop on challenges in rep-
resentation learning, icml.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep
belief networks for scalable unsupervised learning of hierarchical rep-
resentations, In Proceedings of the 26th annual international conference
on machine learning.

Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy
method for cognitive assessment: A variation on tatsuoka’s rule-space
approach. Journal of educational measurement, 41(3), 205–237.

Levine, M. V. (1982). The trait in latent trait theory.
Li, H., & Suen, H. K. (2013). Constructing and validating a q-matrix for cogni-

tive diagnostic analyses of a reading test. Educational Assessment, 18(1),
1–25.

Liang, P. (2005). Semi-supervised learning for natural language (Doctoral dis-
sertation). Massachusetts Institute of Technology.

Liou, C.-Y., Huang, J.-C., & Yang, W.-C. (2008). Modeling word perception
using the elman network. Neurocomputing, 71(16-18), 3150–3157.

Liu, R., Huggins-Manley, A. C., & Bradshaw, L. (2017). The impact of q-matrix
designs on diagnostic classi�cation accuracy in the presence of attribute

147

hierarchies. Educational and psychological measurement, 77(2), 220–
240.

Liu, Y., & Kirchho�, K. (2014). Graph-based semi-supervised acoustic model-
ing in dnn-based speech recognition, In 2014 ieee spoken language tech-
nology workshop (slt). IEEE.

Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of
neural networks: A view from the width, In Advances in neural infor-
mation processing systems.

Madison, M. J., & Bradshaw, L. P. (2015). The e�ects of q-matrix design on
classi�cation accuracy in the log-linear cognitive diagnosis model. Ed-
ucational and Psychological Measurement, 75(3), 491–511.

Manning, C. D., Manning, C. D., & Schütze, H. (1999). Foundations of statis-
tical natural language processing. MIT press.

Martınez-Plumed, F., Prudêncio, R. B., Martınez-Usó, A., & Hernández-Orallo,
J. (2016). Making sense of item response theory in machine learning,
In Proceedings of the twenty-second european conference on artificial in-
telligence. IOS Press.

Matsugu, M., Mori, K., Mitari, Y., & Kaneda, Y. (2003). Subject independent
facial expression recognition with robust face detection using a convo-
lutional neural network. Neural Networks, 16(5-6), 555–559.

Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: An
unsupervised representation to predict the future of patients from the
electronic health records. Scientific reports, 6(1), 1–10.

Mnih, V., & Hinton, G. E. (2012). Learning to label aerial images from noisy
data, In Proceedings of the 29th international conference on machine learn-
ing (icml-12).

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT press.
Nair, V., & Hinton, G. E. (2010). Recti�ed linear units improve restricted

boltzmann machines, In Proceedings of the 27th international conference
on machine learning (icml-10).

Nigam, K., & Ghani, R. (2000). Analyzing the e�ectiveness and applicability
of co-training, In Proceedings of the ninth international conference on
information and knowledge management.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10), 1345–1359.

Pang, B., Nijkamp, E., & Wu, Y. N. (2020). Deep learning with tensor�ow:
A review. Journal of Educational and Behavioral Statistics, 45(2), 227–
248.

148

Paulsen, J. (2019). Examining cognitive diagnostic modeling in small sample
contexts (Doctoral dissertation). Indiana University.

Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees
classi�ers-a survey. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C (Applications and Reviews), 35(4), 476–487.

Rosenberg, C., Hebert, M., & Schneiderman, H. (2005). Semi-supervised self-
training of object detection models. WACV/MOTION, 2.

Roussos, L., Henson, R., & Jang, E. (2005). Simulation study evaluation of the
fusion model system stepwise algorithm. ETS Project Report. Princeton,
NJ: Educational Testing Service.

Rupp, A., Templin, J., & Henson, R. (2010). Diagnostic assessment: Theory,
methods, and applications. New York: Guilford.

Rupp, A. A., & Templin, J. L. (2007). Unique characteristics of cognitive
diagnosis models, In Annual meeting of the national council on mea-
surement in education, chicago, il.

Salakhutdinov, R., & Hinton, G. (2009). Semantic hashing. International
Journal of Approximate Reasoning, 50(7), 969–978.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neu-
ral networks, 61, 85–117.

Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component anal-
ysis as a kernel eigenvalue problem. Neural computation, 10(5), 1299–
1319.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolu-
tions, In Proceedings of the ieee conference on computer vision and pat-
tern recognition.

Taghipour, K., & Ng, H. T. (2016). A neural approach to automated essay
scoring, In Proceedings of the 2016 conference on empirical methods in
natural language processing.

Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconcep-
tions based on item response theory. Journal of educational measure-
ment, 20(4), 345–354.

Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space
method. Routledge.

Templin, J. L., & Henson, R. A. (2006). Measurement of psychological dis-
orders using cognitive diagnosis models. Psychological methods, 11(3),
287.

