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ABSTRACT

Snap-through instability is a familiar phenomenon in structural mechanics. Post-buckled and

curved structures experience dramatic snap-through instabilities when external loads from me-

chanical, fluid, or thermal environments result in a loss of local stability and a violent jump to a

remote stable equilibrium. Fatigue caused by snap-through is a concern in many engineered sys-

tems because of the large stress reversals involved. Snap-through is typically avoided by designing

structures to be robust in response to complex and/or uncertain loading environments. However,

these traditional ways of ensuring stability are often at odds with other important design objectives,

such as minimizing weight.

This study theoretically and experimentally investigates the strategic actuation of lightweight

and flexible piezoelectric material to change the loads required to initiate snap-through of clamped-

clamped post-bucked beams. It then studies the possibility of using piezoelectric actuation to tra-

verse stable transitions between remote equilibria, thus avoiding snap-through behavior altogether.

It also finds the changes of natural frequencies and mode shapes of post-buckled beams during the

stable transitions. Finally, the study theoretically and experimentally identifies actuation strategies

that stabilize equilibrium shapes of third- and fourth-order.

It is anticipated that the results of this study can be used to design new smart structures that

have enhanced stability in the face of onerous loading environments. One possibility would be to



embed piezoelectric actuators into advanced composite materials to enhance their stability without

unduly sacrificing weight. Actuation can be used to enhance stability or alter structural shape.

When not actuated, the piezoelectric elements could be used as health monitoring sensors or energy

harvesters. The present theoretical model, which is cast in non-dimensional terms, enables a more

general view of what is possible with the piezoelectric actuation and will allow researchers to

more easily discern whether a candidate structure will be sufficiently amenable to piezoelectric

actuation.

INDEX WORDS: Post-buckled beams, Piezoelectric actuation, Elastica theory, Snap-through,
Stable transition, Mode shape, Higher-order shape
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Chapter 1

Introduction

1.1 Motivation

Modern engineering structures frequently need to be lightweight yet also able to withstand harsh loading

environments. These competing requirements can manifest in structures that operate on the edge of stability.

Snap-through is a familiar phenomenon to engineers and non-engineers alike. The startling pop of a cookie

sheet baking in an oven is the oft-cited example of how snap-through is encountered in everyday life. Even

young children are familiar with snap-through because it is commonly used to make toys that click or

jump [1]. Post-buckled and curved structures, with aircraft fuselages [2–4], launch vehicles fairings [5, 6],

and submarine hulls [7, 8] being a few examples, experience snap-through instabilities when subject to

external loads from mechanical, fluid, or thermal environments. These external loads can cause structures

to lose local stability and experience a dramatic jump to a remote stable equilibrium. The large nonlinear

deformations and correspondingly large stress reversals associated with snap-through greatly decrease the

service life of a structure and can pose a significant constraint on the structural integrity of advanced systems.

Since snap-through is a nonlinear phenomenon, reliably predicting it is not trivial, especially when complex

geometries, boundary conditions, and loading environments are involved.

Given these difficulties, a lightweight means to enhance the stability of structures by 1) increasing

their critical snap-through loads, and/or 2) transitioning between remote equilibria along an entirely stable

equilibrium path would be valuable innovations. It has been suggested [9–11] that these two innovations are

theoretically possible with the advent of lightweight and highly flexible piezoelectric materials. However,
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neither idea has been explored in-depth, nor have these ideas been demonstrated experimentally. Addressing

this research gap requires a modeling framework that generalizes the complex mechanics of highly deformed

electromechanical systems.

A new electromechanically coupled elastica model for highly-deformed piezoelectric structures is de-

veloped in this dissertation. It is found that appropriately activated piezoelectric material can increase the

snap-through loads of post-buckled beams. Further, through the intelligent actuation of multiple piezoelec-

tric patches, the model demonstrates the possibility of circumventing snap-through altogether by following a

stable path between remote equilibria. In addition, the modal behavior of the structure is observed during the

stable transition. Higher-order equilibrium shapes of post-buckled beams can also be obtained using mul-

tiple piezoelectric patches. Ultimately, this research could enable a class of structures exhibiting enhanced

stability in the face of demanding loads, and contribute new modeling approaches to exploit snap-through

for the purposes of actuation, morphing, and energy harvesting.

1.2 Snap-Through Instability

Snap-through (or snapping) instability is a venerable topic in structural mechanics, with Timoshenko offer-

ing an early reference on the subject [12]. In the canonical example of an elastic arch subject to an increasing

lateral point load, the mid-point deflects downward until a local stable equilibrium ceases to exist (point A

in Fig. 1.1). The structure then rapidly snaps to a remote stable equilibrium (point B). If the structure is then

unloaded, hysteresis is observed as the structure eventually snaps back to the original stable curve (point C).

For shallow arches, snap-through occurs at a limit point (i.e., a point of vertical tangency in a deflection-

load curve). For deeper arches, a bifurcation point occurs at a load that is lower than the limit point, and the

structure will jump to a remote configuration before reaching the limit point [4].

To investigate snap-through behavior, Euler’s elastica theory [13] is used in the present work. The

elastica has a long history of being used to study the snap-through behavior beginning with Huddleston [14]

in 1968. The elastica describes differential equations of post-buckled structures based on the geometrical

nonlinear theory of large deflection. A distinct advantage of the elastica formulation is that the modifications

required to consider the effects of extensibility [15], self-weight [16], initial imperfections [17], and various

boundary conditions [18, 19] are relatively straightforward.
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Figure 1.1. Deflection (δ) versus load (Q) diagram illustrating the concept of snap-through insta-
bility.

Snap-through remains an active area of research, especially in the context of dynamic loading, bistabil-

ity, and switching between bistable equilibria. Recent research by Chen and his colleagues have considered

the snap-through behavior of suddenly loaded structures [19], dynamic snapping due to step loads [15],

and moving point loads [20]. Other researchers considered dynamic snap-through behaviors for MEMS

applications [21–24]. Chandra et al. considered the complex nonlinear dynamics of transient snap-through

in shallow arches [4], and the use of full-field digital image correlation (DIC) techniques to measure such

behavior [25]. Several other efforts have considered bistable mechanisms exhibiting snap-through behav-

ior [26–28].

1.3 Elastica Theory

The elastica theory, developed by Leonhard Euler, allows for very large scale elastic deflections of struc-

tures. The history of the elastica traces back to its first solution by James Bernoulli in 1691. The complete

solution is most commonly attributed to Euler in 1744 because of his compelling mathematical treatment

and illustrations [13]. The derivation of Euler’s equations can also be found in Levien’s report [13].

Huddleston [14, 29] used the shooting method to study the buckling of prismatic doubly-hinged arches

of several height-to-span ratios under vertical concentrated load at the crown [30]. In 1974, DaDeppo and
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Schmidt [31] investigated buckling behaviors of large prebuckling deflections of hingeless circular arches

based on Euler’s nonlinear theory of the inextensible curved elastica. It is found that non-shallow hingeless

arches may buckle by either asymmetrical sidesway or symmetrical snap-through, depending on the relative

magnitudes of the point load and the weight of the arch. Wang [32] wrote a review of the heavy (i.e., self-

weight is included) elastica that included all relevant literature describing models of buckling, post-buckling

and large deformation.

Later, extensibility was included in the elastica to solve buckling and post-buckling problems. Magnus-

son et al. [33] investigated snap-though behaviors based on the extensible elastica. Due to the extensibil-

ity of the beam axis, it is shown that the buckling load of the extensible elastica solution depends on the

slenderness, and that for small slenderness, the bifurcation point becomes unstable. Chen and Tsao [34]

studied the static snapping load of a hinged buckled beam under a midpoint force using three approaches—

small-deformation theory, inextensible elastica, and extensible elastica. The results demonstrated that small-

deformation theory fails to predict the static snapping load accurately in the large-deformation range, inex-

tensible elastica fails to predict the static critical load satisfactorily in the small-deformation range, and

only the extensible elastica theory can predict the static snapping load accurately both in the small- and

large-deformation ranges.

1.4 Control of Structural Instability

Post-buckled and curved structures may experience snap-through instabilities from external loads. These

external loads lead structures to lose local stability and violently jump to a remote stable equilibrium. Frac-

ture and fatigue caused by snap-through is a concern in many engineered systems because of the large stress

reversals involved. The large stress reversals decrease a structure’s service life and pose constraints on the

design of engineered systems. Snap-through is typically avoided by designing structures to be robust in

response to complex and/or uncertain loading environments. However, these traditional ways of ensuring

stability are often at odds with other important design objectives, such as minimizing weight.

External loads from mechanical, fluid, and thermal environments can induce snap-through instability by

exceeding a critical snap-through load. Lightweight and flexible materials, such as piezoelectric materials

or materials with thermo-mechanical properties, can be used to change structural instability. To provide
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further context for the current work, some background on inducing snap-through instability using external

loads is presented, followed by discussions of controlling structural instability using piezoelectric actuation

and thermo-mechanical materials.

1.4.1 Control of Structural Instability using External Loading

Chen and Hung [35] used elastica theory to study the snapping load of a buckled beam with large deforma-

tion under a point force at the midpoint. They were interested in the critical conditions under which snapping

occurs. Three different models of point force are investigated: 1. the midpoint force is fixed on the buckled

beam; 2. the point force stays on the central line in space, and 3. the point force is applied on the buckled

beam through a rigid bar that is allowed to slide on the central line in space (see Fig. 1.2). They found “in

the case when the buckled beam deforms symmetrically, there is no difference between these three models.

However, in the case when the buckled beam deforms unsymmetrically, these three load models may predict

different results”. Later, Chen et al. [15] studied the transient response of a hinged extensible elastica under

a step load at the midpoint, though emphasis is placed on the effect of extensibility on the dynamic snapping

behavior.

Q2Q1

Q3

Figure 1.2. Three models of point force from Ref. [35]: mid-point body-fixed force, Q1, mid-point
force on the space central line, Q2, and point force through a rigid bar to slide on the central line,
Q3.

Dynamic snap-through of shallow arches has also been investigated by Chen and Lin [20]. They studied

the dynamic stability of a shallow arch under quasi-static and high-speed moving point forces. The analysis

shows there is a static critical load in the sense that no static snap-through will occur as long as the point

load is smaller than this critical load. There also exists a dynamic critical snap-through load when the

point load travels with a nonzero speed, but it is smaller than the static critical load. There is also a finite

speed zone between two critical speeds within which the arch runs the risk of dynamic snap-through. Das
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and Batra [36] studied symmetry breaking, snap-through instability, and pull-in instability of a bi-stable

arch-shaped micro-electro-mechanical system (MEMS) under static and dynamic electric loads. For an

electrically actuated MEMS, the applied electric potential has an upper limit. If this limit is exceeded, the

elastic restoring force cannot balance the corresponding Coulomb force, and this causes the deformable

electrode to collapse onto the rigid one. This phenomenon is called pull-in instability. They found for

the dynamic problem, there are two distinct mechanisms of the snap-through instability—the ‘direct’ and

the ‘indirect’, which are distinguished by the geometric parameters of the arch and the load types. Curves

showing the critical load parameters versus arch heights indicate the stable and unstable parameter space,

and can help in designing arch-shaped MEMS devices.

Excitation of bistable buckled beams to induce snap-through for the purpose of energy harvesting can

be achieved by magnetic loading. Zhu and Zu investigated enhancing harvester functionality under low

frequency and small amplitude excitation from a midpoint magnetic force [37]. A non-contact, nonlinear,

repulsive magnetic force was applied to the center of a buckled-beam energy harvester, as shown in Fig. 1.3.

There are several advantages of using magnetic excitation. For one, the nonlinearity from the magnetic force

contributes to large-amplitude nonlinear vibrations, which are preferred for energy harvesting. The local

magnetic levitation greatly reduces the operating frequency which is useful for low-frequency applications.

Zhu and Zu then proposed a magnet-induced buckled-beam piezoelectric generator for broadband vibration-

based energy harvesting at low frequencies. A magnet-induced force is used to compress the beam, and the

system is capable of persistent snap-through when excited [38]. A similar work by Jiang et al. [39] shows

that when an external mechanical force is applied to the base beneath the permanent magnet array, the

magnetic force between the magnets on and off the beam varies periodically and can induce snapping.

1.4.2 Piezoelectric Control of Structural Instability

Piezoelectric materials deform mechanically due to an applied electric charge. They are used in an array

of everyday products such as microphones, loud speakers, and remote controls. The most commonly used

piezoelectric materials are synthetic ceramics, with lead zirconate titanate (PZT) being a well-known exam-

ple. These materials tend to be extremely brittle, thus making them ill-suited to conforming to the highly

deformed structures of interest here. In 1996, macro fiber composites (MFC) were developed by researchers

at NASA [40]. Since they are thin, lightweight, and flexible, MFC are ideal for use in the current experi-
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Figure 1.3. Schematic of Zhu and Zu’s device with (a) two stable equilibriums and (b) two unstable
equilibriums from Ref. [37].

ments. Fig. 1.4 shows the flexibility of an MFC patch. MFC is marketed commercially and has been widely

studied in smart material applications (see e.g., Refs. [41–49]).

Figure 1.4. MFC actuator with large deformation [50].

Several studies have used piezoelectric material in conjunction with structures exhibiting snap-through;

however, most of this research has studied systems in which snap-through is intentionally induced for the

purposes of energy harvesting [9,17,51–59], low energy/high displacement actuation [9,60–62] or structural

morphing [59, 63–68]. Fig. 1.5 show typical applications of curved structures with piezoelectric actuators.

A recent review paper by Hu and Burgueño [69] surveys the current landscape of this area of research

and concludes “a research trend is emerging to explore the structural systems that can feature multistable

events by varying material properties, using hybrid structural/mechanical systems, using hybrid materials,
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and adding constraints. The search for structural forms to achieve desirable snap-through instabilities is also

being assisted by optimization methods, such as topology optimization.”

(a) (b)

Figure 1.5. Examples of post-buckled structures with piezoelectric films. (a) MFC bonded to a
beam, and (b) MFC bonded to a plate [70].

The concept of using a piezocomposite actuator (MFC) bonded to one side of a substrate to induce

snapping of the laminate is proposed by Schultz et al. [60, 61]. The theoretical model of the composite

structure is based on the Ritz technique. Prediction of the shapes of the laminate and of the voltage needed

to cause snap-through are compared and matched well with experiments. The idea that the critical loads

leading to snap-through could be augmented through the use of piezoelectric actuation was mentioned in

passing by Arrieta, et al. [71]. This observation was made as part of an experimental study that tried to

dynamically induce snap-through in composite plates using MFC and a dynamic shaker. They found that

the actuation of the MFC helped to reduce the amount of shaker force required to cause snap-through. They

also found that the opposite could be true, though they did not investigate it further because increasing the

loads required for snap-through was not the objective of the study.

Efforts to use piezoelectricity to invoke desired behavior in structures have not always been entirely

successful. In a two-part theoretical/experimental study, Giannopoulos, et al. [72, 73] attempted to induce

snap-through behavior in bimorph (i.e., piezoelectric material on both sides) beams with applications of

low energy/high displacement actuators. Using Euler buckling theory they concluded that “the necessary

actuation voltage to reach the critical point...for a simply supported beam exceeds the depolarization limit of

the piezoelectric elements even for relatively small amount of vertical compression. Modified models with

relaxed boundary conditions (spring) revealed that the voltage to perform snap through is much less and the

importance of the boundary conditions cannot be underestimated.”
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In related work, Sridharan and Kim [74] investigated the potential for actuated piezoelectric patches to

enhance the critical buckling load of imperfect columns. While they showed analytically that this strategy

is possible, even modest increases in critical load required extremely high applied voltages (O 103 volts—

higher than the depolarization limit of most pizeoelectric materials). Overall, the researchers were quite

negative on the prospect of using piezoelectric control as a means of preventing buckling, but noted that

“...experimental corroboration is sorely needed to establish these conclusions on a firm footing and give

them currency in the discipline of smart materials and structures” [74]. An inspection of the parameters

used in Sridharan and Kim’s analytical case study reveals that the column they considered was probably too

stiff relative to the stabilizing effects offered by the actuators. The authors probably could have shown more

promising results if they had considered a column with a lower flexural rigidity. Park and his colleague

Kim showed how the large deflection of the composite panel can be suppressed using MFC actuators [75].

The numerical results indicated that MFC actuators can improve the performance of the panel; however,

snap-through behavior can occur when excessive actuation of the MFC is applied to suppress the large

deflection of the panel under aero-thermal loading. Recently, Aimmanee and Tichakorn [76] theoretically

and experimentally considered piezoelectrically induced snap-through of post-buckled beams with various

boundary conditions. For a steel substrate and a single MFC patch covering a portion of the substrate, they

found the actuator lengths and placements that minimize the voltage required to induce snap-through.

Maurini, et al. [10] theoretically considered bending and axial piezoelectric actuation of a moderately

post-buckled bimorph beam. Their model used an energy-based variational formulation and a two-mode

Galerkin expansion. The authors call their model a “nonlinear extensible elastica model”. While it is an

elastica model in the sense that the problem is expressed in terms of arclength coordinates, its variational

formulation makes it appear quite different from the discretized piezo-elastica formulation used here. Nev-

ertheless, the Maurini, et al. [10] model yielded an intriguing result. By considering the contour of the

Lagrangian of a post-buckled bimorph beam, they found that when adding a skew-symmetric component to

the bending actuation, the beam can switch between the two buckled configurations without any instabil-

ity. In other words, by traversing this new path, the system could avoid snap-through altogether. Maurini,

et al. [10] recognized the important implications of this new path, and recommended that it be studied in

the context of “complex structures such as deep arches, frames, and prestressed composite plates”. They
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went on to add that “it remains to extend the present analysis to higher values of the buckling parameter, by

including the effect of higher modes, and to investigate the effect of imperfections.”

Subsequent research by Maurini and his collaborators considered shape control of bistable composite

plates [11], and again identified stable paths linking remote equilibria. Some comprehensive studies [62,66,

67] investigated stable equilibrium paths using bistable composites in depth. The identification of new stable

equilibrium paths in piezoelectrically actuated structures is reminiscent of an investigation by the Lyman et

al. [77]. It raises the intriguing possibility that multiple remote equilibria might each have a stable path

connecting them using piezoelectrical actuation. Later, related research on the modeling, optimization, and

control of bistable structures using piezoelectric actuation were studied in Refs. [78–81].

Structural morphing using piezoelectric smart materials [59, 63, 64, 66, 68, 79, 82–86] has also received

significant attention for design of aerospace, micro-electro-mechanical and thermal-mechanical systems.

Vos et al. [83, 84] proposed a new approach that post-buckled precompressed (PBP) piezoelectric actuators

are integrated in a flexible wing structure to induce large deflections. PBP actuators can maintain low weight

and power consumption, while extending control bandwidth. A semi-analytical composite structural model

was built to predict the trailing-edge deflection due to piezoelectric actuation. When PBP actuators were

activated, the trailing edge was forced to deform downward, leading to more lift on the wings. Later, Vos

and his colleagues revealed different equilibrium states of a post-bucked piezoelectrically actuated beam.

The beam was axially loaded and enhanced its imperfection (a proverse state) by applying active moments

(positive voltage) from piezoelectric elements, but as the sign of the voltage was switched, the PBP element

entered a converse-buckled state. Additionally, by increasing the axial force, the beam jumped followed by

a higher-order snap-through to a remote proverse state [87]. Roe and Gandhi [85] designed a method for

changing the shape of a wing using a trailing edge morphing beam comprised of smart and elastic materials.

By actuating the smart material in the morphing beam, the shape of the the elastic material and the wing

change accordingly. The new shape of the trailing edge illustrates a highly deformed buckled beam akin to

a portion of the higher-order equilibrium shape of the post-buckled beam.

Zareie et al. [82] investigated the buckling control of morphing composite structures using multi-stable

laminate by piezoelectric actuators. The results indicated that activating PZT increased the amount of de-

formation at the tail edge, which validated the structural morphing results from in Vos’ research [84]. Betts
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et al. [52], Diaconu et al. [65], Bowen et al. [79], and Murray et al. [66], also conducted related research on

modeling the shape morphing of plates and laminate using piezoelectric actuation.

