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ABSTRACT
Catfish farming is the largest segment in the US aquaculture business and among other
topics, the implementation of genomic selection has been recently investigated. Using genomic
information improved predictive ability by 28% for harvest weight and up to 36% for carcass traits
compared to traditional evaluation. This demonstrates the benefit of genomic selection for the US
catfish breeding program. Such improvements have made the use of genomic information widely
adopted across many livestock and aquaculture species. With this rapid adoption, the number of
genotyped animals has been steadily increasing, especially in the US dairy and beef industries.
With a large number of genotyped animals, genomic evaluations may be challenging and indirect
predictions (IP) can be a useful tool providing fast interim evaluations for young genotyped
animals. Further, IP can be used as genomic prediction for unregistered animals not included in
official evaluations. When genomic best linear unbiased prediction (GBLUP) or single-step
GBLUP (ssGBLUP) are the methods of choice for genomic evaluations, IP can be obtained based
on single nucleotide polymorphism (SNP) effects that are backsolved using genomically estimated
breeding values (GEBV). With large number of genotyped animals, IP can be reliably obtained

from (ss)GBLUP either by using direct inversion of G or by using the algorithm for proven and



young (APY), as long as GEBV are from a previous (ss)GBLUP evaluation. Further, in purebred
beef cattle populations, a sample of at least 15,000 animals representing the whole genotyped
population may also provide reliable SNP effects and IP. To make use of IP, it is important that its
accuracy is comparable to the GEBV accuracy. Under (ss)GBLUP, IP accuracy can be obtained
by backsolving prediction error covariance (PEC) of GEBV into PEC of SNP effects. The
computational cost of PEC computations is prohibitive with large number of animals and using a
subset of animals to approximate it is desirable for large scale evaluations. It is possible to reduce
the number of genotyped animals in PEC computations, but accuracies may be underestimated and

fine tuning is still required to scale accuracies of indirect predictions up to accuracies of GEBV.

INDEX WORDS:  ssGBLUP, predictive ability, interim evaluations, accuracy



IMPLEMENTATION OF GENOMIC SELECTION FOR CHANNEL CATFISH AND

INDIRECT PREDICTIONS FOR LARGE SCALE GENOMIC EVALUATIONS

by

ANDRE LUIZ SECCATTO GARCIA
B.S., Universidade Estadual de Maring4, Brazil, 2014

M.S., Universidade Estadual de Maringa, Brazil, 2016

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2020



© 2020
André Luiz Seccatto Garcia

All Rights Reserved



IMPLEMENTATION OF GENOMIC SELECTION FOR CHANNEL CATFISH AND

INDIRECT PREDICTIONS FOR LARGE SCALE GENOMIC EVALUATIONS

by

ANDRE LUIZ SECCATTO GARCIA

Major Professor: Daniela Loureco

Committee: Ignacy Misztal
Romdhane Rekaya
Brian Bosworth

Electronic Version Approved:

Ron Walcott

Interim Dean of the Graduate School
The University of Georgia

May 2020



DEDICATION

To Carlos, Natalina, Eduardo and Geovana.



ACKNOWLEDGEMENTS

I would like to thank Dr. Daniela Lourenco for accepting me as a student and for giving
me so many opportunities. It has been a great learning process (as she would put it) and I am very
grateful for all the teaching moments and discussions. | also would like to thank my other
committee members, Dr. Ignacy Misztal, Dr. Romdhane Rekaya and Dr. Brian Bosworth for all
their assistance in classes, research, writing and field experience.

| would like to thank Dr. Brian Bosworth and the USDA WARU team as well as Dr.
Stephen Miller and the AGI team for the internship opportunities. Those were great experiences,
very important for my professional development.

| appreciate all the informal classes from Dr. Shogo Tsuruta and Dr. Yutaka Masuda, as
well as the many discussions about computers, coffee and animal breeding in general.

To not forget anyone, | want to thank all professors, postdocs, visitors, students and staff |
have interacted with.

Last but not least | would like to thank my family and friends for supporting me throughout

this journey and a special thank you to my girlfriend for all the support and patience.



TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ...t nnn e %
LIST OF TABLES. ...ttt e e e viii
LIST OF FIGURES ...ttt ettt ne e ne e X
CHAPTER
1 INTRODUCTION AND LITERATURE REVIEW ..o 1
Genomic Information in Genetic Evaluations ............ccccoeiiineieiiiiciccce, 1
Genomic Selection in Aquaculture Breeding Programs............cccocveveevvesvenesnennnnn 4
Large Scale Genomic EValuations...........ccccoveiieii e 5
ACCUracy OF PrediCtiONS .......c.ccviiieiicic e 8
RETEIBNCES ... 10
2 DEVELOPMENT OF GENOMIC PREDICTIONS FOR HARVEST AND
CARCASS WEIGHT IN CHANNEL CATFISH ..o 19
ADSEFACT ... 20
INEFOTUCTION ...t 21
Materials and MEthOTS..........ccveiiiiiieiic e 22
RESUILS AN DISCUSSION ...ttt 32
CONCIUSIONS ...t 39
RETEIENCES ... 40

Vi



3 INDIRECT PREDICTIONS WITH A LARGE NUMBER OF GENOTYPED

ANIMALS USING THE ALGORITHM FOR PROVEN AND YOUNG ................. 53
AADSITACT ... 54
INEFOTUCTION ...t 55
Materials and MEthOGS..........ccveiiiiiei e 57
RESUILS AN DISCUSSION ...ttt 62
CONCIUSTONS ...ttt 69
RETEIEINCES ...t 70

4 GENOMIC ACCURACY FOR INDIRECT PREDICTIONS BASED ON SNP

EFFECTS FROM SINGLE-STEP GBLUP .......oooiiiieeee e 79
ADSTFACT ... 80
INEFOTUCTION ...t 81
Materials and MEthOGS..........ccveiiiiiiei e 83
RESUILS aNd DISCUSSION ...ttt 88
CONCIUSTONS ...ttt bbbttt 92
RETEIENCES ... 92

O CONCLUSIONS.....ceeee ettt ne e 100

vii



LIST OF TABLES

Page
Table 2.1: Distribution of phenotypes and genotypes by year-class ...........cccccccvvvvevveveiieieernene 47
Table 2.2: Predictive ability for harvest weight and residual carcass weight under BLUP and
SSGBLUP for all validation SCENAIIOS..........c.erveiiirieiiisieesie e 48
Table 2.3: Regression coefficients of adjusted phenotypes on EBV or GEBYV for harvest
V=TT | ) TSSO 48

Table 3.2: Correlations between IP and GEBV calculated based on ssGBLUP model with Gipy
(IPp,) and G, . (IP,..) for all year classes and core definitions ..............ccccovevverrrennnn. 74

Table 3.3: Correlations between IP and GEBV calculated based on GBLUP model with Giipy
(IPp,) and G, . (IP,..) for all year classes and core definitions ...............ccccoveveererennnnn. 74

Table 3.4: Correlations between SNP effects calculated based on Gipy and G\ . in different
year-classes within the same core definition ...........cccoceviiiiicce e 75
Table 3.5: Correlation between IP and GEBV with different blending strategies in ssGBLUP ...75

Table 3.6: Predictive ability for validation animals born in 2016 for ssGBLUP and GLBUP

viii



Table 4.1: Number of animals with genotypes, phenotypes and pedigree information in each

SCBNANTO et eee e e ettt e e e e e e e ettt e e e e e e e e e e e e e e e e e ———aaas

Table 4.2: Accuracy correlations and regression coefficients ....................

Table 4.3: Descriptive statistics for ACCgesv and ACCyp for all scenarios



LIST OF FIGURES
Page

Figure 2.1: Distribution of genomic EBV for residual carcass weight (g) in a family of 34 young

GENOLYPEA TUI-SIDS ... nes 50
Figure 2.2: Manhattan plot for harvest weight in the 1% iteration of WssGBLUP, with the

proportion of additive genetic variance explained by windows of 20 adjacent SNPs.......51
Figure 2.3: Manhattan plot for residual carcass weight in the 1% iteration of WssGBLUP, with

the proportion of additive genetic variance explained by windows of 20 adjacent SNPs.51
Figure 2.4: LD decay plots for 29 ChromMOSOMES.........cccvevueiieiiecie e 52
Figure 3.1: Genetic trend for all traits. Genetic trends are presented as additive genetic standard

deviations and genetic base is adjusted to 2000............cceieeiieiiiee i 76
Figure 3.2: Correlations between GEBV and indirect predictions for birth weight with increasing

number of genotyped animals used to calculate SNP effects..........ccccoevveviiiciiciicienn, 77
Figure 3.3: Correlations between GEBV and indirect predictions for weaning weight with

increasing number of genotyped animals used to calculate SNP effects...........c.cccccueenen. 77

Figure 3.4: Correlations between GEBV and indirect predictions for post-weaning gain with

increasing number of genotyped animals used to calculate SNP effects...........c.cccccueenen. 78
Figure 4.1: Accuracies for GEBV and IP from direct SCENario .........cccocvevieiieivie e 99
Figure 4.2: Accuracies for GEBV and IP from COre SCENArio .........cccceevveevieiiievie e eiee e 99



CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

GENOMIC INFORMATION IN GENETIC EVALUATIONS

The publication of the human genome draft in 2001, opened the way for livestock species
to have their genome sequenced as well. Later, high throughput sequencing technologies led to the
development of dense single nucleotide polymorphisms (SNP) panels which generated great
excitement in the animal breeding community, as the DNA information could help improving
genetic gains. Although expensive at the beginning, the genotyping prices quickly declined over
time making it possible to have thousands of animals genotyped, which in fact became a reality in
many livestock, poultry, and aquaculture populations recently.

In animal breeding applications, SNP markers are spread across all chromosomes to cover
the whole genome and should account for the linkage disequilibrium (LD) between the markers
and the quantitative trait loci (QTL) affecting the traits of interest. Meuwissen et al. (2001)
proposed three methods to use genomic information in genetic evaluations, each with different
assumptions for the markers a priori. After that paper, many others followed, showing different
methods and models to accommodate the new source of information in what became known as
genomic selection (GS).

There are two main ways to incorporate the genomic information into genetic evaluations:

the first focus on estimating the marker effects and the second uses the markers to obtain realized



relationships among the animals. These two approaches to genomic information led to the
development of two classes of models: SNP based models (SNP-BLUP and Bayesian regression
models) (Meuwissen et al., 2001) and relationship based models (GBLUP) (VanRaden, 2008).
Under some assumptions these two classes of models are equivalent, which is the case of SNP-
BLUP and GBLUP.

In practice, both marker effects and relationship based models use the information from
genotyped animals to obtain the genomic contribution from the markers, which is later combined
with the pedigree based evaluations to generate the final genomic estimated breeding value
(GEBV). This method is usually called the multi-step genomic evaluation.

To accommodate all the information together and to simplify the evaluation framework,
single-step versions of both classes of models were developed and the single-step genomic
evaluation is becoming the method of choice in animal breeding programs. Two examples of
single-step models are the single-step GBLUP (ssGBLUP) (Legarra et al., 2009; Misztal et al.,
2009) and the single-step Bayesian regression (ssBR) (Fernando et al., 2014). The research
presented in this dissertation focuses on the application of GBLUP and ssGBLUP models for fish
and beef cattle breeding.

In GBLUP, the SNP information is used to obtain realized relationships among animals,
which results in a genomic relationship matrix (G) that replaces the expected relationships
commonly used in pedigree based models (Henderson, 1984). Therefore, in the GBLUP mixed

model equations (MME), the pedigree relationship matrix (A) is substituted by G.

[é(v))(( WW+G ) [B] [X'y @

Where y is the vector of observations, B is the vector of fixed effects and u is the vector of random

additive genetic effects; A is the ratio of residual to additive genetic variances; X and W are the



incidence matrices for p and u, respectively, and G is the inverse of G. The initial G (G,) is often

formulated as in VVanRaden (2008):

/A
GO_ 23 p; (l-pi) (2)

Where Z is a matrix of centered gene content and piis the minor allele frequency of SNP i. Ideally,
allele frequencies from the base population should be used to build the G, but because genotypes
are only available for recent generations, allele frequencies are often calculated based on current
genotypes. This G will be singular if clones are present, if the number of markers is smaller than
the number of animals or if there are some numerical dependencies. To overcome this challenge,
G, can be blended with the pedigree relationship matrix, making it invertible (VanRaden, 2008).
G =0Gy+ (1-0)A (3)
Where a is a weight that usually assumes the value of 0.95. Once G is built and inverted, the MME
for GBLUP can be written as in Eq. 1.

Under GBLUP, only genotyped animals are directly considered in the model, whereas the
pedigree and phenotypic information from ungenotyped animals has to be incorporated later. To
include all genotyped and ungenotyped animals into a single system for the genetic evaluations,

Misztal et al. (2009) and Legarra et al. (2009) proposed a combined relationship matrix (H):

He |AtARAR(G-AR)ARAY  ARARG @
GA Ay, G |

where A and G are the pedigree and genomic relationship matrices and the subscripts 1 and 2 refer
to ungenotyped and genotyped animals, respectively.

Although H has a complicated form, Aguilar et al. (2010) showed that it has a simple

inverse:

0 0
-1 4 -1
H'=A [0 G-l_Ailz]. (5)



Once H is available, it can replace the inverses of A or G in the same traditional MME, and this

method is called single-step GBLUP. The MME for ssGBLUP can be written as follows:

[?v?)(( WW+H s [B] [X'y (©)

Recently, ssGBLUP has become the method of choice in genomic evaluations for many
species, for instance: broiler chicken (Chen et al., 2011; Lourenco et al., 2015b), layers (Yan et al.,
2018), pigs (Forni et al., 2011; Lourenco et al., 2016), meat sheep (Brown et al., 2018), dairy sheep

and goats (Rupp et al., 2016) and beef cattle (Lourenco et al., 2015a; Johnston et al., 2018).

GENOMIC SELECTION IN AQUACULTURE BREEDING PROGRAMS

As genomic resources were being developed for livestock species, it did not take long until
researchers started investigating the possibilities for aquaculture species as well. As early as 2009,
researchers started evaluating the performance of genomic evaluations and investigating strategies
for efficient implementation using simulated data (Nielsen et al., 2009; Sonesson and Meuwissen,
2009).

