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ABSTRACT 

Coastal Plain ecosystems in Georgia are vulnerable to future sea level rise (SLR) and 

urban development; effective wildlife management requires prioritizations of species based on 

exposure to these stressors. There are two challenges associated with this task: a) understanding 

the severity and form of potential habitat change species may experience and b) evaluating the 

interplay between expert-based methods (less time-intensive, more prone to judgement bias) and 

empirical-based methods (more time-intensive, potentially more accurate) of assessment for 

prioritizations. I analyzed exposure to potential habitat change due to potential SLR and 

urbanization for 15 Coastal Plain species using Species Distribution Models and compared 

prioritizations of species using this empirical method to prioritizations using expert-based 

methods. Results suggest that SLR results in high exposure to habitat change, and that empirical-

based methods may provide lower estimates of vulnerability from both SLR and urbanization 

than expert-based methods. Results can inform updates to future management plans. 
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CHAPTER I. 

INTRODUCTION AND LITERATURE REVIEW 

General Introduction and Study Area 

In the future, global sea level rise (SLR) is likely to have a dramatic impact on the 

biological composition of coastal ecosystems and wildlife species in the United States. Estimates 

for predicted increases in sea level range from 30cm-200cm, which could affect species habitat 

by increasing the frequency and severity of tidal flooding, reducing available habitat, and 

fragmenting ecosystems (DeConto & Pollard 2016, Dahl et al. 2017, Sweet et al. 2018, Craft et 

al. 2009, Leonard et al. 2016). In addition, the National Oceanic and Atmospheric Association 

estimates that coastal and near-coastal populations will increase by roughly 7.1 million people by 

2050, contributing to widespread habitat loss (NOAA 2015, Seto et al. 2012, McKenney 2002). 

The effect of these continued stressors on coastal and inland-coastal species and their habitat is 

an issue of growing recognition in the United States, and one that warrants further investigation.  

 In the Coastal Plain ecoregion of the state of Georgia, USA (Fig. 2.1), these events 

would have a strong impact on natural communities and the species that occupy them. The 

state’s coastal areas account for roughly fifteen percent of current salt marsh habitat on the 

Atlantic coast (USFWS 2007) as well as the third largest distribution of tidal freshwater swamps 

in the Southeastern United States (Day et al. 2007), making it a vital resource for species. Inland 

habitat types such as sandhills, xeric longleaf pine, wiregrass forests and maritime forests 

provide vital habitat for multiple threatened or endangered species. Previous research has linked 

long-term declines in these terrestrial habitats to land conversion for agriculture and 
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development, and the loss of Southeastern coastal salt marshes and wetlands due to 

anthropogenic-related change has been documented since the 1980s (Hefner et al. 1984, Turner 

et al. 1988). A recent assessment of the habitat vulnerability of 28 species in this region 

suggested that nearly all species assessed would be exposed to habitat change as a result of sea 

level rise by 2100 (Hunter et al. 2015). Individual studies on Georgia species also imply that sea 

level rise and land-use changes will have a significant impact on habitat composition and 

population dynamics (Valdes et al. 2016, Hunter et al. 2017, Lowery 2016), further suggesting 

that multiple groups are vulnerable. To effectively manage wildlife in coastal Georgia, it is 

necessary to assess the factors contributing to species’ habitat change, and how this change may 

contribute to their relative vulnerability in the future.  

Vulnerability Assessments 

For wildlife agencies seeking to create conservation plans based on vulnerability, 

resource limitations often require managers to establish top priorities. Species prioritization 

schemes are a method for ranking species by their perceived vulnerability (Given & Norton 

1993). While there is currently no broad scientific consensus regarding the criteria used to assess 

vulnerability, a framework consisting of three components (exposure to change, sensitivity to 

change, and relative resilience to change) is commonly used to evaluate species for prioritization 

(Pacifici et al. 2015, Turner et al. 2003, Williams et al. 2008). Empirical vulnerability 

assessments that thoroughly address one or more components of vulnerability, e.g., exposure to 

change, are often centered around the use of Species’ Distribution Models (SDMs) (Willis et al. 

2015, Rodriguez et al. 2007). This method can provide spatially explicit estimates of habitat 

suitability across landscapes and allows users to use spatial scenarios of change to quantify 

exposure to potential habitat change. The primary challenge for researchers utilizing this 
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technique is understanding the severity and form of exposure. Species impacted by one type of 

stressor (e.g., development) may be unaffected by another (e.g., SLR), or the same groups of 

species may be heavily impacted by both (Brittain & Craft 2012). Thus, managers utilizing 

SDMs to evaluate vulnerability to habitat exposure for prioritizations will need to consider 

multiple types and levels of change.  

Alternatively, deductive vulnerability assessments utilizing expert-opinion and literature-

based information are a frequently utilized technique used to capture multiple components of 

vulnerability for numerous species at once, allowing for rapid prioritizations across multiple 

taxonomic groups (Reece et al. 2014, Hare et al. 2016). This technique relies on the input of 

species’ experts to value multiple elements within the standard vulnerability framework (i.e., 

species’ exposure to change, sensitivity to change, and adaptive capacity to change), as well as 

other elements related to management efforts. However, deductive vulnerability assessments are 

often absent of empirical data; that is, results reflect expert judgement on quantitative habitat 

loss, instead of results based on explicit information. The degree to which empirical-based data 

regarding quantitative metrics of vulnerability may agree or disagree with expert-based opinion 

may vary, and a comparison of empirical-based and expert-based results could provide valuable 

information regarding the contrast between these methods.  

Study Objectives 

The objectives of this research were twofold. First, I wanted to determine the severity and 

form of potential exposure to habitat change that threatened or endangered Coastal Plain species 

may undergo in the future and provide prioritizations of species based on these factors. Second, I 

was interested in evaluating the contrast between expert-based and empirical-based metrics for 

valuing exposure to habitat change, and the places where these two methods may or may not 

agree. The outcomes of this research will address a stated need of the Georgia Department of 
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Natural Resources’ State Wildlife Action Plan (SWAP) for several key planning components: 

tools and data for assessing and prioritizing the vulnerability of threatened or endangered species 

to sea level rise and human land-use change, as well as information regarding habitat locations 

across Georgia. Products will be useful for local and state agencies seeking to consider multiple 

scenarios of potential change and will ideally assist in informing future management action 

across the state.  

Study Overview 

To evaluate long-term exposure to potential habitat change from multiple stressors, I built 

Species Distribution Models (SDMs) representing suitable habitat, and paired these outputs with 

spatial models simulating future development and land cover change as a result of SLR to 

examine change at multiple time points and multiple scenarios. SDMs provide explicit 

predictions of habitat suitability by relating species’ presence and absence data to environmental 

predictors across space (Elith & Leathwick 2009). The use of SDMs to model species’ habitat in 

Georgia has successfully been applied for several threatened and endangered reptile and 

amphibian species; this work follows similar protocols and expands on the results (Crawford et 

al. 2020). I utilized input from wildlife experts at various research institutions, wildlife agencies, 

and non-profit groups to help choose 15 Coastal Plain species on the basis of their priority for 

conservation in the state of Georgia, data availability, and available information necessary to 

build habitat models. I obtained occurrence records from research partners, state wildlife 

databases, and online citizen science data repositories. I used a suite of environmental predictors 

describing species’ habitat preferences from sources such as the National Land Cover Database, 

the National Wetlands Inventory, LANDFIRE, and the National Hydrography Dataset, among 

others. I created my SDMs using generalized linear models (GLMs) in a model selection 

framework. The use of this technique for SDM application was first documented by Ferrier 
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(1984, cited in Ferrier et al. 2002), and has been utilized in numerous SDM studies since. To 

evaluate exposure to different types of change using the outputs of our models, I converted 

model outputs to binary datasets depicting suitable and unsuitable habitat, and used two datasets 

representing future SLR and urbanization to calculate the proportion of habitat exposed to 

change at several time points. To simulate future SLR, I used the Sea Level Affecting Marshes 

Model (SLAMM) (Clough et al. 2010). SLAMM has previously been successfully applied to 

evaluate coastal species’ habitat vulnerability in Georgia (Hunter et al. 2015, Hunter et al. 2017). 

For future urbanization, I used the SLEUTH urban growth model. SLEUTH is a cellular 

automation (CA) model that simulates future urbanization across gridded spatial cells on the 

basis of five parameters: dispersion (random likelihood of urbanization), breed (likelihood of 

cells independently becoming urban), infill (regular outward expansion of existing urban 

growth), slope (resistance of urbanization on steep slopes) and road gravity (attraction of 

development towards roads) (Clarke et al. 2008). SLEUTH has previously been used in SDM 

frameworks to examine the impacts of global anthropogenic urbanization on species (Franklin et 

al. 2014, Conlisk et al. 2012). I calculated the proportion of habitat cells that overlapped with 

models of SLR and urbanization at several future time points up to 2100 as a representation of 

exposure to change and used this information to create species ranks.  

I compared the results of our SDM study with results from The Standardized Index for 

Vulnerability and Value Assessment (SIVVA) conducted in Georgia (Reece & Noss 2014). 

SIVVA utilizes input from species experts and previous assessments to evaluate metrics of 

species vulnerability and has been used to assess the long-term vulnerability of several 

taxonomic groups across broad scales in multiple regions (Reece & Noss 2014, Reece et al. 

2014, Benscoter et al. 2013). SIVVA is able to capture expert-opinion regarding multiple 
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components of vulnerability (exposure, sensitivity and adaptive capacity), and has the unique 

advantage of providing additional context-driven criteria that describe species’ conservation 

value as well as the available breadth of information needed to critically evaluate them for 

management action. The output of SIVVA is a set of species ranks based on vulnerability and 

other metrics that may be valuable for management decisions. Users are able to evaluate ranks 

based on individual components (e.g., vulnerability alone) or all components. SIVVA requires 

user input regarding quantitative measurements of exposure to habitat change (SLR and 

urbanization). Research comparing SIVVA outputs using empirical-based data for these 

measurements to results using expert-based judgement has not been conducted and may prove 

insightful into the advantage of valuing species for ranks using one technique over another. 
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CHAPTER II. 

ASSESSING CONSERVATION PRIORITIZATION SCHEMES VIA 

SPECIES VULNERABILITY TO HABITAT CHANGE FROM SEA LEVEL RISE AND 

URBANIZATION IN GEORGIA’S COASTAL PLAIN1

1Paulukonis, E., Crawford, B., Wenger, S., Maerz J., Nibbelink, N. To be submitted to Journal of 

Fish and Wildlife Management. 
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Abstract 

Effective management of threatened wildlife populations in Georgia’s Coastal Plain 

requires prioritizing species by their vulnerability to potential exposure to habitat change from 

future sea level rise (SLR) and/or urbanization. Few studies have examined how prioritizations 

may differ between types of stressors. We used species distribution models (SDMs) for 15 

species to compare rankings based on habitat exposure under three scenarios of SLR (using the 

Sea Level Affecting Marshes Model (SLAMM)) and one scenario of urban growth (using the 

SLEUTH Urban Growth Model) for 4 time points. We also ranked species by Global Rank and 

amount of protected habitat. Results suggest little overlap between highest ranking species under 

each stressor (e.g. SLR vs. urbanization). Salt-marsh/beach species had the highest magnitudes 

of exposure from SLR (25-69%), while inland species averaged between 10-20% from 

urbanization. Managers may consider prioritizing species based on magnitude of exposure, not 

Global Rank or protected area status. 

Introduction

Future environmental change has the potential to have devastating effects on U.S. coastal 

ecosystems in the coming century. Predictions for global sea level rise currently suggest an 

increase of up to 2-meters by the end of the century, which could impact low-lying ecosystem 

factors such as tidal range, elevation, and proportion of total brackish, freshwater and salt marsh 

(Craft et al. 2009, Hansen et al. 2016, Kirwan et al. 2013, Watson et al. 2015, Nicholls et al. 

2010). For higher coastal habitats less likely to feel the direct brunt of impacts from sea level 

rise, estimates of future urban growth indicate that coastal development could still threaten 

ecosystem biodiversity and productivity through habitat loss and shifting land-use (Swenson et 

al. 2000, Seto et al. 2012). Effective management of wildlife populations in coastal regions 

requires planning for the relative vulnerability of species to these anthropogenic factors, 



14 

particularly for threatened or endangered species already at risk of potential extinction (Daniels 

et al. 1993, Benscoter et al. 2013, Walls et al. 2019). For agencies seeking to create conservation 

plans addressing future threats, resource limitations mean that managers must often establish top 

priorities for action (Given & Norton 1993, Miller et al. 2006, Gauthier et al. 2010, Barrett et al. 

2014, Walls et al. 2019). Species prioritization schemes, wherein species are ranked by their 

perceived vulnerability, can aid managers in this task (Kerr & Deguise 2004, Reece & Noss 

2014).  

In defining criteria used to determine priority rankings, frameworks that include exposure 

to change, sensitivity to change, and resilience to change can help practitioners integrate multiple 

dimensions of vulnerability (Turner et al. 2003, Williams et al. 2008). However, data on species’ 

traits needed to support this framework (life history, physiology, adaptive capacity etc.) can be 

lacking, particularly for rare species (Williams et al. 2008). Species distribution models (SDMs), 

which provide spatially-explicit predictions of species habitat suitability (and thus potential 

distribution) by relating presence data to environmental variables across a landscape, can be used 

to represent exposure to change as an initial indicator of vulnerability (Elith et al. 2006, Elith & 

Leathwick 2009, Dawson et al. 2011). By quantifying changes in predicted suitable habitat due 

to sea level rise or urbanization, managers can estimate exposure to potential habitat loss, a 

metric that can be highly useful for ranking species. The primary challenge in developing 

rankings based on this factor lies in understanding the severity and form of exposure to potential 

habitat loss that species may experience. Because species may be impacted by anthropogenic 

threats in different ways and to different extremes across landscapes, it can be difficult for 

managers to know how to allocate resources with respect to spatial vulnerability. For example, 

Brittain & Craft (2012) found that some coastal-dwelling avian species experiencing habitat loss 
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from development were unlikely to experience similar habitat loss from sea level rise. This 

problem becomes more complicated when considering multiple scenarios for a specific threat, 

because outcomes for one level of severity (e.g., 1-meter sea level rise) may be different than 

outcomes for another (2-meter rise) (Bellard et al. 2014). Considering that species’ habitat 

vulnerability can vary widely from threat to threat, managers developing conservation plans will 

need to identify how prioritizations of species based on exposure to potential habitat loss may 

shift due to multiple types and levels of change. 

While exposure to potential habitat change or loss as a standalone measure can be useful 

as a first step in identifying priority species, managers will also need to consider the extent to 

which work has already been done to offset the impacts of anthropogenic threats, as well as the 

state of the species within a broad ecological context (Joseph et al. 2009, Shi et al. 2005). First, it 

will be necessary to assess the total amount of habitat within protected lands, where conservation 

efforts are often primarily directed and where decisions about resources may be most important 

(Barrett el al. 2014). Species with large amounts of protected habitat may fall lower on priority 

lists, as managers can choose to prioritize species that are less protected. Management decisions 

can also account for individual conservation areas that may contain important habitat for certain 

species, allowing for the enhancement or continued protection of that area. Second, it will be 

useful to evaluate species’ global vs. regional vulnerability status. In other words, when does the 

need to conserve a species for global conservation outweigh regional goals for management? 

Species with both high regional vulnerability and high global vulnerability may need to be 

considered first (Brooks et al. 2006).  

