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ABSTRACT 

 In Aim 1 of the study, I found heterogeneity in processing of WGS data among studies 

and some areas of consensus especially in recent literature. SNP thresholds are the most widely 

used method for inferring transmission with thresholds of 12 and 5 SNPs the most widely used. 

Bayesian transmission modeling attempts to address their limitation and is increasingly being 

used in transmission studies. 

In aim 2, I investigated the role of the social network of a TB case in transmission of 

tuberculosis using a large social network study, the Community Health and Social Networks of 

TB (COHSONET) study. I also determined the relationship between genetic distance and social 

network distance. I found that 43% of the index case pairs who had genetically linked strains of 

Mycobacterium tuberculosis had an identifiable path between them in the social network, but 

only 13% of these index pairs were found to have a close social distance of one step in the social 

network. There was no correlation between genetic distance and social network distance. 



In aim 3, I investigated genetic linkage among TB patients in the COHSONET study 

using a threshold of 12 SNPs to identify clusters of recent transmission, and covariates 

associated with clustering. I found that twenty-nine (36.7%) patients of the 79 sequenced isolates 

formed 12 clusters. A multivariate logistic analysis showed that clustered cases were more likely 

to be current or past smokers. 

Unlike deterministic compartmental models, network models account for heterogeneity in 

mixing patterns. I implemented an individual-based version (particularly a network model) of a 

deterministic model with two latency compartments on a dynamic network simulated from a 

static network (Aim 4). The model depicted expected dynamics in a viability analysis when 

compared with a deterministic version. The model will be used to answer research questions 

such as whether infections in the household are sufficient to maintain the epidemic in the 

community, and if not so, different scenarios explaining the observed infections in the 

community will be simulated. 
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CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW 

 

WHAT IS TUBERCULOSIS? 

Tuberculosis (TB) is an airborne infectious disease caused by the bacillus Mycobacterium 

tuberculosis (Mtb). Tuberculosis typically affects the lungs (pulmonary TB) but can affect other 

sites (extrapulmonary TB) such as lymph nodes, bones and the central nervous system.  

TB is spread when a person with infectious (pulmonary) TB expels bacteria (infectious 

particles) into the air (for example by coughing or sneezing) which when they survive in the air 

are inhaled by a susceptible individual who may become infected and has the potential to 

develop TB 1.  

Known signs of pulmonary TB include: coughing for greater than 2 weeks (often 

producing sputum which may be bloody), fever, night sweats, weight loss, chest pain. Symptoms 

of extrapulmonary TB vary by site.  

EPIDEMIOLOGY OF TB 

An estimated 10 million people suffered from TB in 2018, 5.7 million of which were 

men, 3.2 million were women and 1.1 million children 2. Nine-percent (9%) were people living 

with HIV (72% of which were in Africa). The majority of the cases (68%) were in South-East 

Asia (44%) and Africa (24%) where the epidemic is predominantly driven by transmission 

(rather than reactivation of latent infection) and high rates of HIV.   

TB is the ninth leading cause of death worldwide and has maintained its position, over 

the past 5 years, as the leading cause from a single infectious agent, ranking above HIV/AIDS 
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and malaria 2. TB also continues to be the leading cause of death among people living with HIV, 

accounting for nearly one in three HIV-related deaths. An estimated 1.5 million people died from 

TB in 2018 2. 

Humans are the sole reservoir for Mycobacterium tuberculosis (Mtb), the causative agent 

of TB. Nevertheless, animal hosts especially cattle 3–5 have been suggested though it is 

questionable how important they are. Therefore, person-to-person transmission is the known sole 

mechanism for propagating the global TB epidemic.  

Close contacts of infectious TB cases are susceptible to becoming infected, and if 

infected, to progressing to active TB disease. With latent infection, individuals experience no 

adverse health effects (no symptoms and don’t feel sick) and will not transmit Mtb, but they face 

an ongoing risk of developing active tuberculosis through reactivation. Overall, about 5 to 15% 

of infected persons who do not receive treatment for latent TB infection will develop TB disease 

at some time in their lives, with 5% developing active disease within 2 years of infection. 

However, the probability of developing TB disease is higher in children (<5 years), among 

people infected with HIV, in silica-exposed miners particularly those with silicosis and in people 

affected by risk factors such as under-nutrition, diabetes, smoking and alcohol consumption 1,6. 

STATEMENT OF THE PROBLEM 

In 2014, the WHO set an ambitious target to end TB by 2035 7 which has at its core the 

early detection and treatment of existing cases. While diagnosis and treatment of index cases are 

essential for the proper management of the individual case, they may not be sufficient to control 

the epidemic. Like most infectious diseases, tuberculosis creates the next generation of new 

cases through transmission before the diagnosis is made and treatment begun in the index case. 
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This transmission may sustain the epidemic in the community by replacing one case with another 

over time 8. Therefore, efforts to end TB will depend on our ability to halt ongoing transmission. 

As long as there are unrecognized, infectious cases circulating in the community, so does 

the risk of infection and disease to vulnerable populations such as children and HIV seropositive 

persons. Control of the epidemic in the population confers protection at the individual level to 

these vulnerable populations who benefit from having less levels of TB circulating.  

GAPS IN KNOWLEDGE 

Variability in data processing and transmission inference methodology 

Whole Genome Sequencing (WGS) has improved our ability to characterize transmission 

events by providing better resolution compared to genotyping techniques for example MIRU-

VNTR (Mycobacterial Interspersed Repetitive Units - Variable Number of Tandem Repeats), 

Spoligotyping and RFPL (Restriction Fragment Length Polymorphism) that only use less than 

0.1% of the bacterial genome. With recent improvements in Next Generation Sequencing (NGS) 

technologies as well as the reduction in cost and turnaround time of sequencing workflows, 

WGS has replaced traditional molecular typing as routine in Mycobacterium tuberculosis. 

However, there are many computational pipelines that are used in TB transmission 

studies to process WGS data with each pipeline containing a series of data processing steps. The 

way WGS data is processed varies from one study to another and has implications in the 

identification of transmission events. In addition, the methods used to identify transmission 

events are not homogeneous among studies. Even with the SNP (Single Nucleotide 

Polymorphism) threshold, there are various thresholds used. This variation in WGS data 

processing and transmission inference methodology leads to limited comparability among 

transmission studies of tuberculosis. There is a need to review the individual data processing 
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steps, available full computational pipelines and methods used to infer transmission of 

Mycobacterium tuberculosis. 

Limited understanding of local dynamics and drivers of transmission 

While home-based contact investigations and infection control programs in hospitals and 

clinics have a successful track record as TB control activities, there is a gap in our knowledge of 

where, and between whom, community-based transmission of TB occurs. Household contact 

studies have previously highlighted the household as an important setting for transmission of 

Mycobacterium tuberculosis 9 but recent evidence suggests that household transmission accounts 

for a smaller percentage of the total number of TB cases (Martinez et al., 2017) indicating that 

majority of the cases occur outside the household (i.e., in the community). 

The fact that a small proportion of TB is attributed to being a household of a TB case 

suggests that there are other unrecognized routes, beyond the household, via which TB is 

transmitted that could be sustaining the epidemic in the community. One such route could be 

transmission via extra-household contacts who are within the social network of a TB index case 

(Figure 1.2). This network may contain their workmates, same church goers, peers, persons with 

whom they spend a significant proportion of their time. This study will explore the role of this 

potential non-geographical hotspot in the transmission of TB.  

Deterministic compartmental models have been used for studying the transmission of 

Mycobacterium tuberculosis 11,12. However, these models are so simplistic in that they assume 

random (or homogeneous) mixing of individuals in the population meaning that all susceptible 

persons have equal probabilities of getting infected which is not always true. In practice, each 

infectious individual has a finite set of contacts to whom they can pass infection.  
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Individual-based models such as network models allow us to account for heterogeneity in 

mixing of individuals in the population. Network models have been used for the study of 

transmission dynamics of other infectious diseases such as HIV 13–16 but not so much for 

tuberculosis yet like for HIV, network structure plays a critical role in the transmission of 

Mycobacterium tuberculosis. 

HOW THIS PROJECT TRIES TO FILL THE IDENTIFIED GAPS 

In the first aim of this project, I performed a systematic review of individual data 

processing steps, available full computational pipelines and the methods used in published 

studies to infer (confirm or refute) direct transmission of Mycobacterium tuberculosis using 

Whole Genome Sequences from pathogen isolates. I describe the rationale behind each data 

processing step and discuss the strengths and limitations of each approach used for making 

transmission inferences. 

In the second aim, I explore the role of the social network of index tuberculosis cases in 

the transmission of Mycobacterium tuberculosis by determining the proportion of putative direct 

transmission events that occur among index tuberculosis cases with an identifiable path in the 

social network.  I also determine the relationship between social network distance and genetic 

distance. 

In the third aim, I identify covariates associated with genetic clustering of index 

tuberculosis cases in an endemic setting in Kampala-Uganda, including social network 

characteristics such as degree, betweenness and centrality. The variables associated with 

clustering of tuberculosis patients could be maintaining the epidemic in this setting.  
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In the fourth aim, I developed a stochastic network model to be used to study 

Mycobacterium tuberculosis transmission. I implemented an individual-based version of a 

deterministic model with two latency compartments 11,12, particularly a network model. 

LITERATURE REVIEW 

Why systematic reviews? 

Given the ever-increasing output of scientific publications, scientists can’t be expected to 

examine in detail every single new paper relevant to their interests 17. Timely systematic reviews 

try to fill this gap by providing a snapshot of the topic of interest through critical appraisal of the 

research studies that satisfy pre-specified eligibility criteria and a mainly qualitative synthesis of 

the results. They are different from meta-analyses where statistical methods are used to 

summarize the results of these studies.  

Systematic reviews are a good starting point for researchers intending to learn about a 

new research topic of interest but they also give regular updates to existing researchers in the 

field since they give insights into the current state of the field. Due to their summarized format, 

systematic reviews are often widely read compared with primary research. Because data is 

collected using a systematic methodology, the likelihood of reproducing results is quite high. 

The number of TB studies that use WGS to study transmission have increased in recent 

times. There is some heterogeneity in the individual data processing steps and computational 

pipelines used in processing pathogen WGS data. Variations in these data processing steps affect 

the inferences made with regards to transmission.  

Previous reviews on the use of WGS in TB transmission studies 

Most previous reviews compare WGS with traditional genotyping with focus on 

transmission inference and less on WGS data processing 18–21.  
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Vlad and colleagues studied the sensitivity and specificity of WGS for detection of recent 

transmission using conventional epidemiology as the gold standard 20,21.  

The review by van der Werf and Ködmön 19 focused on use of WGS to investigate 

international tuberculosis outbreaks.  

The review by Hatherell and colleagues 18 looked at methods used to infer transmission 

but included only 12 research articles that were published until 14th July 2015. More studies 

using WGS to study Mycobacterium tuberculosis transmission, employing newer methods for 

transmission inference and incorporating best practices for WGS data processing, have been 

published since then. 

A typical pipeline for WGS data processing 

A typical computational pipeline for processing WGS data for purposes of transmission 

inference begins with the raw reads, resulting from sequencing isolated DNA of a pathogen of 

interest, for our case Mycobacterium tuberculosis. The reads can either be single-end (sequenced 

from one end of the DNA fragment to another) or paired-end in which each end of the same 

DNA fragment is sequenced i.e., one sequence (e.g., the forward read) runs from one end to 

another and the other (the reverse) runs in the opposite direction. This helps in resolving 

ambiguous bases thereby improving the quality of the alignment.  

Choice of WGS platform depends on length of reads (longer reads desirable), cost (low 

cost desirable) and sequence quality (low per base error rate desirable). Illumina, San Diego, CA, 

USA is the most widely used mainly due to the low per base error rate 22, though the reads are of 

a shorter length (a maximum of 150bp for the HiSeq and a maximum of 300bp for the MiSeq) 

hence cannot resolve repetitive elements. Proline-Proline-Glutamate (PPE)/ Proline-Glutamine 

(PE) gene families of Mycobacterium tuberculosis are very repetitive, so cause trouble when 
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sequencing on Illumina. Repetitive regions are collapsed into one hence won’t be detected. For 

this reason, SNPs in PPE/PE genes are often removed while making inferences on 

Mycobacterium tuberculosis transmission. The law of repeats states that ‘It is impossible to 

resolve repeats of length L unless you have reads longer than L’. 

There are five main WGS technologies: Illumina/Solexa (Sequencing by synthesis; 100-

300bp), Ion Torrent (Thermo Fisher Scientific; Life Technologies; Applied Biosystems Inc. 

(ABI: SOLiD ligation sequencing system); Ion semiconductor and sequencing by ligation; 100-

400bp), Pacific Biosciences (Single molecule via dye labels; PacBio: longer reads: 5,000-

25,000+bp: used mainly for creating reference sequences), Nanopore (Oxford Nanopore; 

Electronic nanopore sensing; 5,000 - 1,000,000+ bp: longer read length but high per read error 

rate) and Roche (454 Life Sciences; Pyrosequencing, single-molecule nanopore; 100-150bp in 

2015, now up to 700+bp since launch of 454 GS FLX Titanium system in 2008) 23. Illumina/ 

Solexa sequencing and ABI/solid (Applied Biosystems) support both single end and paired-end 

sequencing 24. 

PacBio and Oxford Nanopore sequencing platforms produce longer reads (>20,000bp). 

Longer reads are desirable because they are better for detecting features such as repetitive 

elements. Illumina compensates for its short-read lengths through supporting paired-end 

sequencing, in which each end of the same DNA molecule is sequenced 23. This greatly improves 

the quality of the alignment compared with single reads alone. In addition, Illumina’s low per 

base error rate has made it the most widely used platform 22. Illumina/ Solexa sequencing and 

ABI/solid (Applied Biosystems) support both single end and paired-end sequencing 24.  

Before starting the WGS analysis, an initial quality check is performed on raw reads to 

ensure that it’s satisfactory and decisions are made on how to improve downstream analysis by 



 

9 

performing a series of additional preprocessing steps. One example tool for performing initial 

quality checks on raw reads is FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The tool produces several 

statistics characterizing the raw data quality: per base sequence quality, per sequence quality 

scores, per base sequence content, per sequence GC content, Sequence length distribution, 

adapter content, Kmer content and sequence duplication level. Preprocessing involves trimming 

raw reads and quality filtering.  

Trimming involves Identifying and removing low quality sequences or parts of sequences 

such as adapter fragments, nucleotide bases having less than minimum threshold quality score 

and known contaminants (e.g., with Kraken) from raw reads. With the benefit of longer reads in 

mind, trimmed reads below a minimum threshold length are discarded. Trimming has been 

shown to increase the quality and reliability of the analysis by reducing the false positive call rate 

for bases during reference-based assembly 25.  

In addition, trimming reduces the amount of computational resources (RAM, disk space 

and execution time) needed during subsequent data processing and downstream analysis. 

Different trimmers produce different results and are highly dependent on the parameters used. 

One such parameter is the minimum quality threshold, Q. A high value of Q leads to as small 

size surviving dataset while a lower value of Q retains a lot of low quality regions and 

unnecessarily increasing computational requirements 25. Preprocessing ends with filtering the 

reads by quality score and those with a pre-set percentage of bases below the minimal threshold 

quality score (MinimalQ) are discarded. 

Now that the quality of reads is satisfactory, the next step in the pipeline is to map the 

quality reads to a reference genome of choice. A study by Lee and Behr showed that the choice 
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of reference genome, within the Mycobacterium tuberculosis complex, has negligible influence 

transmission inferences made 26. For each sample, you map each read to the reference genome 

using a mapping algorithm/software of choice. 

Prior to variant discovery, post-mapping Quality Control (QC) is performed to assess the 

quality of the mapping i.e., having completed the alignment, the first thing we want to know is 

how well did our reads align to the reference. This is important because some issues such as low 

coverage only appear after alignment. Identifying and fixing mapping issues makes downstream 

processing easier and more accurate. An example metric for post mapping QC is the sequencing 

coverage depth which is the number of reads that cover a given genome base or the average 

number of times a given region (e.g., a base) has been sequenced or covered by independent 

reads. Sequencing coverage depth determines with what confidence variant calling is done. The 

deeper the coverage, the more reads are mapped on each base and the higher the reliability and 

the accuracy of base calling. 

Samples with average genomic coverage (sequencing depth) and a minimum threshold 

percentage of reads mapped correctly (uniquely mapped reads) less than minimum threshold 

values are flagged for further assessment. Poorly mapped reads include unmapped reads (reads 

that failed to map), duplicated mapped reads and multi-mapped reads. Duplicated mapped reads 

are those that accumulate at the same start position in the reference genome. They may arise due 

to errors in the sample or library preparation leading to multiple reads from the exact same input 

DNA template. Although read duplicates could represent true DNA materials, it’s impossible to 

distinguish them from PCR artifacts which are results of uneven amplification of DNA 

fragments. Therefore, to reduce their harmful effect of multiplying any sequencing errors leading 

to artifacts in downstream analysis, duplicated mapped reads are identified and removed. Multi-
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mappers (reads that don’t map to a single unique position in the reference genome, also called 

repeats) are also removed. Reads can be filtered by mapping quality. Only reads aligned with a 

quality score higher than a given threshold are retained. 

Now that we are confident with our assembly, the next step is variant discovery. For 

purposes of transmission analysis, the only variants detected are Single Nucleotide 

Polymorphisms (SNPs. A SNP is a change of a single nucleotide at a specific position in the 

genome, where each variation is present to some appreciable degree within a population (for 

example greater than 1% frequency). A Single Nucleotide Variant (SNV) is a variation in a 

single nucleotide without any limitations on frequency. Variants (SNPs) are called/detected using 

a given choice of SNP caller and are then annotated say for gene function (e.g., drug resistant 

SNPs). The number and quality of variants varies by variant caller with each variant caller 

detecting SNPs with a different level of sensitivity and specificity 27. In their study, Hwang and 

colleagues showed that SAMtools variant caller combined with the BWA-MEM aligner had the 

best performance, but Freebayes with any aligner showed an equally high performance for the 

SNP calls 27. 

The ‘raw’ variants are filtered so as to remain with only quality variants i.e., low quality 

variants are discarded. This involves steps such as removing variants in repetitive regions of the 

genome (due to the difficulty in sequencing such regions), base calls below the defined minimum 

read coverage/depth, high-density SNPs (highly clustered SNPs), SNPs below minimum allele 

frequency, base calls below minimum base quality and mapping quality, SNPs in drug resistant 

regions (figure 4). Regions of high SNP density are indicative of recombination. SNPs in 

resistance-mediating (drug-resistance associated) genes are removed to rule out selection 

pressure (mutation) due to drug resistance. 
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Methods used to infer transmission 

The most used approach for inferring TB transmission is the use of Single Nucleotide 

Polymorphism (SNP) thresholds 18 because of their simplicity. However, there is always a 

question on which threshold to use for confirming (or refuting) transmission. Another limitation 

of this approach is that it has a higher dependence on the fraction of sequenced isolates. Hence 

transmission may be under reported in case some of the outbreak patients, for example are not 

sampled. Seemingly unrelated TB patients could have transmission links with un-sampled TB 

patients.  

Alternative approaches have been suggested such as transmission modeling (e.g., R 

packages: Transphylo and Outbreaker, use of transmission kernels etc.). Transphylo 28 is a 

Bayesian transmission modeling approach that uses a time-labelled phylogeny such as the ones 

output by BEAST 29,30 to infer a transmission tree. It has an added advantage of inferring 

undetected cases and incorporating within host diversity of the pathogen.  

Outbreaker 31 can infer the reproductive number of the pathogen which can tell us about 

how effective the infection is transmitted. Unlike Transphylo, Outbreaker doesn’t consider 

within host diversity. In Outbreaker, potential transmission events are inferred from clustering 

events on the phylogeny such as clades/lineages. From the transmission tree, one can estimate 

the number of secondary infections generated by each case and thus of the transmission intensity 

(characterized by the reproduction number, R) over time  31. 

Using transmission modeling, TB patients can be connected through transmission tree 

inference by combining epidemiologic (sample collection dates, start period of coughing), social 

network data (as a proxy for contact proximity) and genomic data (pathogen genome sequences). 



 

13 

A list of other open source tools for inferring TB transmission with WGS is found at  

https://github.com/molecular-epidemiology/molepi-tools. Other methods will be arrived at from 

the systematic review. 

Where is transmission occurring? 