Because of the reproductive characteristics of many aquaculture species (e.g. thousands of
progeny per spawn) first, it was important to understand which animals as well as how many
should be genotyped to make GS cost-effective and feasible for practical applications
(Lillehammer et al., 2013; @degard and Meuwissen, 2014).

Early research as well as the experience from other agricultural species have contributed
to the implementation of GS in many important aquaculture species in recent years. A few
examples are: Atlantic salmon (Salmo salar) (Bangera et al., 2017; Correa et al., 2017; Sae-Lim
et al., 2017), Coho salmon (Oncorhynchus kisutch) (Barria et al., 2018; Barria et al., 2019),

rainbow trout (Oncorhynchus mykiss) (Vallejo et al., 2018; Yoshida et al., 2018; Silva et al., 2019),



European sea bass (Dicentrarchus labrax) (Palaiokostas et al., 2018a; Besson et al., 2019), tilapia
(Oreochromis niloticus) (Yoshida et al., 2019; Joshi et al., 2020), common carp (Cyprinus carpio)
(Palaiokostas et al., 2018b) and pacific oyster (Crassostrea gigas) (Gutierrez et al., 2018).

Typically, aquaculture breeding programs are based on a family structure, and genomic
information is valuable because it allows for the exploration of the variation within families,
making it possible to identify the best animals within the best families. This is especially useful
for traits that cannot be measured on the selection candidates such as carcass traits and disease
resistance (Yafiez et al., 2014).

With the genomic resources available and methods developed, more and more species will
enter the genomic era and adopt genomic evaluations as a common practice in their breeding
programs. In chapter two, we discuss the feasibility of implementing a genomic evaluation for the

US channel catfish (Ictalurus punctatus) population using ssGBLUP.

LARGE SCALE GENOMIC EVALUATIONS

As genomic selection becomes a mature technology and genotyping costs keep decreasing,
the number of genotyped animals is steadily increasing in some applications. One remarkable
example is the US dairy industry that pioneered the field releasing its first genomic evaluation in
2009 (VanRaden, 2008; VanRaden et al., 2009) and now has over three million genotyped animals

(queries.uscdcb.com/Genotype/cur_density.html). Another example is the American Angus

Association with more than 750,000 genotyped animals (Steve Miller, Angus Genetics Inc.,

personal communication).


https://queries.uscdcb.com/Genotype/cur_density.html

Such numbers demonstrate the rapid adoption of the technology by the industry. Although
standard GS methods have been developed, accommodating such large number of genotyped
animals into routine genetic evaluations can be challenging.

Some of the challenges have a computational nature, and one example is the inversion of
G in GBLUP and ssGBLUP. Matrix inversion has a cubic cost with the number of genotyped
animals and is not feasible for over 150,000 animals (Fragomeni et al., 2015). To solve this issue,
Misztal et al. (2014) and Misztal (2016) proposed the algorithm for proven and young (APY). The
APY is based on the idea that the genomic information has limited dimensionality due to small
effective population size in livestock populations. The dimensionality is limited by the minimum
of number of independent SNP and chromosome segments and the number of genotyped animals
(Misztal, 2016). In the APY formulation, the genotyped population is divided into core (c) and
noncore (n) such that the only direct inversion needed is for the core portion and the other
components are obtained through recursions, dramatically reducing computing costs. In APY, G
is represented as:

_ GCC Gcn
G= [Gm Gun ")

And Gy is calculated as follows:

-1 -1
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With each element of Mnn obtained for the ith non-core animal as:

My = &~ GieGeeGai ©)
Pocrnic et al. (2016) showed that the number of core animals in APY can be obtained as

the number of largest eigenvalues explaining 98-99% of the variance in G. Many studies have

investigated the stability of GEBV when using APY and found that as long as the number of core



animals represents the dimensionality of the genomic information, the choice of animals is
arbitrary and correlations between GEBV from ssGBLUP with and without APY are typically
>(.99 (Fragomeni et al., 2015; Masuda et al., 2016; Bradford et al., 2017).

Another challenge is that out of all the genotyped animals, many are young and
unregistered animals, therefore, do not have any phenotypes and sometimes may have incomplete
pedigrees. These animals do not contribute to the evaluations of older animals and because of the
amount of such incoming genotypes, they may slow down the official evaluations. Furthermore,
Bradford et al. (2017) and Bradford et al. (2019) pointed out that including many animals with
missing pedigrees into evaluations may decrease accuracy and increase inflation on GEBV.

These issues raise the question whether to include all the genotyped animals into one main
evaluation or to find an alternative way to provide genomic predictions for young and unregistered
genotyped animals without including them in routine evaluations.

Indirect predictions (IP) can be a helpful tool in this context. Because they are much faster
to compute compared to official evaluations, IP can be used as interim genomic predictions
allowing for weekly or even daily evaluations for young genotyped animals (Wiggans et al., 2015).
Also, IP can also be used as genomic predictions for unregistered animals without having to
include them in routine evaluations.

Lourenco et al. (2015a) investigated the use of IP from a ssGBLUP model for American
Angus and found that using IP can be beneficial as they can be used as quick genomic predictions
for young animals without running a complete evaluation.

When (ss)GBLUP is the method of choice for the genomic evaluation, SNP effects are not
available by default, but can be obtained from GEBV. This is because SNP-BLUP and GBLUP

are equivalent models; therefore, SNP effects can be calculated based on GEBV and the inverse



of the G for genotyped animals in GBLUP (VanRaden, 2008; Strandén and Garrick, 2009) and in
ssGBLUP (Wang et al., 2012; Legarra et al., 2018) as follows:

a= ADZ'G lu (10)
Where a is a vector of SNP effects; ii is a vector of GEBV, A is the ratio of SNP to additive genetic
variance, D is a diagonal matrix of SNP weights (D=1), and Z is a matrix of centered gene content.
Once SNP effects are available, IP can be computed as IP=Za, for any number of genotyped
animals. In chapter three, we discuss the use of IP for large genotyped populations when

(ss)GBLUP is used for genomic evaluations.

ACCURACY OF PREDICTIONS

Before the implementation of genomic selection, it is common to test the performance of
different GS models regarding their ability predict future performance of animals, for the traits of
interest, in a given population. This is done using different validation methods, depending on the
prediction objectives, and it gives an idea about the model accuracy. Although very useful, the
validation accuracy or predictive ability is a “population parameter”, meaning that it does not
provide a measure of accuracy for the individual breeding values.

Because the genetic gain depends on the accuracy of EBV, it is important for practical
applications that (G)EBV are obtained with a measure of accuracy that reflects the standard error
of the prediction. With traditional BLUP, Henderson (1984) showed that accuracies of EBV can
be obtained based on the prediction error variance (PEV) by directly inverting the left hand side
(LHS) matrix of BLUP MME. Once PEV is available, the accuracy for a given animal can be

calculated as:

PEV; __LHsi
ace; = \/1 T (1+FpoZ \/1 (1+F)o? (11)



where Fiis the inbreeding coefficient for the animal i and o2 is the additive genetic variance.

Although the method to obtain accuracy is available, when the system of equations is too
big it becomes impossible to invert the LHS matrix even without genomic information, therefore
accuracies are not easily available. To overcome this problem, methods to approximate accuracies
have been proposed for traditional (Misztal and Wiggans, 1988; Meyer, 1989; VanRaden and
Wiggans, 1991) and genomic evaluations (Misztal et al., 2013; Liu et al., 2017; Erbe et al., 2018).

Similarly, if IP are to be used as genomic predictions, it is of interest to have a measure of
accuracy that is comparable to that of GEBV to be published with IP. Under the SNP-BLUP model,
prediction error covariance (PEC) for SNP effects are easily available and can be used to calculate
accuracy for IP (Liu et al., 2017). Because ssGBLUP is widely used for genomic evaluations, it is
important to obtain SNP PEC from ssGBLUP MME to avoid running an extra SNP BLUP model
to get accuracies for IP.

Under (ss)GBLUP SNP PEC can be obtained by converting PEC for genotyped animals
into PEC for SNP effects (Gualdron Duarte et al., 2014; Aguilar et al., 2019). When SNP effects

are backsolved from (ss)GBLUP, PEC can then be obtained as follows:

var(8)=PEC= var (z' T G"ﬁ) (12)

Then,

var(8)= PEC= - Zp: 772G (Gol LHS"™")G 2 zp: o (13)

Therefore,

var(d)= PEC= ———7'G'Zo? — Z’G'LHS" "G 'Zz— — (14)
2 ¥p;(1-pp) 2 Yp;(1-py)

Where LHS"?"2 s the inverse of the LHS matrix corresponding to genotyped animals.



Following ideas presented by Liu et al. (2017), once PEC is available, the accuracy of IP

for an animal i can be calculated as follows:

ACCpp; = [1- A2 (15)

Gu
Note that, to obtain SNP PEC, the inverse of the LHS matrix of MME is also required but
may not be available for large genotyped populations. Therefore, strategies are needed to
approximate SNP PEC for large datasets. The use of SNP PEC to compute accuracy of IP under a

ssGBLUP model is investigated in chapter four.
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CHAPTER 2
DEVELOPMENT OF GENOMIC PREDICTIONS FOR HARVEST AND CARCASS

WEIGHT IN CHANNEL CATFISH!

1 Garcia A.L.S, Bosworth B., Waldbieser G., Misztal I., Tsuruta S. and Lourenco D.A.L. 2018.
Genetics Selection Evolution. 50(1):66. Reprinted here with permission of the publisher.

19



ABSTRACT

Catfish farming is the largest segment of US aquaculture and research is ongoing to
improve production efficiency, including genetic selection programs to improve economically
important traits. The objectives of this study were to investigate the use of genomic selection to
improve breeding value accuracy and to identify major single nucleotide polymorphisms (SNPs)
associated with harvest weight and residual carcass weight in a channel catfish population.
Phenotypes were available for harvest weight (n = 27,160) and residual carcass weight (n = 6020),
and 36,365 pedigree records were available. After quality control, genotypes for 54,837 SNPs were
available for 2911 fish. Estimated breeding values (EBV) were obtained with traditional pedigree-
based best linear unbiased prediction (BLUP) and genomic (G)EBV were estimated with single-
step genomic BLUP (ssGBLUP). EBV and GEBYV prediction accuracies were evaluated using
different validation strategies. The ability to predict future performance was calculated as the
correlation between EBV or GEBV and adjusted phenotypes. Compared to the pedigree BLUP,
ssGBLUP increased predictive ability up to 28% and 36% for harvest weight and residual carcass
weight, respectively; and GEBV were superior to EBV for all validation strategies tested. Breeding
value inflation was assessed as the regression coefficient of adjusted phenotypes on breeding
values, and the results indicated that genomic information reduced breeding value inflation.
Genome-wide association studies based on windows of 20 adjacent SNPs indicated that both
harvest weight and residual carcass weight have a polygenic architecture with no major SNPs (the
largest SNPs explained 0.96 and 1.19% of the additive genetic variation for harvest weight and

residual carcass weight respectively). Genomic evaluation improves the ability to predict future
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performance relative to traditional BLUP and will allow more accurate identification of genetically

superior individuals within catfish families.

INTRODUCTION

Catfish farming is the largest aquaculture segment in the US, accounting for approximately
50% of US food-fish production (Vilsack and Reilly, 2013). The US catfish industry is based on
the production of channel catfish (Ictalurus punctatus) and the hybrid between the channel and
blue catfish (Ictalurus furcatus). To provide a centralized source for US catfish production
research, the USDA-ARS Warmwater Aquaculture Research Unit (WARU) was established in
Stoneville, MS. As part of its mission to improve catfish production efficiency, the WARU has
conducted a channel catfish breeding program since 2006, primarily selecting fish for increased
growth and carcass yield.

Traditional evaluation using pedigree-based best linear unbiased prediction (BLUP) has
been applied since the beginning of the breeding program at WARU. To investigate the potential
for implementing genomic selection in the WARU catfish breeding program, animals were
genotyped using a 57K single nucleotide polymorphism (SNP) array. Dense markers are used as
an extra source of information to estimate breeding values (Meuwissen et al., 2001) in breeding
programs for several livestock species because of the potential increase in accuracy of estimated
breeding values (EBV). Another advantage of genomic selection, which is particularly important
to aquaculture breeding, is the ability to exploit within-family genetic variation for animals that do
not have records (Daetwyler et al., 2007).

One of the methods available for genomic evaluation is single-step genomic BLUP

(ssGBLUP) (Aguilar et al., 2010). This method combines phenotypes, pedigree, and genotypes,
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and potentially gives more accurate and less biased genomic EBV (GEBV) than multistep methods
(Legarra et al., 2014). In ssGBLUP, the relationship matrix is a combination of pedigree and
genomic relationships (Aguilar et al., 2010; Christensen and Lund, 2010); therefore, information
on all animals can be used in the evaluation, regardless of genotyping status.

The accuracy of genomic evaluation depends on several factors including linkage
disequilibrium (LD) between markers and quantitative trait loci (QTL), effective population size
(N.), and the relationship among individuals in training and validation data (Muir, 2007; Hayes et
al., 2009). Thus, investigating the N, and the extent of LD can give clues about how much genetic
gain can be obtained by adopting genomic selection, how many animals should be genotyped, and
potentially, how many SNPs should be included in the marker panel. The possibilities of using
lower density SNP chips to reduce costs and promote adoption of genomic selection and searching
for individual SNPs explaining major portions of variance should also be explored. If major SNPs
explain a reasonable proportion of the genetic variance observed for a trait, selection based on a
limited number of SNPs can be performed.

The first objective of this study was to investigate the feasibility of implementing genomic
evaluation in US channel catfish by using ssGBLUP. The second objective was to determine the
presence of potential regions in the genome that contain SNPs with major effects on harvest weight

and residual carcass weight (i.e. carcass weight adjusted for harvest weight).

MATERIALS AND METHODS

DATA
Data from the USDA-ARS Warmwater Aquaculture Research Unit (WARU) were

available for this study. Harvest weight and carcass weight (i.e., the weight of a fish with intact
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skin, but removed head and viscera) were recorded from 2008 to 2015, with a total of 27,160 and
6020 records, respectively, and pedigree information was available for 36,365 fish. Among those,
27,883 had either phenotypes/genotypes or were related to phenotyped/genotyped fish.