Georgia’s Coastal Plain ecoregion (Figure 2.1), part of the Southeastern U.S., is the 

largest geographical portion of the state, extending from the Fall Line in the north to the Atlantic 



16 
 

Ocean. The region is marked by a wide variety of habitat types such as well-drained sandhills, 

xeric longleaf pine and wiregrass forests, salt marsh, bottomland hardwood swamps, and 

maritime forest. As part of the North American Coastal Plain, the region is recognized as a 

global biodiversity hotspot, noted for high species endemism coupled with high vulnerability to 

declines in species richness (Noss et al. 2014, Myers et al. 2000). Since the early 20th century, 

widespread clearing of natural lands for agriculture and development has modified much of the 

region, resulting in severe habitat fragmentation and loss, and continued urbanization is likely as 

human populations in this area are predicted to increase by roughly 30% (Ross et al. 2006, 

Turner et al. 1988, GIT 2006). Sea level rise is also expected to dramatically influence the 

severity of habitat loss as a result of heightened tidal inundation in the region (Dahl et al. 2018). 

Evidence suggests that these factors are likely to negatively impact species’ habitat in Georgia 

throughout the coming century (Craft et al. 2009, Hunter et al. 2015). In response to these and 

other issues, the state has developed a list of 265 species marked for conservation priority 

(GADNR State Wildlife Action Plan 2016). Attempts at developing species prioritization 

schemes via habitat vulnerability have provided information on threats from sea level rise, but 

thus far the use of multiple types and severities of change scenarios has not been considered 

(Hunter et al. 2015). In this study, we used SDMs for 15 species of conservation concern to map 

suitable habitat across the coastal plain. We then assessed vulnerability to multiple threats by 

projecting the SDMs onto theoretical future landscapes after applying scenarios of urbanization 

and sea level rise. Finally, we ranked species’ vulnerability for each scenario and under multiple 

ranking schemes considering total exposure to potential habitat change, fractional change, and 

fraction in protected areas. Our goals were to a) assess species’ vulnerability to exposure to 

potential habitat loss from sea level rise and urbanization, b) evaluate how species’ prioritization 
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for regional management action may change under these different scenarios, and c) contextualize 

prioritization around current available protected habitat and species’ global vulnerability.  

Methods 

Study Area and Species of Interest 

In order to support a trend towards developing community-wide standards for species 

distribution models, we followed guidelines outlined by Araujo et al. 2019 so that all processes 

and outputs met a standard of bronze or higher (Araujo et al. 2019). First, we consulted with 

wildlife experts from federal and state agencies, universities, and non-profits to compile an initial 

list of approximately 50 target species considered to be a priority for conservation in the state. 

From this list, we used an additional set of criteria to choose 15 avian and reptile species (Table 

2.1). We first used the state rarity rank (Georgia Conservation Status) to rank all species on the 

compiled list. Species are ranked from 5 (currently stable) to 1 (critically imperiled), with a letter 

assigned to denote status at the state level. We eliminated all species with a status of S5, so that 

all species had a value of S4 (currently stable with concerns about species longevity in the state) 

or less. Finally, we eliminated species with less than 20 occurrence records (Stockwell & 

Peterson 2002) or lacked appropriate information on range or habitat preferences. Our study area 

comprised the combined known range of all 15 species within Georgia’s Coastal Plain ecoregion. 

To better reflect the coastal range of several of our species, we divided the study extent into two 

parts (Figure 2.1). For species found exclusively in the lower Coastal Plain, we restricted the 

extent to coastally-influenced areas and included the nearshore Atlantic Ocean as a land cover 

type. For all other species, we included the full extent of the ecoregion, as well as a 2km spatial 

buffer extended above the Fall Line that encompassed our largest maximum biological window 

size (detailed below). 

Species Data 
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All spatial analyses were completed using ArcGIS version 10.6.1 (ESRI, Redlands, CA) 

and R version 3.2 (R Core Team 2016). For 5 selected species, SDMs using similar methods 

were already available for the region from a complementary project (Crawford et al. 2020). For 

the remaining 10 species, we collected occurrence records (presence locations) denoting 

locations where species have been observed from state agency natural heritage programs, 

research partners, and the eBird citizen science data repository (Table 2.2). Records were 

comprised of a mixture of observations from research and monitoring studies as well as 

opportunistic sightings. We used occurrence records from the Georgia Department of Natural 

Resources Element Occurrence (EO) data portal for all but two species. For each EO record, 

spatial polygon data was used to denote areas where a species or natural community was 

historically present, ranging in date from early 20th century (historical records) to present day. To 

avoid potential issues with historical data and representational accuracy, we eliminated all 

records of collections prior to the year 2000 as well as records with a precision of less than 

500m. We converted polygon records to point coordinates by taking the center point to represent 

the estimated coordinates at which a species was present. For the diamondback terrapin 

(Malaclemys terrapin), we used abundance data from a multi-year seining and drone survey in 

Georgia’s tidal creeks and streams (Grosse et al. 2011). We randomly selected a single point 

along creeks that had recorded an abundance ≥ 1 between 2008-2018 to represent the occupancy 

of each creek (He & Gaston 2000). Data for the seaside sparrow (Ammodramus maritimus) came 

from a multi-year survey of salt marsh bird distributions in coastal Georgia (Hunter et al. 2016). 

Our avian datasets were supplemented with records from the eBird citizen science data 

repository (eBird 2019). eBird is a citizen science data collection program that allows 

birdwatchers to submit coordinates denoting observations of avian species. Regional filters help 
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reduce the likelihood of misidentifications and double counts, but there is potential for spatial 

and temporal biases in the datasets. We followed the eBird recommended best practices for 

additional bias correction (Johnson et al. 2019). To capture observations that reflect recent 

updates to the eBird filtering protocol, we used only records from 2010 to 2019. For two of our 

species (the painted bunting (Passerine ciris) and the wood stork (Mycteria americana), use of 

Georgia’s coastal plain is typically associated with seasonal breeding behavior (Springborn et al. 

2006, Gaines et al. 1998). To avoid using eBird sightings that may have occurred during 

migration (and thus do not necessarily reflect true habitat preferences), we restricted the data to 

known breeding range and eliminated observations that occurred outside of breeding season for 

these species. For all species, if two or more observations were located at a single coordinate set, 

we randomly selected a single observation to eliminate duplicates. As an additional measure of 

filtering recommended as part of the eBird best practices, hexagonal grids with a 5km spacing 

between grid centers were used to randomly subsample the remaining points, so that the final 

output was one observation per cell.  

 To minimize the potential for spatial bias that can arise from clustered records, we 

applied a filter over all datasets that randomly removed records occurring within a species-

specific biological window of each other (Veloz 2009, Boria et al. 2014). Biological windows 

(neighborhoods) reflect the relationship between an organism and its surrounding landscape at a 

certain scale. We based the neighborhood size used to filter records on the average value of each 

species’ core territory obtained from the literature (Table 2.2). Thus, the final set of records for 

each species had no more than one observation within the specified neighborhood radius of any 

other observation. Because of a lack of true absence data for the majority of our species, we 

created sets of pseudo-absence points to compare the environment of known occurences to 
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background environments (Engler et al. 2004, VanDerWal et al. 2009). We randomly generated 

pseudo-absence points for each species so that all points a) fell outside of the pre-defined 

neighborhood radius of presence points and b) within the study area appropriate for each species. 

We generated points at a 1:4 ratio of presence:pseudo-absence points, so that after the removal of 

points within neighborhood radii, the final output consisted of presence points and pseudo-

absence points at an approximate ratio of 1:3 (Crawford et al. 2020).   

Environmental Variables  

For each species, we tested a suite of biotic and abiotic predictor variables hypothesized 

to influence species’ distributions, based on a literature search of each species’ habitat 

preferences. We used 30-m raster datasets describing characteristics across the species-

appropriate extent (Table 2.3). Our hypothesis-based set of variables captured each species’ 

relationship to factors associated with a) land cover, b) vegetation characteristics, c) topography 

and soil, d) disturbance, and e) climate (Table 2.5). Because species may use habitat differently 

at various spatial scales, it can be useful to investigate relationships between species and 

landscapes using multiple neighborhood sizes (Addicott et al. 1987, Johnson et al., 2004, Hagen-

Zanker 2016). We selected a minimum and maximum neighborhood size for each species based 

on best available information regarding species habitat use at different scales and calculated the 

mean value for each variable at each scale.  

 We created landscape metrics for each variable using FRAGSTATS version 4.2 

(McGarigal et al. 2012), the Spatial Analyst Toolbox in ArcMap, and the SpatialEco package in 

R (Evans 2020). For land cover, we created variables describing appropriate vegetation, barren 

or urban land, and wetlands or water factors related to each species’ habitat preferences using 

present-day habitat types included in the United States Geographical Service (USGS) 2016 
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National Land Cover Dataset (NLCD 2016), the Sea Level Affecting Marshes Model [SLAMM; 

(Clough et al. 2010)], SLEUTH Urban Growth model (Clarke et al. 1997), the USGS National 

Wetland Inventory database (NWI), LANDFIRE Existing Vegetation Type datasets 

(LANDFIRE 2013), and National Hydrography Dataset (NHD 2019). Each individual dataset 

was reclassified as 1, meant to define the variable of interest, or 0, encompassing all other land 

cover classifications. These datasets were then used to extract metrics such as percent of habitat, 

mean habitat patch area, number of habitat patches, and habitat edge density within the specified 

neighborhoods for each species and scale. For certain variables, we defined unique components 

of the landscape relevant for individual species. For example, to capture the tendency of the 

Wilson’s Plover (Charadrius wilsonia) to choose nesting sites closer to marsh vegetation, we 

created a variable that captured the percent of beach and dry land within 100m of adjacent marsh 

(Derose-Wilson et al. 2013). Vegetation characteristics were drawn from the LANDFIRE 

Existing Vegetation Height (EVH) dataset and the NLCD Tree Canopy Cover dataset. EVH was 

used to describe average heights of vegetation relevant to species. We reclassified heights from 0 

(shortest) to 1 (highest) in 0.25 increments, with each increment describing a range of heights. 

We also included a deciduous index (EVI), which captured the difference in winter and summer 

greenness. Topography and soil variables captured relevant characteristics of elevation and 

drainage. We used elevation data from the USGS 30-m Digital Elevation Model (DEM). For 

several species, a Topographic Position Index (TPI) was used to represent a location’s elevation 

relative to its local surroundings, e.g., components such as sand-hills (positive TPI) and valleys 

(negative TPI). A soil drainage index from the gridded SSURGO raster from the Natural 

Resources Conservation Service [NRCS; (Natural Resources Conservation Service 2017)] 

described poorly-drained to well-drained soils. For disturbance variables, we used a fire 
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frequency dataset representing the percentage of years burned between 2001 and 2016 and a 

historical land disturbance dataset created from historical land cover data identifying places 

classified as developed or converted to agriculture between 1938 and 2001 (Crawford et al. 

2020). Because air temperature in Georgia’s Coastal Plain has limited spatial variability (and 

thus explanatory power), we did not include gridded temperature data as a covariate. Datasets 

representing the mean summer and winter precipitation were included for several reptile species. 

We extracted values from the gridded datasets for each covariate to the presence and pseudo-

absence points for model fitting. 

Species Distribution Models 

We used logistic regression (generalized linear models, GLMs) in a model-selection 

framework to create our presence and pseudo-absence SDMs (Burnham & Anderson 2002). All 

models and accompanioning  statistical analyses were completed in R. We ranked models using 

Akaike Information Criterion (AICc) weights and selected the model with the highest weight. For 

each species, we first grouped all variables by their type (e.g., beach/flat for American 

oystercatcher, Table 2.5) and performed model selection to compare neighborhood sizes and 

choose the scale most appropriate for each variable. We then tested all variables from the first 

stage of model selection for collinearity by using a Pearson correlation coefficient ≥ 0.7 or ≤ -0.7 

to evaluate pairs of variables that were correlated, choosing the best-supported variable of the 

two. Finally, for each species, we tested all remaining variables at their best-supported scales, 

including quadratic and 1-way interaction terms for variables where quadratic or interaction 

relationships were supported by the literature.  

We performed model evaluation using several methods (Araujo & Guisan 2006). We 

used 4-fold cross-validation to evaluate the performance of the best-fitting model for each 
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species. We calculated the area under the curve (AUC) from the receiver-operating characteristic 

plot (ROC plot) (Fielding and Bell 1997), where values of 0.7 or higher were considered 

reasonably good at distinguishing presence from pseudo-absence. We evaluated model 

classification accuracy of presence and pseudo-absence points by calculating the True Skill 

Statistic (TSS, sensitivity (proportion of true presences) + specificity (proportion of true 

negatives) – 1), and then using the maximum TSS value to choose the optimal cutoff value 

(Allouche et al. 2006). We calculated the point biserial correlation coefficient (COR), which is 

used to measure the strength of the relationship between a continuous variable (predictions) and 

a dichotomous variable (original presence/pseudo-absences) where 1 indicates a positive 

relationship and -1 a negative relationship, as an additional measure of accuracy (Liu et al. 

2011).  We also produced variograms using model residuals to test for spatial autocorrelation. 

Relative importance of each variable was calculated using hierarchical partitioning, which 

measures proportion of variance explained by each component of the model (Chevan & 

Sutherland 1991). We projected the best-fitting models out to the landscape to map continuous 

habitat suitability ranging from 0 (not suitable) to 1 (highly suitable). To evaluate fraction of 

potential exposure to habitat loss, it is necessary to select a threshold from this continuous range 

that denotes habitat as binary classes of suitable/unsuitable (Bean et al. 2012). We converted 

continuous suitability into binary rasters of 1/0 (suitable/unsuitable) using the optimal cutoff 

value (the value at which the TSS, e.g., model accuracy, is highest) as our threshold. For 

agencies interested in identifying higher quality habitat, it can be useful to evaluate suitability 

using multiple thresholds to capture a range of intended uses (Freeman & Moisen 2008). 

Therefore, we also used values of 0.4 and 0.6 to create binary rasters of ‘moderate’ and ‘high’ 

habitat suitability, respectively (Crawford et al. 2020).  
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To avoid including areas that may unrealistically represent suitable habitat, we converted 

any predicted suitable cells that overlapped with open water and present-day high intensity urban 

areas to the unsuitable habitat class. For coastal regions, we defined open water as all classes 

encompassing inland open water, riverine open water, estuarine open water and open ocean 

using the SLAMM classes for Georgia’s coast. In upland areas where SLAMM data is not 

available, we used the NLCD Open Water category. To define high intensity urban areas, we 

used the SLEUTH urban growth model, which denotes current urbanization based on land-cover, 

transportation, and topography. We created datasets describing currently protected habitat for 

each species by extracting the binary SDM outputs to the USGS Protected Areas Database 

(http://www.protectedlands.net/), and the GADNR Conservation Lands Database 

(https://glcp.georgia.gov/). These databases provide an inventory of federal and state managed 

lands, including areas that are both publicly and privately owned. We summarized the amount of 

total available habitat and habitat within protected lands by calculating area (km2) and percent of 

habitat. To accurately reflect the extent of coastally-influecned species, we ranked species in two 

groups: Coastal Plain and lower Coastal Plain.  