There is a wealth of evidence to support transmission of tuberculosis in households and 

the household has been highlighted as an important setting for TB transmission (Martinez et al., 

2017; Morrison et al., 2008). A systematic review and meta-analysis performed by Martinez and 

colleagues showed that exposed children in households of an index TB case are 3.79 (95% 

confidence interval (CI): 3.01, 4.78) times more likely to be infected than their community 

counterparts (Martinez et al., 2017).  

Despite the high risk of TB infection among household contacts of a TB case compared 

to their community counterparts, there is a small proportion, only 14%, of transmission is 

attributable to household exposure (Martinez et al., 2017). In settings with a high tuberculosis 

burden, tuberculosis transmission is therefore more likely to occur outside the household such as 

in  healthcare and congregate settings for example schools, public transportation settings, 

workplaces, mines, shelters and prisons 1. 

Social networks and transmission of Mycobacterium tuberculosis 

The relevance of social network structure to transmission dynamics of disease has been 

well studied for HIV and other sexually transmitted infections 33–36 particularly in the study of 

sexual networks and behavior among these networks but not so much for TB, yet like for HIV, 

social network structure including contact and mixing patterns of the population play a critical 

role in the transmission of TB. Network characteristics, such as size, composition, and density 

have been found to be associated with HIV risk behaviors that include sharing injection 
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equipment, drug use cessation, having multiple concurrent sexual partnerships, unprotected sex, 

and exchanging sex for money or drugs. Social network approaches have thus been developed 

for HIV prevention interventions to reduce risk behaviors 36. 

Most social networks used in the study of infectious diseases are, first-order egocentric 

social networks. This means, for example for TB, an index case is identified who is asked to list 

their close contacts (first level contacts).  The first order egocentric structure can be extended to 

include second level contacts i.e., the contacts of contacts.   

Most network studies are cross-sectional and social networks are normally constructed by 

means of interviews with patients.  Social network questionnaires are given to patients which 

they fill out with guidance from the interviewers who are part of the study team 37. Questions 

asked include identifying information (such as age/date of birth, sex, ethnicity); questions on 

medical history (e.g., HIV status, previous TB episodes); symptom onset (e.g., start of cough, 

previous contact with a TB case); questions on risk factors such as smoking, drug and alcohol 

use; questions on place of residence; travel history; places of social aggregation; social contacts 

(including closest household and non-household members); and time spent with each of the 

listed social contacts 38.  

Although the associations between certain social determinants and the occurrence of 

tuberculosis have been explored, the relationships among individuals have been less studied and 

Social Network Analysis (SNA) methods have been less used. More so, the role of the social 

network of a TB case in the transmission of Mycobacterium tuberculosis has not been explored. 

For example, the relationship between genetic linkage and genetic distance with social network 

distance has not been studied. SNA has been used retrospectively to characterize Mtb outbreaks, 
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identify risk factors for transmission, locate places of recent transmission and highlight the 

importance of places of social aggregation in sustaining transmission 38–43 

SNA (together with WGS) was used to study an outbreak of TB in British Columbia, 

Canada 38. The social network was constructed by means of interviews with patients to determine 

the origins and transmission dynamics of the outbreak. The methodology was used to study how 

TB was transmitted making it possible to identify the individuals and characteristics that 

facilitated transmission. Traditional contact tracing didn’t identify the source of the outbreak. 

SNA identified an adult with cavitary, smear positive pulmonary TB that had been asymptomatic 

and un-treated for at least 8 months before detection of the first case, as the source of the 

outbreak. SNA identified increased crack cocaine use among a high-risk social network as a 

socioeconomic factor that may have triggered the simultaneous expansion of the two lineages 

from a common ancestor that had been detected in the community before the outbreak. Use of a 

social network questionnaire improved contact tracing and subsequent active case finding efforts 

by revealing previously unreported social interactions and identifying several locations 

frequented by infectious patients, including two hotels, a meal center, two community centers, 

and a series of crack houses. Use of the social network questionnaire also identified demographic 

characteristics associated with an increased risk of TB transmission. Transient living 

arrangements, crack cocaine use and alcohol use were associated with an increased risk of TB 

transmission. 

Traditional epidemiological methods in combination with SNA and WGS were used to 

investigate the transmission of TB in an educational institution following an outbreak in the 

South West of England 43. SNA identified shared exposures (with a suspected/active disease 

case) associated with an increased odds/risk of developing active disease and Latent TB 
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Infection (LTBI). The community including the suspected index case was at significantly 

elevated risk of active disease (odds ratio 7.5, 95% CI=1.3 to 44.0). 

Drivers of Mycobacterium tuberculosis transmission  

The drivers of TB transmission differ by setting. This is because, countries (or regions) 

differ in the burden of prevalent tuberculosis, HIV burden, capacity of healthcare and public 

health systems to identify and effectively treat individuals with infectious forms of tuberculosis, 

and the ways in which individuals live, work, and interact i.e., social mixing patterns 1,44. 

Before the emergency of WGS, traditional genotyping has been used to identify factors 

associated with recent transmission, using clustering of isolates based on their genotypic profiles 

as a measure of recent transmission 45. In this approach, individuals with identical or similar 

fingerprint patterns are considered to be clustered. Patients whose isolates cluster together are 

considered to be part of the same recent transmission chains while those with unique (un-

clustered) isolates are more likely to be cases of reactivated TB disease that was acquired in the 

past 45. The covariates associated with clustering are determined by comparing the characteristics 

of clustered and non-clustered TB patients.  

Due to its low-resolution nature, standard genotyping over estimates the proportion of 

isolates involved in a recent transmission chain and falsely clusters the isolates. This is why 

WGS (Whole Genome Sequencing), that is characterized by its high-resolution nature, has 

replaced traditional molecular typing as routine in Mycobacterium tuberculosis (Mtb) 

transmission studies. WGS has been shown to separate isolates that had previously been 

identified as part of the same transmission chain using traditional genotyping techniques leading 

to multiple smaller distinct clusters and less clustering 46–51. As such, with WGS, the factors 

associated with clustering can be identified with a high degree of accuracy. 
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Recent literature has seen WGS being used to identify drivers of tuberculosis 

transmission 38,52,53. In these studies, recent transmission events are mainly identified using the 

number of Single Nucleotide Polymorphisms (SNPs) or a Bayesian model that uses WGS data 

and temporal data such as sample collection dates or dates of symptom onset. These transmission 

events are related with epidemiological data so as identify factors associated with transmission 

and thus the drivers of transmission. 

WGS was used to study an outbreak of TB in British Columbia, Canada that happened 

between May 2006 and December 2008 38. 36 complete Mtb genomes, of which 34 were from 

the outbreak and 4 were from historical isolates from the same region but sampled before the 

outbreak with matching genotypes, were sequenced on the Illumina platform (Genome Analyzer 

II sequencer). Transient living arrangements, crack cocaine use and alcohol were associated with 

an increased risk of tuberculosis transmission. 

In a study in Rural Malawi, WGS of DNA for 1907 culture confirmed TB patients was 

used to identify transmission events and analyze risk factors associated with transmission 53. The 

study analyzed risk factors associated with confirmation of transmission using logistic 

regression. The number of pairwise SNP differences between isolates were used to identify likely 

transmission events. Risk factors included: age, sex and HIV status of the index cases and the 

contact; isoniazid resistance and Mtb lineage; relationship, intensity of contact, and time interval 

between the case and the contact. Intensity of contact was defined as high if the contact was 

prolonged, indoors and no more than one day, and very high if the case had nursed the prior 

contact while they were ill. 

In the Karonga prevention study in Malawi (Guerra-Assuncao et al., 2015), WGS was 

used to identify factors associated with recent transmission and transmissibility of TB. Recent 
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transmission was defined as a clustered isolate (within a SNP threshold of 10 SNP differences) 

whose most likely source was within 5 years. The seqtrack algorithm implemented in R’s 

adegenet package 55 was used to reconstruct the outbreak and to identify the number of putative 

secondary cases per source case. Ordered logistic regression was used to assess risk factors for 

transmission and the number of transmissions. They found that, compared to lineage-4 (the 

commonest lineage), lineage-2 and lineage-3 strains were more likely to be clustered and in 

larger clusters and lineage-1 strains were less likely to be clustered and were in smaller clusters. 

They also found that the elderly (age 50+ years) were less likely to cluster while those living 

outside the district were more likely to cluster. There was no association between clustering with 

sex, HIV status, sputum smear status or isoniazid resistance.   

Modeling Mycobacterium tuberculosis transmission 

Deterministic compartmental models have been the go-to modeling methodology for 

studying transmission of Mycobacterium tuberculosis because they are generally easy to 

formulate and implement and require low computational resources in order to perform 

simulations. All these models have at least one compartment for latently infected individuals 

who move to this compartment on infection by a person with infectious TB disease.  

Models with two latency compartments 11,12, one for latently infected individuals with a 

low-risk of progressing to active TB (the slow progressors) and another for latently infected 

individuals with a high-risk of progressing to active TB disease (the fast progressors) have been 

shown to produce better fits to observed data compared to those with a single latency 

compartment 12.  

One limitation of deterministic compartmental models is that they are so simplistic in that 

they assume random (or homogeneous) mixing of individuals in the population meaning that all 
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susceptible persons have equal probabilities of getting infected which is not always true. In 

practice, each infectious individual has a finite set of contacts to whom they can pass infection. 

Individual-based models on the other hand such as network models allow us to account for the 

nature of mixing of individuals in the population. We can thus explore the effect of the 

underlying structure of the network on dynamics occurring on the network.  

Network models are compelling for studying transmission dynamics of Mycobacterium 

tuberculosis since adequate contact is required for effective transmission to occur. It has always 

been known that compartmental models are too simplistic. What has been lacking are the 

necessary tools to implement more accurate connection structures. With the emergency of tools 

such as the Statnet suite of packages 56, we can explore transmission dynamics of 

Mycobacterium tuberculosis using the more realistic stochastic network models. 

PROJECT GOAL 

The goal of this project is to characterize extra-household transmission of Mycobacterium 

tuberculosis using social networks of TB patients so as to inform public health interventions 

aimed at interrupting transmission. 

UNDERLYING THEORY 

This project is based on two theories: 

Epidemic theory 

The reproductive number, R, defined as the average number of secondary infectious cases 

caused by one infectious individual (before they recover or die or are otherwise not able to 

further transmit) is useful in studying how effectively an infectious disease transmits. A special 

case of R, called the reproductive number, R0, is where the infection is introduced in a population 

of totally susceptible individuals such as at the beginning of an outbreak. It is a measure of the 
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transmission potential of a disease in a particular setting. It does by definition not change during 

an ongoing outbreak. The more general definition of the reproductive number, R, does change 

during an epidemic. R is the basic reproductive number discounted by the fraction of the host 

population that is susceptible (x) i.e., R= R0x. Since, a population will rarely be totally 

susceptible to an infection in the real world, R is therefore the average number of secondary 

cases per infectious case in a population made up of both susceptible and non-susceptible hosts. 

In its simplest form, R0 depends on the risk of transmission per contact (b, the attack rate), 

the number of susceptible contacts per unit time (k, the contact rate) and the duration of 

infectiousness (d). (i.e., R0 = b x k x d). We are still lacking in our understanding of these factors 

with regards to TB yet these factors are important in determining the next generation of cases. 

For example, we know little about the mixing patterns of individuals in the population and 

consequently the contact rate. As such most compartmental models of TB transmission assume 

homogeneous mixing of the population, which is not always true. Social Network studies have 

shown that individuals preferentially mix such as with peers, agemates etc. More so, persons bed 

ridden with TB or any health problem tend to be less mobile. Studying social networks of TB 

cases will enable us to understand the mixing patterns of the population from which we can 

derive the contact rate. 

We also don’t know about the risk of transmission per contact. WGS can enable us to 

estimate the probability (risk) of transmission given contact between two individuals with the 

same strain of Mtb. Contact can be established via epidemiologic linkage in terms of temporal 

and spatial connectivity. The time of symptom onset (or time of TB diagnosis) and geographical 

coincidence such as residing in the same locality or frequenting a particular location (e.g., a bar, 

school, place of worship etc.) can be used to establish temporal and spatial connectivity, 
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respectively and as such to establish contact between individuals. The probability of transmission 

can be calculated from, for example, the genetic distance between isolates using the number of 

Single Nucleotide Polymorphisms (SNPs) as a distance metric given a particular model of 

evolution. 

The duration of infectiousness is approximated by subtracting the time when an individual 

started developing symptoms (such as chronic cough) from the time they are ‘removed’ from the 

population when a diagnosis is made and treatment is given.  

Modes of inheritance in Mycobacterium tuberculosis 

Inheritance is a key process in the evolution of bacteria and also represents a source of 

genetic variation in eukaryotes. Transfer of genetic information between individuals is achieved 

by two mechanisms: vertical, from parent to siblings, and horizontal between individuals of the 

same or different species 57.  

Under vertical inheritance, mutations such as Single Nucleotide Polymorphisms (SNPs) 

accumulate in the DNA of the daughter cell or DNA is rearranged (e.g., an inversion, insertion or 

deletion). The daughter cell’s DNA is from the parent DNA and differences between the parent 

cell’s DNA and the daughter cell’s DNA accumulate over time. Therefore, if we know the rate of 

accumulation of these differences, we can infer when two bacteria had common ancestor (hence 

transmission). Vertical inheritance suffices in explaining the evolution of Mtb as well as genetic 

variation in isolates sequenced from different TB patients.  

During analysis, the sequenced isolate is compared to a reference strain and regions of 

difference (such as SNPs) are ascertained and counted. Consequently, the smaller the number of 

SNP differences, the higher the likelihood of a recent transmission. The number of SNP 

differences between pairs of outbreak isolates has been used in many studies as a genetic 
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distance metric to infer the presence of potential transmission links between outbreak isolates 

53,58–60.  

Under horizontal gene transfer, new DNA is incorporated into the existing bacterial DNA 

leading to recombination (integration into chromosome) or establishment of a plasmid. The 

mechanisms for horizontal gene transfer are: transformation – transfer of naked DNA, 

transduction – transfer of DNA by viruses and conjugation – bacterial mating. Under horizontal 

gene transfer, the daughter cells’ DNA is from parent cell plus other sources of DNA (coming 

and going). The rate of accumulation of differences between the parent cell’s DNA and the 

daughter cell’s DNA can be drastically different with for example SNPS accumulating over time 

together with added DNA. It’s often hard to detect new DNA when aligning a DNA sequence to 

a reference that doesn’t have it. As such inferring transmission becomes challenging due to 

presence of different types of mutation. 

SPECIFIC AIMS 

Aim 1 

To perform a systematic review of the individual data processing steps, full computational 

pipelines and the methods used in published studies to infer (confirm or refute) direct 

transmission of Mycobacterium tuberculosis using Whole Genome Sequences from pathogen 

isolates. 

Research questions 

a) What individual data processing steps are done when processing WGS data for purposes 

of making inferences about transmission of Mycobacterium tuberculosis? 

b) Are there any full computational pipelines for processing Mycobacterium tuberculosis 

pathogen WGS data that have been developed? 
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c) Which methods are being used in making transmission inferences? 

Aim 2 

To determine the role of social networks of index TB cases in the transmission of 

Mycobacterium tuberculosis. 

Research question 

The study seeks to answer the question on whether TB is transmitted in social networks of index 

tuberculosis patients. 

Is TB transmitted in social networks? If yes, what's the relationship between social network 

structure (such as social network distance) and genetic distance? 

What proportion of direct transmission events are between index TB patients with an identifiable 

path in the social network? 

Hypotheses 

a) Just like transmission in the household, the proportion of transmission that occurs via the 

social network of an index TB case is low. 

b) The likelihood of direct TB transmission between pairs of index TB cases with the same 

strain of Mtb increases with decrease in social network distance. 

Aim 3 

To identify critical drivers of Mycobacterium tuberculosis transmission in an endemic urban 

setting in Kampala-Uganda. 

Research question 

What host, setting and pathogen factors are associated with Mycobacterium tuberculosis 

transmission? 
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Aim 4 

To develop a stochastic network model of Mycobacterium tuberculosis transmission. 

STRUCTURE OF THE DISSERTATION 

Aims 1, 2, 3 and 4 of the study are in chapters 2, 3, 4 and 5 respectively. Each of these chapters 

is in a manuscript-style format with a standalone abstract, introduction, methods, results, 

discussion and references. Chapter 6 summarizes the major conclusions and implications from 

the four aims of the study. The Community Health and Social Networks of TB (COHSONET) 

study was approved by the Ethics committee of the University of Georgia and that of Makerere 

University. 
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TABLES AND FUGRES   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: A typical reference-based pipeline WGS data processing 

Sequencing: Production of raw reads 
• Mycobacterium tuberculosis DNA isolated from sputum of pulmonary TB patients is 

sequenced on a given sequencing platform to produce millions of raw reads 

Preprocessing of raw reads: Data cleaning/Read quality filtering/pre-mapping QC 
• Trimming: Identify and remove adapter sequences, low-quality bases (< minimum threshold 

quality score) and known contaminants (e.g., with Kraken) from raw reads  
• Trimmed reads below minimum length are discarded 
• Reads are filtered by quality score and those with a pre-set % of bases below the minimal 

quality score (MinimalQ) are discarded 
• Initial quality check: Check quality of preprocessed reads e.g., using FASTQC to be sure its 

satisfactory or make decisions about additional preprocessing steps prior subsequent analysis 

Post mapping QC: Assess the quality of the mapping using QC-metrics + mapping stats 
• Samples with average genomic coverage (sequencing depth) and % of reads mapped correctly 

less than minimum threshold values are flagged for further assessment 
• Poorly mapped reads include duplicated mapped reads and multi-mapped reads 

Variant detection (SNP calling) and annotation 
• Variants (SNPs) are called/detected using a given choice of SNP caller 
• Variants are annotated say for gene function (e.g., drug resistant SNPs) 

Variant filtering 
• Exclude/remove low quality variants/SNPs 

Reference mapping/assembly 
• Reads are mapped to a reference genome of choice with a given algorithm/software 

Concatenate SNPs 
• Concatenate SNPs to generate alignment files which are processed to produce SNP distance 

matrices 
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Figure 1.2: Conceptual model of extra-household transmission
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ABSTRACT 

Background: Whole genome sequencing (WGS) has improved our ability to identify 

transmission events by providing better resolution compared with traditional genotyping 

techniques. We conducted a systematic review to describe the individual data processing steps, 

computational pipelines and the methods used in WGS studies to infer direct transmission of 

Mycobacterium tuberculosis.  

Methods: We searched PubMed and Web of science for all published articles on the 

topic. The inclusion criteria were: studies that used WGS to study tuberculosis transmission. We 

excluded articles in which the pathogen under study was not Mycobacterium tuberculosis, 

studies that were not studying transmission, studies in which the method used to infer 

transmission was not stated, studies in which WGS was not used, reviews, non-English language 

articles, non-journal articles and articles published after 31st May 2019. We initially screened the 

pool of retrieved journal articles by removing duplicates. Using the predefined eligibility criteria, 

we screened articles based on titles, abstract and then the full text. In the end we identified 

articles to be included in the final review for qualitative synthesis.  

Results: Out of the 709 screened articles, 85 were eligible for inclusion in the systematic 

review. 

Data processing: Since 2010, 76 (90%) used the Illumina platform and 70 (82%) used the H37Rv 

reference genome. Many mapping algorithms and variant callers are used. However, majority of 

the studies use the BWA-EM algorithm for mapping and SAMtools for variant calling since 

January 2019. During variant filtering, masking high density variants as well as those in drug 

resistance and repetitive regions are the consensus. 
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Computational pipelines: We found five readily available computational pipelines: MTBseq, 

Bresq, SNVPhyl, NASP and the RedDog pipeline. 

Methods used to infer transmission: Use of a SNP threshold is the most widely used method 

(76.84%) with many thresholds identified in the literature. However, consensus appears with a 

threshold of 12 SNPs. Other methods used were: Bayesian transmission modeling, using the 

structure of the phylogeny, shared drug resistance and non-resistance mutations, having an 

identical SNP pattern, sharing at least two of the same Single Nucleotide Polymorphisms (SNPs) 

compared with the reference group and overlaying a social network onto a dendrogram obtained 

from a pairwise SNP difference matrix. 