This population constitutes the Delta Select strain that was developed based on 10 to 13
egg-masses collected from eight commercial catfish farms in the spring of 2006 (total = 97 egg
masses). Each egg-mass was assumed to be a single full-sib family and families were assumed to
be unrelated to each other. Each egg-mass was hatched in a separate hatching tank, fry were reared
in separate full-sib family tanks until the fingerling stage when ~ 50 fish per family were tagged
with passive integrated transponders (PIT tags) and stocked communally in earthen ponds where
they were grown until the fall of 2007. At harvest, gender and weight of all fish were recorded,
and an average of seven males and six females were randomly selected from each full-sib family
and kept as broodfish. In addition to these fish, mature fish were obtained from two additional
farms (40 males and 39 females from one farm, and 20 males and 59 females from the other farm).
The broodfish from the base population were allowed to mate at random until 2 and 3 years old,
and offspring represent the 2008 and 2009 year-class. Parentage was determined by genotyping
fish for 16 microsatellites (Waldbieser and Bosworth, 2013). In total, 181 and 198 families were
produced in 2008 and 2009, respectively. The families were reared separately until tagging (about
280 days old). Approximately 30 fish per family were tagged and reared communally in earthen
pounds. Harvest weight was recorded when the animals were about 16 months old and a month
later, approximately seven fish per family were processed for carcass weight recording.

Variance components and EBV were estimated and broodfish were selected using an index,
which was the average standardized EBV for harvest weight and residual carcass weight. This

approach was used to equalize selection emphasis on each trait. The fish selected from the 2008
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and 2009 year-class (first generation of selection) were spawned in ponds in 2011 and 2012 as 2-,
3- and 4-year old fish. Performances of the 2011 and 2012 year-class progeny reflect effects of
one generation of selection. Progeny from the 2011 and 2012 year-classes were evaluated and
selected on the same index, spawned in ponds in 2014 and 2015 as 2-, 3- and 4-year old. Progeny
from the 2014 and 2015 year-class were evaluated as described previously, and their performance
reflects effects of the second generation of selection. Approximately 10% of the harvested fish
from each year-class were kept as broodfish and no more than 10% of selected broodfish were
from a single full-sib family to limit inbreeding. From 110 to 198 full-sib families were evaluated
for each year-class and 954 and 752 full-sib families were evaluated for harvest weight and residual
carcass weight, respectively.

Broodfish were stocked in March of each spawning year into 0.04 to 0.1 ha earthen ponds
at a rate of 800 to 1000 kg per ha and stockings were designed to prevent mating among full-sibs.
Male to female ratios in brood ponds ranged from 1:1 to 1:2. In early April, weighted plastic
‘spawning-cans’ were placed in ponds to provide spawning sites, and cans were inspected for the
presence of egg-masses two or three times a week. Egg-masses were collected from ponds and
transported to the hatchery. Fry were reared in separate full-sib tanks until the fingerling stage at
which point, they were tagged and stocked communally in earthen ponds and fed daily.
Appropriate commercial catfish diets were provided, and proper water quality was maintained
throughout the study.

Genomic DNA from 49 founders of the Delta Select strain (described above) was
sequenced with 2x150 bp reads on the NextSeq 500 platform (lllumina Inc., San Diego, CA) to
obtain approximately 5X genome coverage per individual (25 to 40 million read pairs per

individual). Paired sequences were aligned to the reference genome (Liu et al., 2016) using BWA-

24



MEM (Li, 2013) and variants were identified using the Genome Analysis ToolKit (DePristo et al.,
2011). The GATK best practices workflow was used to identify SNPs and indels in individuals
(HaplotypeCaller) and then jointly across the population (GenotypeGVCFs). The analysis
produced more than 15 million raw variants (SNPs plus indels) and more than 12 million raw
SNPs. Filtering for strand bias, map quality, and depth of coverage (< mean + 2 standard
deviations) reduced the number of high-quality putative SNPs to 7,445,905. Further filtration to
identify SNPs that were positioned at least 50 bp from another SNP or indel and with a minor allele
frequency higher than 0.05 reduced the number of candidate SNPs to 1,661,221.

An Axiom custom screening array (ThermoFisher Scientific, Waltham, MA) was produced
using 660,000 SNPs, and 162 channel catfish were genotyped to validate the selected SNPs. Six
doubled haploid (homozygous) catfish were also included to identify false heterozygosity at loci
within genomic repeats. A total of 489,390 loci were called as polymorphic, high resolution loci
on the array, and 340,737 loci were uniquely located on the catfish genome assembly. After the
removal of 17,635 loci that demonstrated heterozygosity in the doubled haploids, 323,102
converted SNPs were available. A custom python script (Guangtu Gao, personal communication)
was used to select SNPs that were evenly distributed across each of the 29 chromosomes. A new
custom Axiom genotyping array was produced, which contained 57,354 SNPs with an average
distance between markers of 13.3 kb. The final genotype data included 2911 animals, each
genotyped at 54,837 SNPs after quality control. The SNPs excluded in the quality control had a
minor allele frequency lower than 0.05, were monomorphic or had a call rate lower than 90%.
Genotyped animals were excluded if the call rate was lower than 90% (i.e., 10% of the genotypes

were missing). Among the animals that passed the quality control, 2826 had records on harvest
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weight and 969 on carcass weight. The distribution of genotypes and phenotypes based on year-
class isin Table 2.1.
MODEL AND ANALYSIS
Single-trait animal models were used for harvest weight and residual carcass weight. For
harvest weight, the model was:
y,,=Xb+Zu+Wp+te 1)
where y,, is a vector of harvest weight; b is a vector of fixed effect of year-sex-pond interaction,
and age (ranging from 391 to 620 days) as a linear covariable nested within sex; u is a vector of
additive direct genetic effect; p is a vector of common environmental effect, which accounts for
the fact that full-sibs from the same spawn were raised in the same tank until they reach an age
and weight suitable for tagging (average tagging weight of 119.3 g and average tagging age of 271
days); e is the vector of residuals; X, Z, and W are incidence matrices for the effects contained in
b, u, and p, respectively.
For residual carcass weight, the model was:
y.=X1b+X;by+Zut+Wpte (2)
where y. is a vector of carcass weight; by is a vector of linear covariables for body weight nested
within year-sex interaction; b, is a vector of fixed effect of year-sex-pond interaction; u, p, and e
are described above; X and X, are incidence matrices for the effects contained in b; and b,. The
term residual carcass weight arose from the fact that adjusting carcass weight to a common body
weight allows identification of fish that have a higher proportion of whole weight as saleable
carcass. The idea is similar to the residual feed intake which is widely used in livestock breeding.
Traditional BLUP and ssGBLUP analyses were performed using the BLUPF90 family of

programs (Misztal et al., 2016). In the mixed model equations for ssGBLUP, the inverse of the
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pedigree relationship matrix (A~1) is replaced by H™! (Aguilar et al., 2010), the realized

relationship matrix that combines pedigree and genomic relationships:

H-AT [0 i ] 3)

0 G'la,!
where G™1 is the inverse of the genomic relationship matrix and A,, " is the inverse pedigree

relationship matrix for genotyped animals. The G matrix was constructed as in VanRaden (2008):

MDM'
G: -
2y pj(l-pj)

(4)
where M is a matrix of genotypes centered by twice the current allele frequencies (p); j is the j™
locus; D is a diagonal matrix of SNP weights with a dimension equal to the number of SNPs. All
SNPs were assumed to have homogeneous weights in ssGBLUP, meaning that D was an identity
matrix (I). To avoid singularity problems, G was blended with 5% of A,,.
VALIDATION

The main interest in fish breeding is to better predict genetic merit of a fish as broodstock;
however, the data collected so far during this first development of genomic predictions for catfish
in the US do not allow a comparison between mid-parent GEBV and progeny performance, but
this comparison will soon be possible. In our study, most of the genotyped animals with
phenotypes were from the same year-class (i.e., 2015), precluding the use of validation on progeny
performance and also forward prediction (i.e., future performance on individual fish). Therefore,
to compare predictive ability of traditional and genomic evaluations, we conducted validations
using several strategies to split fish into training and validation datasets.

Strategies 1 and 2 were used for both harvest weight and residual carcass weight. Strategy

1 was a random k-fold cross-validation, where the dataset was randomly split into k folds,

predicting one fold based on k-1 folds. Genotyped animals with phenotypes were randomly split
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into 5 or 10 mutually exclusive groups (k = 5 or k = 10, respectively). In each round of cross-
validation, phenotypes from one group (i.e., validation group) were removed from the dataset and
the remaining folds (i.e., training group) were used to predict the future performance for animals
in the validation group. This k-folds cross-validation was replicated five times and results are
presented as the mean and standard error for the five replicates. In the validation strategy 2,
genotyped full-sibs were split into two groups with one group used for training and the other group
used for validation, and all phenotypes of the validation group were removed from the evaluation.
This scenario is most important when phenotypes are measured on sibs of the selection candidates.

Validation strategies 3 and 4 were conducted for residual carcass weight only to evaluate
the importance of collecting genotypes on fish that will be slaughtered for phenotype recording.
Carcass weight requires the slaughtering of many animals and thus their removal from the pool of
selection candidates and is also considerably more expensive to measure than harvest weight.
Harvest weight is quickly and inexpensively measured on all selection candidates and therefore,
evaluating scenarios 3 and 4 for harvest weight provided no realistic benefit. Strategy 3 was similar
to strategy 2 except that we assumed that only half of the full-sibs in the training population had
phenotypes. This third validation strategy would be especially important for carcass traits to reduce
the number of genotyped animals that are slaughtered to collect phenotypes. The validation group
remained the same as in scenario 2.

In strategy 4, training animals had genotypes, but no phenotypes and the validation group
remained the same. The ssGBLUP method uses all available information in the evaluation,
meaning that phenotypes for 5051 ungenotyped, slaughtered fish were included. In this way,
genotyped animals could benefit from phenotypes of ungenotyped animals if both groups are

related through the pedigree relationship matrix although no genotyped animals had phenotypes
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for carcass weight. This scenario was proposed because the cost of genotyping fish can be as high
as the value of a fish itself. If genotyped fish have to be slaughtered for phenotype recording and
they are removed as selection candidates, the cost of implementation of genomic selection would
likely increase.

Trait heritabilities with the full data were 0.27 and 0.34 for harvest weight and residual
carcass weight, respectively. As we changed the data structure by creating different training
datasets for each validation strategy, we also estimated updated variance components to evaluate
how changing the animals used in the training set analysis (which also changed the subsequent
variance components) impacted predictive ability and inflation of (G)EBV. Reverter et al. (1994)
pointed out that breeding value inflation or deflation can be introduced if variance components do
not reflect the actual data.

Ability to predict performance was used to compare traditional and genomic models. It was
calculated as the correlation between (G)EBYV for validation animals and phenotypes adjusted for
fixed effects (y"), as described in (1) and (2), which were estimated based on the full data:
predictive ability=cor[(G)EBV, y" ] (5)

In addition, the regression coefficient (b;) of adjusted phenotypes on (G)EBV was used as
a measure of inflation of breeding values.

y =by+b;x(G)EBV + e (6)

A regression coefficient lower than one indicates (G)EBV inflation, whereas a value higher
than one indicates deflation.

GENOME-WIDE ASSOCIATION
A genome-wide association study (GWAS) was performed to identify possible regions of

the genome containing SNPs with major effects on harvest weight or residual carcass weight.
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Weighted ssGBLUP (WssGBLUP; Wang et al. (2012)) implemented in postGSf90 from the
BLUPF90 family of programs (Misztal et al., 2016) was used for the GWAS. In the first

implementation of WssGBLUP, Wang et al. (2012) suggested that SNP weights should be
calculated as dj=ﬁj22p4 (l-p.), following the formula for genetic variance due to an additive locus
J J

(Falconer and Mackay, 1996). However, Lourenco et al. (2017) showed that this method did not
reach convergence under a more polygenic scenario because of extreme weights. Therefore, the

SNP weights used in this study were described by VanRaden (2008) as non-linearA weights:

|

dJ :CTSd(ﬁ)-

[

2

)
where CT is a constant that determines the departure from normality; |&;] is the absolute estimated

SNP effect for marker j, and sd (i) is the standard deviation of the vector of estimated SNP effects.
Non-linearA weights had good convergence properties and avoided extreme values (Breno
Fragomeni personal communication). This is because the maximum change in weights is limited
by the minimum between 5 and the exponent of CT. In our study, CT received a value of 1.125
based on Legarra et al. (2018) and VanRaden (2008). Although these values were empirically
derived based on dairy cattle populations, they resulted from tests over several traits with a more
polygenic architecture.

The WssGBLUP is an iterative process. Wang et al. (2012) and Zhang et al. (2016)
suggested that two iterations of weights were sufficient to maximize genomic accuracy and to
correctly identify major SNPs in WssGBLUP. Based on the non-linearA weights, the number of
iterations to reach convergence may vary from 5 to 10 (Breno Fragomeni personal communication)
Therefore, we chose five iterations and checked the stability of predictive ability and regression
coefficients of adjusted phenotypes on GEBV. Predictive ability and inflation can be used as

indicators for convergence when computing SNP weights in WssGBLUP (Wang et al., 2012).
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After investigating which iteration had the highest predictive ability, based on reduced data,
WssGBLUP was applied to the full data for harvest weight and residual carcass weight, and
Manhattan plots were drawn for that iteration.

Manhattan plots were drawn based on the proportion of additive genetic variance explained
by windows of 20 adjacent SNPs. The concept of SNP windows is rather abstract and tries to
approximate haplotype blocks; therefore, it assumes that windows may be inherited together,
which may not always be the case for all assumed windows.

LINKAGE DISEQUILIBRIUM AND EFFECTIVE POPULATION SIZE

We used the first medium density SNP array (55K SNP) developed for channel catfish in
this study. However, we also examined linkage disequilibrium (LD) to determine the feasibility of
using a lower cost, reduced SNP panel for genomic selection in this population.

In our study, LD was calculated with preGSf90 using the following equation:

D2
B PAP,PpPy (8)

where D= P, - P5 Pg; P,p is the frequency of the genotype AB; P4, P,, Pg and Py, are the allele
frequencies. The LD was calculated as the average of adjacent SNPs within chromosomes and
across the genome.