Scenario Evaluation and Vulnerability Ranking 

We used the SLAMM predictions for coastal regions to define inundation from sea level 

rise and the SLEUTH urban growth model to represent urban growth in the future. We chose 

four future time points at which to examine impacts of sea level rise and urban growth (2025, 

2050, 2075 and 2100). For urbanization, SLEUTH defines raster classes denoting predicted 

probability of growth based on data describing slope, land-use, exclusion, urbanization, 

transportation and hill-shade (Clarke 1997). Classes are numbered from 3 (0-2.5% probability of 

urban growth) to 16 (97.5-100% probability of urban growth). We included all classes greater 

http://www.protectedlands.net/
https://glcp.georgia.gov/
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than or equal to 10 (50-60% probability) and reclassified them to a single class to represent 

predicted urban growth for each future time point. To predict coastal change from sea level rise, 

SLAMM uses digital elevation data and National Wetland Inventory data to simulate processes 

involved in wetland conversion under different scenarios of sea level rise. The result is a dataset 

representing changed land cover conditions under sea level rise. Due to uncertainty surrounding 

realistic projections of future sea level, we used datasets for scenarios of 1m, 1.5m and 2m sea 

level rise. For each scenario, we reclassified SLAMM classes denoting riverine open water, 

estuarine open water, and open ocean to a single class for inundation. To assess the impact of 

future sea level rise and urbanization on Coastal Plain species, we used several measures of 

change in total available habitat and protected area habitat to define potential habitat loss. We 

first overlaid the binary SDM outputs for the entire extent and within protected areas for each 

threshold with the binary datasets conveying urban growth and inundation in R. Each SDM cell 

that overlapped with cells denoting growth or inundation was converted to ‘unsuitable’, so that 

the output was a raster with a changed sum of total habitat cells, indicating each species’ 

exposure to potential habitat loss at each future time point. We used these outputs to calculate 

percent change, percent total, and area of range-wide and protected habitat for each year within 

each scenario. Because scenarios of urban growth are unlikely to impact habitat that is currently 

protected, we only evaluated future habitat loss from inundation for protected areas.  

To assess several types of prioritization schemes, we created a series of species 

vulnerability rankings. We first ranked species by their percent change in habitat as a result of 

sea level rise and urbanization, where ranks of 1 represented highest percent of potential habitat 

loss or change. We also ranked species by area of total available habitat using 1 to represent least 

amount of area (and thus top priority). To assess the amount of habitat falling within 
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conservation areas, we also ranked species by the total percent of available habitat within 

protected lands, where 1 represented the lowest percent of protected habitat. We compared these 

ranks for urbanization to sea level rise, choosing a ‘cutoff’ rank of 8 to represent species within 

distinct categories of vulnerability for each type of change. Finally, we used Global Rank, a 

metric used for Conservation Status Assessment (CSA) created by national conservation non-

profit NatureServe (NatureServe 2019), to convey species’ relative global vulnerability to 

potential extinction. We used a cutoff rank of 3 (‘Vulnerable’) to represent species above or 

below high global vulnerability.  

Results 

Present-Day Habitat 

Our filtering methods resulted in no fewer than 49 total presence points for each species, 

consistent with recommended sample sizes (Table 2.2). Best fitting models all exhibited 

adequate to good model performance (Table 2.6). For more information on variable contribution 

for each model, see Appendix B. AUC values ranged from 0.77 (adequate) to 0.95 (excellent). 

Biserial correlation coefficients were above 0.30 for all models (Elith et al. 2006), with a 

minimum COR value of 0.44 and a maximum of 0.84. Accuracy (the maximum TSS) was above 

65% for all models. Spatial variograms revealed no extreme patterns of range-wide 

autocorrelation. RCWO and BACS displayed some evidence of spatial structure, but the 

proportion of the range was small enough so that no bias was expected. Total area of suitable 

habitat ranged from 343.3-35798.2 km2, using the optimal cutoff threshold (Table 2.7). Habitat 

falling within protected areas ranged from 107.5-3649.7 km2, or 7.3-31.3 % of total habitat. For 

areas of ‘moderate’ and ‘high’ habitat suitability, total habitat area varied from 243.4-14567.9 

km2 and 114.6-4527.6 km2, respectively. Amount of habitat in protected areas for these classes 

was between 80.6-2490.4 km2 (‘moderate’ class) and 21.9-1405.4 km2 (‘high’ class), i.e., 8.5-
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44.7 % and 14.9-50.5 % of total habitat. Total percent of habitat falling within protected areas 

decreased as suitability classes become more restrictive (optimal cutoff, ‘moderate’ and ‘high’ 

habitat suitability threshold values) for 3 out of 4 species whose range is restricted to the lower 

Coastal Plain. Conversely, all species within the total Coastal Plain as well as the seaside 

sparrow had higher percentages of habitat falling within protected zones in the more restrictive 

classes.  

Future Habitat and Species Ranks 

We present prioritization schemes for species vulnerability to future exposure to potential 

habitat loss or change, using habitat classified as suitable under the optimal cutoff threshold. Full 

results from the ‘moderate’ and ‘high’ suitability classes are in Appendix C. As trends in 

rankings for vulnerability to potential sea level rise were similar across scenarios, hereafter we 

discuss prioritization schemes using the 2-meter sea level rise scenario, with all ranks determined 

by projections to 2100. Patterns in rank order varied only slightly over time; results for 1-m and 

1.5-m ranks are available in Appendix A. Species restricted to the lower Coastal Plain ranked 

highest for exposure to potential habitat loss from sea level rise by 2100, ranging from 7-72%. In 

contrast, species occupying broader ranges experienced very little exposure to potential habitat 

loss from sea level rise (0-6%). The highest percent of potential habitat lost by a species via 

urbanization was 22%, substantially lower than the highest percent of potential habitat lost by a 

species to sea level rise. Species ranked for high vulnerability to exposure habitat change from 

sea level rise generally ranked low for vulnerability to change from urbanization, and vice versa 

(Figure 2.3, A). Two exceptions were the painted bunting (PABU) and wood stork (WOST), 

which ranked moderately high for habitat loss to sea level rise, and high or highest for habitat 

loss due to urbanization (Figure 2.3, B). Several species were ranked moderately low for 
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vulnerability to both components (Figure 2.3, C). Species ranking highest on the basis of percent 

habitat loss from sea level rise were also ranked highest based on total predicted area, but tended 

to rank lower based on the amount of habitat currently protected (Table 2.8). The top-ranking 

species under scenarios of urbanization ranked lowest based on total predicted area but tended to 

have less protected habitat (Table 2.8). Species ranked lowest (‘Apparently Secure’ to ‘Secure’) 

for global vulnerability (Figure 2.4, 1A), typically had the highest regional vulnerability to sea 

level rise, while those ranked for higher global vulnerability (‘Vulnerable’ to ‘Imperiled’) had 

the lowest (Figure 2.4, 1D). Several species ranked high for global vulnerability also ranked 

reasonably high for regional vulnerability to urbanization (Figure 2.4, 2B). Species ranking low 

for urbanization vulnerability also ranked low for global vulnerability (Figure 2.4, 2C). 

Discussion 

Our results indicate that all species evaluated are likely to experience some form of 

habitat loss or change from either sea level rise or urbanization, but that few species will 

experience significantly high loss from both stressors. The severity of potential habitat loss 

experienced by species was highly dependent on their range and amount of predicted suitable 

habitat. Coastally restricted species had less predicted suitable habitat area initially and 

experienced more severe declines in predicted suitable habitat in the future than those species 

occupying some portion of the larger Coastal Plain. Given the restricted range of both salt-marsh 

and coastline habitats in GA, this is unsurprising (USFWS 2007). We found that species utilizing 

salt-marsh, beach, and other coastal habitat types will be most vulnerable to potential habitat loss 

from sea level rise, which is consistent with previous evidence suggesting that salt-marsh and 

beach reliant species will be highly vulnerable to potential habitat loss from sea level rise in the 

future (Hunter et al. 2015, Hunter et al. 2014, Brittain & Craft 2012, Galbraith et al. 2002). A 

majority of species occupying some or all of the entire Coastal Plain experienced little habitat 
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loss from sea level rise, averaging loss below 0.5% even under 2m sea level rise scenarios. 

Instead, results indicate that despite larger estimates of predicted suitable habitat area than lower 

Coastal Plain species, inland Coastal Plain species will experience substantial habitat exposure 

(3-20%) to urbanization, which agrees with other studies suggesting development is a major 

threat to Georgia’s inland terrestrial species in the region (Leonard et al. 2016, Breininger et al. 

2012, Plentovich et al. 2007, Gibbon et al. 2000).  

Because ranks based on fraction of protected habitat were a factor of total available 

habitat area, assessing the role of protected lands in prioritizing species is difficult. Several of the 

lowest ranking species for priority on the basis of protected habitat ranked low for vulnerability 

to habitat loss, yet still ranked moderately high for action based on total available habitat area. 

For example, the red-cockaded woodpecker (RCWO), Bachman’s sparrow (BACS), and gopher 

frog (GF) all had roughly 1/3 to half of their total habitat falling within protected areas yet 

ranked within the top 10 for priority based on low total available habitat. Georgia populations of 

these species have historically been documented in longleaf pine ecosystems (GADNR 2010a, 

GADNR 2010b, Maerz and Terrell 2016). Due to the widespread decline of these ecosystems and 

the recognition of their importance for multiple regional species, a large portion of longleaf pine 

habitat in Georgia tends to fall within some protected land. This indicates that while species 

utilizing these landscapes may have much of their available habitat protected, they still rank 

relatively high for action based on total available area due to specific habitat requirements. This 

pattern is consistent for species using salt-mash and beach habitats, which had roughly 1/4-1/3 of 

their habitat protected along Georgia’s coast, yet have little total predicted habitat to begin with 

(e.g., SESP, AMOY). Further, whether protected or not, these habitat types will be vulnerable to 

the effects of SLR, whereas inland protected areas will not be vulnerable to encroaching 
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development. This suggests that while managers may be able to use the amount of habitat falling 

within protected area to offset the impacts of future change, eliminating species for top ranking 

on the basis of total protected habitat is an ineffective strategy, and managers will instead need to 

evaluate species for total available habitat.  

All species ranking highest for habitat vulnerability to sea level rise were classified as 

‘Apparently Secure’ or ‘Secure’ globally, indicating these species reportedly have large to 

medium populations currently showing no extreme declines throughout their range (Clay et al. 

2014, NatureServe 2019). The challenge in weighing global status against regional vulnerability 

is that the magnitude of species’ vulnerability to potential habitat loss within a region may 

outweigh priorities for global conservation, particularly when global priority schemes may be 

data deficient. For many of our species, population status has not been re-evaluated since 1996. 

This means that global listings may not be accurate reflections of range and population 

resiliency, a problem documented in several large-scale global priority systems (Ramesh et al. 

2017). This does not necessarily mean that global conservation status should be discounted as a 

tool for regional management decision, but rather that managers may need to use global 

conservation status as a secondary measure for final priority ranking if the magnitude of 

projected regional habitat loss for a species is extremely high (e.g., 35-100% of habitat projected 

to be lost). Although species ranking high for both global vulnerability and regional vulnerability 

to habitat loss (e.g., Southern hognose snake, SHS and striped newt, SN) will still likely rank 

high for priority for conservation action, managers will need to weigh the magnitude of regional 

vulnerability to habitat loss as a primary factor for those species ranking lower globally.  

While all salt-marsh and beach dwelling species ranked high based on potential habitat 

loss, the seaside sparrow (SESP) was projected to experience particularly high potential habitat 
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loss. Seaside sparrows are considered habitat specialists, relying primarily on salt marsh for both 

nesting and foraging activities (Hunter et al. 2015). Unlike the other species ranked high for 

habitat loss to sea level rise, all of which utilize beach habitats in conjunction with salt and 

brackish marsh, the seaside sparrow is limited by its dependence on this singular habitat type. 

Under the SLAMM model, salt marsh habitats are degraded substantially, with a conservative 

estimate of 6% loss by 2100 under 1m SLR. In contrast, the model predicts increases in tidal 

flats and estuarine beaches, meaning that beach habitats will be surprisingly persistent despite 

inundation; this likely accounts for the gap between habitat loss values between the seaside 

sparrow and species ranked directly below it. For upland species, the contribution of 

urbanization to the conversion of alternative inland habitat types could also inadvertently buffer 

the impact of habitat loss. Species associated with agricultural, pasture, or even low or 

moderately developed areas may be able to utilize these land cover types to their advantage, 

offsetting the full effect of habitat loss of other natural landscapes (Lee & Carroll 2014, 

Kopachena & Crist 2000). This may be most applicable for species ranked high for vulnerability 

to both sea level rise and urbanization, as in the case of the painted bunting (PABU) and wood 

stork (WOST). Both species concentrate around coastal wetlands/swamps (freshwater and 

brackish/saltmarsh) and shrub-scrub and maritime forest habitats for nesting, but are also found 

near inland agricultural and riparian areas in and outside of breeding season, consistent with 

habitat variables used in our top models (Gaines et al. 1998, Kopachena & Crist 2000, Brittain et 

al. 2010). The use of both generalized inland and coastally adjacent habitat types likely drives 

the high and moderately high ranks for these species in both categories, suggesting that species 

occupying habitat along this coastal-inland gradient could be more susceptible to both forms of 

stressors. However, these habitat generalists could potentially benefit from other habitat types 
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that may arise as a result of anthropogenic change, meaning that managers will need to consider 

which high ranking species may be habitat specialists vs. habitat generalists.  

It should be noted that there are two challenges associated with models simulating future 

sea level rise and future urbanization in this region. Firstly, we chose to present results using a 2-

m sea level rise scenario. There is some debate about the uncertainty associated with predictions 

of sea level rise, although recent studies have suggested that conservative estimates of sea level 

rise may be unrealistic, indicating that managers may wish to consider worst-case (i.e., 2-m) 

scenarios (Kopp et al. 2017, Kulp et al. 2019). Using this justification, we felt our choice of a 2-

m scenario was appropriate and that rankings were consistent between severities. However, the 

magnitude of exposure does vary between scenarios, and agencies may choose to consider more 

conservative scenarios, potentially resulting in slightly different interpretations of results. 

Secondly, models for development often fail to account for some human responses to future 

stressors such as SLR. The SLEUTH model relies on information from current distributions of 

development and does not presently include information about potential human responses to SLR 

that may inadvertently impact coastal wildlife populations, therefore potentially underestimating 

the true impact of future development. For example, the building of sea walls is rapidly 

becoming a common urban planning technique to address SLR. Sea walls have been shown to 

have negative impacts on diamondback terrapin habitat, resulting in habitat fragmentation and 

loss of habitat connectivity (Isdell et al. 2015). While efforts to construct sea walls are presently 

limited in Georgia, it is reasonable to assume that armoring of shorelines will be a mitigation 

tactic employed in the future, meaning that SLEUTH is presently unable to capture these 

relationships. Thus, our estimates of exposure to habitat change from development may be 
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conservative for some coastal species who may be prone to vulnerability from development-

related mitigation efforts. 

While the nuances of impacts to species from future anthropogenic threats are difficult to 

completely assess, we present an initial attempt at helping managers consider tradeoffs between 

prioritization schemes under multiple types of change. Our results suggest that managers may 

need to prioritize species (or their habitats) based on the regional total amount of available 

habitat, and the magnitude of habitat loss. We found that species restricted to the lower Coastal 

Plain were projected to lose up to 40-70% of their habitat due to sea level rise, roughly twice the 

amount of habitat loss projected for top ranking species under urbanization. Although these 

species currently rank low for global vulnerability, this result has implications for populations 

outside of Georgia, as sea level rise may have similar effects on populations along the rest of the 

Atlantic coast, potentially changing the nature of species’ global status (Hayes 1994). We also 

felt that focusing on results due to change by the end of the century was appropriate, as top-

ranking species for early (2025) and mid-century (2050) habitat loss deviated little from results 

by 2100. However, it may be valuable for managers seeking to develop short-term conservation 

plans to use priority schemes for timescales closer to mid-century, as several inland species 

ranked higher for immediate habitat loss due to urbanization by 2025 than species experiencing 

habitat loss from sea level rise by 2025 (see Appendix A). Differing conservation timelines and 

goals will mean that managers need multiple lines of evidence in order to make informed 

decisions and appropriately allocate resources. We offer a multi-scenario, broad ranging set of 

results that may help to contextualize potential management actions and provide a first step for 

combating species’ long-term vulnerability. 
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Figures and Tables 

Table 2.1. Georgia Coastal Plain Species and their regional conservation status. Conservation status is defined by a state 

government agency, the Georgia Department of Natural Resources. Type indicates species group. Acronyms are assigned 

from the U.S. Bird Banding Laboratory (BBL) and from various literature. Highlighted species indicate species restricted 

within the lower Coastal Plain. 