In addition to creating morphing structures, smart materials can also be used to exploit the multi-stability

of structures. In a recent review of buckling-related smart materials applications [69], several such multi-

stable structures were described. Pham and Wang [88] proposed a quadristable mechanism (QM) which has

a curved-beam bistable mechanism embedded within another curved-beam structure. Finite element models

of the QM applying Euler’s beam buckling theory are coupled and applied to double-clamped beams with

fixed ends. Experiments showed some higher-order stable equilibrium shapes were possilbe. Dai et. al [89]

developed a multi-stable lattice structure by assembling the simple bistable laminates. It contains tristable

lattice cells and can offer three stable configurations. The critical snap-through loads are investigated for

different stable states. Some of the stable lattice structures show configurations similar to the third- and

fourth-order equilibrium shapes of a hinged-hinged post-buckled beam. A technique of energy harvesting

at very low frequencies using the snap-through between multiple buckling modes of a beam with fixed-

fixed ends was presented by Lajnef et. al [90]. In their research, multistable post-buckling equilibria are

experimentally obtained by applying axial loads and correspond well with shapes from the finite element

analysis. Pirrera and his collaborators [91] designed a morphing cylinder using a lattice of helices which

have more stable states differing in their radii and length. They used composite materials to exploit the

interplay between pre-stress, material properties, and structural geometry, and then demonstrated the multi-

stability of the structure.

Smart materials applications aside, there is a subset of the literature focusing on the purely stucutural

mechanics aspects of multi-stable systems. As early as 1992, Hwang and Perkins [92, 93] established a

model and determined equilibria of a curved, axially moving beam. The model considers large static beam

deformations, and motion from equilibrium is described using a nonlinear rod theory. Exact equilibrium

solutions are obtained at both sub-critical and super-critical translation speeds, and bifurcations occur near

the critical speed, leading to multiple beam equilibrium states. Local stability is predicted from the eigen-

value problem governing the free response. Wickert [94] also investigated a similar beam model while using

Euler column buckling model. Later, Raboud et. al [95] explored stability evaluation of flexible cantilever

beams and found multiple equilibrium solutions (three typical shapes). Nayfeh and Emam [96] solved the

nonlinear post-buckling problem for different boundary conditions and obtained a closed-form solution for
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the buckled configurations as a function of the applied axial load. They showed the static bifurcation for

buckled configurations of a fixed–fixed beam and gave the relation to the applied axial load. When the axial

load exceeds the first critical buckling load, the straight position loses stability and the beam buckles. Emam

and Nayfeh [97] studied the post-buckled and free vibration behaviors of composite beams. They exactly

solved the linear vibration problem around the first buckled configuration. Both the post-buckling analysis

and the free vibration analysis in the post-buckling domain strongly depend on the layout of the laminate.

Some works show higher-order equilibria of a post-buckled structure can be obtained theoretically, but little

research has been conducted investigating higher-order stable equilibria.

1.4.3 Thermal Control of Structural Instability

Smart materials that have one property that can be significantly changed with temperature are the basis of

applications involving thermo-mechanical behaviors [98–102]. Snap-through loads in such materials can

sometimes be changed by changing temperature. Finite element (FE) analysis is commonly used to model

snap-through instability of post-buckled structures involving thermal influences. Experiments are sometimes

conducted to validates these FE models.

Lee and Kim [103] investigated the thermo-mechanical behaviors of functionally graded material (FGM)

panels in hypersonic airflows. For the structural model, the thermo-mechanical characteristics were inves-

tigated according to the thermal and aerodynamic loads. They revealed that if the thermal or aerodynamic

loads exceed a critical value, the panel snaps to the remote equilibrium position. A similar work done by

Zhang et al. [104] studied the effects of thermo-mechanical loading on the bistable behavior and deformation

process of anti-symmetric cylindrical shells. They indicated that the shape of the bistable composite shell

can be adjusted by imposing different combinations of uniform temperature fields and through-thickness

thermal gradients. This is helpful for applications of bistable structures in the aerospace industry, for in-

stance. Przekop and Rizzi [105] investigated numerical simulation methods for the nonlinear response of

structures combined with high-intensity random pressure fluctuations and thermal loading. The dynamic

thermal bucking problem is studied by applying a uniformly distributed, positive temperature increment.

A reduced-order FE method for predicting thermo-acoustic random response was presented. The effect of

elevated temperature on the modal stiffness coefficients was examined and it was found that only the lin-

ear stiffness coefficients corresponding to low-frequency transverse displacement modes were affected by
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changing temperature and they vary linearly with temperature. A modal basis consisting of four types of

modes (symmetric transverse, anti-symmetric transverse, symmetric in-plane, and anti-symmetric in-plane),

shown in Fig. 1.6, accurately predicts the dynamic thermal buckling and thermal-acoustic response.
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Figure 1.6. Lowest four types of modes of a post-buckled clamped beam from Ref. [105].

Snap-through due to a uniform lateral pressure in a thermally post-buckled sandwich beam is analyzed

in Mirzaei’s work [106]. Material properties of the face sheets and core are assumed to be temperature de-

pendent. The results show that increasing the temperature results in higher thermal post-buckling deflection.

In addition, as the induced post-buckling deflection increases, the upper and lower limit loads both increase

and the intensity of the snap-through (snap-through amplitude between two remote equilibria) increases.

Mattioni et al. [107] modeled the nonlinear flexural response of laminates that have piecewise variation of

their planform lay-up and focused on the effects of thermal stresses on the resulting equilibrium shapes.

They found that unsymmetric laminates may possess more than a single equilibrium configuration, and the

solution thus bifurcates at a critical temperature. Stanciulescu et al. [108] identified a non-trivial (non-flat)

configuration of the curved clamped-clamped beam at a critical temperature below which the beam will no

longer experience snap-through under any magnitude of applied quasi-static load. The critical temperature

is shown to successfully eliminate snap-through in dynamic simulations at quasi-static loading rates. In

their study, they referred to the coupling between elastic deformation and thermal effects via the thermal

strain terms in the equations of mechanical equilibrium and the structural elastic heating term in the heat

equation. Structural morphing and snap-through behavior of hybrid laminate shells driven solely by temper-

ature change were studied by Eckstein et al. [109]. Thermally-driven structures were characterized by their

ability to exhibit a shape change in response to thermal loading. They demonstrate that the tailorability of
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composite materials combined with the geometrically nonlinear large-displacement response of thin shells

can yield thermal bimorph devices with highly nonlinear displacement response to temperature change.

Researchers are also interested in snap-through control combining thermal effects and piezoelectric

actuation. Park and Kim [75] studied the characteristics of thermal post-buckling of the composite panel

embedded with MFC actuators. The Newton–Raphson method is used to calculate the aero-thermal large de-

flection of the panel, and the cylindrical arclength method [110,111] is adopted to describe the snap-through

behavior of the panel. They found that in-plane actuation using MFC can increase the critical temperature

and decrease the large deflections caused by thermal loading. They also found that aero-thermal large de-

flections can be suppressed by out-of-plane actuation of MFC. Dano and Jullière [112, 113] investigated

the use of MFC actuators to compensate and actively control thermally induced deformations in compos-

ite structures. A uniform temperature change is applied to induce a large change in the structural shape,

and the MFC are actuated to compensate for the thermally induced distortion. The results show that MFC

actuators can eliminate thermal deformations when a sufficient voltage is applied. Moreover, a control al-

gorithm is implemented to actively control the closed loop response of the structure. The model includes

structural, thermal and piezoelectric fields. Studies in Refs. [75, 112, 113] make a comprehensive “thermo-

piezoelectric-mechanical” coupling model to investigate the stability of post-buckled structures.

Lastly, it is noted that at room temperatures, snap-through instability of post-buckled structures is only

mildly influenced by thermal changes, and in general, deformations caused by temperature changes are

relatively small compared to the changes induced by piezoelectric actuators.

1.5 Current Work

The idea of using lightweight and flexible piezoelectric materials to control structural instabilities of post-

buckled beams is proposed. A new electromechanically coupled elastica model is developed with extensions

accounting for the influence of elongating piezoelectric films bonded to the beam. The model’s discretized

formulation is implemented for the physical systems of interest, is not limited to moderate displacements,

and can be adapted to account for different boundary conditions. The present theoretical model, which is

cast in non-dimensional terms, enables a more general view of what is possible with piezoelectric actuation

and allows researchers to discern whether a candidate structure will be sufficiently amenable to piezoelectric
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actuation. The electromechanical coupling parameter can therefore be used as a metric for designing realistic

systems capable of circumventing snap-through.

The configuration of primary interest involves piezoelectric materials bonded to clamped-clamped post-

buckled beams. The model of this system is presented in Chapter 2 and expresses the piezoelectric coupling

effect in terms of a new non-dimensional parameter, σ, that can be easily calculated for candidate sub-

strate/actuator configurations. In Chapter 3, static equilibrium positions and their stability are computed

across a large configuration space using numerical integration and a shooting method. Results indicate

that the effect of piezoelectric actuation on critical snap-through load depends on the degree to which the

beam is buckled, the location of the external load, the placement of the piezoelectric material, and the ap-

plied actuation voltage. Experiments are performed to validate the numerical results and provide a physical

demonstration of changing snap-through loads with piezoelectric actuation. Experimental results demon-

strate that critical snap-through loads can be altered by factors ranging from 0.4 to 2.0, and numerical results

indicate that even larger changes to snap-through loads are physically realizable.

Next, in Chapter 4, the avoidance of snap-through instability is demonstrated by invoking stable tran-

sitions between remote equilibria. Specifically, this is achieved with mildly post-buckled clamped-clamped

beams with two axial piezoelectric actuators bonded to their surface. Through the intelligent control of

the two actuators, stable transitions between remote equilibria can be traversed, thus circumventing snap-

through. Given the limitations of existing piezoelectric actuators, stable transitions are only possible in a

subset of substrate/actuator configurations. Experiments are conducted to verify the numerical results and

physically demonstrate stable transitions between remote equilibria.

In Chapter 5, natural frequencies and modes of the beams are identified numerically and experimentally

during the stable transitions. The changes of equilibrium shapes, first four frequencies, and their mode

shapes are studied using axial piezoelectric actuators. It is found that the direction of the beam’s movement

in the first two modes always changes during a stable transition. The first and third natural frequencies

usually decrease while the second and fourth ones increase with increases the voltage. The magnitude of

normalized dynamic deflection for different actuation regions at select σ values are also studied.

Finally, in Chapter 6, the stability of higher-order equilibrium shapes of clamped-clamped post-buckled

beams under piezoelectric actuation are determined. It is assumed three or four piezoelectric patches are

distributed along the beam. In certain situations, stable third- and fourth-order equilibrium shapes can be
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achieved with three and four piezoelectric patches, respectively. Effects of actuation region are studied to

find the parameter space associated with these stable equilibria. Experiments are performed to verify the

numerical results and show physical higher-order equilibrium shapes.

The primary contributions of this work are as follows:

1. Elastica theory is extended to include a new non-dimensional parameter that describes the influence

of piezoelectric actuation on a structure;

2. Results indicate the physical configurations and actuation strategies altering stability most profoundly;

3. The threshold for achieving stable transitions is given in terms of the non-dimensional electrome-

chanical coupling parameter;

4. Stable transition paths are found to exhibit a strong dependence on the magnitude and location of the

external load in addition to the actuation voltage and actuated patch span;

5. Natural frequencies and mode shapes are calculated for different stable transition paths;

6. Stable higher-order equilibrium shapes of post-buckled beam can be achieved under piezoelectric

actuation;

7. Experiments validate the results of the numerical model and demonstrate how piezoelectric actuation

can change snap-through loads, invoke stable transitions between remote equilibria, and stabilize

higher-order equilibrium shapes. The natural frequencies and modes along a stable transisition path

are also experimentally validated.
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Chapter 2

Electromechanically Coupled Elastica

Model

The electromechanical system of a post-buckled beam with piezeoelctric film bonded to its surface is based

on elastica theory with allowances for piezoelectric actuation. Elastica theory establishes the structural

geometry in terms of an arc-length coordinate and presumes that the structure is slender, isotropic, and

hyperelastic [13,17,114]. A non-dimensional electromechanical coupling term models the influences of the

piezoelectric material.

An inextensible beam of length l∗, thickness h∗s, and width b∗ is assumed to be post-buckled, clamped

on both ends and shortened by an amount of e∗. Piezoelectric material of thickness h∗p covers one side of

the beam, as shown in Fig. 2.1. The origin of the coordinate system is at the left support. Different voltages,

V1, V2, and up to Vn are applied to each patch of piezoelectric material.

x∗

y∗

φ

V

hp

hs

δ0

Q∗

l∗Q
l − e∗

Figure 2.1. Schematic of a clamped-clamped post-buckled beam with flexible piezoelectric mate-
rial bonded across the span.
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Consider an inextensible post-buckled beam of length l, width b, and thickness hs, as shown in Fig.

2.1. The superscript ∗ is used to distinguish dimensional quantities from the corresponding non-dimensional

quantities to be defined later. (Dimensional quantities that do not have a non-dimensional counterpart are

denoted without a superscript.) One side of the beam is covered with a piezoelectric material of thickness

hp. The beam has clamped supports on both ends and is shortened by an amount e∗. The coordinate system

is fixed with the origin at the left support. The beam is subject to a lateral body-fixed point load, Q∗, which

is applied at a distance from the origin given by l∗Q. A voltage, V , is applied to the piezoelectric patch.

The patch length is variable. Different piezoelectric patches are bonded to the beam for different actuation

schemes, and several different voltages can be applied to each patch. The structural behavior is captured

with two parameters: mid-point deflection, δ, and mid-point rotation angle, φ.

Since piezoelectric material is placed on only one side of the substrate (unimorph), the composite struc-

ture is asymmetric and its neutral axis is not located at the geometric midplane of the composite. The

placement of the neutral axis is specified by y0 which is defined as the distance from the geometric mid-

plane of the substrate, as shown in Fig. 2.2. This places the interface between substrate and the piezoelectric

material at a distance from the neutral axis of hs/2− y0. As Brissaud et al. [115] showed, y0 for the present

configuration is given by

y0 =
Yphp(hs + hp)

2(Yshs + Yphp)
. (2.1)

Piezo

Substrate

Neutral
axis

y∗

y0

hp

2

hs
2

Figure 2.2. Cross-section of composite beam with neutral axis shown.
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2.1 Bending Moment in the Composite Beam

The bending moment of the composite beam relative to the neutral axis is given by [116]

m∗ = b

(∫ hs
2
−y0

−hs
2
−y0

Tsy
∗dy∗ +

∫ hp+
hs
2
−y0

hs
2
−y0

Tpy
∗dy∗

)
, (2.2)

where Ts and Tp are the stress in the substrate and piezoelectric material. The stress in the substrate is

given by Hooke’s law, Ts = Ysy
∗ dθ
ds∗ , where Ys is the Young’s modulus of the material and dθ/ds∗ is the

curvature.

The following constitutive equations for an elongating piezoelectric layer are assumed [117] Tp

Dp

 =

 c̄E33 −ē33
ē33 ε̄S33


 Sp

Ep

 , (2.3)

where Tp and Dp represent the stress and electric displacement, respectively, and c̄E33 is the elastic stiffness

(i.e., Young’s modulus) in the 3-direction (i.e., longitudinal direction) of the beam under constant electric

field. Going forward, c̄E33 is denoted Yp. The parameter ē33 is the piezoelectric constant related to elon-

gation and is given by ē33 = Ypd33, where d33 is the piezoelectric constant more commonly given in the

specifications of piezoelectric materials. Finally, ε̄S33 is the permittivity at constant strain, Sp is the strain,

and Ep is electric field component given by Ep = −V/lp, where V is the applied voltage and lp is the

spacing between neighboring positive and negative poles of the piezoelectric material. The over-bar denotes

an effective constant under plane-stress conditions. Assuming the mechanical strain in the piezoelectric is

due to bending only, Eq. (2.3) gives the following relationship for stress in the piezoelectric layer

Tp = Yp(Sp − d33Ep) = Yp

(
y∗
dθ

ds∗
+ d33

V

lp

)
. (2.4)

Using the expressions for Ts and Tp in Eq. (2.2), the moment in the composite beam becomes

m∗ = b

(∫ hs
2
−y0

−hs
2
−y0

Ysy
∗2 dθ
ds∗

dy∗ +

∫ hp+
hs
2
−y0

hs
2
−y0

Yp

(
y∗2

dθ

ds∗
+ y∗

d33V

lp

)
dy∗
)
, (2.5)
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m∗ = bYs
dθ

ds∗
y∗3

3

∣∣∣∣hs2 −y0

−hs
2
−y0

+ bYp
dθ

ds∗
y∗3

3

∣∣∣∣hp+hs
2
−y0

hs
2
−y0

+ bYp
d33V

lp

y∗2

2

∣∣∣∣hp+hs
2
−y0

hs
2
−y0

. (2.6)

Evaluating Eq. (2.6) results in an expression for bending moment

m∗ = Y I
dθ

ds∗
+ χV, (2.7)

where Y I is the flexural rigidity of the composite beam, including the component of substrate and piezo-

electric film, i.e.,

Y I = b

(
Ys

(
h3s
12

+ hsy
2
0

)
+ Yp

(
h3p
12

+ hp

(
hs + hp

2
− y0

)2
))

, (2.8)

and χ is the electromechanical coupling coefficient given by

χ =
bd33Yphp

lp

(
hs
2

+
hp
2
− y0

)
. (2.9)

2.2 Equilibrium Equations and Stability Analysis

The following non-dimensional parameters are defined:

(s, x, y, e, lQ) =
1

l

(
s∗, x∗, y∗, e∗, l∗Q

)
, σ =

χV l

Y I
,

(p0, q0, Q) =
l2

π2Y I
(p∗0, q

∗
0, Q

∗) , m =
m∗l
Y I

, ω =

√
µl4

π2Y I
ω∗,

(2.10)

where p∗0 and q∗0 are the axial and lateral reaction forces at the origin (s∗ = 0), ω∗ is the natural frequency,

and µ = ρsbhs + ρpbhp is the mass per unit length of the composite beam. The non-dimensional parameter

σ captures the effect of piezoelectric actuation.

Accounting for the presence of the body-fixed lateral load at s∗ = l∗Q, the equation for the moment at

any point on the beam is related to the axial and lateral load at the supports and the applied point load by

m∗ = −q∗0x∗ + p∗0y
∗ −Q∗(x∗ − x∗(s∗=l∗Q))H(s∗ − l∗Q), (2.11)
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where H is the Heaviside step function. Differentiating Eq. (2.11) with respect to s∗ and using non-

dimensional parameters, the spatial derivative of the moment is obtained

dm

ds
= π2

(
−q0

dx

ds
+ p0

dy

ds
−Qdx

ds
H(s− lQ)

)
, (2.12)

where the x and y position of the beam can be inferred from geometry as

dx

ds
= cos θ,

dy

ds
= sin θ. (2.13)

Substituting Eqs. (2.10) into Eq. (2.7), and Eqs. (2.13) into Eq. (2.12), the dimensionless equilibrium

equations (along with Eqs. (2.13)) are
dθ

ds
= m− σ, (2.14)

dm

ds
= π2 (−q0 cos θ + p0 sin θ −Q cos θH(s− lQ)) . (2.15)

Note that the electromechanical coupling term, σ, appears in the equilibrium equations in the same manner

as an initial imperfection. Critical snap-through loads, Qcr, are known to increase linearly with initial

imperfection for shallow arches [118], and are therefore expected to increase linearly with increasing σ, at

least for mildly post-buckled structures.

The boundary conditions of a clamped-clamped post-buckled beam at the origin are

x|s=0 = 0, y|s=0 = 0, θ|s=0 = 0. (2.16)

At the right end of the beam, the boundary conditions are

x|s=1 = 1− e, y|s=1 = 0, θ|s=1 = 0. (2.17)

Eqs. (2.13)–(2.15) are used to find the equilibrium positions of post-buckled beams with piezoelectric

film bonded to one surface. Stability is determined using a standard approach [119,120] that assumes small
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amplitude harmonic oscillations about a given equilibrium position, i.e.,

x(s, t) = xe + xd sinωt, y(s, t) = ye + yd sinωt,

θ(s, t) = θe + θd sinωt, m(s, t) = me +md sinωt,

p(s, t) = p0 + pd sinωt, q(s, t) = q0 + qd sinωt,

(2.18)

where subscripts e and d denote static and dynamic quantities and ω is the non-dimensional natural fre-

quency.

The non-dimensional partial differential equations for the axial and lateral reaction forces are [121]

∂p(s, t)

∂s
=
∂2x(s, t)

∂t2
,

∂q(s, t)

∂s
=
∂2y(s, t)

∂t2
. (2.19)

Substituting Eqs. (2.18) into Eqs. (2.13)–(2.15) and (2.19) gives

∂xe
∂s

+
∂xd
∂s

sinωt = cos(θe + θd sinωt),

∂ye
∂s

+
∂yd
∂s

sinωt = sin(θe + θd sinωt),

∂θe
∂s

+
∂θd
∂s

sinωt = me − σ +md sinωt,

∂me

∂s
+
∂md

∂s
sinωt = π2 [−(q0 + qd sinωt) cos(θe + θd sinωt)

+(p0 + pd sinωt) sin(θe + θd sinωt)−Q cos(θe + θd sinωt)H(s− lQ)] ,

∂pd
∂s

sinωt =
∂2

∂t2
(xd sinωt),

∂qd
∂s

sinωt =
∂2

∂t2
(yd sinωt).