Conclusion: There is heterogeneity in processing of WGS data among studies and some 

areas of consensus especially in recent literature. Standardization of data processing 

methodology such as with creation of standardized computational pipelines could improve 

comparability of transmission inference results. SNP thresholds are the most widely used method 

for inferring transmission because of their simplicity, with a threshold of 12 SNPs appearing to 

be the consensus. Bayesian transmission modeling attempts to address their limitation and is 

increasingly being used in transmission studies. 

INTRODUCTION 

Reconstructing transmission events during or after an outbreak improves our 

understanding of TB transmission pathways, thus increasing our ability to interrupt transmission 

or prevent subsequent outbreaks. Characterizing these events can improve our understanding of 

routes and patterns of transmission which can translate into meaningful improvements in control 

activities by informing targeted, evidence-based public health interventions and the allocation of 

scarce resources. 
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Whole Genome Sequencing has improved our ability to make inferences about direct 

transmission of infectious diseases, TB inclusive. Given the low mutation rate of the pathogen 61, 

a small number of SNPs are expected to separate pairs of isolates that have been involved in a 

recent transmission event. Such low diversity is better detected by a method that leverages the 

entire genome compared to traditional molecular typing techniques that only use <0.1% of the 

bacterial genome. With recent improvements in Next Generation Sequencing (NGS) 

technologies as well as the reduction in cost and turnaround time of sequencing workflows, 

WGS has largely replaced traditional molecular typing as routine in Mycobacterium tuberculosis 

transmission studies. 

The immediate output of any WGS workflow are millions of ‘raw’ reads. For 

transmission inference purposes, the raw reads are processed via a given computational pipeline 

involving a series of steps, with an initial aim of producing a high-quality sequence for each 

study sample. The sequences are then analyzed in subsequent steps in order to make inferences 

on transmission. Variation in the sequencing platforms used and in subsequent data processing 

steps may lead to heterogeneous results and conclusions as regards to transmission inferences 

even when the same method is used to make inferences about transmission. 

We conducted a systematic review to describe the individual data processing steps, 

computational pipelines and the methods used in published studies to infer (confirm or refute) 

direct transmission of Mycobacterium tuberculosis using whole genome sequences from 

pathogen isolates. The rationale behind each data processing step and how it affects results and 

conclusions relating to transmission is described as well as a discussion of the strengths and 

limitations of each approach used for making transmission inferences. 
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To our knowledge, this is the first review of this kind. Previous reviews focused on 

transmission inference and less on data processing and computational pipelines used 18–21. Vlad 

and colleagues studied the sensitivity and specificity of WGS for detection of recent transmission 

using conventional epidemiology as the gold standard 20,21. The review by van der Werf and 

Ködmön 19 focused on use of WGS to investigate international tuberculosis outbreaks. The 

review by Hatherell and colleagues 18 looked at methods used to infer transmission but included 

only 12 research articles that were published until 14th July 2015. More studies using WGS to 

study Mycobacterium tuberculosis transmission, employing newer methods for transmission 

inference and incorporating best practices for WGS data processing, have been published since 

then. 

METHODS 

The review was conducted from a pre-set protocol and where relevant, in accordance 

with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We 

searched PubMed and Web of science databases for all published articles on the topic. We also 

looked through reference lists of included articles for articles that we may have missed during 

the systematic search.  

Inclusion and exclusion criteria 

The inclusion criteria were: studies on transmission of Mycobacterium tuberculosis that used 

Whole Genome Sequences from pathogen isolates to study transmission. We excluded: studies in 

which the pathogen under study was not Mycobacterium tuberculosis, studies that were not 

studying transmission, studies in which the method used to infer transmission was not stated, 

studies in which Whole Genome Sequence data was not used, reviews, non-English language 
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articles, non-journal articles (poster or conference abstracts) and articles published after 31st 

May 2019. 

Search strategy 

We searched PubMed database using keywords and other search terms relating to 

“transmission”, “mycobacterium tuberculosis” and “whole genome sequencing” for published 

studies that use Whole Genome Sequences from pathogen isolates to infer Mycobacterium 

tuberculosis transmission (Supplementary table 2.1). The search strategy applied to PubMed 

(Medline) was adapted for Web of science (Supplementary table 2.2). 

Identification of studies 

Titles and abstracts of collected studies were screened to remove studies not meeting the 

inclusion criteria that could be judged on the basis of the title and abstract alone e.g., non-

transmission studies, non-Mtb transmission studies, studies that don’t use WGS (figure 2.1). We 

then went ahead and retrieved the full texts for the remaining articles. Where in doubt about 

eligibility of an article at a given processing stage, the article was retained and assessed at the 

next stage in the eligibility assessment pipeline. This is was done to make sure no articles were 

excluded pre-maturely. 

Data extraction 

For each study, we extracted: Bibliographic information (journal, publication month and year, 

author(s), title), Study type (category of the study, if excluded; the reason for exclusion, 

Characteristics of the study population/setting (sampling period, country, method used to infer 

transmission, threshold used to rule in/out transmission, how the transmission threshold was 

arrived at, maximum number of SNPs between any pair of TB cases; where no threshold was 

used, kind of epidemiological data used for epidemiological linkage of TB cases), whether the 
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direction of transmission was inferred and if yes, the method used, Whole Genome Sequencing 

and subsequent processing steps (sequencing platform/machine used, pipeline to process the raw 

reads if available, read-quality control steps (quality control tool, whether reads were trimmed, 

software used for trimming reads, criteria for excluding samples), reference mapping and variant 

calling steps (mapping  algorithm, reference genome, GenBank ID of the reference genome, 

SNP/variant caller), thresholds for variant calling (base quality score, mapping quality score, 

alternate allele frequency, depth/coverage), variant filtering/excluded genomic positions 

(definition of a mixed base, how SNP positions were verified, minority variant frequency, 

whether repetitive regions of the genome were excluded, positions with missing genotypes 

across all samples excluded, whether highly clustered SNPs removed, whether SNPs in 

resistance-related target genes were excluded, whether ambiguous base calls were 

removed/ignored, whether SNPs close to indels removed). 

RESULTS 

709 articles were identified after deduplication (figure 2.1). The titles of these articles 

were screened and 446 of them were dropped, leaving 263 articles only. The abstracts of these 

articles were screened and 124 of them were dropped, leaving 139 articles. Full texts articles of 

the 139 were accessed and assessed for eligibility. 85 full text articles met our inclusion and 

exclusion criteria (figure 2.1; Supporting Information: database of included articles). It is only 

these articles whose data was extracted and were included in the qualitative synthesis. 

Publication timeline 

The included articles spanned the years from 2010 to 2019 (figure 2.2A), with the peak 

appearing in 2018 (28 articles). More articles are expected to be published throughout 2019 and 
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beyond due to the reduction in sequencing costs and the increased adoption of sequencing 

technologies in studying Mycobacterium tuberculosis transmission.  

Geographical locations spanning the included articles 

Geographical locations refer to the countries from which the WGS data was collected. In case the 

study used data from more than one country, all these countries were recorded. Most studies 

were from European counties (48), followed by the Americas (18) (Figure 2.2B). 

Data processing 

Sequencing platforms used 

Six articles didn’t state the sequencing platform that was used. Of the remaining 79 articles (out 

of 85 included articles), two articles 62,63 used two platforms (Illumina and Ion Torrent) for 

sequencing (Table 2.1). Of the 81 sequencing platforms used in the 79 articles, Next Generation 

Sequencing (NGS) by Illumina was the most widely used method (93.83%) in included studies. 

This can be attributed to the low per base error rate of the platform and the fact that it uses paired 

end reads that improve the accuracy of the resultant alignment/mapping despite its shorter read 

length compared to for example Pacific Biosystems and Oxford Nanopore. Various Illumina 

sequencers were used in included studies: MiSeq, HiSeq, NextSeq, Genome Analyzer and 

MiniSeq (supplementary materials). Other sequencing platforms used were Ion Torrent (Thermo 

Fisher Scientific), Applied Biosystems (ABI, particularly the SOLiD 5500XL instrument) and 

the Yikon Genomics Co. (Jiangsu, China).  

Preprocessing of raw reads 

Despite the importance of performing an initial quality check, only six articles out of 85 included 

articles (7.06%) reported having done an initial quality check on raw reads. Of these, five studies 

used FASTQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to do quality 
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control checks on raw sequence data (Table 2.1). The other article used KvarQ 64 for initial 

quality check. On the other hand, only 18 articles (21.18%) reported having trimmed raw reads 

(table 4) with the majority using Trimmomatic software 65 to perform the trimming (61.11%) 

(supplementary material). Other trimming tools used were: PRINSEQ 66, sickle 

(https://omictools.com/sickle-tool), Trim Galore 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), Geneious software 

(https://www.geneious.com) and the CLC Genomics Workbench 

(https://www.qiagenbioinformatics.com/). 

Reference mapping 

There were many reference mapping algorithms/software that were used in included 

studies (Table 2.1). These included: BWA: Burrows Wheeler Aligner 67 which was used 35 times 

(43.75%), Bowtie 2 68, SARUMAN 69, Stampy 70, SMALT 

(https://www.sanger.ac.uk/science/tools/smalt-0), SSAHA 71, CLC Genomics Workbench 

(https://www.qiagenbioinformatics.com/), Geneious software (https://www.geneious.com), 

Lasergene Genomics Suite (https://www.txgen.tamu.edu/lasergene-genomics-suite/), MAQ 72, 

Bionumerics software (http://www.applied-maths.com/bionumerics), BLAST 73, BLAT 74, 

Bowtie 75, Breseq pipeline 76 , in-house scripts, MTBseq pipeline 77, MUMmer package 78, 

RedDog pipeline (https://github.com/katholt/RedDog), Ridom SeqSphere software 

(https://www.ridom.de/seqsphere/), RoVar (unpubished work) and TMAP 

(https://github.com/iontorrent/TMAP). 

Three reference genomes were used in included studies with the majority of the articles 

(86.25%) using the H37Rv reference genome. Other articles used the CDC1551 reference 

genome and the hypothetical Mtb ancestral genome 79. 
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SNP calling 

Just like for mapping algorithms, a variety of SNP callers were used in included studies (Table 

2.1). These included: SAMtools 80 which was used 33 times (38.37%). Others were: in-house 

scripts, GATK UnifiedGenotyper 81, Pilon 82, FreeBayes (https://github.com/ekg/freebayes), 

VarScan 83, SSAHA 71, GATK 84, Snippy (https://github.com/tseemann/snippy), Geneious 

software (https://www.geneious.com), CLC Genomics Workbench 

(https://www.qiagenbioinformatics.com/), Breseq pipeline 76, Bionumerics software 

(http://www.applied-maths.com/bionumerics), SMALT 

(https://www.sanger.ac.uk/science/tools/smalt-0), RoVar (unpubished work), RIDOM Seqsphere 

software (https://www.ridom.de/seqsphere/), MUMmer package 78, MTBseq pipeline 77, LoFreq 

85, Lasergene Genomics Suite (https://www.txgen.tamu.edu/lasergene-genomics-suite/), 

GenoScreen (http://www.genoscreen.fr/en/genoscreen/147-english), CLC Assembly Cell 

(https://www.qiagenbioinformatics.com/) and chewBBACA 86. 

Variant filtering 

Only 27/85 (31.77%) of the eligible articles reported using a base quality threshold in 

variant (SNP) detection. Most articles used Q20 as the base quality threshold (Table 2.1). 

Similarly, only 11/85 (12.94%) of the eligible articles reported using a mapping quality threshold 

in variant (SNP) detection. Three thresholds were found i.e., Q20, Q30 and Q45 (table 3). Only 

30/85 (35.29%) of the eligible articles reported using a minimum allele frequency threshold in 

variant (SNP) detection. 70% of the articles used a minimum allele frequency of 75%, so there 

appears to be consensus among researchers on the minimum allele frequency threshold. 

 Depth/coverage thresholds were defined in a variety of ways: either by the number of 

reads that support a given variant or by the fold coverage (e.g., 20x means on average each base 
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was sequenced 20 times) or the percentage of total reads that cover a given position or a given 

percentage of the mean depth of coverage (Table 2.1). Having in mind the difficulty in 

sequencing repetitive regions, 55/85 (64.71%) of the included articles reported having removed 

variants found in repetitive regions (table 3). 17/85 (20%) of the included articles reported to 

have removed highly clustered SNPs i.e., those found within a specified distance of each other 

(table 3). Many distances for sliding windows were used to define clustered SNPs 

(supplementary materials). 19/85 (22.35%) of the included articles reported having removed 

variants found in drug resistance regions (table 3). 7/85 (8.24%) of the included articles reported 

having removed variants that were close to indels (insertions or deletions). 

Full computational pipelines for processing WGS data 

Five complete pipelines were found in included studies (Table 2.5). 

a) The MTBseq pipeline 

The pipeline uses BWA 87 for reference mapping and SAMtools 80 for variant discovery. Quality 

variants are those that are supported by four reads in both the forward and reverse orientation, 

respectively, at 75% allele frequency, and by at least four calls with a phred quality score of at 

least 20 77. Variants are filtered for repetitive regions, drug resistance regions and the presence of 

other variants within a window of 12 bp within the same dataset i.e., filtering for high density 

variants 77. 

b) The bresq pipeline 

The pipeline uses Bowtie2 68 for reference mapping, keeping track of uniquely mapped reads and 

multi-mapped reads (the repeats). The pipeline provides for trimming of the ends of the reads. 

Variants are called with frequencies between 0% and 100% with the possibility of calling mixed 

bases/populations. 
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c) The SNVPhyl pipeline 

The pipeline is performed on the Galaxy platform 88 with each stage of the pipeline implemented 

as a separate Galaxy tool. The pipeline begins with masking repetitive regions. The reads (either 

single-end or paired-end) are mapped to the reference genome using SMALT 

(https://www.sanger.ac.uk/science/tools/smalt-0). SNVPhyl evaluates each pileup for a user-

defined mean coverage and any genomes less than this threshold are flagged for further 

assessment 89. The pipeline uses both SAMtools 80 and FreeBayes 

(https://github.com/ekg/freebayes) to call variants independently. The variants are merged into a 

single file, flagging mismatches between the two. Base calls below the defined minimum read 

coverage and minimum mean mapping quality are identified and flagged 89. Finally, high-density 

SNV regions are discarded. 

d) The NASP pipeline 

The pipeline starts by masking off duplicated regions. Raw reads are  trimmed with 

Trimmomatic 65. NASP supports a variety of reference mapping algorithms including BWA 87 

and Bowtie2 68. It also supports various SNP callers, including SAMtools 80, GATK 

UnifiedGenotyper 81 and VarScan 83. 

e) RedDog pipeline 

The pipeline is implemented in python programming language. It performs reference mapping 

with Bowtie2 68 and SNP calling with SAMtools/bcftools 80. 

Methods used to infer transmission 

The SNP or Allelic Difference (AD) threshold (or fewer number of SNP or Allelic 

differences between isolates) was the most widely used method used to make recent transmission 

inferences. The method was used 73 times in included articles (76.84%) (Table 2.2). In second 
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place was use of shared drug resistance mutations i.e., used 10 times in included studies 

(10.53%). In this method, patients are considered to be involved in a recent transmission event if 

their isolates share identical drug resistance mutations.  

A similar approach used was considering patients to be involved in a recent transmission 

event if their isolates shared non-drug resistance SNPs that are co-selected with drug resistant 

SNPs 90. Five articles used the phylogeny (or structure of the phylogeny) to exclude 

transmission. In this approach, isolates involved in a recent transmission event must be close to 

each other on the phylogenetic tree of all isolates and share a common ancestor. Existence of 

another isolate between possible transmission pairs on the phylogenetic tree is argument against 

recent transmission 91. 

Having an identical SNP pattern 92- equivalent to zero SNP differences between isolates, 

sharing ≥2 of the same SNPs compared with the reference group 93, use of a Social network 

overlaid onto a dendrogram obtained from a pairwise SNP difference matrix 38 were the other 

methods used. 

Bayesian transmission modeling has recently been suggested to infer transmission by 

combining WGS data with other epidemiological data such as dates of symptom onset (or sample 

isolation dates), contact network data and spatial data under a Bayesian framework. Three 

studies used TransPhylo 28, one such methodology, which is implemented as a package in both R 

statistical software and in MATLAB software. 

SNP thresholds were arrived at either by own definition or from published studies (Table 

2.3). 57.14% of the articles that used a SNP threshold derived it from the work of Walker and 

colleagues 94. In this study, authors estimated the mutation rate of Mycobacterium tuberculosis to 

be 0·5 SNPs per genome per year (95% CI 0·3–0·7) in longitudinal isolates. They predicted that 
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the maximum number of genetic changes at 3 years would be 5 SNPs and at 10 years would be 

10 SNPs. Authors found that none of the epidemiologically linked patients were separated by 

more than five SNPs (i.e., all links were ≤5 SNPs). 17% of epidemiologically unlinked patients 

were separated by >5 SNPs and 9% by > 12 SNPs.  The authors used these results to construct 

thresholds for transmission. They expected epidemiological linkage consistent with transmission 

to exist between isolates differing by ≤5 SNPs, and not to exist between isolates differing by > 

12 SNPs. They deemed pairs differing by 6 to 12 SNPs to be indeterminate. 

Interestingly, all thresholds derived from the literature were within 12 SNPs, consistent 

with the work by of Walker and colleagues 94. For those that used their own thresholds, these 

ranged from ≤2 to ≤50 for existence of transmission. One study defined 11–99 as uncertain and 

≥100 for no transmission (Table 2.3). 

For some studies, defining a SNP threshold wasn’t necessary because they observed a 

small number of SNP differences between the isolates (supplementary material). They used these 

to make inferences on transmission. In these studies, the maximum number of SNP differences 

between any pair of isolates ranged from 0 to 20. Among epidemiologically linked cases, the 

maximum number of SNP differences ranged from 5 to 11. One study found a median of 5 SNPs 

between any pair of isolates. Another found a median of 1 SNP difference among 

epidemiologically linked cases.  

Inferring the directionality of transmission 

The directionality of transmission was inferred using temporal data, Bayesian transmission 

modeling with TransPhylo 28, the SeqTrack algorithm 95 and order of accumulation of SNPs 

(Table 2.4). When using temporal data such as sample isolation dates, dates of symptom onset, 

transmission is inferred forward in time i.e., the isolate with an earlier date is considered the 
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source and transmission is to the patient with a later isolate. When order of accumulation of 

SNPs is used, presence of a SNP in other isolates that are not found in a given case suggests 

directionality from the given case to other cases. 

The SeqTrack algorithm builds a directed minimum-spanning tree, minimizing the 

number of SNPs between links and keeping the temporal data such as disease onset dates, sample 

collection dates and dates of symptom onset coherent. The algorithm seeks ancestors directly 

from the sampled isolates, rather than attempting to reconstruct unobserved and hypothetical 

ancestral transmission events 95. The TransPhylo model has the advantage of taking into 

consideration the within host diversity of the pathogen and can be used for both completed and 

ongoing outbreaks. 

DISCUSSION 

Main findings 

Data processing 

Illumina is the most frequently used sequencing platform due to its low per base error rate 

(<1%). However, the platform produces shorter reads compared to Pacific Biosystems (PacBio) 

and Oxford Nanopore making it poor at detecting repetitive regions. It compensates for this by 

using paired-end reads which improve the quality of the alignment. Many mapping algorithms 

and variant callers are used. However, majority of the studies use the BWA-EM algorithm for 

mapping and SAMtools for SNP calling. Most studies use the H37Rv TB reference genome. For 

variant detection and filtering, a 75% minimum allele frequency and a threshold of Q20 for the 

base and mapping quality are the most used. Depth and coverage are defined in different ways in 

published literature i.e., as fold coverage, percentage of reads supporting a variant or the number 

of reads supporting a variant, with differing thresholds being used. During variant filtering, 
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masking high density variants as well as those in drug resistance and repetitive regions are the 

consensus. 

Full computational pipelines 

We found five readily available computational pipelines: MTBseq, Bresq, SNVPhyl, NASP and 

the RedDog pipeline. 

Methods used to infer transmission 

Use of a SNP threshold is the most widely used method with many thresholds identified 

in the literature. However, consensus appears with a threshold of 12 SNPs. Other methods used 

were: Bayesian transmission modeling, using the structure of the phylogeny, shared drug 

resistance and non-resistance mutations, having an identical SNP pattern, sharing at least two of 

the same Single Nucleotide Polymorphisms (SNPs) compared with the reference group and 

overlaying a social network onto a dendrogram obtained from a pairwise SNP difference matrix.  