Scientific Name Common Name Type Acronym State Rank 

Ammodramus maritimus Seaside Sparrow AvP SESP S3 

Charadrius wilsonia Wilson's Plover AvSB WIPL S2 

Haematopus palliatus American Oystercatcher AvSB AMOY S2 

Mycteria americana Wood Stork AvMB WOST S3 

Leuconotopicus borealis Red-cockaded Woodpecker AvWP RCWO S2 

Passerina ciris Painted Bunting AvP PABU S2S3 

Peucaea aestivalis Bachman's Sparrow AvP BACS S2 

Lithobates capito Gopher Frog Am GF S2S3 

Notophthalmus perstriatus Striped Newt Am SN S2 

Crotalus adamanteus Eastern Diamond-backed Rattlesnake R EDR S4 

Drymarchon couperi Eastern Indigo Snake R EIS S2 

Gopherus polyphemus Gopher Tortoise R GT S3 

Heterodon simus Southern Hognose Snake R SHS S1S2 

Malaclemys terrapin Diamondback Terrapin R DT S4 

Pituophis melanoleucus Florida Pine Snake R FPS S3 

Type: AvSB= avian: shorebirds, AvMB = avian: marsh birds, AvP = avian: passerines, AvWP = avian: woodpeckers, 

Am = amphibian, R = reptile.  

State ranks: S1 = Critically Imperiled, S2 = Imperiled, S3 = Vulnerable, S4 = Apparently Secure.  
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Table 2.2. Sources for presence points, total presence and pseudo-absence points, and filtering scheme used to remove 

potential bias for 10 species. R&M denotes points gathered from Research and Monitoring studies. Pseudo-absences were 

generated at a 1:4 ratio, then filtered using the neighborhood size so that the final ratio of presence to pseudo-absence points 

was 1:3. For more information on data collection for species denoted with *, see Crawford et al. 2020 

Species Neighborhood NatureServe eBIRD R&

M 

Presence 

Points 

True 

Absences 

Pseudo-

Absences 

Total 

AMOY 100m 187 68 - 255 - 788 1043 

BACS 100m 299 239 - 538 - 1649 2187 

DT 500m 9 - 40a 49 8 157 214 

EDR 900m 260 - - 260 - 774 1034 

EIS 900m 224 - - 224 - 738 962 

FPS* - - - - - - - - 

GF* - - - - - - - - 

GT* - - - - - - - - 

PABU 700m - 269 - 269 - 844 1113 

RCWO 100m 163 62 - 225 - 694 919 

SHS* - - - - - - - - 

SN* - - - - - - - - 

SESP 200m - - 99b 99 115 190 404 

WIPL 100m 35 47 - 82 - 250 332 

WOST 2km 26 371 - 248 - 805 1053 
a Grosse et al. 2011, bHunter et al. 2015, *Crawford et al. 2020 
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Table 2.3. 30-m raster datasets used to describe habitat variables for 10 species. All variables denoted with * were modified raster 

datasets borrowed from Crawford et al. 2019. 

Predictor Source 

Landcover 2016 National Land Cover Database (NLCD) (https://www.mrlc.gov/nlcd11_data.php) 

Sea Level Affecting Marshes Model (SLAMM) (http://warrenpinnacle.com/prof/SLAMM/index.html) 

SLEUTH Urban Growth Model (http://www.ncgia.ucsb.edu/projects/gig/Dnload/download.htm) 

USGS National Wetland Inventory (NWI) (https://www.fws.gov/wetlands/) 

LANDFIRE Existing Vegetation Type (EVT) (https://www.landfire.gov/evt.php) 

National Hydrography Dataset (NHD) https://www.usgs.gov/core-science-systems/ngp/national-

hydrography 

Vegetation Characteristics LANDFIRE Existing Vegetation Height (EVH) (https://www.landfire.gov/evh.php) 

NLCD Canopy Cover Dataset  

Emergent Vegetation Index (EVI) MODIS (https://modis.gsfc.nasa.gov/data/dataprod/mod13.php) 

Topography and Soil USGS Digital Elevation Model (DEM) (http://eros.usgs.gov/#/Guides/dem) 

Topographic Position Index (TPI) (http://eros.usgs.gov/#/Guides/dem) 

NRCS Gridded SSURGO (GSSURGO) Soil Drainage Index (gSSURGO: 

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/) 

Disturbance *MODIS Fire Frequency (https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-

fire-data), LANDFIRE (https://www.landfire.gov/) 

*Historical Land Disturbance USGS / EROS (https://landcover-modeling.cr.usgs.gov/projects.php)

Climate University of Idaho Gridded Surface Meteorological Data (U of I METDATA) 

https://www.mrlc.gov/nlcd11_data.php
http://warrenpinnacle.com/prof/SLAMM/index.html
http://www.ncgia.ucsb.edu/projects/gig/Dnload/download.htm
https://www.fws.gov/wetlands/
https://www.landfire.gov/evt.php
https://www.usgs.gov/core-science-systems/ngp/national-hydrography
https://www.usgs.gov/core-science-systems/ngp/national-hydrography
https://www.landfire.gov/evh.php
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
http://eros.usgs.gov/#/Guides/dem
http://eros.usgs.gov/#/Guides/dem
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://www.landfire.gov/
https://landcover-modeling.cr.usgs.gov/projects.php
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Table 2.4. Top-performing models describing suitable habitat for 10 species. 

Species Model 

AMOY plandbh100 + edmsh1km + edmsh1km2 + urb_1km + ow_1km + ow_1km2 

BACS plandpine800 + plandpine8002 + fire800 + fire8002 + herbht800 + shrbht800 + can100 + can1002 

DT plandmsh500 + landco_800 + landco_8002 + urb_800 + urb_8002 + elev500 

EDR can250 + can2502 + dran250 + dran2502 + fire900 + landco250 + landco2502 + plandpine900 + 

plandpine9002 + 

 urb250 + urb2502 + evi250 + evi2502 + hist900 + hist9002 + precip + precip2 + tpi + tpi2 

EIS rip_900 + can250 + can2502 + dran250 + dran2502 + landco900 + landco9002 + plandpine900 + 

plandpine9002 + 

 urb900 + evi250 + evi2502 + hist900 + hist9002 + precip + precip2 + tpi 

PABU plandfor700 + mpashb700 + shrbht700 + plandrip700 + can700 + can7002 + elev700 

RCWO plandpine800 + plandpine8002 + fire800 + fire8002 + herbht800 + shrbht800 + can100  

SESP edmsh200 + edmsh2002 + plandbrack200 + elev200 + urb_200 + urb_2002 

WIPL edbh100 + urb_1km + plandco1km + ow_1km 

WOST wat2000 + nwifwd_2000 + nhd_2000 + landco2000 + can2000 + elev2000 
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Table 2.5. Predictor variables for 10 species. 

Species Variable Name Description (unit) Min./Max.  
Neighborhood Sizea

Source 

AMOY  

Beach/Flat plandbh Percent of landscape (%)  

100m/1km 

SLAMM (10, 11, 12) 

mpabh Mean patch area (m2)  

npbh Number of patches   

Salt/Brackish 

Marsh 

plandmsh Percent of landscape (%)  SLAMM (7, 8, 20) 

edmsh Edge density (m/ha)  

Open Water ow_ Mean distance (m)  SLAMM (15, 16, 17, 

19) 

Urbanization urb_ Mean distance (m)  NLCD (21:24) 

Elevation elev  Mean elevation (m) DEM 

BACS 

 Longleaf Pine pland pine Percent of landscape (%)  

100m/800m 

LANDFIRE 

 mpapine Mean patch area (m2)  

 nppine Number of patches   

 pine_  Mean distance (m)  

Herbaceous plandherb Percent of landscape (%)  NLCD (71) 

 mpaherb Mean patch area (m2)  

 npherb Number of patches   

 herbht  Height of vegetation (m) LANDFIRE (EVH)  

Canopy/Forest can Percent of cover (%)  NLCD 

forht Mean height of forest (m) LANDFIRE 

Shrub shrbht Mean height of shrub (m) LANDFIRE 

Fire Frequency fire Percent of years burned (0.1 

increments) 

MODIS,LANDFIRE 

DT 

Salt/Brackish 

Marsh 

plandmsh Percent of landscape (%)  

500m/800m 

SLAMM (7, 8, 20) 

mpamsh Mean patch area (m2)  

edmsh Edge density (m/ha)  

Beach/Land near 

marsh 

plandco Percent (%) beach/dry land w/in 500m 

marsh 

SLAMM (2, 10, 11, 

12)  

landco_ Distance (m) beach/dry land w/in 

500m marsh 

mpalandco Area (m2) beach/dry land w/in 500m 

marsh 

Urbanization urb_ Mean distance (m)  NLCD (21:24) 

Elevation elev  Mean elevation (m)  DEM 

EDR/EIS 

Landcover landco Percent of Shrub/Barren/Forested (%) 

250m/900m 

NLCD  (41:43, 52, 71) 

Canopy can Percent of cover (%)  NLCD 

Longleaf Pine pland pine Percent of landscape (%)  LANDFIRE 

EVI evi Difference between summer/winter 

vegetation 

MODIS 

Agriculture plandag Percent landscape (%) NLCD (81,82) 

  ag_  Mean distance (m)  

Historical Land-Use hist Historical land-use (1 = used, 

0=unused) (%) 

USGS,EROS 

Fire Frequency fire Percent of years burned (0.1 

increments) 

MODIS, LANDFIRE 

Drainage dran 1:well drain, 0.5:mod drain, 0:poor 

drain (%) 

NRCS 

Urbanization urb Percent landscape (%) NLCD (21:24) 

 urb_  Mean distance (m)  

Precipitation precipsum Mean Precipitation in Summer (mm) U of I 

precipwin Mean Precipitation in Winter(mm) 

EIS 

Riparian plandrip Percent of landscape (%)  

250m/900m LANDFIRE EVT rip_ Mean distance (m)  

edrip Edge density (m/ha)  

PABU 

Canopy can Percent of cover (%)  

300m/700m 

NLCD 

Salt/Fresh Marsh plandmsh Percent of landscape (%)  

LANDFIRE (marsh) edmsh Edge density (m/ha)  

msh_  Mean distance (m)  

formsh Sum of distance between forest/marsh NLCD (41:43), 

LANDFIRE (marsh) 

Riparian plandmsh Percent of landscape (%)  

LANDFIRE EVH 

(riparian) 
edmsh Edge density (m/ha)  

msh_  Mean distance (m)  

Forested plandfor Percent of landscape (%)  NLCD (41:43) 
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edfor Edge density (m/ha)  

npfor Number of patches   

Shrub plandshrub Percent of landscape (%)  NLCD (52) 

edshb Edge density (m/ha)  

mpashb Mean patch area (m2)  

Shrub Height shrbht Mean height of shrub (m) LANDFIRE EVH 

Elevation elev  Mean elevation (m)  DEM 

Predictor variables for 10 species, cont. 
Species Variable Name Description (unit) Min./Max.  

Neighborhood Sizea

Source 

RCWO 

 Longleaf Pine pland pine Percent of landscape (%)  

100m/800m 

LANDFIRE 

 mpapine Mean patch area (m2)  

 nppine Number of patches   

 pine_  Mean distance (m)  

Herbaceous  plandherb Percent of landscape (%)  NLCD (71) 

 mpaherb Mean patch area (m2)  

 npherb Number of patches   

 herbht  Height of vegetation (m) LANDFIRE (EVH)  

Canopy/Forest can Percent of cover (%)  NLCD 

forht Mean height of forest (m) LANDFIRE 

Shrub shrbht Mean height of shrub (m) LANDFIRE 

Fire Frequency fire Percent of years burned (0.1 

increments) 

MODIS,LANDFIRE 

SESPb

Salt/Brackish Marsh plandmsh Percent of landscape (%)  

50mb/200m  

SLAMM (7, 8, 20) 

edmsh Edge density (m/ha)  

mpamsh Mean patch area (m2)  

Brackish Marsh plandbrack Percent of landscape (%)  SLAMM (20) 

Forest ow_ Mean distance (m)  NLCD(41:43) 

Urbanization urb_ Mean distance (m)  NLCD (21:24) 

Elevation elev  Mean elevation (m)  DEM 

WIPL 

Beach/Flat plandbh Percent of landscape (%)  

100m/1km 

SLAMM (10, 11, 12) 

mpabh Mean patch area (m2)  

npbh Number of patches   

edbh Edge density (m/ha)  

plandco Percent (%) beach/dry land w/in 100m 

marsh 

Salt/Brackish Marsh plandmsh Percent of landscape (%)  SLAMM (7, 8, 20) 

edmsh Edge density (m/ha)  

Open Water ow_ Mean distance (m)  SLAMM (15, 16, 17, 

19) 

Urbanization urb_ Mean distance (m)  NLCD (21:24) 

Elevation elev  Mean elevation (m)  DEM 

Slope slp Mean Slope (% rise) DEM  

WOST 

Wetlands plandnwi Percent of landscape (%)  

500m/2km 

NWI (forested, 

emergent, estuarine 

wetlands), NLCD (11) 

nwifor Percent (%) wetlands w/in 500m open 

water 

nwifwd_ Distance (m) forested wetlands 

 w/in 500m open water 

Canals/Ditches nhd_ Mean distance (m)  NHD 

Open Water wat Percent of landscape (%)  

wat_ Mean distance (m)  

Non-Wetland/Forest 

Land Cover 

landco Percent of landscape (%)  NLCD (52, 71, 81, 82) 

Canopy/Forest can Percent of cover (%)  NLCD 

Forest Height forht Mean height of forest (m) LANDFIRE 

Elevation elev  Mean elevation (m)  DEM 



53 

Table 2.6. Evaluation results for 10 species. Additional evaluation results for 5 species can be found in 

Crawford et al. 2019. TSS denotes the True Skill Statistics, where TSS = Sensitivity + Specificity - 1. COR 

represents the point-biserial correlation coefficient. 

Species AUC Sensitivity Specificity TSS Optimal Cutoff COR Accuracy 

AMOY 0.928 0.843 0.843 0.686 0.307 0.726 84.2% 

BACS 0.882 0.799 0.825 0.624 0.215 0.686 81.8% 

DT 0.919 0.878 0.847 0.725 0.303 0.676 84.9 

EDR 0.833 0.769 0.744 0.513 0.244 0.536 74.9% 

EIS 0.880 0.824 0.779 0.603 0.255 0.636 78.9% 

PABU 0.773 0.717 0.673 0.390 0.248 0.440 68.3% 

RCWO 0.958 0.902 0.927 0.829 0.248 0.842 91.95% 

SESP 0.881 0.828 0.761 0.589 0.289 0.601 77.5% 

WIPL 0.909 0.866 0.815 0.681 0.164 0.705 82.5% 

WOST 0.822 0.747 0.743 0.490 0.281 0.503 74.3% 
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Table 2.7. Metrics summarizing characteristics of species habitat across three suitability classes for present day. Total 

represents the percent and area (km2) of species’ range across the Coastal Plain classified as suitable. Total PA 

represents the total percent and area of suitable habitat within protected areas. Highlighted species indicate species 

restricted within the lower Coastal Plain. * indicates species for which a low threshold was not calculated, as the 

optimal cutoff threshold met the upper limits of 0.40.  

