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ABSTRACT 

This dissertation explores the relationship between chironomid communities and the climatic and 

other environmental variables that are responsible for their distribution over modern, historical, 

and millennial time scales in the Front Range of the Colorado Rocky Mountains. This study found 

that surface water temperature, nitrate, boron, and carbon explained the most variance in the 

modern distibritution of chironomids collected from nine alpine lakes. However, the relationship 

between surface water temperature (SWT) and nitrate was strongly and negatively correlated 

suggesting that glacial meltwater is the environmental variable that explains the most control over 

chironomid communities. Lakes receiving glacial meltwater were 2.62°C colder and contained 

66% more nitrate. This is the first evidence that atmospheric deposition of nitrate is affecting 

benthic invertebrates in the Western United States. This is also the first time that a relationship 

between boron and chironomid communities has been documented. This finding further 

substantiates that anthropogenic land-use practices are shaping and influencing remote alpine 

ecosystems. A high-resolution thermal reconstruction was developed to study the climatic 

amelioration that occurred at the Pleistocene-Holocene transition. Progressive, three-step warming 



 

of SWT was evident for a 3400-year record. Only one period of abrupt climatic amelioration was 

evident. A dramatic increase of 4.7°C occurred at 11,300 cal yr BP.  However, a brief but 

significant cooling event occurred at 10,570 cal yr BP. These results were found using a 

chironomid-based SWT inference model (r2boot = 0.38, RMSEP = 2.74°C) that was developed 

using a lake training set incorporating 153 lakes from California, Utah, and Colorado. No 

chironomids were present in the sediment corresponding to the Younger Dryas. Reconstructed 

temperatures ranged from 7.8°C to 13.4°C. Chironomids were used to develop temperature 

reconstructions for mean July air temperature (MJAT) and SWT for the 20th and 21st centuries and 

compared to instrumental data for six alpine lakes. Glacial meltwater decoupled the signal between 

air temperature and water temperature and was evident between the relationships between the 

predicted MJAT and SWT for lakes receiving meltwater. Within-lake variability may account for 

discrepancies apparent between the six site locations. Study site selection is crucial for midge-

based thermal reconstructions and basins that receive meltwater. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

The last century witnessed abrupt climatic and environmental changes that are pervasive 

over many parts of the globe (Stocker et al., 2013). Alpine and subalpine environments are 

particularly sensitive to these changes (Dahe et al., 2006; Chen et al., 2011; Elliot, 2012). Elevated 

temperatures alter the hydrological cycle by affecting the proportion of precipitation that falls as 

snow, the total amount of winter precipitation, and the timing of snowmelt (Haeberli and Beniston, 

1998; Khamis et al., 2014). Increasing air temperature also creates conditions conducive for alpine 

glacial recession and an upslope movement of permafrost (Haeberli and Beniston, 1998; Chen et 

al., 2011; Mark and Fernández, 2017). The instability of soil surfaces created by melting 

permafrost promote mass wasting and increase sediment flux downstream (Haeberli and Beniston, 

1998). Elevated temperatures and longer growing seasons affect alpine ecosystems by promoting 

changes in treeline ecotones by altering the spatiotemporal patterns of tree establishment at 

regional scales (Elliot et al., 2012) as well as promoting lake eutrophication (Catalan et al., 2013). 

The magnitude and rate of biophysical changes observed during recent decades in the montane 

environments of the western United States are at the extreme end of the range of variations seen 

historically (Barnett et al., 2008; Pederson et al., 2011, Van Mantgem et al., 2011). The current 

trajectories of climate change in the Rocky Mountain region suggest dramatic shifts in the extent 

of perennial ice in the immediate future (Hall and Fagre, 2003; Barnett et al., 2008). Higher 

temperatures, reduced snowpack and a persistent drying trend, will ultimately result in lengthier 

fire seasons and a corresponding increase in extreme fire weather. These factors will likely 
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continue to adversely impact alpine and subalpine ecosystems in the western United States in the 

future (Westerling et al., 2006). With the recognition that high-elevation regions are responsive 

and extremely sensitive to anthropogenic climate change, we must improve our understanding of 

how regional climate change will affect freshwater resources and aquatic ecosystems in alpine and 

subalpine environments. This is especially true given the heightened concern over the present and 

future water availability in mountainous environments, such as those that characterize much of the 

Intermountain West of the United States. 

The remote lakes found at high elevations act as sentinels of change and are among the 

first bodies of water impacted by climate change (Heino et al., 2009; Dodds and Whiles, 2010). 

Despite their remoteness, mountain lakes and their aquatic ecosystems have been severely 

impacted by multiple anthropogenic stressors, including climate change. The structure, function, 

and composition of aquatic ecosystems in alpine and subalpine settings will be dramatically 

transformed as current warming trends continue (Schindler, 2009; Adrian et al., 2009). For 

example, recent studies suggest that the range of invasive fish species and invertebrates will 

expand due to their ability to move to higher elevation lakes via warmer creeks with stable 

environments (Khamis et al., 2014). This will impact the natural communities that exist in alpine 

lakes by altering food web and predator/prey dynamics (Khamis et al., 2014). Additionally, an 

increase in the supply of dissolved organic carbon (DOC) related to the upslope movement of the 

treeline will increase lake productivity and potentially the biological diversity of lake ecosystems 

in these sensitive environments (Messner et al., 2012).  

One of the significant changes that high-elevation lakes in the western United States will 

experience in the coming decades relates to the retreat of the small alpine glaciers in response to 

altered temperature and precipitation regimes. Many of the alpine and subalpine lakes in the 



 

3 

 

western United States are fed by meltwater emanating from glaciers and climate models suggest 

that many of these glaciers will no longer exist by 2030 (Hall and Fagre, 2003). Other studies 

indicate that the cirque glaciers located in the Sierra Nevada, California, may be protected by their 

position concerning shading, aspect, and relief, and will disappear between 50 and 250 years from 

now (Basagic and Fountain, 2018).  The importance of glaciers to montane environments and 

ecosystems cannot be overstated. Glaciers act as natural reservoirs by storing water and providing 

a constant and dependable source of cool fresh water. The influx of cold glacial meltwater helps 

to regulate stream and lake water temperatures and provides the only reliable source of base flow 

to alpine streams in late summer and during droughts. A reduction in glacial meltwater will 

ultimately result in elevated summer water temperatures, which in turn could negatively impact 

thermally sensitive aquatic invertebrates (Brown et al., 2007). The alteration of the structure and 

composition of the aquatic invertebrate community may affect threatened native Salmonid species 

(Keleher and Rahel, 1996). The influence of glacial meltwater on hydrology and the turbidity of 

high-elevation lacustrine ecosystems has been well documented (Thies et al., 2007). More 

recently, the contribution of glacial meltwater to the nutrient chemistry of alpine lakes has also 

been recognized (Saros et al., 2010; Slemmons et al., 2015). For example, Wolfe et al. (2001) used 

diatoms and sediment δ15N to document that the composition of diatom communities responded 

to N-loading in the late 20th century and that the ecological shifts exceed the natural variability 

evident during last 14,000 years. Geochemical studies have also explored the role that recent 

atmospheric nitrogen deposition has played on lake trophic levels in the Front Range of the 

Colorado Rockies (Baron et al., 2005). However, little is understood about the response of insect 

communities in aquatic ecosystems to past and contemporary episodes of climate change-induced 

glacial ablation (Slemmons et al., 2013; Michelutti et al., 2015).  
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Lake sediment is a powerful archive that preserves physical, geochemical, and biotic 

proxies that may be used to develop high-resolution reconstructions of past environmental and 

climatic changes (Battarbee, 2000). Information extracted from lake sediment can be used to create 

baseline limnological information against which future changes may be compared (Smol and 

Douglas, 2007). Biological proxies extracted and analyzed from lake sediment cores include 

aquatic insects, such as chironomids (Insecta: Diptera).  Chironomids, or midges, are one of the 

most abundant insects found in freshwater ecosystems. They are particularly sensitive to 

temperature and are used as a biological proxy to investigate changing thermal regimes (Walker, 

1987).  Battarbee (2000) states that chironomids and are one of the most promising approaches to 

reconstructing past temperature change.  

Aquatic insects belonging to the order Diptera are among the most abundant benthic insects 

present in lake sediment and make up 40% of all aquatic insects (Dodds and Whiles, 2010). The 

skeletal remains of larval chironomids are composed of chitin and are preserved in lake sediment, 

particularly those collected from Quarternary sediment (Cohen, 2003; Brooks et al., 2007).  The 

fossilized remains are primarily head capsules that act as the teeth mechanism for the maggot-like 

midge. This head capsule is present during the larval stage of life, where the midge subsists at the 

sediment-water interface (Walker, 1987; Porinchu and MacDonald, 2003). This stage in the life 

cycle of larval midges goes through four progressive instars before the insect metamorphosizes 

into pupae (Figure 1.1). The pupae phase is short-lived as it rises through the water column and 

emerges as a winged-adult fly (Walker, 1987). The adult midge than flies to their preferred 

environment until mating occurs, where male chironomids form swarms that females enter to mate 

(Porinchu and MacDonald, 2003). The female deposits an egg mass on the surface of lake water 

where it sinks through the water column and hatches to become larvae (Walker, 1987). The rate of 
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the egg mass development is primarily controlled by temperature, but other environmental factors 

such as pH, salinity, and oxygen concentration, may influence this phase of the chironomid life 

cycle (Pinder, 1995).   

 

Figure 1.1: The chironomid life cycle (Walker, 1987). 

 

Walker et al. (1991) were the first to use a transfer function to model the relationship 

between surface water temperatures and chironomid assemblages (Porinchu and MacDonald, 

2003). Lotter et al. (1997) developed modeled air temperature using similar methods soon 

afterward (Porinchu and MacDonald, 2003). The quantitative reconstructions for air temperatures 

that have been developed typically have robust performance statistics (Velle et al., 2010). 

Researchers also suggest that air temperature has the most significant influence on the ecology of 

chironomid distribution (Eggermont and Heiri, 2012). It is argued that air temperature affects both 

adult and larval stages because of the covarying relationship between air and water temperatures 

that are typically evident (Livingstone et al., 1999; Lotter et al., 1999; Eggermont and Heiri, 2012). 
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Air temperature data are often available at high resolutions with records sometimes having daily 

or even hourly information that may be aggregated to provide more precise temperature records 

than the one temperature of water temperature that is recorded during sampling (Eggermont and 

Heiri, 2012). The water temperatures collected may be variable between the time of day or even 

time of year and is thus less trustworthy. Therefore, as air and water temperatures are highly 

correlated, it has been acceptable to model air temperature using the remains of chironomids 

(Livingstone et al., 1999; Eggermont and Heiri, 2012).   

These claims are often spurious as the need for understanding the ecology of chironomids 

has been debated vigorously for three decades, and little work has endeavored to elucidate how 

environment affects chironomid communities (Walker and Mathewes, 1987; Warner and Hann, 

1987; Walker and Mathewes, 1991; Velle et al., 2010, Brooks et al., 2012; Eggermont and Heiri, 

2012; Velle et al., 2012a). It is clear that the distribution of the chironomid assemblages is strongly 

related to summer air and water temperatures for lakes in temperate and subarctic regions, and yet 

these relationships are poorly or not understood (Velle et al., 2010; Eggermont and Heiri, 2012). 

Many critics of the method point to other factors that may impact the distribution of chironomids 

including natural (Brodersen and Lindegaard, 1999; Brooks and Birks, 2001) and anthropogenic 

(Haskett, 2020a) nutrient loading (Landgon et al., 2010; Garzke et al., 2019), lake depth  (Kurek 

and Cwynar, 2009; Velle et al., 2012b),  oxygen levels (Little and Smol, 2001; Verbruggen et al., 

2011), aquatic vegetation (Langdon et al., 2010), and glacial melt (Eggermont and Heiri, 2012). It 

has been argued that many of these relationships are ultimately controlled by temperature, and thus 

temperature is ultimately what is controlling the distribution of chironomid communities (Velle et 

al., 2010; Brooks et al., 2012; Eggermont and Heiri, 2012).   
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Eggermont and Heiri (2012) argue that “a major complicating factor for the use of 

chironomids for palaeoclimate reconstruction is that the exact nature of the mechanism responsible 

for the strong relationship between temperature and chironomid assemblages in lakes remains 

uncertain.” While adult chironomids are mobile and may travel to areas within their preferred 

climatic ranges, the juvenile stages of the chironomid lifecycle are spent as larvae that subsist at 

the sediment-water interface. The temperature of the water largely influences these larval 

chironomids by moderating physiological and geochemical processes such as growth and 

development (Porinchu and MacDonald, 2003; Eggermont and Heiri, 2012). Future research 

should endeavor to elucidate which temperature (air or water) is more appropriate for transfer 

function development as the ecology and forcing factors related to chironomid distribution is 

poorly understood (Eggermont and Heiri, 2012).  

THESIS OBJECTIVES 

 This manuscript-style dissertation focuses on reconstructing recent (i.e., late 20th and early 

21st centuries) and long-term (i.e., the Pleistocene-Holocene transition) climate and environmental 

variability in the Front Range of the Colorado Rocky Mountains by explicitly focusing on episodes 

of sustained and rapid warming during the late Quaternary. The proposed research is timely, given 

the very narrow window in which such studies may be conducted due to the rate of glacial ablation 

that is currently occurring in the western United States (Basagic and Fountain 2011; Slemmons et 

al., 2013). The first article will be submitted to Oceanology and Limnology in 2020 for peer-review 

and will determine if the response of chironomid communities in alpine lakes currently fed by 

glacial meltwater is de-coupled from observed increases in summer air temperature during the late 

20th and early 21st centuries in Rocky Mountain National Park (RMNP), Colorado due to the 

increase influx of cold glacial meltwater. The second article will be submitted to The Holocene in 



 

8 

 

the fall of 2020 and will develop a quantitative paleotemperature reconstruction for a high 

elevation site in the Colorado Rockies spanning the Pleistocene-Holocene transition to determine 

the rates and magnitude of warming during the most recent episode of extended warmth. The third 

manuscript will be submitted to Quaternary Science Reviews in 2020 and will explore the 

relationships between midge-based surface water temperatures and mean July air temperatures and 

how they compare to instrumental data over the 20th and 21st centuries. These findings will lead to 

criteria for study site selection as well as aiding chironomid workers in identifying periods of 

extended meltwater using subfossil chironomid assemblages and reconstructions. The goals of this 

dissertation have three foci:  

1) investigating the influence of glacial meltwater on the modern midge communities in 

alpine and subalpine lakes in RMNP;  

2) developing a quantitative paleotemperature reconstruction spanning the Pleistocene-

Holocene transition;  

3) establishing methods to assess how historic midge-based reconstructions compare to 

instrumental data to establish criteria for study site selection. 

Upon completion of this work, a clearer understanding of the modern ecology for 

chironomids in environments that receive glacial meltwater will be evident. These findings will 

aid paleoclimatologists that use chironomids as a biological proxy for temperature in refining 

paleoreconstructions over varying timescales. 
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CHAPTER 2 

IS GLACIAL RETREAT IMPACTING MODERN BENTHIC CHIRONOMID 

COMMUNITIES? A CASE STUDY FROM ROCKY MOUNTAIN NATIONAL PARK, 

COLORADO.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Haskett, D.R. To be submitted to Limnology and Oceanography 
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ABSTRACT 

 

 The aim of this study was to determine which environmental variables are responsible for modern 

benthic chironomid distributions in a glacial setting. The chironomid communities from nine 

alpine lakes were assessed and forty-three individual taxa were extracted and identified. Surface 

water temperature and nitrate were strongly and negatively correlated (-0.82, p=0.007), suggesting 

that glacial meltwater (the driver that explains both surface water temperature (SWT) and nitrate 

(NO3+NO2-N) is the environmental variable that explains the most variance (15%). On average, 

lakes receiving glacial meltwater were 2.62°C colder and contained 66% more NO3+NO2-N than 

lakes only receiving meltwater from snow. The presence of taxa from the tribe Diamesinae 

indicates very cold input from running water, and these taxa may be used as a qualitative indicator 

species for the existence of glacial meltwater within a lake catchment. The presence of boron and 

the percentage of carbon in bulk sediment (i.e., lake productivity) are also responsible for the 

distribution of modern chironomid communities in Rocky Mountain National Park, Colorado. 

Heterotrissocladius, Diamesa spp., and Pseudodiamesa were present in the coldest lakes. 

Chironomus, Diplocladius, and Protanypus were assemblages found in cold lakes affiliated with 

the littoral zone or alpine streams.   

 

Keywords: Chironomid; Glacial Retreat; Meltwater; Nitrogen; Boron; Modern Distribution 
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INTRODUCTION 

Globally, the remote lakes found at high elevations act as sentinels of change and are 

among the first bodies of water impacted by climate change (Heino et al., 2009; Dodds and Whiles, 

2010; Catalan et al., 2013). As anthropogenic warming continues, the physical and chemical 

limnology of these lakes will change. As a result, the structure, function, and composition of 

aquatic ecosystems in sub-alpine and alpine settings will be significantly transformed (Rosenzweig 

et al., 2007; Schindler, 2009; Adrian et al., 2009). Recent studies suggest that the range of invasive 

fish species and invertebrates will expand due to their ability to move to higher elevation lakes via 

warmer creeks with stable environments (Khamis et al., 2014). This movement will impact natural 

communities that exist in alpine lakes by altering food web and predator/prey dynamics (Khamis 

et al., 2014). Increases in terrestrial vegetation related to the upslope movement of timberlines will 

supply higher amounts of dissolved organic carbon (DOC) to sub-alpine and alpine lakes, which 

will increase productivity and potentially affect the diversity of high lake ecosystems (Messner et 

al., 2012). Other lake-related changes include an increase in water acidification, long-range 

atmospheric pollution, and large ecological shifts (Catalan et al., 2013). 

Many of the alpine lakes in the western United States receiving cold meltwater emanating 

from small cirque glaciers located in alpine environments are sensitive to regional climate. Hall 

and Fagre (2003) modeled glacial retreat for Glacier National Park and concluded that glaciers 

would disappear from the landscape by 2030. Recent work suggests that local topographic effects 

may buffer against regional warming and glacial extinction may be delayed. Basagic and Fountain 

(2018) suggest that if trends of glacial activity for small alpine glaciers maintain current rates of 

retreat, they will mostly likely disappear in the next 50 to 250 years.  Many studies indicate that 

glacial meltwater affects alpine hydrology, chemistry, and the turbidity of high alpine lake water 



 

12 

 

(Slemmons et al., 2015).  Temperatures in the western United States have steadily increased over 

the past few decades and have amplified the rate at which glaciers and permafrost are melting in 

alpine areas (Diaz and Eischeid, 2007; Mark and Fernández, 2017). The addition of this cold, silt-

enriched water into alpine lakes will impact the timing of lake stratification (Hood and Berner, 

2009), increase turbidity, decrease optical transparency (Moore et al., 2009), and alter the water 

chemistry (Mark and Fernández, 2017) of these alpine lakes. Studies indicate that lakes receiving 

glacial meltwater have up to 200x more nitrogen than those lakes that only receive snowmelt 

(Slemmons et al., 2015). Atmospheric nitrogen has been accumulating on the surface of glaciers 

for decades. This nitrate is then added to lake system with the onset of glacial retreat. The 

additional input of nitrogen to N-limited lakes promotes enhanced primary productivity, such as 

algal blooms (Fenn et al., 2003; Slemmons et al., 2013; Greaver et al., 2016). While many studies 

have endeavored to elucidate the physical and geochemical changes within these systems, little 

work has addressed how biotic communities in alpine lakes will respond to the increased flux of 

glacial meltwater in the short term (Slemmons et al., 2015). Limited studies have documented that 

diatom communities in many alpine lakes are shifting from large filamentous diatoms (i.e., 

Aulacoseira taxa) to Cyclotella spp. as a result of longer growing seasons, increased stratification, 

and decreased ice cover (Catalan et al., 2013). 

Chironomids, or midges, are one of the most abundant insects found in freshwater 

ecosystems (Walker, 1987). They are considered both ubiquitous and cosmopolitan (Porinchu and 

MacDonald, 2003; Brooks et al., 2007; Ferrington, 2007), making them a useful insect to study 

changes in temperature, pollution, and dynamic system changes. Midges occupy several trophic 

levels in aquatic ecosystems and therefore play a vital ecological role in lakes (Walker, 1987; 
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Porinchu and MacDonald, 2003).  However, the ecological understanding of chironomid 

distribution is poorly understood (Eggermont and Heiri, 2012). 

The life cycle of a chironomid goes through several stages and begins as an egg mass 

deposited on the surface of the water by an adult chironomid. As the eggs hatch, chironomids erupt 

in their first larval state and mainly persist as benthos on the floor of the lake. In this state, the 

chironomid has a maggot-like form and a chitinous head capsule that is shed three more times as 

individuals grow (Walker, 1987; Porinchu and MacDonald, 2003). Eventually, the larval 

chironomid reaches the pupae stage and rises through the water column of the lake. This stage is 

abrupt and leads to metamorphosis from pupae to an adult fly that emerges from the lake (Walker, 

1987; Porinchu and MacDonald, 2003). Thus, the survival of chironomid egg masses is largely 

controlled by surface water temperature (Schütz and Füreder, 2019), the larval stage is influenced 

by bottom water temperature, and adult flies exist in environments dominated by air temperature 

(Eggermont and Heiri, 2012). Chironomids have been used as a biological proxy to model both 

SWT (Walker et al., 1997; Brooks and Birks (2001); Porinchu et al. (2007) and air temperature 

(Lotter et al., 1997; Larocque et al., 2001; Heiri and Lotter, 2010; Haskett and Porinchu, 2014) 

based on the assumption that a strong relationship exists between surface water temperature and 

air temperature. Eggermont and Heiri (2012) caution that multiple factors (e.g. depth, thermal 

stratification, and glacial melt, i.e., an influx of cold water) may impact the relationship between 

air and surface water temperatures. Understanding the dichotomy between air and water 

temperatures in chironomid ecology is imperative for future chironomid-based paleoclimate 

studies. 

To date, the studies that have assessed the response of midges to glacial melt in alpine 

settings focus on montane streams (Lods-Crozet, et al., 2001; Milner et al., 2001; Rossaro et al., 
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2016; Lencioni, 2018). These studies indicate that chironomid communities are responsive to 

glacier meltwater input; however, there remains a paucity of studies documenting the response of 

midges to glacial melt in lacustrine settings. Information extracted from lake sediment can be used 

to develop baseline limnological information against which future changes can be compared (Smol 

and Douglas, 2007). This research is vital due to the very narrow window of time that is left for 

studies that examine glacial retreat due to the projected demise of alpine glaciers, especially those 

present  in the western United States (Slemmons et al., 2013). 

STUDY AREA 

The Colorado Rocky Mountains possess the most southern-reaching alpine glaciers 

currently still active in the United States. While many areas present in the Northern and Central 

Rocky Mountains have shown pronounced ablation rates for alpine glaciers (Appenzeller, 2007; 

Munroe et al., 2012), the behavior of glaciers in the Southern Rocky Mountains is quite different. 

Studies documenting air temperature variability in the Front Range reveal that the alpine tundra 

(>3000 m above sea level) in this region is  experiencing a progressively strong heat sink in the 

Colorado Rocky Mountains due to increased snow cover, decreased solar radiation input, and 

enhanced air movement over the surface (Pepin and Losleben, 2002). Rangwala and Miller (2010) 

found that minimum and maximum temperatures in San Juan Mountains are warming at similar 

rates (1°C/decade). However, greater differences were observed for minimum temperatures during 

the winter than those of maximum temperatures in the summer. Thus, the rate of glacial retreat is 

much slower in this region relative to regions to the north, such as Glacier National Park (Pepin 

and Losleben, 2002; Hoffman et al., 2007; Rangwala and Miller, 2010; Rangwala and Miller, 

2012) and makes the Front Range a critical location for monitoring glacier change (Hoffman et 

al., 2007).   
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Rocky Mountain National Park (RMNP) is located in the northern portion of the Front 

Range and is home to 30 glaciers (Hoffman et al., 2007). The glaciers in RMNP straddle an 

elevational range that includes regional timberline (3500 m Above Sea Level or ASL) and lies 

between 3416 and 4068 m ASL. Most glaciers are found on the eastern side of the Continental 

Divide and occupy north- to east-facing cirques (Madole, 1976). Snow accumulation is frequently 

redistributed into these cirques by strong westerly winds and avalanching (Outcalt and MacPhail, 

1965; Winstral et al., 2002; Hoffman et al., 2007). The local topographic shading evident on the 

eastern side of the Continental Divide also has strong control over ablation rates and may account 

for the highly irregular ablation-altitude gradients evident in the Front Range (Outcalt and 

Macphail, 1965; Hoffmann et al., 2007).  

Comparing the chironomid assemblages found in lakes located in glaciated catchments to 

those found in lakes located in unglaciated catchments (with variations in elevation, geology, and 

vegetation controlled for) enabled an assessment of the relative role meltwater plays in shaping 

chironomid communities in alpine lakes in the Park. All lakes were found in areas that consisted 

of igneous proterozoic diorites and granites that intrude into ancestral metamorphic proterozoic 

biotite gneisses, migmatites and schists (Kellogg et al., 2004). 

 The collection of five pairs of short lacustrine sediment cores occurred during the late 

summers of 2015 and 2016 (Figure 2.1).  Study sites and their corresponding pair were chosen to 

be at the approximate elevation with similar vegetation and geology. The only obvious differences 

between the paired lakes was the type of meltwater input that the lakes received. One lake received 

meltwater from a receding glacier, while the other only received meltwater from the annual 

accumulation of snow. Table 2.1 lists the following lakes and their abbreviations along with 

elevation, lake depth, and other variables. Cony (CNY) and Pipit (PIP) lakes were the highest 
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elevations and were sampled at 3509 and 3479 m ASL, respectively. These paired lakes were 

located in rocky cirques above timberline adjacent to the continental divide.  Cony Lake receives  

 

Table 2.1: Limnological variables sampled for nine alpine lakes in Rocky Mountain National Park, 

Colorado. Glacially-fed lakes are highlighted in gray.  Variables with red print were not used in analysis. 

 

glacial melt from an unnamed glacier, whereas Pipit only receives melt from annual snowfall.  

Hutcheson Lake (HCH) (3413 m ASL) receives glacial input from Cony Lake, which lies 

immediately above the catchment. Grasses that are typical of alpine tundra surround the lake. It is 

Pipit Lake Cony Lake Box Lake Eagle Lake
Thunder 

Lake
Black Lake Falcon Lake

Hutcheson 

Lake

Odessa 

Lake

Lake Code PIP CNY BOX EGL THD BLK FAL HCH ODS

Elevation (m asl) 3479 3509 3274 3298 3225 3237 3371 3413 3051

Depth (m) 10.4 16.8 11 10.15 7.05 21.2 8.1 3.1 5.95

Secchi Disk Depth (m) 3.6 3.5 2.2 7.4 2.2 6.4 3.5 2.3 33

Mean July Air Temperature (°C) 11.29 11.13 12.42 12.29 12.69 13.12 11.89 11.66 13.65

Surface Water Temperature (°C) 9.2 8.2 13.9 10.9 13.1 10.9 9.2 10 10.5

Bottom Water Temperature (°C) 8.1 5.1 6.2 6 8.5 4.2 8.2 9.3 9.1

Glacial Index (GI) 0.00 0.85 0.00 0.52 0.00 0.56 0.00 0.45 0.65

Glacial Coverage in Catchment (GCC) (%) 0 18.18 0 8.74 0 3.16 0 4.37 5.43

Distance (m) 0 0.5 0 1.34 0 1.31 0 1.74 1.74

pH 8.61 7.3 7.17 7.3 8.76 8.23 7.92 7.88 8.11

Specific Conductivity 0.011 0.017 0.011 0.01 0.014 0.009 0.01 0.02 0.012

Dissolved Oxygen (DO) (mg/L) 7.7 2.72 3.7 3.16 2.85 2.45 3.49 2.92 4.21

Dissolved Organic Carbon (DOC) (ppm) 2.578 1 1.52 0.92 1.04 1.08 1.07 2.04 0.93

Dissolved Inorganic Carbon (DIC) (ppm) 1.764 1.86 1.64 1.4 1.58 1.34 1.06 2.19 0.87

Total Phosphorous as PO4-P (ppb) 8.99 46.81 20.19 19.09 52.08 43.85 21.73 17.85 29.2

 NO3 + NO2-N(ppm) 0.274 0.164 0.003 0.139 0.059 0.156 0.175 0.108 0.143

Active Chlorphyll-α (ug/L) 0.8 1.5 1.7 0.2 5.8 0.6 1.5 2.2 4

Boron (B) (ppm) 0 0.02 0 0.02 0.01 0.02 0.05 0 0

Calcium (Ca) (ppm) 1.152 1.382 0.948 1.055 1.093 0.787 1.217 1.963 1.051

Magnesium (Mg) (ppm) 0.153 0.09 0.13 0.12 0.11 0.06 0.08 0.17 0.13

Sodium (Na) (ppm) 0.429 0 0.2 0.6 0.3 0.2 0.2 0.2 0.5

Phosphorous (P) (ppm) 0.083 0.03 0.05 0.04 0 0 0 0.04 0.04

Silica (Si) (ppm) 1.274 0.533 0.967 1.735 1.046 0.671 1.191 1.054 1.673

Arsenic (As) (ppm) 0.024 0.002 0.013 0 0.008 0 0.01 0.012 0

Selenium (Se) (ppm) 0 0.018 0 0.019 0.011 0.021 0.004 0 0.033

Trophic Level Oligotrophic Mesotrophic Mesotrophic Mesotrophic Eutrophic Mesotrophic Mesotrophic Mesotrophic Mesotrophic

Aluminum (Al) (ppm) 0 0 0 0 0 0 0 0 0

Barium (Ba) (ppm) 0 0 0 0 0 0 0 0 0

Cobalt (Co) (ppm) 0 0 0 0 0 0 0 0 0

Copper (Cu) (ppm) 0 0 0 0 0 0 0 0 0

Potassium (K ) (ppm) 0 0 0 0 0 0 0 0 0

Manganese (Mn) (ppm) 0 0 0 0 0 0 0 0 0

Strontium (Sr) (ppm) 0 0 0 0 0 0 0 0 0

Cerium (Ce) (ppm) 0 0 0 0 0 0 0 0 0

Conductivity ( µS/cm) 8.4 11.6 9 7 10.6 6.5 6.8 14.3 8.3

Dissolved oxygen (%) 99.3 35 43.4 41.8 39.4 32.2 45.9 39.1 53.4

Phosphate (PO4-P) (ppb) 1.82 2.54 1.23 5.87 1.87 6.13 4.5 7.15 1.75

Total dissolved Phosphorous as PO4-P (ppb) 12.18 27.06 24.33 26.19 24.04 17.99 17.56 35.12 25.79

Total Nitrogen as NO3-N (ppm) 0.317 0.481 0.139 0.212 0.103 0.196 0.186 0.136 0.474

Nitrite (NO2-N) (ppb) n/a 1.48 0.58 1.31 1.29 0.62 1.32 2.58 1.49

Ammonium (NH4-N) (ppb) 0 137.9 23.35 65.77 56.34 17.07 50.1 315.99 2.16
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paired with snowmelt-fed Falcon Lake (FAL), which lies at 3371 m ASL and is located in a small 

rocky cirque with small patches of krummholz.  The paired Box (BOX) and Eagle (EGL) Lakes  

 

Figure 2.1: Base map for study sites in Rocky Mountain National Park, Colorado. 



 

18 

 

lie at 3274 and 3298 m ASL, respectively and are located at timberline. Eagle Lake receives glacial 

meltwater from Moomaw Glacier, whereas Box Lake only receives annual snowmelt.  

The remaining lakes all lie below timberline and are located in subalpine forest 

predominately composed of Pseudotsuga menziesii (Douglas fir) and Picea engelmannii 

(Engelmann spruce). Black (BLK) Lake, located at 3237 m ASL is the deepest lake sampled at 

21.2 m and receives glacial melt. BLK also has fairly steep scree slopes SSW and S of the lake. It 

is paired with Thunder (THD) Lake, which lies at 3225 m ASL and is on a much gentler slope than 

BLK. The lake is surrounded by forest almost to the edge of the lake.  Odessa (ODS) and Spruce 

(SPR) Lakes were the final pair. ODS (3051 m ASL) receives glacial input from three unnamed 

glaciers located higher in the catchment. Spruce Lake (2947 m ASL) was unlike any other lake 

sampled. It was only 1-m deep and had tall grasses throughout the entire bed of the lake. It also 

contained no chironomid subfossil remains and thus was eliminated from the analysis.  

METHODS 

Field Methods 

 The sediment cores were collected from the approximate center of the study lakes using a 

gravity-corer, deployed from a small, two-person inflatable raft that allows recovery of lake 

surface sediment with minimum disturbance of the mud-water interface. The cores were typically 

20-cm long and represented approximately 150 years of deposition. Observations regarding the 

stratigraphy and color of each core were recorded in a field notebook and then sectioned into 0.25-

cm intervals and placed into Whirlpaks®. A Yellow Springs Instrument (YSI)  Professional Plus 

was used to collect a suite of limnological variables, such as temperature, pH, and specific 

conductivity.  Water samples were collected from the center of each lake and submitted to the 

Center for Applied Isotope Studies (CAIS) at the University of Georgia for analysis of analytes 
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for nitrogen and phosphorous, as well as nutrients (chloride, sulfate, and Chlorophyll α). The cores 

were transported to the Environmental Change Lab at the University of Georgia in coolers after 

the end of each field season. Total carbon (%) of dry bulk sediment was analyzed using EA-IRMS 

at CAIS. Distance (m) is the measured distance from the lake to the terminus of the glacier in the 

lake catchment. The glacial index (GI) is a measure of environmental harshness and is an index of 

glacial influence following Jacobsen and Dangles (2012). The GI was calculated as GI = 

√area

distance+√area
 (for area>0). The glacial coverage in the catchment (GCC) was also calculated 

(Jacobsen et al., 2012). The area of each catchment as well as those for each glacier was determined 

using the GLIMS Glacier Database in ArcGIS (Raup et al., 2007). 

Laboratory 

Chironomid extraction procedures followed the protocol established by Walker (2002). 

Bulk sediment samples were soaked in an 8% KOH solution and heated to 40ºC for a minimum of 

30 minutes. The solution was then sieved through a 95μm-grade mesh screen using distilled water 

to eliminate any remaining KOH residue. The material remaining on the screen was transferred 

into a beaker with distilled water. The resulting residue was then poured into a Bogorov counting 

tray and sorted using a stereoscope at 40X. The sub-fossil chironomid head capsules extracted 

from the residue were permanently mounted on glass slides using Entellan®. This process was 

repeated until a minimum of 50 head capsules were recovered from each sample following the 

advice of Heiri and Lotter (2001). A Nikon Eclipse E100 (x100)  microscope was used for 

taxonomic determination of the midge remains. The taxonomic keys by Brooks et al. (2007) and 

Andersen et al. (2013) were instrumental in the identification of midge taxa. 
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Data Analysis 

All lakes produced a minimum of 49.5 chironomid head capsules for analysis in the upper 

0.50 cm of sediment (Laroque, 2001). Spruce Lake contained zero chironomid remains and was 

removed from the analysis. Detrended canonical analysis (DCA) is an indirect ordination 

technique that is useful in the exploration of taxa data collected from the lacustrine sediment. 

