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ABSTRACT 

 Computerized adaptive testing (CAT) is a popular method for boosting efficiency, 

reducing costs, and improving examinee reactions in employee selection. Extant research has 

primarily established that CAT provides utility over static personality testing when the response 

model is monotonic (i.e., higher standing on the trait results in participant endorsement of a 

higher response option). Given the recent emergence of the use of ideal point item response 

theory (IRT) models for personality testing—which assume that higher response probability is 

inversely related to an individual’s distance from the item—it is important that research examine 

whether these models support effective CAT, and the test characteristics that may play a role. 

This is because ideal point models require more response data than monotonic models to 

accurately estimate θ, potentially hindering the utility of CAT. The present study used real-data 

simulations to examine the performance of different CAT conditions using a pool of 

conscientiousness items calibrated under the generalized graded unfolding model (GGUM) on a 

sample of 1,724 Amazon Mechanical Turk workers. General measurement accuracy/precision 

and the accuracy of dichotomous employee selection decisions based upon theta estimates were 

examined while manipulating the cut-score adopted for employee selection, total test length, 



number of pre-adaptive items presented (i.e., an initial testlet), and the use of a sequential versus 

multistage testing design. Results indicate that adaptive tests outperform ideal point static tests 

on general measures of accuracy but not on employee selection decision accuracy. The most 

critical test characteristic for successful adaptive testing is the presence of an initial testlet. 

Implications for testing theory, CAT design considerations, and future research directions are 

discussed. 
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CHAPTER 1 

INTRODUCTION 

Computerized adaptive testing (CAT)1 has gained popularity among large organizations 

as a means to increase efficiency and reduce costs in personnel assessment for both cognitive and 

noncognitive predictors (Kantrowitz, Dawson, & Fetzer, 2011). However, little research has 

systematically examined optimal CAT characteristics for personality assessment, particularly 

when utilizing ideal point item response theory (IRT) measurement models, which recent 

empirical evidence suggests more accurately model the way persons respond to personality tests 

than monotonic, dominance-based models (Drasgow, Chernyshenko, & Stark, 2010a, 2010b; 

LaPalme, Tay, & Wang, 2018; Stark, Chernyshenko, & Drasgow, 2005). Organizations may 

invest millions of dollars into the development of personality CATs based upon the assumption 

that the reduced length of such assessments compared with static assessments will result in more 

positive applicant attitudes, test security, and reduced scoring efforts (Fetzer, Dainis, Lambert, & 

Meade, 2011). However, to the author’s knowledge, no evidence exists regarding how to best 

leverage the efficiency of CAT for ideal point personality assessment (i.e., which test features 

are most effective).  

The purpose of the present study is to simulate multiple CAT variations using existing 

examinee data from a static test of conscientiousness by manipulating the total length of the test, 

the percentile rank used as a cut-score for a hypothetical employee selection decision (i.e., 10th, 

20th, and 30th percentile), the number of items presented prior to initializing adaptation, and the 

 
1 Throughout, I use the acronym CAT to refer to both “computerized adaptive testing” and “computerized adaptive 

test.”  
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use of stages or sequential adaptation throughout the CAT. Mirroring the diversity of real-world 

applications of assessments in organizational contexts, two interrelated sets of outcomes are 

examined: (1) general precision/accuracy of measurement, and (2) the ability of the CAT to 

accurately guide dichotomous employee selection decisions based on a predetermined cut-score 

meant to reflect the “select-out” screening typical of personality test use in organizations 

(Mueller-Hanson, Heggestad, & Thornton, 2003). The performance of all CAT conditions are 

compared relative to each other and to a static test of equal length to provide evidence regarding 

the utility of CAT for organizations using ideal point personality assessment for employee 

selection.    

Extant research on CAT-based personality assessment is predominantly based upon 

dominance IRT models (Forbey & Ben-Porath, 2007; Hol, Vorst, & Mellenbergh, 2008; 

Makransky, Mortensen, & Glas, 2013; Reise & Henson, 2000; Simms & Clark, 2005). In such 

models, respondents are assumed to have a cumulatively higher probability of endorsing an item 

as their underlying trait level increases (denoted as the Greek symbol theta, θ). On the other 

hand, ideal point models suggest that as one’s distance from an item increases in either direction, 

the probability of endorsing that item decreases. Ideal point models are believed to be a better fit 

to personality data than dominance-based models due to the manner in which individuals 

consider their relative distance from the location of an item, regardless of whether they are 

higher or lower on the underlying trait (LaPalme et al., 2018). Thus, as a primary contribution, 

the present study aims to determine how well short ideal point personality CATs perform in 

terms of accuracy and precision. 