SNP thresholds are a simple method to use and interpret, which makes them a widely use 

method. However, SNP thresholds by themselves have a greater dependence on the fraction of 

sequenced isolates. Hence transmission may be under reported. Seemingly unclustered isolates 

could have transmission links with un-sequenced isolates. SNP inferred transmission events 

require corroboration with other epidemiological information.  

Bayesian transmission models have made it possible to use both SNP data and 

epidemiological information simultaneously by combining them via a Bayesian framework 

where probabilities of transmission are computed using the epidemiological information to 

weight the transmission probabilities. The TransPhylo model 28, for example has the advantage 

of taking into account within-host diversity and can also be used for partially sampled and 

ongoing outbreaks. 
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Previous reviews 

Previous reviews discuss the use of whole genome sequencing in tuberculosis studies 

giving a general overview of the advantages whole genome sequencing compared to traditional 

genotyping 20,21,96–99, limitations of whole genome sequencing 20,96,100 and how directionality of 

transmission is inferred 96. Croucher and Didelot briefly discuss how direct inference is inferred 

but their review was not systematic 100.  

The review by van der Werf and Ködmön  focused on use of WGS to investigate 

international tuberculosis outbreaks 19. Vlad and colleagues discuss the use of a threshold of 

fewer than 6 SNPs and other thresholds to identify recent transmission events 20. They also 

discuss quality assurance and the need for standardization in data processing pipelines. Vlad and 

colleagues studied the sensitivity and specificity of WGS for detection of recent transmission 

using conventional epidemiology as the gold standard 20,21. 

In their systematic review, Hollie-Ann Hatherell and colleagues discuss methods used to 

infer transmission and directionality of transmission and the implications of these methods on 

transmission inference. However, the review contained only 12 studies that were published until 

14th July 2015. More studies using WGS to study Mycobacterium tuberculosis transmission, 

employing newer methods for transmission inference and incorporating best practices for WGS 

data processing, have been published since then 18.  

Limitations of the study 

One limitation of this study is that the information is extracted as reported. For example, 

researchers may have done a particular data processing step during the analysis but may have not 

reported it. Nevertheless, the major data processing steps should be reported because each step in 

the pipeline influences the inferences made.  
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Conclusions 

We found heterogeneity in processing of WGS data among studies and some areas of 

consensus especially in recent literature. Standardization of data processing methodology could 

improve comparability of transmission inference results. The five computational pipelines found 

in the literature bring us closer to standardization of data processing methodology.  

While preprocessing of raw reads for example by trimming of adapter sequences and 

performing an initial quality check prior to mapping them to a reference genome is not 

mandatory, it is good practice to do perform steps as they reduce the amount of computational 

resources (RAM, disk space and execution time) needed during subsequent data processing and 

downstream analysis. It is important to mask SNPs in drug resistance regions so as to rule out 

selection pressure due to drug resistance. Regions of high SNP density are indicative of 

recombination and thus masking them is paramount. Repetitive regions are masked due to the 

difficulty in sequencing such regions with the current technologies. Therefore, a good pipeline 

for processing WGS data should involve: sequencing of pathogen DNA, preprocessing of raw 

reads, reference mapping, assessment of the quality of the mapping, variant (SNP) calling and 

variant filtering. 

SNP thresholds are the most widely used method for inferring transmission because of 

their simplicity, with a threshold of 12 SNPs (or a more stringent threshold of 5 SNPS) appearing 

to be the consensus. However, there is unlikely to be a single threshold for inferring transmission 

as the resultant number of SNPs greatly depend on the computational pipeline used to process 

WGS data. This is an area where we need to do more research: Further research is needed on 

how WGS can be effectively used to infer transmission more accurately. Bayesian transmission 
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modeling attempts to address the limitations of SNP thresholds and is increasingly being used in 

transmission studies. 

This systematic review picks up the most recent technologies for WGS, better practices 

for processing WGS data and most recent studies of TB transmission that use pathogen WGS 

data and hence provides us with a better understanding of the current state of the field. Without a 

doubt, the technology will continue to develop and new studies will be published. For example, 

the premise of Nanopore sequencing (Oxford Nanopore) to produce longer reads and a portable 

sequencer that can be deployed in the field will revolutionize the field given the reduction in the 

per base error rate and cost of the sequencing machine, the two biggest limitations of this 

technology. Therefore, the state of the field will be evaluated regularly. 

SUPPLEMENTARY MATERIALS 

Epidemiological data used to corroborate WGS inferred transmission events 

Epidemiological data used to corroborate WGS inferred transmission included geospatial-

temporal data (shared space and time) and mobility information, exposure information, 

information on infectiousness of cases, previous history of TB and contact tracing data or listed 

contacts (supplementary data). Geospatial data included shared household, same country of 

origin and frequenting same community venues. Temporal data included dates for symptom 

onset, sample isolation dates, enrolment dates, hospital admission and discharge dates. Mobility 

data encompassed information on travel history such as route and means of migration, country of 

migration, date of exit and persons encountered en route. Exposure information included being in 

conversation distance with a case for a cumulative period of at least 8 hours in a closed space or 

documented cumulative exposure of at least 8 hours or at least 40 hours to, respectively, a 

sputum smear- or culture-positive but sputum smear-negative source case. In some studies, 
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smear positive TB cases were considered more infectious than smear negative cases 38 while in 

others smear-negative TB cases were deemed not infectious 101. Only pulmonary TB patients 

were considered infectious.  
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Figure 2.1: PRISMA Flow Diagram 
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Figure 2.2: A - Total publications per year. B - Geographical locations of included articles 

 

Table 2.1: Pipeline characteristics of included articles.  

Total studies included is N=85. Not all studies report all steps. 

Pipeline step Characteristic N (%) 
Sequencing of 
DNA to produce 
raw reads 

Sequencing platform N=81 
Illumina 76 (93.83) 
Ion Torrent (Thermo Fisher Scientific) 3 (3.70) 
Applied Biosystems (ABI/solid) 1 (1.23) 
Yikon Genomics Co. (Jiangsu, China) 1 (1.23) 

 Sequencing platform not stated 6 
Preprocessing of 
raw reads 

Initial quality check of prior to mapping 5 (7.06) 
Quality trimming (Yes/No) 18 (21.18) 

Reference 
mapping 

Reference genome N=78 
H37Rv 70 (89.74) 
CDC1551 3 (3.85) 
hypothetical Mtb ancestral genome 79 5 (6.41) 
Reference genome not stated 7 
Mapping algorithm/software N=80 
BWA 35 (43.75) 
Bowtie2 7 (8.75) 
SARUMAN, Stampy 6* (7.50*) 
SMALT, SSAHA 3* (3.75*) 
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CLC Genomics Workbench, Geneious software, 
Lasergene Genomics Suite, MAQ 

2* (2.50*) 
 

Bionumerics software, BLAST, BLAT, Bowtie, Breseq 
pipeline, in-house scripts, MTBseq pipeline, MUMmer 
package, RedDog pipeline, Ridom SeqSphere software, 
RoVar, TMAP 

1* (1.25*) 
 

 Mapping algorithm not stated 11 

Post mapping 
quality control 
 

Assess the quality of the mapping (post-assembly 
analysis) 

 
 

Exclude multi-mapped reads or those with less than 
minimum average genomic coverage 

8 (9.41) 

Variant detection 
(SNP calling) 

SNP caller N=86 
SAMtools 33 (38.37) 
in-house scripts 9 (10.47) 
GATK UnifiedGenotyper 3 (6.98) 
Pilon, FreeBayes 4 (4.65) 
VarScan, SSAHA, GATK 3* (3.49*) 
Snippy, Geneious software, CLC Genomics 
Workbench, 
Breseq pipeline, Bionumerics software 

2* (2.33*) 
 

SMALT, RoVar, RIDOM Seqsphere software, 
MUMmer package, MTBseq pipeline, LoFreq, 
Lasergene Genomics Suite, GenoScreen, CLC 
Assembly Cell, chewBBACA 

1* (1.16*) 

SNP caller not stated 11 
Detection thresholds  
Allele frequency (%)  
75 21 (65.61) 
80 5 (15.63) 
85 1 (3.13) 
90 3 (9.38) 
95 2 (6.25) 
Allele frequency threshold not stated 53 
Depth of coverage  
Number of reads (range = 2 to 10), fold coverage (range 
= 4x to 20x), % of reads (range = 50% to 90%), read 
depth > % of average read depth (10%: 2, 25%: 1) 

 

 Depth of coverage not stated 29 
Variant filtering 
(Discard low 
quality SNPs) 

Variant filtering 
Base quality threshold (Q20: 14, Q27: 1, Q30: 7, Q40: 
1, Q45: 1, Q50: 30) 
Mapping quality threshold (Q20: 4, Q30: 5, Q45: 2) 
Exclude SNPs in repetitive regions of the genome 
Exclude SNPs in drug resistance regions 

 
27 (31.77) 
 
11 (12.94) 
55 (64.71) 
19 (22.35) 
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Exclude high density SNPs 
Exclude SNPs that are close to indels 

17 (20.00) 
7 (8.24) 

 

Table 2.2: Methods used to infer transmission that were used in included studies 

Method Count (%) 
Sharing drug resistance mutations 10 (10.53) 
Identical SNP pattern 1 (1.05) 
Shared non-drug resistance SNPs that are co-selected with drug resistant SNPs 1 (1.05) 
Phylogeny/structure of the phylogeny 5 (5.26) 
Sharing ≥2 of the same SNPs compared with the reference group 1 (1.05) 
SNP/AD threshold (number of pairwise SNP/Allelic differences between isolates) 73 (76.84) 
TransPhylo 3 (3.16) 
Social network overlaid onto a dendrogram obtained from a pairwise SNP 
difference matrix 

1 (1.05) 

 

Table 2.3: How SNP thresholds were arrived at 

SNP threshold 
method 

Summary description Number of 
studies that 
used the 
method (%) 

Casali 2016 102 The maximum number of SNPs between any pair of isolates 
was nine SNPs. 

1 (1.59) 

Guerra 2015 52 On the basis of the distribution of SNP distances between all 
possible pairs of samples, the authors chose cut-offs at 5 and 
10 SNPs for distinguishing links. However, to construct the 
transmission network, they included links of up to 10 SNPs 
difference.  

2 (3.17) 

Nikolayevskyy 
2016 21 

Systematic review of 12 published studies. Authors found that 
applying a more stringent criteria for epidemiological linkage 
(<6 SNPs instead of <12 SNPs criteria) only marginally 
increased the proportion of genomically unconfirmed links 
(9.4%). As such, a cut-off value of <6 SNPs between isolates 
was suggested as a predictor for recent transmission.  

1 (1.59) 

Walker 2013 94 The estimated mutation rate was 0·5 SNPs per genome per 
year (95% CI 0·3–0·7) in longitudinal isolates. The authors 
predicted that the maximum number of genetic changes at 3 
years would be 5 SNPs and at 10 years would be 10 SNPs.  
Authors found that none of the epidemiologically linked 
patients were separated by more than five SNPs (i.e., all links 
were ≤5 SNPs). 17% of epidemiologically unlinked patients 
were separated by >5 SNPs and 9% by > 12 SNPs.  
The authors used these results to construct thresholds for 

36 (57.14) 
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transmission. They expected epidemiological linkage 
consistent with transmission to exist between isolates differing 
by ≤5 SNPs, and not to exist between isolates differing by > 
12 SNPs. They deemed pairs differing by 6 to 12 SNPs to be 
indeterminate.  

 Yang 2017 103 No patients with epidemiological links had strains that were 
separated by > 12 SNPs. Therefore, the authors defined a 
genomic cluster in this study as a group of strains that differed 
by ≤12 SNPs.  

2 (3.17) 

own Thresholds ranged from ≤2 to ≤50 for existence of 
transmission. One study defined 11–99 as uncertain and ≥100 
for no transmission. Walker 2013 94 defined ≤5 as 
epidemiological linkage consistent with transmission; >12 no 
existence of epidemiological linkage consistent with 
transmission and 6-12 indeterminate. 

21 (33.33) 

 

Table 2.4: How was the directionality of transmission inferred? 

Method Number of studies that used the 
method (%) 

Temporal data 9 (69.23) 
Bayesian Transmission modeling with TransPhylo model 2 (15.38) 
SeqTrack algorithm 1 (7.69) 
Order of accumulation of SNPs 1 (7.69) 
 

Table 2.5: Full computational pipelines 

Pipeline Mapping 
software 

Variant  
caller 

Definition of a 
quality variant  

Filtered 
variants 

Notes 

MTBseq BWA SAMtools -supported by 4 
reads, 75% allele 
freq, ≥Q20 

within 
12bp 
window 

 

bresq Bowtie2 -User 
defined 
allele 
frequency 

  
-keeps track of 
uniquely & multi-
mapped reads  
-Provides for 
trimming 
-Can call mixed 
bases 

SNVPhyl SMALT SAMtools 
& 
FreeBayes  

-User defined 
read coverage 
and mean 

Repetitive, 
high-
density 

-Runs on Galaxy 
platform  
-User-defined mean 
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mapping quality  coverage  

NASP BWA or 
Bowtie2 

SAMtools 
or 
GATK 

  
Trimmomatic for 
read trimming 

RedDog Bowtie2 SAMtools 
   

 

Supplementary tables and figures 

Supplementary table 2.1: Search strategy for PubMed (31st May 2019) 

Order of search Search terms Number of 
results 

#1 
transmission 

"transmission"[Subheading] OR "transmission"[All Fields] OR 
spread[All Fields] OR "disease outbreaks"[MeSH Terms] OR 
("disease"[All Fields] AND "outbreaks"[All Fields]) OR "disease 
outbreaks"[All Fields] OR "outbreak"[All Fields] OR 
"epidemiology"[Subheading] OR "epidemiology"[All Fields] OR 
"epidemiology"[MeSH Terms] OR "epidemics"[All Fields] OR 
"epidemics"[MeSH Terms] OR "epidemic"[All Fields] OR 
"pandemics"[MeSH Terms] OR "pandemics"[All Fields] OR 
"pandemic"[All Fields] OR endemic[All Fields] OR "Disease 
Transmission, Infectious"[Mesh] 

2,914,048 

#2 
mycobacterium 
tuberculosis 

"mycobacterium tuberculosis"[MeSH Terms] OR 
("mycobacterium"[All Fields] AND "tuberculosis"[All Fields]) 
OR "mycobacterium tuberculosis"[All Fields] OR 
"tuberculosis"[MeSH Terms] OR "tuberculosis"[All Fields] OR 
TB [All Fields] 

269,400 

#3 
Whole 
Genome 
Sequencing 

"whole genome sequencing"[MeSH Terms] OR ("whole"[All 
Fields] AND "genome"[All Fields] AND "sequencing"[All 
Fields]) OR "whole genome sequencing"[All Fields] OR 
NGS[All Fields] OR WGS[All Fields] OR ( (complete[All 
Fields] AND ("genome"[MeSH Terms] OR "genome"[All 
Fields])) OR (whole[All Fields] AND ("genome"[MeSH Terms] 
OR "genome"[All Fields])) OR (full[All Fields] AND 
("genome"[MeSH Terms] OR "genome"[All Fields])) OR 
(entire[All Fields] AND ("genome"[MeSH Terms] OR 
"genome"[All Fields])) OR (next[All Fields] AND generation 
[All Fields]) ) AND  ("sequence"[All Fields] or "sequences"[All 
Fields] or "sequencing"[All Fields]) 

143,369 

#4 #1 AND #2 AND #3 483 
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Supplementary table 2.2: Search strategy for Web of science (31st May 2019) 

Order of search Search terms Number of 
results 

#1 
transmission 

TS = (transmi* OR spread* OR outbreak* OR epidemiolog* 
OR epidemic* OR pandemic* OR endemic) 

2,430,881 

#2 
mycobacterium 
tuberculosis 

TS = ("mycobacterium tuberculosis" OR tuberculosis OR 
TB) 

203,919 

#3 
Whole Genome 
Sequencing 

TS = (("full genome" OR "whole genome" OR "complete 
genome" OR "entire genome" OR "next generation") 
NEAR/3 sequenc*) OR WGS OR NGS 

73,082 

#4 #1 AND #2 AND #3 530 
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CHAPTER 3 : WHOLE GENOME SEQUENCING AND A LARGE SOCIAL 

NETWORK STUDY REVEAL THAT TUBERCULOSIS IS MAINLY TRANSMITTED 

TO CONTACTS OUTSIDE THE SOCIAL NETWORK OF A TB PATIENT2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                
2 R Galiwango, P Miller, E Yassine, A Handel, J Sekandi, L Liu, R Kakaire, S Zalwango, N Kiwanuka and C 
Whalen. To be submitted to Journal of Infectious Diseases (JID) 
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ABSTRACT 

Introduction: Tuberculosis (TB) remains a major global health problem with 10 million 

people suffering from TB disease and several million dying every year. The household of a TB 

index case has been previously identified as an important setting of transmission for 

Mycobacterium tuberculosis. However, household transmission accounts for a small proportion 

of the total number of observed new cases, implying that there are other routes of transmission 

beyond the household that maintain the epidemic in the community. The aim of this analysis was 

to explore one potential such route, i.e., transmission from the index case to contacts outside the 

household that are within the social network of a TB case. 

Methods: We conducted a large cross-sectional network study, the Community Health 

and Social Networks of TB (COHSONET) study in Kampala Uganda. Between 2012 and 2016. 

Two hundred and forty-seven (247) index participants (123 case and 124 controls) and their first-

level and second-level contacts were recruited. Whole genome sequencing was done at the CDC 

for 89 isolates. First, we created an aggregated social network by merging individual second-

level egocentric social networks of the 247 indexes. Second, we used an empiric criterion of 

transmission of 12 SNPs to identify genetically linked patients. Third, we computed the number 

of genetic links at the respective social network distances between index pairs with an 

identifiable path between them in the social network. We also computed the proportion of 

genetic links that were found between patients with no identifiable path. Fourth, we determined 

the relationship between genetic distance and social network distance. 

Results: We found that 43% of the index case pairs who had genetically linked strains of 

Mycobacterium tuberculosis had an identifiable path between them in the social network, but 

only 13% of these index pairs were found to have a close social distance of one step in the social 
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network. No genetic links were identified at social network distances from 2 to 6. There were 

genetically linked pairs at social distances of 7, 8, 10 and 11 with 2, 1, 3 and 1 genetically linked 

pairs found respectively, corresponding to 9%, 4%, 13% and 4% of the of total number of 

identified genetic links. There was no correlation between genetic distance and social network 

distance. 

Conclusion: It appears that transmission often happens outside of the defined social network of 

an individual case. Further exploration of other mechanisms of extra-household transmission of 

Mycobacterium tuberculosis is required. Social network distance could be a poor measure of 

proximity compared to geographical distance in relation to tuberculosis transmission. 

INTRODUCTION 

Despite being curable, tuberculosis (TB) remains a major global health problem. It is 

estimated that over 10 million people suffer from TB every year, the majority of the cases 

occurring in South-East Asia (45%) and Africa (25%) where the epidemic is predominantly 

driven by transmission (rather than reactivation of latent infection) and high rates of HIV 6. TB is 

the ninth leading cause of death worldwide and has maintained its position, over the past 5 years, 

as the leading cause from a single infectious agent, ranking above HIV/AIDS and malaria 6. TB 

also continues to be the leading cause of death among people living with HIV, accounting for 

nearly one in three HIV-related deaths 104. 

The household of a TB case has been previously identified as an important setting for 

transmission of Mycobacterium tuberculosis 9. However, as systematic review of children 

exposed and unexposed to a household member with tuberculosis that included 26 studies found 

a population attributable fraction of household exposure of 14.1% (95% CI: 11.6, 16.3) 105. This 

implies that there are other routes of transmission beyond the household that maintain the 
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epidemic in the community. This study explores one potential such route, i.e., transmission from 

the index case to contacts outside the household that are within the social network of the TB 

case. The social network has two components: a household component which is very 

geographically defined and membership more completely listed, and the extra-household 

component which is more geographically diffuse and less complete. 

Mycobacterium tuberculosis and other respiratory pathogens, are mainly transmitted 

when an infectious individual expels pathogens into the air and susceptible persons in close 

proximity breathe them in. Following a complicated cascade of immunologic events, infection 

becomes established usually taking 4 – 6 weeks. The fact that close proximity is relevant for 

transmission to occur makes social network methods a compelling proposal for the study of the 

spread of such pathogens. The social network imposes a structure or framework on the extra-

household members and their relations via which disease spreads. This linkage between 

individuals via a network enhances our ability to identify and prioritize contacts for evaluation 

and can hence guide public health intervention. We hypothesized that the extra-household 

members of the social network would comprise a large proportion of the index case contact 

network. 