Chironomid taxa possess the highest abundances in environments that maximize their preferred 

habitats. Abundances begin to decline or disappear as they become farther removed from their 

preferred environment. Due to these characteristics, ecological data typically possess “a modal 

relationship to their ecological gradients” (Holland, 2008). DCA assumes that the data have a 

unimodal distribution. The chironomid assemblage data followed a Poisson distribution and 

satisfied this assumption. The data were square-root transformed to shorten the distribution and to 

make the data homescedastic. The effect of rare taxa was down-weighted to dampen their effects 

on the ordination.  DCA is used to determine whether a linear, e.g., redundancy analysis (RDA) or 

unimodal, e.g., canonical correspondence analysis (CCA), model should be used to understand 

which environmental variables explain the most variance in the distribution of chironomid 

communities (Ter Braak and Verdonschot, 1995).  

Redundancy analysis (RDA) was used to assess which environmental variable explains the 

most variance in species distribution (Van den Wollendberg, 1977; Zuur et al., 2007). 

RDA is used to extract and summarise variation in the chironomid taxa data that can be explained 

by environmental variables (Zuur et al., 2007). A forward selection process was used to identify 

the environmental variables that most likely explained the distribution of modern chironomid 

communities. This method, combined with permutations, was used to determine the statistical 

significance (p < 0.05) of each environmental variable, as well as demonstrating the amount of 
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variance that each variable accounted for (Birks, 1998; ter Braak and Verdonschot, 1995). Forty 

environmental variables were collected. However, 26 elements collected from lake water were 

below detection and removed from the analysis. Variables that covaried, such as dissolved oxygen 

(%) and dissolved oxygen (mg/L) were examined, and only one representative variable was used. 

Twenty-five remaining environmental variables were assessed for linearity, and specific 

conductivity, lake depth, and Secchi disk depth were log-transformed to ensure that 

homescedasticity assumptions were met (Table 2.1). All statistical analyses were performed using 

the open-source platform R (version 3.6.1) (R Development Core Team, 2019, http://www.R-

project. org). DCA and RDA were implemented in the vegan package (Oksanen, 2015).  

RESULTS AND DISCUSSION 

Water Chemistry 

The summary of environmental variables included in the analysis is provided in Table 2.1. 

In general, the lakes sampled were relatively deep, and all were over 5 m with the exception of 

Hutcheson Lake (3.1 m). Lake depths ranged from 3.1 m to 21.2 meters deep, with an average of 

10.42 m. The surface temperature for lake water was variable and ranged from 8.2°C to 13.9°C. 

This wide range in surface water temperature (SWT) is of note as these lakes are not found on a 

particularly long elevational gradient (458 m). All lakes were open basins and received input from 

alpine streams as well as having outlet streams. The temperature profiles for the shallowest lakes 

that received glacial meltwater (i.e., Odessa and Hutcheson Lakes) showed no sign of thermal 

stratification and only varied by ≤ 1.4°C. Pipit and Falcon Lakes were deeper (10.4m and 8m, 

respectively) but only had temperature profiles that varied by 1°C from the surface water to the 

bottom of the lake. These lakes are fed only by annual snowmelt. Cony, Eagle, Box, Black, and 
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Thunder Lakes all possessed temperature profiles indicative of thermal stratification with an 

epilimnion thickness of 6 to 8 m.  

The trophic class of each lake was evaluated following Carlson’s Trophic State Index 

(Carlson, 1977).  The Carlson Index uses three independent variables of aquatic biomass that 

includes Secchi depth (SD), total phosphorus (TP) from the epilimnion, and chlorophyll α (Chl) 

(Table 2.2). However, Horne and Goldman (1994) warn that trophic classifications are idealized 

concepts and that real-world examples are more varied. For this study, lakes were classified if two 

of the three variables fell within range of a specific trophic level. The results indicate that only 

Pipit Lake may be considered oligotrophic (Table 2.1 and Table 2.2). Total P was below the upper 

threshold of 12.0 ppm at 8.8 ppm, and very little active Chl (0.8) was present in the sampled lake 

water. The only eutrophic lake sampled was Thunder Lake. TP was high at 52.08 ppm, and the SD 

was 2.2 m. The remaining seven lakes are classed as mesotrophic, which are typically lakes with 

an intermediate level of productivity (Horne and Goldman, 1994).  

 

 

Table 2.2: Carlson’s Trophic Level Index. (Chl = Chlorophyll-α, P = Phosphorous, SD = Secchi Disk 

depth (m)). 

 

Chironomids 

A total of 542.5 head capsules was collected and counted from the top 0.50 cm of sediment 

of each lake in order to assess the modern distribution of chironomid communities (mean=60.28, 
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maximum=88, minimum=43). Forty-three taxa were identified from the modern sediment.  

However, if less than 2% of a particular taxon was represented and they were present in fewer than 

2 lakes, they were removed from statistical analyses following Quinlan and Smol (2001). Thus 30 

taxa were used in analysis.  

Chironomus spp.  was the dominant taxa present and comprised 24.3% of the total 

chironomids recovered from all lakes (Figure 2.2). Chironomus is eurythermic and is known as a 

“blood worm” as it emits a red color due to the hemoglobin it produces (Pinder, 1986).  It is mostly 

found in the profundal zone (i.e., the deepest zone) of lakes and can tolerate low levels of oxygen 

and or short periods of anoxia for this reason (Wilson et al., 2004; Brooks et al., 2007). It is 

opportunistic and is often found in lakes undergoing environmental change as it is an early 

colonizer (Brooks et al., 2007). Corynocera oliveri-type was the second most abundant taxa 

(10.9%). This taxon is typically found in the muddy substrate of cold lakes (Brooks et al., 2007; 

Andersen et al., 2013). Porinchu and Cwynar (2000) documented the presence of these insects 

with regard to timberline in Siberia. They found that C. oliveri was found typically in the colder 

lakes located above timberline. While this is true of the assemblages collected from Pipit, 

Hutcheson, Eagle, and Box Lakes, C. oliveri had higher relative abundances from lakes below 

timberline (Thunder Lake and Odessa Lake).   Heterotrissocladius spp. (6.9%) is a very common 

taxon in all lakes collected and is typically found in the profundal of cold oligotrophic lakes that 

are well-oxygenated (Walker and Matthewes, 1988; Brooks et al., 2007; Anderson et al., 2013).  

Procladius (3.7%) was also one of the most prevalent taxa. However, the relative abundance of 

Procladius is very high in Pipit Lake and much lower in every other lake. Procladius is very 

common in lakes that are classified as mesotrophic and eutrophic and is typically associated with 

the profundal zone (Brooks et al., 2007). Sergentia (3.52%) is typically found in relatively deep,  
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Figure 2.2: Relative abundance curves for the modern assemblages collected from nine alpine lakes in 

Rocky Mountain National Park, Colorado. The taxa are arranged by subfamilies: Blue: Orthocladinae; Red: 

Chironominae; Green: Subtribe Tanytarsini; Yellow: Tanypodinae; Purple: Diamesinae. They are arranged 

with the highest elevation lake at the top and the lowest elevation lake at the bottom of the y-axis. A key to 

taxa names is available in Appendix B.2. 
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mesotrophic lakes. This taxon is found in all sampled lakes except for Cony and Eagle Lakes. The 

presence of both Chironomus and Sergentia indicates early colonization is occurring, and a 

transition from an oligotrophic state to a mesotrophic trophic state is in progress.  

The presence of taxa from the tribe Diamesinae (including Diamesa spp., Pseudodiamesa, 

and Protanypus) is of particular interest in that the remains of these taxa are extremely rare in lake 

sediment and poorly studied (Pinder, 1986; Walker, 1993; Brooks et al., 2007). Recent studies of 

chironomids in alpine streams find that the presence of Diamesinae increases with the closer 

proximity to the terminus of melting glaciers (Lencioni, 2018). Larocque et al. (2001) found that 

“Pseudodiamesa and Diamesa were most abundant in alpine-tundra lakes above timberline, 

characterized by cold climatic conditions and low sedimentary organic content” in Swedish lakes. 

Protanypus has also been found in high elevation lakes in Canada and is associated with deep and 

cold lakes (Walker and Mathewes, 1989; Larocque et al., 2001). However, these taxa have not 

been identified in previous work done on modern chironomid distribution in the continental 

Western United States (Porinchu et al., 2002; Porinchu et al., 2003, Porinchu et al., 2007; Haskett 

and Porinchu, 2014; Reinemannet al., 2014). Porinchu et al. (2003) did find Pseudodiamesa in 

sediment collected from California from the interval corresponding to ages between 14,800 cal yr 

BP and 13,700 cal yr BP. No modern assemblages were comparable at that time, and the authors 

suggested that the presence of Pseudodiamesa indicated that the glacial meltwater was responsible 

for their deposition (Porinchu et al., 2013). The presence and relative abundances of Diamesinae 

present in sediment collected from Rocky Mountain National Park suggest that this tribe may be 

used as a qualitative indicator of glacial meltwater and may assist historical reconstructions that 

use chironomids as a biological proxy for temperature.  
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 The length of the first DCA axis was 2.48, and RDA was chosen as the appropriate model 

to assess the relationship between chironomids and environmental variables. DCA also showed a 

strong relationship between glacial lakes and lakes only receiving melt from annual snowfall 

(Figure 2.3). The first DCA axis possesses taxa associated with the colder lakes typical of glacial 

input in the negative range of DCA axis 1. Taxa affiliated with warmer temperatures are located 

to the right of the axis and are positive. DCA axis 2 represents the presence or absence of 

macrophytes in the system. Positive values are indicative of taxa typically affiliated with the 

presence of macrophytes (i.e., Psectrocladius, Paratanytarsus, Cladotanytarsus, and Tanytarsus). 

Negative values are affiliated with taxa that are typically found in the littoral zone of lakes or even 

small running streams such as Eukiefferiella, Diplocladius, Limnophyes, and 

Cricotopus/Orthocladius. The top left quadrant of Figure 2.3 contains some of the coldest 

stenotherms that have been noted in the literature. According to Brooks et al. (2007), Abiskomyia 

only occurs in the coldest lakes of the arctic. Heterotrissocladius, Diamesa spp., and 

Pseudodiamesa are also noted as the coldest stenotherms present in assemblages (Walker et al., 

1997; Porinchu et al., 2003). Cony and Black Lakes are the only lakes that contain this assemblage.  

The taxa found in the bottom left quadrant are still indicative of cold water but are also affiliated 

with running water from streams or taxa more likely to be found in the littoral zone of lakes.  

Diplocladius, Limnophyes, Eukiefferiella, and Smittia are all uncommon in lake sediment and 

indicative of cold running water entering into the lake system. Surprisingly, two lakes that were 

thought to be only fed by year-of-snow, fall within this ordination space. Falcon Lake strongly 

falls within this zone. This lake was located in a rocky cirque and contained large snowfields that 

may mirror the action of glacially-fed lakes. Thunder Lake barely falls within this ordination space 
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and may be indicative of a transitional lake. However, it may also suggest that this lake is receiving 

cold meltwater from somewhere higher in its catchment.  

 

Figure 2.3: Detrended correspondence analysis bi-plot indicating the relationship between taxa, or 

assemblages, and corresponding lakes. Lakes in blue are fed by glacial meltwater. Lakes in red are fed by 

melt emanating from the annual accumulation of snow. 
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Relationship between environmental variables and chironomid communities 

RDA was used to assess which environmental variable explains the most variance in 

species distribution (Ter Braak and Verdonschot, 1995). RDA models were developed using 

forward selection combined with Monte Carlo Permutation tests (p<0.05, 999 permutations) 

(Table 2.3; Figure 2.4). Only 3 of the 26 environmental variables were statistically significant with 

a fourth being close; SWT (p=0.037), NO3+NO2-N (p=0.049), boron (B) (p=0.053), and C % (p= 

0.057). The first axis of the RDA, consisting of SWT, boron, and C%, were identified as 

statistically significant (p= 0.022). Surface water temperature explained the majority of the 

variance present within the data (7.5%), followed by NO3+NO2-N (7.5%), B (7.4%), and C% 

(7.1%). The first RDA axis explained 9.8% in the variation of the distribution of chironomid taxa 

and was the only axis that was statistically significant (p=0.019).  

 

Figure 2.4: Redundancy analysis bi-plot depicting the relationship between surface water temperature 

(°C), carbon %, boron, and chironomid taxa from the study sites. 
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Relationships between statistically significant variables were explored using Pearson’s 

correlation coefficient. Only SWT and NO3+NO2-N were strongly and negatively correlated (r=-

0.82, p=0.007), and glacial meltwater is the driver that explains the relationship between the two 

variables. For this study, NO3+NO2-N was removed from the analysis as the correlation is too 

strong. However, this trend is well-documented in the western United States (Slemmons et al., 

2013). The atmospheric deposition of nitrogen has been collecting on stable glaciers for decades 

due to urbanization. Elevated air temperatures in the latter part of the 20th and into the 21st century 

have caused glaciers to recede, which has introduced nitrogen into these systems (Wolfe et al., 

2003). Slemmons et al. (2017) found that glacially-fed lakes in the Rocky Mountains are 47 times 

higher in nitrogen than snow-fed lakes. The Loch Vale Watershed is a long-term research site in 

Rocky Mountain National Park. Regional data collected from the Loch Vale Watershed site 

indicate that nitrate concentrations in alpine streams have increased by 50% since 2000 (Baron et 

al., 2009). While SWT was the variable used in the analysis, this variable represents glacial 

meltwater contribution. The surface water temperatures of glacially-fed lakes were ~2.62°C colder 

than their paired lakes that only receive year-of-snow meltwater. The average difference in 

nitrogen was 66% higher in glacial lakes. While the relationship between atmospheric nitrogen 

deposition and algal communities is established (Slemmons et al., 2015; Slemmons et al., 2017), 

this is the first study to find a relationship between atmospherically-deposited nitrogen and 

chironomids.  

The relationship between chironomid communities and temperature is well established but 

poorly understood. Brundin (1949) noted cold stenotherms such as Heterotrissocladius spp. and 

Sergentia coracina present in late glacial sediment (Brundin, 1949; Porinchu and MacDonald, 

2003). Quantitative paleotemperature reconstruction of SWT were first performed by Walker et 
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Table 2.3: Forward selection of variables with Monte Carlo permutations (n=999). Statistically significant 

variables are in bold font. 

 

 al. (1991) on sediment collected from eastern Canada in the early 1990’s.  Air temperature models 

followed soon after. Lotter et al., (1997) reconstructed air temperatures from a core collected from 

the Swiss Alps in the late 1990’s. (Lotter et al., 1997). However, the findings from this study 

indicate that SWT (i.e., glacial melt) is the environmental variable most responsible for the 

distribution of modern chironomid communities, whereas Mean July Air Temperature (MJAT) 
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was not significant (p=0372).  This finding illustrates that applying inference models to find to 

solely model air temperature is inappropriate when developing temperature reconstructions for 

fossil records as SWT and air temperature don’t always covary. A need for a more in-depth 

understanding of how different temperatures affect the different lifecycles of chironomids is 

necessary to address future chironomid work. The results of this study suggest that active glacial 

activity present within a catchment will directly influence the chironomid communities present on 

the benthos. Future studies should acknowledge if the lake under investigation is/or has ever been 

influenced by glacial meltwater. If the presence and/or absence is not known for the history of the 

lake, the presence of taxa from the tribe Diamesinae may act as qualitative indicator species 

downcore. Diamesinae may also indicate the presence of cold, flowing water into the system and 

would indicate that temperature reconstructions will produce colder conditions for SWT than were 

present for air temperature. 

The presence of boron in lake water and its impacts on chironomid communities is poorly 

understood, and no studies currently exist that investigate this relationship.  While boron may be 

a natural byproduct derived from weathering processes on sedimentary bedrock such as shales and 

coal deposits (Moss and Nagpal, 2003; Barber et al., 2006), the bedrock of all lakes sampled for 

this study are igneous diorites and granites interspersed with biotite gneisses and schists. However, 

boron may be used as an inorganic tracer of anthropogenic activity (Barber et al., 2006). Boron is 

known as an indicator of wastewater and is a byproduct of nonchlorine bleach. The third pathway 

of boron deposition may result from the fly ash particles created from coal-fired power plants 

(Moss and Nagpal, 2003; Barber et al., 2006).  Due to the remoteness and elevation of the sample 

sites, this scenario is the most likely explanation for the presence of boron in high alpine lake 

water. The coal-fired Valmont Generating Station was located down the valley in the Boulder 
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Creek Watershed from 1924 to 2017 and may be a possible source for the boron present in these 

systems. Trace amounts of boron could potentially be uplifted into the mountains by winds 

controlled by the summer monsoon. Additionally, the dominant westerly winds could be carrying 

boron derived from fertilizers to the west of the study site. Further research is needed to resolve 

the source of boron in this area.  

  Initially, the relationship between boron and glacial activity was explored as a possible 

explanation for the distribution of boron in these lakes. However, the correlation between SWT 

and boron (r=-0.36, p-value=0.345) as well as NO3+NO2-N and boron (r=0.22, p-value=0.566) 

were not statistically significant. Furthermore, two glacial lakes had boron levels below detection 

(Hutcheson and Odessa Lakes), and two snow-fed lakes have varying levels (Falcon Lake (0.05 

ppm) and Thunder Lake (0.01 ppm)).  The levels of boron are very low (0.00 – 0.05 ppm) and 

mirror minimum to median values for naturally occurring boron in surface water collected in 

British Columbia, Canada (0.01 ppm and 0.07 ppm, respectively) (Moss and Nagpal, 2003). On 

average, levels of boron in US freshwater are about 0.10 ppm (Butterwick et al., 1989). Maier and 

Knight (1991) investigated the role of toxicity of waterborne sodium tetraborate on Chironomus 

decorus and found that growth rates were affected at 20 mg B/L, and acute toxicity occurred after 

48 hours at a level of 1376 mg B/L. However, the authors caution that aquatic macrophytes are 

much more susceptible to boron than macroinvertebrates and thus food dynamics for chironomids 

are more likely to be affected, which may explain the relationship between modern chironomid 

communities and the presence of boron in RMNP (Maier and Knight, 1991). Other studies indicate 

higher uptake of boron in filamentous algae than chironomids (Saiki et al., 1993). Future research 

is needed to address these relationships in a more in-depth manner.  



 

33 

 

Carbon (C %) collected from bulk sediment is often used to understand the organic matter 

content within a lake (Meyers and Ishiwatari, 1993). Higher levels of organic carbon indicate that 

the lake is more productive, and larger sources of available food for chironomid larvae (Francis, 

2004).  Many studies have found a strong statistical relationship between organic carbon and 

chironomids in Fennoscandia (Olander, 1999), Sweden (Larocque et al., 2001), northwestern 

Canada (Wilson and Gajewksi, 2004), and New England of the United States (Francis, 2004).  

Wilson and Gajewksi (2004) argue that the large gradient of organic carbon collected for these 

studies captures a wide array (3 to 87%) that partially explain the distribution of chironomid 

communities in northern British Columbia and southwestern Yukon.  The authors argue that other 

chironomid workers, such as Walker et al. (1991), did not capture as full a gradient and were less 

likely to see this relationship. Our study only captures a gradient from 5.3% to 13.4%, and yet C 

(%) is an important environmental variable for understanding the modern distribution of 

chironomid communities in the alpine lakes of Rocky Mountain National Park.  However, it should 

be noted that organic carbon content of bulk sediment is created from the interaction of primary 

productivity, wind and wave action, sediment availability, distance from shore, light penetration, 

and nutrient availability (McGarrigle, 1980; Wilson et al., 2004). For this reason, chironomid 

workers have been cautious in their interpretation of the relative importance of organic carbon as 

it is often highly correlated with depth and surface water temperature (Lotter et al., 1997; Olander 

et al., 1999; Wilson et al., 2004). The relationship between surface water temperature and C% is 

correlated in this study (r=0.66, p=0.055). However, this relationship is not strong enough to 

warrant removing it from analysis as the statistical probability that the relationship between SWT 

and C% occurred by chance is more likely than the relationship evident between SWT and 

NO3+NO2-N.  
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CONCLUSION 

The findings of this study indicate that glacial retreat is impacting the chironomid 

communities in the high elevation lakes located along the continental divide of the Colorado Rocky 

Mountains. Surface water temperature and NO3+NO2-N were extremely and strongly negatively 

correlated, indicating that glacial retreat is responsible for the greatest amount of explained 

variance (14.95%) from our model. Furthermore, limnological measures and the high presence of 

Chironomus and Sergentia suggest that early colonization of formerly oligotrophic to mesotrophic 

conditions is currently underway. However, cold stenotherms, such as Heterotrissocladius, are 

still present in high relative abundances suggesting these lakes are still affiliated with extremely 

cold conditions. The presence of taxa from the tribe Diamesinae (Diamesa, Pseudodiamesa, and 

Protanypus) are present in high numbers relative to the previous chironomid lacustrine studies and 

may indicate extremely cold and running water entering into the lakes. These taxa may be useful 

as qualitative indicators of meltwater and may be useful for downcore paleotemperature 

chironomid-based reconstructions.  

The findings from this study indicate that the high elevation lakes located in the remote 

lands of Rocky Mountain National Park have been impacted by decades of land use practices and 

increasing temperatures. Almost all lakes in this study are no longer oligotrophic and are becoming 

more productive. The presence of boron in some lakes is also concerning as their presence indicates 

that anthropogenic activities are shaping these remote alpine ecosystems.  This understanding will 

enable land managers for Rocky Mountain National Park to understand the current situation of 

water quality within the park.  

The results from this study also inform our understanding of the processes that occur during 

the transition from glacial to interglacial stages in sediment. Many lakes that are studied for 



 

35 

 

paleoclimatology are often found in remote locations and were formed by glacial activity. This 

study indicates that future work should endeavor to understand the glacial history within the lake 

catchment in order to refine midge-based temperature reconstructions. The presence of 

Diamesinae may suggest that warmer air temperatures were occurring as SWTs were decreasing. 

Future research may also explore possibilities of combing reconstructions of SWT and air 

temperature  as drivers change within the system.  
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CHAPTER 3 

CHIRONOMID EVIDENCE OF GLACIAL RETREAT AND CORRESPONDING CHANGES 

IN SURFACE WATER TEMPERATURES DURING THE PLEISTOCENE-HOLOCENE 

TRANSITION FROM AN ALPINE LAKE IN COLORADO, USA.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 Haskett, D.R., G. Jiménez-Moreno, and R.S. Anderson. To be submitted to The Holocene. 
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ABSTRACT 

A high-resolution record for environmental change during the transition from the Pleistocene into 

the Holocene was developed using chironomid data for central Colorado. The chironomid-based 

surface water temperature (SWT) inference model (r2
boot = 0.38, RMSEP = 2.74°C) incorporated 

153 lakes from California, Utah, and Colorado. Three distinct zones were evident in the subfossil 

chironomid assemblages based upon constrained hierarchical clustering analysis. The oldest zone 

(12,659 - 11,901 cal yr BP) coincides with the Younger Dryas chron (c. 12.9-11.5 ka), and no 

chironomid remains were recovered until ~11,900 cal yr BP. The transition into the Holocene was 

captured in the second zone (11,901 - 10,033 cal yr BP). SWT temperatures were the lowest 

evident in the reconstruction until 11,334 cal yr BP and averaged 8.2°C. An increase of 4.7°C 

occurred after this period and led to a new stable period that fluctuated around an average SWT of 

9.8°C. The indicator species, Diamesa spp., was found at the base of this zone, suggesting glacial 

meltwater from the Pinedale Glaciation continued to enter into Kite Lake until ~11,000 cal yr BP. 

Changepoint analysis of faunal turnover suggests that Chironomus replaced Diamesa, a species 

affiliated climatic amelioration at 11, 300 cal yr BP. The third zone (10,033 - 9,236 cal yr 

BP) represents the earliest stable Holocene. The presence of Cladotanytarsus, Paratanytarsus, 

and Procladius indicates a period of warmth and productivity. SWTs were the highest recorded 

and averaged 12.5°C. 

 

Keywords: Pleistocene-Holocene Transition; Abrupt Climate Change; Chironomid; Glacial 

Retreat; Chironomid Succession; Colorado 
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INTRODUCTION 

The Younger Dryas (YD) was first recognized in Allerød, Scandinavia, when scientists 

found pollen from the cold-loving arctic and alpine herb Dryas Octapela in a sandy layer overlying 

peaty sediment containing evidence of thermophilous trees (Anderson et al., 2013). Not only did 

this discovery define the transition from the warmer Bølling-Allerød to the much colder YD, but 

it also marked the breakthrough of one the most significant climatic deteriorations in recent 

geologic history. The Younger Dryas began 12,800 years ago and lasted until 11,600 y BP, a date 

that corresponds with the transition to the Holocene (Rasmussen et al., 2006; Anderson et al., 

2013). Evidence from ice cores collected in Greenland indicates the onset of a prominent decade-

long stepped cooling to near glacial conditions at ~12,850 (Alley et al., 1993). The cold phase 

lasted for approximately 1,200 years before the climate warmed by 7°C in less than 50 years in 

Greenland (Anderson et al., 2013).  

           Glacial, paleolimnological and paleobotanical evidence suggests that much of the Western 

United States were affected by the colder conditions that were evident during the Younger Dryas 

(Porinchu et al., 2003; Licciardi et al., 2004; MacDonald et al., 2008; Goebel et al., 2011). Dated 

records of moraines collected from the Colorado Front Range, the Wyoming Wind River Range, 

the Canadian Rockies, and the Cascades all indicate the readvancement of alpine glaciers during 

this chronozone (Licciardi et al., 2004). Diatoms, isotopes, and chironomids collected from two 

lakes in the east-central Sierra Nevada suggest cooler temperatures as well as a shift from dry to 

moist conditions with the onset of the YD (MacDonald et al., 2008). These findings are also 

evident with increases in lake levels of Lake Bonneville and the Lahontan Basin of the Great Basin 

(Goebel et al., 2011).  
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Paleoclimatic reconstructions from the Colorado Rocky Mountains indicate that the 

magnitude and extent of the YD in this area are less apparent. Reasoner and Jodry (2000) estimated 

that treeline in the Southern Rocky Mountains moved downslope by 60-120 m, indicating that the 

area was affected by the climatic cooling of the YD. Pollen records show an increase in the amount 

of Artemesia at the same time that Pinus and Picea decreased, which suggests a shift from 

subalpine forest to alpine tundra (Markgraff and Scott, 1981; Vierling, 1998; Briles et al., 2012). 

Monazite dissolution peaked at ~10.5 ka, and represents a major paleoweathering boundary in a 

sediment record collected from the Front Range, Colorado at the Pleistocene-Holocene transition 

(Price et al., 2017). However, some studies indicate asynchronous glacier maxima (Brugger et al., 

2019). Some studies suggest that this trend is muted (Briles et al., 2012) or completely absent from 

some records collected from the area (Fall, 1997). Vierling (1998) suggests that the dynamic 

processes at work in mountainous environments could account for this trend.  

Chironomids (Insecta: Diptera) have been extensively used to qualitatively and 

quantitatively (Battarbee, 2000; Porinchu and MacDonald, 2003; Smol, 2010) describe climatic 

and environmental change over variable timescales (Porinchu et al., 2010; Axford et al., 2011). 

Recent work indicates that chironomids are sensitive to glacial meltwater and may aid in the 

interpretation of downcore reconstructions of abrupt climatic change associated with deglaciation 

(Lencioni, 2018; Haskett, 2020a). This biological proxy, combined with pollen and magnetic 

susceptibility work done by Jiménez-Moreno and Anderson (2012), may refine our understanding 

of high alpine lake response to the transition from the cold conditions evident during the YD into 

the warmer, stable states of the early Holocene in central Colorado. 

 

 



 

40 

 

STUDY AREA 

Kite Lake (39.33°, -106.13°) is located at 3665m asl and is located in the Pike Nation 

Forest, which is found in the Mosquito Range of the central Colorado Rocky Mountains (Chronic, 

1964) (Figure 3.1a and Figure 3.1c). The lake basin is surrounded by four high mountain peaks 

(Mount Democrat 4314m; Mount Cameron 4340m; Mount Lincoln 4357m; Mount Bross 4322m) 

and lies in a cirque basin comprised of Precambrian granites, granodiorites, and monzonites. 

Outcrops of intrusive biotite gneiss, limestone, and sandstone are also present in the catchment 

(Stoeser et al., 2005).  

 

Fig. 1a: Colorado study site in context of the United States. 

 

The climate of Colorado is influenced by its continental position within the United States. 

Air masses originating over the Gulf of Alaska and Baja, California, deliver moisture to the 

Colorado Rockies in the form of significant snowfall events from October to May (Carrara et al.,  
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Figure 3.1b: Extent of mountain glaciers in the Colorado Rocky Mountains during the last glacial 

maximum 

 

Figure 3.1c: Map of Kite Lake study site 
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1991). These events account for the majority of rainfall that the areas receive, particularly in higher 

elevations (Carrera et al., 1991). By July, the Arizona Monsoon sets up when warmer subtropical 

air masses form over the Gulf of California and the Gulf of Mexico. The deserts to the southwest 

of Colorado cause a thermal low to form, which then draws moisture-laden air up from the Gulf 

of California (Carrera et al., 1991). The air masses that developed over the Gulf of Mexico join 

them and cause enhanced circulation and heavy thunderstorms, which contribute 30-35% of the 

area’s annual precipitation (Carrera et al., 1991). The active monsoon season creates a climate that 

is warm and moist. This situation allows for the expansion of forests if monsoonal activity prevails 

over extended periods of time. During colder periods, the monsoonal strength is limited, and 

therefore cooler temperatures and/or drier conditions inhibit plant growth and treeline, sub-alpine, 

and montane forests respond by moving downslope (Markgraff and Scott, 1981; Reasoner and 

Jodry, 2000). Jiménez-Moreno and Anderson (2012) describe the modern climate for Kite Lake 

based on climate data collected from the Western Regional Climate Center (WRCC). Annual 

average high and low temperatures for the Kite Lake site are 6.1°C and -7.3°C, respectively. The 

average summer high temperatures for June, July, and August are 16.6°C, and average winter low 

temperatures for December, January, and February are -16.3°C. The area receives 713 cm of snow 

and an annual average of 62.8 of precipitation (Jiménez-Moreno and Anderson, 2012) 

The Colorado Rocky Mountains possesses a glacial history evident as diachronous changes 

that affected individual local environments differently (Richmond, 1960; Benedict, 1973; Benson 

et al., 2007). The Pinedale glaciation, which was concurrent with the last glacial maximum (LGM), 

occurred earlier than other environments around North America (Pierce, 2003; Leonard et al., 

2017). Radiocarbon dating of organic materials collected from lake sediment support ages that 

range 22,000 to 25,700 years before the present before retreating to cirque basins (Rosenbaum and 
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Larson, 1983; Pierce 2003). Other studies have found dates that indicate a later onset of glacial 

retreat that began 17,000 years before present in the Mosquito Range (Ehlers et al., 2011; Leonard 

et al., 2017; Brugger et al., 2019) (Figure 3.1b). A small advance, known as The Satanta Peak, was 

concurrent with the Younger Dryas (Benedict, 1973; Benson et al., 2007). Holocene glacial 

advancements have primarily been restricted to cirques and were much smaller than those that 

moved downslope during the Pinedale Glacial (Benedict, 1973).    

Elevational gradients control the vegetation located in central Colorado and broadly make 

up six different vertical zones: 1) the Upper Sonoran life zone found along the lowest elevations 

of eastern slopes. Pinyon-Juniper forests are typical and located on localized foothill communities 

with warmer aspects; 2) the montane forest lies below 2700 m and is composed primarily of 

ponderosa pine (Pinus ponderosa) savanna on the southern exposures. Northern slopes support 

Douglas fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) forests. Shrubland may 

exist on drier slopes and are dominated by communities composed of big sagebrush (Artemisia 

tridentate). 3) Aspen (Populus tremuloides) colonies demarcate the transition zone from montane 

forest to subalpine forest. 4) The subalpine zone lies between ~2700 m and ~3500 m and is 

characterized by spruce-fir forest with significant areas of lodgepole and limber pine (Pinus 

contorta and Pinus flexilis) as well as aspen; 5) the transition zone to alpine tundra is dominated 

by spruce-fir krummholz; 6) alpine tundra lies above ~3500 m and consists of grasses, sedges, and 

dwarf shrubland. The highest elevations of this region are typically free of vegetation and are 

comprised of bare rock, fell fields, snowbanks, and glaciers (RMNP, 2006). The vegetation 

surrounding Kite Lake consists of Engelmann Spruce (Picea engelmannii) krummholz and willow 

(Salix) (Jiménez-Moreno and Anderson, 2012).        

 



 

44 

 

MATERIALS AND METHODS 

Two cores were collected from the approximate center of Kite Lake during the summer of 

2007 (Jiménez-Moreno and Anderson, 2012). The first core (KL-07-01) was collected using a 

Livingstone corer and measured 830 cm in length. A second shorter core containing the uppermost 

flocculent sediment was also collected (KL-07-02). The purpose of this study was to assess 

environmental and climatic change from the transition from the Pleistocene into the Holocene; 

only the sediment collected from KL-07-01 was used as this core represented the oldest sediment 

collected. 

  The chronology developed by Jiménez-Moreno and Anderson (2012) was used in this 

study to aid in the comparison between chironomid and pollen data. Twelve AMS dates were 

analyzed using the remains of plant material as well as bulk sediment. Radiocarbon dates were 

calibrated using Calib version 5.0.2 (Jiménez-Moreno and Anderson, 2012; Stuiver et al., 1998). 

The median calibrated age was used for each sampled date. The chronology was then developed 

using linear interpolation between each adjacent date, following Jiménez-Moreno and Anderson 

(2012) in order to explore the relationships between chironomid communities and pollen 

assemblages (Figure 3.2). Please see Jiménez-Moreno and Anderson (2012) for more details 

regarding chronology development.  

 

Chironomid Inference Model Development 

A suite of limnological variables and corresponding chironomid counts from 153 lakes 

were used for the creation of a training set from the western United States (Haskett and Porinchu, 

2014) and includes data from 51 lakes from the Uinta Mountains in Utah, 55 lakes from the Sierra 

Nevada 
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Figure 3.2: Age-depth diagram for the Kite Lake stratigraphy. The samples not used in model 

development are shown in red. The dashed line represents represents uncertainty between the two points 

as the the basal date was found to be too old. Data from Jiménez-Moreno and Anderson (2012). 