It is noteworthy that a small body of research has emerged supporting the utilization of 

complex ideal point models for CAT in large-scale testing environments such as the Army (e.g., 
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Drasgow, Stark, Chernyshenko, Nye, & Hulin, 2012) and the Navy (Houston, Borman, Farmer, 

& Bearden, 2006). All such applications have utilized a forced-choice item response format 

(discussed in more detail later). However, to the author’s knowledge, evidence regarding the 

adequacy of CATs using single-stimulus ideal point items (i.e., traditional Likert scale response 

options) remains nonexistent. This represents a significant gap considering that the single-

stimulus format is used much more in practical applications than the forced-choice format due to 

lower cost and ease of implementation (N. Carter, personal communication, February 23, 2019).  

A second contribution of the present study is the examination of multiple uses of CAT 

scores. Personality testing may be used for a variety of purposes in organizational settings, but is 

most appropriately used to either make “select-out” decisions based upon a predetermined cut-

score or for general assessment of applicants/incumbents across the entire trait range for 

validation research (Kantrowitz et al., 2011; Mueller-Hanson et al., 2003). The latter purpose 

requires precise trait estimates at all levels and has been the emphasis of previous examinations 

of optimal CAT characteristics (e.g., Forbey & Ben-Porath, 2007; Hol et al., 2008; Houston et 

al., 2006; Makransky et al., 2013). Use of a cut-score simply requires certainty that an 

examinee’s true trait level is above or below the cutoff criterion. Thus, identification in the 

present study of how a CAT operates against both outcomes provides information about the 

types of organizational decisions it can reliably inform. Furthermore, by manipulating severity of 

the cut-score, the present study provides valuable information to practitioners regarding potential 

boundary conditions for the accuracy of the CAT in informing employee selection decisions. 

The present study also examines specific algorithmic characteristics that may optimize 

ideal point CAT performance. It is well established that longer tests provide more stable 

estimates of psychological constructs than shorter tests (Crocker & Algina, 1986). However, this 
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principle is frequently at odds with practical considerations around cost and testing time in 

employee selection contexts (Ployhart, Schmitt, & Tippins, 2017). Thus, it would be very useful 

for organizations to have guidelines regarding the shortest possible CAT length that still provides 

reliable scores. The need for such information is especially cogent when using ideal point 

modeling, considering that θ estimation generally may require more items than dominance-based 

modeling to make sense of different types of response patterns (Dalal, Withrow, Gibby, & 

Zickar, 2010). Hence, the present study examines a “very short” (6-item) CAT and a “short” (12-

item) CAT to provide evidence regarding what constitutes an acceptable test length. 

Because ideal point items have item response functions that differ in functional form 

compared with dominance items (described in further detail in a later section), research is needed 

to determine CAT characteristics that handle these assumptions effectively. To start, this study 

examines whether the traditional practice in dominance-based CAT of initially presenting a 

single item to begin estimating θ and adaptively selecting items is effective when an ideal point 

response model is used. I posit that such an approach is not effective due to the ambiguity around 

the substantive meaning of a response to any single ideal point item. Thus, I test the effectiveness 

of short initial testlets assembled to explicitly sample items from across the entire trait spectrum, 

prior to beginning adaptation, as a means of increasing early reliability of the interim estimate of 

θ (denoted as theta-hat, or 𝜃). The term testlet is sometimes used in the literature to refer to a 

group of items linked to the same stimulus and thus expected to lack conditional independence 

(e.g., Wainer, Bradlow, & Du, 2000). For clarity, the present usage of the term merely indicates a 

group of items that are presented simultaneously to an examinee, irrespective of item content. 