Whole genome sequencing overcomes limitations of traditional molecular typing 

techniques like MIRU-VNTR (Mycobacterial Interspersed Repetitive Units - Variable Number 

of Tandem Repeats), Spoligotyping and RFPL (Restriction Fragment Length Polymorphism) that 

lack sufficient discriminatory power to resolve transmission events. With recent improvements in 

Next Generation Sequencing (NGS) technologies as well as the reduction in cost and turnaround 

time of sequencing workflows, Whole Genome Sequencing (WGS) has replaced traditional 

molecular typing as routine in Mycobacterium tuberculosis transmission studies 38,60,106–108. 
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Social network analysis and WGS have been useful in studying TB transmission 38,43. 

However, the networks used in these studies are egocentric meaning that index tuberculosis 

patients are enrolled into the study and asked to list their contacts who are normally not enrolled. 

Our study extends these studies by evaluating not only the contacts but the broader social 

network of the index case. Social network analysis and WGS have been useful in mainly low-

prevalence areas and not in endemic areas of TB. We conducted the Community Health and 

Social Networks of TB (COHSONET) to understand transmission in the community by 

combining traditional epidemiology (i.e. contact tracing), social networks analysis, and WGS. To 

our knowledge, this is the first time these methodologies have been used in a study of 

Mycobacterium tuberculosis transmission in Africa. 

METHODS 

Study population 

The Community Health and Social Networks of TB (COHSONET) study was a cross-

sectional, community-based survey of index TB cases and their social networks. For comparison 

purposes, the study included a sample of controls and their contacts, without TB disease, who 

were frequency matched with the index cases by age group, sex, time and residence (parish).  

The study was conducted in the Rubaga division of Kampala, Uganda between 2012 and 2016. 

Rubaga is an urban area that comprises 13 parishes and 135 zones (similar to census tracks) that 

are political units headed by a Local Council (LC). The total population of Rubaga is 

approximately 383,216 people based on a census performed in 2014. Rubaga is served by one 

main hospital, 5 public clinics, and numerous private clinics.  

The eligibility criteria were: index smear-positive tuberculosis cases, 15 years or older, 

who resided in Rubaga Division and presented to one of the clinics operated by the National 
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Tuberculosis Control Program. This age restriction was put in place because persons 15 years 

and older are more likely to have larger and more interactive social networks in the community 

than younger persons. We restricted inclusion to smear-positive cases of tuberculosis because 

they are infectious and most likely to transmit to their contacts. For both index cases and 

controls, the procedures for enrollment were identical. Household contacts and social network 

contacts of all ages for the index cases and controls were also eligible for the study.   

Ascertainment of each index’s social network 

The social network of an index (case or control) was defined as members of their 

household and all individuals living outside their household with whom they had close contact, 

defined as being within talking distance for more than 4 hours during one or more contact 

episodes. Thus, each index’s social network was ascertained in a two-step process. In the first 

step, index individuals listed members of their households and all individuals living outside their 

household with whom they had close contact, defined as being within talking distance for more 

than 4 hours during one or more contact episodes. These first-level contacts were then traced and 

evaluated for signs of latent TB infection or active disease. In the second step, the first-level 

contacts were asked to list their household and extra-household contacts (i.e., second-level 

contacts of the index participants).  

Unless there were concerns for active TB, the field nurses did not trace the second-degree 

contacts. This sampling methodology was an extended form of egocentric sampling, which we 

will refer to as “second-level egocentric sampling” in the remaining sections. In addition to what 

is done in classic egocentric network sampling, second-level egocentric sampling includes an 

additional layer of contacts (the contacts of contacts). 
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Data collection and study measurements 

Three sputum samples were collected (spot, early morning, night) from persons suspected to 

have TB (i.e., those with symptoms such as chronic cough). The samples were tested for 

Mycobacterium tuberculosis using microscopy and culture consistent with national guidelines. 

Demographic (e.g., age, sex, location of household), clinical (e.g., symptoms, risk factors, 

Karnofsky Performance Scale Index) and social network information (first and second level 

contacts and relations between them) was obtained through patient interviews using standardized 

questionnaires administered by trained personnel. The Karnofsky Performance Scale Index was 

used to assess the heath of the patients. It runs from 0 to 100 where 100 is "perfect" health and 0 

is death. 

Mycobacterial whole genome sequencing and processing of resultant raw FASTQ files 

Mycobacterium tuberculosis chromosomal DNA was extracted from fresh cultures using 

standard procedures. All isolates were stored frozen in 7H9 broth at -80C for future reference. 

The extracted DNA was shipped to CDC, Atlanta USA for Whole Genome Sequencing (WGS). 

Isolates were submitted in batches for sequencing at the CDC. So far, 89 of the 123 index TB 

cases have been sequenced. Of the 89 submitted isolates, 79 passed set quality standards after 

sequencing of the whole genomes. Isolated genomic DNA of individual strains was sequenced 

on the Illumina platform. Resulting FASTQ paired-end reads were processed using the CDC 

analysis pipeline for studying transmission of Mycobacterium tuberculosis.  

In brief, the quality of the paired end reads was checked using FAST QC software 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and trimmed using Trimmomatic 65. 

The reads were mapped to the H37Rv reference genome (GenBank accession number 

NC_000962.3) using the BWA-MEM algorithm 67. GATK UnifiedGenotyper 81 was used to call 
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single-nucleotide polymorphisms (SNPs). All SNPs in repeat regions particularly the PE/PPE 

gene families, SNPs found close to the end of a mapped read (within 5bps), SNPs in regions with 

< 75% coverage or <5x depth of coverage, ambiguous bases and SNPs < 12 bases apart in the 

genome were excluded. 

The resultant SNPs were concatenated and SNP difference tables were generated using 

Geneious software (https://www.geneious.com), and downstream analysis was performed with R 

statistical software (https://www.r-project.org/). 

Combining individual egocentric social networks to create an aggregated social network  

A social network of indexes (cases and controls) and their first level contacts and second 

level contacts (the contacts of first level contacts) was constructed using R statistical software 

(https://www.r-project.org/) with the use of the R package Statnet 56. To start with, an egocentric 

social network was built around each index (case or control) by creating a link (an edge) between 

the index and all ‘first level’ contacts (both household and extra-household contacts) they listed 

on the census form. After this, links were created between the ‘first level’ contacts and the 

‘second level’ contacts (the contacts of first level contacts) that they listed (if any) on the census 

form (figure 3.1A). 

Using relational information from the relational dataset that defined relations between 

listed contacts, links between ‘first level contacts’ were created where they existed (as described 

by the index who listed these ‘first level contacts’). Similarly, links between ‘second level 

contacts’ were added (as described by the traced ‘first level contact’ who listed these ‘second 

level contacts’) (figure 3.1B). 

The resultant unconnected individual egocentric social networks were linked to form an 

aggregated social network by finding persons who appeared in more than one network i.e., the 
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duplicates. Duplicates were identified using an advanced machine learning and statistical 

approach implemented in the Dedupe software (https://dedupe.io/). The matching was performed 

by local content experts who were knowledgeable in local names and their sex affiliation. This 

ensured quality matching of records. Study participants were assigned unique IDs using 

information on their names, sex and age. 

In a sensitivity analysis (Supplementary Materials: Matching records using Fuzzy string 

matching), duplicates were merged with approximate (Fuzzy) string matching of concatenated 

first and last name of query matches using R statistical software (www.r-project.org). 

Ethical considerations and data availability 

The COHSONET study was approved by both the Institutional Review Board at Makerere 

University and one at the University of Georgia. De-identified social network data and whole 

genome sequence data is available upon request to the corresponding author. 

Data analysis 

For continuous variables, we used the two-sample t-test to examine the difference 

between the characteristics of index TB patients whose isolates were sequenced compared with 

those whose isolates were not sequenced. For categorical variables, we used the chi-square test 

(or Fisher’s exact test were at least one cell count was <5) to examine the difference between the 

characteristics of index TB patients whose isolates were sequenced compared with those whose 

isolates were not sequenced. 

Generally, the lower the number of SNP differences between isolates, the greater the 

similarity between the strains and the higher the likelihood of a direct transmission between the 

patients. A threshold of 12 SNP differences between their strains was used to identify genetically 
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linked TB patients 21,94,103. The number of genetic links identified at SNP differences from 0 to 

20 for the threshold was computed.  

In a sensitivity analysis, we used Transphylo 28 to infer genetically related strains based 

on Maximum Clade Credibility trees for each lineage produced by BEAST 109. Transphylo is a 

Bayesian model for inferring transmission trees from time-labelled phylogenies while accounting 

for within-host diversity of the pathogen and unsampled cases. We used dates of symptom onset, 

particularly cough, as the tip dates (Symptom start date = Diagnosis date – duration of cough). 

Transphylo was run for 1 million iterations with the first 10% discarded as burn-in. We used a 

shape parameter of 1.3 and a rate parameter of 0.3 for the parameters of the gamma distribution 

for the generation time 28. 

We identified patients who were linked in the social network by computing the length of 

the shortest path between each pair of patients (the geodesic distance). We called this social the 

network distance. We computed the social network distance between tuberculosis patients with 

an identifiable path between them in the social network and the number of patient pairs without 

an identifiable path between them in the social network. We also determined the number of 

genetic links that were identified between patients at different social network distances. 

To determine the relationship between social network distance and genetic distance, we 

plotted a scatter graph of genetic distance (the number of pairwise Single Nucleotide 

Polymorphisms (SNPs) between patient isolates) and social network distance (length of the 

shortest path between each pair) and computed the correlation between genetic distance and 

social network distance, for patient pairs with an identifiable path in the social network. This 

analysis was done using the social network built using Dedupe.io software and one where a 

sensitivity analysis was performed using Fuzzy string matching. 
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RESULTS 

Description of the study population 

Between 2012 and 2016, the study enrolled 123 index TB cases and 124 controls. Eleven of the 

index TB cases were identified from active case finding during field evaluations of index 

contacts. Eighty-four (68.29%) of the index cases were male while the rest were female (Table 

3.1). Their median age was 29 years (range=15 to 63) while 20 (16.26%) of the cases were HIV 

positive. Four were smear negative while 119 were smear positive TB cases. Two of the 

sequenced isolates were of lineage 1, fourteen were of lineage 3 while 63 (79.75%) were of 

lineage 4. There was no statistically significant difference between the characteristics of index 

TB patients whose isolates were sequenced compared with those whose isolates were not 

sequenced.  

Genetic links between tuberculosis patients 

Twenty-three genetic links were identified (Figure 3.3) at a threshold of 12 SNP 

differences for defining genetic linkage 21,94,103. One pair of genetic links was between lineage 1 

isolates while six were lineage 3 and sixteen were lineage 4 (Table 3.2). The two lineage 1 

isolates had zero SNP differences between them. Most lineage 3 isolates were >200 SNP 

differences between them and another lineage 3 isolate (Supplementary figure 3.2A). There 

appears to be two distributions for the number of SNP differences between the lineage 4 isolates 

(Supplementary figure 3.2B).  

Fourteen genetic links between the TB patients were identified at a more stringent 

threshold of 5 SNP differences (Figure 3.3 and Supplementary Table 3.1). One pair of genetic 

links was between lineage 1 isolates while six were lineage 3 and seven were lineage 4 

(Supplementary Table 3.1). 



 

82 

TransPhylo inferred six genetically linked pairs (Supplementary figure 1.3) two of which 

were lineage 3 and four were lineage 4. TransPhylo inferred that the rest of the index TB cases 

were linked to unsampled cases. All lineage 3 genetically linked pairs had each one SNP 

difference between the pairs. Two of the four lineage 4 genetically linked pairs had zero SNP 

differences between each of the pairs while the other two had one SNP difference between each 

of the pairs. 

The aggregated social network 

The aggregated social network (Figure 3.4) had 11,739 nodes including 247 index 

participants (i.e.,123 index TB cases and 124 index controls), 1,965 first level contacts (of which 

930 were listed by the cases and 1035 by the controls) and 9,527 second level contacts (i.e., the 

contacts of first level contacts). 54.91% of the total number of nodes were male and the rest were 

female.   

The network had 70,161 edges with a density of 0.001 (proportion of observed ties), a 

mean degree of 12, a median degree of 10 (min=1, max=148) and a clustering coefficient of 0.57 

(probability that two contacts of a node are also connected to each other: transitivity). Therefore, 

on average, each individual in the network was connected with 10 other individuals. With 

regards to clustering, this is a moderately clustered network considering that the clustering 

coefficient ranges from 0 to 1, with values close to 0 representing low clustering and those close 

to 1 representing a highly clustered network.  

The network had 47 component networks. The largest component had 9,885 nodes of 

which 85 were index cases and 102 were index controls. It had 59,797 edges, a density of 0.001 

and a clustering coefficient of 0.604.  
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Multi-case component social networks 

Four of the component networks had more than one index TB case (here and after 

referred to as the multi-case networks: Figure 3.5). Twelve of the components had no index TB 

case. Thirty-one components each had only one index TB case. Two components each contained 

two index TB cases. One component had 3 index TB case in it while one component contained 

the remaining 85 index TB cases.  

On the other hand, 24 of the 47 component networks contained no index control, 22 had 

each 1 index control and one component contained 102 index controls. 

Most pairs of patients were at a distance of 4 to 13 from one another in the social network (figure 

6). Six pairs were at a close social distance = 1 from one another in the social network. Sixteen 

pairs were at a social distance = 2 while 8 were at a social distance = 3. There exist pairs that 

were linked at social distances as high as 14 to 23 (Figure 3.6). 

Relating genetic linkage with social network linkage 

Among the 6 pairs of patients who were at a close social distance = 1, three pairs had 

genetically similar strains (Figure 3.7). These correspond to 13% of the 23 genetic links that 

were identified between the patients in the study. No genetic links were identified at social 

network distances 2 to 6. Other genetically linked pairs were at a social distance 7, 8, 10 and 11 

with 2, 1, 3 and 1 genetically linked pairs respectively. These correspond to 9%, 4%, 13% and 

4% of the of total number of identified genetic links. Of the 23 genetic links that were identified 

between the patients, 13 (57%) were between patients with no identifiable path between them in 

the social network. 

In a sensitivity analysis where the aggregated social network was built using Fuzzy string 

matching, the number of genetic links between patients with no identifiable path between them 
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in the social network reduced from 13 to 6 (Supplementary figure 3.1). The number of genetic 

links between pairs at a close social distance = 1 remained the same (i.e., three). This network 

shows genetic links between pairs at social network distances 4, 5 and 6 unlike the network built 

using Dedupe.io software. 

When TransPhylo was used to infer genetically linked strains, two of the six identified 

genetically linked pairs were for index TB patients with no identifiable path between them in the 

social network. Two genetically linked pairs were at a social distance of one step in the network. 

One pair consisted isolates that were at a social distance of 7 steps while the other pair were at a 

social distance of 10 steps (Supplementary figure 2.3). 

Correlation of genetic distance with social network distance 

There was no correlation between genetic distance and social network distance (correlation 

coefficient=0.01, p=0.668) (Figure 3.8). A sensitivity analysis with a network built using Fuzzy 

string matching gave a correlation of −0.05 (p = 0.049) (Supplementary Figure 3.13). 

DISCUSSION 

In this study we investigated the role of social networks of tuberculosis patients in 

endemic transmission of Mycobacterium tuberculosis. We found that 43% of the index case pairs 

who had genetically linked strains of Mycobacterium tuberculosis using an empiric criterion of 

transmission of 12 SNPs had an identifiable path between them in the social network, but only 

13% of these index pairs were found to have a close social distance of one step in the social 

network. It therefore appears that transmission often happens outside of the defined social 

network of an individual case. A sensitivity analysis showed that the definition of a genetic link 

is important (Supplementary figure 3.12). 
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In a sensitivity analysis of network construction methodology, identification of duplicate 

records using Fuzzy string matching gave the same result for the number and percentage of 

genetic links between TB patients at a close social distance of one step in the social network i.e., 

3 (13%). However, the number of genetic links between pairs with an identifiable path in the 

social network increased from 10 (43%) to 17 (74%). Even with this analysis, most transmission 

happens outside the defined social network of an individual case (social network distance >2, 

corresponding to 61% of the identified genetic links). 

Identification of duplicate records based on only the first name and last name resulted 

into more identified matches (duplicates) and consequently more linkage between individual 

second-level egocentric social networks compared with when an advanced machine learning 

approach based on the first name, last name, title, other name, sex and age. Using more 

characteristics of individuals leads to less false matches and consequently less linkage between 

the individual second-level egocentric social networks. 

Most social networks used in the study of infectious diseases are, first-level egocentric 

social networks. This means, for example for TB, an index case is identified who is asked to list 

their close contacts (first level contacts). First-level egocentric sampling has been shown to 

produce biased global statistical properties compared to the underlying census network 110,111. 

Our sampling methodology was an extended form of egocentric sampling which we referred to 

as second-level egocentric sampling. In addition to what is done in classic egocentric network 

sampling, second-level egocentric sampling includes an additional layer of contacts (the contacts 

of contacts). 

We have explored the social network model as an extension of the contact tracing 

procedures. Contact procedures are designed just to identify the individuals who have had 
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adequate contact for Mycobacterium tuberculosis transmission. The social network approach is 

more systematic, broader based, looking at the social roles among individuals listed by the index 

case to understand the substrate for transmission beyond mere contact investigation. Since we 

included controls we had the opportunity to understand the additional risk from contact with the 

index case.  

Our findings are consistent with those of previous studies that found that most 

transmissions were between epidemiologically-unlinked patients. In a study of extensively drug 

resistant tuberculosis in South Africa, whole genome sequencing revealed that 79% of patients 

with neither person-to-person nor hospital-based links (the epidemiologically unlinked patients) 

were within 10 SNPs of at least one other study participant 112. A study in Malawi found that 

known contacts only explained 9.4% of transmissions, and that even for those with a prior 

contact with smear positive tuberculosis in their family, there was a >50% chance that they 

acquired their TB elsewhere 113. However, our study extends these studies by evaluating not only 

the contacts but the broader social network of the index case. 

We know from household contact studies that household transmission accounts for <20% 

of the observed cases 105. However, even with the new framework that we introduced, we still 

seem to be missing most transmission events as evidenced by the fact that genetically similar 

strains occur in contacts who are only distantly connected in the network. This is strong evidence 

from molecular epidemiology that transmission is occurring within a contact network but outside 

the social network. Therefore, there must be some other mechanism that brings these people 

together such as space-time coincidences 114. In limited resource settings like Uganda, such 

coincidences may occur when TB patients are seeking care. For example, Sekandi and 

colleagues 115 found four ‘degrees of separation’ between the onset of symptoms in a TB patient 
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and a final diagnosis. Moreover 34% of the total time spent in seeking care prior to TB diagnosis 

was with non-TB providers. We know that health care settings are places of high transmission, 

so this suggests that some of the contacts people could have been made in these high-risk 

settings. 

We found no correlation between genetic distance and social network distance. For a 

disease that requires adequate contact for effective transmission to occur, our hypothesis before 

the study was that patients at close social network distance are more likely to have genetically 

similar strains but this wasn’t the case. Previous studies have investigated the relationship 

between genetic distance and geographic distance 51,116–118 and found that patients living at close 

proximity were more likely to have genetically similar strains. Geographical distance could be a 

better measure of proximity than social network distance. 

One potential limitation of this study is that we did not enroll all consecutive TB patients 

during the study period. It is also possible that some nodes and edges were miss-specified during 

the search for duplicates. However, use of local content experts when matching records who 

were knowledge in local names and their sex affiliation decreased the likelihood of this 

occurring. Despite these limitations, this study represents the largest most comprehensive social 

network study of tuberculosis in Africa. 

Conclusion 

In conclusion, our study has shown that most transmissions happen outside of the defined social 

network of an individual TB case. Further exploration of other mechanisms of extra-household 

transmission of Mycobacterium tuberculosis is required. One way of doing this is by studying 

mobility of tuberculosis patients several months prior to diagnosis so as to identify community 

venues and geographical locations in the community where transmission occurs. We can also 
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reconstruct community networks of index TB cases by identifying geographical locations 

spanned by each TB case using cellphone meta data. 

