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CHAPTER 1 

INTRODUCTION 

Small farms and community gardens are important sources of food and come with 

a plethora of important social, economic and educational benefits. The U.S. Department of 

Agriculture Economic Research Service categorizes farms as “small” based on their 

income (i.e., gross cash farm income less than $350,000). Under this definition, 90 percent 

of U.S. family farms are categorized as small farms and operate nearly half of all farmland, 

yet they account for only 24 percent of production (USDA 2016). Community gardens, 

which can consist of several individuals sharing the workload and food produced on shared 

public or private land, are receiving renewed interest and importance in local food 

production within urban and suburban communities.  

Community gardens in the United States have a long history - starting more than a 

century ago in cities such as Detroit, Philadelphia, San Francisco and Boston. Historically, 

these community gardens were an emergency response to food shortages brought on by 

economic recessions or wartime. For example, Vacant Lot gardens were started in the 

1890s, due to an economic recession that left many people unemployed and hungry 

(Smithsonian Gardens 2019). The participating cities supplied the seeds, gardening tools 

and instructional pamphlets printed in multiple languages. The prevalence of these gardens 

declined as the economy improved, but saw a resurgence in popularity, as a necessity and 

patriotic act, during World War I. There was a second resurgence in community gardens 

in the 1930s during the Great Depression, then called Thrift Gardens. They reached their 
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most well-known point during World War II as the famous Victory Gardens, which 

produced 40% of all vegetables in the United States in 1944. The aftermath of World War 

II led to suburban sprawl and generational and cultural changes, which considered manual 

labor a lower-class activity and led to a decline in community gardens and an increase in 

large, industrial-scale farms. Genetic diversity was subsequently lost as crops were selected 

for homogeneity and shelf stability for broader-scale agriculture activities. The 

environmental movement of the 1960s and 1970s, reignited interest in community gardens 

(Smithsonian Gardens 2019). Currently, small farms and community gardens contribute to 

all the aforementioned roles of the last century, with other added benefits including 

supporting local economies and farm-to-table restaurants, providing local foods, 

preserving genetic diversity and fostering stronger relationships within communities.  

Despite the recognized benefits of small farms and community gardens, they 

receive less attention in terms of using modern technologies to monitor crops and improve 

crop yield. Farmers who practice precision agriculture with fields as large as 20,000 ha 

(50,000 acres) in size, generally use tractors guided by GPS and output from remotely 

sensed images and GIS models for precisely applying fertilizers, pesticides and irrigation 

(NASA 2001, Schimmelpfennig 2016). New methods using low-cost equipment and 

integrated geospatial technologies, however, are needed to assist community gardeners and 

fine-scale farmers growing a variety of crops in plots of about 0.5 to four ha, or one to ten 

acres, in size. Establishment of best practice guidelines for efficient use of emerging 

geospatial technologies must be created for these individuals, agricultural extension 

agencies and geospatial firms offering crop monitoring services for the use of low-cost 

monitoring techniques to spread. The outreach of ways to monitor plot-level crop growth 
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and quantify crop damage due to disturbances such as pest infestation, herbivory and 

extreme weather events is expected to improve food security, increase small farm yields 

and enhance local community gardening experiences. 

Small unmanned aerial systems (sUASs) are a low-cost remote sensing technology 

that have great potential for aiding in the monitoring of small farm plots and community 

gardens. Some research-quality sUASs such as a DJI Mavic Air, cost just over $900 (DJI 

2019), can be flown using an individual’s smart phone and include a camera that is 

considered to be of professional quality. The majority of sUASs are relatively easy to learn 

to fly and accessible to individuals in the U.S. who follow Federal Aviation Administration 

(FAA) rules and regulations. However, not all individuals flying sUASs realize the 

possibility to process imagery captured by the mounted cameras to include more than just 

videos and still images of landscapes they fly over. The acquired images or videos can be 

processed through increasingly available photogrammetric software programs to create 

geospatial products such as 3D models and surfaces, orthoimages, orthomosaics, digital 

elevation models (DEMs) and digital surface models (DSMs). From these derived 

geospatial products, vegetation structure, height and biomass can be measured and 

recorded for monitoring small farm and community garden crop production. 

Given the increasing importance of food production from small farms and 

community gardens, this study explores ways to efficiently combine accessible geospatial 

techniques that are appropriate for monitoring fine-scale agriculture in local communities. 

Here, a farm or community garden will be considered small according to its size of fewer 

than four hectares (ha) in production. Although not prohibited for use in small vegetable 

plots in an individual’s yard that produce food intended for an individual household, the 
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sUAS-based monitoring systems examined here will focus on the acquisition and 

assessment of an intra-seasonal image time series for monitoring various row crops on 

small farms and community gardens. By combining sUAS-collected imagery and 

photogrammetric image processing known as Structure from Motion (SfM) to create 3D 

plant structure data from overlapping images, I will be able to make recommendations for 

fine-scale farmers and managers to effectively monitor small farm crops.  

Scientific Contribution 

Community gardens and small farms have significant cultural and social roles in 

our communities and provide a considerable portion of our food in rural, suburban and 

urban areas. Their contributions span over a century, showing they are not a fad, but an 

important and long-term asset to food security. As geospatial technologies decrease in cost 

and increase in ease-of-use, it is important to integrate and implement the techniques and 

technologies formerly reserved for industrial-scale farming in the daily practices of smaller 

farms. Small farms and community gardens can also benefit from advancements in 

geospatial techniques to efficiently monitor crops for pest pressure, climate change effects 

and animal predation with goals to increase volume and yield through the techniques of 

precision agriculture that were once beyond their reach. Identifying the best methods for 

integrating these techniques and making them freely accessible through web distribution 

to fine-scale famers, community garden managers, agricultural extension agencies and 

small businesses providing geospatial monitoring services is expected to benefit the 

agricultural community, our local food systems and society as a whole. This study will 

contribute to increasing food security, yield, production and knowledge of self-sustaining 

farming. 
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Primary Goals, Research Questions and Objectives 

The primary goals of this study are the development of an integrated method using 

accessible geospatial techniques and image processing tools that allow fine-scale, small 

landholder farmers and managers to monitor plant growth, vigor and biomass. The study 

aims to establish best practices for monitoring small farm and community garden 

productivity, as well as assess damages due to a variety of potential disturbances. 

Objectives of this study and research questions that underlie specific objectives include the 

following.  

Objective 1. Assess integrated geospatial techniques appropriate for small landholder 

farmers to examine crop growth and volume over time through the use of sUAS 

imagery & Structure from Motion photogrammetry.  

Research Question 1: How can fine-scale farmers improve crop monitoring, yield 

prediction and damage assessment using readily accessible and relatively low-cost sUAS-

acquired imagery and image processing/analysis software? 

By combining and exploring various geospatial techniques for monitoring 

vegetation, it is possible to develop a low-cost solution to the quantification of a bare earth 

model, crop growth rates, maximum biomass or yield at the peak of the growing season 

and the loss of biomass at the time of harvest or impact by damaging factors such as 

extreme weather or herbivory. Imagery of high spatial and temporal resolution required for 

these tasks can be acquired by small landowner farmers using off-the-shelf sUAS 

equipment. A time series of sUAS imagery will document crop growth over a growing 

season and will focus on obtaining highly overlapping images at relatively low flying 

heights and optimal lighting conditions. Readily available software also can be used to 
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perform photogrammetric processes such as image matching and Structure-from-Motion 

(SfM) to create digital 3D point clouds, derived bare earth DEMs, crop-specific surface 

models (CSMs), image-draped 3D models of crops and geo-corrected image mosaics (i.e., 

georectified orthomosaics). From these products, crop volumes, plant heights and other 

measurements of crop plant structure and condition may be achieved. 

Protocols for optimal sUAS image acquisition, data management and data 

processing can be developed for a local community garden at the University of Georgia 

(UGA) known as the UGArden, located near the main campus in Athens, Georgia and 

representative of the Georgia Piedmont physiographic region. Close proximity of the 

UGArden study site allows rapid access to monitor stages of plant growth and refinement 

of protocols and best practices. A time-series of imagery also provides documentation of 

several stages of plant growth beginning with widely spaced seedlings through maximum 

growth and final harvest during a single growing season.  

Objective 2. Apply best practices and refined techniques for a crop monitoring system 

for small landowner farmers to low-country coastal Georgia small farms. 

Research Question 2: How can the techniques and protocols developed in Objective 1 at 

the UGArden within the Piedmont physiographic region of Georgia be applied to small 

farm plots on the Georgia coast that are representative of small landowner farmers in the 

Coastal Plain physiographic region? 

In order for the robustness of the geospatial techniques practiced and refined in 

Piedmont Georgia at UGArden to be determined, protocols such as recommended sUAS 

flying heights and flight patterns for different crop types, optimal weather conditions and 

time of day, data management practices and the production of 3D models and orthoimages, 
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need to be applied in a second physiographic region of Georgia. Objective 2 of this study 

is an application of best practices of the small farm monitoring techniques to small-plot 

gardens grown at the UGA Center for Research and Education on Wormsloe (CREW) 

located on the Isle of Hope and within low-country coastal Georgia and the Coastal Plain 

physiographic region. This area is representative of the coastal low-country region ranging 

from South Carolina to Florida due to its historical agricultural usage, sandy soil and warm 

temperatures. Image data collection timed towards the end of the growing season when 

plants have reached maturity allows a maximum height CSM to be created and crop 

biomass calculated to estimate yield of small farm plots.  

Objective 3. Examine a variety of crop shapes to determine if vegetation structure 

parameters, such as plant form, leaf size and shape or plant height, influence the 

accuracy of photogrammetric products (i.e., 3D surface models and orthoimages) 

and, therefore, the accuracy of measurements derived from these products. 

Crops take on a variety of shapes or growth forms, from low-growing and compact 

to tall and thin, with a high diversity of leaf size, shape and number, along with sturdiness 

of stem and leaf blade. These characteristics are expected to influence the relative success 

of image processing functions, such as multi-image point matching and 3D point 

derivation, because any movement of the stalk, leaves, flowers, fruits or leaf stems will 

change the position of that plant or plant part on successively overlapping images. In other 

words, feature identification on multiple images is not possible if the feature moves 

significantly while the sUAS is passing overhead and acquiring images. Objective 3 aims 

to apply the developed small farm crop monitoring methodology to crops representing a 

range of structure types in order to assess its utility for some commonly grown row crops 
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in small farms and community gardens in Georgia. For example, cabbages are almost 

spheroid in shape and their compact growth form and large sturdy leaves are expected to 

experience minimal movement between successive frames of the sUAS imagery. In 

addition, since the majority of the plant is harvested for consumption, a CSM created at the 

stage of maximum cabbage growth is expected to most accurately estimate profitable crop 

yield. Leafy greens such as lettuces, kale and collards, are also harvested and consumed in 

almost their entirety, but their more loose growth form and variety of leaf shapes, sizes and 

firmness may reduce the success of photogrammetric feature matching and thus the 

accuracy of derivative 3D products for estimating yield. Finally, plants such as peppers or 

okra are expected to introduce some uncertainty in photogrammetric processing and 

success of 3D modeling because these plants are tall and thin with more finely dissected 

and somewhat flimsy leaves. Additionally, only the fruit of the plant is harvested for 

consumption. Leaves may obscure the fruit from view at certain angles and farmers would 

need to determine a quantitative relationship between plant and harvestable crop volume 

in terms of total plant and the volume or weight of harvested fruits. 

Another aspect of Objective 3 is understanding the growth stages and 

characteristics of different crop types because growth form may change during the life 

cycle. A juvenile crop will have a shorter overall height with fewer and smaller leaves. If 

the crop grows fruit, the harvestable fruit will not be present in the early stages or may be 

obscured by leaves in later stages. For this reason, what is learned in Objective 1 will be 

applied to Objectives 2 and 3, and the results of Objective 3 will ultimately improve the 

geographic robustness and identify limitations in the methodology and protocols for small 

farm and community garden monitoring. 
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CHAPTER 2 

LITERATURE REVIEW 

Importance of Small Farms and Community Gardens 

Small farms and community gardens are important sources for local food; they 

enhance rural livelihoods, support farm-to-table restaurants and create employment 

opportunities. They also strengthen relationships within local communities and enhance 

local economies (Henneberry et al. 2009, King et al. 2010, Boys & Hughes 2013, Olson 

2018). Farming at a fine scale (i.e., physically small farms approximately equal to or fewer 

than four ha or 10 acres in size) enables the owner or manager to experiment with 

preserving and proliferating heirloom vegetables (Seed Savers Exchange 2019, Orgera 

2019). 

Precision agriculture developed in the late 1980s and early 1990s as technologies 

such as global navigation systems (for example the Global Positioning System or GPS), 

remote sensing and geographic information systems (GIS) were more widely implemented 

to optimize production on large farms. Integrated GPS-GIS precision agriculture practices 

accounted for variations within agricultural fields using site-specific applications with the 

goal of increased profit and increased yield, in part due to a decrease in input costs and 

targeted application of fertilizers, irrigation, drainage structures (Johnson et al. 1983, 

Lowenberg-DeBoer 1996, White 1997, Comis 1998, Zhang et al. 2002, Gebbers & 

Adamchuk 2010, Schimmelpfennig 2016). Increased profitability and a decrease in 

environmental impacts were achieved through the assessment of variables such as physical 
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soil properties, soil depth, drainage and moisture content; crop variability such as height 

and density; field variability such as elevation and slope and other factors such as weed, 

disease and pest infestation (Zhang et al. 2002). The typical use of precision agriculture, 

however, remains today at the broad scales of industrial farming and large fields covering 

multiple hectares of homogeneous crop monocultures. 

Small farms and community gardens, on the other hand, enhance genetic variety 

and agrodiversity (O’Connor 2011, Pearsall et al. 2017, Orgera 2019) by the use of 

heirloom fruits and vegetables (O’Connor 2011, Barnett 2014). The Food and Agriculture 

Organization (FAO) of the United Nations concluded that the last 100 years witnessed the 

disappearance of 75% of crop genetic diversity as famers world-wide have moved away 

from traditional and local seed sources to genetically homogenous varieties purchased 

through large seed companies (FAO 2019). Fortunately, organizations such as Seed Savers 

Exchange, a non-profit organization based in Decorah, Iowa, maintain over 20,000 

varieties of heirloom plants and encourage small landowner farms and community gardens 

to plant local heirloom varieties. The Seed Savers Exchange focuses on collecting, 

preserving and sharing heirloom and rare plants in hopes of increasing and preserving 

genetic diversity as a safeguard against future disease, climate change and pest pressure 

(Seed Savers 2019). The Svalbard Global Seed Vault located in Norway is a world-

renowned repository of seeds in a vault carved 100 meters into a mountain in permafrost 

substrate that ensures a stable temperature is maintained at minus 18 degrees C (Svalbard 

2019). Svalbard receives seeds to preserve genetic material from all over the globe and the 

Seed Savers Exchange has deposited over 3,500 seed samples into the Svalbard Global 

Seed Vault in the last decade (Seed Savers 2018). 
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 There are a multitude of reasons why individuals are increasingly turning to small 

landholder farming and/or becoming involved in community gardens. Motivations to 

participate in small farms or community gardens include personal enjoyment, a desire to 

interact and connect with members of the community, wanting to make their community a 

better place and fostering a feeling of connection with their cultural heritage (Bussell et al. 