(2.20)

Assuming small oscillations about equilibrium, second-order quantities can be neglected and Eqs. (2.20)

become

∂xd
∂s

= −θd sin θe,
∂yd
∂s

= θd cos θe,
∂θd
∂s

= md,

∂md

∂s
= π2 ((p0θd − qd) cos θe + (pd + q0θd) sin θe +Qθd sin θeH(s− lQ)) ,

∂pd
∂s

= −ω2xd,
∂qd
∂s

= −ω2yd.

(2.21)
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Upon solving Eqs. (2.21), stability is determined from the sign of ω2—positive values indicate that

the equilibrium position is stable while negative values denote instability. Consequently, the critical snap-

through loads correspond to cases where ω2 = 0.

2.3 Numerical Solution Method

To determine equilibrium positions and their stability, the beam is discretized into a specified number of

segments (100 segments are used here), and Eqs. (2.13)–(2.15) and (2.21) are solved using a Runge-Kutta

numerical integration scheme in conjunction with a shooting method. Newton’s Method is used to iteratively

adjust the shooting parameters until the right-end boundary values are met within a specified tolerance

(10−9 is used here). More information on the use of shooting methods to solve the elastica can be found in

Santillan [16]. The solution procedure consists of three parts that will be detailed presently.

2.3.1 Equilibrium Positions for Q = 0 and σ = 0

In the first part, the first four equilibria corresponding to Q = 0 and σ = 0 (see Fig. 2.3) are found

by specifying the end shortening parameter e, and performing the shooting method with a vector, α =

{m0, p0, q0}T , as the shooting parameters. The boundary values at s = 1, Eqs. (2.17), act as the vector-

valued objective functions.

symmetric shape

anti-symmetric shape

Figure 2.3. First four equilibrium shapes of an unloaded clamped-clamped post-buckled beam.
Solid lines indicate stable symmetric shapes, and dashed lines show the unstable anti-symmetric
shapes.
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Unknown variables in Eqs. (2.13)–(2.15) can be rewritten into a vector u = {x, y, θ,m, s}T . The

equilibrium equations are now

g(u) =
du

ds
, u = {x, y, θ,m, s}T . (2.22)

A new vector function, v, is defined as

v(s) =
∂u

∂αi
, (2.23)

where αi is an element of the vector α. The derivative of v with respect to s is

dv

ds
=

d

ds

(
∂u

∂α

)
=

∂

∂α

(
du

ds

)
=

∂

∂α
g(u) =

dg

du

∂u

∂α
=
dg

du
v. (2.24)

The new differential equations, including equilibrium equations and objective functions of shooting method,

are
du

ds
= g(u),

dv

ds
=
dg(u)

du
v. (2.25)

Combining u and v into the vector ū, Eqs. (2.25) becomes

dū

ds
=


g

dg
du

∂u
∂m0

dg
du

∂u
∂p0

dg
du

∂u
∂q0

 , ū =


u
∂u
∂m0
∂u
∂p0
∂u
∂q0

 , (2.26)

where the shooting parameters are m0, p0, and q0. For Q = 0 and σ = 0, each term of dū/ds in Eqs. (2.26)

is given by

g =



cos θ

sin θ

m

π2 (−q0 cos θ + p0 sin θ)

1


, (2.27)

dg

du

∂u

∂m0
=



− sin θ ∂θ
∂m0

cos θ ∂θ
∂m0

∂m
∂m0

π2 (q0 sin θ + p0 cos θ) ∂θ
∂m0

0


, (2.28)
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dg

du

∂u

∂p0
=



− sin θ ∂θ
∂p0

cos θ ∂θ
∂p0

∂m
∂p0

π2 (q0 sin θ + p0 cos θ) ∂θ
∂p0

+ π2 sin θ

0


, (2.29)

dg

du

∂u

∂q0
=



− sin θ ∂θ∂q0
cos θ ∂θ∂q0

∂m
∂q0

π2 (q0 sin θ + p0 cos θ) ∂θ
∂q0
− π2 cos θ

0


. (2.30)

The vector of objective functions, f(α), is now defined as the difference between the resulting values

from an iterated α and the right-end boundary value, i.e.

f(α) =


x(s,α)− (1− e)

y(s,α)

θ(s,α)


s=1

=


x(1,α)− (1− e)

y(1,α)

θ(1,α)

 . (2.31)

When the objective function f(α) = 0 at αk, the shooting parameters, αk, satisfy the exact right-end

boundary conditions. Here, a tolerance of ||f(αk)|| 6 10−9 is used. The vector-form of the Newton

iteration equation is given by

αk+1 = αk − J−1
αk
f(αk), Jαk

=

[
∂fj
∂αi

]
αk

, (2.32)

where the components of the Jacobian matrix are found from ∂u
∂αi

in Eqs. (2.26), i.e.,

Jαk
=


∂x
∂m0

∂x
∂p0

∂x
∂q0

∂y
∂m0

∂y
∂p0

∂y
∂q0

∂θ
∂m0

∂θ
∂p0

∂θ
∂q0


s=1

. (2.33)

Equilibria of the post-buckled beam for Q = 0 and σ = 0 can be determined by solving differential

equations Eqs. (2.26) using Runge-Kutta integration method with initial guess of ū0 = {0, 0, 0,m0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}T , and the Newton iteration equation, Eq. (2.32).
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2.3.2 Equilibrium Positions for Q 6= 0 and σ 6= 0

In the second part, equilibrium shapes are found across a range of external loads, Q, and electromechanical

coupling parameters, σ. The values of Q and σ are incremented gradually from zero in steps of 0.02. At

each value, initial guesses are also supplied for m0, p0, and q0. For each subsequent load step, the final

values of m0, p0, and q0 from the previous step are used as initial guesses.

For Q 6= 0 and σ 6= 0, each term of dū/ds in Eqs. (2.26) is modified to

g =



cos θ

sin θ

m− σ
π2 (−q0 cos θ + p0 sin θ −Q cos θH(s− lQ))

1


, (2.34)

dg

du

∂u

∂m0
=



− sin θ ∂θ
∂m0

cos θ ∂θ
∂m0

∂m
∂m0

π2 (q0 sin θ + p0 cos θ +Q sin θH(s− lQ)) ∂θ
∂m0

0


, (2.35)

dg

du

∂u

∂p0
=



− sin θ ∂θ
∂p0

cos θ ∂θ
∂p0

∂m
∂p0

π2 (q0 sin θ + p0 cos θ +Q sin θH(s− lQ)) ∂θ
∂p0

+ π2 sin θ

0


, (2.36)

dg

du

∂u

∂q0
=



− sin θ ∂θ∂q0
cos θ ∂θ∂q0

∂m
∂q0

π2 (q0 sin θ + p0 cos θ +Q sin θH(s− lQ)) ∂θ
∂q0
− π2 cos θ

0


. (2.37)

Equilibrium shapes for Q 6= 0 and σ 6= 0 are determined by solving Eqs. (2.26) with Eqs. (2.34)-(2.37),

and the Newton iteration equation, Eq. (2.32).

2.3.3 Stability Determination

In the third part, the stability of the identified equilibrium is determined by using the dynamic axial and lat-

eral loads, pd0 and qd0, and natural frequency squared, ω2, as shooting parameters, i.e.,α = {pd0, qd0, ω2}T .
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The shooting parameters are iterated until xd, yd, and θd are equal to zero at s = 1 within a tolerance of

10−9.

Variables in Eqs. (2.13)–(2.15) and (2.21) are rewritten into a vector u, and the equilibrium equations

for both static and dynamic quantities are

g(u) =
du

ds
, u = {xe, ye, θe,me, xd, yd, θd,md, pd, qd, s}T . (2.38)

Since the shooting parameters α all correspond to the dynamic system, ∂xe∂αi
, ∂xe∂αi

, ∂θe∂αi
, ∂me
∂αi

and ∂s
∂αi

are all

zero. The new vector function, v, is then defined as

v(s) =
∂û

∂αi
, û = {xd, yd, θd,md, pd, qd}T . (2.39)

Combining u and v, and using the shooting parameters pd0, qd0, and ω2, the new differential equations are

dū

ds
=


g

dg
dû

∂û
∂pd0

dg
dû

∂û
∂qd0

dg
dû

∂û
∂(ω2)

 , ū =


u
∂û
∂pd0
∂û
∂qd0
∂û
∂(ω2)

 . (2.40)

Each term of dū/ds in Eqs. (2.40) is given by

g =



cos θe

sin θe

me − σ
π2 (−q0 cos θe + p0 sin θe −Q cos θeH(s− lQ))

−θd sin θe

θd cos θe

md

π2 ((p0θd − qd) cos θe + (pd + q0θd) sin θe +Qθd sin θeH(s− lQ))

−ω2xd

−ω2yd

1



, (2.41)
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dg

dû

∂û

∂pd0
=



− sin θe
∂θd
∂pd0

cos θe
∂θd
∂pd0

∂md
∂pd0

π2
(

(q0 sin θe + p0 cos θe +Q sin θeH(s− lQ)) ∂θd
∂pd0

+ sin θe
∂pd
∂pd0
− cos θe

∂qd
∂pd0

)
−ω2 ∂xd

∂pd0

−ω2 ∂yd
∂pd0


,

(2.42)

dg

dû

∂û

∂qd0
=



− sin θe
∂θd
∂qd0

cos θe
∂θd
∂qd0

∂md
∂qd0

π2
(

(q0 sin θe + p0 cos θe +Q sin θeH(s− lQ)) ∂θd
∂qd0

+ sin θe
∂pd
∂qd0
− cos θe

∂qd
∂qd0

)
−ω2 ∂xd

∂qd0

−ω2 ∂yd
∂qd0


,

(2.43)

dg

dû

∂û

∂(ω2)
=



− sin θe
∂θd
∂(ω2)

cos θe
∂θd
∂(ω2)

∂md
∂(ω2)

π2
(

(q0 sin θe + p0 cos θe +Q sin θeH(s− lQ)) ∂θd
∂(ω2)

+ sin θe
∂pd
∂(ω2)

− cos θe
∂qd
∂(ω2)

)
−ω2 ∂xd

∂pd0
− xd

−ω2 ∂yd
∂pd0
− yd


.

(2.44)

The vector of objective functions, f(α), is now defined for dynamic quantities of the beam:

f(α) =


xd(1,α)

yd(1,α)

θd(1,α)

 . (2.45)

The Jacobian matrix for dynamic quantities can be found from ∂û
∂αi

in Eqs. (2.40), i.e.,

Jαk
=


∂xd
∂pd0

∂xd
∂qd0

∂xd
∂(ω2)

∂yd
∂pd0

∂yd
∂qd0

∂yd
∂(ω2)

∂θd
∂pd0

∂θd
∂qd0

∂θd
∂(ω2)


s=1

. (2.46)

28



The natural frequency squared can be iterated by solving Eqs. (2.40) with initial guess of ū0 = {0, 0, 0,m0, 0,

0, 0,md0, pd0, qd0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}T , and the Newton iteration equation Eq.

(2.32), where md0 is the dynamic moment at the left end, which is set to be 10−9.

2.4 Potential Energy of the Composite Beam

The potential energy (P∗) of the actuated beam is the sum of the energy stored in the composite (B∗) and the

negative work (W ) applied by the external force. Without external or dissipative forces, the energy stored in

the composite is the strain energy, Π, minus the internal electrical energy of the piezoelectric, (Wp) [116].

The strain energy is the elastic energy stored in the deformed structure. It is computed by integrating strain

energy density over the entire volume of the beam [122]. The strain energy density of the post-buckled

composite beam is given by

dΠ =
1

2
TSdU =

1

2
TsSpdUs +

1

2
TpSpdUp, (2.47)

where Sp = y∗ dθ
ds∗ is the bending strain in the composite, and Us and Up are volumes of the substrate and

the piezoelectric material, respectively. The total strain energy of the composite is

Π =

∫
U

dΠdU =
1

2

∫
Us

TsSpdUs +

∫
Up

TpSpdUp

 . (2.48)

Substituting stress Sp, Ts = Ysy
∗ dθ
ds∗ , and Eq. (2.4) into Eq. (2.48) leads to

Π =
Ysb

2

∫ l

0

∫ hs
2
−y0

−hs
2
−y0

(
y∗
dθ

ds∗

)2

dy∗ds∗

+
Ypb

2

∫ l

0

∫ hs
2
+hp−y0

hs
2
−y0

y∗
dθ

ds∗

(
y∗
dθ

ds∗
+
d33V

lp

)
dy∗ds∗,

(2.49)

Π =
bYs
2

∫ l

0

∫ hs
2
−y0

−hs
2
−y0

y∗2
(
dθ

ds∗

)2

dy∗ds∗

+
bYp
2

∫ l

0

∫ hs
2
+hp−y0

hs
2
−y0

(
y∗2
(
dθ

ds∗

)2

+
d33V

lp
y∗
dθ

ds∗

)
dy∗ds∗.

(2.50)
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Evaluating Eq. (2.50), three separate terms are obtained

A1 =
bYs
2

∫ l

0

∫ hs
2
−y0

−hs
2
−y0

y∗2
(
dθ

ds∗

)2

dy∗ds∗

=
bYs
2

(
h3s
12

+ hsy
2
0

)∫ l

0

(
dθ

ds∗

)2

ds∗,

(2.51)

B1 =
bYp
2

∫ l

0

∫ hs
2
+hp−y0

hs
2
−y0

y∗2
(
dθ

ds∗

)2

dy∗ds∗

=
bYp
2

(
h3p
12

+ hp

(
hs + hp

2
− y0

)2
)∫ l

0

(
dθ

ds∗

)2

ds∗,

(2.52)

B2 =
bYp
2

∫ l

0

∫ hs
2
+hp−y0

hs
2
−y0

d33V

lp
y∗
dθ

ds∗
dy∗ds∗

=
bYpd33hp(hs + hp − 2y0)

4lp

∫ l

0
V
dθ

ds∗
ds∗.

(2.53)

Converting Eq. (2.7) to dθ/ds∗ = m∗/Y I − χV/Y I and substituting it and Eqs. (2.8) and (2.9) into Eqs.

(2.51)–(2.53) gives

A1 +B1 =
1

2
Y I

∫ l

0

(
m∗

Y I
− χV

Y I

)2

ds∗ =
1

2Y I

∫ l

0
(m∗ − χV )2ds∗,

B2 =
1

2
χ

∫ l

0
V

(
m∗

Y I
− χV

Y I

)
ds∗ =

1

2Y I

∫ l

0
(m∗χV − χ2V 2)ds∗.

(2.54)

The strain energy of the composite can then be simplified to

Π = A1 +B1 +B2

=
1

2Y I

∫ l

0
(m∗ − χV )2ds∗ +

1

2Y I

∫ l

0
(m∗χV − χ2V 2)ds∗

=
1

2Y I

∫ l

0
(m∗2 −m∗χV )ds∗.

(2.55)

The internal electrical energy of the piezoelectric is given by [116]

Wp =
1

2

∫
Up

EpDpdUp, (2.56)
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which from Eq. (2.3) can be written as

Wp =
1

2

∫
Up

V

lp

(
−Ypd33y∗

dθ

ds∗
+ ε̄S33

V

lp

)
dUp, (2.57)

Wp =
b

2

∫ l

0

∫ hs
2
+hp−y0

hs
2
−y0

V

lp

(
−Ypd33y∗

dθ

ds∗
+ ε̄S33

V

lp

)
dy∗ds∗. (2.58)

Evaluating Eq. (2.58), leads to Wp = −B2 + C1, where C1 given by

C1 =
b

2

∫ l

0

∫ hs
2
+hp−y0

hs
2
−y0

(
ε̄S33

V 2

l2p

)
dy∗ds∗ =

bhpε̄
S
33

2l2p

∫ l

0
V 2ds∗. (2.59)

The internal electrical energy is then simplified to

Wp = −B2 + C1 =
1

2

∫ l

0

(
−χV
Y I

(m∗ − χV ) + ψV 2

)
ds∗, (2.60)

where ψ is an energy coefficient due to electromechanical coupling, defined as

ψ =
bhpε̄

S
33

l2p
. (2.61)

The energy stored in the composite is therefore

B∗ = Π−Wp =
1

2

∫ l

0

(
m∗2

Y I
−
(
ψ +

χ2

Y I

)
V 2

)
ds∗. (2.62)

Eq. (2.62) gives energy when the piezoelectric material is active. For the unactuated case, the energy,

B∗, simplifies to the strain energy in the composite:

B∗ = Π =
1

2

∫ l

0

m∗2

Y I
ds∗. (2.63)

If the thickness of the piezoelectric film is assumed to be zero, the flexural rigidity simplifies to the flexural

rigidity of the substrate, i.e., YsI = Ysbh
3
s/12.

Applying an external mechanical force to the beam, the total potential energy is

P∗ = B∗ −W =
1

2

∫ l

0

(
m∗2

Y I
−
(
ψ +

χ2

Y I

)
V 2

)
ds∗ −Q∗∆y∗, (2.64)
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where ∆y∗ is the deflection at the point of loading. Using non-dimensional parameters m, s, σ, Q and ∆y,

Eq. (2.64) can be converted to a dimensionless quantity:

P∗ =
1

2

∫ l

0

(
Y Im2

l2
−
(
ψ +

χ2

Y I

)
Y I2σ2

χ2l2

)
d(ls)− π2Y I

l2
Ql∆y

=
Y I

2l

∫ 1

0

(
m2 −

(
Y Iψ

χ2
+ 1

)
σ2
)
ds− π2Y I

l
Q∆y,

(2.65)

P =
lP∗

Y I
=

1

2

∫ 1

0

(
m2 −

(
Y Iψ

χ2
+ 1

)
σ2
)
ds− π2Q∆y. (2.66)

For unloaded cases, the potential energy simplifies to the energy stored in the composite, P = B, where

B = lB∗/Y I .

2.5 Conclusions

The elastica model of a clamped-clamped beam is extended to account for the effects of piezoelectric

actuation. The model can be exercised across a large configuration space to uncover the topologies and

actuation strategies that change structural stability most profoundly. The model development begins with

the bending moment of the composite beam, and finds the non-dimensional equilibrium equations. Static

equilibria and their stability are computed using a Runge-Kutta numerical integration and a shooting method.

The potential energy of the composite is derived to provide another means of assessing the stability of the

system.
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Chapter 3

Changing the Critical Snap-Through Loads

of Post-buckled Beams

3.1 Overview and Theory

This chapter studies the extent to which the strategic placement and actuation of piezoelectric materials

bonded to clamped-clamped post-buckled beams can influence the loads at which snap-through occurs. The

electromechanical system is modeled using elastica theory with an extension to account for the influence

of piezoelectric actuation. The results indicate that the effect of piezoelectric actuation on critical snap-

through load depends on the degree to which the beam is buckled, the location of the external load, the

placement of the piezoelectric material, and the applied actuation voltage. Experiments are performed to

validate the numerical results and provide a physical demonstration of changing snap-through loads with

piezoelectric actuation. Experimental results demonstrate that critical snap-through loads can be altered by

factors ranging from 0.4 to 2.0, and numerical results indicate that even larger changes to snap-through loads

are physically realizable.

An inextensible beam is assumed to be post-buckled and clamped both ends, as shown in Fig 3.1.

Piezoelectric material is assumed to cover the top surface of the beam across its entire span. The voltage,

V , is applied to the piezoelectric patch. The actuation patch length is variable. The actuation region (patch

span) is specified with the parameters, sp1 and sp2, which denote the percent of span between s = 0 and

the beginning of the actuated region, and between s = 1 and the end of the actuated region, respectively.
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The non-dimensional parameter σ captures the effect of piezoelectric actuation, which is proportional to the

voltage on the beam.

V

Q

lQ

Figure 3.1. Schematic of a clamped-clamped post-buckled beam bonded with one piezoelectric
patch on its top surface.

Equilibrium shapes and stability are calculated for various values of Q and σ using the model presented

in Chapter 2; however, it is helpful to evaluate some practical limits on the value of σ to determine what

values might be realistically achievable. The definition of σ is given as part of Eqs. (2.10). It can be evaluated

with knowledge of the thicknesses and Young’s modulli of the subratrate and piezoelectric material along

with knowledge of d33, V , lp. For the P1-type (elongating) MFC, d33 = 460 pm/V, Yp = 30.34 GPa,

hp = 0.3 mm, lp = 0.45 mm, and the maximum/minimum actuation voltages are 1500/-500 volts [123].