  

in California, and 38 lakes from the Sawatch Range in Central Colorado. An additional nine lakes 

from the Front Range of Colorado were added (Haskett, 2020a). Dr. David Porinchu collected the 

lakes from California and Utah for his work in the Western United States (Porinchu et al., 2002; 

Porinchu et al., 2010). The lakes from CO were collected by Haskett and Porinchu (2014) and 

Haskett (2020). A suite of environmental variables captured by the training set represents large 
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gradients of natural variability with elevations lying between 2115 to 3893 m, surface water 

temperatures between 5.4-21.4°C, and air temperatures between 8.2-18.7°C (Appendix B.1).  

           Limnological variables were collected from the center of each lake. A Yellow Springs 

Instrument (YSI) professional probe was used to sample pH, surface water temperature in °C 

(SWT), dissolved oxygen (DO), and specific conductivity. A Secchi disk was used to find the 

depths at which the Secchi disk disappeared and reappeared, which provides a useful measure of 

optical transparency. The rope of the Secchi disk was demarcated at 1-meter intervals and was also 

used to measure maximum lake depth. Mean July air temperatures (MJAT) were extrapolated from 

the PRISM dataset provided by the PRISM Climate Group at Oregon State University 

(http://www.prism.oregonstate.edu/). Short sediment cores were collected from each lake using a 

DeGrand Corer. The uppermost 1.00 cm of sediment was processed for subfossil chironomid 

remains following the procedures outlined in Walker (2001). All statistical analysis was performed 

using the opensource platform R (Team, 2013).  

           Haskett and Porinchu (2014) developed a robust model for the Intermountain West (IMW) 

for mean July air temperature (MJAT) (r2jack=0.61, RMSEP=0.97°C) that reconstructed MJAT 

for a site in central Colorado that spanned MIS 5 and MIS 6. In a recent study, Haskett (2020a) 

found that glacial meltwater influences modern chironomid communities in the Front Range of the 

Rocky Mountains. The study also found that SWTs and MJATs were decoupled, and SWT was 

the sole temperature that was statistically significant (p=0.037). The glacial history of the Mosquito 

Range (Brugger et al., 2019) combined with a bottom age of ~17,000 cal yr BP collected from 

Kite Lake (Jiménez-Moreno and Anderson, 2012) suggest that deglaciation initiated during the 

late Pleistocene for this site.  Further evidence from the chironomid communities collected from 

Kite Lake’s stratigraphy (to be discussed) suggests that glacial meltwater contributed to Kite 
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Lake’s hydrology until ~11,000 cal yr BP (Haskett, 2020). For this reason, it was determined that 

SWT was the more likely environmental variable responsible for fossil chironomid distribution, 

and a new inference model for SWT was developed for this study, which will hereafter be referred 

to as the Western US (WUS) chironomid calibration set and SWT inference model. All 153 lakes 

were included in the creation of the model as no a priori details were available to determine if any 

lake or sample were outliers. To find outliers in training set data, some authors use an absolute 

residual (predicted-observed) greater than one standard deviation away from the modeled 

environmental variable (Jones and Juggins, 1995; Haskett and Porinchu, 2014). The author feels 

that this procedure inappropriately refines the model by using data that was unknown until model 

creation and thus provides robust performance statistics that may or may not represent reality as it 

artificially enhances the performance of the model. Salonen et al. (2013) studied how quantitative 

paleoclimatic reconstructions are impacted by calibration data set selection and found that while 

absolute temperatures were influenced by the training set used, the overall relative shapes of the 

reconstructed curve are robust. Other studies have found that that training set development does 

not affect transfer function development (Ginn et al., 2007) 

The Rioja package (Juggins and Juggins, 2019) for the platform ‘R’ was used to develop 

the WUS chironomid-based inference model for surface water temperature (SWT). A minimum 

of 50 subfossil chironomid head capsules was extracted (Quinlan and Smol, 2001; Larocque, 2001) 

from sediment, and chironomid count data were square-root transformed to stabilize variances 

(Prentice, 1980). Weighted-averaging partial least squares (WA-PLS) up to five components and 

modern analog technique (MAT) were both used to develop chironomid-inference models for 

SWT (Table 3.1). 
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WUS Inference 

Model 

WA-

PLS 

 
bootstrapping  n=10,000 

  

Components RMSE R2 Max Bias RMSEP R2 Max Bias 

X Val 

Random 

t-test p-

value 

1* 2.5 0.47 4.34 2.8 0.38 5.52 0.001 

2 2.2 0.58 4.51 2.9 0.38 6.08 0.591 

3 2.1 0.63 3.54 3.1 0.35 6.65 0.977 

4 2.0 0.65 3.59 3.3 0.32 7.11 0.993 

5 2.0 0.67 3.43 3.5 0.30 7.29 0.999         

WUS Inference 

Model 

MAT 
      

Components RMSE R2 Max Bias RMSEP R2 Max Bias  

wm 

 

1* 3.5 0.18 6.86 3.5 0.18 6.86 
 

2 3.1 0.26 6.64 3.1 0.26 6.65 
 

3 3.0 0.27 7.03 3.0 0.27 6.98 
 

4 2.8 0.32 6.10 2.8 0.32 6.13 
 

5 2.8 0.33 6.52 2.8 0.33 6.49 
 

 
Table 3.1: Western United States chironomid-based inference model for surface water temperature (°C) 

 

          

Weighted-averaging (WA) was not exclusively explored as the first component of WA-

PLS is equivalent to WA (ter Braak et al., 1993). The model was cross-validated using 

bootstrapping (n=10,000). Bootstrap cross-validation is the more appropriate choice for cross-

validation for more extensive training sets (Juggins and Birks, 2012). The performance of each 

cross-validated model was then evaluated by assessing different metrics for performance. The 

parameters included the 1) root mean square error of prediction (RMSEP); 2) the maximum bias, 

which is a measure of the maximum mean bias along the temperature gradient (ter Braak et al., 

1993); 3) the correlation between the predicted SWTs and measured SWTs (r2) (Telford and Birks, 

2011a); and 4) the number of components necessary for model development (Telford and Birks, 
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2011a). A randomization t-test of the cross-validated WA-PLS model was performed to aid in the 

selection of the appropriate number of components (van der Voet, 1994).  

           The Kite Lake chironomid-based SWT reconstruction was assessed for reliability. 

Reconstructions are considered to be reliable if 95% of the subfossil taxa collected from the long 

core are present in the modern calibration set (Birks, 1998). Correspondence analysis (CA) was 

used to establish the correspondence between species (species scores) and their corresponding site 

or location (sample scores) (Legendre and Legendre, 2012). The diagnostic statistics resulting 

from MAT were also useful in exploring how reliable the SWT reconstructions were. The 

distribution of dissimilarities based on square chord distances found the taxonomic distances from 

fossil assemblages to the most similar modern assemblage (Birks et al., 1990). Percentiles (5th and 

10th) of the distribution of dissimilarities were used to define areas of “no close analogs” and “no-

analogs,” respectively (Telford and Birks, 2011b). These analyses were performed in the R 

statistical package “Rioja” (Juggins and Juggins, 2019). Additional significance testing was 

performed by exploring whether the fossil data explained more variance than 95% from 

randomized reconstructions (Telford and Birks, 2011b) (Figure 3.10). 

 

Stratigraphic chironomid analysis 

           Samples for chironomid extractions were taken every 2 cm throughout the core (Jiménez-

Moreno and Anderson, 2012). Access to data was limited for sections 362-372 cm and 374-384 

cm, and chironomid extraction was not possible for these samples. 
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           Chironomid subfossil remains were extracted from the Kite Lake stratigraphy following 

methods found in Walker et al. (1991). Sediment was heated in an 8% potassium hydroxide (KOH) 

solution at 35°C until the sediment disaggregated. The remaining material was then rinsed with 

distilled water over a 95µm sieve to collect residual matter. Chironomid head capsules were 

removed from the solution using fine forceps under a stereomicroscope and permanently mounted 

on microscopic slides. A minimum of 50 identifiable head capsules was collected to satisfy 

statistical limits before moving to the next sample (Larocque et al., 2001). Several taxonomic keys 

were used to aid in the identification of extracted chironomids and include Brooks et al., (2007), 

Andersen et al., (2013), and Chiro Key (2020). Subfossil chironomid relative abundance data were 

square-root transformed and taxa were removed if they were present in less than two lakes and 

possessed 2% of the relative abundance of the sample. This deletion limits the influence of rare 

taxa on the SWT reconstruction (Quinlan and Smol, 2001).  

           The Rioja (Juggins and Juggins, 2019) and Vegan (Oksanen et al., 2013) R packages were 

used to identify naturally occurring zones in subfossil chironomid communities by using 

constrained hierarchical cluster analysis (Bennett, 1996; Birks, 2012a). The Vegan package 

(Oksanen et al., 2013) was used to analyze detrended correspondence analysis (DCA), a form of 

indirect gradient analysis. DCA is used to quantify faunal turnover (Smol and Douglas, 2007; 

Legendre and Birks, 2012a), represents a measure of “episodes of synchronous appearance and 

disappearance of species from a community” (Badgley and Gingerich, 1988). The rapid 

compositional change associated with faunal turnover often represents significant fluctuations in 

environmental conditions (Battarbee, 2000; Smol and Douglas, 2007). The changepoint analysis 

was performed on the results of the DCA to detect where changes occurred in the stratigraphy 

(Killick et al., 2012; Haynes et al., 2016). The package “changepoint.np” was used to locate these 
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areas of change (Haynes et al., 2017). Indicator species are organisms that reflect specific 

environmental conditions based on their abundance, presence, and/or absence in an assemblage 

(McDonough et al., 2012). Multi-level pattern analysis was implemented in the R package 

‘indicspecies’ (De Cáceres and Jansen, 2019).  

RESULTS 

Modern Chironomid Assemblages 

An additional nine lakes were collected from the Front Range of Colorado and added to 

the 144 existing training set lakes established by Porinchu et al. (2010) and Haskett and Porinchu 

(2014) (Figure 3.3). The addition of these lakes added new information regarding the distribution 

of the subfamily Diamesinae. Three species from this subfamily were added to the training set and 

included Diamesa spp., Pseudodiamesa, and Protanypus.  Diamesinae is known for chironomid 

taxa that are cold stenotherms and have been well-documented in Southern Alps alpine streams 

where they are affiliated with glacial meltwater (Lencioni, 2018). However, they are poorly 

understood and underrepresented in lake sediment (Pinder, 1986; Walker, 1993; Brooks et al., 

2007). A recent study (Haskett, in prep) found that this relatively obscure subfamily are present in 

lakes that are currently receiving glacial meltwater. 

Diamesa was present in two additional lakes (MLA-CO and SVL-CA) in the training set. 

Silver Lake (SVL) (37.78, -119.12) is located in the Sierra Nevada in CA and lies directly south 

of Mono Lake. Upon closer examination using data from Fountain et al., (2007), two small and 

unnamed glacial bodies feed Silver Lake from the west. Maroon Lake-adjacent (MLA) (39.40, -

106.52) is located in the Sawatch Range of the Colorado Rocky Mountains. No apparent ice bodies 

were evident using the data set from Fountain et al. (2007). After using Google Earth to explore 

the area, the lobe of a distinct rock glacier (Stumm et al., 2015) is reaching into the lake basin, 
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which could account for the presence of Diamesa in the chironomid assemblage collected from 

the basin. These findings further substantiate the relationship between glacial retreat and the 

presence of Diamesinae in lake sediment. 

After assessing performance statistics, WA (or the first component from the WA-PLS 

model) was found to be the most robust model with an RMSEP=2.74°C and r2boot =0.38 (Figure 

3.4a). Kite lake has experienced significant changes in its history over time, which began with 

deglaciation from LGM, or the Pinedale Glaciation, and thus all 153 lakes were included to capture 

as much natural variability as possible. The performance of the new WUS inference model is not 

as robust as previous inference models of MJAT in the Intermountain West (Porinchu et al., 2010; 

Haskett and Porinchu, 2014). The presence of taxa from the subfamily Diamesinae downcore in 

the Kite Lake stratigraphy indicated that glacial retreat was present in the catchment. Thus, SWT 

was the more appropriate temperature to model. 

 

Kite Lake Midge Stratigraphy 

Constrained hierarchical cluster analysis indicates that three zones exist in the chironomid 

subfossil assemblage data (Figure 3.5). Kite Lake Zone 1 (KLZ1) represents the most recent 

sediment analyzed for chironomid remains (Figure 3.6) . Cluster analysis indicates that this zone 

is comprised of sediment collected from 300 – 344 cm with ages ranging from 9,236 – 10,033 cal 

yr BP. Kite Lake Zone 2 (KLZ2) ranges from 344-418 cm in the stratigraphic record. This sediment 

corresponds to ~10,033 to 11,901 cal yr BP. The deepest sediment included in this analysis 

represents Kite Lake Zone 3 (KLZ3). KLZ3 makes up sediment from 428-466 cm and includes 

ages that range from 11,901 to 12,659 cal yr BP. The sediment of this entire section is composed 

of laminated clays that are light gray (Jiménez-Moreno and Anderson, 2012). 
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Figure 3.3: Relative abundance curve of the 

Western United States training set (Cory.Th = 

Corynoneura/Thienemanniella; Cric.Ort =  

Cricotopus/Orthocladius; Chaeto = 

Chaetocladius; Euk.Tvet  =  

Eukiefferiella/Tvetenia ; Hyd.Oliv = 

Hydrobaenus/Oliveridia; Lim.Para = 

Limnophyes/Paralimnophyes; Park.bat = 

Parakiefferiella bathophila-type; Psecsemi = 

Psectrocladius sordidellus-type; Rheoind = 

Rheocricotopus; Zaluind = Zalutschia;  Heteind 

= Heterotrissocladius ;  Chirind = Chironomus ; 

Cladind= Cladopelma; Dicrind = Dicrotendipes; 

Micrind = Microtendipes; Phaenind = 

Phaenopsectra; Sergind = Sergentia; Cladtany = 

Cladotanytarsus; Corynamb = Cornocera 

ambigua-type; Colivtyp = Corynocera oliveri-

type; Micpsect = Micropsectra; TAC = 

Tanytarsus type C; TAG = Tanytarsus type G; 

TAH = Tanytarsus type H; Tanyind =  

Tanysarsus indeterminable ; Paratany = 

Paratanytarsus; Procind  =  Procladius; Pentind 

= Pentaneurini; Diamind = Diamesa). 
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Figure 3.4: A) Relationship between recorded surface water temperatures and midge-based predicted 

surface water temperatures. The red line represents the 1:1 relationship; B) The difference between 

observed and predicted surface water temperatures (°C). 

 

KLZ3 (466-428 cm; 12,659 - 11,901 cal yr BP): Younger Dryas 

          The deepest and oldest sections sampled for analysis contained no subfossil chironomid 

remains. The lack of head capsules did not satisfy the minimum 50 head capsule requirement and 

could not be analyzed. 

 

KLZ2 (428-344 cm; 11,901 - 10,033 cal yr BP): Transition into the Holocene 

Overall, the species richness (min=1; max-14; avg=8.4) sharply increases with the onset of 

KLZ2 and decreases by 11,500 cal yr BP. Sharp peaks exist in head capsule concentration (# head  
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Figure 3.5: Derived chironomid zones based on constrained hierarchical cluster analysis 

 

capsules/mL), richness, and SWT (4.7°C) at 11,293 cal yr BP (Figure 3.7). These observations 

coincide with a changepoint in DCA, which indicates that faunal turnover changed significantly at  

this time. Once SWTs increased at 11,293 cal yr BP, temperatures fluctuated around an average of 

9.8°C. This trend is warmer than the midge-based SWT reconstructions before the changepoint. 

This period was characterized by cooler SWTs that averaged 8.2°C. Chironomid concentrations 

decreased to 2.5/mL at 372cm (10,577 cal yr BP), and analysis could not be performed for this 

section of the Kite Lake record. A second large peak in concentration (n=245.5) and richness occur 

with the onset of KLZ1 that corresponds with an increase in SWT to 11.8°C. Multi-level pattern 

analysis only found one indicator value that was statistically significant (r=0.645, p=0.002). This  
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Figure 3.6:   The Kite Lake relative abundance 

curve. Dark gray boxes indicate zones with no 

chironomid remains. Light gray boxes indicate 

no access to samples for analysis. (Cric.Ort =  

Cricotopus/Orthocladius; Chaeto = 

Chaetocladius; Euk.Tvet  =  

Eukiefferiella/Tvetenia ; Psecsemi = 

Psectrocladius sordidellus¬-type; Heteind = 

Heterotrissocladius ;  Chirind = Chironomus ; 

Cladtany = Cladotanytarsus; Colivtyp =  

Corynocera oliveri-type; TAA = Tanytarsus 

type A; TAB = Tanytarsus type B; TAH = 

Tanytarsus type H; Tanyind =  Tanysarsus 

indeterminable ; Paratany = Paratanytarsus; 

Procind  =  Procladius; Pentind = Pentaneurini; 

Diamind = Diamesa; Protan = Protanypus). 
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value corresponds to the appearance of Diamesa at 11,900 cal yr Bp. Subfossil chironomid head 

capsules are not present in the sediment that corresponds to 10,150 cal yr BP. Sediment for 

chironomid extraction were not available for samples 384-374 cm (10,813-10,624 cal yr BP) and 

372-32 cm (10,530-10,340 cal yr BP). 

 

KLZ1 (344 – 300 cm; 10,033 - 9,236 cal yr BP): Stable Early Holocene 

The most recent sediment analyzed for chironomid data suggests that the environment 

surrounding the Kite Lake basin stabilized during KLZ1. Concentrations declined during this zone 

overall (9.2-129.8; avg=62.3). However, richness became increasingly higher (min=7, max=15, 

avg=11.1) and peaks at the termination of the record at 9240 cal yr BP. Midge-based SWTs were 

also the highest and fluctuated around a stable average SWT of 12.5°C. The chironomid taxa that  

 

Figure 3.7:   Concentration and richness curves derived from subfossil chironomid assemblages present in 

Kite Lake. 
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dominate the assemblage in this zone provide additional qualitative evidence of climatic  

amelioration during KLZ1. The chironomid assemblage is more diverse than any other zone and 

is dominated by Chironomus (46%), Cladotanytarsus (28%), Paratanytarsus (38%), 

and Procladius (12%). These taxa are affiliated with warm and productive conditions (Brooks et 

al., 2007; Andersen et al., 2013). Indicator species analysis found four statistically significant 

species. They are Cladotanytarsus (r=0.965, p=0.001), Pentanuerini (r=0.680, 

0.001), Chaetocladius (r=0.525, p=0.023), and Corynocera ambigua-type (r=0.471, p=0,036) (not 

shown). Both Chaetocladius and C. ambigua (not pictured) appear at the same time at ~9340 cal 

yr BP and are present through the upper extend of KLZ1. Cladotanytarsus and Pentaneurini both 

appear at the same time as well and appear at 10,050 cal yr BP. 

 

Kite Lake SWT Reconstruction and Reliability 

The chironomid-based SWT model for Kite Lake ranges from 7.2°C to 13.4°C. The 

sample-specific error estimates for each SWT estimate varied between 2.7°C and 3.0°C and are 

shown in Figure 3.8a. It is of note that a plot of observed SWT versus midge-inferred SWT 

indicates that the midge-based MJAT model appears to underestimate inferred temperatures at the 

low end and overestimate temperatures at the high end of the captured temperature range (Figure 

3.4b). 

All subfossil taxa are present in the training set, which indicates that the modern training 

set represents the subfossil chironomid assemblages. This finding is further substantiated by 

passively plotting subfossil taxa in ordination space over the training set ordination (Figure 3.9). 

The distribution of dissimilarities based on square chord distances derived from MAT suggests 

that the oldest samples before the changepoint at 11,293 cal yr BP possess no modern analog, and  
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Figure 3.8: A) Chironomid-inferred surface water temperature reconstructions (thick black line) for Kite 

Lake stratigraphy plotted with sample specific error (gray lines with error bars) for chironomid zones; B) 

DCA axis 1 scores plotted with identified changepoints (red line) ; C) Squared chord dissimilarity 

distance (sq.chord.d) to nearest modern analog (MAT) from the WUS training set (orange line = 5th 

percentile, red line = 10th percentile). 
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no good fit exists in the modern training set. The samples from 11,293 to 10,033 cal yr BP are 

represented in the training set, but interpretation should be made with caution. KLZ1 is robust and 

mostly above the 0.05% cut off, suggesting good modern analogs exist. Significance testing 

indicates that the model is not statistically significant when compared to random variables (SWT 

= 0.40 variance explained, p=0.214) (Figure 3.10). Telford and Birks (2011b) suggest that if the 

environmental variable “is of uncertain ecological significance,” that results may not be 

statistically significant. This finding is expected due to the sensitivity of chironomids to 

environmental change. The successional changes that chironomid communities undergo in 

response to deglaciation certainly satisfy an unknown response that has not been established by 

prior research. These relationships require further examination to fully understand the extent to 

which chironomid communities are affected by these environmental mechanisms. Overall, the 

application and interpretation of the WUS midge-based SWT reconstruction should be analyzed 

with caution.  

DISCUSSION 

The subfossil chironomid stratigraphy developed for Kite Lake provides a record of 

environmental change for Central Colorado between 12,659 and 9,236 cal yr BP, a time that 

captures the climatic amelioration associated with the transition from the Pleistocene into the 

Holocene (Figure 3.8a). Changepoints evident in DCA located two discrete points in time that 

chironomid communities experienced faunal turnover (Figure 3.8b). The first interval is 

characterized by a shift in chironomid communities from an assemblage dominated by cold 

stenotherms associated with postglacial succession (Tanytarsus, Diamesa, Protanypus) (Saulnier-

Talbot and Pienitz, 2010) to one composed primarily of Chironomus. The sudden appearance 

of Chironomus would suggest that a climatic amelioration occurred at ~11, 293 cal yr BP as this  
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Figure 3.9: Passive plotting of fossil assemblages against the training set assemblage in correspondence 

analysis ordination space 

 

 

Figure 3.10: Significance test of the proportion of variance that surface water temperature explains. 

The proportion of variance that surface water temperature explains (black solid line, n=999,  p=0.214) is 

found in the highest histograms that explains variance explained by random data. The red dashed line 

indicates the 95th confidence interval and the black, thick dashed line indicates the proportion explained 

by PCA1 (0.446). 
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taxon is often an early colonizer for lakes transitioning to a more productive environment (Brooks 

et al., 1997; Haskett, 2020). The most substantial increase of 4.7°C in the midge-based SWT 

reconstruction occurred at ~11,334 cal yr BP and provides further evidence of warming during this 

time. The absence of chironomid head capsules ~ 10,580 cal yr BP could reflect a period of stable 

cooling and glacier expansion. This hypothesis corresponds with evidence that glacial expansion 

and stable cooling occurred in the Front Range of Colorado between 11,010 ± 120 and 9,523 ± 

155 cal yr BP (Menounos and Reasoner, 1997; Muhs et al., 1999). This period of cooling has been 

recognized in other studies and has been attributed to the Younger Dryas chron (Menounos and 

Reasoner, 1997; Muhs et al., 1999).   

Corynocera oliveri was present during this entire interval but steadily increased in relative 

abundance over time. The presence of Corynocer oliveri and Corynocera ambigua have been 

linked to the location of the treeline (Porinchu and Cwynar, 2000). C. oliveri is primarily found in 

lakes basins that are found in tundra and lie above treeline. C. ambigua is not known to exist for 

extended periods (Brooks et al., 2007), and its presence may be used to assess the relocation of 

treeline (Porinchu and Cwynar, 2000). While the reconstructed SWTs for this zone fluctuate 

around an average of 12.5°C, the temperature does decrease at the uppermost sections that 

correspond with the arrival of C. ambigua and Chaetocladius around ~9340 cal yr BP. Thus, 

treeline appeared roughly at this time. This evidence substantiates the downslope displacement of 

subalpine vegetation several hundred meters during the Younger Dryas (Fall, 1997; Reasoner and 

Jodry, 2000). However, this finding contradicts Jiménez-Moreno and Anderson’s  (2012) evidence 

that a subalpine forest composed of Picea, Abies, and Pinus aristate surrounded Kite Lake by 

12,200 cal yr. BP, suggesting that the treeline was much higher than its location today. 
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The second changepoint date coincides with the transition from KLZ2 to KLZ1 at 10,033 

cal yr BP. The chironomid assemblage transitions from a community primarily composed 

of Tanytarsus and C. oliveri, to an assemblage dominated by Cladotanytarsus, Paratanytarsus, 

and Procladius. This shift is indicative of a change from cold, oligotrophic conditions to a warmer 

and more productive environment (Brooks et al., 2007; Andersen et al., 2013). Saulnier-Talbot 

and Pienitz (2010) found a very similar postglacial chironomid assemblage in the northernmost 

Ungava region of Nunavik, Canada. They concluded that the chironomid communities present at 

their site were explained by postglacial succession.  

Very little research has explored successional trends in chironomid communities. Early 

work found that succession due to anthropogenic eutrophication was related to the availability of 

food materials (Warwick (1975; 1978; Saether, 1979). Walker and Mathewes (1990) initially 

explored chironomid postglacial succession and found cold stenotherms (Heterotrissocladius, 

Parakiefferiella, Protanypus, Stictochironomus, and Pseudodiamesa) were collected from 

sediment that corresponded with the timing of glacial retreat. While the authors caution that 

multiple environmental factors may contribute to the distribution of chironomids, including lake 

depth, links to terrestrial vegetation, climate, and lake trophic state, their seminal work established 

the work of quantitative midge studies. This debate continues today (Velle et al., 2010; Brooks et 

al., 2010; Velle et al., 2012; Eggermont and Heiri, 2012) and the modern exploration of chironomid 

ecology may help to address these questions and concerns. 

The lack of recoverable chironomid head capsules for the entirety of KLZ3, as well as the 

sample corresponding to a depth of 372-374 cm (10,577 cal yr BP), is notable as chironomids are 

typically ubiquitous and present in large enough numbers for statistical analysis in lakes (Porinchu 

and MacDonald, 2003). Two long chironomid records have been developed on millennial 
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timescales representing time going back to ~140 ka and ~200 ka respectively (Axford et la., 2011; 

Haskett and Porinchu, 2014.) Both records possessed large sections of their respective cores that 

contained no recoverable head capsules that were explained by the presence of extensive ice cover 

that did not allow for the deposition of subfossil chironomids. The absence at ~10,577 cal yr BP 

in our record corresponds with considerable peaks in magnetic susceptibility (Jiménez-Moreno 

and Anderson, 2012). High sedimentation rates may have impeded larval chironomid survival.  

CONCLUSION 

The Kite Lake stratigraphy contains subfossil chironomid communities that are comprised 

of environmental specialists that suggest that chironomid communities experience postglacial 

succession. These conditions consist of; 1) the lack of recoverable chironomid head capsules 

indicates the presence of extensive ice cover into the growing season related to the advancement 

of glacial conditions. The presence of pollen indicates that passive deposition was possible during 

this time. However, chironomid egg masses may not have survived extensive ice cover. 2) the 

transitional period of glacial retreat is comprised of a Tanytarsini-rich assemblage and possess 

taxa from the subfamily Diamesinae. 3) early colonization occurs with the appearance 

of Chironomus. 4) C. oliveri represents an environment that exists in cold tundra conditions above 

treeline. 5) the appearance C. ambigua demarcates the location of treeline. More research is needed 

from modern environments experiencing glacial retreat to build modern ecological foundations for 

this phenomenon in paleoenvironmental interpretations.  

           Future research is needed to establish mechanisms driving egg mass survival rates for lakes 

that experience prolonged periods of ice cover. The presence of pollen (Jiménez-Moreno and 

Anderson, 2012) in KLZ3 suggests that passive deposition was possible. Thus, Kite Lake 

experienced short periods of melting ice during the summer growing season, but timing and/or the 
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extent of ice cover inhibited the survival of chironomid egg masses during this period could be 

one explanation that could explain the absence of chironomid head capsules in KLZ3. 
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CHAPTER 4 

WHICH LAKES SHOULD BE SAMPLED FOR PAELOENVIRONMENTAL CHIRONOMID 

WORK? A CASE STUDY APPROACH TO DETERMINE STUDY SITE SELECTION FOR 

PALEOCLIMATE RESEARCH3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3 Haskett, D.R. To be submitted to Palaeogeography, Paleoclimatology, Palaeoecology. 
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ABSTRACT 

Chironomids are used to develop temperature reconstructions for mean July air temperature 

(MJAT) and surface water temperature (SWT) for the 20th and 21st centuries for six alpine lakes 

in Rocky Mountain National Park, Colorado. These results were compared to extrapolated mean 

July air temperatures from the PRISM dataset. Glacial meltwater decouples the signal between air 

temperature and water temperature and was evident between the relationships between the 

predicted MJAT and SWT for lakes receiving meltwater from glaciers or perennial snowfields. 

Periods of glacial retreat, or warming temperatures, occurred during the earliest part of the century 

to the mid-1950s and from the mid-1990s to present. Glaciers stabilized or expanded during the 

cooler period from the mid-1950s to the mid-1970s. Within-lake variability may account for 

discrepancies evident between site locations in downcore interpretation. These findings may 

provide a new method for chironomid interpretation. Overall, the deviations plotted from average 

SWTs performed better at predicting warming and cooling trends than the midge-based predicted 

values for MJAT and SWT. Study site selection is crucial for midge-based thermal reconstructions 

and basins that receive, or have received, meltwater should be avoided if modeling MJAT. 

 

Keywords: Chironomid, Paleoenvironmental Reconstruction, Colorado, Glacial Meltwater, Study 

Site Selection, Instrumental Data, Centennial Time Scale 
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INTRODUCTION 

   The relationship between the chironomid family (Insecta: Diptera: Chironomidae) and their 

environment has been well established since the early work of Thienemann, which recognized the 

usefulness of using chironomid taxa as indicators for trophic level classification at the beginning 

of the 20th century (Porinchu and MacDonald, 2003).  This logic expanded to how chironomid 

assemblages relate to temperature by recognizing that assemblages were composed of cold 

stenotherms or thermophilous taxa that corresponded with colder or warmer lakes respectively 

(Brundin, 1949; Porinchu and MacDonald, 2003). Andersen (1938) was the first to use 

chironomids to qualitatively describe the changes in climate during the Late Pleistocene in Europe 

(Walker, 1987).  By the late 1980s, Walker and Mathewes (1987) hypothesized that climate (i.e., 

temperature) was the main driver for the distribution of chironomid communities. Walker et al. 

(1991) extended this work and created the first quantitative reconstruction of surface water 

temperature in Canada.  It wasn’t long after this seminal paper was published that chironomid 

workers began to model air temperatures (Lotter et al., 1997) with the justification that air 

temperature models have more robust statistics (Velle et al., 2010). Also, a strong correlation often 

exists between air temperature and surface water temperature that is strongly statistically 

significant (Lotter et al., 1997; Livingstone and Lotter, 1998; Velle et al., 2005). In the decades 

since these initial studies were published, chironomid thermal reconstructions cover multiple time 

scales that range from exploring historical data (Reinemann et al., 2014) to the changes that 

occurred over glacial-interglacial cycles (Axford et al., 2011; Haskett and Porinchu, 2014) and 

cover a geographic range that encompasses the entire globe (Rees et al., 2008; Eggermont et al., 

2010; Heiri et al., 2011; Haskett and Porinchu, 2014; Wu et al., 2015; Zhang et al., 2017).  Nicacio 

et al. (2015) performed a scientometric analysis of chironomid papers published between 1992 to 
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2012 and found that trends in bioassessment publications regarding chironomids grew steadily 

over the period that was studied. Paleolimnology (25%) and lake studies (33%) accounted for a 

vast majority of publications over the last three decades. They were only surpassed by diversity 

studies (35%) and studies focusing on rivers and streams (43%).  

   Multiple paleoecological studies indicate the power of chironomid paleoreconstructions that 

quantitatively model broad-scale climatic changes that are in agreement with multi-proxy 

approaches, such as data derived from ice cores from Greenland and Antarctica (Brooks and Birks, 

2000; Velle et al., 2010; Axford et al., 2011). And yet other chironomid studies have reported 

variable results even between geographically close sites (Caseldine et al., 2003; Kurek et al., 2004; 

Velle et al., 2005; Reinemann et al., 2014) This disagreement has been evident in vigorous debate 

regarding the usefulness of chironomids as a proxy solely for temperature for over three decades 

(Walker and Mathewes, 1987; Warner and Hann, 1987; Walker and Mathewes, 1991; Velle et al., 

2010, Brooks et al., 2012; Eggermont and Heiri, 2012; Velle et al., 2012a). Many critics of the 

method point to other environmental factors that may impact the distribution of chironomids 

including changes in natural (Brodersen and Lindegaard, 1999; Brooks and Birks, 2001) and 

anthropogenic (Haskett, 2020) trophic levels due to nutrient loading (Landgon et al., 2010; Garzke 

et al., 2019), lake depth  (Kurek and Cwynar, 2009; Velle et al., 2012b),  oxygen levels (Little and 

Smol, 2001; Verbruggen et al., 2011), aquatic vegetation (Langdon et al., 2010), and glacial retreat 

(Eggermont and Heiri, 2012; Haskett, 2020). The strength of temperature in previous research as 

the main driver for chironomid distribution may be due to statistical methods that artificially 

enhance the robustness of inference models. This is accomplished by the development of training 

sets that artificially improve the signal of air temperature by selectively sampling along an 

environmental gradient that enhances the air temperature signal (Birks, 1995; Birks, 1998; Velle 
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et al., 2010). Recent trends in chironomid work have been combining small regional training sets 

to create training sets that cover large geographical areas. These expanded training sets indicate 

that the relationship between midge communities and air temperature are statistically stronger and 

capture more variability in chironomid assemblages that limit the “no modern analog” problem for 

fossil communities downcore (Fortin et al., 2015; Kotrys et al., 2020; Porinchu et al., 2017). 

In order to refine paleoenvironmental interpretations, it is imperative to expand our 

understanding of the modern relationships between chironomids and the many variables that may 

influence their distribution. Velle et al., (2010) suggest that conducting studies that compare 

midge-inferred temperatures to instrumental data may help to refine interpretations downcore with 

the logic that chironomid assemblages that accurately assess recent temperature change may 

provide more robust temperature reconstructions from the same lake over more extended periods. 

Surprisingly, only very few researchers have accepted this invitation (Battarbee et al., 2002; 

Larocque and Hall, 2003; Larocque et al., 2009; Reinemann et al., 2014; Larocque-Tobler et al., 

2015; Luoto and Ojala, 2017). Studies that compare instrumental data to temperatures derived 

from chironomid communities may also help to address which temperature models (air vs. water) 

are more appropriate when these two variables no longer covary; i.e., when glacial meltwater cools 

lake water during elevated air temperatures as hypothesized by Velle et al. (2010) and Eggermont 

and Heiri (2012).  A recent study validated these hypotheses and found that chironomid 

communities are responding to surface water temperature rather than the air temperature in regions 

where glaciers are retreating (Haskett, 2020). These relationships may have implications for the 

interpretation of downcore reconstructions as the remote lakes often studied for climate change are 

often formed during glacial retreat in alpine or high latitude environments. Depending on the 

periods of study, chironomid communities may be impacted by glacial meltwater and 
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interpretations of climate change based on models for midge-based air temperatures may be 

incorrect and lead to erroneous findings. 