SUPPLEMENTARY MATERIALS 

Matching records using Dedupe.io software 

The resultant second-level egocentric social networks for each index (case or control) 

were linked to form an aggregated social network by finding persons who appeared in more than 

one network i.e., the duplicates. Duplicates were identified using an advanced, active machine 

learning and statistical approach, implemented in the Dedupe.io software (https://dedupe.io/). 

The software learns the best way to identify similar records in the dataset and uses this training 

to perform the deduplication.  

The records were compared using the first name, last name, sex, title and age. During the 

training step (the machine learning step of the software), the software provides a random sample 

of potential duplicates that are either accepted as duplicates by the user or the software is trained 

that they are records of different individuals. The training process was done by local content 

experts who are knowledgeable in local names, their social-cultural and sex affiliation. At a 

minimum, the software requires 10 negative and 10 positive responses for the training but the 

more the responses the better the de-duplication results will be. We trained the algorithm with 50 

positive responses (confirmed duplicates) and 50 negative responses (different individuals). 

After the training, the software was run to identify duplicate records. The duplicates 

identified by the software were verified during the verification step of the software to make sure 

the software did a good job at matching. After reviewing the identified clusters of potential 

duplicates, the software provides potential clusters to merge and records to add to clusters. These 

proposals were reviewed and records were added to clusters if they were the same individual as 



 

89 

those in the cluster. Similarly, clusters of the same individual were merged. This active machine 

learning procedure is one of the strengths of this approach. 

In the final step of the record matching process of the software, the clusters were polished 

to separate falsely clustered records. At the end of the matching, the software supplies an ID to 

each record in the database with similar records having the same ID.     

We performed another verification process outside the software by comparing the results 

of the matching process with a database of individuals identified to be the same by study 

personnel during enumeration and evaluation of indexes (case and controls) and their contacts in 

the field. The software did well with 95% of the records and the remaining 5% were because of 

minor deviations in the way the names were written on study forms. These were reviewed and 

manually added to their respective clusters. We also looked at all the identified clusters of 

duplicates and verified them accordingly. 

Matching records using Fuzzy string matching 

 Matching was performed at two stages during network building. First, resultant second-

level egocentric social networks for each index (case or control) were cleaned by merging 

duplicate individuals. A conservative matching parameter of 2 differences, representing either 

two insertions, two substitutions, two deletions (or a pairwise combination of these) between 

concatenated first and last name for a given query match was used. A conservative matching 

parameter was used at this stage since duplicate names in a second-level egocentric social 

network are more likely to be the same individual compared with when duplicates are searched 

for in the full social network.  

 Second, the resultant unconnected individual second-level egocentric social networks 

were linked by finding persons that show up more than once in the network i.e., the duplicates. 
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In this case, a more stringent matching parameter of one difference between concatenated strings 

of query names was used to ensure correct matching.  A less stringent matching parameter (≥2) 

resulted into a reduction in the number of indexes (case/control) yet these are confirmed to be 

unique. 

The aggregated social network built using Fuzzy string matching 

The network had 10,610 nodes of which 54.91% were male and the rest were female. It 

had 73,295 edges with a density of 0.0013, a mean degree of 13.8, a median degree of 12 

(min=0, max=215) and a clustering coefficient of 0.499.  

The network had 12 component networks. The largest component had 10,436 nodes of 

which 111 were index cases and 124 were index controls. It had 72,010 edges, a density of 

0.0013 and a clustering coefficient of 0.495. The remaining 11 components consisted one 

component with 2 cases and 10 components with each 1 index case (2 multi-case networks). On 

the other hand, one component had all 124 index controls, while 11 components had no index 

control (1 multi-control network). 

Constructing phylogenetic trees using BEAST software 

Model selection using the Maximum Likelihood method was performed with the 

MEGA7 software to determine a model of nucleotide substitution to use in tree building. 24 

different nucleotide substitution models were tested. The General Time Reversible model (GTR) 

with uniform evolutionary rates among sites and no evolutionary invariable sites had the lowest 

BIC score (Bayesian Information Criterion).  

A coalescent model with constant population size (Kingman 1982) was used for the tree 

prior. Other priors have been shown to give a tree with same topology. A uniform prior for the 
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mean of the lognormal distribution of the clock rate and an exponential prior for its standard 

deviation were used as derived from the literature.  

The assumption of a strict/constant molecular clock model across the tree was tested 

using MEGA7. The null hypothesis of equal evolutionary rate throughout the tree was rejected at 

a 5% significance level (p<0.001) hence a non-correlated relaxed lognormal clock was used.  

BEAST was run for 100 million iterations, with the parameter state recorded every 

10,000 iterations and the first 10% discarded as burn-in. A maximum clade credibility tree was 

built for each lineage (lineage 3 and 4) to summarize the posterior sample of trees. No phylogeny 

was built for lineage 1 since the 2 isolates had zero SNPs differences between them.  
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TABLES AND FIGURES 

A 

 

B 

 
Figure 3.1: Second-level egocentric social network building 

A: Second-level egocentric social network of index 20080. The index is shown in red while the 
‘first level contacts’ are shown in green and the ‘second level contacts’ in blue. B: Second-level 
egocentric social network of index 20080 with relational links between ‘first level contacts’ or 
‘second level contacts’ where they existed (as described by the index who listed these ‘first level 
contacts’ or ‘the first level contact who listed these second level’ contacts respectively). 

Table 3.1: Characteristics of index tuberculosis patients 

Characteristic All (N=123) Sequenced isolates 
(N1=79) 

Not sequenced 
(N2=44) 

p-
value 

n % n1 % n2 % 
Sex 
  Male 
  Female 

 
84 
39 

 
68.29 
31.71 

 
54 
25 

 
68.35 
31.65 

 
30 
14 

 
68.18 
31.82 

 
1 

Median age 
(range) 

28(15,63)  29(17-59)  26.5(15,63)  0.6417 

HIV status 
  Positive 
  Negative 
  Missing 

 
20 
98 
5 

 
16.26 
79.67 
4.07 

 
12 
66 
1 

 
15.19 
83.54 
1.27 

 
8 
32 
4 

 
18.18 
72.73 
9.09 

0.7089 
 

Median BMI 
(range) 

32.57(22.15, 
52.08) 

 32.57(23.41, 
52.08) 

 32.44(22.15, 
41.26) 

 0.274 

Alcohol use 
  Yes 
  No 
  Missing 

 
49 
72 
2 

 
39.84 
58.53 
1.63 

 
34 
45 

 
43.04 
56.96 

 
15 
27 
2 

 
34.09 
61.36 
4.55 

0.5574 
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Smoking 
  Current 
smoker 
  Former 
smoker 
  Never 
smoked 
  Missing 

 
14 
 
18 
 
89 
 
2 

 
11.38 
 
14.63 
 
72.36 
 
1.63 

 
10 
 
12 
 
57 

 
12.66 
 
15.19 
 
72.16 

 
4 
 
6 
 
32 
 
2 

 
9.09 
 
13.64 
 
72.73 
 
4.54 

0.9507 

Previous TB 
disease 
  Yes 
  No 
  Missing 

 
 
18 
103 
2 

 
 
14.63 
83.74 
1.63 

 
 
15 
64 

 
 
18.99 
81.01 

 
 
3 
39 
2 

 
 
6.82 
88.64 
4.54 

0.1403 

Lineage 
  1 
  3 
  4 

   
2 
14 
63 

 
2.53 
17.72 
79.75 

   

Smear status 
  Negative 
  Positive 

 
4 
119 

 
3.25 
96.75 

 
2 
77 

 
2.53 
97.47 

 
2 
42 

 
4.55 
95.45 

0.6167 

Median cough 
duration in 
months 
(range) 

2(0.46,24)  2(0.46,24)  2.5(0.69,12)  0.0852 

BCG scar 
present 
  Present 
  Absent 
  Uncertain 
  Missing 

 
 
92 
26 
3 
2 

 
 
74.80 
21.14 
2.44 
1.63 

 
 
58 
18 
3 

 
 
73.42 
22.78 
3.80 

 
 
34 
8 
 
2 

 
 
77.27 
18.18 
 
4.55 

0.5629 

Median 
Karnofsky 
score (range) 

90 (40-100)  90 (40-100)  85(50,90)  0.7096 

*The p-value is for comparison between characteristics of patients whose isolates were 
sequenced compared with those whose isolates were not sequenced. Missing: Data filled 
wasn’t filled on the questionnaire. 
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Lineage 4 

 

Lineage 3 

 
Figure 3.2: Pairwise SNP difference matrices visualized as networks 

*(colored by number of SNPs: 0-12 red, 13-50 blue, 51-100 green, >100 black) 
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Figure 3.3: Number of genetic links per SNP threshold 
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Figure 3.4: Aggregated social network and the largest component 

A: Aggregated social network. B: Aggregated social network with colors showing the different 
component networks that make up the full network. In blue is the biggest component. 
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Figure 3.5: Multi-case networks 
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Figure 3.6: Distribution of pairwise social network distance between tuberculosis patients with 
an identifiable path between them in the social network 
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Figure 3.7: Number of genetic links identified per social network distance 

*The lower row shows the number of identified social links (N) between the tuberculosis patients 
at a given social network distance. 
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Figure 3.8: Correlation of genetic distance with social network distance 
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Supplementary tables and figures 

 

 

Supplementary figure 3.1: Degree distribution for the aggregated social network 
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A 

 

B 

 

Supplementary figure 3.2: Distribution of SNP differences: lineage 3 (A), lineage 4 (B) 

 

Source Sink Probability Lineage SNPs Social 
Network 
distance 

C23229 C26963 1 4 0 Not 
connected 

C14774 C17085 0.9760048 4 1 1 
C17551 C17549 0.88222356 4 0 10 
C17549 C17551 0.11777644 4 0 10 

C17782 C17778 0.41971606 4 1 1 

C17778 C17782 0.26874625 4 1 1 

C20695 C22199 1 3 1 Not 
connected 

C20695 C20918 0.7 3 1 7 

C20918 C20695 0.29 3 1 7 

Supplementary figure 3.3: TransPhylo-inferred genetic links 
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Supplementary figure 3.4: Lineage 3 maximum clade credibility tree 
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Supplementary figure 3.5: Lineage 4 maximum clade credibility tree 

 

Supplementary table 3.1: Genetic links per SNP threshold among pairs with an identifiable path 
in the social network 

SNP 
threshold 

Median 
number 
of 
SNPs 

Number of 
genetically  
linked  
pairs 

#Links 
Lineag
e 
1 

#Links 
Lineage 
3 

#Links 
Lineage 
4 

#Links 
among 
pairs at 
SND=1 
(%) 

#Links 
 among 
pairs at 
SND≤2 
(%) 

#Links 
among 
pairs  
with a  
path (%) 

5 1 14 1 6 7 3(21) 3(21) 7 (50) 
12 1 23 1 6 16 3(13) 3(13) 10 (43) 
50 12.5 46 1 13 32 3(7) 4(9) 22 (48) 
100 25 75 1 13 61 3(4) 4(5) 27 (36) 
SND: Social Network Distance. #: Number of 

1990 1995 2000 2005 2010 2015 2020
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B 

 
Supplementary figure 3.6: Aggregated social network created and the largest component (Social 
network built with Fuzzy string matching) 

A: Aggregated social network. B: Aggregated social network with colors showing the different 
component networks that make up the full network. In blue is the biggest component. 
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Supplementary figure 3.7: Multi-case networks (Social network built with Fuzzy string 
matching) 
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Supplementary figure 3.8: Distribution of pairwise social network distance between tuberculosis 
patients with an identifiable path between them in the aggregated social network (Social network 
built with Fuzzy string matching) 
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Supplementary figure 3.9: Number of genetic links identified per social network distance (Social 
network built with Fuzzy string matching) 
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Supplementary figure 3.10: Degree distribution for the aggregated social network (Social 
network built with Fuzzy string matching) 
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Supplementary figure 3.11: Percentage of genetic links at different social network distances 

Percentage of genetic links between index TB patients (A: social network distance = 1, B: social 
network distance = 2, C: where an identifiable path exists between pairs in the social network, 
D: where NO identifiable path exists between pairs in the social network. 
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Supplementary figure 3.12: Correlation of genetic distance with social network distance (Social 
network built with Fuzzy string matching) 
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CHAPTER 4 : WHOLE GENOME SEQUENCING IDENTIFIES CLUSTERS OF 

RECENT TRANSMISSION AND FACTORS ASSOCIATED WITH RECENT 

TRANSMISSION IN AN ENDEMIC SETTING IN KAMPALA-UGANDA3 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
3 R Galiwango, E Yassine, A Handel, J Sekandi, L Liu, R Kakaire, S Zalwango, N Kiwanuka and C Whalen. To be 
submitted to Nature Scientific Reports 
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ABSTRACT 

Introduction: Uganda is one of the top 30 countries with the highest burden of 

Tuberculosis (TB) and HIV coinfection. In 2018, the country had an incident rate of 200/100,000 

for TB disease which represents a 33.3% decline in incidence from 2000. There is a need to 

interrupt ongoing transmission if the country is to achieve the targets of elimination spelt out in 

the End TB strategy. Whole Genome Sequencing (WGS) aids in interrupting transmission by 

identifying chains of recent transmission as it assumes that cases separated by a few SNP 

differences are more likely to be part of the same transmission chain.  

Methods: We investigated genetic linkage among TB patients in the Community Health 

and Social Networks of TB (COHSONET) study using a threshold of 12 SNPs to identify 

clusters of recent transmission, and covariates associated with clustering. 

Results: Twenty-nine (36.7%) patients of the 79 sequenced isolates formed 12 clusters. 

Most (nine) of the clusters were of size 2, one cluster was of size 3 while two were of size 4. In 

the univariate analysis, clustered patients were more likely to be male and current/past smokers. 

The multivariate analysis showed that clustered cases were more likely to be current/past 

smokers.  

Conclusion: There is a need for targeted interventions among identified risk groups in 

order to interrupt transmission.  

INTRODUCTION 

In 2014, WHO set an ambitious target to end TB by 2035 7 which has at its core the early 

detection and treatment of existing cases. While diagnosis and treatment of index cases are 

essential for the proper management of the individual case, they may not be sufficient to control 

the epidemic. Like most infectious diseases, tuberculosis creates the next generation of new 
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cases through transmission before the diagnosis is made and treatment begun in the index case. 

This transmission may sustain the epidemic in the community by replacing one case with another 

over time 8. Therefore, efforts to end TB will depend on our ability to halt ongoing transmission 

119.  

The drivers of TB transmission differ by setting. This is because, countries (or regions) 

differ in the burden of prevalent tuberculosis, HIV burden, capacity of healthcare and public 

health systems to identify and effectively treat individuals with infectious forms of tuberculosis, 

and the ways in which individuals live, work, and interact i.e., social mixing patterns 1,44. 

Uganda is part of the list of top 30 countries with the highest burden of TB and HIV 

coinfection (WHO Global TB Report, 2019). The incident rate of TB disease was 200/100,000 

(95% Confidence Interval= 118/100,000–304/100,000) in 2018 (WHO Global TB Report, 2019). 

This represents a 33.3% decline in incidence from the 300/100,000 new cases in 2000. There is a 

need to turn off the tap of new cases of disease by interrupting ongoing transmission if you 

Uganda is to achieve the targets of elimination that are spelt out in the End TB strategy. A better 

understanding of risk groups involved in recent transmission chains is required to effectively 

target interventions. 

Previously, traditional genotyping has been used to identify factors associated with recent 

transmission, using clustering of isolates based on their genotypic profiles as a measure of recent 

transmission 45. In this approach, individuals with identical or similar fingerprint patterns over a 

given time frame usually 2 years are considered to be clustered. Patients whose isolates cluster 

together are considered to be part of the same recent transmission chains while those with unique 

(un-clustered) isolates are more likely to be cases of reactivated TB disease that was acquired in 
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the past. The covariates associated with clustering are determined by comparing the 

characteristics of clustered and non-clustered TB patients.  

Whole Genome Sequencing (WGS) has been shown to separate isolates that had 

previously been identified as part of the same transmission chain using traditional genotyping 

techniques leading to smaller distinct clusters and less clustering 46–51. This is why more recently, 

WGS has replaced traditional molecular typing as routine in Mycobacterium tuberculosis 

transmission studies. WGS aids in interrupting transmission by identifying chains of recent 

transmission as it assumes that cases separated by a few SNP differences are more likely to be 

part of the same transmission chain.  

In this study, we used WGS data of pathogen isolates for patients in the Community 

Health and Social Networks of TB (COHSONET) study to identify tuberculosis patients 

involved in chains of recent transmission (clusters). We identified factors associated with 

clustering of tuberculosis patients.  

MATERIALS AND METHODS 

Study population 

The study population consisted 123 index tuberculosis patients from the Community Health and 

Social Networks of TB (COHSONET) study enrolled between 2012 and 2016. The COHSONET 

study was a study of index cases and their contact networks. For comparison purposes, the study 

included a random sample of controls. However, for purposes of this study, we only analyzed the 

index patients since we were interested in their pathogen isolates, except were we extracted their 

social network information. The study population (including the eligibility criteria), enrolment 

procedure, data collection and study measurements, whole genome sequencing of the isolates as 
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well as the social network study have been described elsewhere (chapter 3). Isolates of 79 of the 

123 index participants had successful sequencing. 

Data collection 

Data used in this study from the COHSONET study were: demographics (age, patient’s 

identified sex, education level, income), HIV coinfection, social risk factors (alcohol use, 

smoking), clinical factors (sputum smear status, dates of cough onset, BCG vaccination status, 

previous TB diagnosis), lineage and degree of each index participant in the aggregated 

COHSONET social network.  

Ethical considerations and data availability 

The COHSONET study was approved by both the Institutional Review Board at Makerere 

University and one at the University of Georgia. Whole genome sequence data is available upon 

request to the corresponding author. 

Definition of a clustered case 

A clustered case was defined as any case whose isolate was within 12 SNPs of at least 

one other case’s isolate during the study period 21,94,103. A non-clustered case was defined as any 

TB case from the study population whose isolate was >12 SNPs from any other case’s isolate. 

We performed a sensitivity analysis with a more stringent threshold of 5 SNPs to define a 

clustered tuberculosis case. 

Data analysis 

We calculated the proportion of clustered cases from the number of cases with at least 

one genetic link with another case divided by the total number of cases. We compared 

characteristics of patients whose isolates were sequenced with those whose isolates were not 

sequenced using chi-square tests for categorical variables (or Fisher exact test where necessary), 
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and a t-test for continuous variables to make sure that there was no bias in sampling of isolates 

for sequencing. We performed an item analysis on each of the collected variables and excluded 

variables with a lot of missing data, variables that were highly correlated with other variables and 

those whose distributions were not appreciable. This provided a subset of variables that was used 

in subsequent analysis.  

We performed univariate logistic regression to identify individual covariates associated 

with clustering and multivariate logistic regression including age, as a potential confounder 

along with covariates associated with clustering in univariate analysis. Considering that logistic 

regression tends to overestimate the measure of effect 120, we performed a sensitivity analysis 

using Modified Poisson Regression. 

The outcome was clustering (clustered vs un-clustered). All explanatory variables 

relating to the characteristics of each index patient were assessed for their relationship with 

clustering at univariate level. These were: social network characteristics (degree, betweenness 

and closeness of each index participant in the social network), sex, education level, income, age 

in years, HIV status, previous history of TB, Body Mass Index (BMI), cough duration in months, 

BCG, reported contact with a person known to have TB, smoking and alcohol use. Covariates 

were included in the multivariate model if the p-value for the univariate odds ratio (OR) was 

≤0.2. We assessed possible interactions between the covariates i.e., alcohol with sex, alcohol 

with smoking, sex with smoking, alcohol with HIV, alcohol with education and smoking with 

education. 
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RESULTS 

Description of the study population 

The study enrolled 123 index tuberculosis patients. Eleven of the patients were identified during 

field evaluation of index contacts. There was no statistically significant difference between 

patients whose isolates were sequenced and those whose isolates were not sequenced isolates 

(Table 2.1). Two of the sequenced isolates were lineage 2, fourteen were of lineage 3 while 

sixty-three belonged to lineage 4. 68.35% of them were male while the rest were female (Table 

4.1). 15.19% were HIV positive. Their median age was 29 years. 

Identified clusters 

Twenty-nine tuberculosis patients (36.7%) were clustered (Figure 4.1A). The 29 patients formed 

12 clusters (Supplementary table 4.7). Most (nine) of the clusters were of size 2 (Figure 4.1B). 