Beyond the starting point of the CAT, I also examine the effectiveness of sequentially 

presenting a single item at a time versus presenting item testlets in stages throughout the 
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remainder of the test. Comparing tests with differing levels of adaptiveness but equal lengths 

allows for identification of a potential ideal balance between maximizing the rapidity of homing 

in on θ (more adaptiveness) and maximizing the reliability of the estimate of 𝜃 prior to 

potentially presenting localized items that are not informative (less adaptiveness). It is also 

possible that a unique combination of initial item presentation strategy and ongoing item 

presentation strategy will result in optimal precision. Indeed, past research has suggested that 

differing adaptive test designs, such as purely sequential/traditional CAT (Stark, Chernyshenko, 

Drasgow, & White, 2012), multistage tests (MSTs; Stark & Chernyshenko, 2006), or a hybrid 

approach (Wang, Lin, Chang, & Douglas, 2016) all have value. But research has not compared 

how these varying approaches impact estimates in an ideal point CAT. Identifying relative 

performance of these designs has practical relevance, considering that MSTs may be favored to 

traditional CATs in practice due to higher levels of content control, easier expert review of non-

statistical considerations prior to test administration, and examinee reactions (Luecht, Brumfield, 

& Breithaupt, 2006; Stark & Chernyshenko, 2006).  

Study Overview 

The present study uses a series of real data simulations (actual examinee responses to a 

complete static test are used to simulate results of differing CAT conditions) to examine the 

efficiency of CAT for assessing the personality trait of conscientiousness under ideal point 

measurement conditions. Conscientiousness serves as the construct of interest in the present 

study due to its common usage in selection batteries and high predictive validity (Judge, Rodell, 

Klinger, Simon, & Crawford, 2013); however, results are expected to generalize to other 

personality traits.  
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Table 1 displays all study conditions. The present study is a partially-crossed design with 

a total of 36 conditions. Six static test conditions are examined: 3 (Employee selection percentile 

cut-score: 10th, 20th, 30th) x 2 (Test Length: 6 items, 12 items). Thirty adaptive test conditions are 

examined: 3 (Employee selection percentile cut-score: 10th, 20th, 30th) x 3 (Initial Item Selection: 

single item, two-item testlet, three-item testlet) x 2 (Test Design: fully adaptive sequential, 

multistage) x 2 (Test Length: 6 items, 12 items), minus six non-examined cells. These six non-

examined cells are those in which a single item is presented initially followed by multistage 

testing. Although these cells represent valid levels in a fully-crossed design, there is no 

theoretical rationale for their inclusion. The presentation of a single item prior to adaptation 

suggests confidence in the reliability of the estimate derived from the item response. In reality, 

the beginning of the CAT is when estimation is most unstable. To present a single item followed 

by testlets is precisely the opposite of what theory and empirical evidence would suggest is 

logical (Wang et al., 2016). If testlets do provide value, it is most likely to be at the beginning of 

the CAT. 

Each CAT condition is evaluated on both general measurement effectiveness and 

effectiveness for making employee selection decisions. First, conditions are evaluated across and 

conditional on θ based upon root mean square error (RMSE; precision), the mean signed 

difference between 𝜃 and θ (systematic bias), and the correlation between 𝜃 and θ (𝑅𝜃𝜃̂; 

accuracy). Second, accuracy of the dichotomous employee selection decision is determined by 

calculating the proportion of individuals correctly classified above the cut-score by comparing 𝜃 

with θ after normalizing based on the cut-score used.  

In the following sections, because of the critical bearing that the choice of response 

model has on CAT, I first provide a brief background on ideal point IRT models, focusing on the 
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Table 1 

All 36 Study Conditions 

(a) Selection Cut-Score = 10th percentile 

  
Total Items   

6 12 

 Static Static Static  
Single-Item Sequential Sequential  

Two-Item 
Sequential Sequential 

Start Multi-Stage Multi-Stage  

Three-Item 
Sequential Sequential  
Multi-Stage Multi-Stage 

 

(b) Selection Cut-Score = 20th percentile 

  
Total Items   

6 12 

 Static Static Static  
Single-Item Sequential Sequential  

Two-Item 
Sequential Sequential 

Start Multi-Stage Multi-Stage  

Three-Item 
Sequential Sequential  
Multi-Stage Multi-Stage 

 

(c) Selection Cut-Score = 30th percentile 

  
Total Items   

6 12 

 Static Static Static  
Single-Item Sequential Sequential  

Two-Item 
Sequential Sequential 

Start Multi-Stage Multi-Stage  

Three-Item 
Sequential Sequential  
Multi-Stage Multi-Stage 

 

Note. “Sequential” and “Multi-Stage” refer to item presentation strategy after the start (e.g., the 

Two-Item Start, Sequential condition with 6 total items would present two initial items 

simultaneously, followed by four individual items in sequence). 
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popular generalized graded unfolding model (GGUM; Roberts, Donoghue, & Laughlin, 2000) 

that is used in the present study. I then discuss extant empirical evidence regarding the value of 

CAT compared with static testing in personality assessment. Finally, I discuss the rationale for 

examining each of the various manipulated CAT characteristics within the present study.  