A curve that fits the LD decay with distance between markers for each chromosome was

calculated by fitting the equation proposed by Sved (1971):

1

27—
E[rt ]_ 1+4Netdij (9)

Where d;; is the distance between markers i and j in Morgan and Ne; is the effective population

size for the chromosome t, calculated as proposed by Saura et al. (2015):

Ne=(4d)™ [(2N"1) "] (10)
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With d, as the average chromosome length in Morgan; r? is the average LD at chromosome t; N!
is the adjustment term for sample size (number of genotyped animals); and a is a fixed parameter
that is assumed to be 1 if mutation is not considered and 2 if it is considered; we considered o=2 .

Besides chromosome-based N, we also calculated N, based on the rate of inbreeding by

generation using the of formula Falconer and Mackay (1996):

Ne}:: E (1 1)
where

Fn'Fn—l
AF L (12)

with F, as the inbreeding coefficient in the nt" generation.

RESULTS AND DISCUSSION

PREDICTIVE ABILITY AND INFLATION

Table 2.2 shows the predictive ability for both traits under different validation strategies.
In all validations, using genomic information through ssGBLUP improved the ability to predict
future fish performance relative to traditional BLUP.

In general, cross-validation scenarios using either k = 5 or k = 10-fold scenarios had very
similar predictive ability. In addition, updating the variance components for different training
datasets did not affect predictive ability, as expected (Reverter et al., 1994). Including genomic
information increased predictive ability by 28% (for both 5 and 10-fold) for harvest weight, and
by 29% and 33% (5 and 10-fold, respectively) for residual carcass weight relative to traditional
BLUP.

Validation strategy 2 (splitting full sibs into training and validation sets) resulted in overall

32



predictive abilities for traditional BLUP and ssGBLUP that were greater compared to k-fold cross-
validations. This was likely due to closer relationships between animals in training and validation
groups (Tsai et al., 2016) in strategy 2. The ssGBLUP outperformed BLUP by 23% for harvest
weight and by 36% for residual carcass weight in strategy 2. Genomic information may have more
impact on traits that cannot be measured on the selection candidates (Meuwissen et al., 2016), such
as carcass and disease resistance traits. For instance, in our study the greatest increase in predictive
ability was for residual carcass weight.

Validation strategy 3, where only a portion of the full-sibs in the training set had
phenotypes, had a predictive ability slightly higher than strategy 4 (no phenotypes on genotyped
animals), but lower than those for validation on full-sibs with genotypes and phenotypes (strategy
2) and k-folds cross-validation (strategy 1). The gain in predictive ability of GEBV over EBV in
strategy 3 was 22% for residual carcass weight. The drop in predictive ability for residual carcass
weight for strategy 3 relative to strategies 1 and 2 was caused by the reduction in the number of
phenotypes available to estimate breeding values.

Validation strategy 4 represented the situation where genotyped fish had no phenotypes in
the dataset, which would eliminate the need to process genotyped fish. Predictive ability for
residual carcass weight EBV decreased from 0.24 to 0.22, and of GEBV from 0.31 to 0.24. These
results suggest that having genotypes for fish that are slaughtered for carcass weight recording is
important and translates into the greatest benefit from genomic selection. Having phenotypes for
genotyped individuals is important not only in aquaculture genomics, but in general livestock
genomics. In a simulation study, Pszczola et al. (2012) showed that the highest accuracies from
genomic evaluation were obtained when animals from both reference (phenotyped) and evaluated

(non phenotyped) populations were genotyped. Furthermore, Lourenco et al. (2015a) showed only
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one point increase in predictive ability in the genomic evaluation for calving ease in American
Angus and related that to the small number of genotyped animals with records on difficult calving.

Although predictive ability decreased considerably when carcass records for genotyped
fish were removed, ssGBLUP still outperformed traditional BLUP by about 9%. The improved
performance of ssGBLUP in this situation is due to the fact that the H matrix connects genotyped
animals without phenotypes to ungenotyped animals with phenotypes, if they are connected
through the pedigree.

Overall, the use of genomic information improved the calculation of relationships among
animals and allowed for a better estimation of Mendelian sampling, promoting an increase in
predictive ability and allowing the use of within-family variation. Without genomic information,
young full-sib fish (i.e., without phenotype or progeny) would have the same EBV for a trait, which

equals to parent average (Daetwyler et al., 2010).

Lourenco et al. (2015b) showed that when an animal is genotyped but has no phenotype and

progeny, the GEBV is composed of:

GEBV = WIPA + WzGP - W3PP (13)

where PA is the parent average EBV for the animal, GP is the portion of prediction due to the
genomic information, coming from G, and PP is pedigree prediction that comes from A, ; weights
w1l to w3 sum to 1. Quaas (1988) described that the breeding value of an animal is the average of
EBV from parents (PA) plus a random term that considers the uncertainty about which 50% of the

genes were passed to progeny (i.e., Mendelian sampling):

EBV = 0.5EBV; + 0.5EBV}, + ¢ (14)
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where EBVyg is EBV from sire; EBVy, is EBV form dam and ¢ is the Mendelian sampling term.
If the first portion of the formula corresponds to PA, ¢ can be partially estimated by the genomic
information present in GP, as shown in Eq. (13), because genomic data helps to estimate part of
the uncertainty about which alleles and the proportion of alleles shared among individuals.
Therefore, genotyped full-sibs that are selection candidates (i.e., young) have unique GEBV (not
just PA) and the best candidates can be identified within families. Figure 2.1 shows the distribution
of GEBV for a family of 34 full-sibs that had no phenotypes for residual carcass weight but were
genotyped. Without genomic information, all 34 full-sibs had only PA, which is equal to 4.64 g.
After including genomic information for all full-sibs, we observed a distribution ranging from 1.24
to 7.65. Use of GEBV would allow selection of fish within a family based on individual genetic
merit for carcass weight, avoiding random selection of fish within a family based on BLUP EBVy,
which could result in selecting fish with in fact low genetic merit.

The ability to identify selection candidates within a family that have higher genetic merit
is a key benefit for a trait such as carcass weight in fish, which is not measured on selection
candidates, and for quite large full-sib family sizes. Studies on other fish species such as Atlantic
salmon (Odegard et al., 2014; Tsai et al., 2015; Bangera et al., 2017; Correa et al., 2017) and
rainbow trout (Vallejo et al., 2017; Yoshida et al., 2018) have demonstrated increases in predictive
ability or accuracy of GEBV compared to EBV, confirming the benefits of genomic selection for
aquaculture species.

Tables 2.3 and 2.4 present EBV and GEBYV inflation (b4) for harvest weight and residual
carcass weight. In all validation scenarios, GEBV were less inflated or deflated compared to EBV,
meaning that GEBV were closer in scale to the adjusted phenotypes. Updating variance

components for each training dataset was beneficial for estimating inflation for both EBV and
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GEBV. The benefit comes from the fact that the variance components used to predict (G)EBV
reflect the true state of the population after removing phenotypes for validation animals and
therefore, less inflation is expected. Wiggans et al. (2011) suggested that one way to reduce
inflation of genomic evaluations of US cows would be to reduce heritability; this would be in line
with a reduced additive genetic variation in recent generations. In our study, when variance
components were re-estimated, the regression coefficients became closer to 1 and were the most
beneficial for the cross-validation scenario for harvest weight, in which b; =1 for GEBV,
meaning that GEBV and adjusted phenotypes had similar dispersion.
GENOME-WIDE ASSOCIATION

Manhattan plots from the GWAS for harvest weight and residual carcass weight are shown
in Figures. 2.2 and 2.3, respectively. The plots were drawn for the first iteration of WssGBLUP,
because it had the greatest predictive ability and least inflation. In the first iteration, GEBV were
computed assuming that all SNPs had the same weight. The GEBV were then back-solved to SNP
effects and new weights were calculated and plotted as percentage of variance explained. Although
predictive ability had to be computed based on the reduced dataset, the Manhattan plots were
drawn based on the full dataset. The proportion of additive genetic variance explained by windows
of 20 adjacent SNPs was up to 0.96% for harvest weight and up to 1.19% for residual carcass
weight, which indicates that both traits are extremely polygenic. A single window explaining close
to 1% of the additive genetic variation for harvest weight was located on chromosome 19, whereas,
for residual carcass weight the top windows were located on chromosomes 13 and 21.

In an experimental population of less than 600 genotyped progeny of F1 males (channel x
blue catfish) and channel catfish females, Li et al. (2018) found a significant association between

SNPs on chromosome 5 and body weight. These SNPs explained from 3.69 to 6.72% of the
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phenotypic variance for body weight. In a rainbow trout population from the National Center for
Cool and Cold Water Aquaculture, Gonzalez-Pena et al. (2016) found windows of 20 SNPs that
explained more than 1% of the additive genetic variance for body weight at 10 and 13 months on
chromosome 5, for fillet weight and yield on chromosome 9, and for carcass weight on
chromosomes 9, 17, and 27. In our study, the windows that explained the top variance did not
overlap with windows already described in the literature for the same species or trait.

The fact that top windows do not overlap even in populations from the same species has
been described in the literature. Silva et al. (2018) found very few overlapping genomic windows
that explained more than 1% of the additive genetic variance for columnaris disease in two
different rainbow trout populations. Fragomeni et al. (2014) showed that, in a selected commercial
broiler chicken population, the location of the windows with the largest effect was not consistent
across different generations.

With a polygenic architecture and windows of SNPs explaining small proportions of the
additive genetic variance, genomic selection for harvest weight and residual carcass weight in this
catfish population is preferred over marker-assisted selection (MAS). Using MAS with such an
architecture would not provide successful results given that only a small proportion of variance
can be explained by individual SNPs.

Under a polygenic architecture, the use of Bayesian alphabet (e.g., BayesA, BayesB) and
GBLUP-based methods that allow SNPs to explain a different proportion of variance (i.e., different
SNP weightings; (Daetwyler et al., 2010; Zhang et al., 2016)) may not help to increase the
predictive ability or accuracy of GEBV. In fact, we observed that predictive ability for harvest
weight and residual carcass weight did not change over the iterations of WssGBLUP when using

non-linearA weights (results not shown). In addition, inflation slightly increased from iterations 1
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to 3, reaching a plateau in later iterations (results not shown). When the best results for predictive
ability and inflation are obtained in the first iteration of WssGBLUP, we can assume that using

different weights is not beneficial, and, in this case, GEBV obtained from WssGBLUP are the
same as in ssGBLUP. In a simulation study using linear SNP weights (i.e., dj=ﬁj22pj (l-pj)),

Lourenco et al. (2017) found that for more polygenic traits, decreases in accuracy or increases in
inflation/deflation for WssGBLUP could be caused by the shrinkage of SNP weights for SNPs
with smaller effects.

Although Manhattan plots were drawn based on the first iteration of WssGBLUP, the
percentage of variance explained by SNPs did not change considerably over iterations. In fact,
there was no change from iterations 2 to 5 for harvest weight and 3 to 5 for residual carcass weight.
This possibly shows that non-linearA weights are not overestimated and they converge at some
point. This convergence occurs because the formula contains a maximum limit for SNP weight. In
an attempt to use the linear weights, we observed a constant increase in the proportion of variance
explained (results not shown). This increase is due to the fact SNP weights keep changing over
iterations without a limit for maximum change.

LINKAGE DISEQUILIBRIUM AND EFFECTIVE POPULATION SIZE

The overall whole-genome LD was 0.22 and ranged from a low value of 0.12 (chromosome
29) to a high value of 0.37 (chromosome 17). The LD was moderate even at long distances as
shown in the LD decay plots in Figure. 2.4. There was a large, conservative LD block, which did
not decay even at long distances (20 Mb) on chromosome 17, and a more in-depth investigation is
needed to understand what might have caused this LD pattern.

The effective population size calculated based on LD and that based on inbreeding did not

differ much, i.e. 27 and 28, respectively. Compared to livestock species, N, in catfish is relatively
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small. Pocrnic et al. (2016b) showed that N, for broiler chicken, swine, Angus cattle, Jersey, and
Holstein cattle were 44, 32, 113, 101, and 149, respectively. In studies based on simulated
populations, Pocrnic et al. (Pocrnic et al., 2016a) and Muir (Muir, 2007) associated N, with the
dimensionality of the genomic information and showed higher accuracy of genomic predictions
for smaller N.. When N, is small, there are fewer and longer LD blocks, which can be well
estimated even when the number of genotyped animals is less than 5000 (Lourenco et al., 2017).
In this way, the small N, in this catfish population may have contributed to the great increase in
predictive ability even when only 2911 fish were genotyped (i.e., 8% of the population).

Considering the small effective population size and the long-range LD in this population,
it might be possible to reduce the number of markers needed for genomic selection. Other studies
have demonstrated similar accuracies when comparing low- and high-density SNP panels in
salmonid species (Odegard et al., 2014; Tsai et al., 2016; Bangera et al., 2017; Yoshida et al.,
2018). Recently, Vallejo et al. (2018) reported gains of accuracy (relative to traditional BLUP) of
88% for a 35K SNP panel and 42% with a greatly reduced 200 SNP panel with ssGBLUP for
bacterial cold water disease resistance in rainbow trout. The authors related the efficiency of the
reduced SNP panel to the strong long-range LD in that rainbow trout population.

Reducing the density of markers in the panel would likely reduce genotyping costs and
improve the cost efficiency of genomic selection in fish. More studies are necessary to investigate
the overall cost and benefit of different SNP panel densities on implementation of genomic

selection in this catfish population.

CONCLUSIONS

Genomic information is beneficial for channel catfish breeding because it provides a
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greater ability to predict future performance and reduces inflation of breeding values. For carcass
traits, it is important to record carcass weight phenotypes on genotyped fish to obtain the largest
advantage of genomic selection. Genomic information also allows the estimation of Mendelian
sampling, enabling the identification of genetically superior individuals within families, which is
not possible with pedigree information only. Genome-wide association suggests that harvest
weight and residual carcass weight have a polygenic architecture, indicating that using many SNPs
in a genome-wide selection approach would be superior to using fewer SNPs in a marker-assisted
selection type of approach.
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TABLES

Table 2.1 Distribution of phenotypes and genotypes by year-class.