2017, Pearsall et al. 2017, Sonti & Svendsen 2018). Community gardens also help alleviate 

local food insecurity (Bussell et al. 2017). This is exemplified through the University of 

Georgia's UGArden food donations to the student pantry and Campus Kitchen (UGArden 

2019). Some community or small farms also offer a volunteer trade - in exchange for 

volunteer hours on the farm, volunteers are paid in food items (author’s personal 

experience). Experiential learning of young children working on-site in gardens and local 

farms showed a significant increase in knowledge of where food comes from (Kos & 

Jerman 2012). Bussell et al. (2017) discovered individuals and families who participated 

in community gardens reported that they had increased their fresh vegetable intake since 

becoming involved with their local community gardens. These farms and community 

gardens serve as connective hubs of community interactions, food sources and education 

tools; therefore, it is important to also provide small land holder/community gardeners with 

precision agricultural tools that have historically only been implemented on larger farms.  

Potentially, the adoption of precision agriculture techniques may be lacking; 

farmers and managers may not be implementing the most efficient technologies or truly 

understand the long-term benefits of investing financially in new technologies (Tey & 

Brindal 2012, Schimmelpfennig 2016). They may be missing out on beneficial practices or 

new technologies to improve resource efficiency and crop yield. Given the numerous 
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positive social, cultural and nutritional benefits of small and community farms, it is 

important to ensure fine-scale local farms receive the same attention as large agricultural 

farms do in terms of access to information on geospatial technologies, precision agriculture 

and knowledge of other advancements for monitoring crop health.  

The last several decades have witnessed a growth in popularity of farmers’ markets 

in the United States. In less than 60 years, from 1960 to 2019, farmers’ markets grew in 

number from around 100 to almost 9,000 (Greb 2019). As the number of local farmers’ 

markets has grown, the U.S. Department of Agriculture (USDA) created an online National 

Farmers Market Directory (USDA 2020), searchable by identifiers such ZIP code, state-

wide search or specific market name. The user interface also allows filters to be applied to 

see available products (e.g., fresh vegetables, plants in containers, baked goods, canned or 

preserved fruits, etc.) types of payment accepted or winter markets only. Organized 

websites like these allow for a faster and more efficient search, tailored to the user’s needs. 

Additional information for individual markets includes location, number of vendors, day 

and time of market and a website link. As of February 1, 2020, there were 169 entries of 

local farmers’ markets for the state of Georgia alone.  

Application of Remote Sensing in Precision Agriculture 

Geospatial technologies including remote sensing, Global Positioning System 

(GPS) and LIght Detection And Ranging (LiDAR), provide farmers with information that 

can be used to increase crop productivity and improve farming efficiency. Although crop 

and soil mapping has been conducted using aerial photographs since the 1950s (Goodman 

1959 and 1964, Bowers & Hanks 1965, Evans 1972, Ryerson et al. 1997) and satellite 

images since the 1970s (Richardson et al. 1975, NASA 1978, Meyers 1983, Leon et al. 
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2003), until recently the data, equipment and computer analyses have not been readily 

accessible to fine-scale farm operations.  The decrease in cost and increase in the 

availability of equipment, software and computers now allows integrated geospatial 

technologies to be used by all farmers to collect data on crop health, growth and effects of 

disturbances such as extreme weather events and damage due to pest species and herbivory. 

Low cost methods to monitor and manage crops at the small farm plot and community 

garden level are needed. For example, small unmanned aerial systems (sUASs) data 

acquisition with Structure from Motion (SfM) photogrammetric analysis and image 

processing, allows measurement of fine-scale plant structure, growth, insect damage, 

biomass, yield and recovery from extreme weather events. Quantified plant vigor and 

changes in yield can then be used to estimate the economic value of small farm production 

and assess damages resulting from droughts, floods, insect/fungus infestations and 

consumption and damage by wild animals. This research, conducted with support from the 

University of Georgia’s Center for Research and Education at Wormsloe (CREW), 

Graduate School and Department of Geography Center for Geospatial Research (CGR), 

examines ways for small-farm agriculture and community gardens to be effectively and 

efficiently monitored using low cost and readily available solutions. 

Precision agriculture is vital to maximize the productivity of fields and minimize 

the economic cost to the farmer. It is also a way to reduce farming-related environmental 

impacts by focusing resource application only on needed areas. The implementation of 

practices such as variable-rate fertilizer, pesticide, herbicide and irrigation application 

technologies, GPS tractor guiding systems and soil and yield mapping are most often seen 

on large farms (Schimmelpfennig 2016). It is inefficient and wasteful to over apply 
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fertilizers, pesticides, herbicides or over-irrigate in areas that do not require them. Ziliani 

et al. (2018) notes one of the most important aspects of intra-season monitoring; that site-

specific issues will be noticed at “critical stages of the growth cycle” - allowing for 

solutions to be implemented before a loss in yield or harvest occurs. For example, if an 

area seems to be consistently underperforming, with plant heights consistently lower than 

other areas, perhaps the site has poor drainage or needs an application of a nutrient or 

fertilizer that the rest of the field does not. Underproductive portions of fields may also be 

identified and considered for the USDA Conservation Reserve Program that pays farmers 

to take unproductive and environmentally sensitive land out of production to restore native 

vegetation and promote biodiversity (Glaser 1985, Morefield et al. 2016, Meng 2019). 

Farming is a long-term commitment and farmers utilize the same fields for years. 

It is beneficial to use 3D models of crops as a record to see how fields perform over time. 

They may show certain crops perform better in certain fields and be used to strategize 

efficient planting practices. 3D models also can be referred to for insurance purposes after 

destructive incidents, as measurable replicas and models of the fields prior to damage. 

Orthomosaics can assist in mapping areas of low productivity or damage. 

Satellite Imagery and Aerial Image Acquisition and Processing 

For precision agriculture, the spatial resolution of some satellite imagery is too 

coarse (Table 1). Medium resolution satellite imagery from the U.S. Landsat Program is 

freely available and includes images acquired by sensors such as Landsat 5 and 7 Enhanced 

Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI). These 

medium-resolution sensors acquire images with 30-m per pixel spatial resolution for 

visible, near infrared (NIR) and short wavelength infrared (SWIR). Landsat 7 and 8 are 
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currently functioning and Landsat 9 is slated to be operational in 2020 (NASA 2019a, 

2019b, 2019c). Though datasets are free to download and use in programs such as Google 

Earth Engine and Earth Explorer, the spatial resolution is still too coarse for smaller fields 

on the order of 4 ha in size and results in pixels that depict multiple crop types. The Scan 

Line Corrector on Landsat 7 malfunctioned four years into its mission and resulted in data 

gaps in the imagery (NASA 2019a), making that dataset less effective. The temporal 

resolution or return time is 16 days for each satellite or 8 days if the data from two Landsat 

missions are combined (NASA 2019c). The European Space Agency (ESA) Sentinel 2A 

and 2B MultiSpectral Instrument (MSI) sensors acquire images at 10-m per pixel spatial 

resolution in the visible and NIR and 20-m spatial resolution for the SWIR portion of the 

electromagnetic spectrum with a return time of 10 days, or 5-day return time considering 

cloud-free imagery from both -2A and -2B MSI sensors (European Space Agency 2019). 

The Sentinel-2A and -2B imagery may be useful for larger farms and fields, although the 

10-m Sentinel-2 imagery would not provide a fine enough spatial resolution for smaller or 

mixed-use fields. Unfortunately, return time does not guarantee useable imagery of the 

desired area. Cloud coverage is an issue, as it can obscure some or all of the target area on 

multiple returns. For smaller fields, especially during times of high cloud coverage or after 

a destructive event, this still may not be enough.  

Table 1: Selected satellites comparing various attributes. 

Cost Name Temporal Spatial Bands 

Free Landsat 4, 5, 7, 8 16 days per sensor 30 - m Visible, NIR, SWIR 

Free Sentinel – 2A, 2B 10 days per sensor 10 - m 

20 - m 

Visible, NIR 

 SWIR 

Free NAIP 1 to 3-year cycles 1 - m  Visible, infrared 

Varies sUAS User defined User defined Visible 

$5,000 PlanetScope(DigitalGlobe) Daily 3 - m  Visible, NIR 

$5,000 Rapideye (DigitalGlobe) Daily 5 - m Visible, red-edge, NIR 

$5,000 Skysat (DigitalGlobe) Daily .8 - m Visible, NIR, pan 
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Although commercially available satellite imagery acquired by companies such as 

DigitalGlobe and Planet Labs, Inc. provides daily imagery at high spatial resolutions of <1 

to 5-m and may capture the fine detail of community gardens and small farm crops, the 

data must be purchased and in the case of DigitalGlobe, may not be available for all study 

areas because it is acquired on a tasked-acquisition schedule vs. the global, synoptic and 

regular image acquisition of Landsat and Sentinel missions (DigitalGlobe 2019, Planet 

2019). The purchase price of Planet Labs, Inc. imagery is expensive with the minimum 

order size costing $5,000 (Planet 2019). Unfortunately, there is no guarantee that the 

satellite imagery will contain cloud-free coverage of the desired study area.  

Airborne imagery acquired by the U.S. Department of Agriculture (USDA) 

National Agricultural Imaging Program (NAIP) is freely available for the U.S., since 2005. 

It has at 1-m spatial resolution with a contractual obligation to make every effort that 

imagery contains 10% or less of cloud coverage and imagery is orthorectified (USGS 

EROS Archive 2019). However, since NAIP imagery is acquired only once during the 

growing season for any particular area - currently on a three-year cycle - it would not be 

applicable to farmers monitoring their fields over a growing season (i.e., intra-seasonal 

monitoring) or in response to crop damage. Imagery collected also is exclusive to the 

United States and not applicable to international study areas (USGS EROS Archive 2019). 

An alternative to satellite or aerial derived imagery is imagery acquired from small 

unmanned aerial systems (sUASs), also known as unmanned aerial vehicles (UAVs) or 

drones. sUAS acquired imagery has a significant advantage over satellite imagery – it can 

be acquired and checked for quality control almost immediately. While satellite data may 

take several days to be publicly available for use and the return time of the satellite can be 
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several days or weeks, depending on its orbit (See Table 1), sUASs can be reflown the 

same day or at a different height to capture sufficient and adequate data at optimal times to 

capture crops at particular stages of growth or immediately following a disturbance event. 

Users will not have to rely on the set revisit or spatial resolutions of satellite sensors that 

will not fit their needs.  

sUASs are manufactured in a variety of sizes, wing types, weights, camera qualities 

and price points. Small UASs are defined by the Federal Aviation Administration as 

weighing less than 55lbs (25kg), including payloads (i.e. cameras or other sensors). The 

law states a sUAS may not exceed a speed of 100 mph and has a maximum flying height 

of 400 feet above ground level or 400 feet above a structure. These and other laws - daylight 

flights only and the remote pilot or assisting visual observer must maintain a visual line of 

sight at all time are important public safety precautions put in place to reduce the risk of 

injury and property destruction (FAA 2016).  

Limitations for flying a sUAS would be unfavorable weather conditions such as 

precipitation, high winds, lack of daylight or extreme high or low temperatures. User 

derived limitations include spent batteries, recharge time for batteries or the number of 

extra batteries available for use.  

The introduction of sUASs for agricultural image acquisition solves many of these 

issues (Jensen 2018). They provide the ultimate flexibility in terms of frequency and timing 

of flights, and they can be flown at various heights up to 400 ft. (approximately 122 m)  to 

provide imagery, with pixel sizes on the order of cm or even mm spatial resolution, for 

community- and small farm-sized study areas ranging from approximately 0.5 to 4 ha 

(about 1 to 10 acres). Because of this flexibility, imagery captured by sensors on-board 
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sUAS are easily customized to the needs of the user. Discussing the use of sUAS for 

monitoring applications, Bendig et al. (2014) acknowledges “the method has potential for 

future applications by non-professionals (i.e., farmers).” Giving small landholder farmers 

the autonomy, authority and tools to monitor their crops in the most precise and accurate 

way possible will, hopefully, be a step towards increasing food security and productivity. 

Because sUASs can be flown multiple times during a season, they are well-suited 

to conduct intra-season time series monitoring and studies. Intra-season time series studies 

consist of surveying fields or crops multiple times throughout the growing season. The 

areas are monitored for patterns of underperformance, damage, poor drainage or other 

impactful issues. The UASs may be flown at set intervals (e.g., every two weeks) or in 

addition, as an immediate response after a destructive weather or pest event. The ability to 

fly and acquire imagery from UAS sensors at user-defined frequencies allows farmers or 

researchers to record time-series imagery at any desired time interval. In recent years, there 

has been an increase in research of various agricultural crops, including intra-season time 

series studies and 3D modeling of crop height, using UAS collected imagery. Crops include 

eggplants, tomatoes, cabbage (Moeckel et al. 2018) Chinese cabbage and white radish 

(Kim et al. 2018), barley, (Bendig et al. 2014 and 2015) maize (Grenzdörffer 2014, Chu et 

al. 2018, Malambo et al. 2018), wheat (Grenzdörffer 2014, Holman et al. 2016), alfalfa and 

rape oilseed (Grenzdörffer 2014) and sorghum (Chang et al. 2017). 

Photogrammetric Processing and Analysis of UAS Imagery 

Photogrammetry and remote sensing applications have long been used in a variety 

of fields, ranging from historical and cultural preservation, ecology, forestry, natural 

resource and vegetation mapping (Remillard & Welch 1996, Holmgren & Thuresson 1998, 
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Yastikli 2007, Madden et al. 2009a, Madden et al. 2015, Madden et al. 2019). Uses such 

as monitoring coastal shorelines in Georgia, preserving historical and cultural buildings 

and monuments, and the assessment of vegetation damage after extreme weather events 

are examples of SfM projects conducted by the Center for Geospatial Research at UGA in 

the last five years (Madden et al. 2019). Photogrammetric concepts of SfM started in the 

1950s and originated in the field of computer vision, but were not able to enter into 

mainstream use until the last two decades, as computing power increased and software 

became more readily available (Hartley & Zisserman 2003, Theriault et al. 2014, Jackson 

et al. 2016). The automated SfM process uses feature matching algorithms that are 

comprised of concurrent, highly redundant and iterative bundle adjustment procedures to 

match the overlapping images and extract features from them (Förstner 1986, Grün 1985 

and 2000, Grün et al. 2004, Fraser & Cronk 2009). With these increases in computation 

technology, it became easier to work with 3D data as some datasets, such as DEMs, and 

LiDAR datasets became available for free or low cost through various online portals 

(Katsianis et al. 2008, Madden et al. 2009b, Agapiou et al. 2016, Richards-Rissetto 2017).  

Structure from Motion (SfM), a photogrammetric process, estimates three-

dimensional (3D) structures from multiple two-dimensional (2D) overlapping images 

(Westoby et al. 2012). Consecutive images for SfM analysis must overlap with each other 

to ensure distinctive features used in image matching, appear in multiple images and 

provide multiple perspectives of all features (Figure 1). Recent years have witnessed the 

advent of a variety of software programs such as MeshLab, Pix4D and Agisoft Metashape 

that use SfM processing to create 3D point clouds from overlapping images and allow the 

derivation of output products such as DEMs, CSMs, orthoimages and orthoimage mosaics 
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(or orthomosaics). Structure from Motion derives its name from the first step in its process. 

The object or area of interest stays static and the camera moves around the object, capturing 

images with significant overlap as pictured in Figure 1.  

 

Figure 1: Depiction of overlapping imagery acquired for a feature of interest that will be processed by SfM to create a 

3D model of the feature. Image credited to Westoby et al. (2012). 