Item Response Theory and the Generalized Graded Unfolding Model 

IRT encompasses a broad class of models in which the probability of endorsement of an 

item is related non-linearly to one’s standing on the latent trait of interest. Because IRT allows 

for scaling individuals and scale items on the same metric, it is an incredibly useful basis for 

CAT to efficiently capture θ, iteratively presenting items tailored to an individual’s current 𝜃 

estimate and then updating 𝜃 (Embretson & Reise, 2000). Two broad classes of IRT models, 

dominance (Likert, 1932) and ideal point (Thurstone, 1927), may be used for CAT but make 

different assumptions about the psychological process of responding to an item. These differing 

assumptions have implications for how the item response function (IRF) is modeled, the resultant 

shape of item information, and practical considerations around creating scale items.  

As seen in the left-hand side of Figure 1, dominance-based IRF’s predict that the 

probability of endorsing an item increases monotonically as θ increases (i.e., individuals with 

higher θ will “dominate” items lower on the trait continuum), whereas ideal point IRF’s predict 

that the probability of endorsing an item increases as one’s distance from the item decreases. 

Complete endorsement of the item (i.e., selecting the highest possible response option) in 

dominance models suggests that an individual’s θ lies at some point above the item’s location 

(specifically, anywhere after the ogival curve levels out). On the other hand, complete 

endorsement of the item in ideal point models suggests that the individual’s θ is approximately 

equal to the item location. Anything less than complete endorsement in dominance models  
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Dominance 

 

Ideal Point 

 

 

Figure 1. General form of the item response functions and item information functions in 

dominance versus ideal point models for an item on a six-point Likert scale with ẟ = 0.  
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suggests progressively lower trait standing, whereas less than complete endorsement in ideal 

point models suggests distance from the item location in either direction. As a result, any 

objective response category to an ideal point item (e.g., disagree) has two possible subjective 

response categories (i.e., disagree from above or disagree from below the item; Roberts et al., 

2000). Only through triangulation based on multiple item responses or prior information can the 

correct subjective response category be ascertained. 

Item information in IRT is analogous to reliability in classical test theory and is closely 

tied to the IRF. Information is plotted conditional on θ and is inversely related to the standard 

error of measurement (SEM), providing evidence regarding where an item is reliable on the trait 

continuum and to what degree (Embretson & Reise, 2000). Item information serves a highly 

useful role in CAT as it allows for items to be selected based upon maximizing information at 𝜃. 

Because items display maximum information where discrimination is steepest, the right-hand 

side of Figure 1 illustrates that information for dominance items peaks at the location of the item. 

However, for ideal point items, information is double-peaked about the item location, providing 

no information when θ is exactly equal to the item location.  

As a result of their differing statistical properties, dominance and ideal point modeling 

have differing implications for generating scale items (Chernyshenko, Stark, Drasgow, & 

Roberts, 2007). Item writing in a dominance-based paradigm focuses on generating only items 

with extreme locations. For instance, to assess punctuality, a researcher might create the item “I 

am never on time” to tap the low end of the trait and the item “I am always on time” to tap the 

high end of the trait. All negatively worded items would then need to be reversed-scored prior to 

modeling so that they are in the same direction as positively worded items. Dominance models 

are not able to effectively accommodate items tapping the mid-range of the trait spectrum, such 
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as “I am sometimes on time.” To the degree that individuals very high on punctuality disagree 

with such a moderate item, the ogive-shaped curve in the first panel of Figure 1 will not fit the 

data. Ideal point item generation, however, allows for generating items designed to tap the entire 

range of the trait spectrum. An ideal point model would effectively capture the trait standing of 

low, moderate, and high punctuality individuals based on strong endorsement of the low, 

moderate, and high location items, respectively.  