 This paper builds on the findings from Haskett (2020) and follows the advice of Velle et 

al. (2010).  Because glacial retreat alters temperature regimes for alpine lakes, this study examined 

both air and water temperatures derived from chironomid inference models and compared them to 

regional air temperatures collected from instrumental data for six lakes in an area receiving glacial 

meltwater during the 20th and 21st centuries. To the author’s knowledge, no previous study has 

explored the differences and the similarities between reconstructions of surface water temperature 

and air temperature explicitly. These models are then applied to chironomid communities extracted 

from the stratigraphy of a long core that spans the Pleistocene-Holocene transition with a known 

alpine glacial history as a proof-of-concept for the findings found during the historical timescale 

presented in this paper. 

STUDY AREA AND METHODS 

Study Area 

Short sediment cores were collected from six alpine lakes during the late summers of 2015 

and 2016 (Table 4.1). All lakes are located along the eastern margin of the Continental Divide in 

Rocky Mountain National Park, which is located in the Front Range of the Rocky Mountains, 

Colorado (Figure 4.1). Lakes were paired to elucidate the influence of glacial meltwater on 

chironomid communities. All pairs are similar in elevation, vegetation, and geology with the only 

different variable being meltwater input. Cony Lake (3509m asl) and Pipit Lake (3479m asl) lie 

adjacent to the continental divide and are present in rocky cirques with no vegetation. An unnamed 

glacier lies directly above Cony Lake. Perennial snowfields were present in the catchment 

immediately surrounding Pipit Lake during sampling in August, 2015. Eagle (3298 m) and Box  
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Table 4.1: Environmental variables for the six sampled alpine lakes. 

 

(3274 m asl) Lakes were found at timberline with fir, Engleman spruce (Picea engelmannii) and 

willow shrub (Salix spp.) present in each catchment. Eagle Lake currently receives glacial 

meltwater. Black Lake (3237m asl) is fed by meltwater emanating from Moomaw Glacier and is 

the deepest lake sampled with a depth of 21.2m.  Thunder Lake (3225m asl) is the pair to Black 

Lake, is 7.05m deep, and receives annual snowmelt as meltwater contribution.  A subalpine forest 

composed of subalpine fir and Engleman spruce surrounds both lakes.  Long-term climate data is 

available from the Bear Lake SNOTEL site (40.32, -105.65; 2896m asl) and the study sites range 

from 5.75 km to 16.00 km away from the site. Averages for the 1981-2010 climate normal for 

mean January temperature (-6.7°C), mean July temperature (13.3°C), and annual precipitation 

(46.2cm) were calculated from daily data available on 

https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=322.  

 Two different methods were explored to find the mean July air temperature (MJAT) for 

each study site. Daily data is available from the long-term ecological research site Niwot Ridge 

going back to 1952 from the D1 climate station (3739m asl) (Kittel et al., 2019). The initial 

exploratory analysis used this data combined with the environmental lapse rate of 5.5°C/km (Pepin 

https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=322
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and Losleben, 2002). However, this data is collected from an environment that is not representative 

of the sampled lakes as mountain summits are not influenced by the surface complexities 

introduced by topography, such as relief and aspect (Pepin and Lundquist, 2008). Thus, the PRISM 

 

Figure 4.1a: Study sites in Rocky Mountain National Park, Colorado 
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Figure 4.1b: Study sites along the continental divide in Rocky Mountain National Park, Colorado. 

 

dataset was used in the analysis (Prism Climate Group, 2020). This dataset relies on 4 km gridded 

air temperature data and provides dates going back to 1895 for all lakes. Some authors suggest that 
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the interpretation of this data should be made with caution as observations are limited above 3000m 

and none exist above 3500m (Rangwala and Miller, 2012; Haskett and Porinchu, 2013). 

Reconstructions of SWT and MJAT are performed for the Kite Lake stratigraphy for proof-

of-concept. Information regarding the study site for this lake is found in Haskett et al. (2020).  

 

Field Methods  

 Short sediment cores were recovered from the center of each lake using a modified 

DeGrand gravity corer from a small inflatable raft. Each core had no noticeable disturbance at the 

sediment/water interface and was considered undisturbed during sediment collection. 

Observations regarding color and stratigraphic characteristics were recorded in a field notebook. 

Each core was sectioned at 0.25cm intervals into Whirlpacks using a modified Glew extruding 

device for the uppermost 10cm of stratigraphy (Glew, 1998; Porinchu et al., 2017). Sediment 

below 10 cm was subsampled at a 0.50cm resolution.  The sediment was then stored in portable 

coolers to keep them cool and dark during transportation to the Environmental Change Lab at the 

University of Georgia. Variables that capture the modern limnology for each lake were collected 

during core extraction and include water temperature profiles, lake depth, Secchi disk depth as a 

measure for optical transparency, pH, and specific conductivity.  

 

Chronology Development 

 Twelve bulk sediment samples were subsampled along the length of each short core and 

sent to MyCore Scientific Incorporated (Chalk River, Canada) for 210Pb dating. Constant rate of 

supply (CRS) was used to calculate 210Pb ages and sedimentation rates (g cm–2 yr–1) for each lake 

stratigraphy (Appleby and Oldfield, 1978). Cony, Eagle, Black, and Thunder Lakes contained 
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enough supported 21Pb to extend chronologies into the very late 19th century. The age-depth 

models for Pipit and Box Lakes could only be developed into the 1930s. Chronologies were 

developed between dated samples using locally weighted scatterplot smoothing (LOESS) 

regression with smoothing curves (span=0.25) for each lake (Cleveland et al., 1996) (Figure 4.2). 

 

Figure 4.2: 210Pb chronologies and sedimentation rates 
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Chironomid Analysis 

Chironomid extraction followed the protocol established by Walker (2001). Samples for 

chironomid collection were prepared using every other sample. The altering sediment was used 

for geochemical analysis of the sediment and was limited for chironomid work (not presented). 

Sediment was heated in an 8% KOH solution at 30°C until the colloidal matter was broken down 

and remnant materials could be rinsed through a 95 µm mesh sieve. The remaining residue was 

rinsed with distilled water back into a beaker and then poured into a Bogorov counting tray. Fine-

tipped forceps were used to extract chironomid head capsules under a dissection stereomicroscope 

at 40x magnification. The head capsules were then placed in a water droplet on a coverslip for 

microscopic slide creation. Once the water evaporated from the coverslip, the chironomids were 

permanently mounted to the glass slide with Entallan®. Some studies indicate that a minimum of 

50 head capsules (HCs) should be used in chironomid quantitative analysis (Larocque, 2001). 

Other work has found that between 40 and 50 HCs are sufficient (Quinlan and Smol, 2001; 

Porinchu et al., 2007; Reinemann et al., 2014). Efforts during chironomid extractions were made 

to reach a minimum of 50 HCs but for very few samples, sediment availability was exhausted 

before attaining this number. All samples from Cony, Box, and Thunder Lakes possessed more 

than 50 head capsules. Eagle Lake had one sample comprised of 49.5 HCs, while Pipit and Black 

had two (42 and 48.5 HCs) and three samples (40, 42, and 46.5 HCs) respectively. A Nikon Eclipse 

E100 (up to 100x magnification) microscope was used for chironomid identification.  Taxonomic 

keys by Brooks et al. (2007), Andersen et al. (2013), and the website Chiro Key (2020) were used 

to identify subfossil chironomid remains. Three taxa belonging to the subfamily Diamesinae could 

not be identified and were grouped as Diamesa spp.  
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Statistical Analysis 

All statistical methods were performed on the open-source platform R (R Development 

Core Team, 2020). Chironomid data were square-root transformed to stabilize the variance 

inherent in count data (Prentice, 1980). Individual taxa were considered rare and removed from 

analysis if they were present in two or fewer samples and contained 2% or less of the total relative 

abundance (Quinlan and Smol, 2001). The ecological optimum for SWT and the tolerance for each 

taxon present in the calibration set was found using the weighted averaging (WA) method using 

the package “analogue” (ter Braak and Barendregt, 1986; Cristóbal et al., 2014; Simpson et al., 

2019) (Table 4.2) (Appendix B.3). 

Detrended correspondence analysis (DCA) is often used as a means to establish periods of 

compositional turnover in ecological communities (Hill and Gauch, 1980; Smol and Douglas, 

2007; Birks and Birks, 2012). This analysis was performed in the R package “Vegan” (Oksanen, 

2015). The R package “changepoint.np” was used to perform changepoint analysis on the results 

of the DCA analysis to determine the years at which these transitions occurred (Killick et al., 2012; 

Haynes et al., 2016; Haynes et al., 2017) (Figure 4.3). Chironomid zones were created for each 

lake using these data. The relative abundance curves for each lake were plotted using the 

“stratiplot” function in the “analogue” package in R (Simpson and Oksanen, 2013; R Development 

Core Team, 2020). The taxa present in relative abundance curves were arranged by the lowest 

optimal WA Optima for SWT to the left of the plots with progressively thermophilous taxa 

becoming more dominant to the right of the plot. Chironomid-based inference models were 

developed for both mean July air temperature (MJAT) and surface water temperature (SWT) using 

the package “Rioja” (Juggins and Juggins, 2019). Both inference models are based on the 153 

lakes and 77 midge taxa from the Western United States (WUS) training set (Haskett et al., 2020). 
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Both inference models were developed using the weighted averaging-partial least squares (WA-

PLS) approach (ter Braak et al., 1993; Juggins and Birks, 2012). In order to determine the 

appropriate number of components to be used for each model, a randomization t-test of the 

 

 

 

Figure 4.3: Trends in detrended correspondence analysis with changepoints. 

 

cross-validated WA-PLS model was performed (van der Voet, 1994). The performance statistics 

for the SWT inference model indicated that the one-component WA-PLS or the weighted average 

(WA) inference model was the most appropriate with an r2
boot= 0.38, root-mean-square-error of  
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Table 4.2: Chironomid taxa sorted for surface water temperature by individual weighted averagine optima 

and tolerances. Taxa are listed in gray boxes. 
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prediction (RMSEP) = 2.75°C, a maximum bias of 4.34°C, and a p-value for the t-test of 0.001 

(Table 4.3). The midge-based MJAT model was developed using the two-component WA-PLS 

inference model and had an r2
boot= 0.36°C, root-RMSEP = 1.48°C, a maximum bias of 5.39°C, and 

a p-value for the t-test of 0.011. To assess how representative the training set is of the stratigraphic 

subfossil chironomid assemblages, the fossil assemblages from the six sampled lakes were 

passively plotted over the calibration (or training) set in canonical analysis (CA) ordination space 

(Anderson and Willis, 2003) (Figure 4.4). 

 

Figure 4.4: Passive plotting of fossil assemblages from six alpine lakes against the training set assemblage 

in correspondence analysis ordination space. 
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 The predicted MJAT and SWT derived from the developed midge-based inference models 

were compared to the MJAT estimates extrapolated from the PRISM data for each study site 

(PRISM Climate Group, 2020) (Figure 4.5). The averages for the midge-based MJAT, midge- 

 

 

Figure 4.5: Midge-based mean july air temperature (MJAT) (°C) and surface water temperature (SWT) 

(°C)  reconstructions plotted against PRISM-derived mean July air temperature for each lake. (Blue: 

SWT; Red: MJAT; Gray:PRISM-derived MJAT. Loess line =0.20) 
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based SWT, and PRISM-based MJAT were calculated, and the deviations from the mean for each 

stratigraphic sample was calculated (Figure 4.6). Bland-Altman Plots were plotted to assess how 

robust both midge-based predicted temperatures performed compared to PRISM data (Figs. 4.7 

and 4.8).  This method is used in biomedical research to evaluate the agreement between two 

variables measured by different instruments by plotting differences between the two variables 

against the mean of the two variables. (Bland and Altman, 1986; Giavarina, 2015).  The 95th 

confidence interval bands constrain the values. Outliers will fall outside of the 95th confidence 

interval bands (Bland and Altman, 1986; Giavarina, 2015).   

 

 

Table 4.3: Statistics for inference models for both chironomid-inferred surface water temperatre and 

chironomid-inferred mean July air temperature. 

 

Chironomid counts collected from a long core collected from  Kite Lake were used to 

model chironomid-based SWT and MJAT to apply the findings from the modern/historical 

relationships explored from the six lakes from Rocky Mountain National Park to stratigraphy that 

spans the Pleistocene-Holocene Transition where no instrumental data exists (Haskett et al., 2020). 
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RESULTS 

Chronology Development 

Sedimentation rates are higher in the highest elevation lakes. Cony Lake experienced 

pulses of increased sedimentation with the highest peak occurring ~ A.D. 1900. The rates fall and 

begin to climb again in the late A.D. 1970s. Pipit Lake has a lower sedimentation rate than Cony  

 

Figure 4.6: Deviations from averages for PRISM-based mean July air temperature (gray bars), midge-

based mean July air temperature (red dashed line), and midge-based surface water temperature (blue 

dashed line). 
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Lake and peaks during the late A.D. 1970s. Both lakes experience a continual decrease in the 21st 

century. The lakes found at timberline have experienced the lowest sedimentation rates of all lakes 

examined and only Eagle lake experiences a slight increase in A.D. 2015. Black and Thunder 

Lakes had a gradual increase in sedimentation rates over the 20th and 21st centuries with Black 

Lake having slightly higher rates. Overall, the error associated with 210Pb ages is 0 for the surface 

sediments and increases with increasing depth. The error is most significant for Cony Lake with  

 

Figure 4.7: Bland-Altman plots are useful for comparing two datasets (midge-based surface water 

temperature and PRISM-based mean July air temperature).  The blue line represents the average between 

differences in surface water temperature and mean July air temperature. The red lines represent the 95th 

confidence interval. 

 

an error of 76 years but the error associated with the deepest dated sediment for the other lakes 

ranges from 9 years (Pipit Lake) to 68 years (Black Lake). The amount of sediment required to 
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reach the minimum head capsule (HC) count of 50 required processing between 2mL to 3mL of 

sediment. However, HCs were plentiful in Thunder Lake and only needed 1mL of sediment to 

reach the necessary HC counts for most samples. The amount of sediment preparation was more 

extensive for sediment collected from Eagle Lake and required an average of 5mL of sediment for 

HC recovery. The top two samples for both Eagle and Black Lakes were combined to achieve the 

minimum head capsules needed for analysis. The sediment required to reach these numbers 

required 18mL and 19mL respectively. The chronologies developed for sub-fossil chironomid 

analysis provide a sub-decadal scale resolution. 

 

Figure 4.8: Bland-Altman plot to assess the strength of midge-based mean July air temperature and 

PRISM-based mean July air temperature.  The blue line represents the average between differences in 

predicted mean July air temperature and PRISM-mean July air temperature. The red lines represent the 

95th confidence interval. 
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3.2 Statistical Analysis 

The results of DCA analysis indicate that changes in compositional turnover for each lake 

have changed over the 20th and into the onset of the 21st century. The changes evident for 

compositional turnover had a similar trajectory for Cony, Pipit, and Thunder Lakes. A shift in 

composition occurred in A.D. 1966 and A.D. 1991 for Cony and Pipit Lakes, respectively. Thunder 

Lake experienced two changepoints in faunal turnover. The change in A.D. 1932 increased slightly 

compared to the change that occurred in A.D. 2013, where the DCA trend rises dramatically. The 

decreasing direction for Eagle Lake’s DCA was the opposite of those seen in other lakes and could 

be contributed to instability over the latter 20th century into the 21st century within the lake basin. 

Species richness, or the number of individual taxa present, fluctuated greatly during this time 

suggesting that within-lake variability for this lake basin changed during this time. Two taxa 

dominated the stratigraphic chironomid assemblages of Eagle Lake and could explain the overall 

decreasing trend in DCA for this lake. The changepoint analysis found a shift in compositional 

turnover during A.D. 1947 for Eagle Lake.  Box Lake also witnessed dramatic changes to 

chironomid composition over this period. The early 20th century was stable until a changepoint 

was found at A.D. 1977. Iron nodules were collected in sediment during chironomid extraction 

and correspond to depths between 5.00cm and 7.5cm (i.e., 1964- beyond chronological control). 

The chemical composition of the iron nodules was confirmed using XRF at the Center for Applied 

Isotope Studies at the University of Georgia (Yu et al., 2015). They are 99% iron with trace 

amounts of potassium. The presence of iron nodules suggests that Box Lake has experienced 

periods of fluctuating levels of oxygen over the last 100 years and that within-lake variability is 

more likely to influence the distribution of chironomid communities within the lake basin, rather 
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than regional climatic signals (Davison, 1993).  Any interpretation of chironomid-based 

temperatures for this lake should be undertaken with the utmost caution. Black Lake, the deepest 

lake sampled, experienced a decrease in DCA during A.D. 1957. Overall, Black Lake was 

relatively stable over the entire period of study and suggested that the longer residence time of the 

lake water may have moderated the overall climate signals. This lake was also dominated by one 

taxon (Heterotrissocladius -30 – 50%) which may account for the small amount of change in DCA 

over the 20th and beginning of the 21st century. Overall, the CA-biplot indicates that the majority 

of subfossil chironomid communities are located within the ordination space of the WUS 

calibration set (Figure 4.5). Some fossil assemblages from Cony and Black Lakes are not 

represented in the modern training set data. 

 

Chironomid Relative Abundance Diagrams 

 Stratigraphic change in chironomid composition is provided in Figures 4.9a-4.9f. (Not all 

taxa are shown due to space constraints). 

 

Cony Lake 

 A total of 21 taxa were identified in sediment collected from Cony Lake. Changepoint 

analysis of faunal turnover divides the stratigraphy into two zones (Cony-2 and Cony-1). Cony-2 

spans A.D. 1906 to A.D. 1966, and Cony-1 spans A.D. 1966 to 2016. The results from WA Optima 

and tolerances were used to organize the taxa on the relative abundance plots. Cold stenotherms 

are located to the left of the plot and become increasingly affiliated with warmer taxa as they 

approach the right of the diagram. The shift from Cony-2 to Cony-1 demarcates a zone dominated 

by cold-loving taxa such as Pseudodiamesa, Diamesa spp., and Tanytarsus type-A in the early  
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Figure 4.9a: Cony Lake relative abundance organized 

by the weighted averaging optima of surface water 

temperature for taxa. Coldest taxa appear at the top and 

become increasingly warm-loving  moving down the 

chart. Zones based on changepoint analysis of detrended 

correspondence analysis results at 1966 (blue line). 
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Figure 4.9b: Pipit Lake relative abundance organized 

by the weighted averaging optima of surface water 

temperature for taxa. Coldest taxa appear at the top 

and become increasingly warm-loving  moving down 

the chart.  Zones based on changepoint analysis of 

detrended correspondence analysis results at 1991 

(blue line). 
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part of the 20th century to an assemblage increasingly dominated by Chironomus, which reaches 

42% by A.D. 2016. The concentration of head capsules varied little throughout the record with an  

average of 20 HC per mL. The exception occurred in A.D. 1990 when the HC concentration 

increased to 60 HC per mL.  

 

Pipit Lake 

Pipit Lake sediment yielded a total of 21 taxa. A.D. 1991 demarcates the transition from 

Pipit-2 to Pipit-1. Thus, Pipit-2 spans from A.D. 1937 to 1991, and Pipit-1 represents sediment 

from A.D. 1991 to A.D. 2016. The assemblage present in zone Pipit-2 is comprised of the cold 

stenotherms Pseudodiamesa, Tanytarsus Type A, Sergentia, and Paratanytarsus. The transition 

to Pipit-1 has these taxa decreasing and witnesses an increase of Abiskomyia, Protanypus, and  

Heterotrissocladius. This assemblage possesses some of the taxa with the coldest WA temperature 

optima. This finding initially would suggest that temperatures decreased during Pipit-1. This 

finding is further substantiated by the decrease in HC concentrations from Pipit-2 to Pipit-1.  

However, this zone also sees an increase in Procladius, Tanytarsus type H, 

Cricotopus/Orthocladius, and Phaenopsectra which are all affiliated with more productive 

environments (Brooks et al., 2007).  

 

Eagle Lake 

A total of 26 taxa were identified in sediment collected from Eagle Lake. Changepoint 

analysis of faunal turnover divides the stratigraphy into two zones (Eagle-2 and Eagle-1). Eagle-2 

spans A.D. 1895 to A.D. 1947, and Eagle-1 spans A.D. 1947 to 2016. The entire subfossil 

chironomid stratigraphy is dominated by two taxa: Chironomus and Heterotrissocladius. The 
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changepoint at A.D. 1947 coincides with an increase in Chironomus and a decline in 

Heterotrissocladius. Cold stenotherms located to the left of the plot (such as Diplocladius, 

Pseudodiamesa, and Diamesa) appear and disappear in pulses throughout the entire length of the 

studied core, rather than being normally distributed. Synorthocladius begins to increase after A.D. 

1947 and is noteworthy as its presence denotes moving water entering into the lake as it occurs in 

streams and the littoral zone of lakes (Brooks et al., 2007). Taxa affiliated with warmer and more 

productive lakes, such as Procladius, Psectrocladius sordidellus-type, and Phaenopsectra, 

increase in relative abundance or appear after A.D. 1980. Richness indicates that Eagle-2 was more 

diverse and have an average of 18 taxa in each sample. The stability of the chironomid fluctuates 

and experiences sharp decreases (n=12) and increases (n=20) in richness. 

 

Box Lake  

Box Lake sediment yielded a total of 25 taxa. A.D. 1977 demarcates the transition from 

Box-2 to Box-1. Thus, Box-2 spans from A.D. 1931 to 1977, and Box-1 represents sediment from 

A.D. 1977 to A.D. 2016. The iron nodules identified during chironomid extraction are present in 

Box-2. The record for Box Lake is composed of few but very dominant taxa. Corynocera oliveri-

type, Corynocera ambigua-type, Chironomus, and Psectrocladius sordidellus-type. An average of 

19 taxa is present in zone Box -2 and stable before A.D. 1977. This trend is comparable to head 

capsule concentrations that yielded high numbers per mL of sediment (avg=45). An extreme event 

occurred at the transition zone as all taxa have a sharp decrease (i.e., Heterotrissocladius, and 

Tanytarsus type B) or increase (Cornyonocera oliveri-type and Phaenopsectra) in relative 

abundances. Concentrations also fall significantly with an average of only 16 head capsules per 

mL of sediment. The chironomid communities don’t recover until A.D. 2013. 
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Black Lake  

A total of 23 taxa were identified in sediment collected from Black Lake. Changepoint analysis of 

faunal turnover divides the stratigraphy into two zones (Black-2 and Black-1). Black-2 spans A.D. 

1907 to A.D. 1957, and Black-1 spans A.D. 1957 to 2017. The subfossil chironomid stratigraphy 

is consistent for the majority of taxa. Heterotrissoclaius is the dominant taxa with and averages 

32% of the total relative abundance and peaks at 49% in A.D. 2013. The transition at A.D. 1957 

corresponds with a decrease from 20% to 8% in Eukiefferiella/Tvetenia and an increase from 0% 

to 16% in Corynocera oliveri-type. The lowest richness also occurs at this interval with only 11 

taxa present in the sample. The coldest taxa based on WA optima suggests pulses of cold water 

throughout the entire record (Diplocladius, Pseudodiamesa, and Protanypus). Diamesa is present 

throughout the record as well but decreases after A.D. 1957. The uppermost samples (A.D. 2015 

- A.D. 2017) witnessed a sharp decrease in Heterotrissocladius from 49% to 21%. This decline 

corresponds to a reduction in concentration from 28 HCs per mL to 5 HCs per mL of sediment. 

This sample is composed of the sediment from the upper two sediment samples as chironomid 

extraction was not enough for enumeration.  

 

Thunder Lake 

Thunder Lake was the most diverse lake and possessed a total of 35 taxa. Three zones were 

identified. Thunder-3 spans A.D. 1895 to A.D. 1932. Thunder-2 spans 1932-2013, and Thunder-1 

represents the most modern sediment that spans from 2013-2017. Thunder-3 contains an  
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Figure 4.9c: Eagle Lake relative abundance organized 

by the weighted averaging optima of surface water 

temperature for taxa. Coldest taxa appear at the top 

and become increasingly warm-loving  moving down 

the chart. Zones based on changepoint analysis of 

detrended correspondence analysis results at 1947 

(blue line). 
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Figure 4.9d: Box Lake relative abundance organized 

by the weighted averaging optima of surface water 

temperature for taxa. Coldest taxa appear at the top and 

become increasingly warm-loving  moving down the 

chart.  Zones based on changepoint analysis of 

detrended correspondence analysis results at 1977 

(blue line). 
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assemblage of Tanytarsus type A, Tanytarsus type B, and Heterotrissocladius. The dominant taxa 

in Thunder-2 transition to increases in Corynocera oliveri-type, Chironomus, and Paratanytarsus.  

The appearance of Diamesa and Limnophyes/Paralimnophyes marks the transition to Thunder-1 

at A.D. 2013. This transition is all marked by sharp decreases in Heterotrissocladius, 

Eukiefferiella/Tvetenia, and Corynocera oliveri-type. 

 

Chironomid-based Reconstructions  

  Overall, taxa present in the subfossil samples are well-represented by the WUS training 

set and indicate that the reconstructions may be considered reliable following Birks (1998) 

(Haskett, 2020b). While the taxa are all accounted for, the overall assemblages for Cony and Black 

were not as well represented by the training set in ordination space, suggesting that interpretation 

of reconstructions from these lakes should be made with caution. In training set formation, lakes 

with considerable depth, or even those that receive glacial meltwater, are considered outliers and 

are often avoided in data sampling and may account for the sparse representation for these lakes 

in the training set (Velle et al., 2010; Eggermont and Heiri, 2012). 

 Chironomid-based SWTs and MJATs are plotted for each lake with the PRISM-based 

MJAT for each lake (Figure 4.6).  Reconstructions for MJAT overestimate PRISM-based air 

temperature for almost all lakes, with the exception of Box Lake. The reconstructed temperatures 

have opposite trends for the relationship between reconstructed MJAT and SWT, with SWT 

overestimating PRISM-based MJAT. The midge-inferred SWTs align closer to extrapolated air 

temperatures.  
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Figure 4.9e: Black Lake relative abundance organized 

by the weighted averaging optima of surface water 

temperature for taxa. Coldest taxa appear at the top 

and become increasingly warm-loving  moving down 

the chart. Zones based on changepoint analysis of 

detrended correspondence analysis results at 1957 

(blue line). 
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Figure 4.9f: Thunder Lake relative abundance 

organized by the weighted averaging optima of 

surface water temperature for taxa. Coldest taxa 

appear at the top and become increasingly warm-

loving  moving down the chart.  Zones based on 

changepoint analysis of detrended correspondence 

analysis results at 1932 and 2013 (blue lines). 
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The relationships between the two midge-based temperatures show interesting trends that may be 

useful in paleotemperature reconstruction interpretation. All three glacial lakes have MJATs and 

SWTs that are inversely related to one another, except for the period from the 1970s until ~ A.D. 

2000. After this date, the signals become decoupled and are inversely related. Eagle Lake does 

exhibit a similar trend but during differing periods. Before A.D. 1947, or over the interval for zone 

Eagle-2, the overall trends are parallel and mirror one another. After A.D. 1947, the reconstructed 

temperatures become inversely related. The relationships between midge-  

derived MJAT and SWT for the lakes receiving year-of-snow as meltwater input (Pipit, Box, and 

Thunder Lakes) possess temperatures that mirror one another. Pipit Lake does have an inverse 

relationship between A.D. 1954 to A.D. 1970. After A.D. 2000, Pipit Lake experiences a lag 

between when reconstructed MJAT decreases and SWT decreases by an offset of 4 years. The 

most recent samples do seem to possess the inverse relationship evident in the glacial lakes. This 

lag could be a byproduct of the sample size limiting the amount of time captured by the chronology, 

a limit based on the last collection occurring in 2016 with no more recent samples to extend the 

relationship, or it could be a byproduct of perennial snowmelt entering the lake’s hydrological 

system. The averages for reconstructions of SWT and MJAT, PRISM-based MJAT, and associated 

ranges are presented in Table 4.4. The means for sample-specific errors for each lake are also 

included as these data limited the overall interpretation when plotted.  

The deviations from the averages of reconstructed MJAT, reconstructed SWT, and PRISM-

based MJAT were plotted together to examine the “warming” or “cooling” evident and how these 

trends agreed with PRISM-based MJAT (Figure 4.8). The inverse relationships visible in Figure 
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Table 4.4:  Temperature averages, ranges and averages for sample specific errors for midge-inferred 

temperatures. (MJAT = Mean July Air Temperature, SWT= Surface Water Temperature) 

 

4.6 for Cony, Eagle, and Black Lakes are more apparent when plotted as deviations from their 

respective averages. The deviation from SWT performs better at estimating changes in 

instrumental MJAT data than those of chironomid-based MJAT. Black Lake does not follow 

deviations based on PRISM MJAT but instead seem to fluctuate around the averages. This 

relationship may be in response to the longer residence times associated with deep lakes. Both 

reconstructed temperatures follow the deviations evident for MJAT in zone Box-2. After the 

transition at A.D. 1997, Box Lake reconstructed temperatures no longer follow the deviations 

visible for MJAT during the latter part of the 20th and into the 21st centuries. Thunder Lake 

possesses the only midge-based MJAT deviation curve that mirrors deviations evident in PRISM-

based MJAT.  

“When comparing two sets of measurements for the same variable made by different 

instruments, it is often required to determine whether the instruments are in agreement or not” 

(Walsh, 2017).  To assess the agreement between chironomid-based reconstructed temperatures 

and PRISM derived-MJAT, the data visualization technique, known as the Bland-Altman plot, 

were plotted and explored (Bland and Altman, 1986). Both midge-based MJAT (Figure 4.7) and 

midge-based SWT (Figure 4.8) were compared to the PRISM datasets for each lake. SWT was 
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examined as the temperatures seemed closer to PRISM-derived temperatures based on visual 

inspection of reconstructions (Figure 4.5) and the deviations from averages (Figure 4.6). Overall, 

the majority of samples fell within the 95th confidence interval for both SWT and MJAT. The only 

lake that contained no outliers were those from the SWT for Box Lake. Every other plot included 

one sample that fell on or just outside of the confidence interval band, which is consistent with 

normally distributed data (Bland and Altman, 1986; Giavarina, 2015). 

 Chironomid counts from the stratigraphy of Kite Lake were used to develop models for 

both MJAT and SWT to elucidate the relationships between these temperatures for a period 

spanning the transition from the latest Pleistocene into the Holocene (Haskett et al., 2020b) (Figure 

4.10). The deviations from the averages were also plotted to explore the relationships that exist 

between the two reconstructions (Figure 4.11).  

DISCUSSION AND CONCLUSION 

Chironomid-based inference models are powerful tools that are used to explore changes in 

temperatures for periods that cannot provide instrumental data, such as periods from the 

Pleistocene. The magnitude of change is often greater during the Pleistocene and chironomids have 

been used extensively to model these changes (Walker et al., 1991; Axford et al., 2011; Ilyashuk 

et al., 2019). These significant shifts in temperature are often larger than RMSEP from the model 

and the error affiliated for each predicted temperature derived (Reinemann et al., 2014). However, 

temperature changes during the Holocene are more muted and vary only between 2 to 2.5°C for 

all sites that could be sampled (Wanner et al., 2008; Velle et al., 2010). Furthermore, studies 

indicate that within-lake variability is more likely to shape chironomid communities during periods 

of small climatic shifts, such as those that occurred during the Holocene (Engels et al., 2019), 

which will continue the debate between the proponents of temperature driving chironomid 
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distribution versus those that contend that chironomids are influenced by the complex relationships 

between multiple factors that are prevalent in lake systems. The work that compares midge-derived 

temperatures to instrumental data over historical periods has shown that the sensitivity of 

chironomids to muted temperature is present over recent decades (Larocque and Hall, 2003; 

Reinemann et al., 2014; Luoto and Ojala, 2017). 

 

 

Figure 4.10: Chironomid-based temperature reconstructions for Kite Lake. The thin blue line with dots 

represents the predicted SWT values. The thick blue line represents the LOESS smoothed line 

(span=0.20). The thin red line with dots represents the predicted MJAT values. The thick red line 

represents the LOESS smoothed line (span=0.20). Chironomid recovery at the based contained no 

capsules and dark gray rectangles represent periods of time with no head capsule recovery. The light gray 

rectangles are indicative of a lack of data and inferences could not be ma.de. The specific error for SWT 

is between 2.7°C and 3.0°C and for MJAT is between 1.5°C and 2.0°C. 
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Figure 4.11: Kite Lake deviations from the averages for midge-based SWT (blue bars) and midge-based 

MJAT (red bars). Chironomid recovery at the based contained no capsules and dark gray rectangles 

represent periods of time with no head capsule recovery. The light gray rectangles are indicative of a lack 

of data and inferences could not be made. 

 

In this study, I present both SWT and MJAT derived from chironomid inference models to 

instrumental data from six lakes in Rocky Mountain National Park in Colorado, with three lakes 

receiving glacial meltwater and three lakes only receiving meltwater from year-of-snow 

accumulation. The changes in air temperature evident in the mountains of Colorado over the 20th 

century had periods of warming and cooling. In general, the period between 1910 and 1930 was 

cooler followed by a period of warming from 1935 to 1955 (Rangwala and Miller, 2010; Rangwala 

and Miller, 2012). The period between 1955 and 1975 experienced a cold period with an average 
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drop of 1°C. Rapid warming of 1°C occurred between 1995 to 2005 (Rangwala and Miller, 2010; 

Rangwala and Miller, 2012). These findings agree with data collected from SNOTEL sites as well 

as the PRISM-derived temperatures presented here (Diaz and Eischeid, 2007; Daly et al., 2008; 

Rangwala and Miller, 2012.)  Overall, the only lakes that follow these patterns of change are the 

reconstructed SWTs from Pipit Lake and both reconstructed temperatures from Thunder Lake, 

with very different magnitudes of change. Most of Pipit Lake’s SWT follow the trends collected 

from instrumental data, but the chironomid-derived temperatures increased by 2°C during the latest 

part of the 20th and into the 21st centuries, rather than 1°C. The glacially-fed Cony and Black Lakes 

also follow a similar pattern for air temperatures as derived by chironomid-based SWT with the 

exception that includes the latter part of the 20th century and the beginning of the 21st century 

where SWT decreased by ~1°C. Eagle Lake was stable until A.D. 1920 but gradually increased 

over 3°C before an overall decrease of  ~1°C from the mid-1990s through the aughts of the 21st 

century. Overall, midge-based MJATs over-estimate temperatures for all lakes, except Box Lake. 