Metric AMOY DT SESP WISP BACS EDR EIS FPS GF GT PABU RCWO SHS SN WOST 

hTotal (%) 1.7 6 1.3 2.8 3.3 3.4 4.2 4.2 3.2 4.5 1.9 2.7 3 2.8 2.9 

hTotal (km2) 147.1 523.4 114.6 245.1 3405.7 3416.2 4311.5 4292.2 3288.7 4527.6 1949.4 2784.9 3038.5 2895.1 2983.4 

hTotal PA (%) 14.9 14.9 35.2 23.5 48.2 23.1 17.6 13.6 38 20.4 15.4 50.5 20 34.6 24.7 

hTotal PA (km2) 21.9 78.2 40.3 57.6 1642 790.8 759.9 582.2 1249.7 922 300.8 1405.4 606.8 1001.8 737.6 

mTotal (%) 6.7 10.4 2.8 4.9 7.3 10.5 11.4 9.2 5.9 7.6 14.3 5.5 5.7 5 10.9 

mTotal (km2) 590.3 912.8 243.4 433.1 7446.5 10702.5 11575.1 9313.4 6032.5 7691.3 14567.9 5573.5 5766.6 5116.8 11091.6 

mTotal PA (%) 18.6 18.1 33.1 26.3 32.6 16.6 13.2 11.3 28.3 17.4 8.5 44.7 16.6 25.5 15.9 

mTotal PA (km2) 110 165.5 80.6 114 2425.4 1781.9 1526.3 1054.3 1709.3 1341.6 1243.4 2490.4 956.3 1303.2 1767.3 

oTotal (%) 9.9 13.2 3.9 12.9 17.5 17.5 21 9.2* 6.9 10.7 35.2 17.5 5.7* 5.8 21.8 

oTotal (km2) 870.4 
1162.

2 
343.3 1136.5 17800.3 17816 21407.4 9313.4* 7024.8 10852.4 35798.2 17800.3 5766.6* 5933.8 22165.1 

oTotal PA (%) 19.3 20.4 31.3 30.1 20.5 13.8 11.2 11.3* 26.2 15.7 7.3 20.5 16.6* 23.4 15.1 

oTotal PA (km2) 168.1 236.9 107.5 342.3 3649.7 2458.1 2402.1 1054.3* 1841.9 1706.5 2613.2 3649.7 956.3* 1388.1 3337.2 

h denotes ‘high’ habitat suitability class (0.6 or greater)  

m denotes ‘moderate’ habitat suitability class (0.4 or greater) 

o denotes habitat suitability class using the species-specific optimal cut-off value (or greater) 
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  G (Global) Ranks:  G2 = Imperiled, G3 = Vulnerable, G4 = Apparently Secure, G5 = Secure. 

Table 2.8. Species prioritization schemes for scenarios of 2-meter sea level rise (SLR) and 

future urbanization (50% probability of growth, URB) by 2100. Ranks are meant to convey 

top priority for each consecutive metric; all metrics are treated independently of each 

other. Species are ranked first by fraction of exposure to habitat change, with 1 indicating 

highest percent of habitat change due to the corresponding scenario (RankA). RankB refers 

to rank for total area (km2) of habitat available under each separate scenario, with 1 

indicating least amount of habitat. RankC refers to rank for percent of habitat within 

protected land, where 1 indicates least amount of protected habitat. Global (G) Rank (as 

defined by NatureServe) conveys ranks for species’ global vulnerability. 

Species % Exposure Rank
A 

Area (km
2
) Rank

B 
% PA Rank

C 
G Rank 

SESP 69.32 1 105.34 1 33.93 15 G4 

AMOY 41.37 2 510.35 2 19.48 8 G5 

WIPL 40.02 3 681.64 3 32.69 14 G5 

DT 38.18 4 718.45 4 19.69 9 G4 

WOST 3.09 5 21479.87 14 14.70 5 G4 

SLR PABU 1.83 6 35142.17 15 6.96 1 G5 

EIS 0.38 7 21325.30 13 11.13 2 G3 

EDR 0.15 8 17789.07 10 13.76 4 G4 

SHS 0.05 9 5763.67 5 16.57 7 G2 

GT 0.05 10 10847.30 9 15.72 6 G3 

SN 0.04 11 5931.54 6 23.39 12 G2G3 

FPS 0.03 12 9310.14 8 11.31 3 G4 

BACS 0.00 13 17799.47 11 20.50 10 G3 

GF 0.00 14 7024.54 7 26.22 13 G3 

RCWO 0.00 15 17799.47 12 20.50 11 G3 

Species % Exposure Rank
A 

Area (km
2
) Rank

B 
% PA Rank

C 
G Rank 

PABU 19.39 1 28855.79 15 6.96 1 G5 

EDR 19.17 2 14400.96 10 13.76 4 G4 

WOST 18.89 3 17978.1 13 14.70 5 G4 

SHS 18.02 4 4727.311 5 16.57 7 G2 

FPS 17.63 5 7671.677 8 11.31 3 G4 

URB GT 17.09 6 8997.98 9 15.72 6 G3 

SN 14.26 7 5087.582 6 23.39 12 G2G3 

EIS 13.79 8 18455.81 14 11.13 2 G3 

BACS 13.33 9 15427.8 11 20.50 10 G3 

RCWO 9.59 10 15427.8 12 20.50 11 G3 

GF 8.51 11 6426.952 7 26.22 13 G3 

WIPL 5.43 12 1074.758 3 32.69 14 G5 

DT 5.36 13 1099.904 4 19.69 9 G4 

AMOY 3.82 14 837.1674 2 19.48 8 G5 

SESP 0.65 15 341.0793 1 33.93 15 G4 
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Figure 2.1 Map denoting study area extents for upper Coastal Plain species and lower Coastal 

Plain species, as well as the Fall Line. 
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 Figure 2.2: Species ranked by percent of exposure to potential habitat change under 2-

meter sea level rise (SLR) and 50% probability of urbanization by 2100.  
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Figure 2.3: Ranks for vulnerability to 2-meter SLR versus ranks for vulnerability to 50% 

probability of urbanization by 2100. Ranks are based on percent exposure to potential habitat 

change. Lines indicate framework for evaluating sea level rise vs. urbanization vulnerability. 

A: Low Global Vulnerability, High Regional Vulnerability, 

B: High Global Vulnerability, High Regional Vulnerability 

C: Low Global Vulnerability, Low Regional Vulnerability 

D: High Global Vulnerability, Low Regional Vulnerability 



59 
 

 

 

Figure 2.4: Ranks for Global Vulnerability versus ranks for regional vulnerability to SLR (top) 

and urbanization (bottom). Ranks are based on percent exposure to potential habitat change. 

Lines indicate framework for evaluating global vs. regional vulnerability. 

 A: Low Global Vulnerability, High Regional Vulnerability,  

B: High Global Vulnerability, High Regional Vulnerability 

C: Low Global Vulnerability, Low Regional Vulnerability 

D: High Global Vulnerability, Low Regional Vulnerability 
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CHAPTER III. 

USING EMPIRICAL DATA TO INFORM EXPERT-BASED VULNERABILITY 

ASSESSMENTS IN GEORGIA’S COASTAL PLAIN: A COMPARISON OF SPECIES 

PRIORITIZATION SCHEMES2 

2Paulukonis E., Reece J., Nibbelink N. To be submitted to Natural Areas Journal.
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Abstract 

Expert-based vulnerability assessments are commonly used to rank species by multiple 

components of vulnerability (i.e., exposure, sensitivity, and resilience to change), often when 

empirical-based data is unavailable for prioritization schemes. Little work has been done to 

examine how the inclusion of empirical-based data for certain components of these expert-based 

assessments may change overall rankings. We worked with species experts to conduct a 

Standardized Index for Vulnerability and Value Assessment (SIVVA) for 15 Coastal Plain 

species in Georgia. We substituted empirical data for two SIVVA metrics representing habitat 

exposure to sea level rise and urbanization to compare how metric scores and overall ranks 

differed between methods. Results suggest a divergence in the two methods, as vulnerability 

scores for expert-based methods (0.625 - 0.884) were higher than scores for empirical-based 

methods (0.532-0.688). While the seaside sparrow (Ammodramus maritimus) ranked highest for 

both methods, other coastal species were demoted under the empirical-based method.  

Introduction 

Coastal ecosystems and the species they support are vulnerable to changes from both sea 

level rise and urban development in the future. Sea level is predicted to increase between 1-2 

meters by the end of the century, and U.S. coastlines are projected to host an additional 7 million 

people by mid-century (Craft et al. 2009, Dahl et al. 2018, Seto et al. 2012, NOAA 2015). Fish 

and wildlife agencies need to consider the ways in which biodiversity may be affected by these 

changes. While ecosystem-based management is ideal, resource limitations often mean that 

agencies that are tasked with developing conservation plans must choose priority species on 

which to focus their efforts and resources (Noss 1996, Benscoter et al. 2013, Walls et al. 2019). 

Vulnerability assessments are commonly used to inform this process. Typically, pre-defined 
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criteria are used to rank species by their vulnerability to future change, and top-ranking species 

are prioritized for conservation action (Given & Norton 1993, Gauthier et al. 2010). At present, 

there is no broad consensus regarding the criteria used to establish a definition of species 

vulnerability (Pacifici et al. 2015). What is acknowledged is that vulnerability is multi-

dimensional and involves both intrinsic and extrinsic factors (e.g., sensitivity, resilience, and 

exposure to change); thus, a prioritization framework that includes these factors is ideal for 

assessment (Williams et al. 2008, Turner et al. 1993). However, we lack detailed empirical data 

on many species (e.g., population demographics, genetic and physiological traits, extinction 

risk), limiting our ability to consider all three factors affecting vulnerability, particularly for rare 

species. 

In situations where data deficiencies prevent the inclusion of quantitative vulnerability 

criteria, expert opinion is often substituted for information gaps in species assessments 

(Donlan et al. 2010, McBride et al. 2012, Hare et al. 2016). Expert knowledge can be useful for 

characterizing the impacts of change scenarios on vulnerability when empirical data is lacking, 

and is often timelier and less costly than relying on empirical data, two factors that can be crucial 

when rapid response for management action is need (O’Neill et al. 2008, Gardali et al. 2012). A 

major reservation about this technique is the concern that experts may be inherently biased, or 

the results poorly calibrated, leading to over or under estimation of variables commonly used in 

species assessments (Martin et al. 2011, Tversky & Kahneman 1974). For 

example, Seguardo (2011) suggested that classifications of Mediterranean freshwater fish species 

tolerance for disturbance using expert judgement vs. empirical data may differ due to experts 

failing to account for natural variability in tolerance in their judgement (Seguardo et al. 2011). 

Further exploration of the interplay between empirical data and expert judgement in vulnerability 
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assessments will be useful to understand the advantage of one method over another, and help to 

clarify when expert-based methods may be insufficient substitutes for more intensive empirical 

methods (Martin et al. 2011). 

The Standardized Index for Vulnerability and Value Assessment (SIVVA) is an expert-

based species’ vulnerability assessment and prioritization tool that has been successfully 

employed across Florida and the Gulf Coast (Reece et al. 2013, Reece & Noss 2014, Reece et al. 

2018). SIVVA relies on experts to score species on multiple intrinsic and extrinsic criteria 

related to species vulnerability, with criteria customized to groups of species. Scores for each 

criterion are then combined to form a final overall ‘rank’ for a species. SIVVA explicitly 

accounts for species vulnerability to sea level rise (SLR), an aspect often missing from prior 

tools (Reece & Noss 2014). When scoring components of vulnerability related to both SLR and 

urbanization, the tool requires experts to estimate several quantitative factors in their evaluation 

of anthropogenic-related vulnerability criteria. Specifically, the tool asks experts to consider the 

total amount of habitat loss likely to be experienced by species as a result of both SLR and 

urbanization in the future. However, the degree to which final species rankings may change 

when empirical data for habitat loss is substituted for expert judgement of habitat loss has not 

been explored. 

By mid-century, Southeastern coastal ecosystems are projected to undergo severe 

changes as a result of encroaching SLR and urbanization. Consequently, the state of Georgia, 

U.S.A is predicted to experience habitat loss and potential biodiversity declines, and the state has 

expressed the need to rapidly prioritize species most at risk from these factors in order to develop 

adequate conservation plans (Craft et al. 2011, Hunter et al. 2015, GADNR SWAP 2015). We 

used an expert-based vulnerability assessment (SIVVA) in conjunction with outputs from 
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empirical-based Species’ Distribution Models (SDMs) to evaluate the effect of differing 

approaches to quantifying future vulnerability for species’ prioritization schemes in Georgia. We 

substituted SDM data describing species exposure to potential habitat loss as a result of 1-meter 

SLR and urbanization by 2030 and 2060 for metrics describing expert estimates of potential 

habitat loss under the same conditions in SIVVA for 15 species in Georgia’s Coastal Plain. Our 

aim was to evaluate the differences between results using expert-based judgement and results 

using empirical-based metrics for quantitative metrics, and to assess the advantages or 

disadvantages of one technique over another. 

Methods 

Expert-Based Metrics 

Species Selection  

We enlisted experts from universities, federal and state agencies, and non-profit wildlife 

conservation groups to assist in the process of choosing an initial list of approximately 50 species 

from the Georgia Department of Natural Resources’ State Wildlife Action Plan list of 265 

priority species. The species chosen by experts are considered to be a priority for conservation 

action on the basis of their economic and ecological importance for the state of Georgia. From 

this list, we chose 15 species for which to create fine-scale SDMs. We chose species that had a 

minimum of 20 occurrence points as well as adequate information regarding range and general 

habitat characteristics (Stockwell & Peterson 2002). The Georgia Conservation Status state rarity 

rank (ranging from 5 (currently stable in state) to 1 (critically imperiled in state)) was used to 

rank the remaining species. We selected species with a value of 4 or less, and chose the top 15. 

Our final species list consisted of 7 avian species, 2 amphibian species, and 6 reptile species 

(Table 3.1). Our study area comprised the combined known range of all 15 species within 

Georgia’s Coastal Plain ecoregion. 
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SIVVA Development and Qualitative Analysis  

The SIVVA framework is based on sets of criteria that encompass the three components 

of species vulnerability (exposure, sensitivity, and adaptive capacity) as well as their 

conservation value and the amount of information available to inform opinion (Reece & Noss 

2014). SIVVA contains four sets of criteria with a range of 5-12 metrics in each set: (1) 

Vulnerability (includes metrics that describe exposure and sensitivity), (2) Lack of Adaptive 

Capacity, (3) Conservation Value and (4) Information Availability (Table 3.2). Within each 

criterion, experts are asked to assign metric scores for their species of specialty. Although scores 

typically range from 0-6, users are able to apply any numerical score applicable for their interest. 

We used the original 0-6 scale for the purposes of this study, where a score of 0 indicates 

insufficient information available to assess the metric, scores of 1-2 typically indicate a positive 

or neutral impact, 3 corresponds to no effect, and scores from 4-6 depict increasingly negative 

impacts from the metric in question. For example, experts scoring a species for the metric 

‘Proportion of habitat inundated by or lost to SLR at X m by 2100’ for the future time point 2060 

under a 1-meter SLR scenario could score the metric for that species as 0 (not enough 

information on SLR impacts to this species), 1-2 (substantial and moderate increases in habitat as 

a result of 1-meter SLR by 2060, respectively), 3 (no impact of SLR), or 4-6 (up to 25%, 50%, or 

100% loss in habitat as a result of 1-meter SLR by 2060). The exception to this is the criterion 

‘Information Availability’, which assigns higher scores for species with more available 

information; this is done to indicate that species ranking top for this criterion are those that can 

be adequately addressed on the basis of knowledge about conservation measures necessary to 

prevent extirpation. Experts are given the option to assign scores on a one decimal point range, 

e.g., 3.1, 3.2, etc. Assignments of decimal values are left to the discretion of each expert, 
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although explanations for values are required. In addition, each metric is also given a ‘weight’ 

that corresponds to an estimation of relative importance of that metric to the overall criteria 

(Table 3.2). Weights are assigned at 0.5, 1.0, 2.0, 4.0, with 4.0 being the strongest importance. 