Fig. 3.2 shows the value of σ/l versus the substrate thickness, hs, assuming a steel substrate (Ys = 200

GPa). This assumes the piezoelectric material is bonded to the top of the beam and actuated with 1500 and

-500 volts.

0 0.1 0.2 0.3 0.4

−2

0

2

4

6

hs (mm)

σ
/l

(m
−
1
)

V = +1500
V = −500

Figure 3.2. Value of σ/l versus the thickness of the substrate, hs for the steel substrate.
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In the subsequent results, the values of σ are limited to a range of −0.8 to 2. This is consistent with

beams with a steel substrate, and where hs ≈ 0.25 mm and l ≈ 0.6 m. The piezoelectric material is assumed

to cover the entire beam, but only a portion is actuated. In practice, this can be achieved by bonding several

patches of piezoelectric material to the entire beam, but actuating only some of the patches.

3.2 Load-Deflection Curves and Stability Analysis

Load-deflection curves and their corresponding natural frequency maps are shown in Figs. 3.3-3.5 for three

end shortening values (e = 0.01, 0.05, 0.10). For each value of end shortening, σ = 0 and σ = 2 cases are

considered. Deflection is shown in terms of the non-dimensional mid-point deflection, δ, normalized by the

mid-point deflection, δ0, when Q = 0. For the three values of e, these normalization constants are found

to be δ0 = 0.0635, 0.1401, and 0.1949. In each case, the load is located at the mid-point (lQ = 0.5) and

piezoelectric material from 25% to 75% of span is assumed to be actuated.
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Figure 3.3. (a) Normalized mid-point deflection, δ/δ0, and (b) non-dimensional natural frequency
squared, ω2, versus non-dimensional load, Q, for e = 0.01, σ = 0 (black) and σ = 2 (red). Stable
(unstable) paths are indicated with solid (dashed) lines.

In each case, the load-deflection curves show an increase in critical snap-through load when the piezo-

electric material is actuated. In fact, the difference between the non-dimensional critical snap-through loads

with and without actuation is the same for all three values of end shortening (i.e., Qcr(σ = 2) − Qcr(σ =
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Figure 3.4. (a) Normalized mid-point deflection, δ/δ0, and (b) non-dimensional natural frequency
squared, ω2, versus non-dimensional load, Q, for e = 0.05, σ = 0 (black) and σ = 2 (red). Stable
(unstable) paths are indicated with solid (dashed) lines.

0) = 1.24). However, since critical load increases with increasing end shortening, the percentage increase in

critical load under actuation decreases as end shortening increases. Similarly, the effect of actuation on the

mid-point position at snap-through diminishes with increases to end shortening. When e = 0.01, the nor-

malized mid-point position at snap-through is 0.89 with actuation and 0.98 without (in Fig. 3.3(a)). When

e = 0.10, this difference is significantly reduced, and the normalized mid-point position at snap-through are

0.95 and 0.97 with and without actuation (in Figs. 3.5(a)).

The natural frequency maps in Figs. 3.3(b)-3.5(b) show that, under actuation, the curves representing

natural frequency shift to the right (i.e., toward higher values of Q). A consequence of this shift is that upon

unloading, the load at which the snap-back occurs is higher than it might otherwise be. In other words,

the region of hysteresis has roughly the same area regardless of whether actuation is used. The implication

here is that under dynamic loading, the effect of a constantly applied voltage may not appreciably change

the forcing amplitudes and frequencies at which the system exhibits persistent snap-through. One possible

strategy for expanding the hysteresis region (and thus raise the boundary of persistent snap-through) would

be to apply a voltage in the structure’s original configuration and then reverse it in the structure’s snapped

configuration. Investigating the effectiveness of this strategy is a subject for future work.
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Figure 3.5. (a) Normalized mid-point deflection, δ/δ0, and (b) non-dimensional natural frequency
squared, ω2, versus non-dimensional load, Q, for e = 0.10, σ = 0 (black) and σ = 2 (red). Stable
(unstable) paths are indicated with solid (dashed) lines.

3.3 Parameter Study of Changing Critical Loads

3.3.1 Effects of End Shortening and Actuation Voltage

The influence of end shortening and actuation voltage on critical snap-through load are studied for the case

in which the external load is positioned at the beam mid-point (lQ = 0.5) and the piezoelectric material is

actuated from 25% to 75% of span. Fig. 3.6 shows the non-dimensional critical snap-through load versus

the non-dimensional electromechanical coupling parameter for various values of end shortening. Consistent

with the fact that the electromechanical coupling parameter manifests in the equilibrium equations in a

manner akin to an initial imperfection, the results indicate a linear relationship between critical load and

electromechanical coupling. As suggested by the load-deflection results in Fig. 3.3-3.5, the slopes of lines

in Fig. 3.6 are equivalent.

Fig. 3.7 shows how critical snap-through loads and the corresponding mid-point deflection at snap-

through vary with end shortening. In Fig. 3.7 (a), the critical load factor (Qcr(σ)/Qcr(0)) is computed

across a range of e values. The results indicate that, relative to the unactuated case, actuation is most
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Figure 3.6. Theoretical critical snap-through loads,Qcr, versus electromechanical coupling param-
eter, σ, with lQ = 0.5 and different end shortenings. The piezoelectric material is actuated from
25% to 75% of span.
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Figure 3.7. (a) Theoretical critical snap-through load factor versus non-dimensional end shorten-
ing, e, with electromechanical coupling parameter, σ = −0.8 and σ = 2. (b) Mid-point deflection
at critical snap-through load versus non-dimensional end shortening, e, with σ = −0.8, σ = 0, and
σ = 2. The piezoelectric material is actuated from 25% to 75% of span and the load is located at
the mid-point (lQ = 0.5).

effective in changing critical loads for low values of end shortening. For e > 0.10, actuation is relatively

ineffective. Similarly, actuation does little to influence the mid-point position at snap-through when e is

large. However, for small values of e, the difference between the mid-point positions at snap-through in the

actuated and unactuated cases is considerable. This trend was also observed in load-deflection curves.
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3.3.2 Effects of Load Location

In this part of the parameter study, the end shortening, the electromechanical coupling parameter, and the

region of actuation are held fixed while the location of the point load are varied. The piezoelectric material

is again assumed to cover the entire top surface of the beam, but only a portion of the material is actuated. In

general, the actuated region can be discontinuous and a different voltages applied to each patch; however, in

the present study, attention is restricted to continuous actuation regions with a constant applied voltage. In

an early study using MFC to induce snap-through in post-buckled beams, Cazottes et al. found that actuator

position had a strong influence on the actuation voltages required to achieve snap-through [62].

Fixing the end shortening at e = 0.05, and varying σ, the non-dimensional critical snap-through loads

and their corresponding factor (Qcr(σ)/Qcr(0)) are shown versus load location in Fig. 3.8. Results are

shown for three different actuation regions: sp1 = 20%, sp2 = 40%; sp1 = sp2 = 25%; and sp1 = 50%,

sp2 = 20%. Four different values of σ ranging from -0.8 to 2.0 are considered. For the unactuated (σ = 0)

case, the critical loads are independent of the actuation region, and the curve has a local maximum when the

external load is applied at the mid-point [124].

Considering the case in which the actuation region is symmetric about the center of the beam (Fig. 3.8

(c) and (d)), it is observed that the critical snap-through load curves are symmetric about lQ = 0.5. Here,

actuation shifts these curves vertically, with positive values of σ increasing snap-through loads and negative

values decreasing them. Comparing actuated snap-through loads relative to the unactuated snap-through

loads in Fig. 3.8 (d) it is observed that actuation is more effective at changing critical loads when the

external force is applied away from the mid-point.

The situation is more complicated when the actuation region is not symmetric about the center of the

beam. Fig. 3.8 (a) and (b) correspond to the case in which the actuation is from 20% to 60% of span. Here,

positive values of σ have the effect of shifting the local maximum toward lower values of lQ and increasing

snap-through loads when lQ is less than about 0.45. A negative value of σ has the converse effect. When

lQ > 0.6 (i.e., the load is located beyond the actuation region), actuation has only a small effect on critical

load. In Fig. 3.8 (b), the maximum critical load factors occur at the same values of lQ as the local maxima in

Fig. 3.8 (a). For large positive values of σ, snap through loads can be increased by factors greater than two

while negative values of σ can result critical load factors as low as 0.5. As lQ increases beyond the values
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Figure 3.8. Theoretical critical snap-through loads and load factors versus non-dimensional load
placement, lQ, with the end shortening e = 0.05. The piezoelectric material is actuated from: (a)
and (b) 20% to 60% of span, (c) and (d) 25% to 75% of span, (e) and (f) 50% to 80% of span.
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corresponding to the local maxima in the critical snap-through load curves, critical load factors decrease

sharply for positive values of σ and increase sharply for negative σ values. This indicates that piezoelectric

actuation suddenly loses efficacy for load placements just beyond the values corresponding to the local

maxima in the critical load curves.

In Fig. 3.8 (e) and (f), the actuation region is from 50% to 80% of span. Positive values of σ have the

effect of shifting the local maximum toward higher values of lQ and increasing snap-through loads when

lQ is greater than about 0.6. Negative values of σ shift the local maximum toward lower values of lQ. For

lQ < 0.4, positive values of σ have the effect of decreasing critical snap-through loads while negative values

increase them. In contrast to the previous case, piezoelectric actuation is now most effective for lQ values

above the values corresponding to the local maxima in the critical load curves.

3.3.3 Effects of Actuation Region

Now consider the case of a variable actuation region that is centered at the beam mid-point (i.e., sp1 =

sp2) with lQ = 0.5 and e = 0.05. Critical snap-through loads and the normalized mid-point deflection at

snap-through are shown in Fig. 3.9. Results in Fig. 3.9 (a) show that, for centered actuation regions with

lQ = 0.5, actuation is most effective in changing critical load when the actuation region is from 25% to

75% of span. Note that when the actuation region covers the entire span, the actuation effects cancel and

there is no change in critical snap-through loads. In Fig. 3.9 (b), it is observed that when σ is positive

and the actuation region is from 25% to 75% of span, the beam mid-point deflections at snap-through are

considerably higher than in the case of an unactuated beam; however, for negative values of σ, the mid-

point of the actuated beam deflects very little at snap-through. This suggests a link between critical load

factor and mid-point deflection at snap-through. Higher critical load factors correspond to large deflections

at snap-through, and vice versa.

Surface plots of critical load factors across the range of all possible actuation regions are shown in Fig.

3.10 for e = 0.05 and σ = 1. Results correspond to six different placements of the external load in the range

of 0.2 6 lQ 6 0.5. Attention is restricted to cases where lQ < 0.5 because results for lQ > 0.5 mirror those

for lQ < 0.5. The bounds of the actuation regions are defined in terms of the span percentages sp1 and sp2,

which are constrained to obey sp1 + sp2 6 100%. This places all possible actuation regions in a triangular

41



0 20 40 60 80 100
2.5

3

3.5

4

4.5

Percent of Span Actuated

Qcr

σ = 2

σ = 1

σ = −0.5

(a)

0 20 40 60 80 100

0.94

0.95

0.96

0.97

0.98

0.99

Percent of Span Actuated

δ
δ0

σ = 2

σ = 1

σ = −0.5

(b)

Figure 3.9. (a) Theoretical critical snap-through load and (b) normalized theoretical mid-point
deflection versus the percent of span actuated. In all cases, the actuated region is assumed to be
centered on the beam, and e = 0.05.

area where the (0%, 0%) vertex and the sp1 = 100% − sp2 line correspond to an unactuated beam. The

(100%, 0%) and (0%, 100%) vertices correspond to an actuation region spanning the entire beam.

The subplots in Fig. 3.10 show that changes to snap-through load due to piezoelectric actuation are

sensitive to both actuation region and load placement, especially as lQ approaches 0.5. As the external load

moves from lQ = 0.4 to lQ = 0.5, the area centered near sp1 = 20%, sp2 = 60% undergoes a transition

where actuation regions in this area go from strongly increasing critical load to strongly decreasing it. Inter-

estingly, the area centered near sp1 = 60%, sp2 = 20% does not undergo a similar transition, with actuation

regions in this area decreasing critical snap-through loads regardless of load placement. Consequently, at

lQ = 0.5, only a small subset of possible actuation regions can increase critical load.

3.3.4 Accounting for Actuator Weight

It is observed that piezoelectric actuation can increase critical snap-through loads by a factor of two or

more. Since the piezoelectric material adds weight, it is reasonable to question whether similar increases in

snap-through load can be achieved by simply thickening the substrate such that it has the same mass as the

piezoelectrically actuated beam. The answer to this question is configuration specific; yet, some insight can
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Figure 3.10. Theoretical critical snap-through load factors across the range of possible piezoelec-
tric patch spans, sp1 and sp2. The beam is loaded at (a) lQ = 0.2, (b) lQ = 0.4, (c) lQ = 0.46, (d)
lQ = 0.48, (e) lQ = 0.49 and (f) lQ = 0.50.
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be gained by considering the case of MFC bonded to common substrate materials and actuated in a typical

manner.

First, it is recognized that a substrate-only beam will have the same mass as a beam with piezoelectric

material covering one side when its thickness is heq = hs + hpρp/ρs. The corresponding flexural rigidity

will be Y Ieq = Ysbh
3
eq/12. Critical snap-through load is proportional to flexural rigidity, so the ratio of

the flexural rigidity of the substrate-only equivalent mass beam to that of the unimorph beam (i.e., Γeq =

Y Ieq/Y I) is the critical snap-through load factor between the two cases. If this factor is higher than the

critical load factor corresponding to actuation (denoted Γp), than it would likely be more practical to increase

snap-through loads by employing a substrate-only equivalent mass beam.
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Figure 3.11. Ratio of actuated and mass-equivalent critical load factors for common substrate
materials. Here, e = 0.01, V = 1500 volts, l = 1 m, and the actuation region is from 25% to 75%
of span.

Fig. 3.11 shows the ratio of Γp to Γeq for some common substrate materials. These curves assume that

MFC (Yp = 30.34 GPa, ρp = 5440 kg/m3, hp = 0.3 mm) is bonded to one side of the beam across its entire

span, and the MFC and the substrate are assumed to have the same width. The actuated critical load factor

is taken to be Γp = 0.5σ + 1, which corresponds to the e = 0.01 line shown in Fig. 3.6 where the actuation

region is from 25% to 75% of span. The electromechanical coupling parameter, σ, is calculated using Eqs.

(2.8), (2.9), and (2.10) with V = 1500 volts and l = 1 m. Curves for steel (Ys = 200 GPa, ρs = 7700

kg/m3), aluminum (Ys = 70 GPa, ρs = 2700 kg/m3), carbon fiber/epoxy composite (Ys = 100 GPa, ρs =

1800 kg/m3), and acrylic (Ys = 3 GPa, ρs = 1190 kg/m3) substrates are shown versus substrate thickness

in the actuated beam, where the thickness is normalized by the MFC thickness.
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Critical load ratios less than one suggest that increases in critical load due to piezoelectric actuation

likely do not justify the additional weight of the MFC, while ratios greater than one indicate that employing

piezoelectric actuation is a weight-saving strategy for increasing snap-through loads. Fig. 3.11 indicates that

(at least in the assumed configuration) piezoelectric actuation is a weight-efficient approach to increasing

snap-through loads for steel (if hs < 2hp), but not for aluminum, carbon fiber and acrylic substrates.

However, this analysis assumes that the piezoelectric material covers the entire span. Since the largest

increases in snap-through load occur when the actuation region covers only a portion of the span, it is

likely that in practical applications, only a portion of a span will be covered with piezoelectric material,

thus reducing the weight penalty associated with actuation. It is also noted that minimizing weight is not

always the singular design objective. In some applications, embedded piezoelectric material can offer energy

harvesting and/or health monitoring functionality while also providing a means to control structural stability.

3.4 Experimental Validation

3.4.1 Experimental Setup

To validate the theoretical results and physically demonstrate the ability to change snap-through load with

piezoelectric actuation, an experiment is devised. The experimental set up is shown in Fig. 3.12. The test

article is a 46 cm by 2 cm by 0.25 mm strip of spring steel (ρs = 7700 kg/m3, Ys = 200 GPa). Clamped-

clamped post-buckled beams with end shortenings of e = 0.01, 0.04, and 0.10 are tested. Two patches of

P1-type MFC (ρp = 5440 kg/m3, Yp = 30.34 GPa, d33 = 460 pm/V, and lp = 0.45 mm [123]), each with

active dimensions of 8.5 cm by 1.4 cm by 0.3 mm are placed end-to-end and bonded to top of the beam with

epoxy. The MFC therefore covers roughly 50% of the beam’s span.

Since the MFC partially covers the beam, an effective flexural rigidity of the composite beam is obtained

for use when non-dimensionalizing critical load (in lieu of Eq. (2.8)). The effective flexural rigidity is

calculated using

Y Ieff = a1Y I + a2Y Is, (3.1)
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(a) (b)

Figure 3.12. (a) Experimental photo, and (b) schematic of the experimental setup with two MFC
patches placed end-to-end at center span, covering roughly the center 50% of the beam.

where a1 is the fraction of span with piezoelectric material, and a2 is the fraction without. The flexural

rigidity of the substrate is given by Y Is = Ysbh
3
s/12. The effective flexural rigidity and other physical

parameters of each tested configuration are shown in Table 3.1.

Table 3.1. Test parameters.

e = 0.01 e = 0.05 e = 0.10

Length l (cm) 37.20 38.74 41.00

Patch covering span a1 0.50 0.48 0.45

Effective flexural rigidity (Nm−2) 0.0109 0.0106 0.0102

σ with V = 1200 V 1.74 1.85 2.03

Force control is achieved by fixing a string to the beam near center span and routing it over a pulley.

A container to which small masses are added is attached to the other end of the string and allowed to hang

under gravity. Mass is added in 10-30 gram increments until snap-through occurs.

A custom image correlation procedure identifies the edge of the beam from a photograph and digitizes

its position. Fig. 3.13 depicts the key steps in the image correlation process for the case of an unloaded

and unactuated buckled beam. First, a digital camera is set up to focus on the edge of the beam and high-

resolution photographs are obtained after each increment of mass is added (Fig. 3.13(a)). The resulting
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Figure 3.13. Image correlation process of an initially unloaded and unactuated beam for e = 0.01.
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Figure 3.14. Theoretical (line) and experimental (marker) shapes of the unloaded beam for e =
0.01. (a) Beam unloaded and unactuated, (b) unactuated beam just prior to snap-through, (c) beam
unloaded and actuated with 1200 volts, and (d) actuated beam just prior to snap-through.

true-color images are then converted to gray-scale intensity images (Fig. 3.13(b)) and an intensity threshold

is used to convert the intensity images to black and white binary images (Fig. 3.13(c)). A Canny edge
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detector algorithm native to Matlab [125–127] then operates on the binary images to extract the edges of

the black portions of the images. The Canny edge detector uses a multi-stage algorithm to detect a wide

range of edges in images. As can be seen from Fig. 3.13(d), not all of the resulting edge data correspond

to the beam itself. For instance, the beam supports, the actuator leads, and the string used for loading the

beam are all clearly visible. These extraneous edge points are neglected by applying a set of rules that

disallow any data found within a set of user-defined regions. Further, since the beam was photographed at a

slightly oblique angle, some of the edge data corresponds to the back edge of the beam. This edge data was

also ignored and the remaining data result in a digitized beam shape consisting of roughly 3500 points (Fig

3.13(e)). However, the shape of the curve remains somewhat noisy with artifacts from the edge detection

algorithm. To smooth the shape, a 50 point moving average is applied and the final digitized beam shape

is shown in Fig. 3.13(f). Fig. 3.14 (a) and (b) show image-processed experimental shapes of the unloaded

beam, compared with theoretical ones, for the unactuated and actuated 1200 volt cases. Fig. 3.14 (c) and

(d) show the corresponding shapes just prior to snap-through.

3.4.2 Theoretical and Experimental Data Comparison

Fig. 3.15 (a)–(c) show load-deflection curves for both unactuated (V = 0) and actuated (V = 1200 volts)

cases across three end shortening values, e = 0.01, 0.05, and 0.10. For each value of end shortening, data

are shown from three experimental trials. Since the lengths of the three beams are somewhat different, the

values of the electromechanical coupling parameter used to generate the theoretical curves are specified to

correspond to the given configuration under test, as shown in Table 3.1. The experimental beam shapes

obtained via image correlation are numerically integrated to find the beam’s mid-point. The corresponding

normalized mid-point deflections are shown as the experimental results in Fig. 3.15 (a)–(c). In Fig. 3.15

(d), theoretical and experimental snap-through loads are plotted against voltage.