 

The basic workflow presented in software currently used to perform SfM, such as 

Agisoft Metashape, is often simplified to a few procedural steps, including: input 

overlapping imagery of the desired target, launch algorithms that detect matching points 

between images and construct a 3D point cloud and perform the creation of additional 

outputs such as a DEM, mesh and orthomosaic. However, the mathematical computations 

underlying these steps are complex. To gain a better understanding and appreciation of the 

complexity of the SfM process, examining some of the initial concepts upon which the 

SfM workflow is built is both helpful and necessary to ensure best decisions are made for 
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image acquisition and the selection of SfM parameters. The complex photogrammetric 

algorithms and processes in SfM performed within currently available software often 

operate in a “black box”, unseen and unexamined by most users. It is important that users 

understand the basic processes of SfM because the algorithms and methods differ slightly 

among software programs and user-input decisions for SfM parameters will affect the 

quality and accuracy of resulting products.  

The software workflow requires an input of multiple images consisting of a large 

amount of image overlap (ideally 80 – 90%). The images do not need to be in specific 

order, nor does the software require a priori knowledge of the geometric position of the 

image collecting sensor. Although not necessary, embedded coordinates and information 

in the images from GPS-sensors will improve the efficiency of image matching and 

geometric reconstruction (Förstner 1986, Grün 1985 and 2000, Grün et al. 2004, Fraser & 

Cronk 2009, Cotten et al. 2019, Madden et al. 2019). 

After the collection of imagery and input of images into the software, the first SfM 

process is feature matching. A feature is a distinct shape within the image that can be 

identified and extracted from multiple images, which is then stored in a database so the 

same feature can be matched in the additional images containing it (Förstner 1986, Grün 

1985 and 2000, Grün et al. 2004, Fraser & Cronk 2009, Cotten et al. 2019). This is 

accomplished by identifying matching features, also referred to as tie points, on multiple 

images. An important “black box” concept to explore is how feature matching occurs. The 

Scale Invariant Feature Transform (SIFT) created by Lowe (1999), improves the quality of 

features being matched and extracted. The SIFT algorithm allows features to be matched 

regardless of image scale and rotation and has more robust matching in change of 3D 
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viewpoint, affine distortions, illumination changes and noise (Lowe 2004). This algorithm 

builds upon previous work developed for image matching on stereo matching using a 

corner detector designed by Moravec (1981), with a later improvement added by Harris & 

Stephens (1988) that allowed for better repeatability near edges and small variations within 

images, and later expanded to motion tracking and SfM recovery (Harris 1992). Building 

off this, Schmid & Mohr (1997) showed that invariant local feature matching could assist 

in image recognition issues by matching a particular feature within a large database of 

images and allowing features to be matched regardless of orientation changes between the 

two images. Lowe’s (1999) improvements of added scale invariance allowed for better 

feature matching even while image distortions such as 3D viewpoint changed between 

images (Lowe 2004). 

The second step, following the feature matching or tie point process step, is the 

image orientation that will occur based off the relationships determined in the feature 

matching or tie point process, using the Sparse Bundle Adjustment. The basis for image 

orientation and geometric reconstruction lies in photogrammetry and aerotriangulation of 

photographs (Lourakis & Argyros 2009, McGlone 2013). Aerotriangulation involved the 

alignment of analogue aerial images and prepared them for stereo measurement purposes. 

Using highly overlapping photos from a flight plan, the identification of tie points or pass 

points and known ground control points on the actual images, the camera positions and 

altitudes were then solved through mathematical equations (Wolf & Dewitt 2013). 

Although originally applied to a stereopair of two overlapping images, this 

photogrammetric process can be applied to an unlimited number of images. Wolf & Dewitt 

(2013) explain the term bundle adjustment performed in aerotriangulation refers to the 
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mathematical computation of equations representing “many rays of light passing through 

each lens position, constituting a bundle of rays. The bundles from all photos are adjusted 

simultaneously so that corresponding light rays intersect at positions of pass points and 

control points on the ground.”  The bundle adjustment solves for the X, Y and Z positions 

of the targeted object points and the x, y and z positions of the camera locations and their 

omega, phi and kappa rotations (Wolf & Dewitt, 2013) and corrects for lens distortion. In 

this way, the geometry of the cameras’ positions and a sparse 3D point cloud of the target 

is created in its relative coordinate system (Wolf & Dewitt, 2013, Cotten et al. 2019). A 

sparse point cloud is then created.  

The third step is the construction of a dense point cloud, where every individual 

point consists of XYZ coordinates, as well as the Red Green Blue (RGB) values from the 

imagery. The dense point cloud is an enhanced point matching from the already aligned 

images. This point cloud contains many more points than the sparse point cloud, and the 

density will vary due to quality, resolution and size of imagery. Processing time will also 

increase with larger datasets or higher resolution imagery (Cotten et al. 2019, Madden et 

al. 2019).  

These are three required steps for SfM, but additional outputs derived from the 3D 

point cloud are possible through SfM or additional software. For example, a triangular 

irregular network (TIN) or mesh can be created by connecting adjacent exterior 3D points 

of the point cloud in a network of triangular facets to form a digital surface model (DSM) 

that mathematically models the uppermost surface of the 3D model (Little & Shi 2001, 

Westoby et al. 2012). Alternatively, if only the lowest ground points are selected, a bare 

earth digital elevation model (DEM) may also be computed. Once the DEM/DSM is 
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created, the pixel heights are used to orthorectify a mosaic of the images. Images are first 

orthorectified through the correction of inherent image distortion (e.g., relief displacement) 

and color balancing, then seamlessly stitched together as a mosaic (Wolf & DeWitt 2013). 

It allows for the orthomosaic to be used as a map with accurate location and distance 

measurements within it that can be used to also calculate area or volume. This is a useful 

and versatile product for users and can be input into a GIS program or serve as a base image 

map for other geospatial data such as locations collected with a GPS. 

Software for Structure from Motion 

The Agisoft Metashape Pro software is currently one of the most widely used to 

perform SfM and create 3D point clouds, DSMs and digital orthoimage mosaics using 

sUAS imagery. It should be acknowledged that imagery does not need to be from a sUAS 

to perform SfM and can, alternatively, be acquired from other devices such as mobile 

phone cameras or hand-held cameras. The Metashape software is designed to recognize 

points and features that appear in multiple photos (i.e., image matching), link common 

points together and create a smooth 3D model or dense point cloud from the multi-

perspective image geometry (Fonstad et al. 2013, Koutsoudis et al. 2014, Madden et al. 

2015, Cotten et al. 2017).  Since SfM can be a computationally complex process and require 

hours of processing time when a large number (on the order of 100 or more) of sUAS 

images are being analyzed, the SfM images can be processed in separate batches using 

Agisoft Metashape Professional. Processing may take several hours; depending on the 

number of images used, the quality of the imagery and the settings selected for the created 

product/output. Products generated from the software include dense point clouds, that can, 

in turn, be used to produce DEMs or DSMs and interpolated 3D models. The 3D models 
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of small gardens can be created from low altitude sUAS images or ground photos that are 

acquired with approximately 80 – 90% overlap. These models can then be used to compute 

the height and volume of plant material in the garden. The 3D models, of the same area, 

created over time provide quantitative data on crop growth, yield and damage. 

SfM and Vegetation 

Moeckel et al. (2018) shows the accuracy of measurements derived from SfM 

products can vary between different species of plants - possibly due to the shape of their 

structure. For example, grain crops, such as wheat, barley and corn, grow tall and thin. 

Other crops, like leafy greens, have multiple overlapping broad edible leaves, while others 

have fruit at maturation and small inedible leaves. Due to their physiology, the growth form 

of crops effects the accuracy of plant measurements from 3D models created using SfM. 

The leaves and stalks of crops are pliable and may wave or bend in the wind. If the altitude 

above the intended target at which the sUAS is flown is relatively low (e.g., < 10 m), the 

sUAS can generate enough wind to make crops move – commonly known as “propwash”. 

Images taken in these conditions may be blurred, which can cause errors in the CSM height 

measurements (Chang et al. 2017). Image blurring causes the SfM algorithm to have issues 

finding matching points between images; points that are erroneously matched may affect 

3D point extraction and the generation of the orthomosaic (Xu et al. 2016). Blurring and 

movement distort the actual object and it may appear different enough in the overlapping 

images to inhibit feature matching.  

A study by Dandois et al. (2015) examined controllable parameters, flight altitude 

and percent image overlap, and naturally occurring weather variables, cloud cover and 

light, to see the effects on accuracy of 3D model reconstruction from sUAS imagery of 
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forests. They found the most accurate of their models came from flights conducted in cloud 

free conditions. Imagery collected during days with cloud coverage increased errors within 

the point cloud. While this is a valuable place to start, accuracy may differ according to 

various heights of vegetation. Tree canopies reach over several meters in height while some 

vegetation, including non-grain crops, grow less than a meter in height. A homogenous 

canopy will cast less shadow than one of varied height. As Dandois et al. (2015) measured 

heights of tree canopies reaching several meters as opposed to shorter vegetation, their 

recommendations may not hold true in all situations. Depending on the application, 

overcast days may be more beneficial to reduce shadows which may affect SfM processes, 

depending on factors such as height, canopy coverage and leaf overlap.  

Dandois et al. (2015) notes “reduced image contrast can have a strong influence 

on the stability of image features”, resulting in an increase of dense point cloud position 

errors. Reduced image contrast can be the result of overcast days. Yet, the study also 

acknowledges that while direct or sunny lighting increases contrast, a negative trade-off 

is increased shadows in the imagery. Possibly, different species would do better under 

different conditions, as the shadow cast from a cabbage would perhaps interfere less with 

its volumetric and height measurements as compared to leafy greens, like collard greens 

or kale with many overlapping and flared-out leaves. An important consideration is 

noting while recommendations for optimal sUAS flight parameters and flying conditions 

can be made, real-world scenarios often differ from academic studies. Although a farmer 

with a limited amount of time may choose to collect imagery in less than ideal conditions, 

it would be vital for the farmer to understand the potential decrease in accuracy of their 

intended models. 
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Plant Height Monitoring for Estimating Crop Yield 

Estimating plant growth via height measurements using sUAS imagery and 3D 

modeling has recently proven to be accurate for grain crops including maize (Chu et al. 

2018, Malambo et al. 2018), sorghum (Malambo et al. 2018), barely (Bendig et al. 2014 

and 2015) and wheat (Holman et al. 2016) and select vegetable crops (Kim et al. 2018, 

Moeckel et al. 2018).  Measuring plant heights from 3D models is accomplished by 

subtracting the calculated height of the crop, known as the crop surface model (CSM), from 

the bare earth or digital elevation model (DEM) (Bendig et al. 2014, Grenzdörffer 2014, 

Kim et al. 2018, Moeckel et al. 2018). Plant height has shown to be an accurate way to 

predict crop biomass (Yin et al. 2011, Bendig et al. 2014) and predict yield (Yin et al. 2011, 

Bendig et al. 2015). The imagery to process and create the high spatial resolution DEM 

should be collected prior to the growing season, as it is a bare earth model. If a DEM is not 

created prior to the growing season, it can be established using measurements derived from 

models created when the plants are in very early growth stages and do not fully cover or 

obscure the ground. Once the DEM is established at T0, each set of subsequent images 

collected of the garden during the growing season or following a disturbance constitutes 

an individual 3D model or data set of T1, T2…Tx and produces a separate CSM data set for 

each time frame. The separate CSM data sets are then sequentially subtracted from the 

DEM to compute crop height, volume or yield for each time step. A series of CSMs can 

then be used to compute yield differences of crop loss in cases of disturbance and trends 

of crop growth over time. Monitoring yield is important as it can be a factor in the 

optimization of farming practices, potentially increasing the profitability of the farm and 

ultimately helping to alleviate food insecurity. 
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Unfortunately, oftentimes actual yield is less than potential yield (Anderson 2010; 

Mueller et al. 2012). As the global population is rapidly expanding, food security through 

increased food production will be an important goal. Anderson (2010) and Mueller et al. 

(2012) describe global and regional yield gaps, or the difference between observed yields 

compared to the potential or attainable yields in the same region. Increasing actual yield is 

in part due to management decisions and practices, including over or under nutrient 

application and irrigation (Anderson 2010, Mueller et al. 2012) and is part of precision 

agriculture. Active, intra-season and highly localized monitoring may help close this gap, 

increase food security and increase farm profitability. 

SfM Compared to Other Crop Measuring Techniques 

An examination of these sUAS and SfM studies with applications in agriculture 

reveals the authors often had different objectives in mind. Some like Grenzdörffer (2014), 

Chang et al. (2017), Moeckel et al. (2018) and Ziliani et al. (2018), attempted accurate 

measurements of crop height throughout the season, using multiple monitoring dates or an 

intra-season temporal study. Others, such as Bendig et al. (2014), attempted to estimate 

biomass from crop surface height and Holman et al. (2016) wished to determine 

phenotypes. While objectives may differ, they all show the benefits of geospatial 

technologies and sUASs to the farming community.  

Studies used measurements taken by hand of the targeted crops in order to compare 

SfM measurements to the actual crop heights. Kim et al. (2018) found a high correlation 

of R2 = .95 for Chinese cabbage, from height measurements taken by hand and SfM created 

crop surface models. Using a CSM created from SfM and UAS imagery and compared to 

validated measurements Moeckel et al.’s (2018) prediction model found a high correlation 
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of R2 =.89 for tomatoes, .97 for cabbage and .93 for eggplant. Their results showed that the 

models underestimate true height. Though it does validate the SfM-UAS methodology of 

monitoring crops, measuring crops by hand is extremely labor intensive and time 

consuming. Regardless if it is simply measuring the plant from the ground to the highest 

point or destructive sampling involving the removal of the plant to record its true biomass 

and weight, validation data adds time, labor and cost - especially if comprehensively 

measuring multiple crops throughout an entire season.  

The accuracy of crop surface heights derived from 3D models produced using UAS 

imagery and SfM has been assessed using comparisons of hand measurements of plant 

heights in the field, and comparisons with heights derived from terrestrial lidar data. Lidar 

(Light Detection and Ranging) or laser scanning is a highly accurate, yet expensive remote 

sensing technique used to measure distance. Lidar measures distance through a pulsed laser 

that reflects off the target and sends multiple returns back to the lidar sensor. This works 

by calculating distance through the speed of the return pulse. The first return would denote 

the tallest height (or closest distance) captured in that pulse, the second return, a slightly 

shorter height (or further distance) and so on (Renslow 2012). Depending on the density of 

the pulse, finer details may not be picked up. If there are obstructions such as vegetation 

canopies with no gaps, then the pulse will not be able to reach the ground or create a bare-

earth model (Blair et al. 1999, Lefsky et al. 2002, Singh et al. 2016). It is used in a variety 

of applications and fields, including the creation of 3D models and digital elevation models 

of natural and cultural resources. A lidar sensor is an expensive tool to use and the 

collection of extremely large volumes of lidar data require special software for processing, 

making this geospatial technology more specialized and, perhaps, not appropriate for use 
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by the general public at this time. Lidar measurements are considered highly accurate in 

most applications and the use of lidar in precision agricultural has proved to be effective 

and important for crop management (Rosell et al. 2009, Llorens et al. 2011, Long & 

McCallum 2013, Eitel et al. 2014). Typically, lidar has been used in large or commercial 

scale agricultural applications to identify areas of underperforming crops. 