Year-class Full-sib families  Harvest weight  Carcass weight ~ Genotyped animals
Before 2006 - - - 70

2006 - - . 2

2008 181 4762 829 78

2009 198 5686 1352 44

2011 180 1982 - 38

2012 110 4484 924 133

2014 113 4141 955 189

2015 172 6105 1960 2357

Total 954 27,160 6020 2911
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Table 2.2 Predictive ability for harvest weight and residual carcass weight under BLUP and

ssGBLUP for all validation scenarios.

Validation Harvest weight  Residual carcass weight
Validation scenarios?
strategy BLUP ssGBLUP BLUP  ssGBLUP
1 5-fold cross-validation® 0.29 0001 9 370001 (240002 (37 0002
1 10-fold cross-validation® 0.29 00003 9 37 00004 g 24 0002 g 37 0.002
2 Full sib validation 0.31 0.38 0.25 0.34
3 Half of the full sibs with phenotypes - - 0.23 0.28
No phenotypes for all genotyped
4 - - 0.22 0.24
animals

4Updating variance components or not produced exactly the same predictive ability for all

scenarios. PAverage and standard error across five replicates.

Table 2.3 Regression coefficients of adjusted phenotypes on EBV or GEBV for harvest weight.

Validation Validation scenario Same variance Updated variance
strategy components components
BLUP ssGBLUP BLUP ssGBLUP
1 5-fold cross- 0.87 0002 g2 0002 0.97 0002 1.00 0002
validation?
1 10-fold cross- 0.87 000t ,g2 0001 0.96 0001 1.00 0001
validation
2 Full sib validation 0.94 0.98 1.05 1.04

8Average and standard error across five replicates.
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Table 2.4 Regression coefficients of adjusted phenotypes on EBV or GEBYV for residual carcass

weight.
Validation Same variance Updated variance
strategy Validation scenario components components
BLUP ssGBLUP BLUP ssGBLUP
1 5-fold cross-validation? 0.8090% 0910007  gg00 gy 000
1 10-fold cross-validation? 0.80 09008 920005  (gp008 g5 000
2 Full sib validation 0.83 1.08 0.85 1.10
3 Half of the full sibs with
0.75 0.95 0.77 0.98
phenotypes
4 No phenotypes for all genotyped
0.76 0.87 0.79 0.90

animals

8Average and standard error across five replicates.
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FIGURES

Full sib family GEBV distribution
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3.1 Distribution of genomic EBV for residual carcass weight (g) in a family of 34 young genotyped

full-sibs.
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Figure 2.2 Manhattan plot for harvest weight in the 1% iteration of WssGBLUP, with the proportion

of additive genetic variance explained by windows of 20 adjacent SNPs.
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proportion of additive genetic variance explained by windows of 20 adjacent SNPs.
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CHAPTER 3
INDIRECT PREDICTIONS WITH A LARGE NUMBER OF GENOTYPED ANIMALS

USING THE ALGORITHM FOR PROVEN AND YOUNG!

lGarcia A.L.S., Masuda Y., Tsuruta S., Miller S., Misztal 1., and Lourenco D.A.L. Submitted to
Journal of Animal Science, 02/11/2020.
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ABSTRACT

Obtaining single nucleotide polymorphism (SNP) effects from genomic BLUP (GBLUP)
and single-step GBLUP (ssGBLUP) may be of interest because they can be used to calculate
indirect predictions (IP), which can be useful as interim evaluations for young genotyped animals,
or as genomic predictions animals not included in official evaluations. When a large number of
genotyped animals is available, there is a question about the number of animals needed to reliably
calculate SNP effects and IP. The objectives of this study were to evaluate the quality of IP with
increasing number of genotyped animals and to investigate how many animals are needed to
reliably calculate such predictions. The data were provided by the American Angus Association
and had genotypes and phenotypes for birth and weaning weight, and post-weaning gain.
Genotyped animals were divided in three year-classes: born up to 2013 (n= 114, 937), 2014 (n=
183,847), and 2015 (n= 280,506). The number of animals with phenotypes was > 3.8 million. A
three-trait model was fit using the algorithm for proven and young (APY) with 19,021 animals as
core, under two definitions: first, core animals were the same for all year-classes with animals born
up to 2013 (core 2013); and second, core changed for different year-classes with animals born up
to 2014 (core 2014) and 2015 (core 2015). While GBLUP used only phenotypes of genotyped
animals, ssGBLUP used all phenotypes available. The SNP effects were calculated based on
genomically estimated breeding values (GEBV) from all or only core animals. Correlations
between GEBV from GBLUP and IP, when SNP effects were backsolved with core 2013, were
>0.99 for animals in 2013 but as low as 0.07 for animals in 2014 and 2015. Under ssGBLUP, those
correlations were >0.99 for animals in 2013, 2014, and 2015. Predictive ability when GEBV were

computed by ssGBLUP and SNP effects were backsolved based on only core animals was as high
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as based on all animals. When the number of animals for computing SNP effects varied,
correlations between GEBV and IP from ssGBLUP were >0.76, >0.90, and >0.98 with 2K, 5K and
15K animals. If GEBV are computed based on GBLUP and the SNP effects based on the proper
number of core animals, IP is adequate for the current generation but there is a considerable drop
in accuracy for the next generation. Such IP based on a large number of phenotypes from non-

genotyped animals (ssGBLUP) has persistent accuracy in further generations.

INTRODUCTION

The availability of genomic resources in the form of dense single nucleotide
polymorphisms (SNP) panels has allowed for the implementation of genomic selection in many
livestock species. Once the deoxyribonucleic acid (DNA) markers are available, methods such as
SNP-best linear unbiased prediction (SNP-BLUP), genomic BLUP (GBLUP) and single-step
genomic BLUP (ssGBLUP) can be used to obtain genomic predictions (Meuwissen et al., 2001;
Aguilar et al., 2010; Christensen and Lund, 2010).

As genomic selection becomes popular and genotyping costs decrease, the number of
animals being genotyped steadily increases. Examples of this are the U.S. dairy industry with more

than three million genotyped animals (queries.uscdcb.com/Genotype/cur_density.html) and the

American Angus Association with more than 750,000 genotyped animals (Steve Miller, Angus
Genetics Inc., personal communication). When GBLUP and ssGBLUP are used for such large
genomic datasets, the computing cost becomes a problem because inverting the genomic
relationship matrix (G) has a cubic cost with the number of genotyped animals, which is not
feasible for over 150,000 animals (Fragomeni et al., 2015). To solve this problem, Misztal et al.

(2014a) proposed the algorithm for proven and young (APY). In the APY formulation, the
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genotyped population is divided into core and noncore such that the only direct inversion needed
is for the core portion and the other components are obtained through recursions, dramatically
reducing computing costs.

Even with appropriate tools, the addition of newly genotyped animals will increase
computing time on routine evaluations which can increase the time between collecting a DNA
sample and obtaining the actual predictions (Wiggans et al., 2015). This timing is important since
most of the genotypes come from young animals and producers rely on genomic predictions to
make the decision of whether to keep an animal or not. Being able to quickly decide which animals
to keep and which ones to cull will potentially decrease rearing costs at the farm level (Nicolazzi
et al., 2018). Genomic predictions are also important for producers outside the seedstock market
raising unregistered animals, as they might help them to make better management decisions. Such
predictions on commercial non-registered Angus females are available now and are marketed as
GeneMax Advantage.

One common issue in the genomic era is that often animals are genotyped before
phenotypes are collected, and sometimes pedigree information is missing; therefore, those animals
may not contribute information to the official evaluations and in fact, their inclusion in the
evaluations might even decrease accuracy and increase inflation of genomically estimated
breeding values (GEBV) because of their incomplete pedigrees (Bradford et al., 2017; Bradford et
al., 2019). If SNP effects are available, Indirect Predictions (IP) can be used as interim evaluation
providing quick genomic predictions for newly genotyped and also non-registered animals,
without affecting routine evaluations (Lourenco et al., 2015).

Because SNP-BLUP and GBLUP are equivalent models, SNP effects can be calculated

based on GEBV and the inverse of G (G™) for genotyped animals in GBLUP (VanRaden, 2008;
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Strandén and Garrick, 2009) and in ssGBLUP (Wang et al., 2012). As the process of backsolving
GEBYV into SNP effects involves G, using all genotyped animals to compute SNP effects might
be prohibitive and tools such as APY (Misztal et al., 2014a) can help to surpass this limitation.
Lourenco et al. (2018) investigated IP from ssGBLUP using almost 81,000 genotyped animals
from the American Angus Association data, and their results show that accurate IP can be obtained
from ssGBLUP with G calculated using APY or only a set of core animals. Although their study
shows the feasibility of obtaining IP from ssGBLUP with APY, the number of genotyped animals
used was small compared to the current database, and the impact of adding new genotypes was not
investigated. Therefore, the purposes of this study were to: 1) test the stability of IP and check if
the core group should be updated when large numbers of genotyped animals are added to the
database; 2) investigate the choice of core animals to calculate SNP effects that are used for IP,
i.e., whether all animals or only core should be used; 3) assess the ideal number of genotyped

animals needed, when backsolving GEBV into SNP effects, to obtain reliable IP.

MATERIALS AND METHODS

DATA AND MODEL

The dataset used in the study was provided by the American Angus Association.
Phenotypes were available for birth weight (BW; N= 7,574,765), weaning weight (WW; N=
8,302,222), and post-weaning gain (PWG; N= 4,145,166), and the pedigree included 9,145,109
animals, from which 280,506 animals born up to 2015 were genotyped for 39,774 markers after
quality control.
The following three-trait model was used:

y,=Xb+Wu+W,m+W;p+e (¢D)
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Where t refers to each trait, BW, WW, and PWG; y and b are the vectors of phenotypes and fixed
effect of contemporary group; u, m, and p are the vectors of random effects of additive direct,
maternal, and maternal permanent environmental effects; e is the vector of residuals. The X, W4,
W2, and W3 are incidence matrices for the effects in b, u, m, and p respectively. All random effects
were present for WW, but only u, m, and e for BW, and u and e for PWG.
ANALYSES

Genomic BLUP provides a simple framework to test the quality of IP because when the
SNP effects are derived from GBLUP, one should be able to obtain IP and GEBV on the same
scale. Whereas, in ssSGBLUP, a mean has to be added to IP to consider the fact G is tuned to match
A (Lourenco et al., 2018). Genomic analyses were performed using GBLUP and ssGBLUP
models, although the process of obtaining IP on the same scale as GEBV under ssGBLUP is still
under investigation. As a similar scale is obtained by adding a constant that reflects the average
GEBYV in the population used to compute SNP effects (Legarra et al., 2018; Lourenco et al., 2018),
correlations investigated in the present study are not affected.

In ssGBLUP, the inverse of the relationship matrix combining pedigree and genomic

relationships (H™) was constructed as in Aguilar et al. (2010):

H'=A"+ [0 0 ] ()

0 G'-aAy!
where G™ is the inverse of the genomic relationship matrix and A5 is the inverse pedigree
relationship matrix for genotyped animals.

In both models, the initial genomic relationship matrix (Go) was constructed following

VanRaden (2008):

77
G T ee——
O 23 (1)

©)
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where Z is a matrix of centered gene content and piis the minor allele frequency of SNP i. Allele
frequencies were calculated based on current genotypes. To avoid singularity problems, in GBLUP
G =0.99Go + 0.01Az22, whereas in ssGBLUP G =0.95Go + 0.05A22. The impact of other blending
proportions was also investigated under ssGBLUP.

Given the number of genotyped animals used in the present study, the direct inversion of

G is not feasible; therefore, APY was used to compute the inverse of G (Gipy) as proposed by
Misztal et al. (2014a) and Misztal (2016). In APY, the genotyped animals are partitioned as core
(c) and noncore (n):

_ GCC Gcn
G= [G,.c G “)

And Gpy is calculated as follows:

-1 -1
Gl |G O]+ [l MihLGoGt 1] ©

With each element of Mnn obtained for the ith non-core animal as:
My = &~ GieGeeGai (6)
Using the APY formula, the only direct inversion needed is the part of G containing
relationships among core animals, whereas the other components are obtained through recursions.
Pocrnic et al. (2016) showed that the number of core animals can be obtained as the number
of eigenvalues explaining 98% — 99% of the variance of Go. Because the eigenvalue decomposition
of Go is computationally more expensive than the equivalent singular value decomposition of Z,
the latter was used, and eigenvalues were obtained as the square of singular values. The number
of core animals corresponding to 99% of the variance was 19,021 animals. This was used in this
study and corresponds to the number of core animals used in routine evaluations by the American

Angus Association.
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SNP EFFECTS, INDIRECT PREDICTIONS AND VALIDATION
To evaluate the impact of increasing the number of genotyped animals in the calculation
of SNP effects and IP, the genotyped animals were divided into three year-classes: animals born
up to 2013 (N= 114,937), 2014 (N= 183,847), and 2015 (all animals; N= 280,506). The number
of records included in GBLUP and ssGBLUP for each year-class, as well as heritability of the
traits are presented in Table 3.1.
While the number of core animals remained the same in all analyses (19,021), two core
definitions for APY were tested:
1) Core 2013: core animals were randomly sampled from animals born up to 2013 and remained
the same across all year-classes;
2) Core 2014 and core 2015: core animals were randomly sampled from animals born up to 2014
and 2015 for year-classes 2014 and 2015, respectively;

After the core groups were defined, GEBV were calculated using (ss)GBLUP with APY for

each year-class dataset. Then, SNP effects were backsolved using either Gpy or G only for core

animals (G;\.), using the formula derived by Wang et al. (2012):

8= ADZ'Glpy (7
8eore= MDZcore Georelcore (8)
Where a is a vector of SNP effects; i is a vector of GEBV for all genotyped animals; ti.q,e IS @
vector with GEBV for core animals; A is the ratio of SNP to additive genetic variance, D is a
diagonal matrix of SNP weights (D=1 in our case), and Z (Z.,..) iS a matrix of centered gene
content for all (core) genotyped animals; Gipy and G .. are genomic relationship matrices for

all genotyped animals (computed using APY)) and for core animals only, respectively.