Across all experimental trials, mid-point deflections in the actuated and unactuated cases correlate well.

The absolute percent differences between the theoretical and experimental snap-through loads are tabulated

in Table 3.2. Unactuated snap-through loads are predicted within 5%, while the actuated snap-through loads

agree even more closely with the theory.

Theoretical and experimental critical snap-through load factors (Qcr(σ)/Qcr(0)) are shown in Fig. 3.16

versus load location. Here, e = 0.01, σ = 1.17 and −0.58 (V = 800 and −400 volts), and the actuation
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Figure 3.15. Normalized mid-point deflection versus non-dimensional load for unactuated (black)
and actuated with 1200 volts (red) cases with three trials of experimental data (markers). (a)
e = 0.01, σ = 0 and σ = 1.74, (b) e = 0.05, σ = 0, and σ = 1.85, and (c) e = 0.10, σ = 0,
and σ = 2.03. (d) Theoretical critical snap-through loads and experimental data versus voltage for
e = 0.01, 0.05, and 0.10.

Table 3.2. Average percent error of the experimental and theoretical critical snap-through loads.

e = 0.01 e = 0.05 e = 0.10

Unactuated 3.07% 2.48% 4.69%

Actuated 1.16% 2.01% 2.91%

region is from 15% to 65% of span (sp1 = 15%; sp2 = 35%). The clamped-clamped beam for the case

of e = 0.01 in the first test is shifted to configure the actuation region of 15%–65% on the beam. The
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Figure 3.16. Theoretical and experimental critical snap-through load factors versus non-
dimensional load location, lQ, for e = 0.01 and σ = 1.17 and −0.58. Piezoelectric material is
actuated from 15% to 65% of span.

experimental results confirm the theoretical behavior first observed in Fig. 3.8. Namely, sharp transitions

in critical load factor occur when the load placement is near the center of the actuation region. The experi-

mental data for σ = 1.17 confirms that when the external load is at roughly 45% of span, actuation doubles

the critical snap-through load. However, after moving the external load to 50% of span, actuation decreases

critical load by a factor of 0.75. Across all tested load locations, the average absolute percent difference

between the theoretical and experimental results is 2.41% for σ = 1.17 and 6.64% for σ = −0.58.

3.5 Conclusions

The model presented in Chapter 2 is solved for the case of a point-loaded clamped-clamped beam. The

model is cast in non-dimensional terms to enable a general study of the effects piezoelectric actuation on

critical snap-through loads. Results are obtained across a large range of end shortenings and load locations.

A range of possible actuation regions and actuation voltages are also considered. Experimental trials in-

volving beams with different values of end shortening, different actuation regions, and voltages validate the

numerical results across a large parameter space.
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The model indicates that the effects of piezoelectric actuation manifest as an electromechanical cou-

pling term, σ, that appears in the equilibrium equations in the same manner as an initial imperfection.

Consequently, critical snap-through loads are found to increase linearly with increasing values of σ. Over-

all, actuation is found to affect critical loads most strongly at small values of end shortening. Critical

snap-through loads are also found to exhibit a complicated interplay between the actuation region and the

location of the external load, particularly as the load approaches mid-span.

It is expected that the results of this chapter can be used to design structures which have enhanced

stability to overcome complex loading environments. One possibility would be to embed piezoelectric

actuators into advanced composite materials to enhance their stability as needed. When not actuated, the

piezoelectric elements could be used as health monitoring sensors or energy harvesters. These intelligent

actuators/sensors could find applications in, for example, aircraft fuselages and in the hulls of ships and

submarines.
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Chapter 4

Stable Transitions between Remote

Equilibria of Post-Buckled Beams

4.1 Overview

This chapter considers the extent to which a clamped-clamped post-buckled beam bonded to two elongating

piezoelectric actuators can be made to stably transition between remote equilibria. The elastica model is

used with an extension to account for the influence of piezoelectric actuator on the structure. It expresses

this piezoelectric coupling effect in terms of a non-dimensional parameter, σ, that can be easily calculated

for candidate substrate/actuator configurations. The threshold values of σ required to execute stable tran-

sitions under different actuation and loading situations are presented, and stable transition paths are found

to exhibit a strong dependence on external load, load location, actuation region and actuation voltage. The

lowest threshold values of σ occur when the beam is actuated from approximately 15 to 85 percent of its

span. Experiments validate the numerical results and offer the first physical demonstrations of the use of

piezoelectric actuators to achieve stable transitions between remote equilibria.

Consider an inextensible post-buckled beam that is clamped on both ends, as shown in Fig 4.1. Piezo-

electric patches are assumed to cover the entire beam. Two different voltages, V1 and V2, are applied to two

separate, but identical, piezoelectric patches. The patch length is variable, with one end of each patch at

mid-span. The patch span is specified with the parameters, sp1 and sp3, which denote the percent of span

between s = 0 and the beginning and the end of the actuated region. The corresponding non-dimensional
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parameter σ1 is proportional to the voltage (V1) applied to the first piezoelectric patch, which is assumed to

be actuated from sp1 to 50% of span. Similarly, σ2 corresponds to the second patch, which is activated from

50% to sp3 of span.

V1 V2

Q
lQ

Figure 4.1. Schematic of a clamped-clamped post-buckled beam bonded with two piezoelectric
patches on its top surface.

Parameter studies determining the threshold values of σ required to execute stable transitions under

different actuation and loading situations are shown in the following sections. It is first helpful to evaluate

the practical limits on the value of σ. (More details can be found in Chapter 3.) Fig. 4.2 shows the value

of σ/l for some common substrates. Curves for steel (Ys = 200 GPa), carbon fiber composite (Ys = 100

GPa), aluminum (Ys = 70 GPa), and acrylic (Ys = 3 GPa) are shown versus the substrate thickness, hs.

This assumes the piezoelectric film is placed on the top side of the substrate and actuated with a positive

voltage. Corresponding negative values of σ can be achieved by bonding the material to the bottom of the

beam and actuating it with the same positive voltage. For this study, the values of σ are limited to a range of

−2.5 to 2.5. This is a representative range for the case of a steel beam with hs ≈ hp and l ≈ 0.7 m.
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Figure 4.2. Value of σ/l versus the thickness of the substrate, hs.
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4.2 Load-Deflection-Angle Curves

Fig. 4.3 shows load-deflection-angle curves and corresponding dimensionless natural frequency squared

for a mid-point load (lQ = 0.5) and an end shortening of e = 0.02. Here, the mid-point deflection, δ, is

normalized by δ0 which is the mid-point deflection in the unloaded (Q = 0) and unactuated (σ = 0) case.
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Figure 4.3. Non-dimensional load, Q, and non-dimensional natural frequency squared, ω2, versus
normalized mid-point deflection, δ/δ0, and rotation angle at the beam mid-point, φ, for e = 0.02
and lQ = 0.5. Actuation schemes are: (a) and (b) σ = 0, ±0.5, and ±1; (c) and (d) σ = ±1.5, ±2,
and ±2.5. Stable (unstable) paths are indicated with solid (dashed) lines.

Energy stored in the composite is shown in Fig. 4.4. Here, ε̄S33 = 7.68 nF/m [128], and the piezoelectric film

is assumed to be bonded to the entire top surface of the beam, but just 25% to 75% of the span is actuated.
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The actuation region is divided into two identical patches, one from 25% to 50% of span and the other from

50% to 75% of span.

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

σ = 0

σ = ±0.5

σ = ±1

σ = ±1.5

σ = ±2

σ = ±2.5

δ/δ0

B

Figure 4.4. Non-dimensional energy stored in the composite, B, versus normalized mid-point
deflection, δ/δ0 for e = 0.02 and lQ = 0.5. Actuation schemes are: σ = 0, ±0.5, ±1, σ = ±1.5,
±2, and ±2.5. Stable (unstable) paths are indicated with solid (dashed) lines.

Actuation of the two patches is expressed in terms of σ1 and σ2. Six different actuation schemes are con-

sidered. In the first case (Fig. 4.3(a), black lines), the beam is not actuated, i.e., σ1 = σ2 = 0, and exhibits

classical load-deflection-angle behavior with only unstable paths linking the remote stable equilibria. These

unstable paths correspond to hilltops in the energy curves (Fig. 4.4). In the moderately actuated cases, the

beam is actuated in a skew-symmetric manner with σ1 = −σ2 = ±0.5, ±1, and ±1.5. The load-deflection-

angle curves indicate that actuation places the beam into an S-shaped configuration where the mid-point

deflects considerably before the beam becomes unstable. The enhanced stability of these cases is indicated

by energy curves with gradually shallower hilltops. In the most highly actuated cases, σ1 = −σ2 = ±2 and

±2.5, and the paths linking the remote equilibria are entirely stable as indicated by energy curves (B) that

are entirely concave up, and natural frequency curves that are entirely positive.

4.3 Load-Actuation Maps

Surfaces representing possible equilibria and their associated stability are shown in Fig. 4.5 for a beam with

e = 0.02. An external mid-point load and a skew-symmetric actuation strategy are assumed. Fig. 4.5(a)-
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(c) show the normalized mid-point deflections versus Q and σ for actuation regions of 10% to 90%, 25%

to 75%, and 30% to 70% of span, and an end shortening of e = 0.02. Stable and unstable equilibra are

indicated with black and red dots, respectively.
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Figure 4.5. Normalized mid-point deflection, δ/δ0, versus non-dimensional load, Q, and the abso-
lute value of electromechanical coupling, |σ|, for e = 0.02. The piezoelectric material is actuated
from: (a) 10% to 90% of span; (b) 25% to 75% of span; (c) 30% to 70% of span. (d) Boundaries
between the stable and unstable equilibria for different actuation regions.

When |σ| is greater than 1.48 for the 10% to 90% of span case, 1.68 for the 25% to 75% of span case,

and 2.16 for the 30% to 70% of span case, only one stable equilibrium is present for a given load and

voltage. Boundaries dividing stable and unstable equilibria are shown with red dashed curves. Fig. 4.5(d)

is a projection of the stability boundary onto the Q-σ plane for several different assumed actuation regions.
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The curves show a mild sensitivity to changes in actuation region and indicate that an actuation region from

15% to 85% of span enables stable transitions with a minimum required voltage.
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Figure 4.6. Boundaries between the stable and unstable equilibria in the Q-σ plane with an end
shortening e = 0.02 with external point loads applied at different locations. The piezoelectric
material is actuated from 25% to 75% of span.

Fig. 4.6 shows the boundaries between stable and unstable equilibria with external point loads applied at

different locations. Here, e = 0.02 and the piezoelectric material is actuated from 25% to 75% of span. Fig.

4.6 indicates that non-mid-point loads lead to an asymmetric boundary, and the asymmetry becomes more

distinct when the load location is closer to the clamped end. The boundaries corresponding to non-mid-

point loads exhibit sharp corners at positive values of Q. The |σ| values associated with these corners are

|σ| = 0.6 for lQ = 0.4, |σ| = 1 for lQ = 0.3, and |σ| = 1.16 for lQ = 0.2. Beyond the corner points, two

stable and only one unstable equilibria can be obtained inside the boundary. Two stable and two unstable

equilibria exist inside the boundary when |σ| is lower than those breakpoints. Fig. 4.7 show examples of

convergence between stable and unstable equilibria in both cases.
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Figure 4.7. Normalized mid-point deflection, δ/δ0, versus non-dimensional load, Q, for e = 0.02
and lQ = 0.3. Actuation schemes are: (a) |σ| = 0.5, and (b) |σ| = 1.2. Stable (unstable) paths are
indicated with solid (dashed) lines.

4.4 Effects of Actuation Voltage and Actuation Region

Fig. 4.8(a)-(c) show normalized mid-point deflections versus σ1 and σ2 for actuation regions of 10% to

90% of span, 25% to 75% of span, and 30% to 70% of span, and an end shortening of e = 0.02. Stable

and unstable equilibria are indicated with black and red dots, respectively. Blue dots indicate that the

corresponding equilibrium is unique and stable. Stable and unstable equilibria coexist for |σ1,2| 6 σcr.

When |σ1| or |σ2| is greater than the threshold σcr, a single stable equilibrium is present. A red dashed

curve indicates the boundary between the stable and unstable equilibria. The threshold σcr for different

actuation regions can be found in Fig. 4.8(d).

Fig. 4.8(d) plots the stability boundary for various actuation regions. The cusps of these boundaries

represent the minimum value of σ required to fully execute a stable transition. This value is denoted σcr.

It is clear from Fig. 4.8 that stable transitions can be achieved so long as σ1 can be made greater than

σcr and σ2 can be made less than −σcr. To transition stably to a remote equilibrium, the actuation path

must cross δ = 0 while exceeding σcr. This threshold value can serve as a guide to designing physically

realizable substrate/actuator combinations capable of executing stable transitions. Fig. 4.8(d) shows that
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Figure 4.8. Normalized mid-point deflection, δ/δ0, versus non-dimensional electromechanical
coupling terms, σ1 and σ2 for e = 0.02 and Q = 0. The piezoelectric material is actuated from:
(a) 10% to 90%, (b) 25% to 75%, and (c) 30% to 70% of span. (d) Boundaries between the stable
and unstable equilibria for different actuation regions.

σcr behaves non-monotonically as the actuation region decreases in length. This is more clearly illustrated

with the e = 0.02 curve in Fig. 4.9 where the values of σcr corresponding to actuation regions in Fig. 4.8(d)

are marked with red dots. The stable transition requiring the least actuation voltage has an actuated region

from 15% to 85% of span. Fig. 4.9 also illustrates that σcr behaves similarly for different values of the end

shortening and increases monotonically with increases in end shortening.
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Figure 4.9. Minimum required value of non-dimensional electromechanical coupling term, σcr,
versus the beginning location of the actuation region, sp1, for different values of end shortening.
The piezoelectric material is actuated with a value of σ from sp1 to 50% of span and with a value
of −σ from 50% to (100%− sp1) of span.
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Figure 4.10. Boundaries between the stable and unstable equilibria for an end shortening e = 0.02
under different loads located at the mid-point (lQ = 0.5). The piezoelectric material is actuated
from 25% to 75% of span.

Fig. 4.10 shows the actuation boundary between the stable and unstable equilibria for e = 0.02 and

mid-point loads of different magnitudes. The piezoelectric material is actuated from 25% to 75% of span.
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Fig. 4.10 indicates that external loads cause an asymmetry in the stability boundary, with the asymmetry

becoming more pronounced as the magnitude of the external load increases. Since values of σ exceeding

three are difficult to achieve with realistic piezoelectric/substrate configurations, the results indicate that

Q ≈ 0.8 is the practical limit on external load when executing stable transitions between remote equilibria

for e = 0.02.

4.5 Experimental Validation

4.5.1 Experimental Setup

To validate the numerical results and physically demonstrate stable transitions between remote equilibria,

an experimental setup is designed, as shown in Fig. 4.11. The test article is a 50 cm × 2 cm × 0.25 mm

strip of spring steel (ρs = 7700 kg/m3, Ys = 200 GPa). The setup includes two fixtures capable of clamping

both ends of the beam with a desired end shortening. Piezoelectric material is bonded to the middle portion

of the beam’s span using two patches of P1-type MFC (ρp = 5440 kg/m3, Yp = 30.34 GPa, d33 = 460

pm/V, and lp = 0.45 mm [123]). Each patch has an active dimension of 8.5 cm by 1.4 cm by 0.3 mm. One

patch is bonded to the front of the beam with epoxy, and the other is bonded to the back. The two MFC

patches are powered from -500 to 1500 volts by a high voltage amplifier (Smart Materials AMT2012-CE3).

A high-resolution camera (JVC GC-PX100) obtains photographs of the beam at every actuated case, and a

custom image processing procedure identifies the edge of the beam and digitizes its position.

Since the MFC partially covers the beam, an effective flexural rigidity and an effective mass ratio are

used for non-dimensionalizing the natural frequencies. The effective flexural rigidity and mass per unit are

calculated using

Y Ieff = a1Y I + a2Y Is, µeff = a1µ+ a2µs, (4.1)

where a1 is the fraction of the beam bonded with MFC, and a2 is the fraction without. The flexural rigidity

of the substrate is given by Y Is = Ysbh
3
s/12, and the mass ratio of the substrate is defined as µs = ρsbhs.

The dimensional natural frequency is calculated by f∗ = πf/(l2
√
µeff/Y Ieff ). Parameters corresponding

to unactuated test articles are shown in Table 4.1 along with a comparison between the experimental natural

frequencies and the predicted values.
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(a) (b)

Figure 4.11. (a) Photo, and (b) schematic of the experimental setup with two MFC patches placed
each side of the beam, covering roughly the middle 50% of span.

Table 4.1. Parameters, natural frequencies, and damping ratios for the unactuated test articles.

25%-75% of span 20%-80% of span

Length l (cm) 38.60 30.80

Patch covering span a1 0.50 0.60

Effective flexural rigidity (Nm−2) 0.0117 0.0130

Effective mass ratio (kg/m) 0.0548 0.0581

Theory f∗ (Hz) 21.72 34.93

Experiment f∗ (Hz) 21.96 37.84

Experiment ζ 0.0125 0.0278

Fig. 4.12(a) is a representative displacement time history of the beam. The beam is undergoing free

vibration while actuated with 1260 volts in one patch and 600 volts in the other. A small rubber tipped

hammer is used to excite the beam, and the time history is measured by a laser optical displacement mea-

surement sensor (Micro-Epsilon optoNCDT 1320). Fig. 4.12(b) shows the amplitude spectrum of the

displacement time history for a point located near 60% of span. The first two resonance peaks are clearly

visible and correspond to the first two damped natural frequencies. The resonant peaks in the amplitude

spectra are used to calculate damping via the half-power point method. The natural frequency is obtained

from f = f̄/
√

1− ζ2, where f̄ is the damped frequency, and ζ is the viscous damping ratio [129].
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Figure 4.12. Example experimental data: (a) displacement time history, and (b) amplitude spec-
trum.

Separate voltages are applied to the two MFC patches. Since the patches are on opposite sides of the

beam, a positive voltage is applied to each patch to create the asymmetric actuation pattern. Two different

stable transition paths are implemented to verify predicted changes to the natural frequencies and mid-point

deflections. In the first case, voltages V1 and V2 are changed simultaneously and always have the same

magnitude. In the second case, V1 and V2 are controlled separately to obtain a loop transition path. In both

cases, voltages are changed in 60 volt increments.

An image correlation procedure is used to digitize the beam’s shape and extract mid-point deflections.

Key steps of the image correlation process are shown in Fig. 4.13 for the case of an unloaded beam with

1260 volts applied. More details of the image correlation process can be found in Chapter 3.

4.5.2 Numerical and Experimental Data Comparison

Fig. 4.14 show normalized mid-point deflection versus σ for two stable transition paths. For each stable

path, data are shown from three experimental trials. The beam’s mid-point is identified by numerically

integrating the beam’s shape as obtained by the image correlation procedure. Across all experimental trials,

mid-point deflections correlate well, especially in the case of σ1 6= σ2 (loop path). In the case of σ1 = −σ2
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13. Image correlation process of an unloaded beam with e = 0.02 and ±1260 volts
applied. The true-color photos are converted to gray-scale images and then to black and white
binary images. Contour profiles on the binary images are extracted by Canny algorithm, and points
on the edge of the beams are saved and smoothed by a 50 point moving average.

(symmetry path), the match between experiment and theory is not quite as good, due to initial imperfections

breaking the skew-symmetry presumed by the model.

Natural frequency maps corresponding to the actuation-deflection curves are shown in Fig. 4.15. Red

dots in Fig. 4.15(a) show the transition from the primary post-buckled shape to the asymmetric shape (‘S’

shape), while black triangles indicate the transition from the ‘S’ shape to the remote post-buckled shape.

When the mid-point deflection of the beam approaches zero (around |σ| = 1.7), the natural frequency stops

decreasing and begins increasing slowly with increasing |σ| values. The mid-point remains at zero as |σ|

increases. Experimental trials validate this behavior.