Lidar is considered an accurate sensor for 3D reconstruction of plants (Underwood 

et al. 2017, Yuan et al. 2018) but an extreme drawback is expense and the large quantities 

of data it produces (Singh 2016). Yuan et al. (2018) compared the accuracy of terrestrial 

lidar to UAS-SfM for a temporal wheat crop height study. Lidar had the highest correlation 

(R2 = .97) when comparing the lidar derived crop height measurements to manual 

measurements but UAS-SfM derived heights also had a high correlation (R2 = .91). When 

Madec et al. (2017) compared the results of wheat plant height derived from terrestrial lidar 

to those of SfM, the study showed a strong correlation R2 (.98) between the two techniques. 

Ziliani et al. (2018) examined the accuracy of terrestrial lidar and UAS-SfM on maize, 

finding a correlation of R2 (.65) for crop heights and R2 (.99) for the DSM, and from those 

results, the authors determined UAS-SfM techniques can accurately reproduce the 

variability of maize crop heights throughout the season.  
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CHAPTER 3 

STUDY AREA 

This research will be conducted at two study areas in Georgia that are owned by 

the University of Georgia and represent small-farm growing conditions in the Piedmont 

and Coastal Plain physiographic regions of the Southeast – at the UGArden in Athens and 

the Center for Research and Education at Wormsloe on the Isle of Hope outside of 

Savannah, respectively (Figure 2). 
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Figure 2: Study sites overlaid on the State of Georgia.  

 

UGArden 

UGArden is part of the University of Georgia’s College of Agricultural and 

Environmental Sciences and is in the Piedmont physiographic region of Georgia. It is 

adjacent to the Georgia State Botanical Gardens, at 2500 Milledge Ave in Athens, GA 

(Figure 3). Operations are run by a combination of faculty, students, volunteers and interns 

affiliated with the University and the larger Athens community. Farm updates and blogs 

are available at their website:  https://ugarden.uga.edu/. The first garden plot started in May 

https://ugarden.uga.edu/
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of 2010, initiated by the student organization, the Campus Community Gardening 

Initiative, and backed by funding from the UGA Horticulture Department. Financial 

assistance later expanded to include a Higher Education Grant from the United States 

Department of Agriculture (USDA) National Institute of Food and Agriculture. Currently, 

UGArden hosts several undergraduate, graduate and Freshman Odyssey courses and 

credited internships through the Horticulture Department, with an educational emphasis 

placed on sustainable farming practices. UGArden assists people suffering from food 

insecurity through donations of its harvest to the UGA Campus Kitchen Association and 

the UGA Student Food Pantry. Other outreach initiatives include promoting and 

encouraging healthy eating through cooking demonstrations and food sampling at the 

Athens Clarke County middle schools (UGArden 2019).  

As the second largest physiographic region in Georgia, the Piedmont covers 

approximately 30% of the state. The elevation ranges from 152 m along the region’s 

southern boundary to 366 m along the northern edge (See Figure 2) (NCDC 2020) The 

terrain is moderate and slope generally does not exceed 8° unless along the side of a valley 

(Markewich 1990). This region is distinguished visually by its red soils due to iron minerals 

from rocks such as granite and its numerous rocky outcrops formed from the hard bedrock 

located near the surface (GeorgiaInfo n.d.). Soils in the Piedmont are more susceptible to 

erosion as compared to the Coastal Plain because of the characteristically shallow soils 

(typically less than 1 m thick) (Markewich 1990) and the region’s historically intense 

agricultural practices – particularly cotton (Forest Service 1994). Piedmont soils contain a 

higher clay content and less sand than those of the adjacent Coastal Plain (Markewich 

1990).  
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The average summer temperatures range from 22 – 28 °C and the average annual 

precipitation is approximately 114 cm, but annual precipitation can vary greatly from year 

to year. The driest months occur in autumn. Annually, the region receives less rainfall and 

is slightly colder than the Coastal Plain (NCDC 2020). The growing season ranges from 

205 – 235 days per year. The main forest types in this region are evergreen forests and oak-

hickory-pine forests containing white, post and southern red oaks and pignut and 

mockernut hickories. In areas characterized by disturbance, loblolly and shortleaf pine tend 

to dominate (Forest Service 1994). Large agriculture farms commonly grow cotton, corn 

and peaches, among other crops (NCDC 2020). Smaller farms, such as UGArden, grow 

many varieties of crops including kale, collards, lettuces, tomatoes, squash and garlic.  
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Figure 3: Orthomosaic processed in Agisoft Metashape from sUAS flight imagery, georeferenced and overlaid on the  

study area of UGArden in ArcMap. 
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UGA Center for Research and Education at Wormsloe (CREW) 

The second research site is the UGA Center for Research and Education at 

Wormsloe (CREW) campus located adjacent to the Wormsloe State Historic Site on the 

Isle of Hope. The Isle of Hope is an inner barrier island along the Georgia coast and is 

within the Coastal Plain physiographic region. Over the last ten years, the Wormsloe 

Institute of Environmental History and the UGA Graduate School have supported a variety 

of research projects at CREW utilizing concepts, theories and techniques from a variety of 

different disciplines, including geography, ecology, history and archeology (Wormsloe 

Institute for Environmental History, n.d.).  

Located approximately 16 kilometers (10 miles) south of the city of Savannah, the 

northern end of the Isle of Hope is separated from the mainland by salt marshes adjacent 

to the Herb and Wilmington Rivers, the west side is surrounded by Shipyard Creek marsh 

and the south and east sides are surrounded by salt marsh tidal flats of the Skidaway River 

(Swanson 2012) (Figure 4). The flat terrain extends less than 20 km inland from the 

Atlantic Ocean and sandy soils support live oak hammocks, saw palmetto, slash pine and 

historically, longleaf pine forest (Swanson 2012). Animals such as deer, fox and raccoons 

live and thrive on the Isle, while oysters and other shellfish are abundant in the creeks and 

along the shore (Bragg 1999). 

An emphasis of the Executive Director of Wormsloe CREW, Sarah Ross, is the 

awareness of traditional Coastal Plain farming practices that explores local food 

production, self-sufficiency and agriculture legacies of the southeastern U.S. Ms. Ross has 

created vegetable gardens on site to help preserve and proliferate heirloom varieties of 

various vegetables that were grown to sustain 18th century households along the Georgia 
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coast. As founder of a non-profit organization, Social Roots, she grows heirloom 

vegetables and saves the seeds for free donation to those who are also interested in 

preserving precious varieties for future generations. Her aim is to harvest seeds from 

between 450 - 500 heirloom varieties from collards, kale, greens and beans to the heirloom 

varieties of okra and peppers that are included in this study (Orgera 2019). She experiments 

with raised bed gardening nourished with compost created onsite. Two of her CREW 

gardens were selected as test sites (Figure 5 and Figure 6) for implementing best practices 

from sUAS image data collection and processing from UGArden for creating 3D models 

of small coastal farm plots. 
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Figure 4: Map of Wormsloe and surrounding area. Garden sites are depicted by red squares. Data creation credited to 

Dr. Thomas Jordan, Center for Geospatial Research, University of Georgia, Athens, GA. 
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Figure 5: Aerial image of Wormsloe CREW garden outlined in red, adjacent to the Skidaway river marsh flats. 

 

 

 

Figure 6: Aerial image of Wormsloe CREW raised bed gardens taken Sept. 10, 2019. 
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Unique in its ecological history, the Isle of Hope has been battered by hurricanes 

and shaped by centuries of human influence – starting from Indigenous Americans who 

were on the Isle centuries prior to European contact as found in archaeological evidence 

(Swanson 2012). From the arrival of Noble Jones and his family from Europe in the 1730s, 

who modified the Isle to create a working 18th century agricultural plantation, to today, the 

landscape has been shaped by forest clearing and the erection and eradication of various 

homes, structures, and trails over the last three centuries.  It also bears the modifications of 

generations of agricultural and horticultural efforts - from a broad-scale cotton plantation 

to private gardens featured as a tourist destination in the 1930s, while in the continuous 

possession of one family (Bragg 1999). The original property has been divided with the 

bulk of the Island now owned by the State of Georgia under management by the Georgia 

Department of Natural Resources, a portion donated to the University of Georgia for the 

CREW campus and a portion still privately owned by descendants of Noble Jones 

(currently the Barrow family) (See Figure 4). 

The Coastal Plain is the largest physiographic region of Georgia. It is predominately 

flat, with low lying marshes in many coastal areas. Elevations range from sea level to 

approximately 180 m (NCDC 2020). Soils on the Coastal Plain have a high sand content, 

with a low surface runoff, making it less susceptible to erosion than the Piedmont 

(Markewich 1990). The dominant forest type is loblolly and shortleaf pine, mixed with 

sweetgum, flowering dogwood, red cedar, southern red oak and hickories (Forest Service 

1994). 

Demonstrating the long farming history of the area, the first U.S. agriculture 

experiment station to be established on the Coastal Plain region in the United States is in 
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Tifton, Georgia. Today, 80% of Georgia’s row crops are produced in the southern portion, 

making it integral to the area’s economy. The area is also one of the United States’ leading 

producers in pecans, blueberries, cotton, peanuts and vegetables (University of Georgia, 

2019). A long growing season ranging from 200 - 280 days a year (Forest Service 1994), 

along with average annual precipitation of approximately 135 cm and average summer 

temperatures of 27 °C degrees create excellent growing conditions for agricultural crops 

(NCDC 2020). During the day, summer temperatures in this region will often exceed 32 

°C and will drop to a range of 20 to 26 °C during the night (NCDC 2020). The Coastal Plain 

region has greater precipitation and higher temperatures than the Piedmont, contributing to 

a longer growing season. 

Georgia’s agriculture is vital not only to the state, but also to the national economy. 

In 2018, Georgia ranked 20th in the United States for crop commodities and crops consisted 

of 34% of Georgia’s agricultural output. In 2018, Georgia ranked 5th or higher in the nation 

for peanuts, bell peppers, watermelon, cucumbers and blueberries and in the top ten for 

sweet corn, onions, snap beans and cabbage (USDA 2019). Georgia has over 42,000 farms 

that encompass over 3.6 million ha (9 million acres) in farmland (Wolf 2017). A 

comprehensive overview shows that in 2014, 88% of these farms were labeled as small by 

the USDA. According to the Bureau of Economic Analysis, 35,000 farms were owned 

either by sole proprietors or with non-corporate partners. In totality, agricultural industries 

contribute $74.3 billion to Georgia’s $907.7 billion economy – just over 8% of the total 

economy. It also provides around 411,500 jobs (Wolf 2017). 
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METHODOLOGY 

sUAS Flights to Acquire Imagery  

To address my first two research questions related to the use of sUAS imagery to 

create 3D models of small farm plots at UGArden and at the Center for Research and 

Education at Wormsloe (CREW) campus, sUAS imagery was collected bi-weekly at the 

UGArden using a DJI Phantom 4 quadcopter. The Phantom was equipped with a 12.4 

megapixel-camera with an image resolution of 4000x3000. Flight planning to ensure sUAS 

images are acquired using optimal flight parameters (e.g., camera tilt angle, flying height, 

forward and side overlap, speed and flight line locations) was performed using the mobile 

device application, Map Pilot, operating on an iPad mini tablet. This program requires the 

operator to input the desired image pixel size (e.g., 2 cm) and percent forward overlap (e.g., 

80%), along with an outline of the study area that the user inputs by viewing an aerial image 

of the area of interest and touching four or more points, creating a bounding box and 

enclosing the area to be flown. The Map Pilot program then draws lines indicating adjacent 

flight lines and the operator can edit the length, orientation, number and starting/ending 

points. Flight lines extend past the bounding box of the targeted fields for quality control 

of imagery, specifically ensuring the entire field would be imaged and include the ground 

control points and features around the field needed for image-to-image registration. By 

inputting the desired pixel size and percent forward overlap, the app will determine the 

image acquisition interval and automatically capture sequential image frames along the 

flight lines. Figure 7 shows an example of overlap by depicting sequential images taken 

during a flight. The settings are saved within the application to be reused on subsequent 

data collection days. The program gives an estimated flight time, allowing the operator to 
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decide if the flight plan should accommodate a single battery charge or if automated 

settings will return the sUAS for a battery swap and then resume the mission. Saving the 

flight plan allows it to be recalled when needed in the field, ensure repeated flights acquire 

comparable sUAS images and to monitor the progress of the sUAS image collection during 

the flight. Figures 8 a-b illustrate the use of Map Pilot to develop a flight plan for the 

UGArden study plot. Figure 9 shows the settings in Map Pilot including the altitude, 

resolution, the maximum speed, predicted flight duration and storage space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Sequential sUAS acquired imagery. The red box highlights the different placement in the images 

of the same cabbage patch during flight progression. 



 

44 

a.  b.  

Figure 8 a-b: Map Pilot screenshots of UGArden flight plan (a) lengthwise flight lines and (b) widthwise flight lines of 

the field create a grid pattern when combined for multiple perspectives for optimal 3D models. 

 

Figure 9: Map Pilot's flight plan information, including distance covered, estimated flight time and altitude. 
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The UGArden flight plan encompassed four plowed beds (Figure 10), with a focus 

on the 31 x 6 m bed highlighted in red in Figure 11. This bed consisted of 4 rows, each 

measuring about 1 meter in width with space on either side of each row for walking.  

 

 

 

Figure 10: Aerial view of UGArden study site on March 19, 2019. 
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Figure 11: Aerial view of UGArden study site, with targeted bed outlined in red. 
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These garden rows included three different varieties of brassica oleracea of 

different shapes to compare the quality of derived 3D models and the accuracy of 

measurements made from the models. Brassicas (commonly known as cruciferous 

vegetables) are a genus of plants in the family Brassicaceae. While wild weed species exist, 

many cultivated varieties are important agricultural crops, including cabbages, broccoli, 

cauliflower, kale, kohlrabi and Brussels sprouts. Monitored varieties were 1) collard 

greens, which, at maturity have a cylindrical shape and large flat leaves; 2) kale, also of a 

cylindrical shape at maturity, but with thinner, more textured leaves that curl; and 3) 

cabbage, which has large, flat and broad leaves with the spheroid shaped cabbage head in 

the center of the plant at maturity (Figure 12a-c). The fourth row contained mustard greens, 

but they were not selected for this study due to time constraints required for field 

measurements and their finely dissected leaves. 

Five sUAS flights of the UGArden study plot were conducted from March 19, 2019 

to May 14, 2019 and spaced apart in time in approximately 2-week intervals (Table 2). The 

flights provided imagery needed to explore the temporal scale (i.e., frequency and timing 

of sUAS image acquisition) necessary for deriving accurate and efficient 3D model results 

from the photogrammetric analysis. The five flights occurred at an altitude of 22 m (72 

feet), with the camera at nadir, in order to achieve a desired image pixel size of 1 cm (.4 

inch) and to accommodate for the heights of powerlines and trees surrounding the field. 

Although flight plans were intended to be reused for all flights this did not happen. The 1st 

flight date had a flight plan (Flight Plan A) that was not able to be retrieved and a second 

flight plan was created for the 2nd and 3rd flight (Flight Plan B). Improvements on the flight 

plan were made by decreasing the size of the bounding box and leaving out extraneous 
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areas on the 4th flight were reused for the 5th flight (Flight Plan C) in an attempt to reduce 

data volume (see Table 2). 

 

a.   b.  

c.   

Figure 12 a-c: The three monitored varieties of crops as imaged from the ground on April 30, 2019 (a) collards (b) 

kale (c) cabbage. 
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The greater number of images acquired, the increase in total data storage needed. 