Once SNP effects were available, IP were calculated as follows:
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IPp i =Zagy) ©)
IPcore=Zacore (10)
Where Z is the centered gene content matrix for all genotyped animals within each year class.

In the GBLUP context, iija=Za, therefore, to evaluate the quality of the IP and how good
they are in retrieving GEBV given that SNP effects are known, the correlation between IP (i.e.,
IPg,; and IP.,.) and GEBV was calculated for each year-class and core definition.

Typically, IP are calculated for young genotyped animals not included in the evaluations
used to compute GEBV and SNP effects, thus we also performed a validation study using
genotyped animals born in 2016 (N=54,997), as validation animals. Such animals had genotypes
and phenotypes for all traits; however, their data was not included in previous analyses. Using
SNP effects previously calculated from (ss)GBLUP models with year-class 2015 data and both
core definitions, IP were calculated for validation animals. Further, genotypes for validation
animals were included in evaluations with reduced data and GEBV were obtained. Predictive
ability was calculated as the correlation between adjusted phenotypes (based on traditional BLUP
with full data) and IP or GEBV for validation animals.

NUMBER OF ANIMALS TO COMPUTE IP

To investigate the minimum number of animals needed to compute SNP effects, whereas
keeping correlations between IP and GEBV >0.99, we randomly assigned genotyped animals into
subsets with size varying from 500 to 40,000 (i.e., 500, 1K, 2K, 3K, 4K, 5K, 10K, 15K, 20K, 30K,
and 40K) from the whole population (280,506). Once the subsets were created, SNP effects were

calculated as:

~ _ ' -1 ~
Asubset— )"DZsubsethubsetusubset (11)
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Where G, is the direct G being computed for each subset of genotyped animals and gy iS
a vector of GEBV for the subset animals; GEBV were calculated using ssGBLUP with APY based
on all genotyped animals and core 2013. Indirect predictions were then calculated for all genotyped
animals as IPgypset=Zsubset dsubset: aNA correlations between IP and GEBV are shown for each
subset.

All the analyses were performed using software from the BLUPF90 family of programs

(Misztal et al., 2014b) and in-house bash and R (R core team, 2019) scripts.

RESULTS AND DISCUSSION

GEBV

The correlation between GEBV across core definitions using all genotyped animals (year-
class 2015), were >0.99 for all traits, which indicates that changes in GEBV coming from APY
computations were minimal with different core definitions. Previous studies with simulated and
real datasets have investigated changes in GEBV when using APY and found that as long as the
number of core animals reflects the dimensionality of the genomic information (i.e., number of
eigenvalues explaining at least 98% of the variance of G), the choice of core animals is arbitrary
(Fragomeni et al., 2015; Masuda et al., 2016; Bradford et al., 2017).

INDIRECT PREDICTIONS WITH Gipy AND Gore

When Gpy Was used, the correlations between IPg,;; and GEBV were >0.96 for all traits
and scenarios for ssGBLUP and GBLUP models (Tables 3.2 and 3.3).

With the number of core animals constant and the addition of new genotyped animals (i.e.,

different year-classes) the number of noncore animals in Gypy is increased. Our results show that

as long as the number of core animals represents the dimensionality of genomic information, APY
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delivers robust IP under both models, regardless the addition of a large number of genotyped

animals and the core definition.

For the computation of SNP effects based on Gg.., the results differed by model. While
correlations between IP.,,. and GEBV were >0.99 for ssGBLUP regardless of core definition
(Table 3.2), under GBLUP, there was a dramatic decrease in correlations when core 2013 was used
(Table 3.3). Correlations decreased from 0.99 to 0.64 for BW, from 0.99 to 0.12 for WW, and from
0.99 to 0.07 for PWG. When core animals were chosen from the recent population (i.e., core 2014
and core 2015), correlations were restored to 0.99 (Table 3.3). Although in both cases the GEBV
were computed using APY with all genotyped animals, SNP effects and IP were computed based
on G that contained only relationships for core genotyped animals. In this case, the backsolving
process uses only a portion of the equations. The core based on 2013 represented a population with
114,937 genotyped animals, whereas the 2015 core was a random sample based on all 280,506
animals. Using the core 2013 to compute IP for all animals up to 2015 may not reflect the current
state of the population, under GBLUP. On the other hand, the fact that ssGBLUP uses much more
data than GBLUP may have contributed to a more robust estimation of GEBV, and therefore, SNP
effects and IP.

Pocrnic et al. (2019) investigated the accuracy of GBLUP in terms of the number of
eigenvalues of the genomic relationship matrix. They found that with little phenotypic information,
eliminating 90% of the smallest eigenvalues did not reduce accuracy. With large amounts of
phenotypic information, considering more eigenvalues increased accuracy. Additionally, 10% of
the largest eigenvalues explained 90% of the variation in G. Using only n largest eigenvalues or n
core animals in the APY algorithm resulted in similar accuracy. They claimed that the largest

eigenvalues represent many chromosome segments, and a small amount of data is adequate to
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estimate a few eigenvalues, which may explain a large portion of the genetic variation in G.
Therefore, intermediate accuracy can be achieved with small amounts of phenotypic data, but
further increases in accuracy require much larger amounts of data to estimate the remaining
eigenvalues. The clusters of chromosome segments considered with small data sets may be
different in future generations, leading to low persistence of predictions. On the other hand, when
data is sufficiently large to estimate nearly all eigenvalues and indirectly, chromosome segments,
the persistence is likely to be better. Similar accuracy with the same number of eigenvalues or core
animals suggest that n animals contain information on almost the same chromosome segments as

the n largest eigenvalues.

The decrease in correlation between GEBV and IP with Gpy and G;},re was also reflected
by the correlations between SNP effects. With core 2013, the correlations decreased when moving
from 2013 to 2015 year-class in both models, but the decrease was much smaller under ssGBLUP
compared to GBLUP (Table 3.4); for instance, for PWG, correlations decrease from 0.92 to 0.88
(0.04 points) in ssGBLUP, but from 0.95 to 0.73 (0.22) in GBLUP. For core 2014 and core 2015
scenarios, the SNP effect correlations were very similar between the two models, and although
still showing a small decrease for different year-classes, this decrease was much smaller compared
to the core 2013 scenario, especially in GBLUP (Table 3.4). This behavior shows that with core
2013, SNP effects are not as well estimated under GBLUP as more genotyped animals are added.

Even though a decrease in correlations between IP_,.. and GEBV using core 2013 and
2014 under GBLUP were observed for all traits, birth weight seemed to be more persistent (Table
3.3). This could be because of heritability and selection intensity. Birth weight has almost double

the heritability compared to WW and PWG (Table 3.1). With higher heritability, more eigenvalues
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of smaller effect are accounted for and their information contributes to higher accuracy (Pocrnic
et al., 2019) or in our study, higher persistence.

In a study with layer chickens, Wolc et al. (2011) showed that traits with higher heritability
had more persistent accuracy across generations as opposed to lowly heritable traits.

Regarding selection, in a simulation study with a population under selection, zeroing the
first eigenvalues of G and using the reconstructed matrix for genomic evaluations decreased
selection response by almost 40%, indicating strong effect of selection on persistence, especially
if the dataset is limited (Yvette Stein, University of Georgia, Athens GA, personal
communication). Figure 3.1 shows genetic trends standardized by additive genetic standard
deviation for all traits. Although there is genetic improvement for all traits, selection pressure on
BW is different compared to WW and PWG. Low BW is desirable to avoid calving problems;
however, BW is positively correlated with WW and PWG, therefore, selecting for increased WW
and PWG while decreasing BW requires extra selection pressure on the latter. In this way,
persistence of predictions for WW and PWG is expected to be different from BW given lower
heritabilities and different selection pressure.

IMPACT OF BLENDING AND TUNING

In ssGBLUP, G has to be blended and tuned to make it invertible and compatible with the
pedigree relationships in A (VanRaden, 2008; Vitezica et al., 2011). If these steps are not
considered, IP will be affected with changes in blending parameters. Preliminary analyses using
different blending strategies (1% A,,, 5% A,,, and 10%A,,) showed that the highest the blending
percentage with A,,, the lowest the correlation between IP and GEBV. Additionally, the more

animals used, the bigger the impact of blending (IPg,; Vs IP.,.) (Table 3.5). Table 3.2 shows that
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correlations between IP_,.. and GEBV are slightly higher compared to IPg,; which was likely due
to the impact of blending.

Lourenco et al. (2018) investigated the impact of not accounting for tuning on IP and
showed that under GBLUP E(u)=0 and ii|a=Za, but in ssGBLUP this assumption does not hold
because genotyping is more recent compared to the entire pedigree, which creates a difference
between genetic bases from pedigree and genomic data. The authors recommended adding the
average GEBYV to IP such that i|a=fi+Za, which makes the two predictions comparable. More
recently, Legarra et al. (2018) derived formulas taking blending and tuning parameters into account
when computing SNP effects from ssGBLUP:
a=boADZ'Gd (12)
where a and b are the blending and tuning parameters, with b as in Vitezica et al. (2011).
VALIDATION

Our validation study represents a more realistic scenario of IP in which young genotyped
animals are predicted based only on their genotypes without being part of the routine evaluations.
The same patterns of the previous results were observed in our validation study. When Gpy Was
used to calculate GEBV, SNP effects, and subsequently IP, the correlations with adjusted
phenotypes were highest regardless of core definition and method (Table 3.6). On the other hand,
when G_.,.. was used to compute SNP effects and IP, GBLUP and ssGBLUP behaved differently
with a fixed set of core animals (core 2013). Under GBLUP, predictive ability decreased from 0.42
to 0.30 for BW, from 0.36 to 0.06 for WW and from 0.30 to 0.04 for PWG, whereas under
ssGBLUP predictive ability remained stable at 0.44 for BW, 0.38 for WW and 0.31 for PWG.

Therefore, the behavior of validation was similar to the correlation between GEBV and IP with
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core 2013. When an updated set of core animals was used (core 2014 and core 2015), predictive

ability from GBLUP was restored to the same levels of ssGBLUP (Table 3.6).

Another interesting aspect of our validation was that when Gipy Was used, predictive
ability for ssGBLUP and GBLUP were very similar (Table 3.6). Once there is enough information
available to estimate most of the chromosome segments, accuracies are similar regardless of the
model (Pocrnic et al., 2019). Karaman et al. (2016) investigated accuracies of genomic prediction
using different models and concluded that when the reference population was big enough, different
models (i.e., GBLUP, BayesB, and BayesC) “converged” to the same accuracy.

The results from Lourenco et al. (2018) and from our current study showed that the
algorithm for proven and young can be used to calculate SNP effects from ssGBLUP and GBLUP
to obtain reliable IP with large genotyped populations. Furthermore, with current implementation
of APY in the BLUPF90 family of programs (Misztal et al., 2014b), SNP effects and indirect
predictions can be obtained using a large number of genotyped animals without constraints in
computing time and memory usage. Additionally, the use of a subset of core animals to compute
IP is also a viable option when ssGBLUP is the model of choice for official evaluations.
NUMBER OF ANIMALS USED TO COMPUTE IP

Even when all genotyped animals can be used to backsolve SNP effects from GBLUP or
ssGBLUP using tools such as APY, assuming that a representative set of genotyped animals with
GEBYV from previous evaluation is available, we investigated the minimum number of animals
needed to obtain reliable estimates of SNP effects and indirect predictions. Using from 500 to
40,000 animals, the results are presented in Figures 3.2, 3.3, and 3.4 for birth weight, weaning

weight, and post-weaning gain, respectively. Indirect predictions were calculated for all genotyped
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animals, and correlations between GEBV and IP are presented as a function of number of animals
used.

The results followed an exponential trend, showing that, for beef cattle populations, more
than 5,000 animals are needed for a reliable estimation of SNP effects and IP. Once the number of
animals reached 10,000, correlations were >0.97 for all traits, and when 15,000 or more animals
were used correlations were >0.98 for all traits, reaching a plateau at what seems to be a minimum
number of animals needed. Interestingly, this optimal number of animals to reach correlations >
0.98 is close to the number of eigenvalues explaining 98% of the variance of G (Figures 3.2-3.4);
therefore, the theory of limited dimensionality of genomic information (Misztal, 2016) seems to
play a role in the amount of information needed for the estimation of SNP effects.

These results agree with Lourenco et al. (2015) who investigated reference populations
with 2K, 8K, and 33K animals to calculate indirect predictions from ssGBLUP. The authors
suggested the use of approximately 33K animals to obtain reliable predictions. In our study, we
examined a wider range of animals, which allowed us to obtain a clearer view on how many
animals are needed to obtain stable indirect predictions. Building up on the results showed by
Lourenco et al. (2015), when the number of animals used to calculate SNP effects is large enough
and their GEBV is available from previous official evaluations (Wiggans et al., 2015), it is possible
to obtain reliable indirect predictions from ssGBLUP and GBLUP. Assuming that the ideal number
of animals to compute SNP effects depends on the dimensionality of genomic information, this
number will possibly vary by species as shown in Pocrnic et al. (2016). In their study, the number
of eigenvalues explaining 98% of the variance of G was 14K for Holsteins, 11.5K for Jerseys,

10.6K for Angus, and 4.1K for pigs and chickens. Therefore, using a smaller subset of animals can
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be possibly safe if the number of animals represents the dimensionality of the genomic information
and if such subset is a fair representation of the genotyped population.

As pointed out by Wiggans et al. (2015), indirect predictions are much faster to compute
compared to the official evaluations and they allow for weekly or even daily evaluations,
shortening the interval between the DNA sampling and genomic prediction. Additionally, they can
be used as genomic predictions for non-registered animals without having to include them into
official evaluations, because their inclusion could potentially lead to problems due to lack of
phenotypes and missing pedigrees. In these scenarios, indirect predictions may become a useful
tool to provide quick and reliable genomic predictions for young and non-registered genotyped

animals.