 For each species, summary scores for each criterion are calculated as the total number of 

metric ‘points’ (weight of metric times the score from 0-1), divided by the total possible number 

of points. In addition, users can choose final summary scores averaged equally across all 4 

criteria (arithmetic mean of all criterion scores) or choose to weight one or more criterion more 

heavily (i.e., total vulnerability contributing a certain percentage (50%, 70%, etc.) to the final 

score) (Reece & Noss 2014). While the final score for each criterion ranges from 0-1, the 

interpretation of scores varies slightly by individual criterion. For the Vulnerability criterion, 

scores closer to 0 indicate low vulnerability, while scores closer to 1 indicate high vulnerability. 

For Adaptive Capacity, scores close to 0 indicate higher adaptive capacity, while scores close to 

1 indicate that the species is less likely to adapt well to future changes. Species with 

Conservation Value scores near 0 are species classified as having low conservation value, while 

scores close to 1 indicate high value. Finally, species with scores near 0 for Information 

Availability indicate less information about the species, with scores near 1 indicating that more 

information with which to make informed decisions is available for the species in question.  

Each of our species was assessed by at least 2 and up to 7 species experts. We identified 

experts who had authored studies on target species, participated or directed management efforts 

for target species, or were familiar with the available information on target species. To provide 

additional context for certain metrics, we provided supplemental material for expert referral. 

Experts were provided with a bibliography and synopsis of known material related to each 

species. For metrics involving SLR, we provided maps of predicted inundation (using the Sea 
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Level Affecting Marshes Model, SLAMM, described below) (Clough et al. 2010). For metrics 

involving urbanization, we provided maps depicting probability of urban growth using the 

SLEUTH urban growth model, which simulates urban growth on a scale from 0-100% 

probability of development (described below) (Clarke 2008). We asked experts to evaluate 

metrics in the Vulnerability criterion while considering a scenario of 1-meter SLR and moderate-

high (≥ 50%) probability of urban development by 2100 for two time points: 2030 (near time 

point) and 2060 (far time point). All other criteria are evaluated under a single present-day time 

point (scores are not contingent on future scenarios). The final set of scores for each species was 

an average of all expert evaluations.  

Empirical-Based Metrics 

Species Distribution Models and Quantitative Analysis

Empirically-derived measures of SLR and urbanization were created using best available 

Species Distribution Models for the 15 species (Table 3.1). Species Distribution Models (SDMs) 

provide spatially-explicit predictions of species habitat suitability (and thus supposed 

distribution) by relating presence (occurrence) data to environmental variables across a 

landscape (Elith et al. 2006). We created our SDMs using logistic regression (generalized linear 

models, GLMs) in a model selection framework, and converted the continuous raster outputs 

from our SDMs to binary datasets of raster cells representing ‘suitable’ (classified as 1) and 

‘unsuitable’ (classified as 0) habitat (Burnham and Anderson 2002). For more information on 

this process see Chapter 2, and Crawford et al. 2020.

For our scenarios of future change, we used spatial models depicting potential SLR and 

urbanization at future time points in Georgia. The Sea Level Affecting Marshes Model 

(SLAMM) uses digital elevation data and National Wetland Inventory data to simulate the 
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processes involved in wetland conversion under scenarios of SLR. The model redefines land 

cover classes as a product of alterations in wetland elevation due to SLR at future time points, 

resulting in a final dataset representing changed land cover conditions. In Georgia, readily 

available SLAMM outputs exist for future time points in 25-year increments. We used SLAMM 

outputs from a 1-m SLR scenario for the years 2025 and 2050 to represent time points 2030 and 

2060, respectively. We converted all land-cover classes denoting riverine open water, estuarine 

open water, and open ocean to a single class of 1 representing inundation. The SLEUTH urban 

growth model defines raster classes of future urban growth on a scale from 0-100% probability 

of growth at decadal future time points based on data denoting slope, land-use, exclusion, 

urbanization, transportation and hill-shade (Clarke 2008). Classes range from 3 (0-2.5% 

probability of urban growth) to 16 (97.5-100% probability of urban growth). We included all 

classes greater than or equal to 10 (50-60% probability) and reclassified them to a single class of 

1 to represent predicted urban growth for 2030 and 2060.   

To substitute quantitative values for our SIVVA vulnerability metrics (Table 3.2), we 

created a value representing the fraction of species’ exposure to potential habitat change under 

each stressor. We overlaid our binary SDM habitat datasets with our single class datasets 

representing inundation from sea level rise and urbanization. For each species, wherever a raster 

cell representing predicted ‘suitable’ habitat (1) overlapped with cells representing inundation (1) 

or urbanization (1) at each future time point, we used that overlap as a representation of exposure 

to habitat change, converting each original cell to ‘unsuitable’ (0). The final output was the 

change (Δ) in total ‘suitable’ habitat cells at the two future time points (2030, 2060) divided by 

the original total ‘suitable’ habitat to get the fraction of potential exposure to habitat 
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change. Fraction of habitat exposed to change was then used to score metrics describing SLR and 

urbanization (detailed below).  

Metric Comparison 

To evaluate the impact of empirical data on the final vulnerability score and overall rank 

of each species, we chose two metrics in the ‘Vulnerability’ criterion that had scores based on 

quantitative habitat loss. We used metric 1, ‘Proportion of habitat inundated by or lost to SLR at 

1m by 2100’ to represent vulnerability to habitat change from future SLR, and metric 3, 

‘Vulnerability of current distribution or ‘escape paths’ to current or future barriers’ to represent 

vulnerability to habitat change from urbanization. We kept all other metrics as originally scored 

by experts in the final comparison of ranks, so that the only components of the two types of 

assessments (expert-based and empirical-based) that differed were those metrics for SLR and 

urbanization. We use the term ‘non-quantitative’ to describe metrics that did not involve experts 

using their best judgement for numerical estimates of a score.  

‘Proportion of habitat inundated by or lost to SLR at 1m by 2100’ represents the fraction 

of species’ habitat that will be inundated via SLR at future time points, ranging from 0 (no 

information) to 6 (50-100% of habitat inundated) (Table 3.3). This metric is also assigned a 

weight of 4, meaning that the score for this metric has a high influence on overall vulnerability in 

Georgia. We used our values representing fraction of potential exposure to habitat change under 

SLR to input new scores for the empirical-based assessment. To assign scores using fraction of 

exposure to change, we used a two-step process (Table 3.4). In the first step, we 

evaluated the single digit score for each species using the quantitative fraction exposure to 

habitat values from our SDM outputs. Because our empirical measurements were not able to 

capture potential increases in habitat, all empirical-based scores ranged from 3-6. For species 
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having some fraction of exposure to habitat change greater than 0 (no effect, 3) but below 25% 

fraction of exposure (4), we assigned a single digit score of 3. For species having above some 

fraction of habitat exposed to change between 25-50%, we assigned a score of 5, and between 

50-100%, a score of 6. In the second step, we used decimal values to represent exact 

measurements of inundation for each species. For each 1/10th increase in decimal place (i.e., 3.1, 

3.2), we assigned decimal scores based on a 2.5% or 5% increment range. For example, if our 

analysis resulted in an estimated fraction of 7% exposure to potential habitat change, we 

assigned a final score of 3.2, as the value fell between a 5-7.5% range. For any scores falling 

between 5 and 6, we used a 5% increment range.

‘Vulnerability of current distribution or ‘escape paths’ to current or future barriers’ 

represents the fraction of species habitat blocked by encroaching development at future time 

points, i.e., removal of accessible habitat due to future development (Table 3.3). The metric 

ranges from 0 (no information) to 6 (100% of habitat blocked); no potential increases in habitat 

are allowed under this metric. We first assigned a single digit score based on our empirical 

metrics, ranging from 1-6 (Table 3.4). For species having some fraction of exposure to habitat 

above 1 (distribution/habitat has no encroachment from development) and below 2 (up to 25% of 

distribution/habitat blocked by encroaching development), we assigned a score of 1, and 

followed the same 2.5% increment range to assign decimal values indicating some exposure to 

habitat change from urbanization. For fractions ≥ 25% and < 50%, we assigned a score of 2. The 

original metric uses values of 3 to indicate 50%, and 4 to indicate ≥ 50%; we used 3 to denote an 

exact metric of 50% exposure to habitat change, and values of 4 with decimal places to indicate 

fractions between 50% and 75%. Fractions between 75% and 99% were given a score of 5 (with 

decimal values), and 100% a score of 6. 
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For each future time point, we calculated the final Vulnerability criterion score for both 

our expert-based assessment and empirical-based assessment and ranked each set of species by 

ascending total vulnerability score. We calculated summary scores for Adaptive Capacity, 

Conservation Value, and Information Availability. We also created a final summary score for 

each of our two assessments by computing an average score across all criterion, holding each 

criterion at equal weight, and ranked species based on this overall summary statistic. Finally, we 

calculated the mean across scores for Vulnerability metrics 1 and 3 to assess differences in 

expert-based vs. empirical-based valuation of species’ vulnerability to exposure to habitat change 

from SLR and development.   

Results 

Metric and Criteria Results  

Summary scores from the Vulnerability (VUL) criterion of our expert-based assessment 

ranged from 0.602-0.881 (2030) and 0.625-0.883 (2060), indicating relatively high vulnerability 

for all species (Table 3.5). Adaptive Capacity (AC) scores ranged from 0.437-0.885, suggesting 

moderate to low adaptive capacity for our set of species. Conservation Value (CV) scores were 

relatively low to moderate, falling between 0.245-0.643. Information Availability (IA) ranged 

from low to high (0.307-0.904). Overall summary scores (average across all four criteria) were 

between 0.495-0.758 (for 2030) and 0.498-0.759 (for 2060). Experts tended to score metrics for 

SLR (metric 1) and urbanization (metric 2) similarly for both time points. For 2030, expert-based 

scores averaged around 4.15 for SLR (4: up to 25% of habitat inundated), and 4.40 for 

urbanization (4: 50-75% of habitat blocked by encroaching development or natural barriers). At 

2060, scores averaged 4.27 for SLR, and 4.51 for urbanization (Table 3.6). Summary scores for 

the Vulnerability criterion from our empirical-based assessment ranged from 0.522-0.682 for 

2030, and 0.532-0.688 for 2060 (Table 3.5). Overall summary scores using the empirical-based 
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metrics were between 0.458-0.7148 for 2030 and 0.498-0.715 for 2060 (Table 3.5). Empirical-

based metrics for SLR averaged around 3.09 and 3.12 for 2030 and 2060, respectively (3: no 

effect of inundation) (Table 3.6). Metrics for urbanization averaged 1.19 and 1.31 for 2030 and 

2060 (1: no barrier to distribution).  

Comparison of Ranks  

We present species ranks using summary scores from each single criterion as well as the 

average summary score across all 4 criteria. For Vulnerability and the average summary score, 

we detail ranks at both 2030 and 2060. In the Vulnerability criteria, the top-ranking species for 

both time points using the original expert-based method was the seaside sparrow (Ammodramus 

maritimus). This pattern was consistent for rankings using the empirical-based method for 

metrics 1 and 3 (Table 3.5). For both time points, 4 of the top 5 species ranked highly using the 

expert-based method for Vulnerability tended to be species utilizing marsh or beach habitats. 

Using the empirical-based methods, 3-4 of the top 5 (4 for 2030, 3 for 2060) were reptile or 

amphibian species using upland habitats (Table 3.7). In the Adaptive Capacity criteria, the top-

ranking species (lowest adaptive capacity) was the diamondback terrapin (Malaclemys terrapin). 

The gopher tortoise (Gopherus polyphemus) ranked highest for Conservation Value. For 

Information Availability, the wood stork (Mycteria americana) ranked highest (Table 3.5). 

Using the evenly-weighted average across all 4 criteria (overall summary score), the top-ranking 

species for both 2030 and 2060 in the expert-based assessment was the seaside sparrow. For the 

empirical-based assessment, the top-ranking species for 2030 was also the seaside sparrow, but 

shifted to the gopher tortoise for 2060 (Table 3.5). The top 4 species for both empirical and 

expert methods were consistent at both time points (Table 3.8).  
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Discussion 

Our study suggests a disparity between expert-based and empirical-based 

prioritizations based on SIVVA Vulnerability scores for quantitative SLR and urbanization 

metrics, indicating that the use of expert judgement for valuing certain components of 

vulnerability assessments may diverge from results compiled using empirical-based methods. 

The outcomes of this study provide additional context to previous work centered around the use 

of expert-based assessments for species prioritization and demonstrates some of the 

discrepancies between valuations using expert and empirical information, which in turn has 

implications for funding and research efforts assigned on the basis of prioritizing vulnerability. 

 For both time points under the expert-based method (based on Vulnerability summary 

scores alone), 4 of 5 top-ranking species were species utilizing either salt-marsh, estuarine or 

beach habitat, consistent with recent studies showing that salt-marsh and beach-dwelling species 

will be vulnerable to the effects of sea level rise and coastal development (Hunter et al. 2015, 

Brittain & Craft 2012). However, the expert-based metric scores for both SLR and urbanization 

for these top-ranking species were 2.4 or more points higher than empirical-based scores for the 

same species, suggesting that the magnitude of exposure to habitat change from these stressors as 

estimated by species experts is much higher than indicated by empirically-based results. The 

consequence of this differing magnitude in estimated vulnerability between types of methods is 

shown in the shift in several top-ranking species for the empirical-based method at both 2030 

and 2060, as inland-dwelling reptile and amphibian species that had been ranked just below the 

top 4 marsh and beach species moved into 2nd-4th place. Reptiles and amphibians are widely 

recognized as two of the most at-risk groups of vertebrates, primarily as a result of human 

development resulting in widespread habitat loss and fragmentation (Gibbons et al. 2000, 

Cushman et al. 2006). Our top ranking inland-dwelling reptiles and amphibians were also valued 
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higher than top beach and marsh-dwelling for the impacts of other types of Vulnerability 

(fragmentation, lack of protected area). Yet, because beach and marsh species were scored 

between 5.5-6 for exposure to SLR (near maximum or maximum exposure), they were ranked 

highest for the expert-based assessment. Expert judgement that overvalues the impact of 

quantitative habitat change may be associated with particular habitat types; previous studies have 

noted that experts may be more inclined to infer higher threats in particular ecosystems or on 

species with particular traits, including marine intertidal habitats (Trull et al. 2018). This trend is 

not surprising given the two-fold pressure of SLR and urbanization on these coastal habitats, but 

the degree to which expert opinion may overestimate impacts in certain habitat types, 

particularly from SLR, warrants further investigation. We also discuss potential motivational 

and/or cognitive bias contributing to this phenomenon below.  

The seaside sparrow was the top-ranked species for Vulnerability across both types of 

methods at both time points. This is consistent with evidence suggesting that the seaside sparrow 

will be highly vulnerable to habitat change and/or loss as a result of 1-m SLR (Hunter et al. 