Though this creates large amounts of data, investment in external hard drives to save the 

collected images in a second location is imperative. These are the raw data sets and 

irreplaceable if lost. Data corruption or damage does occur, and it is necessary to have 

images saved in multiple locations. The five sUAS flights range of 160 – 205 images per 

date (See Table 2). The flight plan in Map Pilot used downloaded imagery of the area in 

advance of going to the gardens to fly the UAS in case cell phone coverage or internet 

connection was not available in the field. In addition to the straight flight lines following 

the length of the field, a second flight path was created to cover the field in straight flight 

lines going widthwise. Combined, the flight lines provide a grid pattern with adequate 

angles, coverage and photos to create 3D models (See Figure 8a-b).  

 

Table 2: UGArden sUAS flight dates and data sizes. 

Date Number 

of Images 

Flight 

Plan 

Height Total Image 

File Size  

Individual Image File 

Size Range (MB) 

File 

Type 

03/19 172 A 22 -m 864 MB 4.81 – 5.56 .JPG 

04/02 204 B 22 -m 1.03 GB 4.62 – 5.98 .JPG 

04/16 205 B 22 -m 1.81 GB 4.66 – 5.62 .JPG 

04/30 160 C 22 -m 842 MB 4.66 – 6.01 .JPG 

05/14 164 C 22 -m 847.3 MB 4.64 – 5.56 .JPG 

 

These large volumes of data are saved on the camera memory card within the sUAS. 

Imagery was then uploaded directly onto a computer used for processing (Dell OptiPlex 

9020) from the memory card. Alternately, the images were uploaded onto a different 

computer and shared with the author via Google drop box in a zip file that was downloaded 

onto the computer. Separate folders were created for each flight date to store images in. 

These folders are backed-up on two external hard drives that reside in separate locations.  
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One flight date occurred at the Center for Research and Education at Wormsloe 

(CREW) on September 10, 2019. This flight used a DJI Mavic Air quadcopter with a 12-

megapixel camera, acquiring a still image size of 4056 x 3040 and was flown at a height 

of 12 m (40 feet), with the camera at nadir. It was flown manually (due to the small area of 

coverage) using an iPhone 8 plus using the DJI GO 4.0 downloadable app. The targeted 

crops were: 1) heirloom pepper plants (Figure 13a-c) growing in a raised bed of mixed 

soils and organic fertilizers within beds approximately 6.16 m long, 1.45 m wide and .568 

m high; and 2) heirloom okra planted directly in the plowed, coastal soil (Figure 14a-c). 

The pepper plant structure is bushy, with a growth range from about .66 m – 1.5 m in height 

with dense, thin leaves susceptible to movement in light breezes and the peppers visually 

standing out due to their bright, red color. The okra grew sparsely, with the plants being 

very tall (1 to 2 meters in height) and spindly, with small, sparse leaves. The pepper plants 

were in a raised bed garden located at the southern end of the property. The okra plants 

were in a garden plot at the northern end of the property. 
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a.  b.  

c.  

Figure 13 a-c: Images of pepper plants at Wormsloe (a) aerial overview of raised bed garden, pepper plants outlined in red (b) ground image of pepper plants (c) pepper fruit. 
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a.  b.  

c.  

Figure 14 a-c: Images of Wormsloe CREW okra garden (a) aerial overview of garden plot (b) ground image of okra (c) okra fruit.
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Ground Control Points 

Permanent markers serving as ground control points (GCPs) were anchored into the 

field site at UGArden for the duration of the project, (Figure 15) in order to overlay and 

ensure alignment and registration between the processed temporal data sets and maximize 

the accuracy of change analysis. Ground control points are needed to georegister the time 

series of dense 3D point clouds in order to correctly measure changes in the plant heights. 

The eight installed GCPs consisted of rebar pieces 61 cm in length hammered into the 

ground in March. 10 cm of the rebar remained above ground and were capped with orange 

rebar safety caps (Figure 16) to distinguish them from the vegetation. Multiple precautions 

were taken to ensure that GCPs were stable and securely located. At UGArden, they were 

placed at the edges of the fields and within the rows, where little to no interference would 

occur – (i.e., farm equipment would not be close to crops). At my request, the farm manager 

informed her crew of the placements of the targets and marked them with pink flags so 

they would not be disturbed or damaged by mowing or other equipment. During the 

different flights, it was apparent that the UGArden crew mowed around the targets. The 

grass growing within a radius of approximately 0.3 m around the individual targets was 

taller than the surrounding mowed areas. Before each flight, I checked each GCP and 

pulled out the grass/weeds adjacent to it to prevent tall grass from obscuring the GCPs in 

the sUAS images. I also ensured each orange rebar cap laid flat and was not askew. 

GCPs were not used in the CREW gardens, as flying was a one-time occurrence 

and images would not need to be registered to each other. The structure of the raised bed 

provided corners and edges visible in the sUAS images that could be used to measure the 
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pepper plant heights. The okra garden was surrounded by a fence and fence posts visible 

in the images could be used as GCPs if desired. 

 

Figure 15: The locations of the 8 ground control points are marked with yellow circles and blue flags in this 

orthomosaic of the UGArden study area. 
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Figure 16: One of the ground control points at UGArden. 

 

Field Measurement of Plant Heights 

For accuracy assessment and validation of the plant measurements derived from the 

CSMs, field measurements of individual plant heights in the focus beds were taken within 

one day of the flights at UGArden. Height measurements were taken from the ground to 

the top of the plant using a measuring tape and recorded to the nearest cm (Figure 17a). 

The same plants were measured and recorded each time the sUAS was flown, in order to 

have comparable data. For example, if plant number 27 in the row was measured following 

the first flight, it would be measured for the duration of the study. Recorded measurements 

were then transferred to an Excel spreadsheet. At UGArden, the heights of collard, kale 

and cabbage plants were measured. These garden plants represent different growth forms 

and were selected to assess the relative accuracy of plant heights from the created 3D 

models. 
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a.  b.  

Figure 17 a-b: Measuring plant heights for validation at (a) UGArden and (b) Wormsloe CREW. 

 

At CREW, the heights of pepper plants were measured to the nearest cm. The 

monitored pepper plants were in a raised bed as depicted in Figure 17b. The height of the 

box, the average soil depth (from top of box to soil) and plant heights (from top of plant to 

soil) were measured with measuring tape and recorded. To compare these measurements 

in the dense cloud model, where the soil was not visible, the height of the box was added 

to the plant height and then the average soil depth was subtracted (Figure 18). These garden 

plants represent different growth forms and were selected to assess the relative accuracy of 

height in the created models.  
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Aerial Image Processing and Structure from Motion to Create Orthoimages and 3D 

Models 

The imagery was processed with Agisoft Metashape Professional software to 

perform Structure from Motion photogrammetry to perform multi-image matching and the 

creation of an image mosaic and 3D point cloud to derive a seamless orthoimage, a digital 

elevation model (DEM) and 3D models for each date of sUAS image acquisition (Figure 

19a-c). From these products, the calculated crop surface model (CSM) enabled the plant 

heights to be measured and growth rates to be determined by subtracting the CSM from 

the DEM (CSM-DEM). The pixel size of orthoimages derived from images flown at 22 m 

(72 feet) is less than one cm spatial resolution (ranging from 7.6 to 8.8 mm) and the post 

spacing of the resulting DEMs and CSMs were approximately 3 cm (Table 3). The file 

sizes of the Metashape outputs are large and range from 2.5 – 3.42 GB of needed storage 
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Measurable Model Height = (Height of Raised Bed) + (Plant Height) – (Soil Depth) 

Figure 18: Visual diagram depicting how pepper plant model heights were calculated. 
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space. This data should be saved in multiple locations, regardless of the file size. It can be 

reconstructed from the sUAS images if data is lost but would be an unnecessary use of 

time.  

a.  b.  

c.  

Figure 19 a-c: Examples of SfM product: (a) DEM (b) orthomosaic of images (c) dense point cloud. 
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    Table 3: Agisoft Metashape information for flights at UGArden. 

Date 

(2019) 

Images 

Used 

Tie 

Points 

Dense 

cloud 

points 

DSM 

Size 

DSM 

Resolution 

(cm/pix) 

Orthomosaic 

Resolution 

(mm/pix) 

Orthomosaic 

Size 

File 

Size 

(GB) 

3/19 172/172 184,734 12,834,120 
5,297 x 

6,312 
3.03 7.57 

15,884 x 

19,832 
2.89 

4/02 203/204 167,998 9,081,387 
4,405 x 

5,295 
3.3 8.26 

13,824 x 

17,033 
3.16 

4/16 204/205 181,343 8,094,004 
3,621 x 

4,640 
3.24 8.11 

12,468 x 

16,128 
3.42 

4/30 160/160 120,132 6,876,609 
3,707 x 

4,650 
3.52 8.81 

11,442 x 

15,088 
2.5 

5/14 163/164 124,502 7,165,621 
3,591 x 

4,524 
3.47 8.68 

11,554 x 

15,100 
2.65 

 

The same methodology was used at Wormsloe CREW to process imagery with the 

results depicted in Table 4. Okra is excluded from the rest of the study due to the software’s 

inability to create an accurate model of it. Many of the okra plants captured in the sUAS 

images failed to appear in the model. 

It is interesting to note that while the same settings in the program are used and it 

is imaging the same area each time, the data volume and resolutions differ. Even on datasets 

such as 4/30/19 and 5/14/19 which used the same flight plan, the resolutions of the 

orthomosaic and DSM still differ (possibly due to a slight increase in photos or differences 

in individual file sizes). Though 5/14/19 only uses 3 more images than 4/30/19 it was able 

to find over 4,000 more tie points in the first step of SfM and almost 290,000 more dense 

cloud points. Perhaps the imagery was of higher quality in 5/14/19 or contained image 

blurring in 4/30/19. 

 
Table 4: Wormsloe CREW imagery processing information in Agisoft Metashape. 

Date 

(2019) 

Images 

Used 

Tie 

Points 

Dense 

cloud 

points 

DSM Size 

DSM 

Resolution 

(mm/pix) 

Orthomosaic 

Resolution 

(mm/pix) 

Orthomosaic 

Size 

File 

Size 

(GB) 

9/10 91/91 96,660 4,837,562 
2772 x 

2782 
8.98 2.25 

11,085 x 

11,125 
1.8 
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Digital images in .JPG file format were uploaded from the sUAS camera memory 

card to the computer and maintained in separate folders by date and flight height. Image 

file sizes have slight variation, generally ranging from just under 5 MB to 6 MB (See Table 

2). Next, images from the flight were input into Agisoft Metashape Professional (Figure 

20). The first step, photo alignment (Figure 21), is performed with a setting of “high 

quality” and a sparse 3D point cloud is created from the tie points. A dense point cloud 

using “medium quality” and “mild depth filtering” (Figures 22a-d) is then created. “Mild 

depth filtering” is the recommended setting for distinguishing finely detailed features in 

the images, such as plant leaves (Agisoft Metashape 2019). A 3D-tiled model (Figures 23 

a-c, Figure 24) is then created from the dense point cloud, followed by a DEM if the field 

is bare of plants or a DSM once plants are growing. An additional final product is an 

orthomosaic image. The orthomosaic image is valuable because it is the photographs 

stitched together and geometrically corrected. Torres-Sánchez et al. (2014) used the 

orthomosaics to successfully map the vegetation indices of wheat and recommends their 

methods for even small field monitoring. Because distortions have been corrected, it can 

be used to make real world distance measurements. It is also the most visually stunning of 

the produced products and is useful as a promotional tool.  
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Figure 20: sUAS imagery to be input into Agisoft Metashape for processing. 

 

 

Figure 21: Location of sUAS photos and their alignment along flight lines to cover the study area plot at UGArden. 
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a.   b.   

c.    d.  

Figure 22 a-d: 3D dense point cloud from furthest distance (a) to closest (d). 
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a.  

b.  c.  

d.  

Figure 23 a-d: Derived from the 4/16/2019 flight (a) Agisoft Metashape tiled model – images draped over the dense 

point cloud which creates CSM. Magnified view of (b) collards (c) kale (d) cabbage. 
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Figure 24: 3D model of raised bed gardens at Wormsloe CREW. Pepper plants are outlined in red. 
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CHAPTER 4 

RESULTS  

3D Model Processing 

Once sUAS imagery was collected for both sites, I conducted the SfM processing 

to create 3D models of the vegetable crops grown at both research sites. Agisoft Metashape 

Professional software was utilized to process the overlapping imagery captured by the 

sUAS at UGArden and the gardens on the CREW campus. Because SfM processing is 

complex and often requires multiple hours to complete multiple image point matching and 

creation of 3D point clouds, different settings were explored in Agisoft Metashape to 

reduce the processing time. For example, processing for the first set of images was initially 

set to “high accuracy” at the dense cloud processing stage. The program was set to run 

overnight yet had crashed and did not produce a dense cloud. Using all the same parameters 

except setting the accuracy to “medium”, the results were processed in just a few hours and 

provided excellent clarity and detail. An example of the basic settings followed for output 

is featured in Figure 25. During different stages of processing (i.e., the creation of the tiled 

model and DEM), a region can be selected to ignore extraneous images or points to speed 

up the processing. For example, users can select the areas containing just the fields and 

target beds in the dense cloud and exclude features such as surrounding pathways and 

buildings. Unfortunately, this is not able to be done during batch processing. Batch 

processing allows the program to run continuously with the settings pre-selected and 

automatically saving the files after each step. It allows the user to run the program overnight 
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or for long periods of time without any additional input from the user. Imagery from April 

2, 2019 was processed using batch processing and took 2 hours, 34 minutes and 11 seconds. 

When it was processed with only the fields of study selected after the creation of the dense 

cloud, it took 2 hours, 15 minutes and 25 seconds, a decrease of approximately 20 minutes.  

 

 

Figure 25: Example of processing steps and parameters in Agisoft Metashape from April 16, 2019 flight imagery. 

 

Table 5 and Table 6 present the various processing times for the different data sets 

in Agisoft Metashape, showing the variation that can occur for the different amount of 

input images. Fewer input images did not always mean less total time. The image data set 

from 3/19/19 was the fastest processing data set but had more images than data sets for 

4/30/19 and 5/14/19. The most time-consuming step is the creation of the depth maps and 

the dense cloud, which are produced at the same time. This is the step where the software 

is searching for and identifying more matches between the already aligned images to 

reconstruct scene geometry.  
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Table 5: UGArden flight dates with processing time in Agisoft Metashape (time abbreviated as hour:minutes:seconds). 

Date 
Tie Point 

Matching 

Tie Point 

Alignment 

Depth 

Maps 

Dense 

cloud 

3D 

Model 

Tiled 

Model 
DSM 

Ortho- 

mosaic 
Total 

3/19/19 0:8:25 0:1:17  0:58:13  0:4:24  0:0:27 0:20:31  0:0:24 0:5:5  1:37:51 

4/02/19 0:9:52  0:1:9  1:51:0 0:9:22  0:0:17 0:17:22  0:0:14 0:4:55  2:34:11 

4/16/19 0:9:5  0:2:20 1:58:0 0:20:16  0:0:8 0:15:59  0:0:11 0:5:7  2:51:6 

4/30/19 0:7:17  0:1:32 1:48:0 0:9:44  0:0:15 0:14:33  0:0:11 0:4:13  2:25:45 

5/14/19 0:7:32  0:2:37 1:36:0 0:9:46  0:0:12 0:13:13  0:0:9 0:3:58  2:13:27 

 

Table 6: Wormsloe garden imagery with processing time in Agisoft Metashape (time abbreviated as minutes:seconds). 