CONCLUSIONS

With increasing numbers of genotyped animals, using all available genotypes and GEBV
from previous official evaluations to compute SNP effects is a practical approach to ensure that
indirect predictions are stable and reliable. The algorithm for proven and young is a feasible option
to calculate SNP effects from GBLUP and ssGBLUP when the number of genotyped animals is
large. Under GBLUP, if a subset of animals is used to compute SNP effects, the number and the
choice of animals has a considerable impact on the quality of indirect predictions. In purebred beef
cattle populations, a sample of at least 15,000 animals representing the whole genotyped
population should provide reliable SNP effects and indirect predictions; however, using
information on all genotyped animals from the previous official evaluation is the usual procedure.
In large datasets, sSGBLUP is less sensitive to the distance between the core and the more recent

genotyped population, providing more persistent genomic predictions.
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TABLES

Table 3.1: Number of phenotypic records included in ssGBLUP and GBLUP in each year class.

ssGBLUP GBLUP
Trait h?

2013 2014 2015 2013 2014 2015

BW 042 6,944,152 7,250,456 7,574,765 73,850 120,389 188,241
WW 020 7,659,259 7,972,273 8,302,222 75,428 122,838 191,792

PWG 024 3,835,752 3,985,075 4,145,166 56,254 91,422 140,975
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Table 3.2: Correlations between IP and GEBV calculated based on ssGBLUP model with Gipy

(IPg,) and G2 .. (IP....) for all year classes and core definitions.

Core Year BW WwW PWG
definition  class TPy IPeore  IPpun IP e IPrun IP ore
2013 0.98 0.99 0.99 1.00 0.99 1.00
2013 2014 0.97 0.99 0.99 1.00 0.99 1.00
2015 0.96 0.99 0.99 1.00 0.99 1.00
20131 2013 0.97 0.99 0.99 1.00 0.99 1.00
2014 2014 0.96 0.99 0.99 1.00 0.99 1.00
2015 2015 0.98 0.99 0.99 1.00 0.99 1.00

1- Results from year-class 2013 are the same.

Table 3.3: Correlations between IP and GEBV calculated based on GBLUP model with Gipy

(IPp,) and Gk (IP....) for all year classes and core definitions.

BW WW PWG
Core definition Year class

IPrat IPeore  IPrar IPcore  TPpun IPeore

2013 0.99 0.99 0.99 0.99 0.99 0.99

2013 2014 0.98 0.82 0.99 0.34 0.99 0.31
2015 0.97 0.64 0.99 0.12 0.99 0.07

2013t 2013 0.99 0.99 0.99 0.99 0.99 0.99
2014 2014 0.98 0.99 0.99 0.99 0.99 0.99
2015 2015 0.97 0.99 0.99 0.99 0.99 0.99

1- Results from year-class 2013 are the same.
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Table 3.4: Correlations between SNP effects calculated based on Gipy and G2 . in different

year-classes within the same core definition.

Core Year BW WW PWG
definition class ssGBLUP GBLUP ssGBLUP GBLUP ssGBLUP GBLUP
2013 2013 0.86 0.88 0.92 0.92 0.92 0.95

2014 0.82 0.83 0.90 0.85 0.90 0.86
2015 0.78 0.78 0.87 0.75 0.88 0.73
20131 2013 0.86 0.88 0.92 0.92 0.92 0.95
2014 2014 0.82 0.84 0.89 0.90 0.90 0.93
2015 2015 0.78 0.79 0.86 0.88 0.88 0.91

1- Results from year-class 2013 are the same.

Table 3.5: Correlation between IP and GEBV with different blending strategies in ssGBLUP.

BW WW PWG
Blending
IPFull IPcore IPFull IPcore IPFull IPcore
1% A2 0.96 0.99 0.98 0.99 0.99 1.00
5% A 0.94 0.98 0.97 0.99 0.98 0.99
10% A2 0.92 0.97 0.95 0.98 0.96 0.98

" Year class 2015 and core 2015 definition.
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Table 3.6: Predictive ability for validation animals born in 2016 for ssGBLUP and GBLUP

models.
Core BW Www PWG
Model
Definition IPry 1Poye GEBV IPpy I[P, GEBV IPpy IP.,. GEBV
ssGBLUP 043 044 044 038 038 038 031 031 0.32
2013
GBLUP 042 030 043 036 006 037 030 004 0.30
ssGBLUP 043 044 045 038 038 038 031 032 0.32
2015
GBLUP 042 043 043 036 037 037 030 030 0.30
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Figure 3.1: Genetic trend for all traits. Genetic trends are presented as additive genetic standard

deviations and genetic base is adjusted to 2000.
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Figure 3.2: Correlations between GEBV and indirect predictions for birth weight with increasing

number of genotyped animals used to calculate SNP effects.
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Figure 3.3: Correlations between GEBV and indirect predictions for weaning weight with

increasing number of genotyped animals used to calculate SNP effects.
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Post Weaning Gain
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Figure 3.4: Correlations between GEBV and indirect predictions for post-weaning gain with

increasing number of genotyped animals used to calculate SNP effects.
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CHAPTER 4
GENOMIC ACCURACY FOR INDIRECT PREDICTIONS BASED ON SNP EFFECTS

FROM SINGLE-STEP GBLUP!

1Garcia A.L.S., Aguilar 1., Legarra A., Miller S., Tsuruta S., Misztal I., Lourenco D.A.L. To be
submitted to Genetics Selection Evolution.
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ABSTRACT
When single-step GBLUP (ssGBLUP) is the method of choice for genomic evaluations, SNP
effects can be backsolved from GEBV and indirect prediction (IP) can be calculated as the sum of
the SNP effects weighted by the gene content. Indirect predictions can be useful when the number
of genotyped animals is large, when genotyped animals are not included in the official evaluations,
and when interim evaluations are needed to reduce the time between DNA collection and
management decisions at the farm level. Having IP is beneficial if their accuracy is comparable to
GEBYV accuracy. Our first objective was to implement formulas to compute accuracy of IP by
backsolving prediction error covariance (PEC) of GEBV into PEC of SNP effects, and to
investigate the feasibility of this method. The second objective was to investigate the number of
genotyped animals needed to obtain robust IP accuracy in large genotyped populations. An
application was done in a beef cattle population with up to 60,000 genotyped animals. Using SNP
effects from ssGBLUP evaluation, correlations between GEBV and IP were >0.99. When all
genotyped animals were used for PEC computations, correlations between GEBV accuracy and IP
accuracy were >0.99. Additionally, IP accuracies were compatible with GEBV accuracies either
with direct inversion of the genomic relationship matrix (G) or using the algorithm for proven and
young (APY) to obtain the inverse of G. As the number of genotyped animals included in PEC
computations decreased up to 15,000, correlations were still >0.96, but IP accuracies were biased
downwards. Indirect prediction accuracy can be successfully obtained by computing SNP PEC
from ssGBLUP equations using direct or APY G inverse. It is possible to reduce the number of

genotyped animals in PEC computations, but accuracies may be underestimated. Further research
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is needed to approximate SNP PEC from ssGBLUP when the inverse of the left hand side of the

mixed model equations if prohibitive because of a large number of genotyped animals.

INTRODUCTION

One of the ways to deal with the ever-increasing number of genotyped animals in single-step
GBLUP (ssGBLUP) evaluations may be to use only genotyped animals with complete information
in the official evaluation and compute indirect predictions (IP) for the remaining young genotyped
animals. Additionally, IP can be a useful tool to provide fast, interim evaluations for registered
animals and also a sort of prediction for animals not included in official evaluations. Such
predictions help to decrease the timing between collecting a DNA sample and getting predictions
on young animals, allowing farmers to make faster management decisions which could reduce
raising costs by culling animals earlier (Wiggans et al., 2015; Nicolazzi et al., 2018). When
genomic BLUP (GBLUP) or ssGBLUP is the method of choice for genomic evaluations, SNP
effects are not readily available but can be easily backsolved from genomically estimated breeding
values (GEBV) using formulas showed by VVanRaden (2008) and Wang et al. (2012). Once SNP
effects are calculated, IP can be obtained for young animals as the sum of the SNP effects weighted
by the gene content.

Typically in animal breeding programs, not only a prediction is needed (EBV, GEBV, IP) but also
a measure of accuracy for such predictions, to help in the selection decisions. Henderson (1984)
showed that accuracies of EBV can be obtained based on the prediction error variance (PEV) by
directly inverting the coefficient matrix of BLUP mixed model equations (MME). Although a good
measure of accuracy of EBV, when the system of equations is too big it becomes impossible to

invert the coefficient matrix to obtain PEV even with modern computers. To overcome this
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problem, approximations have been proposed and implemented for pedigree based evaluations
(Misztal and Wiggans, 1988) and when genomic information is included (Misztal et al., 2013; Liu
etal., 2017; Erbe et al., 2018; Pocrnic et al., 2019). Similarly, it is of interest to have a measure of
accuracy that is comparable to that of GEBV to be published along with IP to help producers make
decisions.

Using a SNP-BLUP model, Liu et al. (2017) showed how to calculate accuracies for IP or direct
genomic value (DGV) based on the prediction error covariance (PEC) of SNP effects and
explained that the cost of obtaining such reliabilities is smaller because the size of the LHS matrix
depends mainly on the number of SNP markers rather than the number of genotyped animals.
Since SNP-BLUP and GBLUP are equivalent models, it is also possible to obtain SNP PEC for
SNP effects calculated using (ss)GBLUP, although the computational cost increases with the
number of genotyped animals. Derivations to obtain SNP PEC under ssGBLUP model were
described by Gualdron Duarte et al. (2014) and Aguilar et al. (2019).

Pocrnic et al. (2019) investigated the accuracy of genomic selection under a GBLUP model using
the algorithm for proven and young (APY) and showed that only a small number of eigenvalues
from the genomic relationship matrix (GRM) was enough to account for a large portion of the
genetic variation. Because the dimensionality of the genomic information is limited (Pocrnic et al.,
2016a; Pocrnic et al., 2016b), it is possible to reduce the number of animals needed to calculate
SNP effects and IP (Lourenco et al.,, 2018; Garcia et al.,, 2020). Likewise, the limited
dimensionality could also allow for a reduction in the number of animals needed to obtain SNP
PEC and accuracies for IP under (ss)GBLUP.

The objectives of this study were to: 1) implement formulas to compute accuracy of IP by

backsolving prediction error covariance (PEC) of GEBV into PEC of SNP effects, and to
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investigate the feasibility of this method; 2) investigate the number of genotyped animals needed

to obtain robust IP accuracy in large genotyped populations.

MATERIALS AND METHODS

DATA AND MODEL

Data for the study were provided by the American Angus Association and included
230,639 animals in the pedigree and 38,000 post-weaning gain (PWG) phenotypes. Genotypes for
39,774 markers, after quality control, were available for 60,000 animals born up to 2018. To mimic
a real situation where animals being indirectly predicted only have genotypes available, genotyped
animals born in 2018 (N= 5,467) were considered as validation and had their phenotypes and
pedigree omitted from all the analyses. Their genotypes were also omitted in a reduced dataset
(N=54,533) to calculate SNP PEC.

Single-step GBLUP was used with the model y=cg+u+e, where y is a vector of post-
weaning gain phenotypes and cg is a vector of fixed contemporary group effects; u is the vector
of random additive genetic effect and e is the vector of random residuals. In ssGBLUP the inverse
of the relationship matrix combining pedigree and genomic information (H) was constructed as

in Aguilar et al. (2010):

0 0
-1 a-1
R ey @

Where G is the inverse of the genomic relationship matrix and A3} is the inverse pedigree

relationship matrix for genotyped animals. The initial genomic relationship matrix was constructed

as in VanRaden (2008):

/A
2% p; (1-py)

)

Gy
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Where Z is a matrix of centered gene content and pi is the minor allele frequency of SNP i. Allele
frequencies were calculated based on current genotypes. Often in ssGBLUP, G is constructed as:
G=(1-0)(11'a+bGy)+0A,, (3)
Where 0=0.05 and refers to blending (VanRaden, 2008), and a and b are tuning parameters
calculated as in Vitezica et al. (2011):

a= niz(Zi 2jAxij—2i2iGij) and b=1—%a (4)

After tuning and blending steps, G is invertible and compatible with the pedigree
relationships.

For large-scale genomic evaluations, it becomes infeasible to directly invert G and to
overcome this limitation, the algorithm for proven and young (APY) was proposed by Misztal et
al. (2014a) and Misztal (2016). In APY, the genotyped animals are divided into core (c) and non-
core (n):

_ Gcc Gcn
G= [Gnc Gnn (5)

And G3py is calculated as follows:

Gapy= [(i)clc g] + [_GLICIGC“] L\ [-G,.Gik 1] (6)

With elements of Mnn obtained for the ith non-core animal as:

My = g~ GieGur G @
The number of core animals for APY can be obtained as the number of eigenvalues

explaining 98-99% of the variance in G, which can be found by the eigenvalue decomposition of

G or the singular value decomposition of Z (Pocrnic et al., 2016b). For our study, the number of

eigenvalues explaining 99% of the variance was 15,000 and core animals were randomly selected

from the genotyped animals in the reduced dataset.
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Once H1is built, the ssGBLUP MME are:

[?v?)(( WW+H s [B] [va ®)

Where X and W are incidence matrices for fixed effects and the animal effect; A is the variance
2 ~ - - -
ratio :—; and p and 1 are the estimates of fixed effects and GEBV respectively.

BENCHMARK GEBV AND ACCURACY

A ssGBLUP evaluation using the complete data, i.e., 60K genotyped animals with pedigree
and phenotypes up to 2017, was run to obtain benchmark GEBV accuracy (ACCgerv) for
validation animals. The ACCgesv Was calculated based on PEV from the inverse of the LHS of

MME (6) as follows:

ace:= ’1- PEV; _ ’1_ LHS! )
cu cu

INDIRECT PREDICTIONS AND ACCURACY

Before calculating IP, SNP effects from ssGBLUP were obtained as described in Wang et
al. (2012), using POSTGSF90 (Misztal et al., 2014b). Recently, Legarra et al. (2018) showed that
under ssGBLUP, blending and tuning parameters need to be taken into account when backsolving
GEBYV into SNP effects:

aji=(1-0)bZ Gla (10)

2%¥p (1 p;)
Where, a and b are the blending and tuning parameters as described above and i if a vector of
GEBYV from previous ssGBLUP evaluation. Once SNP effects are available, IP can be calculated
as IP=Zyajidationd-

Liuetal. (2017) showed how to compute accuracies for direct genomic values (DGV; same

as IP in our study), from a SNP-BLUP model using SNP PEC as follows:
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L, C28y,
acci’= [1- 1C_21 (11)

Where C®2 is the portion of the inverse of the LHS of the SNP-BLUP MME corresponding
to marker effects (SNP PEC matrix) and z; is the row vector from the Z matrix, that contains the
genotypes for animal i. Since SNP-BLUP and GBLUP are equivalent models, one should be able
to extend this idea using the same backsolving process that is used to obtain SNP effects, to obtain
SNP PEC from (ss)GBLUP. Gualdron Duarte et al. (2014) and Aguilar et al. (2019), in an attempt
to obtain formulas for the computation of p-values in GBLUP and ssGBLUP, respectively, showed

that PEC of SNP effects can be calculated as follows:

var(a)=PEC= var <(1—a)bZ' 5 Zpil(l- o G'lﬁ> (12)

Then,

var(&)= PEC= - ij(l_pi) (1-)bZ'G™ (GoZ-C****) G Z(1-0)b zpja-po (13)

Therefore,

var(d)= PEC= ——— (1-0)bZ'G"'Zs? — Z'G'C"* G Z(1-0)b —— (14)
2 ¥p;(1-pp) 2 ¥p;(1-p)

Note that & and b are blending and tuning parameters, accounted for in PEC computations,
and C"*"* is the inverse of the LHS of MME (8) corresponding to genotyped animals.