However, the use of the Bland-Altman plots indicates that both sets of temperatures compared 

favorably to the PRISM data, and all predicted temperatures for all lakes could be considered 

reliable. And yet the disagreement between changes evident in faunal turnover differs from the 

lake to lake, suggesting that within-lake variability is more responsible for chironomid community 

dynamics rather than the temperature changes that occurred over the 20th century in Colorado. This 

difference within-lake variability is particularly evident in Box Lake, where the disappearance of 

iron nodules corresponds with a changepoint and temperature reconstructions that no longer align 

with temperatures derived from instrumental data after this point in time.  

 Studies of glacial retreat in the Rocky Mountains are limited during the earliest part of the 

20th century. However, Hoffman et al. (2007) compared historical maps and photographs (aerial 
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and ground-based) to assess changes in the areas of cirque glaciers in Rocky Mountain National 

Park over the 20th century. Overall, they found that the earliest part of the 20th century decreased 

in size but grew larger during the 1950s through the 1970s where they then began to decline in 

area. The dimensions of glaciers started to decrease at an increasing rate during the 1990s, a trend 

that continues today. The relationship between area change and temperature change mostly agrees 

(Hoffman et al., 2007; Rangwala and Miller, 2012) with the exception of the earliest 20th century. 

The period between 1910 and 1930 was cooler, and glaciers should have grown larger in area, 

rather than shrinking.  The discrepancy could be due to imperfect measurements of glacier area 

and limited air temperatures being available for Colorado during this time. In addition, it is possible 

that this period, while colder, may not have had significant contribution to annual snowpack during 

this time. Periods of disagreement occur between the two reconstructed temperatures that result in 

inverse relationships between chironomid-based temperature curves that correspond to periods of 

warming from 1935-1955 for Cony, Eagle, and Pipit Lake as well as the warming evident for the 

period 1995 to the present (2017) for the same lakes plus Black Lake. The addition of Black Lake 

during this period may be related to changes within the catchment. It is important to note that a 

change in faunal turnover occurred in A.D. 1957, that may have allowed these trends to become 

evident during the latter part of the 20th century. While Pipit Lake is not glacially fed, perennial 

snowfields were present in the immediate catchment surrounding the lake during sampling. The 

snowmelt emanating from these fields may mirror glacial melt activity as this lake has no 

vegetation to moderate the influence of meltwater.  All lakes sampled, except for Eagle Lake, 

agreed with overall changes in temperature trends from A.D. 1970 to A.D. 2000, which coincides 

with a period of cooling and glacial expansion. 
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The presence of Diamesa in the Kite Lake stratigraphy indicated that glacial retreat affected 

the chironomid communities during the earliest Holocene (Haskett, 2020a; Haskett et al., 2020b).  

These findings were further substantiated by much colder surface water temperatures close to the 

Pleistocene-Holocene transition that became increasingly warmer over the Holocene (Haskett et 

al., 2020b). The inverse relationships visible in the historical reconstructions also exists over much 

more extended periods in the Kite Lake reconstruction (Figs. 4.11 and 4.12). From ~11,900 to 

~11,360 cal yr BP, the reconstructions are inversely related and deviations from the average 

indicate disagreement between a warming or cooling trend. The relationships are less clear 

between ~11,900 and ~9,900 cal yr BP as chironomid HCs were missing from some samples and 

chironomid extraction wasn’t possible for others. But the samples bounding this zone indicate that 

temperature curves become parallel and that overall agreement occurs for the deviations for both 

SWT and MJAT. This period could reflect a period of stable cooling and glacier expansion. This 

hypothesis corresponds with evidence that glacial expansion occurred in the Front Range of 

Colorado between 11,010 ± 120 and 9,523 ± 155 cal yr BP (Menounos and Reasoner, 1997; Muhs 

et al., 1999). The relationship between air and water temperature inverts again at ~9,820 cal yr BP 

and continues for the rest of the record to ~9,230 cal yr BP and may suggest another period and 

warming and glacial retreat. It should be noted that if the MJAT inference model had been selected, 

the overall interpretation would have been that air temperatures would continuously decreased 

following the Younger Dryas. This trend in MJAT temperature change is in disagreement with 

most paleoenvironmental studies from this area in Colorado (Carrara et al., 1991; Fall, 1997; 

Reasoner and Jodry, 2000; Jiménez-Moreno and Anderson, 2012).  

The relationship between the presence of Diamesa and glacial retreat was identified in a 

recent modern chironomid distribution study (Haskett, 2020). Diamesa was only present in lakes 
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receiving glacial meltwater. This study is unusual in that all lakes with the exception of Box Lake, 

had subfossil remains of Diamesa present in stratigraphical samples. The presence of Diamesa 

was only expected in all three glacially-fed lakes. The presence of this taxon was unexpected in 

Thunder Lake and Pipit Lake. The relative abundances of Diamesa are sporadic and very low in 

Thunder Lake (~1-2%), but are present in almost every sample and are slightly higher in their 

relative abundance (1-7%) from Pipit Lake. This relationship substantiates the hypothesis that 

meltwater emanating from perennial snowfields may mirror glacial retreat in downcore 

reconstructions. More work is necessary to understand the relationship between species that belong 

to the subtribe Diamesinae and environmental forces that drive their distribution To date, the 

studies that have assessed the response of midges to glacial melt in alpine settings focus on streams 

(Lods-Crozet, et al., 2001; Milner et al., 2001). More recent studies have found that Diamesa 

steinboecki, Diamesa goetghebueri, and Diamesa zernyi are indicator species for glaciality in 

alpine streams (Lencioni, 2018). These studies indicate that chironomid communities are 

responsive to glacier meltwater input; however, there remains a paucity of studies documenting 

the response of midges to glacial melt in lacustrine settings. This work attempts to contribute to 

this absence. 

The characteristics evident in each of the six lakes presented in this study suggest that 

within-lake variability, primarily glacial meltwater, may have overridden regional climatic signals. 

Lake depth, the presence of iron nodules, and the poor-fit between Cony and Black fossil 

assemblages and modern assemblages from the training set may have also contributed to 

disagreement between climatic reconstructions. Velle et al. (2005) found a similar problem with 

the agreement between six cores collected from southern Scandinavia and explored among-site 

comparisons, the consensus of temperatures, dispersal constraints, productivity changes, and even 
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chronological uncertainties to address the differences between their sites. Future research in 

understanding the ecology of chironomids is vital in chironomid work to discuss and refine 

chironomid reconstructions. Until these relationships are explored further, careful study site 

selection for paleoclimate research is needed. Unfortunately, this area of study is also limited. 

“Since chironomids may respond to multiple environmental variables and these may co-vary with 

the variable of interest, it is important to choose sites where the environmental variables other than 

the one of interest is likely to have been stable” (Velle et al., 2010). Thunder Lake, a lake that does 

not receive glacial melt and is well below timberline, was the only lake from this study that showed 

agreement between the midge-based MJAT, chironomid-based SWT, and PRISM-derived 

temperatures and followed the description for study selection proposed by Velle et al., 2010. 

Of all of the methods to assess agreement between modeled values based on instrumental 

data and midge-based predicted temperatures, the plotted deviations from averages performed the 

best and provided clearer visualization of agreement and disagreement between different lake 

reconstructions. The deviations plotted in Figure 4.8 very clearly indicate periods of discrepancy 

as well as showing that the deviations from the average SWT align with deviations in PRISM data. 

These relationships are compelling and should be used in chironomid work in conjunction with 

temperature reconstructions as they may indicate periods of warming and cooling, rather than 

stating specific quantitative temperatures that are prone to error. If inverted relationships are 

evident in the deviations plot, midge-based SWT reconstructions should be used instead of the 

MJAT inference model even though the performance statistics for SWT are often not as robust. 

This study is limited and has a small sample size (n=6). Future work should not only explore the 

relationships between chironomid communities and distance away from melting glaciers, but 

efforts should also include expanding along a longitudinal gradient as well as along an elevational 
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gradient. Training set creation should endeavor to include lakes receiving meltwater as these 

assemblages may provide modern analogues for fossil assemblages that often have no modern 

analogue downcore. This will also refine studies that explore using chironomids as a proxy for the 

identification of periods of active meltwater input.  
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CHAPTER 5 

CONCLUSIONS 

Modern distribution of chironomids in Rocky Mountain National Park, Colorado 

Major Findings 

The findings from Chapter 2 indicate that the high elevation lakes located in the remote 

lakes of Rocky Mountain National Park have been impacted by decades of land-use practices and 

increasing temperatures. Almost all high elevation lakes in this study are no longer oligotrophic 

and are becoming more productive.  Forty-three chironomid taxa were identified from the surface 

sediment from nine alpine lakes. Redundancy analysis (RDA) found that the distribution of 

modern chironomid communities was influenced by surface water temperature (SWT), nitrate 

(NO3+NO2-N), boron (B), and carbon (C%). However, the relationship between SWT and 

NO3+NO2-N was strongly and negatively correlated (-0.82, p=0.007) and indicates that glacial 

meltwater is the environmental variable that explains the most variance (15%). Nitrate was not 

included in the analysis as the presence of both SWT and NO3+NO2-N, with B and C%, was no 

longer statistically significant. Surface water temperature was used as it had a higher p-value 

(p=0.037) and explained more variance (7.50%) than NO3+NO2-N (p=0.049; 7.45%). On average, 

lakes receiving glacial meltwater were 2.62°C colder and contained 66% more NO3+NO2-N than 

lakes only receiving meltwater from snow. This is the first time that a relationship between boron 

and chironomid communities was found to the author’s knowledge. It is also the first evidence that 

nitrate is affecting benthic invertebrates in the alpine lakes located in Rocky Mountain National 
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Park. This finding further substantiates that anthropogenic land-use practices are shaping and 

influencing remote alpine ecosystems. 

The presence of taxa from the subfamily Diamesinae indicates that the lakes in Rocky 

Mountain National Park are receiving very cold input from running water. These taxa may be 

useful as qualitative indicator species for the presence of glacial meltwater or melt derived 

perennial snowfields within a lake catchment. Caution should be used when interpreting 

temperature paleoreconstructions from stratigraphic subfossil chironomid remains if these taxa are 

present. 

This study contributes to the debate that has raged between chironomid workers over three 

decades. Many studies have modeled air temperature using transfer functions derived from the 

relationship between modern air temperatures and chironomid assemblages as surface water 

temperature and air temperature often covary. This study illustrates that air temperatures can 

decouple from surface water temperatures and suggests that glacial retreat over varying timescales 

is likely to influence chironomid communities. Even though inference models of air temperature 

are often more statistically robust, they may be providing erroneous results.  

 

Uncertainties 

 This study sampled ten lakes and thus is the only representative of a small sample size. 

These relationships need to be explored more fully by incorporating lakes along a longitudinal 

and elevational gradient in the region as well as in other environments that are experiencing 

glacial retreat. To this end, all sampled lakes lie within proximity to one another as well as being 

similar in elevation. This limits the influence of air temperature on the assemblages for each lake 
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as air temperatures were similar. This could explain why the mean July air temperature didn’t 

explain the variance evident in the modern distribution of chironomid communities.  

While work in alpine streams has found evidence that Diamesinae is an indicator species 

of glacial retreat (Lencioni, 2018), little work has explored these taxa in lake sediment. The high 

presence of Diamesinae in the deposits collected from Rocky Mountain National Park, compared 

to those found in the WUS calibration set, may indicate that these species are specialists that are 

endemic to the Front Range. Unfortunately, the taxa could not be identified down to the species 

level and suggest that these taxa may be newly identified species. Future work will unravel this 

mystery.  

  

Kite Lake reconstruction 

Major Findings 

The third chapter explored the transition from the terminal Pleistocene into the Holocene 

in an alpine lake in the Mosquito Range, Colorado. The climatic amelioration that occurred at this 

transition was marked by progressive, three-step warming during the entirety of the 3,400-year 

record of surface water changes, with a brief but significant cooling event at 10,570 cal yr BP. 

This finding is in sharp contrast to results collected from the Greenland ice sheets that show a 

dramatic increase of 7°C over five decades (Anderson et al., 2013) and indicate that the response 

of chironomid response to climatic change is not instantaneous. These results were found using a 

chironomid-based surface water temperature (SWT) inference model (r2boot = 0.38, RMSEP = 

2.74°C) that was developed using a lake training set incorporating 153 lakes from California, Utah, 

and Colorado. The zone that corresponds to the Younger Dryas chron had no chironomid remains. 

The beginning of the second zone contained the lowest temperatures from the record (x̄ = 8.2°C) 
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and dramatically increased by 4.7°C  at ~11,334 cal yr BP occurred after this period and led to a 

new stable period that fluctuated around an average SWT of 9.8°C.  The indicator 

species Diamesa was found at the base of this zone, suggesting glacial meltwater from the Pinedale 

Glaciation continued to enter into Kite Lake until ~11,000 cal yr BP. The third zone represents the 

earliest stable Holocene. The presence of Cladotanytarsus, Paratanytarsus, 

and Procladius indicates a period of warmth and productivity. SWTs were the highest recorded 

and averaged 12.5°C. 

The Kite Lake stratigraphy contains subfossil chironomid communities that are comprised 

of environmental specialists that suggest that chironomid communities experience postglacial 

succession. These conditions consist of a lack of recoverable chironomid head capsules that may 

indicate the presence of extensive ice cover related to the advancement of glacial conditions. The 

arrival of a Tanytarsini-rich assemblage that also contains Diamesinae may suggest a transitional 

period of glacial retreat. Chironomus begins to appear and to colonize following this 

assemblage.  C. oliveri represents an environment that exists in cold tundra conditions above 

treeline and suggests that climate began to stabilize, but cold temperatures persisted. The 

appearance C. ambigua demarcates the location of the treeline. More research is needed from 

modern environments experiencing glacial retreat to build modern ecological foundations for this 

phenomenon in paleoenvironmental interpretations.  

 

Uncertainties 

The lack of chironomid head capsules in the oldest sediment suggests that future research is 

needed to establish mechanisms driving egg mass survival rates for lakes that experience 

prolonged periods of ice cover. Earlier studies that capture glacial/interglacial cycles have also 
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demonstrated the lack of subfossil chironomid remains during glacial periods (Axford et al., 2011; 

Haskett and Porinchu, 2014). The presence of pollen (Jiménez-Moreno and Anderson, 2012) 

denotes that passive deposition was possible. Thus, Kite Lake experienced short periods of melting 

ice during the summer growing season, but timing and the extent of ice cover inhibited the survival 

of chironomid egg masses during this period may be one explanation that could explain the absence 

of chironomid head capsules during this interval. 

 The chronology development followed Jiménez-Moreno and Anderson (2012) in order to 

aid in the comparison between the two proxies chironomids and pollen. This chronology relied on 

the linear regression between radiocarbon-dated samples. However, sedimentation rates are very 

rarely linear in deposition and could unduly influence the chronology of this reconstruction.  

The model development for surface water temperature is not as statistically robust as previously 

published models for the western United States (Haskett and Porinchu). Both the root-mean-square 

error of prediction (RMSEP) and sample-specific errors (SSE) were high at 2.8°C compared to the 

overall predicted temperatures that had a range of only 5.6°C. However, the magnitude of 

temperature change was larger than both RMSEP and SSE, suggesting that the reconstruction 

performs well (Reinemann et al., 2014). The use of the model for surface water temperature (SWT) 

resulted in higher errors, but this decision was made intentionally as there was evidence that glacial 

retreat was present during the time-examined, and it was determined that the SWT was the more 

appropriate temperature to model. Errors were higher as lakes that are often considered “outliers” 

were left in the calibration set. It is standard in chironomid work to develop the inference model 

first before identifying outliers. To find outliers in training set data, some authors use an absolute 

residual (predicted-observed) greater than one standard deviation away from the modeled 

environmental variable (Jones and Juggins, 1995; Haskett and Porinchu, 2014).  
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The inclusion of the Front Range lakes may not be appropriate as these systems may not 

represent natural environments that would have been present during the Pleistocene and early 

Holocene. Anthropogenic input of atmospheric nitrogen from farming and boron from coal-fired 

plants are influencing modern chironomid communities. However, SWT was found to the most 

statistically significant that explained the most variance in modern chironomid distributions 

(Chapter 2).  

 While no chironomids were present in the sediment that corresponded to 10,577 cal yr BP, 

no work could be completed on the sediment that bounded this sample due to no access to 

laboratory space for sediment preparation. Thus, the period between 10,340 to 10,813 cal yr BP is 

poorly resolved. However, future work will remedy this gap and refinement of this portion of the 

record is expected in the fall of 2020.   

 

Study site selection 

Major Findings 

For the fourth chapter, chironomids were used to develop temperature reconstructions for 

mean July air temperature (MJAT) and surface water temperature (SWT) for the 20th and 21st 

centuries for six alpine lakes in Rocky Mountain National Park, Colorado. These results were 

compared to extrapolated mean July air temperatures from the PRISM dataset. Glacial meltwater 

decoupled the signal between air temperature and water temperature and was evident between the 

relationships between the predicted MJAT and SWT for lakes receiving meltwater from glaciers 

or perennial snowfields. If inverted relationships between the two temperature reconstructions are 

apparent, midge-based SWT reconstructions should be used instead of the MJAT. These inverse 

relationships may also act as a proxy for active meltwater input and may help refine these periods 
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in reconstructions that cover more extended periods, such as those relationships found in the 

reconstructions for Kite Lake.  The deviations plotted from average SWTs performed better at 

predicting warming and cooling trends than the midge-based predicted values for MJAT and SWT. 

However, it should be noted that both midge-based SWT and MJAT performed well when using 

Bland-Altman Plots. Within-lake variability may account for discrepancies evident between site 

locations in downcore interpretation. Study site selection is crucial for midge-based thermal 

reconstructions and basins that receive or have received meltwater should be avoided if modeling 

MJAT is the objective of the study.  

 

Uncertainties 

This study is limited and has a small sample size (n=6). Future work should not only 

explore the relationships between chironomid communities and distance away from melting 

glaciers, but efforts should also include expanding along a longitudinal gradient as well as along 

an elevational gradient. Training set creation should endeavor to include lakes receiving meltwater 

as these assemblages may provide modern analogs for fossil assemblages that often have no 

modern analog downcore. This will also refine studies that explore using chironomids as a proxy 

for the identification of periods of active meltwater input.  

This study is the first to explore both MJAT and SWT when compared to instrumental data 

and may contribute to the debate within the chironomid research community. However, the 

relationship between recent chironomid communities and their environments is poorly understood 

and does not satisfy the principle of Uniformitarianism which states that “the present is the key to 

the past.” Until work establishes and refines the modern relationships between chironomid 

communities and the multiple factors that may influence their distribution, it is inappropriate to 
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model temperatures over periods that possess no instrumental data without extreme caution. Work 

in the statistical refinement of training sets and inference models has significantly expanded over 

previous decades (Birks, 2012b, Juggins and Birks, 2012), but little effort has been made to satisfy 

whether their use is appropriate in paleoreconstruction work. Future research in chironomid studies 

should endeavor to refine the relationship between instrumental data and midge-based 

reconstructed temperatures.  

Long instrumental records are limited for the Rocky Mountains of Colorado. An attempt 

was made to use data from the Niwot Ridge long-term ecological research site. Unfortunately, the 

instrument collecting air temperatures is present on a ridge and does not represent lower elevation 

sites that are influenced by complex topographic relationships. PRISM-derived temperatures were 

used instead. Unfortunately, very few places have instrumental data above 3000 m asl in this area. 

No sites currently contribute to the PRISM dataset above 3500m asl (Rangwala et al., 2012). The 

paucity of these sites may unduly influence air temperatures derived from PRISM (Daly et al., 

2008). However, no other instrumental data is available for this area that extends into the earliest 

20th century.  

Of the six study sites that were examined, no good agreement was evident between any of 

them and suggests that within-lake variability is influencing chironomid communities. Differing 

responses were expected and controlled for between paired lakes (i.e., glacial meltwater vs. annual 

snowmelt), and differences between these lakes were expected. However, differences between 

placement on the landscape concerning treeline may also have affected chironomid communities. 

The highest lakes were adjacent to the continental divide and were characterized by harsh 

environments composed of rock falls, glaciers, and perennial snowfields. Iron nodules were 

collected from Box Lake stratigraphy during chironomid extraction and indicates that the earliest 
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period studied underwent changes in oxygen levels. These findings suggest that study site selection 

is imperative in chironomid work. 
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APPENDIX A 

CODE FOR ALL ANALYSIS IN R 

 

##############################################################################

################################Chapter 2 ##################################### 

 

library(rioja) 

library (vegan) 

 

 

##############Set Working Directory######################## 

dir<-'C:\\Users\\Danielle\\Desktop\\Analysis Chapter 1' 

setwd(dir) 

 

##### Data ######## 

data <- read.table('taxaandvariables8.csv', header=TRUE, row.names = 1, sep=',') 

head(data) 

variables <- data [ ,1:29] 

transformed.variables = transform(variables,Depth = log(variables$Depth)) 

transformed.variables1 = transform(transformed.variables,Secchi = 

log(transformed.variables$Secchi)) 

transformed.variables2 = transform(transformed.variables1,Sp.Cond = 

log(transformed.variables1$Sp.Cond)) 

transformed.variables3 = transform(transformed.variables2,DO.mg.L = 

log(transformed.variables2$DO.mg.L)) 

transformed.variables4 = transform(transformed.variables3,DOC..ppm. = 

log(transformed.variables3$DOC..ppm.)) 

transformed.variables5 = transform(transformed.variables3,Total.P.as.PO4.P..ppb. = 

log(transformed.variables3$Total.P.as.PO4.P..ppb.)) 

transformed.variables6 = transform(transformed.variables5,Active.Chla.ug.L = 

log(transformed.variables5$Active.Chla.ug.L)) 

 

 

#Exploring distribution of data: 

summary(variables) 

 

#Depth: 

 windows() 

 qqnorm(variables$Depth, main="Depth", las=1, pch=19) 

 qqline(variables$Depth, col="red") 
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 windows() 

 boxplot(variables$Depth, main="Depth", las=1) 

 windows() 

 hist(variables$Depth, main="", xlab="Depth (m)", las=1) 

 

#Transformed Depth 

windows() 

 qqnorm(transformed.variables$Depth, main="Depth", las=1, pch=19) 

 qqline(transformed.variables$Depth, col="red") 

 windows() 

 boxplot(transformed.variables$Depth, main="Depth", las=1) 

 windows() 

 hist(transformed.variables$Depth, main="", xlab="Depth (m)", las=1) 

 

 #Secchi 

 windows()  

 qqnorm(transformed.variables$Secchi, main="Log of Secchi Depth (m)", las=1, pch=19) 

 qqline(transformed.variables$Secchi, col="red") 

 windows() 

 hist(transformed.variables2$Secchi, main="", xlab="Secchi Depth (m)", las=1) 

 windows() 

 boxplot(transformed.variables2$Secchi, main="Secchi Depth", las=1) 

  

#Transformed Secchi 

windows()  

 qqnorm(transformed.variables1$Secchi, main="Log of Secchi Depth (m)", las=1, pch=19) 

 qqline(transformed.variables1$Secchi, col="red") 

 windows() 

 hist(transformed.variables1$Secchi, main="", xlab="Secchi Depth (m)", las=1) 

 windows() 

 boxplot(transformed.variables1$Secchi, main="Secchi Depth", las=1) 

 

 #Water Temp Surface 

 windows() 

 qqnorm(transformed.variables1$Water.Temp.surface, main="SWT (°C)", las=1, pch=19) 

 qqline(transformed.variables1$Water.Temp.surface, col="red") 

 windows() 

 boxplot(transformed.variables1$Water.Temp.surface, main="SWT (°C)", las=1) 

windows() 

 hist(transformed.variables1$Water.Temp.surface, main="", xlab="SWT (°C)", las=1) 

  

#Water Bottom Temp 

 windows() 

 qqnorm(transformed.variables1$Water.Temp.bottom, main="BWT (°C)", las=1, pch=19) 

 qqline(transformed.variables1$Water.Temp.bottom, col="red") 

 windows() 
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 boxplot(transformed.variables1$Water.Temp.bottom, main="BWT (°C)", las=1) 

 windows() 

 hist(transformed.variables1$Water.Temp.bottom, main="", xlab="BWT (°C)", las=1) 

 

 #Specific Conductivity 

 windows() 

 qqnorm(transformed.variables1$Sp.Cond, main="Log of Specific Conductivity (µS•cm-1)", 

las=1, pch=19) 

 qqline(transformed.variables1$Sp.Cond, col="red") 

 windows() 

 hist(transformed.variables1$Sp.Cond, main="", xlab="Specific Conductivity (µS•cm-1)", las=1) 

 windows() 

 boxplot(transformed.variables1$Sp.Cond, main="Specific Conductivity (µS•cm-1)", las=1) 

 

#Transformed Specific Conductivity 

windows() 

 qqnorm(transformed.variables2$Sp.Cond, main="Log of Specific Conductivity (µS•cm-1)", 

las=1, pch=19) 

 qqline(transformed.variables2$Sp.Cond, col="red") 

 windows() 

 hist(transformed.variables2$Sp.Cond, main="", xlab="Specific Conductivity (µS•cm-1)", las=1) 

 windows() 

 boxplot(transformed.variables2$Sp.Cond, main="Specific Conductivity (µS•cm-1)", las=1) 

 

  

 #DO.mg.L 

 windows() 

 qqnorm(transformed.variables2$DO.mg.L, main="Dissolved Oxygen (mg/L)", las=1, pch=19) 

 qqline(transformed.variables2$DO.mg.L, col="red") 

 windows() 

 boxplot(transformed.variables2$DO.mg.L, main="Dissolved Oxygen (mg/L)", las=1) 

 windows() 

 hist(transformed.variables2$DO.mg.L, main="", xlab="Dissolved Oxygen (mg/L)", las=1) 

 

#Transformed DO.mg.L 

 windows() 

 qqnorm(transformed.variables3$DO.mg.L, main="Dissolved Oxygen (mg/L)", las=1, pch=19) 

 qqline(transformed.variables3$DO.mg.L, col="red") 

 windows() 

 boxplot(transformed.variables3$DO.mg.L, main="Dissolved Oxygen (mg/L)", las=1) 

 windows() 

 hist(transformed.variables3$DO.mg.L, main="", xlab="Dissolved Oxygen (mg/L)", las=1) 

 

 #Prism.ELR 

 windows() 
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 qqnorm(transformed.variables3$Prism.ELR, main="Mean July Air Temperature (°C)", las=1, 

pch=19) 

 qqline(transformed.variables3$Prism.ELR, col="red") 

 windows() 

 boxplot(transformed.variables3$Prism.ELR, main="Mean July Air Temerature (°C)", las=1) 

 windows() 

 hist(transformed.variables3$Prism.ELR, main="", xlab="MJAT (°C)", las=1) 

 

#pH 

 windows() 

 qqnorm(transformed.variables3$pH, main="pH", las=1, pch=19) 

 qqline(transformed.variables3$pH, col="red") 

 windows() 

 boxplot(transformed.variables3$pH, main="pH", las=1) 

 windows() 

 hist(transformed.variables3$pH, main="", xlab="pH", las=1) 

 

#DOC (ppm) 

 windows() 

 qqnorm(transformed.variables3$DOC..ppm, main="DOC (ppm)", las=1, pch=19) 

 qqline(transformed.variables3$DOC..ppm, col="red") 

 windows() 

 boxplot(transformed.variables3$DOC..ppm, main="DOC (ppm)", las=1) 

 windows() 

 hist(tranformed.variables3$DOC..ppm, main="", xlab="DOC (ppm)", las=1) 

 

#Transformed DOC 

 windows() 

 qqnorm(transformed.variables4$DOC..ppm, main="DOC (ppm)", las=1, pch=19) 

 qqline(transformed.variables4$DOC..ppm, col="red") 

 windows() 

 boxplot(transformed.variables4$DOC..ppm, main="DOC (ppm)", las=1) 

 windows() 

 hist(tranformed.variables4$DOC..ppm, main="", xlab="DOC (ppm)", las=1) 

 

#DIC 

windows() 

 qqnorm(transformed.variables3$DIC..ppm, main="DIC", las=1, pch=19) 

 qqline(transformed.variables3$DIC..ppm, col="red") 

 windows() 

 boxplot(transformed.variables3$DIC..ppm, main="DIC", las=1) 

 windows() 

 hist(tranformed.variables3$DIC..ppm, main="", xlab="DIC", las=1) 

 

#Total.P 

windows() 
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 qqnorm(transformed.variables$Total.P.as.PO4.P..ppb., main="Total P", las=1, pch=19) 

 qqline(transformed.variables$Total.P.as.PO4.P..ppb., col="red") 

 windows() 

 boxplot(transformed.variables$Total.P.as.PO4.P..ppb., main="Total P", las=1) 

 windows() 

 hist(tranformed.variables$Total.P.as.PO4.P..ppb., main="", xlab="Total P", las=1) 

 

transformed.variables3 = transform(transformed.variables2,Total.P = 

log(transformed.variables$Total.P)) 

 

#Tranformed Total.P 

windows() 

 qqnorm(transformed.variables5$Total.P.as.PO4.P..ppb., main="Total P", las=1, pch=19) 

 qqline(transformed.variables5$Total.P.as.PO4.P..ppb., col="red") 

 windows() 

 boxplot(transformed.variables5$Total.P.as.PO4.P..ppb., main="Total P", las=1) 

 windows() 

 hist(tranformed.variables5$Total.P.as.PO4.P..ppb., main="", xlab="Total P", las=1) 

 

 # NO3.N 

windows() 

 qqnorm(transformed.variables5$NO3.N...NO2.N.ppm., main="NO3", las=1, pch=19) 

 qqline(transformed.variables5$NO3.N...NO2.N.ppm., col="red") 

 windows() 

 boxplot(transformed.variables5$NO3.N...NO2.N.ppm., main="NO3", las=1) 

 windows() 

 hist(tranformed.variables5$NO3.N...NO2.N.ppm., main="", xlab="NO3", las=1) 

 

#Chl.a 

windows() 

 qqnorm(transformed.variables5$Active.Chla.ug.L, main="Chl A", las=1, pch=19) 

 qqline(transformed.variables5$Active.Chla.ug.L, col="red") 

 windows() 

 boxplot(transformed.variables5$Active.Chla.ug.L, main="Chl A", las=1) 

 windows() 

 hist(tranformed.variables5$Active.Chla.ug.L, main="", xlab="Chl A", las=1) 

 

#transformed Chl.a 

windows() 

 qqnorm(transformed.variables6$Active.Chla.ug.L, main="Chl A", las=1, pch=19) 

 qqline(transformed.variables6$Active.Chla.ug.L, col="red") 

 windows() 

 boxplot(transformed.variables6$Active.Chla.ug.L, main="Chl A", las=1) 

 windows() 

 hist(tranformed.variables6$Active.Chla.ug.L, main="", xlab="Chl A", las=1) 
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#######################PCA of environmental variables ############### 

 

transformed.variables7 <- transformed.variables6 [,-14:-29 ] 

 

variables.pca <- prcomp(transformed.variables7, center=TRUE, scale.=TRUE) 

sd <- variables.pca$sdev 

loadings <- variables.pca$rotation 

rownames(loadings) <- colnames(transformed.variables7) 

scores <- variables.pca$x 

biplot(variables.pca, scale=0) 

 

variance <- sd^2 

var.percent <- variance/sum(variance) * 100 

 

#proportion of variance explained: 

prop_varex <- variance/sum(variance) 

 

#scree plot 

plot(prop_varex, xlab = "Principal Component",  

ylab = "Proportion of Variance Explained", type = "b") 

 

#cumulative scree plot 

plot(cumsum(prop_varex), xlab = "Principal Component",  

ylab = "Cumulative Proportion of Variance Explained", 

type = "b") 

 

####PCA TUTORIAL FROM MISSOURI: 

http://faculty.missouri.edu/huangf/data/mvnotes/pca_in_r_2.html####### 

 

R<-cor(transformed.variables7)  

#saving the correlation matrix 

 

e<-eigen(R)  

#solving for the eigenvalues and eigenvectors from the correlation matrix 

str(e) 

L<-e$values 

 

e$vectors  

#these are the eigenvectors-- these are the standardized regression weights 

 

###Determine how many PCAs to use)### 

library(hornpa) 

hornpa(k=24,size=9,reps=500,seed=1234)  

#k = # of variables, size = #sample size, reps =#of reps to run, seed =#optional seed 
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L #this will give the values to compare to hornpa results. Anything higher than the 95% is kept 

 

dev.new() 

barplot(var.percent, xlab="PC", ylab="Percent Variance", names.arg=1:length(var.percent), 

las=1, ylim=c(0,max(var.percent)), col="gray") 

abline(h=1/ncol(transformed.variables8)*100, col="red") 

 

#Kaisers rule, retains Eiganvalues >1 

plot(L,main="Scree Plot",ylab="Eigenvalues",xlab="Component number",type='b') 

abline(h=1, lty=2) 

 

var.percent[1:6] 

sum(var.percent[1:6]) 

 

loadings 

sqrt(1/ncol(transformed.variables7)) 

 

dev.new(height=7, width=7) 

plot(scores[,1], scores[,2], xlab="PCA 1", ylab="PCA 2", type="n", asp=1, las=1) 

scaling <- 3.5 

textNudge <- 1.05 

arrows(0, 0, loadings[,1]* scaling, loadings[,2]* scaling, length=0.1, angle=20, col="red") 

text(loadings[,1]*scaling*textNudge, loadings[,2]*scaling*textNudge, rownames(loadings), 

col="red", cex=0.7) 

text(scores[,1], scores[,2], rownames(scores), col="blue", cex=0.7) 

 

dev.new(height=7, width=7) 

 

Glacial <- transformed.variables8$Water.Temp.surface >9.9 & 

transformed.variables8$Water.Temp.surface < 10.91 

Glacial1 <- transformed.variables8$Water.Temp.surface >8.1 & 

transformed.variables8$Water.Temp.surface < 8.3 

Snow <- transformed.variables8$Water.Temp.surface > 13 

Snow1 <- transformed.variables8$Water.Temp.surface >9.1 & 

transformed.variables8$Water.Temp.surface < 9.3 

plot(scores[,1], scores[,2], xlab="PCA 1", ylab="PCA 2", type="n", asp=1, las=1) 

points(scores[Glacial,1], scores[Glacial,2], pch=16, cex=0.7, col="blue") 

points(scores[Glacial1,1], scores[Glacial1,2], pch=16, cex=0.7, col="blue") 

points(scores[Snow,1], scores[Snow,2], pch=16, cex=0.7, col="red") 

points(scores[Snow1,1], scores[Snow1,2], pch=16, cex=0.7, col="red") 

 