Date 
Tie Point 

Matching 

Tie Point 

Alignment 

Depth 

Maps 

Dense 

cloud 

3D 

Model 

Tiled 

Model 
DSM 

Ortho- 

mosaic 
Total 

9/10/19 3:53 0:41 25:9 6:47  0:8 12:3 0:5 3:10 52:11 

 
 

Plant Structure Estimation and Validation 

To assess the growth of the crops over the growing season, each CSM was 

subtracted from the DEM to calculate height and monitor the plant growth. To do so, the 

CSM time series must be registered in the x, y and z directions. Due to the lower ability of 

the sUAS inertial measurement unit (IMU) to accurately record true above ground height 

of the sensor during image acquisition, inconsistencies arose in the 3D coordinates of the 

derived 3D cloud points. Although the x, y coordinates were more accurate in the models 

(i.e., in the range of a few cm)  the z or approximate elevation values ranged from a 

perceived above ground level of 71 m at the lowest point for the March 19, 2019 flight to 

175 m at the lowest point for the May 14, 2019 flight. This variation is depicted in Figure 

26. Further actions, therefore, were required to align the datasets, in order to measure crop 

growth.  

The solution to misregistration of the time-series of 3D models involved multiple 

steps. The orthomosaic from the first flight on March 19, 2019 was exported as a .tiff from 

Agisoft Metashape in NAD 83 (2007)/UTM Zone 17N and imported into ArcGIS Pro 
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where the x, y coordinates of the 8 GCPS were recorded in a .txt file. The file consisted of 

four columns containing the point number, the recorded x and y coordinates and the z 

coordinates. All 8 GCP z values were set to 0 in order to georegister the datasets to each 

other in the program QTModeler (Table 7).  

 

 

Figure 26: Models prior to georegistration (presented in QTModeler), illustrating the variation in z values. 
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Table 7: Ground Control Point coordinates and point number used to georegister models. 

GCP  X Y Z 

1 280596.8458 3753830.6678 0 

2 280616.8252 3753840.0230 0 

3 280610.0370 3753821.5330 0 

4 280618.6308 3753821.7654 0 

5 280612.1954 3753799.5401 0 

6 280629.5310 3753793.6315 0 

7 280625.2108 3753771.3139 0 

8 280645.2278 3753780.1539 0 

 

From Agisoft Metashape, the dense point cloud was exported as a .las file and 

imported into QTModeler. Using the georegister model function in QTModeler, each data 

set was georegistered by manually applying the recorded coordinates to the GCPs (see 

Table 7). The Root Mean Square Error (RMSE) after georegistration of the x, y, z 

coordinates of each data set are recorded in Table 8, showing the average offset of the 

different datasets. The z values have a noticeably higher mean, but that is due to the large 

difference in z elevations within the models. 

  

Table 8: Calculated RMSE and mean x, y, z from the 8 GCPs after georegistration in QTModeler. 

Flight 

Date  

Mean X 

(m) 

Mean Y 

(m) 

Mean Z 

(m) 

Roll  

(deg) 

Pitch 

(deg) 

Heading 

(deg) 

RMSE 

(m) 

3/19/2019 1.06         0.40 -74.50 -0.619 -0.581 -0.057 0.164 

4/02/2019 -0.78 -1.71 -142.99 -2.684 1.240 -0.112 0.151 

4/16/2019 -0.12 -1.64 -107.92 -2.114 0.147 -0.211 0.165 

4/30/2019 0.35 -1.46 -106.10 -1.113 -0.436 -0.258 0.276 

5/14/2019 -0.50 -0.57 -177.77 -1.778 1.270 -0.182 0.151 

Mean of 

All Dates 0.002 -0.996 -121.856 -1.6616 0.328 -0.164 0.1814 

 

A bare earth digital elevation model (DEM) can be made by flying imagery and 

creating a 3D model before crops emerge. If that imagery is unable to be captured due to 
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time constraints, an interpolated bare earth DEM may be created using the surrounding 

earth or dense cloud ground points between crops. In the case of this research, the first data 

collection flight on 3/19/2019 contained small seedlings. Since the leaves did not obscure 

the soil, ground points were easily measured and used to compute a bare earth model. As 

all the crops were transplanted, however, measuring the soil after transplanting would 

account for some soil disturbance. The crop surface model (CSM), depicts a continuous 

surface of the tops of the crops and can be used to measure the plant height of the crops 

using the profile analysis tool in QTModeler (Figure 27). In this study, each plant that had 

the field measurements recorded, was marked with a marker denoting the plant number in 

QTModeler (See Figure 27). Next, the profile analysis tool was drawn across each plant 

and the maximum height recorded in Excel. As the profile analysis tool measures the point 

cloud, a buffer was set at .03 m on either side of the drawn line, in order to capture and 

record the highest point of the plant (Figure 28).  
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Figure 27: Example of profile analysis tool (in yellow) in QTModeler, over kale plant 1. 

 

 

 

 

 

 

  

 

 

Calculating the measurements of the same plants from the different dates of CSM 

data sets allows for the quantification of change in plant growth. Subtracting the CSM by 

Figure 28: Example of profile analysis tool output, depicting sample heights in the UGArden datasets. 
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the DEM will give the plant growth, height and a volume estimation (CSM – DEM = Plant 

Height). Subtracting an earlier CSM from a later CSM will also provide the plant growth 

between those two dates.  

Results of Actual Field Measured Heights and Modeled CSM-DEM Plant Heights 

Tables 9-12 depict the four crop types that were validated by hand measurements 

in the field and produced measurable 3D models. Results from the tables show an increase 

in plant height over time. The percent error illustrates how the much the 3D model over- 

or under-estimated the height of the plant compared to the actual field measurements. The 

pepper plants in the raised beds obtained the greatest height and the largest range for both 

the actual heights and those measured within the model. At maturity, cabbage obtained the 

shortest height and smallest range. These two crop types, cabbage and peppers, though 

vastly different in height, growth form and leaf structure, had the two most accurate 

datasets. The pepper plants exhibited a strong linear correlation (R2=.99) and a low average 

percent error (3.4%). The final temporal dataset for cabbage also had a strong linear 

correlation (R2=.61) and a low average percent error (-.08%). During the first two flights, 

before the plants reached maturity, all three crop types at UGArden performed with 

extremely low accuracy (high percent error and low linear correlation). 

Cabbage from 4/30/2019 performed the most accurately out of the temporal 

UGArden models, with strong linear correlation of an R2 of .6129 and an average percent 

error of 0.08% underestimation. This range of error is small - underestimating by 3 cm or 

overestimating by 2.7 cm or -.12 – .15% percent error. In other words, the accuracy of 

estimated height measurements from the 3D models of cabbage were relatively consistent 

once the crop had reached maturity. Interestingly, the maximum height of cabbage never 
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exceeded 23.3 cm in this study, shorter than any of the measured collard and kale plants at 

maturation, yet the accuracy of the measurements from 3D models was lower for collard 

and kale plants. Cabbage has a more homogeneous canopy structure and this may be a 

possible influence on the higher accuracy of the 3D model at maturity. This indicates there 

are multiple factors that affect the accuracy of model measurement beyond plant height. 

The growth form, (i.e., plant structure, leaf types, stem heights….) may also be important. 

The growth form of cabbage is more compact and spherical in shape, with low growing 

broad leaves surrounding the cabbage head. This form appears to be more resistant to 

disturbance by slight breezes. This reduces the chance of image blurring during data 

collection, leading to greater accuracy in SfM point matching and creation of 3D models. 

This differs from collards and kale plants, which grow taller and have leaves that are more 

susceptible to breezes.  

Pepper plants at Wormsloe were the tallest plants observed (all are over 88 cm) and 

had the largest range in actual plant heights (1 m). The model consistently overestimated 

the heights; with an average percent error of +3.41% and a small percent error range of 

+.19 – 7.9% (.17 to 9.9 cm). This plant is taller, denser and of a different growth type than 

the observed brassicas at UGArden. It should be noted that the peppers were observed on 

only one occasion because results from the UGArden study indicated the most accurate 

plant models were obtained later in the growing season when plants had reached their 

maximum heights and densities.  
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Table 9: Collards - actual field measured heights (cm) and model measured heights (cm) according to flight date. 

Date 

Field 

Min 

Ht 

Field 

Max 

Ht 

Field 

Range 

Field 

Mean 

Ht 

Model 

Min 

Ht 

Model 

Max 

Ht 

Model 

Range 

Model 

Mean 

Ht 

RMSE R2 

Avg 

% 

Error 

03/19 4.4 13.0 8.6 10.15 0.9 3.1 2.2 1.71 8.73 0.1253 -82.29 

04/02 11.5 17.3 5.8 14.56 1.6 7 5.4 4.77 9.94 0.1933 -67.37 

04/16 25.4 40.2 14.8 30.44 7.8 19.3 11.5 14.14 16.51 0.5899 -53.76 

04/30 31.2 49.4 18.1 37.88 22 39 17 31.51 7.91 0.2739 -16.52 

05/14 35.7 54.6 19.0 41.72 22.4 42.4 20 33.19 9.48 0.5632 -20.21 

 

Table 10: Kale - actual field measured heights (cm) and model measured heights (cm) according to flight date. 

Date 

Field 

Min 

Ht 

Field 

Max 

Ht 

Field 

Range 

Field 

Mean 

Ht 

Model 

Min 

Ht 

Model 

Max 

Ht 

Model 

Range 

Model 

Mean 

Ht 

RMSE R2 

Avg 

% 

Error 

03/19 8.2 14 5.8 10.99 0.5 2.9 2.4 1.60 9.57 0.0121 -85.24 

04/02 11.7 17.6 5.9 14.53 2.6 8.3 5.7 4.66 10.11 0.0022 -67.58 

04/16 25.6 40.8 15.2 33.05 7.0 26.9 19.9 18.12 15.91 0.0861 -44.94 

04/30 27.2 45.9 18.7 36.49 18.1 40.5 22.4 31.64 7.84 0.3097 -13.28 

05/14 33.2 51.0 17.8 43.1 20 35.6 15.6 26.71 6.61 0.5355 -12.64 

 

Table 11: Cabbage - actual field measured heights (cm) and model measured heights (cm) according to flight date. 

Date 

Field 

Min 

Ht 

Field 

Max 

Ht 

Field 

Range 

Field 

Mean 

Ht 

Model 

Min 

Ht 

Model 

Max 

Ht 

Model 

Range 

Model 

Mean 

Ht 

RMSE R2 

Avg 

% 

Error 

03/19 8.1 11 2.9 9.74 1.2 2.8 1.6 1.81 7.99 0.0003 -81.26 

04/02 9.8 13.4 3.6 11.9 3.6 6.3 2.7 5.12 6.823 0.0829 -56.72 

04/16 15.1 23.6 8.5 20.2 2.7 7.6 4.9 6.38 13.95 0.5128 -68.65 

04/30 15.8 24.3 8.5 21.7 16 23.3 7.3 21.57 1.48 0.6129 -.08 

 

Table 12: Peppers - actual field measured heights (cm) and model measured heights (cm) according to flight date. 

Date 

Field 

Min 

Ht 

Field 

Max 

Ht 

Field 

Range 

Field 

Mean 

Ht 

Model 

Min 

Ht 

Model 

Max 

Ht 

Model 

Range 

Model 

Mean 

Ht 

RMSE R2 

Avg 

% 

Error 

09/10 83.6 179.3 90.7 133.33 88.78 188.80 100.02 138.33 6.5 .9923 3.41 

 

Of the four crop types observed, the final temporal dataset of cabbage at UGArden 

and the pepper plant model at Wormsloe CREW performed the most accurately, with the 

highest linear correlation, R2 = .56 and .99 and lowest percenter error -.08% and 3.4%, 
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respectively (See Tables 11 – 12). Generally, the taller the plant within a specific crop type 

(corresponding to a later growth stage), the higher the accuracy of model heights compared 

to true plant height. The models for kale, cabbage and collards performed differently 

regarding percent error, range of percent error and correlation even if the individual crop 

type models are compared from the same flight date. This indicates multiple variables such 

as the plant structure, height, density, growth form and canopy may affect the software’s 

ability to accurately construct models.  

In Figures (29 - 46) the graphs visualize the linear correlation and R2 of the 

different crop types for the different dates. These correlations illustrate how the heights 

derived from the 3D models compare to the measured heights of the actual plants. The 

3D models came closer to the actual height when the crops were at maturation. The 

highest correlation for collards, kale and cabbage all occur during their final flights or the 

most mature stage of the crop (5/14/2019 for collards and kale and 4/30/2019 for 

cabbage). Pepper plants had the highest correlation of any plant type. Graphs are depicted 

for the individual crop type on the individual date, to be able to compare them over time 

(See Figures 29 – 42). They are also presented on a graph that combines all the flight 

dates and samples for the individual crop type (See Figures 43 – 45). When all flight 

dates are combined for individual crop type, they exhibit stronger correlations for 

collards and kale, but as it is known that the models exhibit low accuracy in early 

temporal series, the results are presented by both individual flight date and by all flight 

dates combined. Pepper plants only had one flight date and therefore do not need to be 

combined (Figure 46).  
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An observed trend is the underestimation of true plant height occurring in the 

temporal UGArden models. All models exhibit complete underestimation in the first three 

times series (3/19/2019 – 4/16/2019) (see Tables 9-11), with collards exhibiting complete 

underestimation in all flights (3/19/2019 – 5/14/2019) (See Figures 29 - 33 and Table 9). 

Overestimation does occur for kale and cabbage, but only in the final times series 

(4/30/2019 for cabbage (See Figure 42) and 5/14/2019 for kale (See Figure 37)). For kale, 

this is a total of five samples ranging from 0.93 to 6.90 cm overestimation or 2.5 – 22.8% 

percent error. Cabbage exhibits overestimation in five samples in 4/30/2019 (the final 

model for cabbage, due to harvesting) ranging from 0.13 to 3 cm or 0.6 – 15.2% percent 

error. It appears that within some crop types, plants at maturation exhibit a mix of over and 

underestimation of true plant height within the 3D models. It should be considered that 

adjacent plants, including those across the row and not measured for validation may be 

taller than the measured sample. At maturity, leaves overlap and may hide a shorter plant.  

The respective residuals are calculated by subtracting the model height from the 

actual height (actual height – model height = residual) and are shown for each flight date 

(See Figures 29 - 42 and Figure 46) and for the combined flight dates (See Figures 43 – 

45). For collards, residuals are high with a large range for the first three flight dates (2.5 

cm – 20 cm). When the collards are at maturity and most of the plants exceed 31 cm in 

height, there is greater variation within the residuals and some fall close to 0. The fourth 

flight shows  6 residuals with values of  < 2 cm (Figures 32b – 33b), but only one sample 

in the final flight has a residual of < 2 cm. Similar to collards, the residuals for kale plants 

for the first three flights have a  large range (5 cm – 28 cm) (Figures 34b – 36b) . The fourth 

flight depicts the kale model performing with higher accuracy as 8 of the samples have 
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residuals of < 4 cm (Figure 37b). The overall range for residuals decreases on the fifth 

flight, when the plant is at peak maturity, with no residual > 10 cm (Figure 38b). While 

both collards and kale show a range containing lower residuals in the final flight, there is 

still a large range for plants over 30 cm. Plants over 30 cm may have residuals of < 2 cm 

but some of the tallest plants have residuals of > 15 cm. 

For cabbage plants, the residuals never exceed 10 cm for the first, second and fourth 

flights (Figures 39b, 40b, 42b). The third flight has the highest residual values of any of 

the cabbage models (Figure 41b), however, this model had previously shown extreme 

underestimation that was not expected. The fourth and final flight for cabbage shows the 

model performing with higher accuracy as no residual value exceeds +/- 3 cm. Pepper 

plants (Figure 46b) show that the residuals for all samples are < 10 cm. Since 4 out of the 

5 actual height samples exceed 1 m in height, 10 cm is a relatively low residual.  