Experiments are also conducted for the case of actuation region of 20% to 80% of span. Voltage-

deflection curves and corresponding non-dimensional natural frequency curves for 20% to 80% of span

actuated are shown in Fig. 4.16 and Fig. 4.17. This group of experiments are used to validate the influence
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Figure 4.14. Normalized mid-point deflection, δ/δ0, versus non-dimensional electromechanical
coupling parameters, σ1 and σ2, for e = 0.02 with three trials of experimental data (markers). (a)
Symmetry path where σ1 = −σ2, and (b) loop path where σ1 6= σ2. The piezoelectric material is
actuated from 25% to 75% of span.
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Figure 4.15. Non-dimensional natural frequency squared, ω2, versus non-dimensional electrome-
chanical coupling parameters, σ1 and σ2, for e = 0.02. with three trials of experimental data
(markers). Natural frequencies for (a) the symmetry path, and (b) the loop path. The piezoelectric
material is actuated from 25% to 75% of span.

of different actuation regions. The actuation-deflection natural frequency results change only slightly with

the relatively minor change in actuation regions.
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Figure 4.16. Normalized mid-point deflection, δ/δ0, versus non-dimensional electromechanical
coupling parameters, σ1 and σ2, for e = 0.02 with three trials of experimental data (markers). (a)
Symmetry path where σ1 = −σ2, and (b) loop path where σ1 6= σ2. The piezoelectric material is
actuated from 20% to 80% of span.
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Figure 4.17. Non-dimensional natural frequency squared, ω2, versus non-dimensional electrome-
chanical coupling parameters, σ1 and σ2, for e = 0.02. with three trials of experimental data
(markers). Natural frequencies for (a) the symmetry path, and (b) the loop path. The piezoelectric
material is actuated from 20% to 80% of span.
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4.6 Conclusions

Numerical and experimental results demonstrate that by using asymmetric actuation of two elongating

piezoelectric patches, a clamped-clamped beam can be made to transition between remote equilibria without

instability. The threshold for achieving stable transitions is given by a non-dimensional electromechanical

coupling value of σcr. The critical threshold increases monotonically as the end shortening increases. How-

ever, σcr behaves non-monotonically with respect to the span of the actuation region. The minimum σcr oc-

curs when the actuation region is approximately 15%-85% of span. Under mid-point loading and e = 0.02,

results indicate that stable transitions can be practically achieved for non-dimensional forces up to Q ≈ 0.8.

Experiments involving different values of actuation voltages are conducted to verify the numerical results

and give physical demonstrations of the stable transitions.

This study can be used to help design a class of smart structures that circumvent structural instability

in the face of complicated loading environments. For example, piezoelectric actuators could be embedded

into advanced composite materials avoid snap-through instability as needed. This work also includes new

approaches for modeling the electromechanical actuation of highly deformed structures. It is expected that

these modeling contributions can inform the design of smart devices that intentionally induce snap-through

for the purposes of actuation, energy harvesting, or structural morphing.
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Chapter 5

Modal Behavior During Stable Transitions

of Post-buckled Beams

5.1 Overview

This chapter also considers a clamped-clamped post-buckled beam bonded to two elongating piezoelectric

actuators to transition stably between remote equilibria. To address the dynamic analysis of post-buckled

structures during stable transitions, this chapter theoretically and experimentally investigates the changes of

first four natural frequencies and their corresponding mode shapes during the transition. Experiments are

conducted to validate the numerically derived natural frequencies and mode shapes.

An inextensible beam is assumed to be post-buckled and clamped on both ends shortened by an amount

of e. Piezoelectric material covers one side of the beam, as shown in Fig. 4.1. Two different voltages, V1

and V2, are applied to two piezoelectric patches on the left and right side of the beam with one end of each

patch at mid-span. The patch span is specified with the parameters, sp1 and sp3. Two non-dimensional

electromechanical coupling terms, σ1 and σ2, specify the actuation level of the two piezoelectric patches.

As shown in Chapter 4, controlling the σ values can promote stable transitions between remote equilib-

ria. Each stable equilibrium shape has its own natural frequencies, with each having a corresponding mode

shape. Mode shapes are identified from the lateral dynamic deflection, yd, in Eqs. (2.21). The amplitude

of a mode shape is arbitrary, and the mode shapes shown here are normalized by the maximum of the ab-

solute value of the lateral dynamic deflection, |yd|m. This chapter is an extension of Chapter 4 focusing on
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the structural dynamic behavior during stable transitions. Two types of transitions are considered—one in

which the transition is accomplished by changing the external load, and one in which the actuation levels

are changed. For the latter type of transition, two actuation schemes are considered. The first actuation

scheme is called the “symmetry path” and involves simultaneously changing the voltages in two piezoelec-

tric patches such that the two voltages have the same magnitude. In the second scheme, called the “loop

path”, the voltages are changed to obtain desired values of σ1 and σ2 and in general do not have the same

magnitude.

5.2 Stable Transitions by Changing External Load

A map of the mid-point deflections versus non-dimensional mid-point load, Q, for e = 0.02 and |σ| = 2 are

shown in Fig. 5.1(a). The mid-point deflections are normalized by the midpoint deflection of the unloaded

and unactuated post-buckled beam, δ0. The piezoelectric material is assumed to be actuated from 25% to

75% of the span—a positive σ value is assumed from 25% to 50% of span and a negative σ is assumed

on the other half of the active region. Provided |σ| is sufficiently high, stable transitions can be achieved

through a change in lateral load. At large negative values of load, the load acts to pull the beam up toward

its unactuated and unloaded post-buckled shape (i.e., δ/δ0 = 1). As the magnitude of the negative load is

reduced, the actuated beam takes on more of an anti-symmetric ‘S’ shape with mid-point deflections near

zero. As the lateral load becomes positive, the beam transitions stably toward it’s remote post-buckled shape

with δ/δ0 ≈ −1. The natural frequency map in Fig. 5.1(b) confirms the stable transition by showing that the

square of the first natural frequency remains positive throughout the change in loading. The first and third

natural frequencies increase monotonically as the magnitude of the load increases, while the the second and

fourth natural frequencies have a peak at Q = 0. The peak in the fourth natural frequency at Q = 0 is

particularly pronounced and represents an approximately 9% jump in natural frequency as Q approaches

zero from either direction.

Fig. 5.2 shows different equilibrium shapes of the beam with the first and second mode shapes su-

perimposed. Static equilibria and mode shapes are indicated with gray solid lines and black dashed lines,

respectively. The values of Q considered in Fig. 5.2 are indicated with black squares in Fig. 5.1(a). The

equilibria in Fig. 5.2 show the transition from the primary post-buckled equilibrium to the anti-symmetric
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Figure 5.1. (a) Normalized mid-point deflection, δ/δ0, and (b) first the four non-dimensional natu-
ral frequencies squared, ω2, versus dimensionless mid-point load, Q, for e = 0.02 and |σ| = 2.0.
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Figure 5.2. Equilibrium shapes of the beam for select values of Q for |σ| = 2.0 and lQ = 0.5 and
with the (a) first and (b) second mode shapes superimposed. A stable transition is achieved from
the primary equilibrium to the remote equilibrium by changing Q.

(S-shaped) equilibrium atQ = 0, and then the transition to the remote post-buckled equilibrium. WhenQ is

relatively large, the beam takes a shape resembling its post-buckled shape, but with the maximum deflection

shifted to the left or right of x = 0.49. (Note that for the considered end shortening of e = 0.02, x = 0.49

corresponds to the mid-point of the unloaded and unactuated beam.) According to Fig. 5.2(a), the first mode
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shape is characterized by relatively little motion on the side of the beam at which the maximum static deflec-

tion occurs. The opposite trend it true in the case of the second mode. When the beam is in the ‘S’-shaped

configuration, the first and second mode shapes are much more symmetric about the mid-point. It is also

observed that the number of vibrational nodes is non-sequential, with the first mode having no nodes and

the second mode having two.

5.3 Stable Transition by Changing Actuation Voltage

This section considers stable transitions that are executed by changing the actuation voltage applied to each

piezoelectric patch. The piezoelectric material is again assumed to be active from 25% to 75% of the span.

The actuation region is divided into two identical patches, one from 25% to 50% of span and the other from

50% to 75% of span. Two transition paths are considered for the unloaded (Q = 0) case: the symmetric

path where |σ| is a constant and a loop path where σ1 6= −σ2.

5.3.1 Symmetric Path

Fig. 5.3 shows maps of normalized mid-point deflection and natural frequency versus |σ| with e = 0.02.

The symmetry path is executed by increasing |σ| past a critical value (about 1.7 in this case) and then

subsequently decreasing it while keeping σ1 = −σ2. The map of mid-point deflections indicates that

upon increasing |σ|, the beam transitions from its primary post-buckled equilibrium to an anti-symmetric

‘S’ shape when |σ| equals the critical value. Increases to |σ| beyond this critical value do not appreciably

change the shape of the anti-symmetric equilibrium, but do serve to stabilize the shape somewhat. This is

evidenced in Fig. 5.3(b) where the first natural frequency increases as |σ| is increased beyond 1.7. With

respect to the higher-order natural frequencies, increasing σ results in a monotonic increase in the second

natural frequency while the changes to the third and fourth natural frequencies are more complex. The third

natural frequency experiences rapid reduction as |σ| increases to 1.7. It then decreases very slowly. This

decrease is followed by a slow increase near |σ| = 3.5. The second and third natural frequencies converge

at |σ| ≈ 4.5. The square of the fourth natural frequency exhibits a complicated trend in which it has a local

maxima near |σ| = 1 followed by a roughly linear increase when |σ| > 1.7.
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Figure 5.3. (a) Normalized mid-point deflection, δ/δ0, (b) first four non-dimensional natural fre-
quencies squared, ω2, versus |σ|.
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Figure 5.4. Equilibrium shapes of the beam with (a) first and (b) second mode shapes superim-
posed. Transition is achieved by changing |σ|.

Fig. 5.4 plots select equilibrium shapes of the beam undergoing a symmetry path transition. The first and

second mode shapes are superimposed with dashed lines onto the solid lines indicating the static equilibrium

shape. The values of |σ| considered in Fig. 5.4 are denoted by black squares in Fig. 5.3(a). The nature of

the mode shapes is similar to those observed when the stable transition was executed by changing external

load. Namely, when the actuation causes the maximum of the beam’s deflected shape to shift to one side of

x = 0.49, the first mode shape becomes highly localized to the other side of the beam. The opposite effect
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is observed in the second mode. Another similarity is that when the beam is in the ‘S’-shaped configuration,

the first and second mode shapes are again symmetric about the mid-point, with the first mode having no

nodes and the second mode having two. Note that without actuation (|σ| = 0) or external load, only subtle

differences can be observed between the first two mode shapes. However, animations of these mode shapes

reveal that the first mode oscillates with primarily side-to-side motion while the second mode oscillates

primarily in the lateral direction.

5.3.2 Loop Path

Fig. 5.5 maps the normalized mid-point deflection and the first two natural frequencies squared for a post-

buckled beam executing a stable transition via a loop path. In this case, the actuation parameter associated

with the two piezoelectric patches are given by σ1 and σ2, respectively. The loop path involves increasing σ1

to a maximum value and then decreasing σ2 to a minimum value. Next, σ1 is decreased to zero followed by

decreasing σ2 to zero. In general, the first two natural frequencies separate as actuation levels are increased,

with the first natural frequency decreasing while the second increases.
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Figure 5.5. (a) Normalized mid-point deflection, δ/δ0, and (b) first two non-dimensional natural
frequencies squared, ω2, versus σ1 and σ2, for a loop path.

Fig. 5.6 shows select equilibrium shapes (corresponding to the markers in Fig. 5.5(a)) with mode shapes

superimposed. It demonstrates the transition from the primary equilibrium to the anti-symmetric equilibrium

(increasing σ1 to 2 and decreasing σ2 to −2), and the transition from the anti-symmetric equilibrium to the
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Figure 5.6. Equilibrium shapes of the beam with (a) first and (b) second mode shapes superim-
posed. Transition is achieved by changing σ1 and σ2 separately.

remote symmetric equilibrium (decreasing σ1 and increasing σ2 back to zero). Static equilibria and dynamic

deformations are again indicated with solid lines and dashed lines, respectively. The variations of the mode

shapes during the loop path transition are similar to those observed in the symmetry path. The mode shapes

again exhibit localization when the maximum deflected shape of the beam is shifted away from x = 0.49.
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5.4 Effects of Actuation Region

The effects of changing the length of the actuation region are considered here for symmetry path transitions

of the unloaded beam. The beam is actuated from sp1 percent of span to sp3 percent of span such that

sp1 + sp3 = 100%. This creates an active region that is centered about the beam’s mid-point. A voltage

V1 is applied from sp1 percent of span to 50% of span and the opposite voltage (V2 = −V1) is applied to

the other half of the active region. The first four natural frequencies squared are shown for various actuation

regions in Fig. 5.7 for select values of |σ|.
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Figure 5.7. Non-dimensional natural frequency squared, ω2, versus the start of the actuation region,
sp1%, for |σ| = 1.5, 2.0, and 2.5. (a) First, (b) second, (c) third, and (d) fourth natural frequency.

Each of the first four natural frequencies shows a distinct and sensitive dependence on changes to the

actuation length and actuation level. Information about the beam’s underlying equilibrium shape and its
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stability can be inferred from the first natural frequency (Fig. 5.7(a)). The local maxima near sp1 = 15%

suggest that actuating the beam from 15% to 85% corresponds to a minimum in the actuation levels required

to achieve a stable transition between remote equilibira. This is consistent with results in Ref. [130]. The

marked increase in the first natural frequency when sp1 > 33% suggests that the actuation levels being

considered are not sufficient to deform the beam into an anti-symmetric ‘S’ shape. Rather, the actuated beam

takes on a more stable equilibrium resembling its primary post-buckled shape. This result is also consistent

with those in Chapter 4, where it is shown that short actuation regions need high levels of actuation to place

the beam into the anti-symmetric shape required to execute stable transitions. In general, the changes in

the higher-order natural frequencies are more pronounced at higher actuation levels. With |σ| = 2, the

higher-order natural frequencies can be changed by as much as 20 to 30 percent by changing the length of

the actuation region.
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Figure 5.8. Equilibrium shapes and first two mode shapes of the beam for different actuation
regions with |σ| = 0.5, 1.5, and 2.5.

Fig. 5.8 shows the equilibrium and mode shapes of an unloaded beam for different actuation regions

with |σ| = 0.5, 1.5, and 2.5. Here, the piezoelectric material is actuated from 5%-95%, 10%-90%, 15%-

85%, 20%-80%, 25%-75%, and 30%-70% of span. Considering the equilibrium shapes for |σ| = 0.5 and

|σ| = 1.5 in Fig. 5.8, changing the length of the actuation region produces only minor changes in the beam’s

equilibrium shape, except for the case of the anti-symmetric equilibrium shape when the beam is actuated

from 30%-70% of span. In this case, the mid-point of the beam has a larger deflection than it does in the

other cases. This is consistent with the finding from Chapter 4 that it requires approximately 40% more

76



actuation voltage to stabilize the anti-symmetric equilibrium shape in the 30%-70% case relative to other

actuation regions. Similarly, Fig. 5.8 also shows that the mode shapes in the 30%-70% case are noticeably

different from the other cases. At relatively high level of actuation (|σ| = 2.5), changing the actuation region

has some minor effects on the equilibrium shapes, but practically no effect on the first two mode shapes.

Considering the results in Figs 5.7 and 5.8 overall, it is concluded that changing the length of the actuation

region has a significant effect on the beam’s natural frequencies, but only minor effects on the corresponding

mode shapes.

5.5 Experimental Validation

5.5.1 Experimental Setup

To experimentally determine the natural frequencies and mode shapes of a post-buckled and piezoelectrically

activated beam, a test setup is devised and is shown in Fig. 5.9. A 50 cm × 2 cm × 0.25 mm strip of spring

steel (ρs = 7700 kg/m3, Ys = 200 GPa) is clamped on both end and shortened by a desired distance. The

beam is bonded with two patches of P1-type MFC (8.5 cm × 1.4 cm × 0.3 mm, ρp = 5440 kg/m3, Yp =

30.34 GPa, d33 = 460 pm/V), and covers from 25% to 75% of the beam’s span. One patch is bonded to the

front of the beam and the other is bonded to the back. A high voltage amplifier (Smart Materials AMT2012-

CE3) can supply -500 to 1500 volts to the patches. The beam is excited by a small modal hammer (PCB

Model 086E80) to induce free vibration, and a laser optical displacement measurement sensor (Micro-

Epsilon optoNCDT 1320) is used to measure the resulting time history.

Since the MFC covers only a portion of the test beam, the flexural rigidity and mass density are not

constant along its length. To non-dimensionalize the natural frequencies obtained in test, an effective flexural

rigidity and mass density is used. These effective values are calculated by taking a weighted average of the

material properties, i.e.,

Y Ieff = a1Y I + a2Y Is, µeff = a1µ+ a2µs, (5.1)

where a1 and a2 are the portion of the beam bonded with and without MFC, respectively. The flexural

rigidity of the substrate is Y Is = Ysbh
3
s/12, and the mass per unit length of the substrate is given by
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(a) (b)

Figure 5.9. (a) Photo, and (b) schematic of the experimental setup with one MFC patch placed on
either side of the beam. The patches cover roughly the middle 50% of span.

µs = ρsbhs. The effective flexural rigidity and mass density of the test article is shown in Table 5.1 along

with other pertinent parameters. Also included in Table 5.1 is a comparison between the first two numerical

and experimental natural frequencies of the unactuated beam. The predicted results are within 1.4% of the

experimental results, indicating that the use of effective properties is a justified approximation.

Table 5.1. Properties, natural frequencies, and damping of the unactuated test article

25%-75% of span

Length l (cm) 38.60

End shortening e 0.02

Fraction of beam with MFC a1 0.50

Effective flexural rigidity (Nm−2) 0.0109

Effective mass ratio (kg/m) 0.0548

1st mode 2nd mode

Theory f∗ (Hz) 21.37 35.99

Experiment f∗ (Hz) 21.46 36.47

Experiment ζ 0.0142 0.0073

The modal hammer strikes the beam at locations near 7%, 21%, 32%, 43%, 50%, 57%, 68%, 79% and

93% of span. After the experimental displacement time history is obtained, it is converted to an amplitude

spectrum using a fast Fourier transform (FFT), and the half-power point method is used to estimate the
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(a)

(b)

Figure 5.10. Example experimental FRF data and mode shapes. (a) The first mode shape of the
beam with |σ| = 2 at a frequency of 8.09 Hz, and (b) the second mode shape of the beam with
|σ| = 1.5 with a frequency of 48.22 Hz. In the lower plot in each part, the experimental mode
points (markers) are overlaid on the numerical prediction (solid line).

viscous damping ratio, ζ, associated with each mode [131]. The theoretical dimensional natural frequency

is calculated by f∗ = ω
√
Y Ieff/(4µeff l4) and the experimental natural frequency is calculated from

f∗ = f̄/
√

1− ζ2, where f̄ is the damped natural frequency [129]. Frequency response functions (FRFs)

are calculated by dividing the FFT of the response by the FFT of the modal hammer input signal. At

each strike location, the component of a given mode shapes is given by the imaginary part of the FRF at the

corresponding natural frequency. Fig. 5.10 show representative FRF results and the corresponding numerical
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and experimental mode shape. Both the numerical and experimental mode shapes are normalized by their

respective maxima. The modal assurance criterion (MAC) [132] comparing the numerical and experimental

modes is 0.95 for the first mode, and 0.77 for the second, indicating good agreement between the theory and

experiment.

5.5.2 Numerical and Experimental Data Comparison

To experimentally validate how the natural frequencies and mode shapes change as the beam undergoes

a stable transition, two actuation schemes are considered. In both schemes, separate positive voltages are

applied to frontside and backside MFC patches. Since the patches are on opposite sides of the beam, positive

voltages are applied to both patches to obtain oppositely signed values of σ. Both the symmetry and loop

paths are considered. Throughout all experimental trials, the voltages are changed in 120 volt increments.

Natural frequency maps of the symmetry and loop transition paths are shown in Fig. 5.11, where data

are collected from three experimental trials for each path. Triangles in Fig. 5.11(a) represent the transition

from the primary equilibrium shape to the ‘S’ shape, and dots indicate the other half of the transition. Solid

and dashed curves show the numerically identified first and second natural frequencies, respectively, while

the markers indicate the experimental data.
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Figure 5.11. Non-dimensional natural frequency squared, ω2, versus electromechanical coupling
parameter for (a) the symmetry path, and (b) the loop path. Solid and dashed curves indicate the
numerical first and second natural frequencies, respectively, and markers indicate experimental
data.
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Fig. 5.11(a) confirms the theoretical results; namely, increasing voltage first reduces the first natural

frequency to nearly zero around |σ| = 1.7, and is followed by a slight increase in natural frequency. Mean-

while, the second natural frequency monotonically increases as the magnitude of the voltage increases.