One cluster was of size 3 while two were of size 4. 

Characteristics of clustered patients 

82.75% of the clustered patients were male, 55.17% reported alcohol use (table 1). They had a 

median age of 27 years (range=20, 49) and a median BMI of 19.13kg/m2 (range=13.55, 23.67), a 

median cough duration of 2 months (range=0.46, 24) and a median social network degree of 10 

contacts (range=23, 56). 

Factors associated with clustering 

In the univariate analysis, clustered patients were more likely to be male (Odds 

Ratio=3.20, 95% Confidence Interval=1.11, 10.75; p<0.05) and were more likely to be current or 

past smokers (Odds Ratio =9.14, 95% Confidence Interval =2.08, 64.12; p<0.01) (Table 4.1). 

The odds of clustering increased with decrease in BMI (Odds Ratio =0.86, 95% Confidence 

Interval=0.72, 0.99; p=0.05). There was no association between clustering and social network 
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centrality characteristics (degree, betweenness and closeness). No interaction between the 

covariates was statistically significant (i.e., each had p>0.2) thus no interaction terms were added 

to the multivariate model.  

Sex, HIV status, smoking, alcohol use, known contact with a TB patient and BMI had p-

value ≤0.2 in the univariate analysis and these variables together with age (a potential 

confounder) were included in the multivariate analysis. The multivariate analysis showed that 

clustered cases were more likely to be current or past smokers (Adjusted Odds Ratio=9.14, 95% 

Confidence Interval=2.08, 64.12; p<0.01) (Table 4.2). 

The results of the Modified Poisson regression analysis were similar to those of the 

logistic regression analysis (Supplementary Table 4.1, Supplementary Table 4.2) 

The results were generally robust to a change in the definition of a clustered TB patient 

using a more stringent threshold of 5 SNPs (Supplementary Table 4.3, Supplementary Table 4.4, 

Supplementary Table 4.5, Supplementary Table 4.6) even though the number of clustered TB 

patients and size of clusters reduced (Supplementary Figure 4.1, Supplementary Table 4.8).  

DISCUSSION 

In this study, use of whole genome sequencing enabled us to identify clusters of recent 

tuberculosis transmission and covariates associated with clustering with a high degree of 

accuracy. We found that clustered patients were more likely to be past or current smokers. This 

study adds to the growing literature on the increased risk of acquiring tuberculosis by current 

smokers or persons who have ever smoked 121–123. Our study has illustrated the association 

between tuberculosis and smoking using whole genome sequence data. The results were 

generally robust to a change in the definition of a clustered TB patient from 12 SNPs to a more 

stringent threshold of 5 SNPs. 
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Smoke particles have been shown to impair macrophages, which are critical immune 

cells in fighting mycobacterium tuberculosis 124. This may explain why current and past smokers 

were associated with being involved in a recent transmission event. 

To test if cigarette smoking is a marker of some cultural behavior, we tested for 

associations between smoking and other patient characteristics using pairwise logistic regression 

models. We found associations with education level, age, cough duration and past contact with a 

person known to have TB. Smoking was neither associated with alcohol use nor patient reported 

sex. 

The Community Health and Social Networks of TB (COHSONET) study is the largest 

social network study of tuberculosis in Africa to be reported. Unlike most social network studies 

that are egocentric in nature, meaning the index tuberculosis patient is asked to list their contacts 

who are normally not enrolled into the study, the COHSONET study used an extended form of 

egocentric sampling were in addition to what is done in classic egocentric network sampling, an 

additional layer of contacts (the contacts of contacts) was added. The study also included a 

sample of index controls, their first level contacts and second level contacts. Indexes (cases and 

controls) and first level contacts were asked to describe social relations between the first level 

contacts and second level contacts, respectively. This comprehensive social network approach 

provides a better representation of the social network.  

A limitation of the study is that we did not enroll all consecutive tuberculosis patients 

during the study period and not all isolates were sequenced. It is therefore possible that we 

underestimated the proportion of clustered patients. However, there was no statistically 

significant difference between characteristics of patients whose isolates were sequenced and 

those whose isolates were not sequenced. 
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In conclusion, targeting high risk groups such as smokers for interventions could help 

interrupt ongoing transmission.  

Data availability 

Whole Genome Sequence data is available upon request to the corresponding author. 
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TABLES AND FIGURES 

A 

 

B 

 
Figure 4.1: A: Identified clusters. B: Number of clusters identified for each cluster size 

Black edges represent links for patients who had a social link while orange edges represent links 
for patients who had no social link. 
 

Table 4.1: Factors associated with clustering in the univariate logistic regression analysis (SNP 
threshold=12) 

Variable Total number of 
cases (N=79) (%) 

No (%) clustered 
(n=29); 36.7% 

OR (95% CI) 

Sex 
  Male 
  Female 

 
54 (68.35) 
25 (31.65) 

 
24 (44.44) 
5 (20.00) 

 
3.20 (1.11, 10.75) 
1 

HIV status 
  Positive 
  Negative 
  Missing 

 
12 (15.19) 
66 (83.54) 
1 (1.27) 

 
2 (16.67) 
27 (40.90) 

 
1 
3.46 (0.83, 23.70) 

Monthly income 
<200,000 UGSHS 
≥200,000 UGSHS 

 
23 (29.11) 
56 (70.89) 

 
6 (26.08) 
23 (0.41) 

 
0.51 (0.16, 1.43) 

Alcohol use 
  Yes 
  No 
  Missing 

 
34 (43.04) 
45 (56.96) 

 
16 (47.06) 
13 (28.89) 

 
2.19 (0.87, 5.65) 
1 

Smoking 
 Past/current smoker 

 
10 (12.66) 

 
8 (80.00) 

 
9.14 (2.08, 64.12) 
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 Never smoked 69 (87.34) 21 (30.43) 1 

Education 
Below high school 
At least high school 

 
47 (59.50) 
32 (40.50) 

 
18 (38.30) 
11 (34.38) 

 
1.18 (0.47, 3.08) 
1 

Previous TB  
  Yes 
  No 

 
15 (18.99) 
64 (81.01) 

 
6 (40.00) 
23 (35.94) 

 
1 
0.84 (0.27, 2.79) 

BCG scar 
Present 
Absent/uncertain 

 
21 (26.58) 
58 (73.42) 

 
20 (95.24) 
9 (15.52) 

 
0.70 (0.25, 1.98) 
1 

Ever had contact with a 
person known to have TB 
Yes 
No 
Missing 

 
 
53 (67.09) 
22 (27.85) 
4 (5.06) 

 
 
11 (20.75) 
18 (81.82) 

 
 
1.94 (0.71, 5.41) 
 
 

Median age in years (range) 29 (17-59) 27(20, 47) 1.00 (0.95, 1.05) 
Median BMI in 
kg/m2(range) 

32.57 (23.41, 52.08) 19.13 (13.55, 
23.67) 

0.86 (0.72, 0.99) 

Median cough duration in 
months (range) 

2 (0.46,24) 2 (0.46, 24) 1.00 (0.88, 1.12) 

Median social network 
degree 

23 (10, 87) 10 (23, 56) 1.00 (0.96, 1.03) 

Closeness centrality   1.00 (0.999, 1.00) 
Betweenness centrality   1.00 (1.00, 1.00) 
 

Table 4.2: Factors associated with clustering in the multivariate logistic regression analysis (SNP 
threshold=12) 

Variable Adjusted OR (95% CI) 
Sex 
  Male 
  Female 

 
1.44 (0.36, 6.03) 
1 

HIV status 
  Positive 
  Negative 

 
1.41 (0.25, 11.37) 
1 

Smoking 
 Past/current smoker 
 Never smoked 

 
18.11(1.90, 459.62) 
1 

Alcohol use 
  Yes 
  No 

 
1.87 (0.49, 7.37) 
1 



 

132 

Ever had contact with a person known to 
have TB 
Yes 
No 

 
 
1.02 (0.26, 3.66) 
1 

Median age in years (range) 0.94 (0.86, 1.01) 
Median BMI in kg/m2(range) 0.89 (0.73, 1.04) 
 

Supplementary figures 

Supplementary table 4.1: Factors associated with clustering in the univariate Modified Poisson 
analysis (SNP threshold=12) 

Variable 
 

Total number of 
cases (N=79) (%) 

No (%) clustered 
(n=29); 36.7% 
 

PR (95% CI) 

Sex 
  Male 
  Female 

 
54 (68.35) 
25 (31.65) 

 
24 (44.44) 
5 (20.00) 

 
2.22 (0.96, 5.14) 
1 

HIV status 
  Positive 
  Negative 
  Missing 

 
12 (15.19) 
66 (83.54) 
1 (1.27) 

 
2 (16.67) 
27 (40.90) 

 
1 
2.46 (0.67, 8.99) 

Monthly income 
<200,000 UGSHS 
≥200,000 UGSHS 

 
23 (29.11) 
56 (70.89) 

 
6 (26.10) 
23 (41.10) 

 
0.64 (0.30, 1.35) 

Alcohol use 
  Yes 
  No 
  Missing 

 
34 (43.04) 
45 (56.96) 

 
16 (47.06) 
13 (28.89) 

 
1.63 (0.91, 2.91) 
1 

Smoking 
 Past/current smoker 
 Never smoked 

 
10 (12.66) 
69 (87.34) 

 
8 (80.00) 
21 (30.43) 

 
2.63 (1.64, 4.22) 
1 

Education 
Below high school 
At least high school 

 
47 (59.50) 
32 (40.50) 

 
18 (38.30) 
11 (34.38) 

 
1.11 (0.61, 2.03) 
1 

Previous TB  
  Yes 
  No 

 
15 (18.99) 
64 (81.01) 

 
6 (40.00) 
23 (35.94) 

 
1 
1.14 (0.60, 2.17) 

BCG scar 
Present 
Absent/uncertain 

 
21 (26.58) 
58 (73.42) 

 
20 (95.24) 
9 (15.52) 

 
0.81 (0.44, 1.48) 
1 
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Ever had contact with a 
person known to have TB 
Yes 
No 
Missing 

 
 
53 (67.09) 
22 (27.85) 
4 (5.06) 

 
 
11 (20.75) 
18 (81.82) 

 
 
1.47 (0.84, 2.58) 
 
 

Median age in years (range) 29 (17-59) 27(20, 47) 1.00 (0.97, 1.03) 

Median BMI in 
kg/m2(range) 

32.57 (23.41, 
52.08) 

19.13 (13.55, 
23.67) 

0.91 (0.84, 0.99) 
 

Median cough duration in 
months (range) 

2 (0.46,24) 2 (0.46, 24) 1.00 (0.93, 1.08) 

Median social network 
degree 

23 (10, 87) 23 (10, 56) 1.00 (0.98, 1.02) 

Closeness centrality   1.00 (1.00, 1.00) 
Betweenness centrality   1.00 (1.00, 1.00) 
 

Supplementary table 4.2: Factors associated with clustering in the multivariate Modified Poisson 
analysis (SNP threshold=12) 

Variable Adjusted PR (95% CI) 
Sex 
  Male 
  Female 

 
1.54 (0.65, 3.65) 
1 

Smoking 
 Past/current smoker 
 Never smoked 

 
2.83 (1.26, 6.34) 
1 

Alcohol use 
  Yes 
  No 

 
1.45 (0.73, 2.90) 
1 

Median age in years (range) 0.96 (0.92, 1.00) 
Median BMI in kg/m2(range) 0.93 (0.86, 1.01) 
 

Supplementary table 4.3: Factors associated with clustering in the univariate logistic regression 
analysis (SNP threshold=5) 

Variable Total number of 
cases (N=79) (%) 

No (%) clustered 
(n=20); 25.3% 

OR (95% CI) 

Sex 
  Male 
  Female 

 
54 (68.35) 
25 (31.65) 

 
17 (31.50) 
3 (12.00) 

 
3.37 (0.99, 15.60) 
1 

HIV status 
  Positive 
  Negative 
  Missing 

 
12 (15.19) 
66 (83.54) 
1 (1.27) 

 
2 (16.70) 
18 (27.30) 

 
1 
1.88 (0.44, 12.97) 
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Monthly income 
<200,000 UGSHS 
≥200,000 UGSHS 

 
23 (29.11) 
56 (70.89) 

 
5 (21.70) 
15 (26.80) 

 
0.76 (0.22, 2.30) 

Alcohol use 
  Yes 
  No 
  Missing 

 
34 (43.04) 
45 (56.96) 

 
11 (32.40) 
9 (20.00) 

 
1.91 (0.69, 5.45) 
1 

Smoking 
 Past/current smoker 
 Never smoked 

 
10 (12.66) 
69 (87.34) 

 
6 (60.00) 
14 (20.30) 

 
5.89 (1.49, 25.88) 
1 

Education 
Below high school 
At least high school 

 
47 (59.50) 
32 (40.50) 

 
13 (27.70) 
7 (21.90) 

 
1.37 (0.49, 4.09) 
1 

Previous TB  
  Yes 
  No 

 
15 (18.99) 
64 (81.01) 

 
5 (33.30) 
15 (23.40) 

 
1 
0.61 (0.19, 2.22) 

BCG scar 
Present 
Absent/uncertain 

 
21 (26.58) 
58 (73.42) 

 
14 (66.70) 
6 (10.30) 

 
0.80 (0.27, 2.58) 
1 

Ever had contact with a 
person known to have TB 
Yes 
No 
Missing 

 
 
53 (67.09) 
22 (27.85) 
4 (5.06) 

 
 
10 (18.90) 
10 (45.50) 

 
 
3.58 (1.21, 10.85) 
 
 

Median age in years (range) 29 (17-59) 27.5(21, 46) 1.01 (0.96, 1.07) 
Median BMI in 
kg/m2(range) 

32.57 (23.41, 52.08) 18.9 (13.6, 23.5) 0.83 (0.68, 0.98) 

Median cough duration in 
months (range) 

2 (0.46,24) 2 (0.46, 24) 1.03 (0.90, 1.16) 

Median social network 
degree 

23 (10, 87) 23 (10, 56) 0.99 (0.95, 1.03) 

Closeness centrality   1.00 (0.999, 1.00) 
Betweenness centrality   1.00 (1.00, 1.00) 
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Supplementary table 4.4: Factors associated with clustering in the multivariate logistic regression 
analysis (SNP threshold=5) 

Variable Adjusted OR (95% CI) 
Sex 
  Male 
  Female 

 
1.85 (0.45, 9.59) 
1 

Smoking 
 Past/current smoker 
 Never smoked 

 
4.97 (0.82, 37.69) 
1 

Ever had contact with a person known to 
have TB 
Yes 
No 

 
 
2.54 (0.70, 9.11) 
1 

Median age in years (range) 0.97 (0.90, 1.04) 
Median BMI in kg/m2(range) 0.84 (0.66, 1.02) 
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Supplementary table 4.5: Factors associated with clustering in the univariate Modified Poisson 
analysis (SNP threshold=5) 

Variable 
 

Total number of 
cases (N=79) (%) 

No (%) clustered 
(n=29); 36.7% 
 

PR (95% CI) 

Sex 
  Male 
  Female 

 
54 (68.35) 
25 (31.65) 

 
24 (44.44) 
5 (20.00) 

 
2.62 (0.85, 8.15) 
1 

HIV status 
  Positive 
  Negative 
  Missing 

 
12 (15.19) 
66 (83.54) 
1 (1.27) 

 
2 (16.67) 
27 (40.90) 

 
1 
1.64 (0.44, 6.16) 

Monthly income 
<200,000 UGSHS 
≥200,000 UGSHS 

 
23 (29.11) 
56 (70.89) 

 
6 (26.10) 
23 (41.10) 

 
0.81 (0.33, 1.97) 

Alcohol use 
  Yes 
  No 
  Missing 

 
34 (43.04) 
45 (56.96) 

 
16 (47.06) 
13 (28.89) 

 
1.62 (0.76, 3.46) 
1 

Smoking 
 Past/current smoker 
 Never smoked 

 
10 (12.66) 
69 (87.34) 

 
8 (80.00) 
21 (30.43) 

 
2.96 (1.49, 5.89) 
1 

Education 
Below high school 
At least high school 

 
47 (59.50) 
32 (40.50) 

 
18 (38.30) 
11 (34.38) 

 
1.26 (0.57, 2.82) 
1 

Previous TB  
  Yes 
  No 

 
15 (18.99) 
64 (81.01) 

 
6 (40.00) 
23 (35.94) 

 
1 
1.25 (0.55, 2.83) 

BCG scar 
Present 
Absent/uncertain 

 
21 (26.58) 
58 (73.42) 

 
20 (95.24) 
9 (15.52) 

 
0.85 (0.37, 1.91) 
1 

Ever had contact with a 
person known to have TB 
Yes 
No 
Missing 

 
 
53 (67.09) 
22 (27.85) 
4 (5.06) 

 
 
11 (20.75) 
18 (81.82) 

 
 
2.41 (1.17, 4.96) 
 
 

Median age in years (range) 29 (17-59) 27(20, 47) 1.01 (0.97, 1.05) 

Median BMI in 
kg/m2(range) 

32.57 (23.41, 
52.08) 

19.13 (13.55, 
23.67) 

0.87 (0.78, 0.98) 
 

Median cough duration in 
months (range) 

2 (0.46,24) 2 (0.46, 24) 1.02 (0.94, 1.11) 

Median social network 
degree 

23 (10, 87) 23 (10, 56) 0.995 (0.968, 1.022) 
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Closeness centrality   1.00 (1.00, 1.00) 
Betweenness centrality   1.00 (1.00, 1.00) 
 

Supplementary table 4.6: Factors associated with clustering in the multivariate Modified Poisson 
analysis (SNP threshold=5) 

Variable Adjusted PR (95% CI) 
Sex 
  Male 
  Female 

 
1.62 (0.51, 5.18) 
1 

Smoking 
 Past/current smoker 
 Never smoked 

 
2.36 (0.89, 6.27) 
1 

Ever had contact with a person known to have TB 
Yes 
No 

 
1.79 (0.85, 3.80) 
1 

Median age in years (range) 0.98 (0.94, 1.02) 
Median BMI in kg/m2(range) 0.90 (0.81, 1.00) 
 

Supplementary table 4.7: Genomic clusters 

Cluster ID Cluster 
size 

Lineage Number of 
genetic 
links 

Number of 
SNPs 

Number of 
social links  

Social 
network 
distance 

1 2 1 1 0 0  
2 4 3 6 0,1,1,1,1,2 3 7,10,10 
3 4 4 6 0,1,7,7,11,11 0  
4 3 4 2 12,12 2 7,8 
5 2 4 1 0 1 10 
6 2 4 1 1 1 1 
7 2 4 1 6 0  
8 2 4 1 1 1 1 
9 2 4 1 0 0  
10 2 4 1 12 1 1 
11 2 4 1 1 1 11 
12 2 4 1 3 0  
Sum 29  23  10  
*Genetic clusters identified with a threshold of 12 SNPs 
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A 

 

B 

 
Supplementary figure 4.1: Identified clusters (SNP threshold=5). A: Lineage 4. B: Lineage 3. 

 

Supplementary table 4.8: Description of clusters (SNP threshold=5) 

Cluster ID Cluster size Lineage Number of 
genetic links 

1 2 1 1 
2 4 3 6 
3 2 4 1 
4 2 4 1 
5 2 4 1 
6 2 4 1 
7 2 4 1 
8 2 4 1 
9 2 4 1 
Sum 20  14 
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CHAPTER 5 : DEVELOPMENT OF A STOCHASTIC NETWORK MODEL TO STUDY 

THE TRANSMISSION DYNAMICS OF MYCOBACTERIUM TUBERCULOSIS4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
4 R Galiwango, A Handel, J Sekandi, L Liu and C Whalen. To be submitted to PLOS Computational Biology. 
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ABSTRACT 

Background: Unlike deterministic compartmental models, individual-based models such 

as network models allow us to account for heterogeneity in mixing of individuals in the 

population. Network models have been used for the study of transmission dynamics of other 

infectious diseases such as HIV but not so much for tuberculosis yet like for HIV, network 

structure plays a critical role in the transmission of Mycobacterium tuberculosis. 

Methods: I developed a stochastic network model to be used to study the transmission 

dynamics of Mycobacterium tuberculosis. I implemented an individual-based version 

(particularly a network model) of a deterministic model with two latency compartments on a 

dynamic network simulated from a static, cross-sectional network of indexes (cases and controls) 

and their contacts from the Community Health and Social Networks of TB (COHSONET) study. 