The present study uses ideal point items calibrated under the generalized graded 

unfolding model (GGUM; Roberts et al., 2000). This model is represented mathematically for 

each option response curve as follows: 

                

            (1) 

 

where α represents item discrimination (slope), ẟ represents item location (difficulty) of item i, τ 

indicates the kth item boundary for item i, C represents the highest response option, and M = 2C 

+ 1. The probability of endorsing a specific option is a function of one’s distance from the 

overall item location, the spread of the item options, and the item’s discrimination. Whereas each 

individual option response curve (other than complete endorsement) will resemble a symmetrical 

double-peaked function, the aggregate of all response curves for a single item will produce a 

bell-shaped item response curve, as seen in Figure 1. The relevance of the differing functional 

forms of dominance models and ideal point models, such as GGUM, for CAT functioning are 

discussed next. 
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CAT and Personality Assessment 

 Evidence abounds for the general utility of CAT for personality assessment. Overall 

estimates suggest that CAT allows for approximately one-third to one-half as many items as a 

static test to obtain comparable precision because a CAT can strategically maximize the 

information gained from each item presented (van der Linden & Glas, 2010). However, based 

upon the nature of the construct assessed and practical considerations, CAT may not be 

uniformly useful across all contexts (Reise & Henson, 2003; van der Linden & Glas, 2010). I 

first discuss applications of dominance-based personality CAT—which constitutes the majority 

of research to date. I then discuss both conceptual considerations around and empirical evidence 

regarding ideal point personality CAT.  

Dominance-based CAT. Within the dominance response paradigm, evidence has borne 

out the utility of CAT across a wide variety of contexts. Table 2 summarizes extant research in 

this area. All studies in this table reached qualitatively similar conclusions that CAT provided 

efficiency gains over a static test. Universally, there is also a direct tradeoff between the 

efficiency of the CAT and the level of precision, such that presentation of fewer items results in 

less accurate estimates (e.g., Hol et al., 2008). Alternatively stated, CATs terminated based upon 

less stringent SEM are shorter than those with more stringent requirements.  

Although all of the above studies found an efficiency gain from CAT over static testing, 

it is important to distinguish between efficiency and utility per se. Reise and Henson (2000) 

concluded that a CAT of personality does not provide appreciable utility over and above an 

equally long, well-designed static test. Their study examined the creation of a 4-item test from an 

original pool of 8 items. CAT is unlikely to add value with such a limited item pool because 

choosing four optimal items on-the-fly using CAT versus a priori based on favorable properties  
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Table 2 

 

Summary of Dominance-Based Studies of Personality CAT 

 

Study Measure Response 

Model 

Item 

Pool 

Size 

Termination 

Criteria(on) 

Item Pool 

Usagea 

Ben-Porath et al., 

1989 

MMPI Non-IRT 383 (1) Sufficient sum 

score for 

classification;  

(2) Full scales 

presented only to 

those above sum 

score threshold for 

classification 

Across 32 

conditions, 

range from 

68.7%-92.2% 

Kamakura & 

Balasubramanian, 

1989 

CPI-socialization 2PL 44 (1) Fixed-length;  

(2) SEM-based;  

(3) Combination of 

SEM and length-

based 

34.1%; 38.6%;  

39.8% 

Waller & Reise, 

1989 

MPQ-absorption 2PL 34 (1) Confidence 

interval does not 

contain cut-score;  

(2) Fixed length 

26.9%; 50.0% 

Reise & Henson, 

2000 

NEO PI-R Samejima's 

GRM 

240 Fixed-length 12.5%; 25.0%; 

37.5%; 50.0% 

Simms & Clark, 

2005 

SNAP 2PL 297 Combination of 

minimum length, 

SEM-based, and 

minimum 

information of 

remaining items 

63.5% 

Forbey & Ben-

Porath, 2007 

MMPI-2 Non-IRT 557 Sufficient sum score 

for classification 

79.4%; 78.4%; 

82.3%; 82.5% 

Hol et al., 2008 Adjective Check 

List-dominance 

Samejima's 

GRM 

36 SEM-based 7.5%; 10.0%; 

13.3%; 19.0%; 

32.6%; 78.1% 

Makransky et al., 

2013 

NEO PI-R Multi-

dimensional 

GPCM 

240 Fixed-length 25.0%; 37.5%; 

50.0%; 75.0% 

Note. MMPI = Minnesota Multiphasic Personality Inventory. CPI = California Psychological 

Inventory. MPQ = Multidimensional Personality Questionnaire. NEO PI-R = NEO Personality 

Inventory-Revised. SNAP = Schedule for Nonadaptive and Adaptive Personality. 2PL = 2-

parameter logistic model. GRM = Graded response model. GPCM = Generalized partial credit 

model. 
aValues are separated by different CAT conditions, if tested, but collapsed across different traits. 
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will tend to result in the same presentation of the four items with the most favorable 

discrimination parameters. This study does not definitively indicate that CAT is not useful in 

personality assessment. Rather, it highlights that there is a limit to how useful a CAT may be 

with very short test lengths and small item banks. This problem may be exacerbated when 

moving from dominance-based to ideal point modeling, as discussed in the next section. 