When the residuals are combined for all flight dates (Figures 43b – 45b), the 

inconsistent pattern of residuals is shown. For collards and kale, residuals are consistently 

high prior to approximately 30 cm in actual plant height. After a plant is 30 cm or greater 

in height, residual values are a mix of low and high values. For cabbage, there is no 

consistent pattern when the flight dates are combined, due to the similar actual heights of 

the final two flight dates, but large variation of residuals between those two flight dates.  
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Results of Modeled vs. Actual Plant Heights by Individual Flight Date for Collards 

a.  

b.  

Figure 29 a-b: (a) Linear regression of modeled height to actual height of collards and (b) the respective 

residuals (3/19/2019). 

 

 

0

2

4

6

8

10

12

4
.4 5

7
.4

7
.9

8
.5

9
.2 1
0

1
0

.2

1
0

.2 1
1

1
1

.1

1
1

.1

1
1

.6

1
1

.6

1
1

.8

1
1

.9

1
2

.1

1
2

.4

1
2

.6 1
3

R
e

si
d

u
al

s 
(c

m
)

Actual Height (cm)

Collards: March 19, 2019



 

79 

a.  

b.  

Figure 30 a-b: (a) Linear regression of modeled height to actual height of collards and (b) the respective 

residuals (04/02/2019). 
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a.  

b.  

Figure 31 a-b: (a) Linear regression of modeled height to actual height of collards and (b) the respective 

residuals (4/16/2019). 
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a.  

b.  

Figure 32 a-b: (a) Linear regression of modeled height to actual height of collards and (b) the respective 

residuals (4/30/2019). 
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a.  

b.  

Figure 33 a-b: (a) Linear regression of modeled height to actual height of collards and (b) the respective 

residuals (5/14/2019). 
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Results of Modeled vs. Actual Plant Heights by Individual Flight Date for Kale 

a.  

b.  

Figure 34 a-b: (a) Linear regression of modeled height to actual height of kale and (b) the respective residuals 

(3/19/2019). 
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a.  

b.  

Figure 35 a-b: (a) Linear regression of modeled height to actual height of kale and (b) the respective residuals 

(04/02/2019). 
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a.  

b.  

Figure 36 a-b: (a) Linear regression of modeled height to actual height of kale and (b) the respective residuals 

(4/16/2019). 
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a.  

b.  

Figure 37 a-b: (a) Linear regression of modeled height to actual height of kale and (b) the respective residuals 

(4/30/2019). 
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a.  

b.  

Figure 38 a-b: (a) Linear regression of modeled height to actual height of kale and (b) the respective 

residuals (5/14/2019). 
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Results of Modeled vs. Actual Plant Heights by Individual Flight Date for Cabbage 

a.  

b.  

Figure 39 a-b: (a) Linear regression of modeled height to actual height of cabbage and (b) the respective 

residuals (3/19/2019). 
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a.  

b.  

Figure 40 a-b: (a) Linear regression of modeled height to actual height of cabbage and (b) the respective 

residuals (4/02/2019). 
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a.  

b.  

Figure 41 a-b: (a) Linear regression of modeled height to actual height of cabbage and (b) the respective 

residuals (4/16/2019). 
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a.  

b.  

Figure 42 a-b: (a) Linear regression of modeled height to actual height of cabbage and (b) the respective 

residuals (4/30/2019). 
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Results of Modeled vs. Actual Plant Heights for All Flight Dates Combined 

a.  

b.  

Figure 43 a-b: (a) Linear regression of modeled height to actual height of collards and (b) the respective 

residuals for all flight dates combined. 
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a.  

b.  

Figure 44 a-b: (a) Linear regression of modeled height to actual height of kale and (b) the respective residuals 

for all flight dates combined. 
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a.  

b.  

Figure 45 a-b: (a) Linear regression of modeled height to actual height of cabbage and (b) the respective 

residuals for all flight dates combined. 
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Results of Modeled vs. Actual Plant Heights by Individual Flight Date for Peppers 

a.  

b.  

Figure 46 a-b: (a) Linear regression of modeled height to actual height of peppers and (b) the respective 

residuals (9/10/2019). 
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the percent error ranges from 50-95% (Figure 47 and Figure 48). The 3D models did not 

accurately reconstruct the height for these crop shapes below a certain height, yet there was 

still a percent error range of 33 and 26 when collards and kale were at full growth (i.e., all 

plants over 33 cm in height on 5/14/2019). Cabbage had similar high percent errors for the 

first two flights (ranging from 47-88%) (Figure 49). The third flight for cabbage saw an 

increased percent error (60% or higher) but had a smaller range of 19 cm. This appears as 

a distinctive cluster on the graph, sitting well below the linear regression line. The final 

flight for cabbage had the lowest percent error of any crop with an average percent error of 

.08% and this is also a distinct cluster on Figure 49 (clustered above the linear regression 

line). The pepper plants (Figure 50) have a range of <1% to 9% and an average percent 

error of 3%.  

 

 

Figure 47: The percent error of the model as compared to actual plant height for all flight dates combined for collards. 
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Figure 48: The percent error of the model as compared to actual plant height for all flight dates combined for kale. 

 

 

 

Figure 49: The percent error of the model as compared to actual plant height for all flight dates combined for cabbage. 
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Figure 50: The percent error of the model as compared to actual plant height for pepper plants. 

 

 In the combined Figure depicted in Appendix A, the graphs of modeled vs. actual 
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intermediate growth of the plants. During the second flight, the various leaf textures of the 

different crop types are more apparent, and some soil is still visible between plants. The 

third flight saw plants grow taller and become leafier. The fourth flight (4/30/2019) and 

the fifth and final flight (5/14/2019) captured the collard and kale plants at maturity. Some 

growth is seen between the fourth and fifth flight in collards and kale, but on average there 

was only a few cm of plant growth. The fourth flight captured cabbage at maturity while 

the fifth flight recorded the post-harvest of cabbage. Partial harvesting of a few leaves of 

collards and kale began just prior to the 4/30/2019 flight and continued until 5/27/2019, 

when the complete harvest of the kale and collards occurred. No data were collected for 

the post-harvest of collards and kale due to the high density of weeds in the garden beds 

upon their harvest. This was assessed during the final field visit which occurred on 

5/27/2019. In Figure 51, when ground images were not able to be retrieved, a note was 

added to indicate “Image Unavailable.”  
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CABBAGE (c)   
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Figure 51: Actual image, tiled model and dense point cloud for all crop types, (a) collards, (b) kale and (c) 

cabbage at UGArden arranged by flight date. 
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Okra at the Wormsloe CREW garden did not produce results of adequate quality 

for analysis in this study due to its very thin growth form and sparse canopy. The SfM 

algorithm was not able to accurately detect okra as a separate feature or determine tie points 

during processing. As seen in Figure 52, okra plants were not reconstructed in the created 

3D model. 

 

 

 

 

 

 

 

 

 

   

Each set of field plot/garden sUAS imagery acquired at different dates created an 

individual data set that was processed as a separate CSM for each crop. The time series of 

3D models and CSMs can be used to create a geovisualization of changes in the gardens 

over time. This deliverable product of an animation of growing plants created from the 

temporal models, can be used as a teaching tool showing the growth, senesce and 

decimation of the individual fields.  

 

  

Figure 52: Created 3D model of Wormsloe CREW okra garden. Red circles denote approximate location of where okra 

should have been. 
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CHAPTER 5 

DISCUSSION 

Overall, the results from this study indicate a low-cost monitoring system was 

successfully developed for small landholder farms and community gardens approximately 

4 ha in size using readily available sUAS equipment and photogrammetric software. The 

integrated system can be used to assess plant structure in terms of plant heights and rates 

of crop growth that can be used to estimate yield and plant biomass harvested, damaged or 

destroyed by extreme weather events, insects or grazing. Results also show there are 

optimal crop conditions needed to obtain plant height measurements from 3D models 

derived from remotely sensed sUAS images to accuracies in the range of 2 to 4 cm as 

compared to hand measurements of plant heights in the fields at different stages of crop 

growth.  

For example, based on the results at UGArden, attempts to measure plants in the 

first stages of growth are not recommended. Though the earliest 3D models created from 

sUAS images acquired in the early spring were able to be used to detect subtle changes in 

the plant heights from the seedlings separated from the surrounding soil, the 

underestimation of the seedling heights was so extreme that the average percent error 

exceeded 80% for all plants on 3/19/2019. There was a slight decrease in average percent 

error in 4/02/2019, with average percent errors in the range of 55-68%. Even if modeled 

plant heights were not accurate, it was hoped the results would exhibit a pattern or trend 

that could be applied in order to better estimate plant heights from the CSM-DEM model 



 

105 

measurements. In other words, if modeled plant heights consistently underestimated actual 

heights by 10%, then actual plant heights could easily be calculated by increasing heights 

derived from the 3D models by 10%. Unfortunately, even models that seem to perform 

well such as kale from 5/14/2019, with a R2 = .53 and average percent error of 12.6%, there 

was a range of 26 in percent error, from -20.6% to +5.5% of under- and over-estimation, 

respectively. This is a variation of up to 9.4 cm. With such a large range in error, the 

uncertainty of calculating crop heights of collards and kale, even in the later stages of 

growth, must be considered.  

Issues with Processing, Intermediary Steps and Georegistering 

Five dates of sUAS flights were selected to be included for the analysis of UGArden 

crop structure, based on the consistent use of the same flight altitudes, sUAS equipment, 

camera quality and the inclusion of established GCPs. Three previous experimental flights 

tested lower sUAS flying heights, however SfM processing of the sUAS imagery generated 

extremely high volumes of 3D point cloud data and required excessive processing times 

(e.g., a single flight date collected over 800 images). A different flight app (Pix4D) was 

initially used for some of the experimental flights, but later, Map Pilot was found to have 

a more user-friendly interface. These initial, experimental flights also did not contain the 

permanent ground control points, as those were installed after the first three sUAS flights 

due to recommendations by Dr. Thomas Jordan and by examples of other experiments. 

Visual inspection of models from the earlier flights at lower altitudes on the order of 10-

15 m showed the increase in image detail did not add to the quality of the SfM products. It 

was, therefore, deemed a worth-while trade-off to fly the sUAS at a higher altitude, increase 

the image pixel size from less than one cm to about 2-3 cm and decrease the data volume 
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and processing time. The flight parameters were thus established and used to consistently 

fly the next five flights. The resulting imagery from these five flights was used for SfM 

analysis and the creation of 3D point clouds to derive DEM, CSM and plant heights from 

profiles. 

After SfM processing of sUAS image data sets with the same settings in Agisoft 

Metashape Professional, the most time-consuming step was consistently the combined 

construction of the depth maps and dense point clouds (i.e., ranging from 1 hour and 2 

minutes to 2 hours and 18 minutes), while the shortest step was the construction of the 

DSM (taking < 1 minute to create) (See Table 5).  

 One issue potentially effecting the accuracy of plant heights measured from 3D 

models was the georectification of the datasets. The average errors show that the data sets 

do not align exactly even in the X, Y direction, with the mean georegistration error for all 

datasets being .002 m in the X direction and -.996 m in the Y direction. The Z elevations 

had the highest mean error (-122.9 m) (See Table 8), which is to be expected since 

georegistration was necessary due to vast differences in z values (See Figure 26). But it 

would have been extremely hard to attempt any type of alignment without established 

GCPs. Turner et al. (2012) reported higher accuracy when using GCPs, by comparing 3D 

models of landscapes constructed with and without the use of GCPS. Many studies such as 

Bendig et al. (2014 and 2015) and Chang et al. (2017) did use high accuracy RTK GPS to 

georectify their resulting 3D models. However, due to the high-cost of RTK-grade GPS 

equipment on the order of $15,000 to $30,000, this was not considered in this study as 

feasible or accessible for a small landholder farmer to do so. In the georectification process, 

the Z values for many of the crops were on a negative scale (i.e., measuring a -.3 m) (Figure 
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53) due to setting the GCPs at 0 – some Z values then were measured as negative values if 

the micro-terrain dipped below the arbitrarily set elevation datum of zero. As this creates a 

local coordinate system, z values measure relative plant heights for these fields alone and 

can be compared to one another.  

 

Figure 53: Crop height profile, depicting negative height values in QTModeler. 

 

Comparison of Results to Similar Studies 

My study appears to be unique in its accuracy assessment of the agricultural crops 

of collards, kale and peppers using the combined geospatial technologies of SfM model 

construction by sUAS-collected imagery to assess crop model heights. Although there are 

previous publications describing temporal agricultural crop monitoring studies using 

similar techniques, equipment and software, these are mostly limited to grain crops such 

as barley (Bendig et al. 2014, 2015), wheat (Holman et al. 2016) and maize (Chu et al. 

2018, Malambo et al. 2018). Studies which focus on vegetable crops or examine how crop 
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growth forms influence accuracy are almost nonexistent. One study on vegetable crops 

does assess cabbage, tomato and eggplant (Moeckel et al. 2018); a second assesses Chinese 

cabbage and white radish (Kim et al. 2018). Since cabbage is one plant evaluated in this 

study, I will discuss my results as compared to those studies in more detail below. 

Bendig et al. (2014) used UAS-acquired imagery and Agisoft Photoscan (a 

precursor to the Metashape software version used in this study) to construct temporal 3D 

models of barely; a tall, thin grain crop with a homogeneous canopy. Their findings showed 

a strong correlation (R2 = .92) between model heights and true plant heights when all flight 

dates were combined. Interestingly, Bendig et al. (2014) did not present the correlation of 

modeled plant heights to hand-measured heights as data separated by individual flight 

dates. In this study, results were presented both ways, by individual flight date and 

combined for all flight dates. When flight dates for collards or kale are combined, the R2 

increased to .88 and .85, respectively. The individual temporal datasets, however, had 

lower correlations, ranging from a low of .125 for collards and .002 for kale. It may be 

beneficial for studies to separate out the individual flight dates for additional assessment 

of the importance of plant maturity on the success of UAS image-based SfM processing 

and derived products from 3D point clouds. Examining both data from individual dates and 

all combined dates, shows a broader picture of how crop phenology influences model 

accuracy, through changes in plant physiology, density and height over the crop’s life span.  

Results presented here present evidence that multiple variables influence the 

accuracy of plant structure measurements from 3D crop models, both between different 

crop types and within the same crop type during different points of its growth stage. Here 
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the different variables of plant height, crop canopy, plant/fruit color and flying conditions 

(wind, cloud cover) are addressed separately. 

Plant Height 

 Grenzdörffer (2014) similarly found, crop heights in the early developmental stages 

are difficult to determine, because the plants are generally short and small. The minimum 

determinable height in that study was found to range between 5 - 15 cm. In the case of the 

UGArden in this study, the transplanted seedlings of measured crops (except for a few 

samples in collards) all exceeded 5 cm in height by the time of the first sUAS flight in 

March 2019. Although the SfM models were able to detect elevation changes, plant heights 

measured from the CSMs largely underestimated the actual heights. The model performed 

best with crops of a lower height with a compact growth form such as cabbage, over kale 

and collards, showing that height, as previously stated, is only one of the contributing 

variables. This is also exhibited through the results of the okra at Wormsloe CREW. The 

okra was very tall but did not reconstruct in the models due to its sparse canopy and growth 

form and thin, flexible leaves. 