2017, also see Chapter 2). Seaside sparrows are habitat specialists, utilizing predominantly salt-

marsh habitats for activities (Hunter et al. 2017). Although our estimates for exposure to habitat 

change were relatively conservative for both SLR at 2030 and 2060 for all species including the 

seaside sparrow (<25%), more extreme scenarios of SLR (1.5-2-m) indicate that the seaside 

sparrow and other beach or marsh utilizing species could be facing a loss of roughly 38-81% of 

suitable habitat (Hunter et al. 2017, also see Chapter 2). However, it should be noted that our use 

of empirical methods did not include an examination of potential habitat increases, which are 

possible as part of the SLAMM model. For example, the model predicts relative increases in 

habitats associated with tidal flats and estuarine beaches that could offset the impact of 



75 
 

inundation for several beach species. While this may benefit some top or medium ranking 

species under the expert-based method (e.g, the American oystercatcher, Wilson’s plover), given 

that these species already rank lowest under the empirical-method, this information may not be 

crucial to provide further context. In addition, SLAMM predicts an overall decrease in salt marsh 

of 6% at the lowest scenario (1-m), suggesting that the high ranking of the seaside sparrow and 

relatively high ranking of other salt marsh species (diamondback terrapin, wood stork) in both 

methods is accurate.   

Interestingly, prioritization results using the equal weighting scheme (average across all 4 

criteria) revealed few differences between top rankings under both methods, contrary to rankings 

using the Vulnerability criteria alone. The top 4 species (the seaside sparrow (Ammodramus 

maritimus), diamondback terrapin (Malaclemys terrapin), gopher tortoise (Gopherus 

polyphemus), and the wood stork (Myceteria Americana)) for both time points using both 

methods were consistent, and were also each ranked highest across a single criterion. However, 

the empirical-based method resulted in a slight shift in the top rank between 2030 and 2060, as 

the gopher tortoise shifted to rank 1 over the seaside sparrow the later time point (the seaside 

sparrow ranked highest for both time points for expert-based methods). The gopher tortoise is a 

keystone species that has been shown to heavily influence biodiversity in Southeastern 

ecosystems, particularly longleaf pine habitat (Ashton 2008, Catano & Stout 2015). The species 

is currently a candidate for federal listing under the Endangered Species Act in the Eastern 

portion of its’ range, primarily as a result of human-related habitat loss and fragmentation (Daly 

et al. 2019). While the species ranked last or second to last for Vulnerability under the expert-

based method, and low to medium under the empirical-based method (with relatively similar 

scores for both SLR and urbanization under both methods), the species scored top for overall 
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Conservation Value as scored by experts, and relatively high for Adaptive Capacity (indicating 

low ability to adapt to change) and Information Availability (indicating good information on life 

history). The advantage of SIVVA’s ability to capture multiple dimensions of species’ 

vulnerability as well as information availability and conservation value is that managers are able 

to evaluate species within a broader context that provides additional information about the 

potential worth and ease of investing in a top ranking species. In the case of the gopher tortoise, 

singularly valuing the species’ exposure to vulnerability from change would result in low to 

near-low considerations for management action. Although the empirical-based scores for 

exposure did result in slightly higher Vulnerability rankings for the gopher tortoise, allowing the 

impact of other forms of vulnerability as well as the species’ conservation value and the amount 

of information necessary to inform the overall ranking dramatically altered the species’ position 

in the final prioritization. While using empirical-based scores can help to better represent the 

nature of exposure to habitat, having additional information will be crucial for determining final 

ranks and providing full context in which to make decisions.  

A challenge for any expert-based species vulnerability assessment is that while scores are 

ideally assigned in an objective manner based on facts, opinion and personal choice may 

influence scores, likely as a result of either motivational or cognitive bias. Motivational or 

cognitive bias arises when an expert’s responses are ‘motivated by his [sic] perceived system of 

personal rewards for various responses’ (McBride & Burgman 2011). In other words, experts 

likely have an inherent understanding of what is to be gained or lost as a result of their valuation 

that may unconsciously bias their input (Burgman 2004). Evidence of this may potentially be 

seen in the discrepancy between expert and empirical scores for exposure to habitat change under 

our presented scenario (1-m by 2100) of sea level rise. Recent studies suggest that previous 
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models of 1-2m SLR may underestimate the realistic impacts from inundation and flooding to 

coastal regions, particularly as the latest IPCC estimates suggest higher increases in global 

temperatures impacting sea level (Kulp et al. 2016, Kulp et al. 2019, DeConto & Pollard 2016). 

We also acknowledge that the data used for describing inundation from 1-m SLR in Georgia was 

the most recent available information but did not necessarily reflect newer information about 

impacts. We did not ask experts to disclose whether or not they had knowledge of this 

information, yet most experts scored beach and marsh-dwelling species on the extreme end of 

projected habitat impacts in the next 40 years. Given the uncertainty surrounding the true 

magnitude of impacts from SLR, experts may recognize the need for overvaluing threats for 

species that are already faced with challenges to their longevity. In addition, Burgman (2004) 

suggests that experts may overvalue threats as a result of funding or their own personal interest 

in a species or set of species, which may further influence valuations towards extreme ends. The 

question of whether or not this influenced expert opinion in our study warrants further 

investigation, but it does suggest that a) experts may unconsciously (or consciously) recognize 

uncertainty surrounding risks and account for it in their valuation of species’ vulnerability 

because of the consequences of undervaluation, and/or b) experts may gravitate towards 

overvaluing species they have a vested interest in.  

Our work addresses a series of needs for managers seeking to fill informational gaps 

regarding future coastal and coastal plain management in the state of Georgia. First, little 

research has been done to assess and compile information about the impacts of multiple stressors 

on Georgia non-game coastal plain species’ long-term vulnerability. Second, having expert 

opinion on elements outside of the framework of vulnerability (conservation value and 

information availability) is useful for providing managers with other ways of valuing species. 
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Finally, this work provides an important first step for evaluating the tradeoff between expert-

driven and empirical-driven methods for valuing certain components of vulnerability. 

Understanding the conditions under which expert-based data and empirical-based data can be 

used in tandem to best assess species for conservation is crucial for effective management and 

restoration efforts.   
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Tables

Table 3.1. Georgia Coastal Plain species and their conservation status regionally (as defined by a state government 

agency, the Georgia Department of Natural Resources). Type indicates species group. Highlighted species indicate 

species restricted within the lower Coastal Plain. Reference indicates the reference paper for each SDM.  

Scientific Name Common Name Type State Rank Reference 

Ammodramus maritimus Seaside Sparrow AvP S3 a 

Charadrius wilsonia Wilson's Plover AvSB S2 a 

Haematopus palliatus American Oystercatcher AvSB S2 a 

Mycteria americana Wood Stork AvMB S3 a 

Leuconotopicus borealis Red-cockaded Woodpecker AvWP S2 a 

Passerina ciris Painted Bunting AvP S2S3 a 

Peucaea aestivalis Bachman's Sparrow AvP S2 a 

Lithobates capito Gopher Frog Am S2S3 b 

Notophthalmus perstriatus Striped Newt Am S2 b 

Crotalus adamanteus Eastern Diamond-backed Rattlesnake R S4 a 

Drymarchon couperi Eastern Indigo Snake R S2 a 

Gopherus polyphemus Gopher Tortoise R S3 b 

Heterodon simus Southern Hognose Snake R S1S2 b 

Malaclemys terrapin Diamondback Terrapin R S4 a 

Pituophis melanoleucua Florida Pine Snake R S3 b 

Type: AvSB =  avian: shorebirds, AvMB =  avian: marsh birds, AvP =  avian: passerines, AvWP = avian: woodpeckers, Am = 
amphibian, R =  reptile.  

State ranks: S1 = Critically Imperiled, S2 = Imperiled, S3 = Vulnerable, S4 = Apparently Secure.  

Reference: a = Paulukonis et al. Chapter 2, b = Crawford et al. 2020. 
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Table 3.2. SIVVA criteria and metrics within each criterion, as well as 

metric weights. Highlighted metrics indicate metrics used for comparison 

between expert and empirical-based evaluations.  

Criteria Weight 

Vulnerability  

1. Sea Level Rise 4 

2. Erosion 0.5 

3. Barriers to Movement/Distribution 4 

4. Temperature 3 

5. Precipitation 1 

6. Portion of Range Protected 4 

7. Population Fragmentation 0.5 

8. Increasing Salinity 0.5 

9. Storm surge run-off 2 

10. Biotic Interactions 4 

11. Synergistic Threats 1 

12. Disturbance Regime 1 

Lack of Adaptive Capacity  

13. Migration 4 

14. Phenotypic Plasticity 4 

15. Genetic Diversity 4 

16. Adaptive Rate 0.5 

17. Demographic Capacity 2 

18. Colonization Potential 4 

Conservation Value  

19. Level of Endemism 0.5 

20. Disjunct Population 3 

21. Keystone Species 3 

22. Phylogenetic Distinctiveness 2 

23. Economic Value 3 

24. State or Federal Listing 4 

25. Probability of Recovery 0.5 

Information Availability  

26. Published Literature 1 

27. Demographic/Niche Models 3 

28. Population Genetic Studies 0.5 

29. Response to Sea Level Rise 4 

30. Response to Climate Change 2 
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Table 3.3. Vulnerability metric scores describing quantitative measurements of habitat change 

due to human-related stressors (SLR and urbanization (URB)). Experts are asked to assign 

scores using best judgement as well as provided maps of projected inundation due to SLR and 

future scenarios of urbanization.  

SLR (Metric 1) URB (Metric 3) 

0: Not enough information available 0: Not enough information available 

1: Substantial increase in habitat 
1: Species' distribution is surrounded by 

undeveloped habitat lacking natural barriers to 

dispersal 

2: Moderate increase in habitat 
2: up to 25% of distribution or 'escape path' from 
SLR is blocked by encroaching development or 

natural barriers 

3: No effect 
3: Half of their distribution or 'escape path' from 
SLR is blocked by encroaching development or 

natural barriers 

4: up to 25% habitat inundated 
4: 50-75% of their distribution or 'escape path' 

from SLR is blocked by encroaching development 
or natural barriers 

5: 25-50% habitat inundated 
5: More than 75% of their distribution or 'escape 

path' from SLR is blocked by encroaching 

development or natural barriers, but it is unlikely 
that these barriers are completely insurmountable. 

6: 50-100% of known habitat is lost to inundation 
6: Virtually all of their distribution or escape path 

is blocked and escape from inundation is virtually 
impossible 
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Table 3.4. Scoring system for empirical-based metrics based on fraction (in percent) of exposure to potential habitat 

change from SLR and urbanization (URB). Scores are based on the values between the minimum and up to the 

maximum of each range. For example, species estimated to have roughly 5.5% of their habitat exposed to potential 

change from SLR would be assigned a score of 3.3 NIA indicates No Information Available, NA indicates a score 

representing potential increases in habitat not captured here.  

SLR (1) URB (3) 

NIA/NA/NA 0/1/2     NIA 0       

0% 3 25% 4 50% 5 0% 1 25% 2 50% 4 75% 5 

0-2.5% 3.1 25-27.5% 4.1 50-55% 5.1 0-2.5% 1.1 25-27.5% 2.1 50-52.5% 4.1 75-77.5% 5.1 

2.5-5% 3.2 27.5%-30% 4.2 55-60% 5.2 2.5-5% 1.2 27.5%-30% 2.2 52.5-55% 4.2 77.5-80% 5.2 

5-7.5% 3.3 30-32.5% 4.3 60-65% 5.3 5-7.5% 1.3 30-32.5% 2.3 55-57.5% 4.3 80-82.5% 5.3 

7.5-10% 3.4 32.5-35% 4.4 65-70% 5.4 7.5-10% 1.4 32.5-35% 2.4 57.5-60% 4.4 82.5-85% 5.4 

10-12.5% 3.5 35-37.5% 4.5 70-75% 5.5 10-12.5% 1.5 35-37.5% 2.5 60-62.5% 4.5 85-87.5% 5.5 

12.5-15% 3.6 37.5-40% 4.6 75-80% 5.6 12.5-15% 1.6 37.5-40% 2.6 62.5-65% 4.6 87.5-90% 5.6 

15-17.5% 3.7 40-42.5% 4.7 80-85% 5.7 15-17.5% 1.7 40-42.5% 2.7 65-67.5% 4.7 90-92.5% 5.7 

17.5-20% 3.8 42.5-45% 4.8 85-90% 5.8 17.5-20% 1.8 42.5-45% 2.8 67.5-70% 4.8 92.5-95% 5.8 

20-22.5% 3.9 45-47.5% 4.9 90-95% 5.9 20-22.5% 1.9 45-47.5% 2.9 70-72.5% 4.9 95-97.5% 5.9 

22.5-25% 4 47.5-50% 5 95-100% 6 22.5-25% 2 47.5-50% 3|4 72.5-75% 5 97.5-100% 6 
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Table 3.5. Summary scores for the Vulnerability criterion (VUL) and average across all 

criteria (ALL) at two time points for both expert-based (EXP) and empirical-based (EMP) 

methods, as well as summary scores for Adaptive Capacity (AC), Conservation Value (CV), 

and Information Availability (IA). Species are listed in alphabetical order, and unranked. 

Scores closer to 1 indicate higher vulnerability for VUL, less adaptive capacity for AC, 

higher conservation value for CV, and greater amounts of information for IA. * denotes top 

ranking species for that score category. 

Species 

VUL (EXP) VUL (EMP) 

EXP 2030 EXP 2060 EMP 2030 EMP 2060 

American Oystercatcher 0.742 0.743 0.531 0.536 
Bachman's Sparrow 0.620 0.625 0.570 0.576 

Diamondback Terrapin 0.789 0.802 0.585 0.601 

E. Diamondback Rattlesnake 0.698 0.724 0.604 0.614 

Eastern Indigo Snake 0.657 0.663 0.560 0.571 

Florida Pine Snake 0.696 0.711 0.573 0.593 

Gopher Frog 0.709 0.742 0.603 0.618 

Gopher Tortoise 0.603 0.634 0.545 0.577 

Painted Bunting 0.641 0.667 0.561 0.579 

Red-cockaded Woodpecker 0.639 0.649 0.565 0.570 

Seaside Sparrow 0.881* 0.884* 0.682* 0.688* 

Southern Hognose Snake 0.695 0.713 0.605 0.623 

Striped Newt 0.676 0.680 0.593 0.599 

Wilson's Plover 0.680 0.690 0.522 0.532 

Wood Stork 0.721 0.759 0.575 0.602 

 AC CV IA 

American Oystercatcher 0.836 0.490 0.627 
Bachman's Sparrow 0.541 0.380 0.446 

Diamondback Terrapin 0.885* 0.484 0.763 

E. Diamondback Rattlesnake 0.712 0.276 0.693 

Eastern Indigo Snake 0.626 0.609 0.500 

Florida Pine Snake 0.705 0.396 0.307 

Gopher Frog 0.874 0.409 0.689 

Gopher Tortoise 0.832 0.634* 0.816 

Painted Bunting 0.586 0.398 0.582 
Red-cockaded Woodpecker 0.734 0.625 0.556 

Seaside Sparrow 0.787 0.500 0.865 

Southern Hognose Snake 0.659 0.245 0.602 

Striped Newt 0.810 0.285 0.307 

Wilson's Plover 0.437 0.531 0.333 

Wood Stork 0.752 0.573 0.904* 
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Table 3.6. Average summary scores for VUL metrics 1 (SLR) and 3 (URB) using 

both types of methods at two future time points. 