Once SNP PEC is available, accuracy for IP (ACC;p) for an animal i can be calculated as:

(1-0)b z;var(d)z'

ACCIpi :\/1- -5 (15)

Oy
While accuracy of IP can be easily obtained with small datasets, for large scale evaluations,

obtaining C"2"* becomes impractical as the number of genotyped animals increase. To overcome
this limitation, the dimensionality of genomic information was exploited by using the APY

algorithm to compute G™. Lourenco et al. (2018) and Garcia et al. (2020) showed that correlations
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between IP obtained based on SNP effects from all genotyped animals or only core animals from

APY under ssGBLUP were >0.98; with a reduced computing cost when using only core animals.

In an effort to reduce computations for SNP PEC, additional scenarios were tested with reduced

number of genotyped animals. The scenarios were as follows:

1) direct: All genotyped animals (54,533) and phenotypes with direct G*

2) apy: All genotyped animals (54,533) and phenotypes with APY G

3) 50k-2k: All phenotypes and decreasing the number of genotyped animals from 50K to 2K

4) core: Genotypes for core animals only (15K) and all phenotypes

5) hacc: Genotypes for high accuracy animals only (15K) and all phenotypes

6) core_prog: Genotypes and phenotypes for core animals plus their progeny phenotypes

7) hacc_prog: Genotypes and phenotypes for high accuracy animals plus their progeny phenotypes
The first two scenarios (direct and apy) used all animals in the reduced data and reflect an

extreme case when all animals in the evaluation are used to calculate SNP PEC and ACCr and

serve as a test to compare the impact of direct or APY inversion of G in PEC computations. The

other scenarios represent a situation when only a subset of the animals is used. In scenario five

(hacc), 15,000 animals with the highest accuracy based on the benchmark (GEBVacc) were

selected. In all scenarios, the pedigree for animals with phenotypes and/or genotypes was traced 3

generations back. The number of animals with genotypes, phenotypes, and pedigree for each

scenario is shown in Table 4.1. Once SNP PEC were available, ACCip was calculated as in

equation (12) for validation animals in each scenario. Regardless of the number of animals used

to obtain PEC in each scenario, GEBV used to backsolve SNP effects were always obtained from

the first scenario including phenotypes and genotypes in the reduced dataset. This is to mimic the

real situation where GEBV are available from an official evaluation.
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To check the quality of the IP and ACCp, correlation between GEBV and IP as well as the
correlation between ACCcesv and ACCip were calculated for validation animals. Further, a
regression model was fitted as ACCgrgy=b0+b1xACCp, to investigate the presence of scale
differences and dispersion in ACCi calculation. All the analyses were performed using the
BLUPF90 family of programs (Misztal et al., 2014b) after modifications to compute PEC of SNP

accounting for blending and tuning.

RESULTS AND DISCUSSION

IP AND ACCURACY OF IP

The correlations between GEBV and IP were >0.99 when 10K or more genotyped animals
were used to backsolve SNP effects. Previous studies have shown that IP can be safely obtained
when using the APY algorithm or by using a subset of the genotyped animals, as long as the GEBV
and genotypes used to backsolve SNP effects come from previous ssGBLUP evaluations
(Lourenco et al., 2015; Lourenco et al., 2018; Garcia et al., 2020).

The quality of the IP accuracies was evaluated based on correlations and the regression of
ACCcesv 0n ACCip and results for all scenarios are presented in Table 4.2. Correlations were
>0.89 across all scenarios and >0.99 when 20k or more genotyped animals were used to calculate
PEC for SNP effects. Our results show that as long as the number of genotyped animals used to
calculate PEC represent the dimensionality of the genomic information (98-99% of the variance
in G), correlations between ACCgesv and ACCp were >0.96.

Using high accuracy animals resulted in slightly lower correlations (hacc= 0.97 and
hacc_prog= 0.96) which indicates that randomly selecting the animals from the whole genotyped

population would be a better strategy for PEC computations. This would allow a better
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representation of genotyped animals in all generations, although differences are not great. When
phenotypes and pedigree information were available only from own and progeny records
(core_prog and hacc_prog), correlations did not drop dramatically although the dispersion
increased.

Even when correlations between accuracies are high, we need to make sure ACCp is
unbiased and in the same scale as GEBVacc. This will assure that IP can be used as interim
evaluations or permanent replacements for GEBV when the number of genotyped animals
becomes extremely large to use all young animals in the evaluation. For all the scenarios, the
coefficient of the regression (b1) of ACCcesv 0n ACCip Was used to evaluate dispersion and the
intercept (b0) was used to check the scale. If there is no dispersion, b1=1, and deviations from one
indicate either under or overestimation of ACCip. Regression coefficient and intercept for each
scenario are presented in Table 4.2. No bias or scale differences were found when all genotyped
animals in the reduced data were used to calculate SNP PEC in scenarios direct and apy, and for
scenarios 50k and 40k, b1>0.92 and b0<0.08. Using APY did not result in any differences in
accuracy calculations and the results were basically identical to using direct inversion of G matrix.

As the number of genotyped animals decreased, ACCp were underestimated and the
difference in scale between ACCp and ACCaceav increased. For instance, b1 was as low as 0.42
and b0 as high as 0.56 for the 2k scenario. Typically, when b1 is smaller than one, the conclusion
is that the predictions are overestimated; however, this is true when b0 is close to 0. When 30k or
less genotyped animals were used to compute PEC, the intercept was not zero and despite b1<1,
ACCjpp were underestimated rather than overestimated. As a matter of illustration, plots of
ACCcerv Versus ACCip are shown for two scenarios. Figure 4.1 shows the direct scenario where

there was no dispersion; and Figure 4.2 shows the core scenario, where ACCjp were clearly
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underestimated. This underestimation can be easily seen in the descriptive statistics in Table 4.3.
For instance, the average ACCcesv Was 0.73 but the average ACCip was as low as 0.57 for the
core_prog scenario and even lower (0.41) for the 2k scenario.

While with a smaller subset of genotyped animals (50k and 40k), we were able to
successfully approximate SNP PEC and obtain good ACCp, as the number of genotyped animals
decreased, ACCyp deteriorated. As the number of genotyped animals decrease, the contributions
due to the G™-A3, block of MME are reduced and the approximation of PEC becomes poor,
resulting in underestimated IP accuracies.

Even with the number of animals in the pedigree and with records remaining constant in
most of the scenarios (Table 4.1), the changes in ACCyp are a function of the number of genotyped
animals used to compute SNP PEC. Further, using only own and progeny records, did not result
in increased dispersion compared to using complete data and pedigree information (core vs
core_prog and hacc vs hacc_prog scenarios in Table 4.2). It is worth noticing that the number of
records and animals in the pedigree was nearly halved comparing core and core_prog scenarios.

This indicates that including enough genotyped animals with own phenotypes, and the
addition of their phenotyped progeny may be enough to account for the contributions due to
phenotypes and pedigrees as well as G™'-A5 and obtain reasonable SNP PEC for IP accuracy.

Using SNP PEC from a SNP-BLUP model, Erbe et al. (2018) found that the reference
population composition affected the quality of the final GEBV accuracies approximation from the
Interbull Standardized Genomic Reliability Model (ISGRM), and pointed out that under
ssGBLUP, the definition of such reference population is not as clear as in the multi-step procedure,
which would require further investigation to define which animals should be included in PEC

computations from ssGBLUP.
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The inversion of the LHS to obtain SNP PEC from a ssGBLUP model is the most
demanding step in the process of calculating accuracies for IP, therefore, reducing the overall size
of the MME to be inverted, and specially reducing the number of genotyped animals is of interest
for routine applications. Compared to the approach presented by Liu et al. (2017) for an SNP-
BLUP model, obtaining SNP PEC from ssGBLUP may be difficult because it depends on the
number of animals rather than the number of markers included in the system of equations, therefore
reducing the number of genotyped animals for PEC computations is critical.

With 40 to 50K genotyped animals it was possible to obtain ACCip without severe
dispersion. Additionally, our results suggest that using as few as 15K genotyped animals can yield
correlations between ACCp and ACCgesy that are as high as 0.98. Although it is important to note
that with smaller number of animals, even with blending and tuning parameters considered, there
was still a scaling issue and ACCir were underestimated. To be able to use smaller subsets of
animals in PEC computations, fine tuning of formulas will be needed to overcome this issue.

More research is needed to investigate whether SNP PEC computed from a smaller subset
of genotyped animals can be used to approximate ACC,r based on a number of genotyped animals
that is larger than that included in our study. Such tests may become hard to accomplish because
obtaining ACCcesv based on PEV as a benchmark is not feasible for large datasets.

With the formulas and implementation presented in our study it is feasible to obtain SNP
PEC from ssGBLUP and it is a more straightforward approach than using a SNP-BLUP model, as
it does not require an extra run to compute SNP PEC.

The SNP PEC accounts for the genomic contributions from ssGBLUP MME and a
combination of our approach with existing PEV approximations may be useful to obtain GEBV

accuracies for large scale evaluations.
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CONCLUSIONS

Indirect prediction accuracy can be successfully obtained by computing SNP PEC from
single-step MME using direct inversion of G or by the APY algorithm, with the same formulas.
With at least 40K genotyped animals included in PEC calculations, robust indirect predictions
accuracies can be obtained without dispersion. To reduce computational costs of inverting the LHS
even further, PEC can be approximated by using a smaller subset of the genotyped animals. This
yields high correlations but a fine tuning is still required to scale accuracies of indirect predictions
up to accuracies of GEBV. Further studies are needed to investigate fine tuning of PEC

approximation for large scale genomic data.
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TABLES

Table 4.1: Number of animals with genotypes, phenotypes and pedigree information in each

scenario.
Scenario Genotypes Phenotypes Pedigree
direct 54,533 38,000 230,639
apy 54,533 38,000 230,639
50k 50,000 38,000 230,639
40k 40,000 38,000 230,639
30k 30,000 38,000 230,639
20k 20,000 38,000 230,639
10k 10,000 38,000 230,639
5k 5,000 38,000 230,639
2k 2,000 38,000 230,639
core 15,000 38,000 230,639
hacc 15,000 38,000 230,639
core_prog 15,000 22,625 101,837
hacc_prog 15,000 32,673 106,051
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Table 4.2: Accuracy correlations and regression coefficients

Scenario Correlation b0 bl
direct >0.99 -0.01 1.00
apy >0.99 -0.01 1.01
50k >0.99 0.02 0.98
40k >0.99 0.08 0.92
30k 0.99 0.16 0.84
20k 0.99 0.25 0.74
10k 0.97 0.37 0.62
5k 0.94 0.47 0.53
2k 0.89 0.56 0.42
core 0.98 0.31 0.69
hacc 0.97 0.35 0.62
core_prog 0.97 0.34 0.68
hacc_prog 0.96 0.37 0.60
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Table 4.3: Descriptive statistics for ACCgesv and ACCyp for all scenarios

Scenario Average Min Max SD

GEBV 0.73 0.27 0.82 0.03
direct 0.73 0.28 0.82 0.03
apy 0.74 0.28 0.82 0.03
50k 0.73 0.26 0.82 0.03
40k 0.71 0.21 0.80 0.03
30k 0.68 0.10 0.79 0.04
20k 0.64 0.00 0.76 0.04
10k 0.57 0.00 0.71 0.05
5k 0.50 0.00 0.67 0.05
2k 041 0.00 0.62 0.06
core 0.61 0.00 0.74 0.04
hacc 0.62 0.00 0.76 0.05
core_prog 0.57 0.00 0.70 0.04
hacc_prog 0.61 0.00 0.75 0.05
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Figure 4.1: Accuracies for GEBV and IP from direct scenario
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Figure 4.2: Accuracies for GEBV and IP from core scenario
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CHAPTER 5

CONCLUSIONS

Using genomic information is feasible and beneficial for the US channel catfish breeding
program because it provides greater ability to predict future performance and it reduces inflation
of breeding values. At the same time, phenotype recording is essential to obtain the maximum
advantage of genomic selection especially for carcass traits.

For larger genotyped populations with many young genotyped animals, indirect predictions
are a robust tool for prediction when SNP effects are backsolved using GEBV from previous
(ss)GBLUP evaluation. In purebred beef cattle populations, computing cost can be further reduced
by using a sample of at least 15,000 animals representing the whole genotyped population to obtain
SNP effects, as long as their GEBV comes from the previous (ss)GBLUP evaluation.

When indirect predictions from ssGBLUP are used as interim evaluations or to provide
genomic predictions for unregistered animals, their accuracy is available by computing SNP PEC
from MME either with direct inversion of G or by using the APY algorithm. With at least 40K
genotyped animals included in PEC calculations, robust indirect predictions accuracies can be
obtained without dispersion. To reduce computational costs of inverting the LHS even further,
PEC can be approximated by using a smaller subset of the genotyped animals. This yields high
correlations but a fine tuning is still required to scale accuracies of indirect predictions up to
accuracies of GEBV. Further studies are needed to investigate fine tuning of PEC approximation

for large scale genomic data.
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