149

Templin, J., & Bradshaw, L. (2013). Measuring the reliability of diagnostic
classi�cation model examinee estimates. Journal of Classification, 30(2),
251–275.

Templin, J., Henson, R. A. Et al. (2010). Diagnostic measurement: Theory,
methods, and applications. Guilford Press.

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(3), 611–622.

Tjoe, H., & de la Torre, J. (2014). The identi�cation and validation process of
proportional reasoning attributes: An application of a cognitive diag-
nosis modeling framework. Mathematics Education Research Journal,
26(2), 237–255.

Touretzky, D., & Hinton, G. (1989). Connectionist models summer school, In
Proc. 1988 connectionist models summer school. Morgan Kaufmann.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting
and composing robust features with denoising autoencoders, In Pro-
ceedings of the 25th international conference on machine learning.

von Davier, M. (2005). A general diagnostic model applied to language testing
data. ETS Research Report Series, 2005(2), i–35.

von Davier, M. (2018). Automated item generation with recurrent neural net-
works. psychometrika, 83(4), 847–857.

Xu, G., & Zhang, S. (2016). Identi�ability of diagnostic classi�cation models.
Psychometrika, 81(3), 625–649.

Xue, K. (2018). Non-model based attribute pro�le estimation with partial
q-matrix information for cognitive diagnosis using arti�cial neural net-
work, In Proceedings of the 11th international conference on educational
data mining.

Xue, K. (2019). Computational diagnostic classi�cation model using deep
feedforward network based semi-supervised learning, In Proceedings of
the 25th acm sigkdd conference on knowledge discovery and data mining
(kdd) workshop on deep learning for education.

Xue, K., Yaneva, V., Runyon, C., & Baldwin, P. (2020). Predicting the di�culty
and response time of multiple choice questions using transfer learning,
In Proceedings of the 15th workshop on innovative use of nlp for building
educational applications.

Yamaguchi, K., & Okada, K. (2018). Comparison among cognitive diagnostic
models for the timss 2007 fourth grade mathematics assessment. PloS
one, 13(2).

150

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolu-
tional networks, In European conference on computer vision. Springer.

Zell, A. (1994). Simulation neuronaler netze (Vol. 1). Addison-Wesley Bonn.
Zhu, X. J. (2005). Semi-supervised learning literature survey (tech. rep.). Uni-

versity of Wisconsin-Madison Department of Computer Sciences.
Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning.

Synthesis lectures on artificial intelligence and machine learning, 3(1), 1–
130.

151

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Theoretic psychometrics
	Machine learning and deep learning
	Deep learning-based computational psychometric methods

	Introduction
	Theoretic Psychometric Models
	Machine Learning
	Artificial Neural Networks and Deep Learning
	The General Idea of Deep Learning-based Computational Psychometric Methods

	An Unsupervised Learning Artificial Neural Network for Cognitive Diagnostic Measurement
	Introduction
	Method
	Simulation Study
	Conclusion
	Discussion

	A Semi-Supervised Learning-based Diagnostic Classification Method using Artificial Neural Networks
	Introduction
	Method
	Experimental Study
	Conclusion
	Discussion

	Conclusion and Discussion
	Application 1: An Unsupervised Learning Artificial Neural Network for Cognitive Diagnostic Measurement
	Application 2: Semi-supervised deep Co-Training method for CDM
	Exploration of Using ANNs for Diagnostic Classification
	Future Directions

	Appendices
	 matrix of Item pool 1
	IRP1 of Item Pool 1
	True Values of s1 under the LCDM for Item Pool 1
	 matrix of Item pool 2
	IRP1 of Item Pool 2
	True Values of s1 under the LCDM for Item Pool 2
	Q-matrix for 3 Attribute, 20 Items Test.
	Q-matrix for 4 Attribute, 20 Items Test.
	Q-matrix for 4 Attribute, 30 Items Test.
	IRP* Table of 3 Attribute, 20 Items, High Discrimination Test.
	IRP* Table of 3 Attribute, 20 Items, Mixed Discrimination Test.
	IRP* Table of 4 Attribute, 20 Items, High Discrimination Test.
	IRP* Table of 4 Attribute, 20 Items, Mixed Discrimination Test.
	IRP* Table of 4 Attribute, 30 Items, High Discrimination Test.
	IRP* Table of 4 Attribute, 30 Items, Mixed Discrimination Test.
	 of 3 Attribute, 20 Items, High Discrimination Test.
	 of 3 Attribute, 20 Items, Mixed Discrimination Test.
	 of 4 Attribute, 20 Items, High Discrimination Test.
	 of 4 Attribute, 20 Items, Mixed Discrimination Test.
	 of 4 Attribute, 30 Items, High Discrimination Test.
	 of 4 Attribute, 30 Items, Mixed Discrimination Test.
	R Code of Data Simulation
	R Code of DCMs fitting
	Python Code of MAEN in Chapter 3
	Python Code of DFN in Chapter 4
	Bibliography