Wind and Clouds 

Grenzdörffer (2014) also notes several concerns about the weather conditions when 

acquiring sUAS images for SfM, that are potentially applicable to this study. For example, 

it cannot be guaranteed that plant leaves and stems will not move during sUAS data 

collection due to any ambient or sUAS-induced wind from the rotor blades. Movement of 

plant leaves during the sUAS flight and image acquisition decreases the accuracy of 3D 

model reconstruction due to unmatchable features in overlapping imagery – a requirement 

during the first stages of SfM. Grenzdörffer (2014) notes, “even a little wind is enough to 
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cause problems.” Though precautions were taken for quality assurance by limiting flight 

days to low-wind conditions (including an instance of rescheduling, after arrival on site), 

light breezes can occur. Due to the physiology of kale and collards, especially at maturity, 

their long leaves are disturbed more by wind than the solid sphere of a cabbage head. 

Perhaps this is reflected in the high accuracy and low percent error of the final cabbage 

dataset, as compared to that of collards and kale. It should be noted that the UGArden fields 

are in a more open and exposed area, with forest wind break only on one side. The 

Wormsloe CREW site containing the raised-bed garden growing peppers, was a smaller 

area and closely surrounded by buildings (cabins and a garden shed), trees and other tall 

plants within the garden that better protected the garden from breezes. In addition to 

ambient wind, the sUAS operator must also monitor the down-draft wind created by the 

quadcopter rotor blades. If the flying altitude is too low relative to the crop plant height 

(e.g., approximately 5 to 10 m), wind generated by the sUAS will excessively move the 

plant leaves and stems. In this case, the sUAS must be flown higher at approximately 20 

m. 

Crop Canopy Structure 

One previous study states crop model height is best determined if the canopy or 

crop surface is homogenous, dense and smooth (Grenzdörffer 2014). Results in my 

research similarly showed canopy structures that are sparse (such as early in the season) or 

with peaks marking the highest points of individual plants (such as the long leaves of kale 

and collards, specifically at maturity), will create 3D models that underestimate the true 

heights. High plant density is associated with later growth stages, as the plant grows and 

spreads out. My models generally performed with higher accuracy and stronger correlation 
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later in the season when the plants were taller, denser and the biomass or leaves obscured 

the ground. In later flights, collards and kale grew denser and obscured more of the ground, 

which hypothetically should increase the accuracy of 3D model measurements of plant 

structure. Correlation strength and plant height accuracy increased, but not as high as hoped 

compared to other vegetable studies (Moeckel et al. 2018, Kim et al 2018). This could be 

due to the wide variation in leaf heights. For example, the height range for collards and 

kale on the final flight were 19 cm and 17.8 cm, respectively. Possibly, the advantages of 

high plant density may be outweighed by disadvantages caused by the varying heights of 

the individual plants. The tallest leaves (and highest points measured) faced the greatest 

exposure to any breeze, as they extended above the majority of leaves of particular plants. 

The measured models underestimated every single sample height of the collards and all but 

five of the kale sample plants. The tips of individual kale leaves are only a few cm wide 

and may be hard for the software algorithm to identify and reconstruct, especially with a 

breeze. Comparatively, cabbage is solid and dense and obscured the ground on the final 

flight. It has a more homogenous height with a range of only 8.5 cm. This flight performed 

the best with the highest correlation and lowest percent error of any temporal model. 

Clearly, from my results, shorter plants that sparsely cover the ground do not produce 

accurate plant structure measurements from the 3D models of crops for all early growth 

stages.  

Multiple variables, therefore, impact crop models including, the various growth 

forms, density or sparsity, height, homogeneity or heterogeneity of canopy. For example, 

cabbage, while still at a shorter height, performs better than the taller collards and kale. 

Cabbage, on its final dataset, has an R2 correlation of .61 and average percent error of  
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-.08%. Yet, the kale and collards that are over 20 cm taller than the cabbage do not achieve 

this level of accuracy, even within their highest correlated datasets. Pepper plants 

performed very well (R2 =.99 and average percent error 4%) and were by far the tallest 

plant. Interestingly, they also had the largest variability in height (1 m), which supports the 

theory that different variables affect different plants to greater degrees. Pepper plant 

structure is different than the other four crop types. It is somewhat shrub like in structure 

and densely covered in small-sized leaves. It is one of two plant types observed in this 

study to have a color, texture and shape contrast of smooth, bright red fruits amidst the 

green leaves. This contrast may help with tie point recognition and 3D point cloud 

reconstruction. The canopy of the okra at Wormsloe CREW was extremely sparse, and 

even though it was tall and had a few okra fruits of contrasting shape and texture, the 3D 

models were not able to reconstruct the okra plants, even though they were able to 

reconstruct the garden bed itself. For okra, the extreme sparsity of its canopy may have 

outweighed the benefits of height and fruit contrast during reconstruction.  

Underestimation of Plant Heights 

A reoccurring theme is underestimation in the 3D model-measured plant heights, 

seen in my temporal studies and in other studies of grain crops such as barley (Bendig et 

al. 2014), maize, wheat (Grenzdörffer 2014) of white radish and Chinese cabbage (Kim et 

al. 2018) and predictive models of cabbage, tomatoes and eggplant (Moeckel et al. 2018). 

Of note, the 3D models of pepper plants consistently overestimated plant heights, which 

further research would need to be done to understand why. Hypothetically, it would be 

better to underestimate what exists than overestimate if it came to predicting yield or 

harvest. If yield overestimation occurs, issues may arise concerning planned monetary 



 

113 

budgets or insufficient food to feed people based on yield predictions. If models were used 

for insurance purposes, then the reverse would be true; underestimating a loss would result 

in undervalue in monetary payment.  

 The multi-temporal vegetable crop studies in the literature tended to report higher 

R2 correlations than my temporal studies. For those that included cabbage in their 

experiments, cabbage was the vegetable that had the strongest correlation of actual and 

predicted plant heights This is also seen in my study, specifically, the final assessment of 

cabbage when it has achieved its full height and density on 4/30/2019.  Kim et al. (2018) 

reported Chinese cabbage had an R2 of .95. It is worth mentioning that Chinese cabbage is 

a different species (Brassica rapa). It grows taller, with an elongated and oval growth form 

and has a color contrast of green and white as compared to the standard supermarket 

cabbage (Brassica oleracea), the cabbage examined in my study. Moeckel et al. (2018), 

while using a SfM- based prediction model, again had the highest correlation with cabbage 

with R2 = .97 and the other vegetables eggplant (.93) and tomato (.89). My cabbage model 

did contain the lowest percent error and the highest correlation out of my temporal models 

but still had a lower correlation when compared to other studies. Although, the sUAS in a 

study conducted by Moeckel et al. (2018) was flown at approximately the same height 

(20m/65 ft), used the immediate predecessor (DJI Phantom 3 Pro) to my sUAS and an older 

version of the same modeling software used in my study used, it was a predictive study. 

These factors, plus human error in validation measurements, could account for some of the 

differences.   

 Vegetables in other studies that performed accurately (Kim et al. 2018, Moeckel et 

al. 2018) and the pepper plants I had in my study all have fruit with of contrasting color 
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and texture with the plant leaves and stems. The peppers were bright red and had a waxy, 

smooth texture and different shape compared to the rest of the plant. This would also be 

the same for fruited plants such as eggplant and tomato, with a different shape, texture and 

color standing out amongst the plant. It may be possible that these fruits help differentiate 

and create feature matches during SfM reconstruction.  

Limitations 

As previously noted, there were limitations to this work. Working with live 

vegetation can always pose problems and be a limitation for measurements, including 

possible human error in the actual measuring or recording of hand measurements of plant 

heights in the field. Possible breezes may have affected the accuracy of plant heights from 

3D models, or the ability for the SfM algorithm to find sufficient or accurate tie points for 

the highest points or peaks of the plants. Unlike previous studies, my study did not 

incorporate the use of RTK GPS, which possibly could have helped with issues that 

occurred during georectification. For farmers who want to implement monitoring systems, 

there will be an initial financial investment and a learning curve and since some of these 

models have large ranges of percent error and underestimation, it may not be an appropriate 

monitoring system for everyone at this point in time  – especially since it does not appear 

that enough crop types have been tried out.  

Further limitations pertain to the sUAS itself – most low-cost sUAS systems cannot 

operate correctly if they are flown when the ambient temperatures are too high (40 Co). In 

the Coastal Plain of the southeastern U.S. and even into the upland Piedmont regions, most 

crops grow during the summer and temperatures may exceed 40 Co during the day. At this 

point malfunctions may happen during the flight - the controller screen may go gray or the 
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connection of the controller may be severed with the sUAS. This would be a potentially 

dangerous and costly situation if the sUAS crashes into something or plummets to the 

ground and breaks. Extreme heat occurs usually around mid-day but flying during early 

morning or evening has the issue of low sun angles which can cause shadows and decrease 

the accuracy of SfM modeling. Another possible perceived limitation of my study was the 

use of non-destructive sampling. Some studies use destructive sampling, which could allow 

for a better record of plant height to be taken (i.e. photographs for plant and height laid out 

on a ruler to be referenced or the ability to calculate biomass). Non-destructive sampling 

was chosen to follow the growth of the same individual plants throughout the course of the 

study. UGArden is also a working farm and I would not be allowed to do destructive 

sampling. The peppers at Wormsloe were grown to maturity for seed saving purposes; 

destructive harvesting would also have been impossible there.     
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

In summary, I explored and analyzed several combined geospatial techniques to 

attempt to make precision agriculture more accessible to fine-scale farms and community 

gardens, in hopes of assisting with local and sustainable crop monitoring.  The first 

objective was to assess combined geospatial techniques appropriate for small landholder 

farmers. This was done through the use of Structure from Motion (SfM)-derived 3D models 

from sUAS-collected imagery and calculated model heights, as compared to the actual field 

heights of the crops. A large part of this was a temporal study conducted at UGArden in 

order to determine the most efficient methods to collect and store data. Since UGArden 

was in close proximity to the UGA campus, it made a bi-weekly temporal study feasible. 

These results also allowed me to fine tune my skills and methods in order to achieve my 

second objective, the application of these refined geospatial techniques to a farm 

(Wormsloe CREW) located on the Coastal Plain of Georgia. Several varieties of crops at 

both sites were examined in order to see how factors, such as growth form, height, canopy 

coverage, leaf structure and other aspects of plant physiology, may influence the accuracy 

of the measurements derived from 3D models, thus achieving my third objective.    

Crops that performed with the highest accuracy in the 3D models vs. the actual 

plant height were those at maturity with dense canopies. This includes the pepper plants at 

Wormsloe CREW (R2 = .99 and average percent error 4%) and cabbage at UGArden just 

prior to harvest (R2 = .61 and average percent error -.08%). Multiple factors influence the 
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accuracy of the created 3D models. While height is a factor in low percent error and a 

higher correlation, other factors can outweigh it. For example, okra, the tallest plant 

observed, was 1 – 2 m in height and imaged at maturity yet had a very sparse canopy. The 

created 3D model was not able to reconstruct any of the okra plants, only reconstructing 

the garden bed. 

Crops that had not reached maturity, such as the seedling of collards, kale and 

cabbage at UGArden had very low correlations (R2 = <.2) and very high percent error (over 

70%). This seems to be a combination of short height and sparse canopy, because as these 

crops grew taller and denser, generally the correlations became stronger and had a lower 

percent error. Cabbage, which has a homogenous canopy, had a stronger correlation and 

lower percent error. Collards and kale, even when the correlation was stronger and had a 

lower percent error, still had a large range within the percent error, likely due to the large 

range in actual plant height and the high peaks the leaves of the collards and kale exhibit. 

The leaf peaks may make it hard for the SfM algorithm to feature match especially as this 

type of growth form is susceptible to movement during light breezes which causes image 

blurring.  

There are other factors that may have influenced the accuracy of the models. This 

includes errors incurred during the field measurements to validate the actual plant height. 

Errors may have occurred while measuring the plant itself or while recording or 

transferring the height values to the computer software. A significant concern is the errors 

that may have occurred during georegistration of the temporal datasets at UGArdens. As 

previously stated, the Z values for ground control points in each dataset were set to 0, but 

even a misalignment of a few cm would significantly affect accuracy, as the monitored 
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plants at UGArdens never exceed 55 cm in height. The bare earth model or DEM may also 

contribute to errors. The DEM is created from the height of the soil from the first flight and 

it is not unreasonable to speculate that the soil settled or has undergone micro erosion 

throughout the season. Again, even if the DEM changed by only a few cm, this error 

relative to the plant heights could contribute significantly to the accuracy of the created 

models.  

Other factors such as data storage and organization must be considered when 

implementing these methods. The heights of the sUAS flights and resulting image 

resolution affects not only the volumes of data, but also the resolution and the accuracy of 

reconstructed 3D models. Flying too low may disturb plants in terms of leaf and stalk 

movement in the wind generated by the sUAS propellers and also generate large volumes 

of data. On the other hand, flying too high in order to reduce data volume, and therefore 

processing time, may not result in imagery of an adequately small pixel size (i.e., spatial 

resolution) that can accurately reconstruct 3D models for monitoring purposes.  

Currently, monitoring crop growth requires an initial investment in equipment and 

software and there is a learning curve on how to use the equipment and software. Initially, 

the intent was to create an educational tool for small landholder farmers and community 

garden managers to autonomously monitor their crops and fields. After this study was 

completed, it was realized that a number of factors including the cost of multiple software 

licenses, specialized equipment and a relatively steep learning curve as more software 

programs were needed, may preclude the wide use of these techniques by small landowner 

farmers. Alternatively, the methodology described here may be most appealing and useful 

to small businesses that provide remote sensing services to the owners and managers of 
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small area farms and outreach services such as agricultural extension agencies. These 

techniques may still be appealing to individual farm owners who have an interest in 

learning new technologies and skill sets. Regardless of the type of users, these accessible 

techniques for acquiring, processing and analyzing imagery and 3D models of crops are 

still deemed to be valuable for monitoring crop growth and assessing damages in small 

area farms and community gardens. 

Further Research 

As these combined geospatial technologies have improved and decreased in cost, 

they have opened up the accessibility of specialized geospatial techniques to the broader 

public. Further research and repeated experiments, however, must be done before they can 

be truly accessible and widely usable. More vegetable crops will need to be examined to 

see how each of the variables influence the creation of accurate 3D models of crops at 

different times in their life cycle. Studies on other crops such as lettuces, squashes, 

asparagus, cauliflower, and a multitude of others, will need to be carefully conducted and 

examined in terms of their physiological differences. Only then, will these techniques 

become sufficiently accurate for the majority of farmers to feel confident in their use. Other 

options should be explored in order to accurately register, or align, Z-values in different 

temporal datasets. Other sUAS models should be explored. Indeed, new sUAS equipment 

has been released since the inception of this study. Additionally, there are other SfM 

software programs that may be explored, some open source and free and some requiring 

purchase or subscriptions. Time and repeated effort will ensure that the best geospatial 

techniques, practices and guidelines will be available for fine-scale farmers.  
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 In conclusion, this study is important as it is a little explored aspect of precision 

agriculture, especially as it focuses on vegetable crops and fine-scale farming. Due to 

limitations in technology, precision farming for small landholder farmers and managers of 

community gardens has not received adequate attention until recently. Climate change, 

mass population increases, interruptions of food delivery systems and outdated or 

inefficient farming techniques will continue to contribute to local and global food 

insecurity and potential starvation. While these combined geospatial monitoring techniques 

may not have the accuracy or consistency for all crop types, it is a starting point. Results 

show that multiple factors contribute to the accuracy of model heights as compared to true 

plant heights. Further studies will need to be performed to better understand factors 

affecting the accuracy of derived 3D models of different crops and determine which crops 

may benefit most from these techniques. 
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