 

text(0.5, -1.3, "Glacial", col="blue") 

text(-0.5, 1.8, "Snow",col="red") 
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text(-0.5, 2.1, "warm", pos=3, col="gray") 

text(-0.5, -2.2, "cold", pos=3, col="gray") 

text(1.5, -0.2, "less productive", pos=3, col="gray") 

text(-2.5, -0.2, "more productive", pos=3, col="gray") 

 

################### DCA for taxa ##################################### 

 

library(vegan) 

data <- read.table('taxaandvariables2.csv', header=TRUE, row.names = 1, sep=',') 

head(data) 

taxa <- data[ ,30:72] 

taxa <- taxa[-7:-10,] 

sqrt.taxa <- sqrt(taxa) 

###transformation necessary because response is modal and not linear 

  

#transformations to correct for differences in sample size and abundances 

mydata.t1 <- decostand(sqrt.taxa, "total")  

mydata.t2 <- decostand(mydata.t1, "max")  

mydata.t2.dca <- decorana(mydata.t2)  

 

mydata.t2.dca.DW <- decorana(mydata.t2, iweigh=1)  

 

DCA <- summary(mydata.t2.dca) 

write.csv(DCA, file="DCA results.csv") 

 

 

#Plot scores 

dev.new(height=8, width=8) 

DCA <- plot(mydata.t2.dca) 

pdf("C:/Users/Danielle/Desktop/Analysis Chapter 1/DCA.pdf") 

plot(DCA) 

dev.off() 

 

 

#####################RDA################################### 

 

library(vegan) 

data <- read.table('taxaandvariables7.csv', header=TRUE, row.names = 1, sep=',') 

head(data) 

taxa <- data[ ,46:89] 

taxa <- taxa[-7:-10,] 

sqrt.taxa <- sqrt(taxa) 

 

 

rda <- rda(sqrt.taxa~transformed.variables6$Depth) 

anova(rda) 
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rda1 <- rda(sqrt.taxa~transformed.variables6$Prism.ELR) 

anova(rda1) 

 

rda2 <- rda(sqrt.taxa~transformed.variables6$Water.Temp.surface) 

anova(rda2) 

 

rda3 <- rda(sqrt.taxa~transformed.variables6$Water.Temp.bottom) 

anova(rda3) 

 

rda4 <- rda(sqrt.taxa~transformed.variables6$Sp.Cond) 

anova(rda4) 

 

rda5 <- rda(sqrt.taxa~transformed.variables6$Secchi) 

anova(rda5) 

 

rda6 <- rda(sqrt.taxa~transformed.variables6$DO.mg.L) 

anova(rda6) 

 

rda7 <- rda(sqrt.taxa~transformed.variables6$DOC..ppm.) 

anova(rda7) 

 

rda8 <- rda(sqrt.taxa~transformed.variables6$DIC..ppm.) 

anova(rda8) 

 

rda9 <- rda(sqrt.taxa~transformed.variables6$Total.P.as.PO4.P..ppb.) 

anova(rda9) 

 

rda10 <- rda(sqrt.taxa~transformed.variables6$NO3.N...NO2.N.ppm.) 

anova(rda10) 

 

rda11 <- rda(sqrt.taxa~transformed.variables6$Active.Chla.ug.L) 

anova(rda11) 

 

rda12 <- rda(sqrt.taxa~transformed.variables6$NO3.N...NO2.N.ppm. + 

transformed.variables6$Water.Temp.surface) 

anova(rda12) 

 

 

 

############Pearsons Correlation############### 

cor.test(transformed.variables6$NO3.N...NO2.N.ppm.,transformed.variables6$Water.Temp.surf

ace) 
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##############################################################################

####################Chapter 3 code ############################################# 

 

#############Reads in R Packages needed for Code############### 

library(rioja) 

library(BlandAltmanLeh) 

library(tidyr) 

 

##############Set Working Directory######################## 

dir<-'C:\\Users\\Danielle\\Desktop\\Analysis Chapter 2\\Kyle cleaned up files' 

setwd(dir) 

 

################################################### 

#####Choose which Lake you want to Work With####### 

################################################### 

 

#Lake<-'Black Counts Age Depth.csv' 

#Lake<-'Black N2 under 5 removed.csv' 

#Lake<-'Box Loess Counts.csv' 

#Lake<-'Box N2 under 5 removed.csv' 

#Lake<-'Cony Counts Age Depth.csv' 

#Lake<-'Cony N2 under 5 removed.csv' 

#Lake<-'Eagle Counts Age Depth.csv' 

#Lake<-'Eagle N2 under 5 removed.csv' 

#Lake<-'Pipit Counts Age Depth.csv' 

#Lake<-'Pipit N2 under 5 removed.csv' 

#Lake<-'Thunder Counts Age Depth.csv' 

#Lake<-'Thunder N2 under 5 removed.csv' 

#Lake<-'Training Set Data SWT.csv' 

#Lake<-'Training Set Data MJAT.csv' 

Lake<-'Kite Counts.csv' 

 

###########Reads in Data for which lake above was selected################## 

Lake_Data<-read.csv(Lake, header=TRUE) ###Reading In Lake Data 

rel_num<-grep('Abisko',colnames(Lake_Data)) 

Lake_Rel_Abun<-Lake_Data[,-c(1:rel_num[1])]  ###Removing all columns that are not part of 

Relative Abundance Data 

Lake_Rel_Abun[is.na(Lake_Rel_Abun)]<-0  ####Converts Missing Data NAs to 0 

 

#####Reads in Training Set Relative Abundance 

Training_Set<-read.csv('Training Set Data.csv', header=TRUE)  

 

#####Reads in Training Set Environment Data 

Environment<-read.csv('Training set with temperatures.csv', header=TRUE) 
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####Matches Training Set Data Frames and removes those that aren't in both sets 

test<-merge(Training_Set, Environment) 

 

Environment<-data.frame(cbind(test$CodeNum, test$FullName, test$MJAT, test$SWT)) 

colnames(Environment)<-c('CodeNum','FullName','MJAT', 'SWT') 

 

Training_Set<-test[, c(4:76)] 

Training_Set[is.na(Training_Set)]<-0 

Training_Set<-Training_Set[,-c(18,39,42,50)] 

 

####Reads in Historical Data and Formats it 

Historic_temps<-read.csv('All Lakes Prism Interpolation on.csv', header=TRUE) 

Historic_temps<-na.omit(Historic_temps) 

Historic_temps$C_temp<-(as.numeric(Historic_temps$tmean..degrees.F.)-32)*(5/9) 

Historic_temps<-Historic_temps[,-c(2:4,6)] 

 

Historic_temps_wide<-spread(Historic_temps, Date, C_temp) 

 

names(Historic_temps_wide)<-gsub("\\-07", "", names(Historic_temps_wide)) 

rnames<-Historic_temps_wide$Name 

 

names.use<-names(Historic_temps_wide)[(names(Historic_temps_wide) %in% 

Lake_Data$Year)] 

Historic_temps_wide<-Historic_temps_wide[,names.use] 

row.names(Historic_temps_wide)<-rnames 

 

 

Lake<-strsplit(Lake," ")[[1]][1] 

 

rm(rel_num, rnames, test) 

 

new_dir<-paste0(Lake,"_Ouput") 

dir.create(paste0(Lake,"_Ouput")) 

setwd(paste0(dir,new_dir)) 

 

######################################################### 

#######Fits WAPLS Data for Training Set Using 5 Comp##### 

######################################################### 

 

fit<-WAPLS(Training_Set,Environment$SWT, npls=5) 

fit 

 

##### cross-validate model 

fit.cv <- crossval(fit, cv.method="bootstrap",nboot=10000) 

fit.cv 
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##### How many components to use? 

rand.t.test(fit.cv) 

jpeg(paste0('ScreePlot_',Lake,'.jpeg')) 

screeplot(fit.cv) 

dev.off() 

 

######################################################### 

###### Predicts the Values for the interested Lake####### 

######################################################### 

 

pred <- predict(fit, Lake_Rel_Abun, npls=1) 

pred 

 

####Writes Predicted Values to CSV 

write.csv(pred, paste0('Predicted_',Lake,'.csv')) 

 

####plot predictions - depths are in rownames 

Year <- as.numeric(Lake_Data$Year) 

 

jpeg(paste0('Depth_Plot_', Lake,'.jpeg')) 

plot(pred$fit[, 1],Year, type="b", xlab="Predicted Temperature", ylab='Year', 

     main ='Reconstructed Mean July Air Temperature (Celsius) Over Time',las=1, 

xlim=c(10.5,12), ylim=rev(c(9000, 13000))) 

fittedcurve <- loess(pred$fit[, 1]~Year, span=0.75) 

lines(x=fittedcurve$fitted, y=Year, col=2, lwd=2) 

dev.off() 

 

Year <- as.numeric(Lake_Data$Year) 

 

jpeg(paste0('Depth_Plot_', Lake,'.jpeg')) 

plot(Year,pred$fit[, 1], type="b", xlab='Year', ylab="Predicted Temperature", 

     main ='Reconstructed Mean July Air Temperature (Celsius) Over Time',las=1, 

xlim=rev(c(9000, 13000), ylim=c(10.5,12))) 

fittedcurve <- loess(pred$fit[, 1]~Year, span=0.75) 

lines(x=fittedcurve$fitted, y=Year, col=2, lwd=2) 

dev.off() 

 

# predictions with sample specific errors 

## Not run:  

#pred <- predict(fit, Black_Rel_Abun, npls=1, sse=TRUE, nboot=1000) 

#pred 

 

 

###Plots Bland Altman Plot and outputs to a Jpeg 

jpeg(paste0('Bland_Altman_Plot_',Lake,'.jpeg')) 

bland.altman.plot(pred$fit[,1], as.numeric(Historic_temps_wide[Lake,]),  
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                  main=paste0(Lake, " Lake Bland Altman Plot"), xlab="Means", ylab="Differences") 

dev.off() 

 

####################### Kite Relative Abundance ################################ 

# Commands from Analogue: 

#Stratiplot(x, y, type = "l", ylab = NULL, xlab = "", pages = 1, rev = TRUE, 

# ylim, sort = c("none", "wa", "var"), svar = NULL, rev.sort = FALSE, strip = FALSE,  

# topPad =6, varTypes = "relative", absoluteSize = 0.5, zoneNames = NULL, drawLegend = 

TRUE,  

# na.action = "na.omit", labelAt = NULL, labelRot = 60, yticks, ...)  

 

#############Reads in R Packages needed for Code############### 

library(analogue) 

library(palaeoSig) 

 

 

##############Set Working Directory######################## 

dir<-'C:\\Users\\Danielle\\Desktop\\Analysis Chapter 2\\Kyle cleaned up files' 

setwd(dir) 

 

 

##############Kite Lake################# 

 

radioncarbon <- read.csv("Chronology without errors.csv", header=TRUE, sep=",") 

erroneous <- read.csv("erroneous dates.csv", header=TRUE, sep=",") 

fit8 <- read.csv("fit8.csv", header=TRUE, sep=",") 

 

# Figure for Kite Chronology 

 

dev.new(height=8, width=10)  

 

age <-plot(radioncarbon$Cal.kyr.BP, radioncarbon$Depth, main="Age-depth diagram", 

xlab="Age (cal kyr BP)", 

            ylab= "Depth (cm)", type="n", axes=FALSE, xlim=(c(0, 18)), ylim=(rev(c(0,700)))) 

 

#plot points of dated samples. Radiocarbon were used in the model. Erroneous weren't used           

points(radioncarbon$Cal.kyr.BP, radioncarbon$Depth, type="p", pch=19)        

points(erroneous$Cal.kyr.BP, erroneous$Depth, type="p", pch=19, col="red") 

            

#plot axes 

axis(1, at=seq(0,18,by=1), 

labels=c("0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18"))  

axis(2, at=seq(0,700,by=50), labels=FALSE, tcl=-0.3)  

axis(2, at=seq(0,700,by=100), labels= 

       c('0','100','200','300','400','500','600', "700"), las=1)  
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#adding lines 

lines(radioncarbon$Cal.kyr.BP, radioncarbon$Depth,col="black") 

lines(fit8$Cal.kyr.BP, fit8$Depth, col="black", lty="dashed") 

 

 

## Relative Abundance Diagram 

 

Kite <- read.csv(file="Kite Counts.csv", header=TRUE, sep=",") 

attach(Kite) 

#Zones <- c(12328,11712,10671,9489)                                   ### VEG zones 

#zone.labs <- c("Ki-1a","Ki-1b","Ki-1c","Ki-1d", "KI-2")              ### VEG zones 

 

Zones <- c(10033,11925 )                                   

zone.labs <- c("KLZ3","KLZ2","KLZ1")   

#WA Optima plot 12.19.19 

 

pdf(file="Kite Lake Relative Abundance.pdf", height=7, width=12) 

 

dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

(plt <- Stratiplot(Year ~  Cric.Ort + Chaeto + Euk.Tvet + Psecsemi  +  

                     Heteind + Chirind + Cladtany + Corynamb + Colivtyp + TAA + TAB + 

                     TAH + Tanyind + Paratany + Procind + Pentind + 

                     Diamind + Protan, data = Kite, 

                   rev = TRUE, type = c("h","g"),  zones = Zones, zoneNames = zone.labs, 

                   xlab = "% Relative Abundance", varTypes = "relative", col="gray48", pages = 1)) 

 

 

# Richness and Concentration 

 

dev.new(height=7, width=5)  

par(mfrow=c(1,2)) 

 

#Concentration 

Kite.Concentration <- read.csv(file="Kite Concentration.csv", header=TRUE, sep=",") 

attach(Kite.Concentration) 

 

pdf(file="Kite_Concentration.pdf", height=7, width=2) 

plot(Concentration, Year, type='l', pch=20, xlim = c(0,260),lwd=2, ylim = rev(c(9200,12700)), 

xlab='Concentration', ylab="Age (cal yr BP)") 

abline(h=11925, col="blue")  

abline(h=10033, col="blue") 

 

#Species Richness 
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plot(Richness, Year, type='l', pch=20, xlim = c(0,15), lwd=2, ylim = rev(c(9200,12700)), 

xlab='Richness', ylab="Age (cal yr BP)") 

abline(h=11925, col="blue")  

abline(h=10033, col="blue") 

dev.off() 

 

 

#######################Training Set######################## 

 

# Commands from Analogue: 

#Stratiplot(x, y, type = "l", ylab = NULL, xlab = "", pages = 1, rev = TRUE, 

# ylim, sort = c("none", "wa", "var"), svar = NULL, rev.sort = FALSE, strip = FALSE,  

# topPad =6, varTypes = "relative", absoluteSize = 0.5, zoneNames = NULL, drawLegend = 

TRUE,  

# na.action = "na.omit", labelAt = NULL, labelRot = 60, yticks, ...)  

 

#############Reads in R Packages needed for Code############### 

library(analogue) 

 

##############Set Working Directory######################## 

dir<-'C:\\Users\\Danielle\\Desktop\\Analysis Chapter 2\\Kyle cleaned up files' 

setwd(dir) 

 

 

####Bringing in the data 

 

TrainingSet <- read.csv(file="Training Set Data.csv", header=TRUE, sep=",") 

attach(TrainingSet) 

Zones <- c(52,109, 146) 

zone.labs <- c("Front Range","Sawatch Range","Sierra Nevada","Uintas") 

 

 

#Plot by tribes  

 

pdf(file="Training Set Relative Abundance.pdf", height=7, width=12) 

 

dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

(plt <- Stratiplot(Number ~  Cory.Th + Cric.Ort + Chaeto + Euk.Tvet +  

                     Hyd.Oliv +  Lim.Para + Park.bat + Psecsemi  + Rheoind +  

                     Zaluind + Heteind + Chirind + Cladind + Dicrind + Mictind +  

                     Phaeind + Sergind + Cladtany + Corynamb + Colivtyp + Micpsect + 

                     TAC + TAG + TAH + Tanyind + Paratany + Procind + Pentind + 
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                     Diamind, data = TrainingSet,rev = TRUE, type = c("h","l","g"), zones = Zones, 

zoneNames = zone.labs, 

                   xlab = "% Relative Abundance", ylab = "Lake Number", varTypes = "relative", 

col="gray48", pages = 1)) 

dev.off()  

 

 

##############################################################################

###########################CHAPTER 4####################################### 

library(rioja) 

library(tidyr) 

library(ggplot2) 

 

#Load data for NIWOT comparison 

#Black <- read.csv("Black Data1.csv", header=TRUE, sep=",") 

#Box <- read.csv("Box Data1.csv", header=TRUE, sep=",") 

#Cony <- read.csv("Cony Data1.csv", header=TRUE, sep=",") 

#Eagle <- read.csv("Eagle Data1.csv", header=TRUE, sep=",") 

#Pipit <- read.csv("Pipit Data1.csv", header=TRUE, sep=",") 

#Thunder <- read.csv("Thunder Data1.csv", header=TRUE, sep=",") 

#Niwot <- read.csv("Niwot_July_Temps.csv", header=TRUE, sep=",") 

#Dates <- read.csv("Dates.csv", header=TRUE, sep=",") 

#Dates1 <- read.csv("Dates1.csv", header=TRUE, sep=",") 

#Kite <- read.csv("Kite Counts1.csv", header=TRUE, sep=",") 

 

 

#Load data for Prism comparison 

Black <- read.csv("Black Data.csv", header=TRUE, sep=",") 

Box <- read.csv("Box Data.csv", header=TRUE, sep=",") 

Cony <- read.csv("Cony Data.csv", header=TRUE, sep=",") 

Eagle <- read.csv("Eagle Data.csv", header=TRUE, sep=",") 

Pipit <- read.csv("Pipit Data.csv", header=TRUE, sep=",") 

Thunder <- read.csv("Thunder Data.csv", header=TRUE, sep=",") 

Dates <- read.csv("Dates.csv", header=TRUE, sep=",") 

Dates1 <- read.csv("Dates1.csv", header=TRUE, sep=",") 

Prism <- read.csv("Prism.csv", header=TRUE, sep=",") 

Kite <- read.csv("Kite Data.csv", header=TRUE, sep=",") 

Blackbugs <- read.csv("Black Counts Age Depth.csv", header=TRUE, sep=",") 

Boxbugs <- read.csv("Box Loess Counts.csv", header=TRUE, sep=",") 

Conybugs <- read.csv("Cony Counts Age Depth.csv", header=TRUE, sep=",") 

Eaglebugs <- read.csv("Eagle Counts Age Depth.csv", header=TRUE, sep=",") 

Pipitbugs <- read.csv("Pipit Counts Age Depth.csv", header=TRUE, sep=",") 

Thunderbugs <- read.csv("Thunder Counts Age Depth.csv", header=TRUE, sep=",") 

mylist <- split(Prism, Prism$Name) 

mylist 
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################################################### 

#####Choose which Lake you want to Work With####### 

################################################### 

 

Lake<-'Black Counts Age Depth.csv' 

#Lake<-'Box Loess Counts.csv' 

#Lake<-'Cony Counts Age Depth.csv' 

#Lake<-'Eagle Counts Age Depth.csv' 

#Lake<-'Pipit Counts Age Depth.csv' 

#Lake<-'Thunder Counts Age Depth.csv' 

#Lake<-'Training Set Data SWT.csv' 

#Lake<-'Training Set Data MJAT.csv' 

 

 

###########Reads in Data for which lake above was selected################## 

Lake_Data<-read.csv(Lake, header=TRUE) ###Reading In Lake Data 

rel_num<-grep('Cory.Th',colnames(Lake_Data)) 

Lake_Rel_Abun<-Lake_Data[,-c(1:rel_num[1])]  ###Removing all columns that are not part of 

Relative Abundance Data 

Lake_Rel_Abun[is.na(Lake_Rel_Abun)]<-0  ####Converts Missing Data NAs to 0 

 

 

 

#####Reads in Training Set Relative Abundance 

Training_Set<-read.csv('Training Set Data.csv', header=TRUE)  

 

#####Reads in Training Set Environment Data 

Environment<-read.csv('Training set with temperatures.csv', header=TRUE) 

 

####Matches Training Set Data Frames and removes those that aren't in both sets 

test<-merge(Training_Set, Environment) 

 

Environment<-data.frame(cbind(test$CodeNum, test$FullName, test$MJAT, test$SWT)) 

colnames(Environment)<-c('CodeNum','FullName','MJAT', 'SWT') 

 

Training_Set<-test[, c(4:76)] 

Training_Set[is.na(Training_Set)]<-0 

Training_Set<-Training_Set[,-c(18,39,42,50)] 

 

 

######################################################### 

#######Fits WAPLS Data for Training Set Using 5 Comp##### 

######################################################### 

 

fit<-WAPLS(sqrt(Training_Set),Environment$SWT, npls=5) 

fit 
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##### cross-validate model 

fit.cv <- crossval(fit, cv.method="bootstrap",nboot=10000) 

fit.cv 

 

##### How many components to use? 

rand.t.test(fit.cv) 

jpeg(paste0('ScreePlot_',Lake,'.jpeg')) 

screeplot(fit.cv) 

dev.off() 

 

######################################################### 

###### Predicts the Values for the interested Lake####### 

######################################################### 

 

pred <- predict(fit, sqrt(Lake_Rel_Abun), npls=5) 

pred 

 

####Writes Predicted Values to CSV 

write.csv(pred, paste0('Predicted_',Lake,'.csv')) 

 

######################################################### 

Predicts the sampled specific error for the interested Lake 

######################################################### 

 

pred1 <- predict(fit, sqrt(Lake_Rel_Abun), npls=1, sse=TRUE) 

pred1 

 

 

####Writes Predicted Values to CSV 

write.csv(pred1$SEP.boot, paste0('SSE_',Lake,'.csv')) 

 

 

######################DCA############################## 

library(vegan) 

vare.dca <- decorana(Lake_Rel_Abun) 

vare.dca 

summary(vare.dca) 

 

########Changepoint analysis for SWT, MJAT, DCA_SWT, and DCA_MJAT #### 

 

library(changepoint) 

library(changepoint.np) 

 

ts.plot(Black$SWT) 
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out <- cpt.np(Black$SWT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Black$SWT))) 

cpts(out) 

##no changes 

 

ts.plot(Black$MJAT) 

out1 <- cpt.np(Black$MJAT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Black$MJAT))) 

cpts(out1) 

##no changes 

 

ts.plot(Black$DCA) 

out2 <- cpt.np(Black$DCA, method="PELT",minseglen=2, nquantiles 

=4*log(length(Black$DCA))) 

cpts(out2) 

#14 = 1957 

 

ts.plot(Box$SWT) 

out3 <- cpt.np(Box$SWT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Box$SWT))) 

cpts(out3) 

#none 

 

ts.plot(Box$MJAT) 

out4 <- cpt.np(Box$MJAT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Box$MJAT))) 

cpts(out4) 

#none 

 

ts.plot(Box$DCA) 

out5 <- cpt.np(Box$DCA, method="PELT",minseglen=2, nquantiles 

=4*log(length(Box$DCA))) 

cpts(out5) 

#8 = 1977 

 

ts.plot(Cony$SWT) 

out6 <- cpt.np(Cony$SWT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Cony$SWT))) 

cpts(out6) 

#11 = 1969 

 

ts.plot(Cony$MJAT) 

out7 <- cpt.np(Cony$MJAT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Cony$MJAT))) 

cpts(out7) 

#11 = 1969 
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ts.plot(Cony$DCA) 

out8 <- cpt.np(Cony$DCA, method="PELT",minseglen=2, nquantiles 

=4*log(length(Cony$DCA))) 

cpts(out8) 

#12 = 1966 

 

ts.plot(Eagle$SWT) 

out9 <- cpt.np(Eagle$SWT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Eagle$SWT))) 

cpts(out9) 

#14 = 1956 

 

ts.plot(Eagle$MJAT) 

out10 <- cpt.np(Eagle$MJAT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Eagle$MJAT))) 

cpts(out10) 

#14 = 1956 

 

ts.plot(Eagle$DCA) 

out11 <- cpt.np(Eagle$DCA, method="PELT",minseglen=2, nquantiles 

=4*log(length(Eagle$DCA))) 

cpts(out11) 

#15 = 1947 

 

ts.plot(Pipit$SWT) 

out12 <- cpt.np(Pipit$SWT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Pipit$SWT))) 

cpts(out12) 

#7 = 1991 

 

ts.plot(Pipit$MJAT) 

out13 <- cpt.np(Pipit$MJAT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Pipit$MJAT))) 

cpts(out13) 

#16 = 1954 

 

ts.plot(Pipit$DCA) 

out14 <- cpt.np(Pipit$DCA, method="PELT",minseglen=2, nquantiles 

=4*log(length(Pipit$DCA))) 

cpts(out14) 

#7 = 1991 

 

ts.plot(Thunder$SWT) 

out15 <- cpt.np(Thunder$SWT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Thunder$SWT))) 
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cpts(out15) 

#19 = 1932 

 

ts.plot(Thunder$MJAT) 

out16 <- cpt.np(Thunder$MJAT, method="PELT",minseglen=2, nquantiles 

=4*log(length(Thunder$MJAT))) 

cpts(out16) 

#12 = 1983 

 

ts.plot(Thunder$DCA) 

out17 <- cpt.np(Thunder$DCA, method="PELT",minseglen=2, nquantiles 

=4*log(length(Thunder$DCA))) 

cpts(out17) 

#4 = 2013 

#19 = 1932 

ts.plot(Niwot$max) 

out18 <- cpt.np(Niwot$max, method="PELT",minseglen=2, nquantiles 

=4*log(length(Niwot$max))) 

cpts(out18) 

#27 = 1979 

#34 = 1986 

#59 = 2011 

 

ts.plot(Niwot$min) 

out19 <- cpt.np(Niwot$min, method="PELT",minseglen=2, nquantiles 

=4*log(length(Niwot$min))) 

cpts(out19) 

#27 = 1979 

#32 = 1984 

#45 = 1997 

#59 = 2011 

 

ts.plot(Niwot$avg) 

out20 <- cpt.np(Niwot$avg, method="PELT",minseglen=2, nquantiles 

=4*log(length(Niwot$avg))) 

cpts(out20) 

#27 = 1979 

#34 = 1986 

#49 = 2001 

#59 = 2011 

 

 

###################################################################### 

######################### Plots of MJAT, and SWT with PRISM ########## 

mylist <- split(Prism, Prism$Name) 

mylist 
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dev.new(height=8, width=10)  

par(mfrow=(c(3, 2)))  

 

 

##CNY 

 

plot(Cony$Year, Cony$MJAT, main='Cony Lake', xlab='Year', 

     ylab=expression(paste("Temperature (",degree,"C)")),  

     type='n', xlim=(c(1895, 2017)), ylim=(c(7,14))) 

 

points(Cony$Year, Cony$MJAT, type='b', pch=16, lwd=2, col="red")  

#arrows(Black$Year, ((Black$SWT)-(Black$SWT_SSE)), Black$Year, 

((Black$SWT)+(Black$SWT_SSE)), length=0.05, angle=90, code=3, col=gray(0.45)) 

points(Cony$Year, Cony$SWT, type='b', pch=16, lwd=2, col="blue")  

points(mylist$Cony$Date, mylist$Cony$X, type='l', lwd=1, col="gray") 

fittedcurve <- loess(mylist$Cony$X~mylist$Cony$Date, span=0.20) 

smoothed20 <- predict(fittedcurve)  

lines(smoothed20, x=mylist$Cony$Date, col="black", lwd=1) 

 

#axis(side = 4) 

#mtext(side = 4, line = 3, '') 

#legend("bottomright", 

#legend=c(expression(paste("Midge-inferred MJAT [",degree,"C]")), expression(paste("Midge-

inferred SWT [",degree,"C]"))), 

#lty=c(1,1), col=c("red", "blue")) 

 

#PIPIT 

 

plot(Pipit$Year, Pipit$MJAT, main='Pipit Lake', xlab='Year', 

     ylab=expression(paste("Temperature [",degree,"C]")),  

     type='n', xlim=(c(1895, 2017)), ylim=(c(7,14))) 

 

points(Pipit$Year, Pipit$MJAT, type='b', pch=16, lwd=2, col="red")  

#arrows(Black$Year, ((Black$SWT)-(Black$SWT_SSE)), Black$Year, 

((Black$SWT)+(Black$SWT_SSE)), length=0.05, angle=90, code=3, col=gray(0.45)) 

points(Pipit$Year, Pipit$SWT, type='b', pch=16, lwd=2, col="blue")  

points(mylist$Pipit$Date, mylist$Pipit$X, type='l', lwd=1, col="gray")  

fittedcurve <- loess(mylist$Pipit$X~mylist$Pipit$Date, span=0.20) 

smoothed20 <- predict(fittedcurve)  

lines(smoothed20, x=mylist$Pipit$Date, col="black", lwd=1) 

 

 

#Eagle 

 

plot(Eagle$Year, Eagle$MJAT, main='Eagle Lake', xlab='Year', 
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     ylab=expression(paste("Temperature [",degree,"C]")),  

     type='n', xlim=(c(1895, 2017)), ylim=(c(7,14))) 

 

points(Eagle$Year, Eagle$MJAT, type='b', pch=16, lwd=2, col="red")  

#arrows(Black$Year, ((Black$SWT)-(Black$SWT_SSE)), Black$Year, 

((Black$SWT)+(Black$SWT_SSE)), length=0.05, angle=90, code=3, col=gray(0.45)) 

points(Eagle$Year, Eagle$SWT, type='b', pch=16, lwd=2, col="blue")  

points(mylist$Eagle$Date, mylist$Eagle$X, type='l', lwd=1, col="gray")  

fittedcurve <- loess(mylist$Eagle$X~mylist$Eagle$Date, span=0.20) 

smoothed20 <- predict(fittedcurve)  

lines(smoothed20, x=mylist$Eagle$Date, col="black", lwd=1) 

 

 

#Box 

 

plot(Box$Year, Box$MJAT, main='Box Lake', xlab='Year', 

     ylab=expression(paste("Temperature [",degree,"C]")),  

     type='n', xlim=(c(1895, 2017)), ylim=(c(7,14))) 

 

points(Box$Year, Box$MJAT, type='b', pch=16, lwd=2, col="red")  

#arrows(Black$Year, ((Black$SWT)-(Black$SWT_SSE)), Black$Year, 

((Black$SWT)+(Black$SWT_SSE)), length=0.05, angle=90, code=3, col=gray(0.45)) 

points(Box$Year, Box$SWT, type='b', pch=16, lwd=2, col="blue")  

points(mylist$Box$Date, mylist$Box$X, type='l', lwd=1, col="gray")  

fittedcurve <- loess(mylist$Box$X~mylist$Box$Date, span=0.20) 

smoothed20 <- predict(fittedcurve)  

lines(smoothed20, x=mylist$Box$Date, col="black", lwd=1) 

 

 

 

##Black 

 

plot(Black$Year, Black$MJAT, main='Black Lake', xlab='Year', 

     ylab=expression(paste("Temperature [",degree,"C]")),  

     type='n', xlim=(c(1895, 2017)), ylim=(c(7,14))) 

 

points(Black$Year, Black$MJAT, type='b', pch=16, lwd=2, col="red")  

#arrows(Black$Year, ((Black$SWT)-(Black$SWT_SSE)), Black$Year, 

((Black$SWT)+(Black$SWT_SSE)), length=0.05, angle=90, code=3, col=gray(0.45)) 

points(Black$Year, Black$SWT, type='b', pch=16, lwd=2, col="blue")  

points(mylist$Black$Date, mylist$Black$X, type='l', lwd=1, col="gray")  

fittedcurve <- loess(mylist$Black$X~mylist$Black$Date, span=0.20) 

smoothed20 <- predict(fittedcurve)  

lines(smoothed20, x=mylist$Black$Date, col="black", lwd=1) 

 

 



 

170 

 

 

##Thunder 

 

plot(Thunder$Year, Thunder$MJAT, main='Thunder Lake', xlab='Year', 

     ylab=expression(paste("Temperature [",degree,"C]")),  

     type='n', xlim=(c(1895, 2017)), ylim=(c(7,14))) 

 

points(Thunder$Year, Thunder$MJAT, type='b', pch=16, lwd=2, col="red")  

#arrows(Black$Year, ((Black$SWT)-(Black$SWT_SSE)), Black$Year, 

((Black$SWT)+(Black$SWT_SSE)), length=0.05, angle=90, code=3, col=gray(0.45)) 

points(Thunder$Year, Thunder$SWT, type='b', pch=16, lwd=2, col="blue")  

points(mylist$Thunder$Date, mylist$Thunder$X, type='l', lwd=1, col="gray")  

fittedcurve <- loess(mylist$Thunder$X~mylist$Thunder$Date, span=0.20) 

smoothed20 <- predict(fittedcurve)  

lines(smoothed20, x=mylist$Thunder$Date, col="black", lwd=1) 

 

####Kite Lake 

dev.new(height=8, width=10)  

par(mfrow=(c(1, 1))) 

 

plot(Kite$Year, Kite$MJAT, main='Kite Lake', xlab='cal yr BP', 

     ylab=expression(paste("Temperature [",degree,"C]")),  

     type='n', xlim=rev(c(12700, 9200)), ylim=(c(7,14))) 

 

points(Kite$Year, Kite$MJAT, type='b', pch=16, lwd=1, col="red")  

#arrows(Black$Year, ((Black$SWT)-(Black$SWT_SSE)), Black$Year, 

((Black$SWT)+(Black$SWT_SSE)), length=0.05, angle=90, code=3, col=gray(0.45)) 

points(Kite$Year, Kite$SWT, type='b', pch=16, lwd=1, col="blue")  

fittedcurve <- loess(Kite$MJAT~Kite$Year, span=0.20) 

smoothed20 <- predict(fittedcurve)  

lines(smoothed20, x=Kite$Year, col="red", lwd=2) 

 

fittedcurve1 <- loess(Kite$SWT~Kite$Year, span=0.20) 

smoothed20a <- predict(fittedcurve1)  

lines(smoothed20a, x=Kite$Year, col="blue", lwd=2) 

 

rect(11950, 7, 12800, 14, col=gray(0.50), border=gray(0.50))  

rect(10450, 7, 10550, 14, col=gray(0.50), border=gray(0.50))  

 

#adding dark rectangles to represent no chironomid data available 

rect(10340, 7, 10450, 14, col=gray(0.90), border=gray(0.90))  

rect(10550, 7, 10820, 14, col=gray(0.90), border=gray(0.90))  

 

 

#Legend 

legend("bottomleft",         
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       legend=c("Deviations from average chironomid-based SWT","Deviations from average 

chironomid-based MJAT", "No chironomids recovered", "Not enough data available"), 

        pch=c(16,16,15,15), cex=0.8, col=c("blue","red", "dark gray", "light gray")) 

 

#Legend 

#legend("bottomleft",         

       #legend=c("Chironomid-based SWT","Chironomid-based MJAT"), lty=c(1,1), 

pch=c(16,16), cex=0.8, col=c("blue","red")) 

 

      

        

###################################################################### 

##################### DCA Plots ###################################### 

 

 

dev.new(height=8, width=10)  

par(mfrow=(c(3, 2)))  