2030 2060 

VUL Metric Scores SLR (1) URB (3) SLR (1) URB (3) 

Empirical-Based 3.09 1.19 3.12 1.31 

Expert-Based 4.15 4.40 4.27 4.51 

Table 3.5. continued. 
Species ALL (EXP) ALL (EMP) 

EXP 2030 EXP 2060 EMP 2030 EMP 2060 

American Oystercatcher 0.674 0.674 0.621 0.622 

Bachman's Sparrow 0.497 0.498 0.484 0.486 
Diamondback Terrapin 0.730 0.734 0.679 0.683 

E. Diamondback Rattlesnake 0.595 0.601 0.571 0.574 

Eastern Indigo Snake 0.598 0.600 0.574 0.577 

Florida Pine Snake 0.526 0.530 0.495 0.500 

Gopher Frog 0.670 0.679 0.644 0.648 

Gopher Tortoise 0.721 0.729 0.707 0.715* 

Painted Bunting 0.552 0.558 0.532 0.536 

Red-cockaded Woodpecker 0.638 0.641 0.620 0.621 

Seaside Sparrow 0.758* 0.759* 0.709* 0.710 

Southern Hognose Snake 0.550 0.554 0.528 0.532 

Striped Newt 0.520 0.521 0.499 0.500 
Wilson's Plover 0.495 0.498 0.456 0.458 

Wood Stork 0.737 0.747 0.701 0.708 
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Table 3.7. Species ranks based on the summary score describing Vulnerability for 2030 

and 2060. Colors under the ‘Expert-based’ method convey rank change under the 

‘Empirical-based’ method.  

2030 Vulnerability (VUL) 

Expert-based RANK Empirical-based 

Seaside Sparrow 1 Seaside Sparrow 

Diamondback Terrapin 2 Southern Hognose Snake 

American Oystercatcher 3 Eastern Diamond-backed Rattlesnake 

Wood Stork 4 Gopher Frog 

Gopher Frog 5 Striped Newt 

Eastern Diamond-backed Rattlesnake 6 Diamondback Terrapin 

Florida Pine Snake 7 Wood Stork 

Southern Hognose Snake 8 Florida Pine Snake 

Wilson's Plover 9 Bachman's Sparrow 

Striped Newt 10 Red-cockaded Woodpecker 

Eastern Indigo Snake 11 Painted Bunting 

Painted Bunting 12 Eastern Indigo Snake 

Red-cockaded Woodpecker 13 Gopher Tortoise 

Bachman's Sparrow 14 American Oystercatcher 

Gopher Tortoise 15 Wilson's Plover 

2060 Vulnerability (2060) 

Expert-based RANK Empirical-based 

Seaside Sparrow 1 Seaside Sparrow 

Diamondback Terrapin 2 Southern Hognose Snake 

Wood Stork 3 Gopher Frog 

American Oystercatcher 4 Eastern Diamond-backed Rattlesnake 

Gopher Frog 5 Wood Stork 

Eastern Diamond-backed Rattlesnake 6 Diamondback Terrapin 

Southern Hognose Snake 7 Striped Newt 

Florida Pine Snake 8 Florida Pine Snake 

Wilson's Plover 9 Painted Bunting 

Striped Newt 10 Gopher Tortoise 

Painted Bunting 11 Bachman's Sparrow 

Eastern Indigo Snake 12 Eastern Indigo Snake 

Red-cockaded Woodpecker 13 Red-cockaded Woodpecker 

Gopher Tortoise 14 American Oystercatcher 

Bachman's Sparrow 15 Wilson's Plover 
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Table 3.8. Species ranks based on the average across all criteria for 2030 and 2060. Colors 

under the ‘Expert-based’ method convey rank change under the ‘Empirical-based’ method. 

ALL 2030 

Expert-based RANK Empirical-based 

Seaside Sparrow 1 Seaside Sparrow 

Wood Stork 2 Gopher Tortoise 

Diamondback Terrapin 3 Wood Stork 

Gopher Tortoise 4 Diamondback Terrapin 

American Oystercatcher 5 Gopher Frog 

Gopher Frog 6 American Oystercatcher 

Red-cockaded Woodpecker 7 Red-cockaded Woodpecker 

Eastern Indigo Snake 8 Eastern Indigo Snake 

Eastern Diamond-backed Rattlesnake 9 Eastern Diamond-backed Rattlesnake 

Painted Bunting 10 Painted Bunting 

Southern Hognose Snake 11 Southern Hognose Snake 

Florida Pine Snake 12 Striped Newt 

Striped Newt 13 Florida Pine Snake 

Bachman's Sparrow 14 Bachman's Sparrow 

Wilson's Plover 15 Wilson's Plover 

ALL 2060 

Expert-based RANK Empirical-based 

Seaside Sparrow 1 Gopher Tortoise 

Wood Stork 2 Seaside Sparrow 

Diamondback Terrapin 3 Wood Stork 

Gopher Tortoise 4 Diamondback Terrapin 

Gopher Frog 5 Gopher Frog 

American Oystercatcher 6 American Oystercatcher 

Red-cockaded Woodpecker 7 Red-cockaded Woodpecker 

Eastern Diamond-backed Rattlesnake 8 Eastern Indigo Snake 

Eastern Indigo Snake 9 Eastern Diamond-backed Rattlesnake 

Painted Bunting 10 Painted Bunting 

Southern Hognose Snake 11 Southern Hognose Snake 

Florida Pine Snake 12 Striped Newt 

Striped Newt 13 Florida Pine Snake 

Bachman's Sparrow 14 Bachman's Sparrow 

Wilson's Plover 15 Wilson's Plover 
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CHAPTER IV. 

CONCLUSIONS 

Threatened and endangered species in the State of Georgia and throughout the U.S. face 

an uncertain future. The results from this work suggest that salt marsh and beach dwelling 

species will likely be exposed to dramatic habitat change by the end of the century, and exposure 

to change for these species is unlikely to be insignificant at near time points. While inland 

species were not projected to be as dramatically exposed to habitat change as coastally adjacent 

species, even small shifts in the amount of available habitat on short term scales has the potential 

to influence populations towards or away from long-term stability. Decisions involving these 

species are made more complicated by the fact that the impacts to species’ habitat from these 

stressors will take significantly different forms, meaning that management approaches to these 

stressors will not be universal. Urbanization will likely result in the abrupt complete loss of 

habitat, which may be mitigated by targeting suitable habitat that is not currently protected, or by 

identifying high richness areas crucial for multiple species. In contrast, sea level rise will likely 

result in longer, more insidious habitat fragmentation or conversion, which can be challenging to 

mitigate; the reconstruction of wetlands may be a more appropriate response to this issue. 

Under all methods and scenarios, the top-ranking species (Ammodramus maritimus, or 

the seaside sparrow) was consistent. Although individual management actions for each species 

will differ depending on long-term goals for the state of Georgia and the agency responsible for 

management, the results of this work suggest that consideration of the seaside sparrow for major 

management action is appropriate. Currently, the species is listed at a rank of S3 (vulnerable) in 
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the state, likely because of its dependence on salt-marsh, an imperiled habitat throughout 

Georgia and the Atlantic coast. Results from this work and from other studies suggesting severe 

declines in available habitat for the seaside sparrow in Georgia indicate that fish and wildlife 

agencies may wish to consider reviewing the species for lower state status or developing long-

term conservation plans for this species.  

Future wildlife studies in this region could choose to focus on SIVVA analyses covering 

additional scenarios and time points to better understand the disparity between vulnerability 

results using expert and empirical based judgement. Experts presented with later time points as 

well as scenarios with higher severities may value metrics differently when presented with 

alternatives beyond one to two time points and one scenario. Efforts to model habitat for 

additional species in this region may also choose to elicit experts to inform the modeling process, 

making use of experts to offer hypotheses or knowledge regarding appropriate habitat predictors, 

as done in Crawford et al. (2020). This could also allow experts to be more closely involved with 

the process of comparison between methods, which may result in shifts in the way experts 

approach their SIVVA analysis.  

While species vulnerability is a complex and multi-dynamic subject, the inclusion of 

multiple dimensions of information when evaluating the risks to the long-term prosperity of 

threatened or endangered wildlife provides managers with a more complete framework in which 

to make decisions. This work attempted to provide that information by allowing for spatially-

explicit results that wildlife managers could use to pinpoint areas of particular interest, as well as 

multiple time points, scenarios, and thresholds to inform planning at a range of temporal scales 

and potential change severities. In addition, information about expert judgement regarding the 
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conservation value and information availability of species as well as the global importance of 

species allows for agencies to incorporate multiple factors pertaining to decision analysis.  
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APPENDICES 

APPENDIX A – SPECIES RANKS FOR 1-M AND 1.5-M SLR 
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APPENDIX B – PROPORTION OF VARIANCE EXPLAINED BY INDIVIDUAL 

PREDICTORS 

Species Predictors % Contribution 

AOC 
ow_1kmf 47.59 

plandbh100 33.47 

urb_1kmf 12.67 

edmsh1km 6.26 

BACS 

fire800 48.16 

plandpine800 35.83 

herbht800 7.31 

shrbht800 6.57 

can100 2.13 

DT 
plandmarsh500 48.52 

elev500 23.43 

landco_800 18.14 

urb_800 9.92 

EDR 

dran250 24.28 

plandpine900 18.36 

landco250 16.85 

hist900 11.10 

evi250 9.47 

tpi 8.06 

fire900 4.08 

can250 3.88 

precip 3.29 

urb250 0.63 

EIS 

hist900 17.94 

evi250 16.67 

rip_900 14.67 

pine900 12.96 

dran250 12.53 

landco900 9.25 

precip 8.41 

can250 4.20 

tpi 2.07 

urb900 1.30 

PABU 

elev700 44.02 

can700 18.02 

plandfor700 17.83 

plandrip700 10.32 

shrbht700 6.20 

mpashb700 3.61 
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APPENDIX B CONTINUED. 

Species Predictors % Contributed 

RCWO 
plandpine800 38.62 

fire800 37.11 

herbht800 8.87 

shrbht800 8.31 

can800 7.09 

SESP 
edmsh200 43.87 

elev200 38.35 

urb_200 14.62 

plandbrack200 3.16 

WIPL 
plandco1km 42.73 

edbh100 29.86 

ow_1kmf 20.32 

urb_1kmf 7.08 

WOST 

elev2000 52.90 

can2000 18.74 

nhd_2000 16.60 

wat2000 4.83 

landco2000 4.22 

nwifwd_2000 2.71 
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APPENDIX C – SPECIES DISTRIBUTION MODEL OUTPUTS FOR OPTIMAL 

CUTOFF, MODERATE, AND HIGH THRESHOLDS FOR ALL SPECIES 
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APPENDIX D: SPECIES DISTRIBUTION MODEL COEFFICIENTS 

Model estimates of predictor effects for all species, with confidence intervals 

AOC 

Main Effects 2.5% CI 97.5% CI 

Intercept -1.189 -1.905 -0.494

pland_bh100 0.140 0.095 0.189

pland_bh1002 -0.001 -0.002 -0.001

ed_msh1km 0.067 0.044 0.091

ed_msh1km2 -0.001 -0.001 -0.001

urb1kmf 0.001 0.00 0.002

ow1kmf -0.007 -0.009 -0.005

ow1kmf2 0.003 0.001 0.005

BASP 

Main Effects 2.5% CI 97.5% CI 

Intercept -2.817 -3.346 -2.311

plandpine800 9.236 6.743 11.74

plandpine8002 -9.704 -13.886 -5.395

fire800 32.829 27.187 38.606

fire8002 -79.459 -101.389 -57.58

herbht800 -7.766 -10.372 -5.272

shrbht800 -17.793 -27.981 -8.671

can100 0.024 0.007 0.041

can1002 0.002 -0.001 0.003

DT 

Main Effects 2.5% CI 97.5% CI 

Intercept -0.127 -1.640 1.406 

marsh500 3.579 1.931 5.501 

landco_800 0.004 0.001 0.007 

landco_8002 -0.001 -0.002 0.003 

urb_800 -0.003 -0.005 -0.002

urb_8002 0.001 -0.001 0.003

elev500 -0.674 -1.315 -0.178

EDR 

Main Effects 2.5% CI 97.5% CI 

Intercept -30.038 -42.827 -18.070

can250 0.022 -0.010 0.054

can2502 0.002 -0.001 0.004

dran250 2.228 -0.269 4.769

dran2502 0.366 -2.097 2.857

fire900 1.542 -2.033 5.110

landco250 3.422 0.956 5.963

landco2502 -2.631 -4.953 -0.358

pine900 3.886 -0.711 8.565
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pine9002 -5.013 -14.788 4.440 

urb250 11.277 4.667 18.153 

urb2502 -19.978 -37.428 -5.854 

evi250 12.221 1.389 24.391 

evi2502 -16.179 -30.601 -3.521 

hist900 -2.482 -4.976 -0.007 

hist9002 -0.188 -2.804 2.410 

precip_raw 0.127 0.068 0.191 

precip_raw2 0.001 0.001 0.002 

tpi_raw 0.234 0.034 0.449 

tpi_raw2 -0.085 -0.163 -0.023 

EIS 

Main Effects 

 

2.5% CI 

 

97.5% CI 

Intercept -53.299 -71.075 -36.977 

rip_900 -0.005 -0.008 -0.003 

can250 0.036 0.001 0.071 

can2502 -0.001 -0.001 0.000 

dran250 4.756 2.163 7.423 

dran2502 -2.192 -4.826 0.415 

landco900 1.486 -2.953 6.141 

landco9002 -0.687 -5.201 3.702 

pine900 3.528 -2.757 9.746 

pine9002 -5.241 -18.837 8.896 

urb900 0.242 -5.004 4.594 

evi250 12.904 1.785 25.623 

evi2502 -22.852 -38.976 -8.865 

precip_raw 0.253 0.173 0.340 

precip_raw2 0.001 0.000 0.000 

tpi_raw -0.176 -0.404 0.050 

hist900 -3.783 -6.738 -0.854 

hist9002 0.041 -3.257 3.267 

PB 

Main Effects 

 

2.5% CI 

 

97.5% CI 

Intercept 0.337 -0.319 0.996 

plandfor700 -2.333 -3.558 -1.130 

patmshb700 0.001 0.001 0.002 

shrbht700 6.823 1.798 11.722 

plandrip700 -3.521 -5.121 -2.001 

can700 0.048 0.017 0.079 

can7002 -0.001 -0.001 0.000 

elev700 -0.019 -0.023 -0.014 

RCW 

Main Effects 

 

2.5% CI 

 

97.5% CI 

Intercept -5.559 -7.382 -3.961 
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plandpine800 0.713 -5.663 6.884 

plandpine8002 15.816 2.237 31.133 

fire800 52.803 41.858 64.695 

fire8002 -138.895 -179.920 -101.079

herbht800 -11.404 -18.585 -4.788

shrbht800 -20.992 -45.944 -1.067

can800 0.019 0.001 0.038

SSS 

Main Effects 2.5% CI 97.5% CI 

Intercept -6.789 -9.080 -4.821

ed_msh200 0.073 0.052 0.097

ed_msh2002 0.001 0.000 0.002

brack200 -2.259 -3.547 -1.062

elev200f -0.483 -1.348 0.101

urb_200 0.001 0.000 0.001

WP 

Main Effects 2.5% CI 97.5% CI 

Intercept -2.182 -3.098 -1.290

ed_bh100 0.010 0.006 0.015

urb1kmf 0.000 0.000 0.001

landco1km 11.433 7.587 15.992

ow1kmf -0.002 -0.004 0.000

WS 

Main Effects 2.5% CI 97.5% CI 

Intercept 3.558 2.508 4.651 

wat2000 -2.147 -5.223 0.793 

nwifwd_2000 -0.001 -0.001 0.000 

nhd_2000 0.000 0.000 0.000 

landco2000 -0.878 -2.131 0.379 

can2000 -0.045 -0.059 -0.031

elev2000 -0.029 -0.036 -0.023