I used the Statnet suite of packages to build the COHSONET social network, to simulate a 

dynamic network and to run the epidemic model on the dynamic network. I assessed the viability 

of the model by running simulations at different values of the input parameters and observed the 

effect on the overall dynamics. I compared the results with those of a deterministic version of the 

model. 

Results: The model worked as expected with the number of susceptible individuals 

decaying exponentially with time (since there was no replenishment of susceptible individuals) 

and the number of latently infected individuals and TB diseased individuals increasing 

exponentially with time until all susceptible individuals were depleted. Increasing the infection 

probability or the contact rate quickened the epidemic as expected. A deterministic version of the 

model less to fewer infections 
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Future direction: The model will be extended to make it more realistic by accounting 

for drug resistance. I will test network-based interventions such as giving the intervention to only 

first level contacts of index TB cases and compare this with giving the intervention to both their 

first level and second level contacts. I will then develop an optimal combination of interventions 

that is necessary to achieve the targets of elimination spelt out in the end-TB strategy, in an 

endemic setting in Sub-Saharan Africa and in similar settings. The model could be used to 

answer the question on whether infections in the household are sufficient to maintain the 

epidemic in the community, and if not so, simulate different scenarios that can explain the 

observed infections in the community. 

INTRODUCTION 

Deterministic compartmental models are useful for studying the transmission dynamics 

of an infectious disease and consequently for informing public health interventions. However, 

these models are so simplistic in that they assume random (homogeneous) mixing of individuals 

in the population meaning that all susceptible persons have equal probabilities of getting infected 

which is not always true. In practice, each infectious individual has a finite set of contacts to 

whom they can pass infection. Individual-based models on the other hand such as network 

models allow us to account for this variability in mixing of individuals in the population. We can 

thus explore the effect of the underlying structure of the network on dynamics occurring on the 

network.  

It has always been known that compartmental models are too simplistic. What has been 

lacking are the necessary tools to implement more accurate connection structures. With the 

emergency of tools such as the Statnet suite of packages 56, we can explore transmission 

dynamics of infectious diseases using more realistic stochastic network transmission models. 
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Network models are compelling for studying transmission dynamics of respiratory pathogens 

that are transmitted via close contact (or airborne) Mycobacterium tuberculosis inclusive since 

infectious individuals generally pass on infection to their contacts. 

Network models have been used for the study of transmission dynamics of other 

infectious diseases such as HIV 13–16 but not so much for tuberculosis yet like for HIV, network 

structure plays a critical role in the transmission of Mycobacterium tuberculosis. For example, 

household contacts of index TB cases particularly children are at an elevated risk of acquiring 

TB though the proportion of transmission that attributed to household contact has been shown to 

be low in household contact studies 32.  

I developed a stochastic network model to be used to study the transmission dynamics of 

Mycobacterium tuberculosis. I implemented an individual-based (particularly, a network model) 

version of a deterministic model with two latency compartments 11,12 on a dynamic network 

simulated from a static, cross-sectional network of indexes (cases and controls) and their contacts 

from the Community Health and Social Networks of TB (COHSONET) study. I used the Statnet 

suite of packages 56 to develop the COHSONET social network, to simulate a dynamic network 

and to run the epidemic model on the dynamic network. Social/contact networks are not static 

but rather they are dynamic structures. New relations form between individuals in the social 

network with time (relational formation) while existing ones are dissolved over time (relational 

dissolution). Therefore, studying the spread of infectious diseases in general and tuberculosis in 

particular is more realistic if done on dynamic networks. 
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METHODS 

I used the Statnet suite of packages 56, particularly the ‘tergm’ package and the 

‘networkDynamic’ package implemented in R’s statistical software (www.r-project.org)  to 

estimate a dynamic network from a static, cross-sectional social network of indexes (TB cases 

and matched controls) and their first and second level contacts in the Community Health and 

Social Networks of TB (COHSONET) study (supplementary materials). Statnet 56 uses Separable 

Temporal Exponential-family Random Graph Models (STERGMs) to estimate a dynamic 

network from a static network based on observed statistical properties of the static network such 

as density, degree and clustering. In this approach, two Exponential-family Random Graph 

Models (ERGMs) are used to model the dynamic network: one ERGM is used to model 

relational formation while the other is used to model relational dissolution.  

I used the Bernoulli (Erdős–Rényi) model 125 for the formation formula but added a term 

for the number of completed triangles. The Bernoulli model has only one term (the number of 

edges) which captures the density of the network as a function of a homogenous edge 

probability. Two individuals in a network are said to form a triangle if they share a contact. The 

triangle is said to be closed if the two individuals who share a contact are also connected in the 

network i.e., are contacts of each other. The number of triangles in the network are often used as 

a measure of clustering for the network. The higher the number of triangles the, higher the 

clustering coefficient (degree of compactness of the network). On the other hand, I specified a 

simple dissolution model with only the edges term. This model implies that the probability of 

edge dissolution at each discrete time point is a homogeneous, constant hazard across ties i.e., it 

doesn’t depend on the specific configuration of individuals forming a tie.  
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I simulated a network version of a deterministic model with two latency compartments 

11,12 on the resultant dynamic network using the EpiModel package 126 which is also part of the 

Statnet suite of packages 56. A model with two latency compartments (one for low-risk latently 

infected persons and the other for high-risk latently infected persons) was shown to reproduce 

actual transmission dynamics (Ragonnet et al., 2017). On the other hand, models with one 

latency compartment were shown to produce unreasonably poor fits to empirical data. 

This deterministic model consists of four compartments: S(t) for the number of 

susceptible individuals at time t, LA(t) for the number of high-risk latently infected individuals 

(the fast progressors) at time t, LB(t) for the number of low-risk latently infected individuals (the 

slow progressors) at time t and I(t) for the number of active TB diseased individuals at time t. 

Only individuals in compartment I(t) are infectious. On infection, a proportion, g, of infected 

individuals moves into compartment LB(t) while the rest move into compartment LA(t). High-

risk latently infected individuals progress to active disease at some rate ϵ while low-risk latently 

infected individuals progress to active disease at a lower rate v.  

To implement a network version of this deterministic model, I modified the in-built 

infection module in the EpiModel package 126 to include two latency compartments. I also 

developed a new disease progression module for progression from latency to active TB disease. 

The per tie (relation) transmission rate is calculated given by 1 - (1 - p)c where p is the 

probability of infection per transmissible contact between a susceptible individual and a person 

with TB disease and c is the average number of transmissible contacts per contact per unit time. 

Transmission is a Bernoulli trial (binomial with n=1 trials) with probability of infection = the per 

tie transmission rate. Progression to active disease was also modeled by a Bernoulli distribution 

with a lower probability of progression for slow progressors compared to fast progressors.  
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The model was parameterized with local data from the COHSONET study 

(supplementary materials). Additional parameters were obtained from a study of tuberculosis 

transmission in S. Africa 127. The model was run for 5 years (an equivalent of 60 months) and the 

dynamics were observed for different levels of the transmission probability and the contact rate. 

All rate parameters were converted to units of months. I assessed the viability of the model. I run 

the model with an initial number of 123 diseased individuals, a figure equivalent to the number 

of index TB cases in the COHSONET study.   

I run a deterministic version of the model and compared the results with those of the 

network model. The parameters used in the model were: proportion of infected individuals 

transitioning to a low-risk compartment (LB) immediately after infection, g=0.86, rate of 

progression to active TB from the high-risk compartment (LA), ϵ=0.88/12, rate of progression to 

active TB from the low-risk compartment (LB), v=0.00011/12 (Table 5.1).  

I observed the dynamics for probability of infection per transmissible contact=0.01 and a 

lower rate of 0.001. I also run the model with an average number of transmissible acts per tie 

(average number of contacts between diseased individuals and susceptible individuals) per 

month, c=1 and compared that with c=5. 

RESULTS 

Viability of the model 

As expected, the number of susceptible individuals decreased exponentially with time 

(figure 5.2) since there was no replenishment of susceptible individuals. The number of latently 

infected individuals increased exponentially with time until steady state (when all susceptible 

individuals were depleted) with the number of low-risk latently infected individuals being lower 

than the number of high-risk latently infected individuals throughout the epidemic curve as 
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expected. The number of TB diseased individuals increased exponentially with time until steady 

state.  

Increasing the infection probability from 0.001 to 0.01 quickened the epidemic with 

susceptible individuals being depleted at an earlier time of 10 months compared to 20 months 

initially. This is expected as susceptible population is being infected at a higher rate. The number 

of incident TB cases for p=0.01 was higher at the peak of the epidemic compared to p=0.001 

(figure 5.3). Similarly, increasing the contact rate from c=1 to c=5 depleted the susceptible 

population at a faster rate (figure 5.4). The number of incident TB cases at c=1 was also higher at 

the peak of the epidemic compared to c=5 (figure 5.5). 

In the deterministic model, few new infections resulted compared with the network 

model, at the same parameter values (figure 5.5 and 5.6). 

DISCUSSION 

I implemented a network version of the deterministic model for Mycobacterium 

tuberculosis transmission with two latency compartments 11,12 on a dynamic network simulated 

from a static, cross-sectional network of indexes (cases and controls) and their contacts from the 

COHSONET study. I assessed the viability of the model by running simulations at different 

values of the input parameters and observing their effect on the overall dynamics.  

The model worked as expected with the number of susceptible individuals decaying 

exponentially with time (since there was no replenishment of susceptible individuals) and the 

number of latently infected individuals and TB diseased individuals increasing exponentially 

with time until all susceptible individuals were depleted. Increasing the infection probability or 

the contact rate quickened the epidemic as expected. 
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In a model with two latency compartments, the activation dynamics are driven by two 

exponential components that are associated with two independent growth rates. Models with two 

latency compartments have been shown to accurately replicate empirically observed dynamics 

11,12. On the other hand, models with one latency compartment were shown to produce 

unreasonably poor fits to empirical data. Such models only involve a single exponential function, 

which is not sufficient to replicate the two distinct patterns observed in the dynamics of 

activation—a high risk of disease activation over the first few months, followed by a 

dramatically lower risk in a second phase 11. 

Deterministic compartmental models assume uniform mixing of individuals in the 

population which is not always true. Individual-based models on the other hand such as network 

models explored here allow us to account for mixing patterns of individuals in the population. 

We can thus explore the effect of the underlying structure of the network on dynamics occurring 

on the network. Network models are compelling for studying transmission dynamics of 

respiratory pathogens, Mycobacterium tuberculosis inclusive, that are transmitted via close 

contact (or airborne) since infectious individuals generally transmit to their contacts. It has 

always been known that compartmental models are too simplistic. What has been lacking are the 

necessary tools to implement more accurate connection structures. With the emergency of tools 

such as the Statnet suite of packages 56, we can explore transmission dynamics of infectious 

diseases using more realistic stochastic network transmission models. 

The biggest limitation of network models in particular and individual based models in 

general is that they are computationally involved. Relational data is usually big in itself and 

therefore running a transmission model on it creates a complex system that requires fast 

computers with bigger memory (RAM) and software tools that are capable of handling big data 
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and making complex simulations. This is why deterministic compartmental models have mainly 

been the go-to methodology for studying transmission dynamics of infectious diseases and 

testing interventions. However, these models are less realistic compared to individual based 

models. It is thus a trade-off between simplicity and realism.  

The model I have developed is a basic model that only includes four compartments 

(susceptible, low-risk latently infected, high-risk latently infected and diseased). The model can 

be made more realistic with regard to Mycobacterium tuberculosis transmission by including two 

parallel compartmental structures with one representing transmission of a drug sensitive strain 

and another for transmission of a drug resistant strain. Interaction between the two structures 

occurs when a proportion of diseased individuals on defaulting treatment and acquire drug 

resistance thus crossing from the drug sensitive structure to the drug resistance structure. Persons 

may also develop drug resistance when they are infected by a drug resistance strain (transmitted 

drug resistance). Susceptible individuals can be replenished at a constant rate or one that includes 

birth and in-migration while all individuals in the population can die due to natural causes or due 

to TB disease. Individuals with TB disease can recover spontaneously or after completing 

treatment and they can be re-infected at a given rate on recovery. Latently infected individuals 

can also be re-infected. 

On top of treating diseased individuals, other interventions such as BCG vaccination and 

chemotherapy of latently infected persons can be applied to the system. Since the vaccine (BCG) 

is not 100% efficacious, a proportion of vaccinated individuals would become latently infected 

with either a drug sensitive strain or a drug resistant strain and would thus move to the respective 

latent compartments. Vaccination reduces the number of susceptible individuals in the 

population that diseased individuals would come into contact with in the network. On the other 
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hand, a proportion of latently infected individuals would be given Isoniazid Preventive Therapy 

(IPT) at a given rate and they return to the susceptible compartment.  

We can then explore which individuals in the network can be targeted for interventions 

for example the effect of giving interventions to only first level contacts of index TB cases 

compared with the difference made when the intervention is given to both first level contacts and 

second level contacts (the contacts of first level contacts). We can also determine an optimal 

combination of interventions that is necessary to achieve the targets of elimination spelt out in 

the End-TB strategy. 

Another potential application of the model is to answer the question on whether 

infections in the household are sufficient to maintain the epidemic in the community, and if not 

so, simulate different scenarios that can explain the observed infections in the community. 
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TABLES AND FIGURES 
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Figure 5.1: Transmission dynamics for different levels of the transmission probability 

Transmission dynamics: s.num (number of susceptibles), i.num (number of diseased), fast lA.num 
(fast progressors), lB.num (slow progressors) and total number of latently infected individuals 
(l.num). A: transmission probability=0.001. B: transmission probability=0.01. 
 

Table 5.1: Parameters used in the model 

Parameter Description Value 
g proportion of infected individuals transitioning to a low-risk 

compartment (LB) immediately after infection 
0.86 

ϵ rate of progression to active TB from the high-risk 
compartment (LA) 

0.88/12 

v rate of progression to active TB from the low-risk compartment 
(LB 

0.00011/12 

c effective contact rate 4.9/day 
p transmission probability 0.011 
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Figure 5.2: Incidence at different values of the transmission probability 

Incidence. A: transmission probability=0.001; B: transmission probability=0.01 
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Figure 5.3: Transmission dynamics at different levels of the contact rate 
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Transmission dynamics: s.num (number of susceptibles), i.num (number of diseased), fast lA.num 
(fast progressors), lB.num (slow progressors) and total number of latently infected individuals 
(l.num). A: Contact rate=1. B: Contact rate=5 
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Figure 5.4: Incidence at different values of the contact rate 

Incidence. A: Contact rate=1; B: Contact rate=5 
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Figure 5.5: Transmission dynamics for different levels of the transmission probability in the 
deterministic model 

A: transmission probability=0.001. B: transmission probability=0.01 
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Figure 5.6: Transmission dynamics for different levels of the contact rate in the deterministic 
model 

A: contact rate=0.001. B: contact rate=0.01 
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CHAPTER 6 : CONCLUSION 

  

MOTIVATION 

This research aimed at filling four gaps identified during the review of the literature. First, I 

aimed at discussing current approaches for processing WGS data from TB pathogen isolates for 

purposes of making inferences on transmission of Mycobacterium tuberculosis and to update 

existing literature on the methods used to make direct transmission inferences. Second, I aimed 

to explore the relevance of the social network of an index tuberculosis case in the transmission of 

Mycobacterium tuberculosis. Third, I aimed to identify the critical drivers of Mycobacterium 

tuberculosis in an endemic urban setting in Sub-Saharan Africa. Fourth, I aimed to develop a 

stochastic network model to be used to study Mycobacterium tuberculosis transmission. 

SYNTHESIS OF MAIN FINDINGS 

Aim 1: In a systematic review, we found heterogeneity in processing of WGS data 

among studies and some areas of consensus especially in recent literature. Standardization of 

data processing methodology such as with creation of standardized computational pipelines 

could improve comparability of transmission inference results. SNP thresholds are the most 

widely used method for inferring transmission because of their simplicity, with a threshold of 12 

SNPs the most widely used. Bayesian transmission modeling attempts to address their limitation 

and is increasingly being used in transmission studies. 

Aim2: In a large social network study of tuberculosis (COHSONET), we found that 

transmission often happens outside of the defined social network of an individual case. Further 
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exploration of other mechanisms of extra-household transmission of Mycobacterium tuberculosis 

is required. One way of doing this is by studying mobility of tuberculosis patients several months 

prior to diagnosis so as to identify community venues and geographical locations in the 

community where transmission occurs. We can also reconstruct community networks of index 

TB cases by identifying geographical locations spanned by each TB case using cellphone meta 

data. 

I found no correlation between genetic distance and social network distance. For a 

disease that requires adequate contact for effective transmission to occur, our hypothesis before 

the study was that patients at close social network distance are more likely to have genetically 

similar strains but this wasn’t the case. Previous studies have investigated the relationship 

between genetic distance and geographic distance 51,116–118 and found that patients living at close 

proximity were more likely to have genetically similar strains. Geographical distance could be a 

better measure of proximity than social network distance. 

Aim 3: We identified clusters of recent transmission in the COHSONET study using high 

resolution whole genome sequencing. We found that clustered cases were more likely to be 

current or past smokers. This study adds to the growing literature on the increased risk of 

acquiring tuberculosis by current smokers or persons who have ever smoked 121–123. Smoke 

particles have been shown to impair macrophages, which are critical immune cells in fighting 

mycobacterium tuberculosis 124. There is a need for targeted interventions among identified risk 

groups in order to interrupt transmission. 

Aim 4: Unlike deterministic compartmental models, network models account for 

heterogeneity in mixing patterns. I implemented a network version of a deterministic model with 

two latency compartments on a dynamic network simulated from a static network. The model 
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depicted expected dynamics in a viability analysis when compared with a deterministic version. 

The model will be used to answer research questions such as whether infections in the household 

are sufficient to maintain the epidemic in the community, and if not so, different scenarios 

explaining the observed infections in the community will be simulated. 

STUDY LIMITATIONS 

When conducting the systematic review, information from the studies was extracted as 

reported. Researchers may have done a particular data processing step during the analysis but 

may have not reported it. Nevertheless, the major data processing steps should be reported 

because each step in the pipeline influences the inferences made.  

In the COHSONET study, we did not enroll all consecutive TB patients during the study 

period and not all isolates were sequenced. It is therefore possible that we underestimated the 

proportion of clustered patients. However, there was no statistically significant difference 

between characteristics of patients whose isolates were sequenced and those whose isolates were 

not sequenced.  

It is also possible that some nodes and edges were miss-specified during the search for 

duplicates. However, use of local content experts when matching records who were knowledge 

in local names and their sex affiliation decreased the likelihood of this occurring. Despite these 

limitations, this study represents the largest most comprehensive social network study of 

tuberculosis in Africa. 
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PUBLIC HEALTH RECOMMEDATIONS 

There is a need to standardize data processing methodology such as with creation of 

standardized computational pipelines so as to improve comparability of transmission inference 

results. 

Since transmission often happens outside of the defined social network of an individual 

case, studying mobility of tuberculosis patients several months prior to diagnosis could enable us 

to better understand extra-household transmission of Mycobacterium tuberculosis. 

There is a need for targeted interventions among identified risk groups, for example 

current or past smokers found in this study, in order to interrupt transmission. 

FUTURE DIRECTION 

Other potential transmission routes of tuberculosis could be explored by identifying 

locations in the community where transmission occurs. Such hotspots of transmission could be 

identified by studying mobility of index TB patients several months prior to diagnosis. By so 

doing, we use mobility of tuberculosis patients as an indicator of TB transmission. We can 

reconstruct community networks of index TB cases using their cellphone meta data and link 

these cases using these data. When coupled with Whole genome sequencing of pathogen isolates 

from diseased persons, these data could help improve our understanding of extra-household 

transmission.  

The stochastic network model developed will be extended to make it more realistic by 

accounting for drug resistance. The model will be used to answer research questions such as 

whether infections in the household are sufficient to maintain the epidemic in the community, 

and if not so, different scenarios explaining the observed infections in the community will be 

simulated. I will also test network-based interventions such as giving the intervention to only 
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first level contacts of index TB cases and compare this with giving the intervention to both their 

first level and second level contacts. I will then develop an optimal combination of interventions 

that is necessary to achieve the targets of elimination spelt out in the end-TB strategy, in an 

endemic setting in Sub-Saharan Africa and in similar settings. 
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