 

 

##CNY 

 

plot(Cony$Year, Cony$DCA, main='Cony Lake', xlab='Year', 

     ylab= "DCA",  

     type='n', xlim=(c(1895, 2017)), ylim=(c(-1,1))) 

points(Cony$Year, Cony$DCA, type='b', pch=16, lwd=2, col="black")  

abline(v=(1966), col="red", lty="dashed")  

 

 

#PIPIT 

 

plot(Pipit$Year, Pipit$DCA, main='Pipit Lake', xlab='Year', 

     ylab="DCA",  

     type='n', xlim=(c(1895, 2017)), ylim=(c(-1,1))) 

points(Pipit$Year, Pipit$DCA, type='b', pch=16, lwd=2, col="black")  

abline(v=(1991), col="red", lty="dashed")  

 

 

 

#Eagle 

 

plot(Eagle$Year, Eagle$DCA, main='Eagle Lake', xlab='Year', 

     ylab="DCA",  

     type='n', xlim=(c(1895, 2017)), ylim=(c(-1,1))) 

points(Eagle$Year, Eagle$DCA, type='b', pch=16, lwd=2, col="black")  

abline(v=(1947), col="red", lty="dashed")  
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#Box 

 

plot(Box$Year, Box$DCA, main='Box Lake', xlab='Year', 

     ylab="DCA",  

     type='n', xlim=(c(1895, 2017)), ylim=(c(-1,1))) 

points(Box$Year, Box$DCA, type='b', pch=16, lwd=2, col="black")  

abline(v=(1977), col="red", lty="dashed")  

 

 

##Black 

 

plot(Black$Year, Black$DCA, main='Black Lake', xlab='Year', 

     ylab="DCA",  

     type='n', xlim=(c(1895, 2017)), ylim=(c(-1,1))) 

 

points(Black$Year, Black$DCA, type='b', pch=16, lwd=2, col="black")  

abline(v=(1957), col="red", lty="dashed")  

 

##Thunder 

 

plot(Thunder$Year, Thunder$DCA, main='Thunder Lake', xlab='Year', 

     ylab="DCA",  

     type='n', xlim=(c(1895, 2017)), ylim=(c(-1,1))) 

points(Thunder$Year, Thunder$DCA, type='b', pch=16, lwd=2, col="black")  

abline(v=c(2013,1932), col="red", lty="dashed")  

 

 

 

###################################################################### 

#####Passive Ordination Plots with Training set ###################### 

 

 

library(rioja) 

library(analogue) 

 

SWAP <- Training_Set#SWAP training set data 

RLGH <- Blackbugs [,5:27] #Core data Black Lake over the 20th and 21st century, selected taxa 

only are in brackets 

RLGH1 <- Boxbugs [,6:30] #Core data Box Lake over the 20th and 21st century, selected taxa 

only are in brackets 

RLGH2 <- Conybugs [,5:25] #Core data Cony Lake over the 20th and 21st century, selected taxa 

only are in brackets 

RLGH3 <- Eaglebugs [,5:30] #Core data Eagle Lake over the 20th and 21st century, selected 

taxa only are in brackets 
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RLGH4 <- Pipitbugs [,4:23] #Core data Pipit Lake over the 20th and 21st century, selected taxa 

only are in brackets 

RLGH5 <- Thunderbugs [,5:24] #Core data Pipit Lake over the 20th and 21st century, selected 

taxa only are in brackets 

 

allspp<-Merge(SWAP, RLGH, split=T) 

allspp1<-Merge(SWAP, RLGH1, split=T) 

allspp2<-Merge(SWAP, RLGH2, split=T) 

allspp3<-Merge(SWAP, RLGH3, split=T) 

allspp4<-Merge(SWAP, RLGH4, split=T) 

allspp5<-Merge(SWAP, RLGH5, split=T) 

 

 

 

CA<-cca(sqrt(allspp$SWAP)) 

CA1<-cca(sqrt(allspp1$SWAP)) 

CA2<-cca(sqrt(allspp2$SWAP)) 

CA3<-cca(sqrt(allspp3$SWAP)) 

CA4<-cca(sqrt(allspp4$SWAP)) 

CA5<-cca(sqrt(allspp5$SWAP)) 

 

pred<-predict(CA, newdata=sqrt(allspp$RLGH), type="wa") 

pred1<-predict(CA, newdata=sqrt(allspp1$RLGH), type="wa") 

pred2<-predict(CA, newdata=sqrt(allspp2$RLGH), type="wa") 

pred3<-predict(CA, newdata=sqrt(allspp3$RLGH), type="wa") 

pred4<-predict(CA, newdata=sqrt(allspp4$RLGH), type="wa") 

pred5<-predict(CA, newdata=sqrt(allspp5$RLGH), type="wa") 

 

 

x11() 

par(mar=c(3,3,1,1), mgp=c(1.5,.5,0)) 

plot(CA, type="n", display="sites") 

points(CA, display="sites", pch=19, col="black") 

points(pred[,1:2], type="p", pch=19, col="purple") 

points(pred1[,1:2], type="p", pch=19, col="red") 

points(pred2[,1:2], type="p", pch=19, col="blue") 

points(pred3[,1:2], type="p", pch=19, col="green") 

points(pred4[,1:2], type="p", pch=19, col="chocolate3") 

points(pred5[,1:2], type="p", pch=19, col="darkgoldenrod1") 

points(CA, display="sites", pch=19, col="black") 

legend("topright",legend=c("Calibration sites", "Cony Lake", "Pipit Lake", "Eagle Lake", "Box 

Lake", "Black Lake", "Thunder Lake"), 

                           col=c("black", "blue", "red", "green", "chocolate3",  "purple", 

"darkgoldenrod1"),  

                           pch=c(19,19,19,19,19,19,19)) 
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######################################################## 

#############  Chronology Plot########################## 

 

mylist <- split(Dates, Dates$Lake) 

mylist 

 

myerror <- split(Dates1, Dates1$Lake) 

myerror 

 

dev.new(height=8, width=10)  

par(mfrow=(c(3, 2)))  

 

 

##CNY 

 

age <-plot(mylist$CNY$Age, mylist$CNY$Depth, main='Cony Lake', xlab='Year (A.D.)', 

     ylab= "Depth (cm)",  

     type='n', xlim=rev(c(1750, 2017)), ylim=(rev(c(0,18)))) 

 

#Lowess Curve code 

#Predict Loess 

# get smoothed output 

fittedcurve <- loess(mylist$CNY$Depth~mylist$CNY$Age, span=0.25) 

smoothed50 <- predict(fittedcurve)  

lines(smoothed50, x=mylist$CNY$Age, col="black", lwd=1) 

points(mylist$CNY$Age, mylist$CNY$Depth,  pch=16, col="black")  

 

#adding error bars 

points(myerror$CNY$Age, myerror$CNY$Depth,  pch=16, col="black")  

arrows((myerror$CNY$Age-myerror$CNY$Error), myerror$CNY$Depth, 

(myerror$CNY$Age+myerror$CNY$Error), 

       myerror$CNY$Depth, length=0.05, angle=90, code=3, col=gray(0.45)) 

 

par(new = T) 

with(age, plot(mylist$CNY$Age, mylist$CNY$CRS.Sedimentation.Rate, type="l", 

lty="dashed", axes=F, xlab=NA, ylab=NA,  

               xlim=rev(c(1750, 2017)), ylim=(c(0,0.15)), cex=1.2)) 

axis(side = 4) 

legend("topright", 

       legend=c(expression(text=''^210*'Pb dates (w/SE bars)'), expression(text= 'CRS 

Sedimentation Rate')), 

       lty=c(1,3), pch=c(16, NA), cex=0.9 , col=c("black", "black")) 

 

 

 

#PIPIT  
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age <-plot(mylist$PIP$Age, mylist$PIP$Depth, main='Pipit Lake', xlab='Year (A.D.)', 

           ylab= "",  

           type='n', xlim=rev(c(1900, 2017)), ylim=(rev(c(0,18)))) 

 

#Lowess Curve code 

#Predict Loess 

# get smoothed output 

fittedcurve <- loess(mylist$PIP$Depth~mylist$PIP$Age, span=0.25) 

smoothed50 <- predict(fittedcurve)  

lines(smoothed50, x=mylist$PIP$Age, col="black", lwd=1) 

points(mylist$PIP$Age, mylist$PIP$Depth,  pch=16, col="black")  

 

#adding error bars 

points(myerror$PIP$Age, myerror$PIP$Depth,  pch=16, col="black")  

arrows((myerror$PIP$Age-myerror$PIP$Error), myerror$PIP$Depth, 

(myerror$PIP$Age+myerror$PIP$Error), 

       myerror$PIP$Depth, length=0.05, angle=90, code=3, col=gray(0.45)) 

 

par(new = T) 

with(age, plot(mylist$PIP$Age, mylist$PIP$CRS.Sedimentation.Rate, type="l", lty="dashed", 

axes=F, xlab=NA, ylab=NA, 

               xlim=rev(c(1900, 2017)), ylim=(c(0,0.15)), cex=1.2)) 

axis(side = 4) 

legend("topright", 

       legend=c(expression(text=''^210*'Pb dates (w/SE bars)'), expression(text= 'CRS 

Sedimentation Rate')), 

       lty=c(1,3), pch=c(16, NA),cex=0.9, col=c("black", "black")) 

 

 

 

#Eagle  

 

age <-plot(mylist$EGL$Age, mylist$EGL$Depth, main='Eagle Lake', xlab='Year (A.D.)', 

           ylab= "Depth (cm)",  

           type='n', xlim=rev(c(1800, 2017)), ylim=(rev(c(0,18)))) 

 

#Lowess Curve code 

#Predict Loess 

# get smoothed output 

fittedcurve <- loess(mylist$EGL$Depth~mylist$EGL$Age, span=0.25) 

smoothed50 <- predict(fittedcurve)  

lines(smoothed50, x=mylist$EGL$Age, col="black", lwd=1) 

points(mylist$EGL$Age, mylist$EGL$Depth,  pch=16, col="black")  

 

#adding error bars 
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points(myerror$EGL$Age, myerror$EGL$Depth,  pch=16, col="black")  

arrows((myerror$EGL$Age-myerror$EGL$Error), myerror$EGL$Depth, 

(myerror$EGL$Age+myerror$EGL$Error), 

       myerror$EGL$Depth, length=0.05, angle=90, code=3, col=gray(0.45)) 

 

par(new = T) 

with(age, plot(mylist$EGL$Age, mylist$EGL$CRS.Sedimentation.Rate, type="l", lty="dashed", 

axes=F, xlab=NA, ylab=NA, 

               xlim=rev(c(1800, 2017)), ylim=(c(0,0.15)), cex=1.2)) 

axis(side = 4) 

legend("topright", 

       legend=c(expression(text=''^210*'Pb dates (w/SE bars)'), expression(text= 'CRS 

Sedimentation Rate')), 

       lty=c(1,3), pch=c(16, NA), cex=0.9, col=c("black", "black")) 

 

 

#Box main='Box Lake (3274 m asl) 

 

age <-plot(mylist$BOX$Age, mylist$BOX$Depth, main='Box Lake', xlab='Year (A.D.)', 

           ylab= "",  

           type='n', xlim=rev(c(1900, 2017)), ylim=(rev(c(0,10)))) 

 

#Lowess Curve code 

#Predict Loess 

# get smoothed output 

fittedcurve <- loess(mylist$BOX$Depth~mylist$BOX$Age, span=0.25) 

smoothed50 <- predict(fittedcurve)  

lines(smoothed50, x=mylist$BOX$Age, col="black", lwd=1) 

points(mylist$BOX$Age, mylist$BOX$Depth,  pch=16, col="black")  

 

#adding error bars 

points(myerror$BOX$Age, myerror$BOX$Depth,  pch=16, col="black")  

arrows((myerror$BOX$Age-myerror$BOX$Error), myerror$BOX$Depth, 

(myerror$BOX$Age+myerror$BOX$Error), 

       myerror$BOX$Depth, length=0.05, angle=90, code=3, col=gray(0.45)) 

 

par(new = T) 

with(age, plot(mylist$BOX$Age, mylist$BOX$CRS.Sedimentation.Rate, type="l", 

lty="dashed", axes=F, xlab=NA, ylab=NA, 

               xlim=rev(c(1900, 2017)), ylim=(c(0,0.15)), cex=1.2)) 

axis(side = 4) 

legend("topright", 

       legend=c(expression(text=''^210*'Pb dates (w/SE bars)'), expression(text= 'CRS 

Sedimentation Rate')), 

       lty=c(1,3), pch=c(16, NA), cex=0.9, col=c("black", "black")) 
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##Black main='Black Lake (3237 m asl) 

 

age <-plot(mylist$BLK$Age, mylist$BLK$Depth, main='Black Lake', xlab='Year (A.D.)', 

           ylab= "Depth (cm)",  

           type='n', xlim=rev(c(1750, 2017)), ylim=(rev(c(0,18)))) 

 

#Lowess Curve code 

#Predict Loess 

# get smoothed output 

fittedcurve <- loess(mylist$BLK$Depth~mylist$BLK$Age, span=0.25) 

smoothed50 <- predict(fittedcurve)  

lines(smoothed50, x=mylist$BLK$Age, col="black", lwd=1) 

points(mylist$BLK$Age, mylist$BLK$Depth,  pch=16, col="black")  

 

#adding error bars 

points(myerror$BLK$Age, myerror$BLK$Depth,  pch=16, col="black")  

arrows((myerror$BLK$Age-myerror$BLK$Error), myerror$BLK$Depth, 

(myerror$BLK$Age+myerror$BLK$Error), 

       myerror$BLK$Depth, length=0.05, angle=90, code=3, col=gray(0.45)) 

 

par(new = T) 

with(age, plot(mylist$BLK$Age, mylist$BLK$CRS.Sedimentation.Rate, type="l", lty="dashed", 

axes=F, xlab=NA, ylab=NA, 

               xlim=rev(c(1750, 2017)), ylim=(c(0,0.15)), cex=1.2)) 

axis(side = 4) 

legend("topright", 

       legend=c(expression(text=''^210*'Pb dates (w/SE bars)'), expression(text= 'CRS 

Sedimentation Rate')), 

       lty=c(1,3), pch=c(16, NA), cex=0.9, col=c("black", "black")) 

 

 

 

##Thunder  

 

age <-plot(mylist$THD$Age, mylist$THD$Depth, main='Thunder Lake', xlab='Year (A.D.)', 

           ylab= "",  

           type='n', xlim=rev(c(1750, 2017)), ylim=(rev(c(0,18)))) 

 

#Lowess Curve code 

#Predict Loess 

# get smoothed output 

fittedcurve <- loess(mylist$THD$Depth~mylist$THD$Age, span=0.25) 

smoothed50 <- predict(fittedcurve)  

lines(smoothed50, x=mylist$THD$Age, col="black", lwd=1) 

points(mylist$THD$Age, mylist$THD$Depth,  pch=16, col="black")  
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#adding error bars 

points(myerror$THD$Age, myerror$THD$Depth,  pch=16, col="black")  

arrows((myerror$THD$Age-myerror$THD$Error), myerror$THD$Depth, 

(myerror$THD$Age+myerror$THD$Error), 

       myerror$THD$Depth, length=0.05, angle=90, code=3, col=gray(0.45)) 

 

par(new = T) 

with(age, plot(mylist$THD$Age, mylist$THD$CRS.Sedimentation.Rate, type="l", 

lty="dashed", axes=F, xlab=NA, ylab=NA, 

               xlim=rev(c(1750, 2017)), ylim=(c(0,0.15)), cex=1.2)) 

axis(side = 4) 

legend("topright", 

       legend=c(expression(text=''^210*'Pb dates (w/SE bars)'), expression(text= 'CRS 

Sedimentation Rate')), 

       lty=c(1,3), pch=c(16, NA), cex=0.9, col=c("black", "black")) 

 

#######################Constrained heirarchical clustering############ 

library(olsrr) 

library(vegan) 

library(palaeoSig) 

 

 

dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

#Finding distance measures 

dud.dist1 <- dist(sqrt(Lake_Rel_Abun))  

dud.clust1 <- chclust(dud.dist1) 

plot(dud.clust1,hang=-1) 

plot(dud.clust1,hang=-1, horiz=TRUE ,x.rev=TRUE) 

plot(dud.clust1,hang=-1, horiz=TRUE ,x.rev=TRUE,cex=.6,main="Cluster Analysis of Thunder 

Lake") 

 

#With the function rect.hclust (vegan) is it possible to visualize them: 

plot(dud.clust1,hang=-1,cex=.6,main="Cluster Analysis of Thunder Lake") 

rect.hclust(dud.clust1,3) 

             

 

#Let's try a different distance metric: 

dud.dist2 <- vegdist(sqrt(Lake_Rel_Abun)) 

dud.clust2 <- chclust(dud.dist2) 

par(mfrow=c(1,1)) 

plot(dud.clust1,hang=-1,cex=.6) #cex specify here the size of the sample labels 

plot(dud.clust2,hang=-1,cex=.6) 

 



 

179 

 

#we can than compare the correlation of the graphical output with the originally distances 

between the samples:  

cor(dud.dist1, cophenetic(dud.clust1)) 

# 0.6072662 

cor(dud.dist2, cophenetic(dud.clust2)) 

#0.0.6648711 

 

#As we have distinguished two groups we can create a vector enfold the information of the 

membership to this 12 groups, by numbers 1,2 

grp <- cutree(dud.clust1, 2) 

 

#Now we can run a multivariable analysis of the core data: 

mod<-cca(sqrt(Lake_Rel_Abun)) 

plot(mod,type="n") 

text(mod,display="sites",col=grp) 

 

 

#Before applying a transfer function to the core data, it has to be checked, whether the core data 

are 

#well represented by the used training 

library (analogue) 

 

data <- join(Training_Set, Lake_Rel_Abun, verbose = TRUE) 

 

# both data sets need to have the same columns, alternative function: join in package analogue or 

the function merge(). 

dev.new(height=8, width=10)  

names(data) 

mod<-cca(downweight(sqrt(data$Training_Set))) # normal CA 

fit<-predict(mod,newdata=sqrt(data$Lake_Rel_Abun),type="wa") # prediction of the core data 

using the CA model 

plot(mod,type="n") 

points(mod,dis="sites",pch=19,col=4) 

points(fit,col=grp,pch=19) 

legend("bottomright",c("WUS Training Set","KLZ1","KLZ2"),pch=19,col=c(4,1,2,3)) 

 

 

 

###################################################################### 

############### Deviations SWT and MJAT WITH PRISM MJAT ############## 

 

dev.new(height=8, width=10)  

par(mfrow=(c(3, 2)))  

 

 

##CNY 



 

180 

 

 

Dev <-plot(Cony$Year, Cony$Difference, main='Cony Lake', xlab='Year (A.D.)', 

           ylab= expression(paste("Temperature [",degree,"C]")),  

           type='n', xlim=(c(1895, 2017)), ylim=((c(-3,3)))) 

 

##Plotted SWT and LOWESS of PRISM 

 

#PRism temp with midge-Based SWT and lowess of PRISM 

#points(mylist$Cony$Date, mylist$Cony$X,  type="l", lwd=1, col="dark gray")  

#fittedcurve <- loess(mylist$Cony$X~mylist$Cony$Date, span=0.20) 

#smoothed20 <- predict(fittedcurve)  

#lines(smoothed20, x=mylist$Cony$Date, col="black", lwd=2) 

#points(Cony$Year, Cony$SWT,  type="b", lwd=2, pch=16, col="blue")  

 

#adding error bars 

#arrows(Cony$Year, (Cony$SWT-Cony$SWT_SSE), Cony$Year, 

(Cony$SWT+Cony$SWT_SSE), 

      # length=0.05, angle=90, code=3, col="blue") 

 

#Deviation of Prism-based MJAT with deviation of midge inferred MJAT 

points(mylist$Cony$Date, mylist$Cony$dev,  type="h", lwd=3, col="darkgray")  

abline(h=0, col="black", lwd=2 ) 

points(Cony$Year, Cony$dev.avg.MJAT,  type="b", lwd=3, pch=16, col="red")  

points(Cony$Year, Cony$dev.SWT.SWT,  type="b", lwd=3, pch=16, col="blue")  

#points(Cony$Year, Cony$dev.SWT.Prism,  type="l", lwd=2, pch=16, col="forestgreen")  

#points(Cony$Year, Cony$Inverse.dev.SWT,  type="l", lwd=2, pch=16, col="darkorange1")  

 

 

#Legend 

#legend("bottomright", 

      #legend=c("Deviation of PRISM-based MJAT", "Deviation of chironomid-inferred MJAT", 

"Deviation of chironomid-inferred SWT"), 

               #lty=c(NA,1,1), pch=c(15,16,16), cex=0.5, col=c("dark gray", "red", "blue")) 

 

 

#################################PIPIT################################ 

###################################################################### 

dev.new(height=8, width=10)  

par(mfrow=(c(1, 1)))  

 

###Pipit### 

 

Dev <-plot(Eagle$Year, Pipit$Difference, main='Pipit Lake', xlab='Year (A.D.)', 

           ylab= expression(paste("Temperature [",degree,"C]")),  

           type='n', xlim=(c(1895, 2017)), ylim=((c(-3,3)))) 
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#PRism temp with midge-Based SWT and lowess of PRISM 

#points(mylist$Pipit$Date, mylist$Pipit$X,  type="l", lwd=1, col="dark gray")  

#fittedcurve <- loess(mylist$Pipit$X~mylist$Pipit$Date, span=0.20) 

#smoothed20 <- predict(fittedcurve)  

#lines(smoothed20, x=mylist$Pipit$Date, col="black", lwd=2) 

#points(Pipit$Year, Pipit$SWT,  type="b", lwd=2, pch=16, col="blue")  

 

#adding error bars 

#arrows(Pipit$Year, (Pipit$SWT-Pipit$SWT_SSE), Pipit$Year, (Pipit$SWT+Pipit$SWT_SSE), 

       #ength=0.05, angle=90, code=3, col="blue") 

 

#Deviation of Prism-based MJAT with deviation of midge inferred MJAT 

points(mylist$Pipit$Date, mylist$Pipit$dev,  type="h", lwd=3, col="dark gray")  

abline(h=0, col="black", lwd=2 ) 

points(Pipit$Year, Pipit$dev.avg.MJAT,  type="b", lwd=3, pch=16, col="red")  

points(Pipit$Year, Pipit$dev.SWT.SWT,  type="b", lwd=3, pch=16, col="blue")  

 

 

#Legend 

legend("bottomright", 

       legend=c("Deviation of PRISM-based MJAT", "Deviation of chironomid-inferred MJAT", 

"Deviation of chironomid-inferred SWT"), 

       lty=c(NA,1,1), pch=c(15,16,16), cex=0.8, col=c("dark gray", "red", "blue")) 

 

###################################################################### 

##############################Eagle################################### 

 

dev.new(height=8, width=10)  

par(mfrow=(c(1, 1)))  

 

 

Dev <-plot(Eagle$Year, Eagle$Difference, main='Eagle Lake', xlab='Year (A.D.)', 

           ylab= expression(paste("Temperature [",degree,"C]")),  

           type='n', xlim=(c(1895, 2017)), ylim=((c(-3,3)))) 

 

#PRism temp with midge-Based SWT and lowess of PRISM 

#points(mylist$Eagle$Date, mylist$Eagle$X,  type="l", lwd=1, col="dark gray")  

#fittedcurve <- loess(mylist$Eagle$X~mylist$Eagle$Date, span=0.20) 

#smoothed20 <- predict(fittedcurve)  

#lines(smoothed20, x=mylist$Eagle$Date, col="black", lwd=2) 

#points(Eagle$Year, Eagle$SWT,  type="b", lwd=2, pch=16, col="blue")  

 

#adding error bars 

#arrows(Eagle$Year, (Eagle$SWT-Eagle$SWT_SSE), Eagle$Year, 

(Eagle$SWT+Eagle$SWT_SSE), 

      #length=0.05, angle=90, code=3, col="blue") 
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#Deviation of Prism-based MJAT with deviation of midge inferred MJAT 

points(mylist$Eagle$Date, mylist$Eagle$dev,  type="h", lwd=3, col="dark gray")  

abline(h=0, col="black", lwd=2 ) 

 

points(Eagle$Year, Eagle$dev.avg.MJAT,  type="b", lwd=3, pch=16, col="red")  

points(Eagle$Year, Eagle$dev.SWT.SWT,  type="b", lwd=3, pch=16, col="blue")  

 

#Legend 

legend("bottomright", 

       legend=c("Deviation of PRISM-based MJAT", "Deviation of chironomid-inferred MJAT", 

"Deviation of chironomid-inferred SWT"), 

       lty=c(NA,1,1), pch=c(15,16,16), cex=0.8, col=c("dark gray", "red", "blue")) 

 

 

###################################################################### 

#######################################Box############################ 

dev.new(height=8, width=10)  

par(mfrow=(c(1, 1)))  

 

 

Dev <-plot(Box$Year, Box$Difference, main='Box Lake', xlab='Year (A.D.)', 

           ylab= expression(paste("Temperature [",degree,"C]")),  

           type='n', xlim=(c(1895, 2017)), ylim=((c(-3,3)))) 

 

#PRism temp with midge-Based SWT and lowess of PRISM 

#points(mylist$Box$Date, mylist$Box$X,  type="l", lwd=1, col="dark gray")  

#fittedcurve <- loess(mylist$Box$X~mylist$Box$Date, span=0.20) 

#smoothed20 <- predict(fittedcurve)  

#lines(smoothed20, x=mylist$Box$Date, col="black", lwd=2) 

#points(Box$Year, Box$SWT,  type="b", lwd=2, pch=16, col="blue")  

 

#adding error bars 

#arrows(Box$Year, (Box$SWT-Box$SWT_SSE), Box$Year, (Box$SWT+Box$SWT_SSE), 

       #length=0.05, angle=90, code=3, col="blue") 

 

#Deviation of Prism-based MJAT with deviation of midge inferred MJAT 

points(mylist$Box$Date, mylist$Box$dev,  type="h", lwd=3, col="dark gray")  

abline(h=0, col="black", lwd=2 ) 

points(Box$Year, Box$dev.avg.MJAT,  type="b", lwd=3, pch=16, col="red")  

points(Box$Year, Box$dev.SWT.SWT,  type="b", lwd=3, pch=16, col="blue")  

 

#Legend 

legend("bottomright", 

       legend=c("Deviation of PRISM-based MJAT", "Deviation of chironomid-inferred MJAT", 

"Deviation of chironomid-inferred SWT"), 



 

183 

 

       lty=c(NA,1,1), pch=c(15,16,16), cex=0.8, col=c("dark gray", "red", "blue")) 

 

###################################################################### 

###################################Black############################## 

dev.new(height=8, width=10)  

par(mfrow=(c(1, 1)))  

 

Dev <-plot(Black$Year, Black$Difference, main='Black Lake', xlab='Year (A.D.)', 

           ylab= expression(paste("Temperature [",degree,"C]")),  

           type='n', xlim=(c(1895, 2017)), ylim=((c(-3,3)))) 

 

#PRism temp with midge-Based SWT and lowess of PRISM 

#points(mylist$Black$Date, mylist$Black$X,  type="l", lwd=1, col="dark gray")  

#fittedcurve <- loess(mylist$Black$X~mylist$Black$Date, span=0.20) 

#smoothed20 <- predict(fittedcurve)  

#lines(smoothed20, x=mylist$Black$Date, col="black", lwd=2) 

#points(Black$Year, Black$SWT,  type="b", lwd=2, pch=16, col="blue")  

 

#adding error bars 

#arrows(Black$Year, (Black$SWT-Black$SWT_SSE), Black$Year, 

(Black$SWT+Black$SWT_SSE), 

       #length=0.05, angle=90, code=3, col="blue") 

 

#Deviation of Prism-based MJAT with deviation of midge inferred MJAT 

points(mylist$Black$Date, mylist$Black$dev,  type="h", lwd=3, col="dark gray")  

abline(h=0, col="black", lwd=2 ) 

points(Black$Year, Black$dev.avg.MJAT,  type="b", lwd=3, pch=16, col="red")  

points(Black$Year, Black$dev.SWT.SWT,  type="b", lwd=3, pch=16, col="blue")  

 

#Legend 

legend("bottomright", 

       legend=c("Deviation of PRISM-based MJAT", "Deviation of chironomid-inferred MJAT", 

"Deviation of chironomid-inferred SWT"), 

       lty=c(NA,1,1), pch=c(15,16,16), cex=0.8, col=c("dark gray", "red", "blue")) 

 

###################################################################### 

###############################Thunder################################ 

 

dev.new(height=8, width=10)  

par(mfrow=(c(1, 1)))  

 

 

Dev <-plot(Thunder$Year, Thunder$Difference, main='Thunder Lake', xlab='Year (A.D.)', 

           ylab= expression(paste("Temperature [",degree,"C]")),  

           type='n', xlim=(c(1895, 2017)), ylim=((c(-3,3)))) 
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#PRism temp with midge-Based SWT and lowess of PRISM 

#points(mylist$Thunder$Date, mylist$Thunder$X,  type="l", lwd=1, col="dark gray")  

#fittedcurve <- loess(mylist$Thunder$X~mylist$Thunder$Date, span=0.20) 

#smoothed20 <- predict(fittedcurve)  

#lines(smoothed20, x=mylist$Thunder$Date, col="black", lwd=2) 

#points(Thunder$Year, Thunder$SWT,  type="b", lwd=2, pch=16, col="blue")  

 

#adding error bars 

#arrows(Thunder$Year, (Thunder$SWT-Thunder$SWT_SSE), Thunder$Year, 

(Thunder$SWT+Thunder$SWT_SSE), 

       #length=0.05, angle=90, code=3, col="blue") 

 

#Deviation of Prism-based MJAT with deviation of midge inferred MJAT 

points(mylist$Thunder$Date, mylist$Thunder$dev,  type="h", lwd=3, col="dark gray")  

abline(h=0, col="black", lwd=2 ) 

points(Thunder$Year, Thunder$dev.avg.MJAT,  type="b", lwd=3, pch=16, col="red")  

points(Thunder$Year, Thunder$dev.SWT.SWT,  type="b", lwd=3, pch=16, col="blue")  

 

#Legend 

legend("bottomright", 

       legend=c("Deviation of PRISM-based MJAT", "Deviation of chironomid-inferred MJAT", 

"Deviation of chironomid-inferred SWT"), 

       lty=c(NA,1,1), pch=c(15,16,16), cex=0.8, col=c("dark gray", "red", "blue")) 

 

 

####################KITE DEVIATIONS############################### 

dev.new(height=8, width=10)  

par(mfrow=(c(1, 1))) 

 

plot(Kite$Year, Kite$MJAT, main='Kite Lake', xlab='cal yr BP', 

     ylab=expression(paste("Temperature [",degree,"C]")),  

     type='n', xlim=rev(c(12700, 9200)), ylim=(c(-4,4))) 

 

abline(h=0, col="black", lwd=2 ) 

points(Kite$Year, Kite$dev.avg.MJAT,  type="h", lwd=3, col="red")  

points(Kite$Year, Kite$dev.SWT.SWT,  type="h", lwd=3, col="blue")  

#points(Kite$Year, Kite$dev.avg.MJAT,  type="b", lwd=3, pch=16, col="red")  

#points(Kite$Year, Kite$dev.SWT.SWT,  type="b", lwd=3, pch=16, col="blue")  

#adding dark rectangles to represent 0-5 chironomids present 

rect(11950, 4, 12800, -4, col=gray(0.50), border=gray(0.50))  

rect(10450, 4, 10550, -4, col=gray(0.50), border=gray(0.50))  

 

#adding dark rectangles to represent no chironomid data available 

rect(10340, 4, 10450, -4, col=gray(0.90), border=gray(0.90))  

rect(10550, 4, 10820, -4, col=gray(0.90), border=gray(0.90))  
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#Legend 

legend("bottomleft",         

       legend=c("Deviations from average chironomid-based SWT","Deviations from average 

chironomid-based MJAT", "No chironomids recovered", "Not enough data available"), 

       pch=c(15,15,15,15), cex=0.8, col=c("blue","red", "dark gray", "light gray")) 

 

 

##############################################################################

########## Bland Altman Plots ################################ 

 

library(gridExtra) 

dev.new(height=8, width=10)  

#https://www.r-bloggers.com/bland-altmantukey-mean-difference-plots-using-ggplot2/ 

 

#Cony 

 

 

#Each row in the dataframe consists of a pair of measurements. The Bland-Altman plot has the 

average of the 

#two measures in a pair on the x-axis. The y-axis contains the difference between the two 

measures in each pair.  

#Add the averages and differences data to the dataframe. 