Fig. 5.11(b) shows the first two numerical and experimental natural frequencies associated with the loop

path. Across all experimental trials, the natural frequencies correlate well. Overall, the average absolute

percent differences between the numerical and experimental natural frequencies are 6.83% and 3.79% for

the first and second mode of the symmetry path, and 5.16% and 5.88% for the first and second mode of the

loop path.
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Figure 5.12. Numerical (lines) and experimental (markers) mode shapes from a stable transition
along the symmetry path. The beam is at its (a) primary and (b) remote equilibrium position with
|σ| = 0.5, its (c) primary and (d) remote position with |σ| = 1, its (e) primary equilibrium for
|σ| = 1.5, and in an (f) anti-symmetric shape with |σ| = 2.
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Normalized dynamic deflections of the first two modes with experimental data are shown in Fig. 5.12.

Data are recorded from three taps at the each location actuated with |σ| = 0.5, 1, 1.5, and 2. FRFs from

a given response point/strike point pair are averaged and corresponding peaks are then extracted from the

averaged FRF results. The mode shapes of the beam are mutually symmetric at the primary and remote

equilibria when actuating with the same voltage. Experiments validate the mode shapes well, and they are

able to track the changes of mode shapes during the stable transition. The MAC values comparing the spatial

similarity of the numerical and experiment modes are shown in Table 5.2. The fact that most of the MAC

values are above 0.9 suggests strong agreement between the numerical model and the experiment.

Table 5.2. Modal assurance criterion (MAC) comparing the numerical and experimental modes.

|σ| = 0.5 |σ| = 0.5 (remote) |σ| = 1.0 |σ| = 1.0 (remote) |σ| = 1.5 |σ| = 2.0

First mode 0.86 0.93 0.94 0.97 0.97 0.95

Second mode 0.85 0.92 0.91 0.94 0.77 0.79

5.6 Conclusions

This chapter investigates modal behavior of a clamped-clamped post-buckled beam. Modal analysis of post-

buckled structures about given stable equilibria contribute to the understanding of the structural dynamics

of post-buckled structures under different loading environments and actuation configurations. Numerical

and experimental results validate the changes to natural frequencies and mode shapes of a beam stably

transitioning from a primary equilibrium to a remote one. Natural frequency results show the reduction of

the first and third natural frequency to a minimum when the beam assumes an anti-symmetric equilibrium,

and show a corresponding increase to the second and fourth natural frequencies. The beam exhibits localized

mode shapes when it is placed into an asymmetric equilibrium by actuation and/or an applied load. The

modes associated with the anti-symmetric equilibrium shape are symmetric about the beam’s mid-point,

however. The numerical natural frequencies and mode shape predictions are validated with experiments.
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Chapter 6

Stabilizing Higher-Order Equilibria of

Post-buckled Beams

6.1 Overview

The higher-order static equilibria of post-buckled structures are normally unstable. It has been shown in

Chapter 4 that by intelligently actuating two piezoelectric patches bonded to a post-buckled beam, the

second-order equilibria can be stabilized and the beam can be made to stably transition from one first-order

post-buckled shape to the other, thereby avoiding snap-through. This chapter identifies and determines the

stability of higher-order equilibra of clamped-clamped post-buckled beams under piezoelectric actuation.

The beam is bonded with distributed patches of piezoelectric films. The conditions giving rise to stable

third- and fourth-order equilibrium shapes of the post-buckled beams are investigated. Stable third- and

fourth-order equilibria are found under certain conditions. Third-order stable equilibria can be obtained for

low activation voltages using a large actuation region; similarly, they can also be attained for high levels

of actuation voltage using short actuation regions. Fourth-order stable equilibria are eventually achieved if

the actuation voltage exceeds a critical value. Stabilized third- and fourth-order equilibria are demonstrated

experimentally and correlate well with numerical predictions.

All beams are assumed to be post-buckled and clamped on both ends. Piezoelectric material covers

one side of the beam, as shown in Fig 6.1. Different piezoelectric patches are bonded to the beam for

different actuation schemes, and different voltages, V1, V2, and up to Vn, are applied to each patch. The
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structural behavior is expressed in terms of the mid-point deflection, δ, while the applied voltages are the

control parameters. The non-dimensional parameters, σ1 to σn, are proportional to the voltage applied to

each piezoelectric patch.

To observe equilibrium shapes of higher order, the range of considered σ values is extended to +/− 15.

The piezoelectric material is assumed to cover the entire beam, but only a portion is actuated. Here, cases in

which there are three or four piezoelectric patches are considered. In each case, it is assumed that all patches

have the same length.

V1 V2 Vn

Figure 6.1. Schematic of a clamped-clamped post-buckled beam bonded with piezoelectric patches
on its top surface.

Based on a preliminary study, one patch of piezoelectric material can maintain a stable first-order equi-

librium shape, and two patches can stabilize the anti-symmetric shape (second-order) [130]. The hypothesis

is that higher-order shapes can be achieved when higher numbers of piezoelecric patches are used. The

actuation region is specified with the parameters, sp1 and sp3, which denote the percent of span between

s = 0 and the beginning and the end of the actuated region, respectively.

6.2 Third-Order Equilibrium Shapes

To investigate the stability of third-order equilibria, three identical patches of piezoelectric material are

assumed to be placed end-to-end and centered on the beam, as shown in Fig. 6.2. A positive voltage (σ1) is

applied to the first and third patches, and a negative voltage (σ2) is applied to the center patch.

6.2.1 Symmetric Actuation Voltage

The simplest actuation strategy is to actuate the three patches with voltages of equal magnitude. For the case

shown in Fig. 6.3, three active patches are assumed from 0% to 33%, from 33% to 67%, and from 67% to

100% of span. The patches are actuated such that the non-dimensional actuation parameters associated with
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σ1

σ2

σ1

Figure 6.2. Schematic of a clamped-clamped post-buckled beam bonded with three patches of
piezoelectric material.

each patch are equal to +σ, −σ and +σ. Fig. 6.3 shows (a) the normalized mid-point deflections and (b)

the corresponding natural frequencies squared versus |σ| for a beam with a non-dimensional end shortening

of e = 0.02. The first-, second-, and third-order equilibrium branches are shown. The mid-point deflections

under actuation, δ, are normalized by the mid-point deflections without actuation, δ0. Only the +σ, −σ and

+σ results are represented since the deflection versus |σ| results for the −σ, +σ, and −σ case are simply a

mirror image about δ/δ0 = 0. Further, the natural frequency results for the −σ, +σ, and −σ case are the

same as those shown in Fig. 6.3 (b). Stable and unstable equilibria are indicated by solid and dashed lines,

respectively.
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Figure 6.3. (a) Normalized mid-point deflection, δ/δ0, (b) non-dimensional natural frequency
squared, ω2, versus the magnitude of the non-dimensional actuation parameter, |σ|, for e = 0.02
and the six lowest-order equilibria. Stability is indicated by solid (stable) or dashed (unstable)
lines. The symbols a and b indicate upper and lower branches of equilibria, respectively, while the
subscript indicates the order.
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Figure 6.4. Static equilibrium shapes for the first six equilibria with |σ| = 1. Stability is indicated
by solid (stable) or dashed (unstable) lines. For each shape, the corresponding point on the equi-
librium curve is indicated in Fig. 6.3. The symbols a and b indicate upper and lower branches of
equilibria, respectively, while the subscript indicates the order.

In Fig. 6.3(a), both the primary and remote first-order equilibria are stable for low values of |σ|. Near

|σ| = 1.5, the primary first-order equilibrium loses stability, and upon an increase in |σ|, will snap-though

to the remote first-order equilibrium. All of the second and third-order equilibria are unstable across the

range of |σ|. As will be shown, this is a consequence of the entire span of the beam being electrically active.

Confining the actuation region to a portion of the beam’s span gives rise to stable third-order shapes. Fig. 6.4

shows the first-, second-, and third-order equilibrium shapes when |σ| = 1. The symbols a and b indicate

upper and lower branches of equilibria, respectively, while the subscript indicates the order.

Fig. 6.5 focuses primarily on the upper branches of the first- and third-order equilibria for various

assumed actuation regions (0% to 100%, 10% to 90%, 20% to 80%, and 30% to 70% of span). The beam

has an end-shortening of e = 0.02. In each case, the actuation region is divided into three patches of equal

length and the patches are actuated according to the +σ, −σ, +σ scheme. The boundaries between the first

and third branches occur at limit points of vertical tangency. In all cases except for the 30% to 70% case,

the upper branches of the first- and third-order equilibria converge at some value of |σ|. Points of interest

are indicated with markers and the corresponding equilibrium shapes are shown in Fig. 6.6. The letters a

and b again denote upper and lower branches while the first number in the subscript denotes the order of the

equilibrium. The second subscript number indicates one of the four considered actuation regions, with one

being the 0% to 100% case and four being the 30% to 70% case.
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Figure 6.5. (a) Normalized mid-point deflection, δ/δ0, (b) non-dimensional natural frequency
squared, ω2, versus the magnitude of the non-dimensional electromechanical coupling parameter,
|σ|, for e = 0.02. Stable and unstable paths are indicated with solid and dashed lines, respectively.
The piezoelectric material is actuated from 0% to 100%, 10% to 90%, 20% to 80%, and 30%
to 70% of span. The letters a and b again denote upper and lower branches. The first number
in the subscript denotes the order of the equilibrium while the second subscript number indicates
considered actuation regions.

In Fig. 6.5, for an actuation region of 0%-100%, the third-order equilibrium shape cannot be stabilized.

For the 10% to 90% actuation region, the third-order equilibrium can stabilize over a narrow range of |σ|

values (|σ| =1.6-1.62). Decreasing the actuation region to be between 20% and 80% of span increases

the size of this stable range, albeit for higher levels of actuation (|σ| =2.08 to 2.44). For the 30% to 70%

actuation region, three stable equilibria are observed at high |σ| values. With increasing |σ|, the beam

remains stable along the upper first-order branch, and in fact, becomes more stable as |σ| increases. This

indicates that when the actuation region is from 30% to 70% of span, it is impossible for an unloaded beam

to snap-through under the present actuation scheme. Another feature of the 30% to 70% case is that the

third-order equilibrium branch stabilizes at high |σ| values by converging with the lower first-order branch.

There are three stable equilibria that occur at |σ| = 4.5 and the corresponding shapes are shown in the

right-most panel of Fig. 6.6.
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Figure 6.6. Static equilibrium shapes for select values of |σ|. Solid and dashed lines indicate stable
and unstable states, respectively. The a11 and a31 shapes are the equilibria with |σ| = 1.52 and the
beam actuated across the entire span. The a12 and a32 shapes belong to the first- and third-order
upper branch, respectively, when |σ| = 1.5 and the beam is actuated from 10% to 90% of span.
The a13 and a33 are both stable third-order shapes with |σ| = 2.3 and the beam actuated from 20%
to 80% of span. The a14, b34, and b14 are the three stable equilibria at |σ| = 4.5 and the beam
actuated from 30% to 70% of span.

It is clear from Fig. 6.5 that the length of the actuation region has a considerable effect on the beam’s

stability under actuation. In Fig. 6.7, the length of actuation region and |σ| are varied to generate a surface

of normalized mid-point deflections. The length of the actuation region is denoted by sp1, which indicates

the start of the actuation region as a fraction of the beam’s span. The end of the actuation region (denoted

sp3 elsewhere) is assumed to be 1-sp1. Note that only first-order branches that connect to a third-order

branch are shown. For sp1 ' 25%, the upper first-order branch no longer connects to the third-order branch

(as observed in the 30% to 70% case in Fig. 6.5). Similarly, for sp1 / 25%, the lower first-order branch

does not connect to the lower third-order branch. For clarity, these unconnected first-order equilibria are not

shown.

Note that a common plotting scheme is used in Figs. 6.7—6.10. In this scheme, gray- and blue-shaded

areas represent first-order and third-order equilibria, respectively, with the lighter shade of each color indi-

cating unstable equilibria while the darker shade denotes stable equilibria. Dashed lines are used to indicate

the boundary between stable and unstable equlibria and red dotted lines indicate the boundaries of the first-

and third-order equilibria. The region of stable third-order equilibria is further sub-classified using green
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Figure 6.7. Normalized mid-point deflection, δ/δ0, versus |σ|, and the start of the actuation region,
sp1, for e = 0.02 with three piezoelectric patches of equal length and actuation voltages of equal
magnitude. Gray (blue) areas represent first- (third-) order equilibria, with darker shades indicating
stable equilibria. Green and red areas are stable third-order equilibria that are adjacent to the upper
and lower first-order branches, respectively. Red dotted lines indicate the boundaries of the first-
and third-order equilibria and the black dashed line is the boundary between stable and unstable
equilibria. This same plotting scheme also applies to Figs. 6.8—6.10.

and red shaded regions. The green region denotes stable third-order equilibria that are adjacent to only the

upper first-order equilibrium branch while the equilibria in the red region are adjacent to only the lower

first-order branch. Equlibiria that are shaded dark blue are stable third-order equilibria that are adjacent to

both the upper and lower first-order branches.

Fig. 6.7 confirms a number of the observations from Fig. 6.5. When the actuation region covers nearly

the entire span, the first-order upper branch destabilizes before connecting with the third-order branch.

Consequently, stable third-order equilibria are not possible. As the length of the actuation region is reduced

(i.e., sp1 is increased), there is a (green shaded) region of stable third-order equilibria. When sp1 ' 25%,

the third-order branch switches such that it connects with the lower first-order equilibrium branch. As sp1

reaches about 34%, the lower first-order branch destabilizes before connecting with the third-order branch.

Thus, under the presumed actuation scheme, stable third-order equilibria are possible for actuation regions

with sp1 values ranging from approximately 8% to 34%. These sp1 values correspond to actuation regions

that comprise the center 84% to 32% of the beam’s length. Fig. 6.7 also shows that there are no regions of
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Figure 6.8. Projections of the stable areas of the third-order equilibrium onto the |σ|-sp1 plane for
(a) e = 0.01, (b) e = 0.02, (c) e = 0.03, and (d) e = 0.04. Three piezoelectric patches of equal
length and actuation voltages of equal magnitude are assumed.

stable third-order equilibria which connect the upper first-order equilibria to the lower. This indicates that, at

least for the present actuation scheme, it is not possible to stably transition from one first-order equilibrium

to the other via a third-order shape.

Fig. 6.8 shows projections of the regions of stable third-order equilibria onto the |σ|-sp1 plane for four

different values of end shortening. The results show that the area of parameter space over which the third-

order equilibrium can be stabilized increases slightly with end shortening. However, the minimum actuation
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voltages required to stabilize the third-order shapes increases slightly as well. For all end shortenings shown

here, the third-order branch switches from connecting with the upper first-order branch to connecting with

the lower first-order branch when sp1 ≈ 25%.

6.2.2 Asymmetric Actuation Voltage

Now consider an asymmetric actuation scheme in which one of the three patches is actuated with a voltage

of a magnitude that is different from the other two. For the cases considered here, a positive voltage (with

a corresponding actuation parameter, σ1) is applied to the first and third patches while a negative voltage

(with a corresponding actuation parameter of σ2) is applied to the center patch. The normalized mid-point

deflection is shown against σ1 and σ2 in Fig. 6.9 for a beam with e = 0.02. The actuation region is from

10% to 90% of span in panel (a), and from 25% to 75% of span in panel (b).
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Figure 6.9. Normalized mid-point deflection, δ/δ0, versus non-dimensional actuation parameters,
σ1 and σ2 for e = 0.02. The piezoelectric material is actuated from (a) 10% to 90% of span and
(b) 25% to 75% of span.

With an actuation region from 10% to 90% of span, Fig. 6.9 (a) shows that all possible equilibria of

the third-order branch have mid-point deflections greater than zero and converge with the first-order upper

branch. There is a relatively small wedge-shape region (shaded in green) in which the given combination of

σ1 and σ2 results in a stable third-order equilibirium. With an actuation region from 25% to 75% of span,

shown in Fig. 6.9 (b), the region of stable third-order equilibria increases in area. This includes a large
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Figure 6.10. Regions of actuation space in which the third-order equilibrium is stable with e = 0.02
and piezoelectric patches of equal length. Nine different actuation regions are shown: (a) 5% to
95%, (b) 10% to 90%, (c) 15% to 85%, (d) 20% to 80%, (e) 24% to 76%, (f) 25% to 74%, (g) 26%
to 74%, (h) 28% to 72%, and (i) 30% to 70%.
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region of points (shaded in dark blue) that connect the upper branch of stable first-order equilibria with the

lower branch. This suggests the potential to stably transition from one first-order equilibrium to the other

via a stable third-order shape.

Fig. 6.10 shows projections of the regions of stable third-order equilibria onto the σ1-σ2 plane with

e = 0.02. Results show nine different actuation regions ranging from 5% 6 sp1 6 30% with sp3 =

100% − sp1. Note that Fig. 6.10 (b) and (f) are the projections of Fig. 6.9(a) and (b), respectively. In all

cases, a representative stable third-order equilibrium shape is shown along with its corresponding σ1 and σ2

values.

The subplots in Fig. 6.10 show that the area in which the third-order equilibrium is stable are sensitive to

both the actuation voltages and the actuation region, especially as the actuation region approaches 25%-75%

of span. In general, the absolute values of σ1 and σ2 that achieve stable third-order equilibria continuously

increase as the length of the actuation region decreases. For large actuation regions, the third-order equilib-

rium can stabilize over a very narrow range of σ values, and all equilibria converge to the upper first-order

branch. As the length of the actuation region decreases, the region of stable third-order equilibria becomes

larger. When the actuation region decreases to 10% 6 sp1 6 15%, an area (shaded dark blue) of stable

third-order equilibria connecting the two first-order branches appears. Configurations that give rise to these

areas thus exhibit entirely stable paths linking the two remote first-order equilibria.

6.3 Fourth-Order Equilibrium Shapes

To investigate the possibility of stabilizing fourth-order equilibria, four patches of piezoelectric material are

configured on the beam as shown in Fig. 6.11. Positive voltage (with corresponding actuation parameter,

σ1) is applied to the first and third patches, and negative voltage (with corresponding actuation parameter,

σ2) is applied to the second and fourth patches.

σ1

σ2

σ1

σ2

Figure 6.11. Schematic of a clamped-clamped post-buckled beam with four piezoelectric patches.
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6.3.1 Symmetric Actuation Voltage

For the symmetric actuation scheme, the actuation region is divided into four patches of equal length with

actuation parameters given by +σ, −σ, +σ, and −σ. Consequently, the absolute value of σ is the only

control parameter. Normalized mid-point deflections and the squared natural frequencies are shown in

Fig. 6.12 for an end shortening of e = 0.02. Four different actuation regions are assumed: from 2% to 98%,

from 10% to 90%, from 20% to 80%, and from 30% to 70% of span.
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Figure 6.12. (a) Normalized mid-point deflection, δ/δ0, (b) non-dimensional natural frequency
squared, ω2, versus the non-dimensional actuation parameter, |σ|, with e = 0.02. Stable (unstable)
paths are indicated with solid (dashed) lines. The piezoelectric material is actuated from 2% to
98%, 10% to 90%, 20% to 80%, and 30% to 70% of span.
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Figure 6.13. Static equilibrium shapes for select values of |σ|. Solid lines and dashed lines indicate
stable and unstable states, respectively.
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Fig. 6.12 shows that all the first-order branches remain stable with increasing |σ|. The second- and

fourth-order equilibria have zero mid-point deflection across all actuation voltages. These higher-order

equilibria are unstable at low values of |σ|, but stabilize at higher values. As the length of actuation region

reduces, higher levels of voltage are needed to stabilize the higher-order branch. In all cases, the first-order

and higher-order equilibrium branches converge at some value of |σ|. Beyond this value, a stable equilibrium

exists and it will have either second-order or fourth-order shape. To distinguish between second-order and

fourth-order the number of stationary points (i.e., dy/dx = 0) are counted for each candidate shape. A

second-order shape has two stationary points and fourth-order shape has four points.

Fig. 6.13 shows static equilibrium shapes at select values of |σ| corresponding to Fig. 6.12. Letters

s and u indicate the stable and unstable equilibria. The first subscript number indicates the order of the

equilibrium and the second number corresponds to the actuation case with the 2% to 98% case given by

one and the 30% to 70% case denoted by four. Static equilibria are indicated with solid lines while unstable

equilibria are shown with dashed lines.

Fig. 6.14(a)-(c) show stable and unstable areas of second- and fourth-order equilibria with respect to |σ|

and sp1 for different values of non-dimensional end shortening (e = 0.01, 0.02, and 0.04). Boundaries of

stable and unstable equilibria are indicated by black dashed lines, and the red dashed lines are the boundaries

between the second- and fourth-order shapes. There are two branches of second-order equilibria and with

increasing values of |σ|, either one may give rise to a stable fourth-order shape. The two shaded areas in Fig.

6.14(a)-(c) are used to distinguish those stable fourth-order shapes that arise from one second-order branch

from those arising from the other. The boundary between these two shaded regions consistently occurs near

sp1 = 15% regardless of the amount of end shortening. For long actuation regions (i.e., low values of sp1)

and increasing |σ|, the fourth-order shapes start forming before stabilizing. As the length of the actuation

region decreases such that sp1 > 30%, stable second-order equilibria appear first, and are followed by stable

fourth-order shapes at higher levels of actuation voltage.

The boundaries of stability for fourth-order shapes are shown for different amounts of end shortening in

Fig. 6.14(d). Not surprisingly, it requires increasing levels of actuation voltage to stabilize the fourth-order

shapes when the beam is more severely buckled. The shape of the stability boundary also becomes more

complicated as end shortening is increased. The open markers in Fig. 6.14(d) indicate the point at which the

stable fourth-order equilibria switch from those that arise from one of the second-order branches to those

95



0 2 4 6 8 10
0

10

20

30

40
2S

2U

4U 4S

|σ|

sp
1
%

(a)

0 2 4 6 8 10
0

10

20

30

40

2S
2U

4U 4S

|σ|

sp
1
%

(b)

0 2 4 6 8 10
0

10

20

30

40

2S
2U

4U 4S

|σ|

sp
1
%

(c)

0 3 6 9 12 15
0

10

20

30

40

e = 0.01

e = 0.02

e = 0.04

e = 0.08

e = 0.15

|σ|

sp
1
%

(d)

Figure 6.14. Projections of stable/unstable area of the second- and fourth-order equilibria onto the
non-dimensional |σ| and the beginning location of the actuation region sp1 plane for (a) e = 0.01,
(b) e = 0.02, and (c) e = 0.04 with four identical piezoelectric patches. (d) A boundary between
the stable and unstable equilibria for different end shortening cases. Open markers indicate the
point at which the stable fourth-order equilibria switch from those that arise from one of the second-
order branches to those that arise from the other. The closed markers denote the point above which
the stable shapes nearest the stability boundary are second-order.

that arise from the other. The closed markers denote the point above which the stable shapes nearest the

stability boundary are second-order. The value of sp1 at which these points occur is insensitive to changes

in end shortening.
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6.3.2 Asymmetric Actuation Voltage

For the cases considered here, a positive voltage (with a corresponding actuation parameter, σ1) is applied to

the first and third patches while a negative voltage of a different magnitude (with a corresponding actuation

parameter of σ2) is applied to the second and fourth. Surface plots of normalized mid-point deflections

versus σ1 and σ2 are shown in Fig. 6.15 for an end shortening of e = 0.02 and actuation regions of 10% to

90% and 20% to 80% of span. Stable and unstable equilibra are indicated with orange and magenta shaded

regions, respectively.
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Figure 6.15. Normalized mid-point deflection, δ/δ0, versus non-dimensional electromechanical
coupling terms, σ1 and σ2 for e = 0.02. The piezoelectric material is actuated from: (a) 10% to
90% of span; and (b) 20% to 80% of span. Orange (magenta) areas represent stable (unstable)
equilibria and dashed lines indicate the boundary between stable and unstable equilibria.

Fig. 6.15 shows that two stable first-order equilibria and one unstable higher-order equlibrium coexist

at low values of actuation voltages. When |σ1| or |σ2| is greater than a threshold value, a single stable equi-

librium is present. A black dashed curve indicates the boundary between the stable and unstable equilibria.

These and other stability boundaries projected on the σ1-σ2 plane are shown in Fig. 6.16. The cusps of the

boundaries represent the minimum value of σ required to fully execute a stable transition given the present

actuation scheme. The σ1 and σ2 values associated with these cusps increase monotonically as the actuation

region reduces in length.
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Figure 6.16. Boundaries between the stable and unstable equilibria for different actuation regions.

6.4 Experimental Validation

6.4.1 Experimental Setup

To validate the theoretical results and provide physical demonstrations of stable higher-order equilibrium

shapes, an experiment is designed (see Fig. 6.17). The test article is a strip of spring steel (ρs = 7700

kg/m3, Ys = 200 GPa) with dimensions of 80 cm × 2 cm × 0.25 mm. Two 3D printed fixtures are affixed

to the ends of the beam to simulate clamped-clamped boundary condition with a desired amount of end

shortening. Three and four piezoelectric patches are bonded to the beam to obtain third- and fourth-order

shapes, respectively. Each patch of P1-type MFC (ρp = 5440 kg/m3, Yp = 30.34 GPa, d33 = 460 pm/V)

has an active dimension of 8.5 cm × 1.4 cm × 0.3 mm. Two patches are adhered to the front of the

beam with epoxy, and the other(s) is (are) attached to the back. The frontside and backside patches are

alternately distributed and are arranged symmetrically about the beam’s midpoint. The MFC patches can be

actuated with voltages up to 1500 volts using a high-voltage amplifier (Smart Materials AMT2012-CE3).

The equilibrium shapes of the actuated beam are obtained using a high-resolution camera (JVC GC-PX100)

and the edge of the beam is extracted using a custom image correlation process.

Since the MFC partially covers the beam, the beam’s flexural rigidity is not constant along its length.

An effective flexural rigidity is used to calculate the non-dimensional actuation parameter and enable a
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(a)

(b) (c)

Figure 6.17. Experimental photos of a beam bonded with (a) three MFC and (b) four MFC. (c)
Schematic of the experimental setup with three/ or four MFC patches alternately placed on both
sides of the beam.

non-dimensionalization of the test results. The effective flexural rigidity is defined as

Y Ieff = a1Y I + a2Y Is, (6.1)

where a1 is the portion of the beam bonded with MFC, and a2 is the portion without. The flexural rigidity

of the substrate is given by Y Is = Ysbh
3
s/12. Parameters corresponding to test articles bonded with three

and four piezoelectric patches are shown in Table 6.1.

Table 6.1. Parameters for the unactuated test articles

Number of Patches Three Four

Patch span 15%-85% 20%-80%

End shortening e 0.02 0.01

Length l (cm) 43.7 63.9

Fraction of beam with MFC a1 0.70 0.60

Effective flexural rigidity (Nm−2) 0.0134 0.0121

σ for V = 1500 volts 2.07 3.34
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Positive voltages are applied to both the frontside and backside MFC patches. However, since the

patches on the frontside and backside induce moments with opposite signs, a positive voltage on the frontside

patches corresponds to a positive actuation parameter (σ1) while a positive voltage on the backside patches

corresponds to a negative actuation parameter (σ2). Two different actuation region are considered—one

from 15% to 80% of span and one from 20% to 80% of span. In both cases, voltages V1 and V2 are

controlled separately. For the given configuration, σ values with a magnitude of less than approximately

3.5 are physically obtainable. Thus, relatively low end shortenings are used such that stable higher-order

equilibrium shapes are achievable.

(a) (b)

(c) (d)

Figure 6.18. Image correlation process of a beam displaying a third-order equilibrium shape with
e = 0.02, V1 = 1480 volts and V2 = −1205 volts. The piezoelectric material is actuated from
15% to 85% of span. (a) Gray-scale intensity image, (b) contour profile using Canny algorithm,
(c) edge of the beam, and (d) final shape of the beam after 50 point moving average.

(a) (b)

(c) (d)

Figure 6.19. Image correlation process of a beam showing a fourth-order equilibrium shape with
e = 0.01 and V1 = −V2 = 1475 volts. The piezoelectric material is actuated from 20% to 80%
of span. (a) Gray-scale intensity image, (b) contour profile using Canny algorithm, (c) edge of the
beam, and (d) final shape of the beam after 50 point moving average.

An image processing algorithm is used to digitize the beam’s shape and extract mid-point deflections.

Figs. 6.18 and 6.19 respectively show the main steps of image correlation process for the third- and fourth-
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order shapes of an unloaded and actuated beams. The steps of the image processing are described in more

detail in Chapter 3, but in brief, true-color pictures (Figs. 6.18 and 6.19 (a)) are first converted to grayscale

intensity images (Figs. 6.18 and 6.19 (b)), and the contour profile of the grayscale image is extracted using

a Canny algorithm [125–127]. A user-defined filtering algorithm is then implemented to identify points

corresponding to the edge of the beam while ignoring any extraneous points such as electrical wires (Figs.

6.18 and 6.19 (c)). The image of the beam’s shape consists of upwards of 1800 digitized data points. To

smooth out remaining noise in these data, a 50-point moving average is applied to give the final shape (Figs.

6.18 and 6.19 (d)).

6.4.2 Theoretical and Experimental Data Comparison

Fig. 6.20(a) shows the numerically-derived and normalized mid-point deflections versus σ1 and σ2 for e =

0.02. Sixteen points of experimental data are overlaid on the surface and indicate strong agreement with the

numerical predictions. Three experimental points, denoted A, B, and C, are identified in the inset of part (a)

and the corresponding experimental shapes are compared with the numerical prediction in Fig. 6.20(b).

Stable fourth-order equilibria are considered in Fig. 6.21 for an actuation region from 15% to 85% of

span. The normalized mid-point deflection versus |σ| for e = 0.01 is shown in Fig. 6.21(a) and is overlaid

with experimental points. Select experimentally derived stable equilibrium shapes (denoted A, B, and C)

are shown in Fig. 6.21(b) along with the corresponding numerical predictions. Point A is partway down the

first-order branch and corresponds to an equilibrium shape that is a combination of the classical first- and

fourth-order shapes. The first- and higher-order branch intersect near |σ| = 2.9. Since sp1 in this case is

less than 30%, the stable higher-order shape near the point of convergence is fourth-order (see Fig. 6.14).

This fourth-order shape persists and becomes more stable with increasing levels of actuation.
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Figure 6.20. (a) Normalized mid-point deflection, δ/δ0, versus non-dimensional actuation parame-
ters, σ1 and σ2, with the experimental data overlaid (markers). The inset in part (a) is a projection of
stable third-order equilibria onto the σ1-σ2 plane. The piezoelectric material is actuated from 15%
to 85% of span. (b) Numerical (solid line) and experimentally-derived (dots) equilibrium shape of
point A (σ1 = 1.82, σ2 = −1.66), point B (σ1 = 2.04, σ2 = −1.49), and point C (σ1 = 2.04,
σ2 = −1.66).
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Figure 6.21. (a) Normalized mid-point deflection, δ/δ0, versus electromechanical coupling param-
eters, |σ|, with experimental data (markers). The piezoelectric material is actuated from 20% to
80% of span. (b) Numerical (solid lines) and experimentally-derived (dots) equilibrium shape of
point A (|σ| = 2.22), point B (|σ| = 2.88), and point C (|σ| = 3.29).
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6.5 Conclusions

This chapter investigates the viability of stabilizing the third- and fourth-order equilibria of post-buckled

beams using piezoelectric actuation. Results indicate that by actuating several elongating piezoelectric

patches, the beam can remain in certain positions of its third- and fourth-order equilibrium shapes at rel-

atively high levels of σ. A range of possible actuation regions is also considered. Long actuation regions

can lead to stable third-order shapes over relatively low and narrow ranges of σ, whereas shorter actuation

regions need higher voltages to achieve third-order shapes. The required value of |σ| to obtain fourth-order

stable equilibria increases monotonically with deceasing actuation length. Experimental trials involving

different actuation regions and voltages for beams with end shortening of e = 0.01 and 0.02 validate the

theoretical results and physically demonstrate the stabilization of higher-order equilibria.

The results presented here can be used to inform the design of morphing composite structures and may

be leveraged for aerospace applications or in adaptive optics. Another possibility is to embed piezoelectric

actuators into biological or medical materials to morph an instrument into different configurations as needed.

This chapter also considers new approaches for modeling electromechanical structures with multiple actu-

ators. It is anticipated that these modeling efforts can contribute to research involving the exploitation or

avoidance of snap-through instability in smart devices.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this dissertation, a series of problems related to circumventing snap-through instability in post-buckled

structures have been addressed. One of the main contributions of this work is to build an extended elastica

model accounting for the influence of piezoelectric actuation bonded to a post-buckled beam. This new

electromechanically coupled framework models highly deformed piezoelectrically actuated structures and

uses it to investigate their ability to resist or circumvent snap-through. The experiments presented here

represent the first-ever physical demonstrations where piezoelectric actuation is used to increase critical

snap-through loads or avoid the phenomenon altogether.

The extended elastica model presented here expresses the piezoelectric coupling effect in terms of a

non-dimensional parameter, σ. This value can be calculated for candidate substrate/actuator configurations

across a large parameter space to expose actuation strategies that change structural stability most profoundly.

The model development begins with the bending moment of the composite beam, and then establishes the

non-dimensional equilibrium equations. Static equilibria and their stability are computed using Runge-Kutta

numerical integration and a shooting method. The potential energy of the composite is derived to provide

another means of assessing the stability of the system.

Subsequently, four research topics are presented in the dissertation based on the piezo-elastica model:

• Theoretically and experimentally investigate the strategic actuation of piezoelectric material to change

the loads required to initiate snap-through of clamped-clamped post-bucked beams.
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• Study the possibility of using piezoelectric actuation to traverse stable transitions between remote

equilibria, thus avoiding snap-through behavior altogether.

• Find the changes to natural frequencies and mode shapes of post-buckled beams during the stable

transitions.

• Theoretically and experimentally identify actuation strategies that stabilize third- and fourth-order

equilibrium shapes.

In the first topic, the model indicates that the effects of piezoelectric actuation manifest in the equilibrium

equations in the same manner as an initial imperfection. Consequently, critical snap-through loads are found

to increase linearly with increasing values of σ. Effects of piezoelectric actuation on critical snap-through

load depend on the degree to which the beam is buckled, the location of the external load, the placement of

the piezoelectric material, and the applied actuation voltage.

Next, in the second topic, the avoidance of snap-through instability is demonstrated by invoking stable

transitions between remote equilibria. Through intelligent control of the two actuators, stable transitions

between remote equilibria can be traversed, thus circumventing snap-through. The threshold for achieving

stable transitions is given by σcr. The critical threshold increases monotonically as the beam end shortening

increases. Given the limitations of existing piezoelectric actuators, stable transitions are only physically

realizable in a subset of substrate/actuator configurations.

The third topic is an extension of the second one. It considers the natural frequencies and modes of the

beams during the stable transitions. It is found that the direction of the beam’s movement in the first two

modes changes during a stable transition.

Finally, the fourth topic identifies and determines the stability of higher-order equilibrium shapes of

clamped-clamped post-buckled beams under piezoelectric actuation. It is assumed that three or four piezo-

electric patches are distributed along the beam. In certain situations, stable third- and fourth-order equilib-

rium shapes can be achieved with three and four piezoelectric patches, respectively.

7.2 Future Directions

Below are some potential avenues that could be pursued to extend this research.
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7.2.1 Extension of Piezo-Elastica Model to Post-Buckled Beam

Preliminary theoretical results indicate that for shallow post-buckled beams (see Fig. 3.11) in certain con-

figurations, the application of a constant voltage to surface piezoelectric material can increase the critical

snap-through load by more than 150%, even after adjusting for the additional weight of the piezoelectric

material. Increasing critical snap-through load has important implications for many engineering structures

in which snap-through is to be avoided. To investigate this idea further, extension of piezo-elastica model of

post-buckled beams are proposed.

Modeling: The piezo-elastica modeling approach outlined in Chapter 2 serves as a point of departure

for exploring the mechanics of piezoelectrically actuated beams in a variety of configurations. An advantage

of this formulation is that the modifications required to model the effects of extensibility, self-weight, initial

imperfections, and various boundary conditions are well established. The extension of the model to account

for these effects is planned. The piezo-elestica theory also does not place restrictions on rise angle, so

deep arches (and even “S” curves and loops [74]) can be readily modeled. More complex extensions to the

electromechanically coupled theory will also be pursued. These extensions, in order of priority, are:

1. P2 type MFC: The theory will be extended for use with the P2 (bending) type of MFC. Preliminary

work on this suggests that P2 MFC is less effective at increasing snap-through loads than the P1 type.

However, it is possible that P2 will be more effective in certain configurations, and it is important for

the piezo-elastica theory to model either type, or a combination of both.

2. Bimorphs: Thus far, the piezo-elastica theory models the piezoelectric material on one side of the

substrate. It is hypothesized that more dramatic increases in snap-through load are possible if material

is on both sides. The model will be extended to account for this situation.

3. Displacement control: Preliminary results are based on a controlled external force. Alternatively, the

displacement of a given point on the beam can be the control parameter. Under force control, snap-

through occurs in a high force/small deflection condition. In displacement control, the asymmetric

path that is unstable in the force controlled case becomes stable and the beam snaps through in a zero

force/large deflection condition. It is hypothesized that piezoelectric actuation in the displacement

controlled case will increase the deflection at the point of snap-through.
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4. Horizontal Snapping: Under load, an beam typically assumes an asymmetric shape such that its

highest point is shifted to one side of center. By applying a horizontal load in this condition, it is

possible to make the beam snap horizontally such the highest point shifts to the other side of center.

It is hypothesized that this type of snapping is more easily induced with piezoelectric actuation. If

this is the case, it is then not difficult to envision the creation of novel low energy/high displacement

actuators that exploit horizontal snapping. To explore this potential, the ability to model horizontal

snapping will be incorporated into the piezo-elastica framework.

Parameter Studies: With the model extensions in place, a broad exploration of the configuration space

is possible. Theoretical snap-through loads will be obtained for realistic values of σ, arch rise angles,

boundary conditions, and piezoelectric patch configuration. For deep curved beams, the load-deflection

behavior is quite rich, so it is likely that this relationship will not be straightforward. As discussed in Chapter

3, certain configurations yield increases in snap-through load that more than compensate for the weight

introduced by the piezoelectric material. However, the degree to which this is true is highly configuration

dependent, and a systematic parameter study will identify the configuration space over which piezoelectric

actuation is a weight-advantageous strategy.

7.2.2 Changing Critical Snap-Through Loads of Post-Buckled Plates

Through an approach that involves modeling, parameter studies, optimization, and experiments, the funda-

mental features that affect piezoelectric stability enhancement in plates could be exposed.

Modeling: A theoretical model of post-buckled plates under quasi-static actuation from an arbitrary

placement of piezoelectric patches could be developed. This could be accomplished by augmenting an

approach in Ref. [65]. In that research, the von Kármán plate equations were solved using a Galerkin

approximation for both the out-of-plane deflection and the Airy stress function. This resulted in a set of

nonlinear ODEs that was solved using the AUTO continuation package [77] to determine equilibrium paths

and stability. This approach could be expanded to account for electromechanical coupling. As with the

piezo-elastica theory, system equations will be cast in non-dimensional terms to enable a more general

investigation of the configuration space.
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Parameter Studies: As with beams, an exploration of the configuration space could be conducted for

piezoelectrically actuated post-buckled plates. Parameters to be varied include plate aspect ratio, in-plane

loading, MFC type (P1 or P2), and the placement of the MFC patches.

Optimization: Given the two-dimensional nature of plates, it is hypothesized that certain—perhaps

non-obvious—configurations of piezoelectric patches will be relatively more effective at changing critical

snap-through loads. To identify these configurations, an optimization scheme can be wrapped around the

snap-through analysis to identify desirable conditions. Objective functions that maximize the critical snap-

through load, minimize the amount of piezoelectric material required to achieve a desired critical snap-

through load, and/or minimize the amount of required actuation energy are all possible.

7.2.3 Avoidance of Snap-Through Instability of Post-Buckled Plates

Traversing stable paths between remote equilibria is an intriguing idea, and preliminary results raise a num-

ber of questions requiring deeper inquiry. Chapter 4 and 6 study stable transitions of post-buckled beams

using several patches of P1 type MFC based on electromechanically coupled elastica model. Now, modeling

and testing stable transitions between remote equilibria in post-buckled plates is much more complex.

Modeling: The electromechanically coupled Galerkin approach discussed previously could be adapted

to model active control of the piezoelectronics. As with beams, multiple actuation strategies and topologies

will be investigated to fully identify the conditions that give rise to stable transitions.

Optimization: With the expanded parameter space, optimization will be especially necessary in the

analysis of plates. As with post-buckled beams, an optimization scheme will be wrapped around the model

to identify maximally stable paths, minimal energy paths, and ideal actuator placements. Different unimorph

and bimorph placements, MFC types, and actuation schemes will again be considered in the optimization.
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