 

ConyAvg <- (Cony$SWT + Cony$PRISM.MJAT) / 2 

ConyDif <- Cony$SWT - Cony$PRISM.MJAT 

 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Conypl <-ggplot(Cony, aes(x = ConyAvg, y = ConyDif)) + 

        geom_point(alpha = 0.5) + 

        geom_hline(yintercept = mean(ConyDif), colour = "blue", size = 0.5) + 

        geom_hline(yintercept = mean(ConyDif) - (1.96 * sd(ConyDif)), colour = "red", size = 0.5) 

+ 

        geom_hline(yintercept = mean(ConyDif) + (1.96 * sd(ConyDif)), colour = "red", size = 0.5) 

+ 

        ylab("Difference") + 

        xlab("Average Temperature") + ggtitle("Cony Lake") + coord_cartesian(ylim = c(-6, 6))  

         

 

#Pipit 

PipitAvg <- (Pipit$SWT + Pipit$PRISM.MJAT) / 2 
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PipitDif <- Pipit$SWT - Pipit$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Pipitpl <-ggplot(Pipit, aes(x = PipitAvg, y = PipitDif)) + 

        geom_point(alpha = 0.5) + 

        geom_hline(yintercept = mean(PipitDif), colour = "blue", size = 0.5) + 

        geom_hline(yintercept = mean(PipitDif) - (1.96 * sd(PipitDif)), colour = "red", size = 0.5) + 

        geom_hline(yintercept = mean(PipitDif) + (1.96 * sd(PipitDif)), colour = "red", size = 0.5) 

+ 

        ylab("Difference") + 

        xlab("Average Temperature") + ggtitle("Pipit Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

 

#Eagle 

EagleAvg <- (Eagle$SWT + Eagle$PRISM.MJAT) / 2 

EagleDif <- Eagle$SWT - Eagle$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Eaglepl <-ggplot(Eagle, aes(x = EagleAvg, y = EagleDif)) + 

        geom_point(alpha = 0.5) + 

        geom_hline(yintercept = mean(EagleDif), colour = "blue", size = 0.5) + 

        geom_hline(yintercept = mean(EagleDif) - (1.96 * sd(EagleDif)), colour = "red", size = 0.5) 

+ 

        geom_hline(yintercept = mean(EagleDif) + (1.96 * sd(EagleDif)), colour = "red", size = 

0.5) + 

        ylab("Difference") + 

        xlab("Average Temperature") + ggtitle("Eagle Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

#Box 

BoxAvg <- (Box$SWT + Box$PRISM.MJAT) / 2 

BoxDif <- Box$SWT - Box$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Boxpl <-ggplot(Box, aes(x = BoxAvg, y = BoxDif)) + 
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        geom_point(alpha = 0.5) + 

        geom_hline(yintercept = mean(BoxDif), colour = "blue", size = 0.5) + 

        geom_hline(yintercept = mean(BoxDif) - (1.96 * sd(BoxDif)), colour = "red", size = 0.5) + 

        geom_hline(yintercept = mean(BoxDif) + (1.96 * sd(BoxDif)), colour = "red", size = 0.5) + 

        ylab("Difference") + 

        xlab("Average Temperature") + ggtitle("Box Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

 

#Black 

BlackAvg <- (Black$SWT + Black$PRISM.MJAT) / 2 

BlackDif <- Black$SWT - Black$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Blackpl <-ggplot(Black, aes(x = BlackAvg, y = BlackDif)) + 

        geom_point(alpha = 0.5) + 

        geom_hline(yintercept = mean(BlackDif), colour = "blue", size = 0.5) + 

        geom_hline(yintercept = mean(BlackDif) - (1.96 * sd(BlackDif)), colour = "red", size = 0.5) 

+ 

        geom_hline(yintercept = mean(BlackDif) + (1.96 * sd(BlackDif)), colour = "red", size = 

0.5) + 

        ylab("Difference") + 

        xlab("Average Temperature") + ggtitle("Black Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

#Thunder 

ThunderAvg <- (Thunder$SWT + Thunder$PRISM.MJAT) / 2 

ThunderDif <- Thunder$SWT - Thunder$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Thunderpl <-ggplot(Thunder, aes(x = ThunderAvg, y = ThunderDif)) + 

        geom_point(alpha = 0.5) + 

        geom_hline(yintercept = mean(ThunderDif), colour = "blue", size = 0.5) + 

        geom_hline(yintercept = mean(ThunderDif) - (1.96 * sd(ThunderDif)), colour = "red", size 

= 0.5) + 

        geom_hline(yintercept = mean(ThunderDif) + (1.96 * sd(ThunderDif)), colour = "red", size 

= 0.5) + 

        ylab("Difference") + 

        xlab("Average Temperature") + ggtitle("Thunder Lake") + coord_cartesian(ylim = c(-6, 6)) 
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grid.arrange(Conypl, Pipitpl, Eaglepl, Boxpl, Blackpl, Thunderpl, ncol=2, nrow=3, top="Bland-

Altman Plot") 

 

 

###################################################################### 

Bland-Altman Plots for differences btwn midge-MJAT and PRISM-MJAT #### 

 

 

dev.new(height=8, width=10)  

#https://www.r-bloggers.com/bland-altmantukey-mean-difference-plots-using-ggplot2/ 

 

#Cony 

 

ConyAvg <- (Cony$MJAT + Cony$PRISM.MJAT) / 2 

ConyDif <- Cony$MJAT - Cony$PRISM.MJAT 

 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Conypl <-ggplot(Cony, aes(x = ConyAvg, y = ConyDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(ConyDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(ConyDif) - (1.96 * sd(ConyDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(ConyDif) + (1.96 * sd(ConyDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Cony Lake") + coord_cartesian(ylim = c(-6, 6))  

 

 

#Pipit 

PipitAvg <- (Pipit$MJAT + Pipit$PRISM.MJAT) / 2 

PipitDif <- Pipit$MJAT - Pipit$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Pipitpl <-ggplot(Pipit, aes(x = PipitAvg, y = PipitDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(PipitDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(PipitDif) - (1.96 * sd(PipitDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(PipitDif) + (1.96 * sd(PipitDif)), colour = "red", size = 0.5) + 
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   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Pipit Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

 

#Eagle 

EagleAvg <- (Eagle$MJAT + Eagle$PRISM.MJAT) / 2 

EagleDif <- Eagle$MJAT - Eagle$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Eaglepl <-ggplot(Eagle, aes(x = EagleAvg, y = EagleDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(EagleDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(EagleDif) - (1.96 * sd(EagleDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(EagleDif) + (1.96 * sd(EagleDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Eagle Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

#Box 

BoxAvg <- (Box$MJAT + Box$PRISM.MJAT) / 2 

BoxDif <- Box$MJAT - Box$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Boxpl <-ggplot(Box, aes(x = BoxAvg, y = BoxDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(BoxDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(BoxDif) - (1.96 * sd(BoxDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(BoxDif) + (1.96 * sd(BoxDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Box Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

 

#Black 

BlackAvg <- (Black$MJAT + Black$PRISM.MJAT) / 2 

BlackDif <- Black$MJAT - Black$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  
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#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Blackpl <-ggplot(Black, aes(x = BlackAvg, y = BlackDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(BlackDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(BlackDif) - (1.96 * sd(BlackDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(BlackDif) + (1.96 * sd(BlackDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Black Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

#Thunder 

ThunderAvg <- (Thunder$MJAT + Thunder$PRISM.MJAT) / 2 

ThunderDif <- Thunder$MJAT - Thunder$PRISM.MJAT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Thunderpl <-ggplot(Thunder, aes(x = ThunderAvg, y = ThunderDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(ThunderDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(ThunderDif) - (1.96 * sd(ThunderDif)), colour = "red", size = 

0.5) + 

   geom_hline(yintercept = mean(ThunderDif) + (1.96 * sd(ThunderDif)), colour = "red", size = 

0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Thunder Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

 

grid.arrange(Conypl, Pipitpl, Eaglepl, Boxpl, Blackpl, Thunderpl, ncol=2, nrow=3, top="Bland-

Altman Plot") 

 

######Bland-Altman Plots for differences btwn midge-MJAT and midge-SWT ### 

 

 

dev.new(height=8, width=10)  

#https://www.r-bloggers.com/bland-altmantukey-mean-difference-plots-using-ggplot2/ 

 

#Cony 

 

 

ConyAvg <- (Cony$MJAT + Cony$SWT) / 2 

ConyDif <- Cony$MJAT - Cony$SWT 
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#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Conypl <-ggplot(Cony, aes(x = ConyAvg, y = ConyDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(ConyDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(ConyDif) - (1.96 * sd(ConyDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(ConyDif) + (1.96 * sd(ConyDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Cony Lake") + coord_cartesian(ylim = c(-6, 6))  

 

 

#Pipit 

PipitAvg <- (Pipit$MJAT + Pipit$SWT) / 2 

PipitDif <- Pipit$MJAT - Pipit$SWT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Pipitpl <-ggplot(Pipit, aes(x = PipitAvg, y = PipitDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(PipitDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(PipitDif) - (1.96 * sd(PipitDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(PipitDif) + (1.96 * sd(PipitDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Pipit Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

 

#Eagle 

EagleAvg <- (Eagle$MJAT + Eagle$SWT) / 2 

EagleDif <- Eagle$MJAT - Eagle$SWT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Eaglepl <-ggplot(Eagle, aes(x = EagleAvg, y = EagleDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(EagleDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(EagleDif) - (1.96 * sd(EagleDif)), colour = "red", size = 0.5) + 
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   geom_hline(yintercept = mean(EagleDif) + (1.96 * sd(EagleDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Eagle Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

#Box 

BoxAvg <- (Box$MJAT + Box$SWT) / 2 

BoxDif <- Box$MJAT - Box$SWT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Boxpl <-ggplot(Box, aes(x = BoxAvg, y = BoxDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(BoxDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(BoxDif) - (1.96 * sd(BoxDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(BoxDif) + (1.96 * sd(BoxDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Box Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

 

#Black 

BlackAvg <- (Black$MJAT + Black$SWT) / 2 

BlackDif <- Black$MJAT - Black$SWT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  

#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Blackpl <-ggplot(Black, aes(x = BlackAvg, y = BlackDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(BlackDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(BlackDif) - (1.96 * sd(BlackDif)), colour = "red", size = 0.5) + 

   geom_hline(yintercept = mean(BlackDif) + (1.96 * sd(BlackDif)), colour = "red", size = 0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Black Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

#Thunder 

ThunderAvg <- (Thunder$MJAT + Thunder$SWT) / 2 

ThunderDif <- Thunder$MJAT - Thunder$SWT 

 

#Finally, code the plot and add the mean difference (blue line) and a 95% confidence interval 

(red lines)  
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#for predictions of a mean difference. This prediction interval gives the level of agreement (1.96 

* SD). 

 

Thunderpl <-ggplot(Thunder, aes(x = ThunderAvg, y = ThunderDif)) + 

   geom_point(alpha = 0.5) + 

   geom_hline(yintercept = mean(ThunderDif), colour = "blue", size = 0.5) + 

   geom_hline(yintercept = mean(ThunderDif) - (1.96 * sd(ThunderDif)), colour = "red", size = 

0.5) + 

   geom_hline(yintercept = mean(ThunderDif) + (1.96 * sd(ThunderDif)), colour = "red", size = 

0.5) + 

   ylab("Difference") + 

   xlab("Average Temperature") + ggtitle("Thunder Lake") + coord_cartesian(ylim = c(-6, 6)) 

 

grid.arrange(Conypl, Pipitpl, Eaglepl, Boxpl, Blackpl, Thunderpl, ncol=2, nrow=3, top="Bland-

Altman Plot") 

 

 

# Commands from Analogue: 

#Stratiplot(x, y, type = "l", ylab = NULL, xlab = "", pages = 1, rev = TRUE, 

# ylim, sort = c("none", "wa", "var"), svar = NULL, rev.sort = FALSE, strip = FALSE,  

# topPad =6, varTypes = "relative", absoluteSize = 0.5, zoneNames = NULL, drawLegend = 

TRUE,  

# na.action = "na.omit", labelAt = NULL, labelRot = 60, yticks, ...)  

 

 

########################RELATIVE ABUNDANCE CURVES #################### 

#############Reads in R Packages needed for Code############### 

library(analogue) 

library(palaeoSig) 

 

 

###Training set data 

Training_Set<-read.csv('Training Set Data.csv', header=TRUE)  

 

#####Reads in Training Set Environment Data 

Environment<-read.csv('Training set with temperatures.csv', header=TRUE) 

 

####Matches Training Set Data Frames and removes those that aren't in both sets 

test<-merge(Training_Set, Environment) 

 

Environment<-data.frame(cbind(test$CodeNum, test$FullName, test$MJAT, test$SWT)) 

colnames(Environment)<-c('CodeNum','FullName','MJAT', 'SWT') 

 

Training_Set<-test[, c(4:77)] 

Training_Set[is.na(Training_Set)]<-0 

Training_Set<-Training_Set[,-c(18,39,42,50)] 
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##### WA Optima ############ 

## WA optima 

(opt <- optima(Training_Set, Environment$SWT)) 

 

write.csv(opt, "wa optima.csv", row.names = TRUE) 

 

## WA tolerances 

(tol <- tolerance(Training_Set, Environment$SWT, useN2 = TRUE)) 

 

write.csv(tol, "tolerance.csv", row.names = TRUE) 

 

dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

## caterpillar plot 

caterpillarPlot(opt, tol) 

 

 

####Black Lake#### 

Black <- read.csv("Black Counts Age Depth.csv", header=TRUE, sep=",") 

 

attach(Black) 

 

Zones <- c(1957)                                   

zone.labs <- c("Black-2","Black-1")   

dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

(plt <- Stratiplot(Year ~   Diplind + Pseudo + Protan + TAA + Diamind + TAB + Heteind + 

Euk.Tvet + Colivtyp + Synoind + Lim.Para + 

                     Doi.Pseu + Cric.Ort + Rheoind + Chirind + TAH + Cory.Th + Paratany + Tanyind 

+ Richness + Concentration, data = Black, 

                   rev = FALSE, type = c(rep("h","g",19), rep("l", 2)),  zones = Zones, zoneNames = 

zone.labs,  

                   xlab = "% Relative Abundance",  varTypes = c(rep("relative",19), rep("absolute", 

2)), col="gray48", pages = 1)) 

detach(Black) 

#sort="wa" 

 

###Box Lake#### 

Box <- read.csv("Box Loess Counts.csv", header=TRUE, sep=",") 

 

attach(Box) 
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Zones <- c(1977)                                   

zone.labs <- c("Box-2","Box-1")   

dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

(plt <- Stratiplot(Year ~  Chaeto + TAA + Smit.Ps + TAB + Sergind + Heteind + Euk.Tvet + 

Colivtyp + Synoind +  

                     Cric.Ort + Corynamb + Chirind + TAH + Cory.Th + Paratany + Tanyind + Procind 

+  Psecsemi +  

                     Phaeind + Richness + Concentration, data = Box, 

                   rev = FALSE, type = c(rep("h","g",19), rep("l", 2)),  zones = Zones, zoneNames = 

zone.labs,  

                   xlab = "% Relative Abundance", varTypes = c(rep("relative",19), rep("absolute", 2)), 

col="gray48", pages = 1)) 

 

detach(Box) 

 

###### Cony Relative Abundance ########## 

 

Cony <- read.csv("Cony Counts Age Depth.csv", header=TRUE, sep=",") 

 

attach(Cony) 

 

Zones <- c(1966)                                   

zone.labs <- c("Cony-2","Cony-1")   

dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

(plt <- Stratiplot(Year ~ Diplind + Abisko + Pseudo + TAA + Diamind + TAB + Metrio + 

Sergind + Heteind + Euk.Tvet + Colivtyp + 

                     Synoind + Cric.Ort + Chirind + TAH + Cory.Th + Paratany + Tanyind + Procind + 

                     Richness + Concentration, data = Cony, 

                   rev = FALSE, type = c(rep("h","g",19), rep("l", 2)),  zones = Zones, zoneNames = 

zone.labs,  

                   xlab = "% Relative Abundance", varTypes = c(rep("relative",19), rep("absolute", 2)), 

col="gray48", pages = 1)) 

detach(Cony) 

 

###### Eagle ############# 

Eagle <- read.csv("Eagle Counts Age Depth.csv", header=TRUE, sep=",") 

 

attach(Eagle) 

 

Zones <- c(1947)                                   

zone.labs <- c("Eagle-2","Eagle-1")   
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dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

(plt <- Stratiplot(Year ~  Diplind + Pseudo + Hyd.Oliv + Protan + Smit.Ps + Diamind + TAB + 

Heteind + Euk.Tvet + Colivtyp + 

                     Synoind + Lim.Para + Cric.Ort + Chirind + TAH + Cory.Th + Paratany + Tanyind 

+ Procind + 

                     Micpsect + Psecsemi + Phaeind + Richness + Concentration, data = Eagle, 

                   rev = FALSE, type = c(rep("h","g",22), rep("l", 2)),  zones = Zones, zoneNames = 

zone.labs,  

                   xlab = "% Relative Abundance", varTypes = c(rep("relative",22), rep("absolute", 2)), 

col="gray48", pages = 1)) 

 

detach(Eagle) 

 

###Pipit##### 

 

Pipit <- read.csv("Pipit Counts Age Depth.csv", header=TRUE, sep=",") 

 

attach(Pipit) 

 

Zones <- c(1991)                                   

zone.labs <- c("Pipit-2","Pipit-1")   

dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

(plt <- Stratiplot(Year ~ Abisko + Pseudo + Protan + TAA + Diamind + TAB + Sergind + 

Heteind + Euk.Tvet + Colivtyp + 

                      Cric.Ort + Chirind + TAH + Cory.Th + Paratany + Tanyind + Procind + 

                      Micpsect + Pentind + Psecsemi + Phaeind + Richness + Concentration, data = 

Pipit, 

                   rev = FALSE, type = c(rep("h","g",21), rep("l", 2)),  zones = Zones, zoneNames = 

zone.labs,  

                   xlab = "% Relative Abundance", varTypes = c(rep("relative",21), rep("absolute", 2)), 

col="gray48", pages = 1)) 

 

detach(Pipit) 

 

 

####### Thunder ############## 

Thunder <- read.csv("Thunder Counts Age Depth.csv", header=TRUE, sep=",") 

 

attach(Thunder) 

 

Zones <- c(2013,1932)                                   

zone.labs <- c("Thunder-3", "Thunder-2","Thunder-1")   
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dev.new(height=8, width=10)  

par(mfrow=c(1,1)) 

 

(plt <- Stratiplot(Year ~  Diplind + Brillia + Pseudo + Hyd.Oliv + Protan +  Chaeto + TAA + 

Diamind + TAB + Metrio + 

                     Sergind + Heteind + Euk.Tvet + Colivtyp + Synoind + Lim.Para + Cric.Ort + 

Rheoind + Chirind +  

                     TAH + Cory.Th + Paratany + Tanyind + Procind + Micpsect + Pentind + Psecsemi 

+ Phaeind + 

                     Polyind + Richness + Concentration, data = Thunder, 

                   rev = FALSE, type = c(rep("h","g",29), rep("l", 2)),  zones = Zones, zoneNames = 

zone.labs,  

                   xlab = "% Relative Abundance", varTypes = c(rep("relative",29), rep("absolute", 2)), 

col="gray48", pages = 1)) 
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APPENDIX B 

ADDITIONAL MATERIALS 

 

 
B.1 Western United States (WUS) Chironomid Training set data. SWT = surface water temperature; 

MJAT = Mean July air temperature 

Lake Name Code Location Elevation 

(m) 

Latitude 

(°N) 

Longitude 

(°W) 

Lake 

Depth 

(m) 

SWT 

(°C) 

MJAT 

(°C) 

Hoover 01-UN-01 Uinta Mountains, 

UT 

3003 40.68 110.87 8.1 16.9 12.5 

Marshall 01-UN-02 Uinta Mountains, 

UT 

3030 40.68 110.87 10.7 16.3 12.3 

No name 01-UN-03 Uinta Mountains, 

UT 

3115 40.67 110.89 1.8 16.2 11.2 

No name 01-UN-04 Uinta Mountains, 

UT 

3069 40.67 110.89 2 17 12.5 

Echo 01-UN-05 Uinta Mountains, 

UT 

2958 40.66 110.9 11.6 18.5 12.3 

Taylor 01-UN-08 Uinta Mountains, 

UT 

3394 40.79 110.09 9.7 13.5 9.1 

Unnamed 01-UN-09 Uinta Mountains, 

UT 

3212 40.78 110.02 1.1 16.4 9.9 

No name 01-UN-10 Uinta Mountains, 

UT 

2972 40.72 110.03 2.7 18.8 11.9 

Big 01-UN-11 Uinta Mountains, 

UT 

2636 40.7 109.54 1.5 19.1 14.4 

Lilly Pad 01-UN-12 Uinta Mountains, 

UT 

2921 40.74 109.73 1.6 21 12.3 

Lilly 01-UN-13 Uinta Mountains, 

UT 

2703 40.88 110.81 1.5 18.3 10.9 

Bourbon 01-UN-15 Uinta Mountains, 

UT 

2970 40.79 110.9 2.3 18.7 12.1 

Beth 01-UN-16 Uinta Mountains, 

UT 

2970 40.65 110.97 2.3 17.5 13.3 

Buckeye 01-UN-17 Uinta Mountains, 

UT 

2933 40.64 110.97 2.1 18 13 

Quarter Corner 01-UN-21 Uinta Mountains, 

UT 

2701 40.97 110.31 1.7 16.4 12.7 

No name 01-UN-22 Uinta Mountains, 

UT 

2721 40.98 110.32 2 17.2 12.8 

Lofty 01-UN-23 Uinta Mountains, 

UT 

3285 40.73 110.89 7.1 14.3 11 

Kamas 01-UN-24 Uinta Mountains, 

UT 

3179 40.73 110.9 4 15.7 11.3 

Heart 02-UN-26 Uinta Mountains, 

UT 

3188 40.59 110.81 4.1 18 11.3 

Davis 02-UN-27 Uinta Mountains, 

UT 

3356 40.81 110.22 1.7 13.7 10.8 

Fehr 04-UN-30 Uinta Mountains, 

UT 

3017 40.68 110.89 8 11.8 11 

Pyramid 04-UN-31 Uinta Mountains, 

UT 

2943 40.65 110.9 10.2 14.7 12.9 

Elbow 04-UN-33 Uinta Mountains, 

UT 

3335 40.79 110.03 10.7 10.1 10.4 

Upper Rock 04-UN-34 Uinta Mountains, 

UT 

3220 40.7 110.08 5.4 9.7 9.5 

Larvae 04-UN-35 Uinta Mountains, 

UT 

3055 40.68 110.04 8.2 13.2 11.2 
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Dead 04-UN-36 Uinta Mountains, 

UT 

3053 40.67 109.91 6.5 13.9 11.8 

Little Superior 04-UN-37 Uinta Mountains, 

UT 

3396 40.73 110.47 6.9 11.9 10.1 

No name 04-UN-39 Uinta Mountains, 

UT 

3303 40.43 110.47 1.8 17.7 18.7 

North Star 04-UN-40 Uinta Mountains, 

UT 

3453 40.69 110.45 5.8 12.3 11.7 

No name 04-UN-41 Uinta Mountains, 

UT 

3531 40.76 110.46 3.1 11.3 9.4 

No name 04-UN-42 Uinta Mountains, 

UT 

3539 40.76 110.45 2.4 15.1 9.5 

Tungsten 04-UN-43 Uinta Mountains, 

UT 

3438 40.75 110.45 3.6 13.8 10 

No name 04-UN-44 Uinta Mountains, 

UT 

3426 40.75 110.43 4.5 14.6 10.1 

Ruth 04-UN-45 Uinta Mountains, 

UT 

3145 40.73 110.88 8.2 16.2 11.6 

Bud 04-UN-46 Uinta Mountains, 

UT 

3097 40.72 110.87 3.1 17.6 12 

Little Lyman 04-UN-47 Uinta Mountains, 

UT 

2811 40.94 110.62 7.3 19 12.1 

Dave 04-UN-48 Uinta Mountains, 

UT 

2795 40.92 110.54 1.1 20.8 12.8 

No name 04-UN-51 Uinta Mountains, 

UT 

2832 40.93 110.2 4.6 17.8 12.3 

Summit 04-UN-52 Uinta Mountains, 

UT 

3182 40.83 110 2.6 11.1 11.1 

Gail 04-UN-53 Uinta Mountains, 

UT 

3169 40.83 110.02 6.2 10 11 

Upper Carrol 04-UN-55 Uinta Mountains, 

UT 

3376 40.72 110.35 13.8 12.9 9.6 

East Carrol 04-UN-56 Uinta Mountains, 

UT 

3403 40.72 110.35 5.3 12.9 9.6 

No name 04-UN-57 Uinta Mountains, 

UT 

3336 40.71 110.38 5.2 13.6 8.7 

No name 04-UN-58 Uinta Mountains, 

UT 

3323 40.7 110.39 7.7 13.1 9 

Twin 04-UN-59 Uinta Mountains, 

UT 

3278 40.69 110.38 4.7 10 10.3 

No name 04-UN-60 Uinta Mountains, 

UT 

3000 40.75 109.74 6.4 15.4 11.9 

No name 04-UN-61 Uinta Mountains, 

UT 

2933 40.71 109.72 12.1 16 12.2 

Hacking 04-UN-62 Uinta Mountains, 

UT 

3220 40.77 109.81 4.9 12.7 10.5 

Rainbow 04-UN-63 Uinta Mountains, 

UT 

3373 40.81 110.24 7 12.8 9.5 

No name 04-UN-64 Uinta Mountains, 

UT 

3399 40.81 110.24 4.9 12.4 9.5 

No name 04-UN-65 Uinta Mountains, 

UT 

3436 40.82 110.25 3.6 12.9 8.5 

Box BL Sierra Nevada, 

CA 

3178 37.42 119.75 9.3 14.3 11.6 

Big Pothole BPL Sierra Nevada, 

CA 

3431 36.77 119.37 26 13.3 9.2 

Barrett BRL Sierra Nevada, 

CA 

2816 37.60 119.01 6.08 19.4 12.6 

Bull BUL Sierra Nevada, 

CA 

3268 37.15 119.56 5.9 15.1 10.2 

Chocolate 1 CCL1 Sierra Nevada, 

CA 

3355 37.15 119.54 8.5 14 9.2 

Chocolate 2 CCL2 Sierra Nevada, 

CA 

3355 37.15 119.55 6.3 14.3 9.2 

Convict CL Sierra Nevada, 

CA 

2309 37.59 119.86 40 16.1 13.4 
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Eastern Brook EBL Sierra Nevada, 

CA 

3131 37.43 119.74 9 16.7 11.6 

East Twin ETL Sierra Nevada, 

CA 

3145 38.00 119.29 8.5 12.8 11.5 

Funnel FL Sierra Nevada, 

CA 

3180 37.20 119.51 10.2 15.4 11.1 

Green GL Sierra Nevada, 

CA 

3350 37.17 119.53 12.5 12.4 10.3 

Gull GLL Sierra Nevada, 

CA 

2303 37.78 119.08 19 18.9 15.3 

Greenstone GSL Sierra Nevada, 

CA 

3067 37.98 119.29 4.3 11.9 11.5 

Golden Trout GTL Sierra Nevada, 

CA 

3463 36.79 119.36 11.5 15.3 9.5 

Golden Trout 3 GTL3 Sierra Nevada, 

CA 

3440 36.79 119.36 6.5 17.2 10.6 

Hummingbird HBL Sierra Nevada, 

CA 

3105 37.99 119.29 5.9 15.4 11.5 

Hidden HDL Sierra Nevada, 

CA 

2379 38.26 119.54 9.7 19.1 13.9 

Heart HL Sierra Nevada, 

CA 

3160 37.42 119.75 4.3 14.2 11.6 

Helen HLL Sierra Nevada, 

CA 

3054 38.00 119.29 17.5 12.6 11.6 

June JL Sierra Nevada, 

CA 

2309 37.79 119.07 28 17.8 14.3 

Koenig KL Sierra Nevada, 

CA 

2905 38.28 119.63 2.9 12.3 11.3 

Koenig KL2 Sierra Nevada, 

CA 

2897 38.28 119.63 3.5 15 11.3 

Kirman KRL Sierra Nevada, 

CA 

2174 38.34 119.50 3.8 18.4 14.5 

Lower Conness LCL Sierra Nevada, 

CA 

3220 37.97 119.31 6.3 11.7 11.4 

Long LL Sierra Nevada, 

CA 

3194 37.41 119.76 11.6 12.8 11.7 

Long 2 LL2 Sierra Nevada, 

CA 

3258 37.16 119.56 20.8 14.3 10.2 

Lane LLL Sierra Nevada, 

CA 

2213 38.29 119.54 11 20.4 13.6 

Latopie LPL Sierra Nevada, 

CA 

3145 38.29 119.64 6.5 10.8 10 

Lower Sardine LSL Sierra Nevada, 

CA 

2996 37.86 119.20 13.5 14 12.1 

Leavitt LVL Sierra Nevada, 

CA 

2896 38.27 119.62 24.5 11.4 11.5 

Mack ML Sierra Nevada, 

CA 

3155 37.43 119.57 6.2 15.9 11.6 

Millie MLL Sierra Nevada, 

CA 

2115 38.34 119.54 3.5 17.9 14.8 

Mamie MML Sierra Nevada, 

CA 

2694 37.61 119.01 5 16.1 13.7 

Moat MTL Sierra Nevada, 

CA 

3197 38.06 119.28 8.3 12.3 11.6 

Mary MYL Sierra Nevada, 

CA 

2714 37.60 119.00 16 15.8 12.6 

Latopie PL Sierra Nevada, 

CA 

3145 38.29 119.64 6.5 10.8 13.9 

Rocky Bottom RBL Sierra Nevada, 

CA 

3180 37.20 119.52 26.5 15.4 10.9 

Rock Creek RCL Sierra Nevada, 

CA 

2938 37.45 119.74 29.5 15 12.4 

Red RDL Sierra Nevada, 

CA 

2978 38.04 119.26 4.7 13.6 12.1 

Ruwau RL Sierra Nevada, 

CA 

3347 37.14 119.55 16 12.7 9.9 
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Roosevelt RVL Sierra Nevada, 

CA 

2213 38.30 119.54 7.2 21.4 13.6 

Sardine Adjacent SAL Sierra Nevada, 

CA 

3170 37.86 119.21 2 18.7 12 

Ski SKL Sierra Nevada, 

CA 

2972 38.27 119.60 5.2 12.4 10 

Serene SL Sierra Nevada, 

CA 

3108 37.44 119.74 9.2 17.8 12 

Satcher SRL Sierra Nevada, 

CA 

2313 37.63 119.07 9.3 19.9 14.9 

Silver SVL Sierra Nevada, 

CA 

2186 37.78 119.12 14 15.4 14.1 

Starkweather SWL Sierra Nevada, 

CA 

2424 37.66 119.07 9.8 19 14.2 

Trumbull TBL Sierra Nevada, 

CA 

2921 38.05 119.26 6.7 16.3 12.8 

Twin TL1 Sierra Nevada, 

CA 

2595 37.62 119.01 2 15.2 13.7 

Twin TL2 Sierra Nevada, 

CA 

2595 37.62 119.01 2.3 15.7 13.7 

Upper Conness 1 UCL1 Sierra Nevada, 

CA 

3280 37.98 119.31 4.8 7.7 11.2 

Upper Conness 2 UCL2 Sierra Nevada, 

CA 

3251 37.98 119.31 4.6 13 11.2 

Walker WL Sierra Nevada, 

CA 

2405 37.87 119.17 3.1 15.2 13.6 

West Twin WTL Sierra Nevada, 

CA 

3152 38.00 119.29 8.1 13.1 11.5 

Yost YL Sierra Nevada, 

CA 

2756 37.74 119.10 2 15.4 13.3 

American AML Sawatch Range, 

CO 

3450 39.06 106.83 10.5 8.2 14.3 

Anderson AND Sawatch Range, 

CO 

3584 39.02 106.63 3.5 7.5 8.7 

Bear BER Sawatch Range, 

CO 

3351 39.30 106.42 4.6 15.2 14.8 

Brady BRD Sawatch Range, 

CO 

3353 39.37 106.50 2.1 15.1 11.1 

Cathedral CAT Sawatch Range, 

CO 

3598 39.03 106.84 6.7 5.4 13.5 

Constantine CNS Sawatch Range, 

CO 

3472 39.45 106.46 3.7 14.0 10.7 

Crater CRL Sawatch Range, 

CO 

3053 39.09 106.97 3.3 7.2 16.5 

Cleveland CVL Sawatch Range, 

CO 

3609 39.42 106.49 6.7 15.8 10.0 

Diemer DMR Sawatch Range, 

CO 

2869 39.33 106.61 2.6 20.3 13.7 

Eagle EGL Sawatch Range, 

CO 

3074 40.21 105.65 2.0 13.7 16.3 

Galena South GAL-S Sawatch Range, 

CO 

3364 39.30 106.42 3.1 15.6 14.7 

Hunky Dory HDY Sawatch Range, 

CO 

3452 39.42 106.48 2.5 16.2 14.3 

Half Moon South HFS Sawatch Range, 

CO 

3648 39.18 106.49 5.6 10.1 9.5 

Hard Scrabble HRD Sawatch Range, 

CO 

3070 39.23 107.10 4.1 14.8 16.4 

Independence IND Sawatch Range, 

CO 

3785 39.14 106.57 6.9 10.9 8.2 

Linkin LNK Sawatch Range, 

CO 

3639 39.13 106.59 9.0 5.6 13.2 

Missouri Adjacent MLA Sawatch Range, 

CO 

3524 39.40 106.52 2.5 14.6 10.0 

Missouri Central MLC Sawatch Range, 

CO 

3488 39.40 106.52 3.2 15.9 10.0 
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Missouri North MLN Sawatch Range, 

CO 

3513 39.40 106.51 5.9 15.5 13.9 

Missouri South MLS Sawatch Range, 

CO 

3477 39.39 106.52 3.6 13.2 14.1 

Maroon MRL Sawatch Range, 

CO 

2903 39.10 106.95 3.1 5.8 17.3 

Native NTV Sawatch Range, 

CO 

3403 39.23 106.46 0.9 9.9 11.1 

Savage SAV Sawatch Range, 

CO 

3378 39.36 106.52 3.5 10.0 11.0 

Seller SLR Sawatch Range, 

CO 

3119 39.32 106.58 3.6 19.8 16.1 

Sopris SOP Sawatch Range, 

CO 

3364 39.37 106.50 5.4 16.6 9.6 

Seven Sisters 

Central 

SSC Sawatch Range, 

CO 

3755 39.44 106.48 5.8 15.2 11.0 

Seven Sisters 

North 

SSN Sawatch Range, 

CO 

3612 39.44 106.49 5.6 13.7 13.4 

Seven Sisters 

South 

SSS Sawatch Range, 

CO 

3708 39.44 106.48 1.2 12.6 12.9 

Seven Sisters West SSW Sawatch Range, 

CO 

3893 39.43 106.49 6.9 7.0 8.6 

St. Kevin STK Sawatch Range, 

CO 

3580 39.31 106.43 6.8 8.4 11.7 

Tabor Creek TCL Sawatch Range, 

CO 

3588 39.05 106.65 24.0 13.7 10.2 

Tuhare East TLE Sawatch Range, 

CO 

3691 39.45 106.47 11.0 14.1 9.2 

Thomas North TL-N Sawatch Range, 

CO 

3089 39.27 107.14 9.5 5.7 16.3 

Thomas South TL-S Sawatch Range, 

CO 

3114 39.27 107.14 5.7 15.2 16.1 

Timberline TMB Sawatch Range, 

CO 

3275 39.30 106.48 10.4 14.5 15.2 

Whitney WHT Sawatch Range, 

CO 

3321 39.43 106.45 7.8 15.2 15.0 

Williams WIL Sawatch Range, 

CO 

3277 39.22 107.12 3.6 7.5 13.3 

Weller WLL Sawatch Range, 

CO 

2894 39.12 106.72 8.7 8.1 13.9 

Box BOX Front Range, CO 3274 40.21 105.65 11.0 13.9 12.2 

Black BLK Front Range, CO 3237 40.40 105.96 21.2 10.9 14.3 

Cony CNY Front Range, CO 3509 40.17 105.66 16.8 8.2 10.9 

Eagle1 EGL1 Front Range, CO 3298 40.21 105.65 10.2 10.9 12.1 

Falcon FAL Front Range, CO 3371 40.23 105.66 8.1 9.2 13.5 

Hutcheson HCH Front Range, CO 3413 40.17 105.65 3.1 10.0 13.3 

Odessa ODS Front Range, CO 3051 40.33 105.69 6.0 10.5 15.3 

Pipit PIP Front Range, CO 3479 40.19 105.67 10.4 9.2 11.1 

Thunder THD Front Range, CO 3225 40.22 105.65 7.05 13.1 14.3 
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B.2: Key for chironomid taxa 
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B.3: Figure 3: Caterpillar plot for the WUS training set showing the optimal SWT for midge taxa (dot) 

with the tolerance range. Optima and tolerances were found by weighted averaging. 

 

 