Ideal point CAT. All IRT-based studies on CAT for personality assessment discussed 

above were conducted using a dominance-based response model. Traditional CATs using 

dominance-based models are relatively straightforward. The assumption of monotonic item 

response functions allows one to conclude that lack of endorsement of an item indicates 

probabilistically that the individual’s latent trait standing is lower than the item location. It would 

logically follow that the next item presented should be at a location lower than said item. 

However, assessing personality using one or few ideal point items presents a psychometric 

challenge (Williamson, Castille, & Harris, 2017). Because of the aforementioned feature of ideal 

point that an objective response can be associated with one of two possible subjective responses, 

certain response patterns may prove more difficult for ideal point than dominance to pinpoint. 

Bayesian θ estimation methods technically allow for an estimate to be derived based upon any 

response pattern. But variance around that estimate may be quite large, rendering the aim of 

CAT to produce precise, efficient estimates difficult. In fact, poor item selection made by a CAT 

in response to inaccurate 𝜃 estimates could potentially result in less efficiency than intentionally 

presenting a variety of item locations regardless of examinee θ. Such an approach ensures that 

the full trait spectrum is covered (as would be done in a static test).  

Despite these conceptual challenges, limited empirical evidence generally supports the 

utility of CAT for ideal point measurement. The seminal study on the topic demonstrated that an 
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ideal point CAT of attitudes toward abortion was able to effectively capture the trait with as few 

as 7 or 8 items, drawn from a 20-item pool (Roberts, Lin, & Laughlin, 2001). However, the 

nature of the trait under study may matter. Attitudes may cover a smaller, more homogenous 

construct space than a multifaceted personality trait such as conscientiousness (Judge et al., 

2013). Thus, ideal point CAT may have an easier time capturing an attitudinal trait than 

personality. 

The remainder of extant ideal point personality CAT studies all utilize a forced-choice 

response format. In this format, rather than indicating level of agreement to a single stimulus, 

respondents are asked to choose between two or more stimuli the one that is most similar to 

them. Paired stimuli may be drawn from the same or different traits (i.e., a unidimensional versus 

multidimensional test) and are drawn from different points on the trait continuum to optimize 

information for a given respondent (Stark et al., 2005). Examining the unidimensional case, past 

evidence suggests that these CATs are able to accurately measure multiple personality traits, 

demonstrating acceptable reliability and predictive validity (Houston et al., 2006) using as few as 

six item pairs per trait (Schneider, McLellan, Kantrowitz, Houston, & Borman, 2009). Results 

are similar when examining multidimensional ideal point CATs, demonstrating that five items 

per trait may be sufficient for accurate θ recovery. Mirroring general CAT research, adaptive 

ideal point forced-choice tests are able to effectively halve the length of the test compared with 

static testing (Drasgow et al., 2012; Stark et al., 2012).  

Despite evidence that ideal point CAT has been found to yield benefits in the above 

operational settings using highly complex response models, scant evidence is available as to how 

an ideal point CAT operates using commonly used single-stimulus response formats. Although 

full treatment of the psychometric assumptions underlying forced-choice response models are 
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beyond the scope of the present paper, these models are different from single-stimulus in the 

handling of θ estimation and the selection of pairs of items to be presented (Brown & Maydeu-

Olivares, 2012; Stark et al., 2005). As a result, the efficiency of CATs using forced-choice 

formats may be fundamentally different than that of CATs using single-stimulus formats. As 

stated previously, this represents a significant gap in the literature considering the widespread 

use of ideal point single-stimulus items for personality assessment. 

Utility of Ideal Point Personality CAT 

The overarching aim of the present study is to identify the utility of CAT for ideal point 

personality assessment. CAT is costly and, as discussed previously, may not be worth the cost in 

all contexts (Reise & Henson, 2000). Comparing different versions of an ideal point personality 

CAT is useful for identifying which of these versions function better in a relative sense. 

However, it is also useful to compare CAT as a whole against a static test to serve as a baseline. 

To the extent that a static test captures θ as accurately as a CAT with the same number of items, 

there is little justification for developing the CAT. This issue is likely to be particularly salient 

when an inordinately short test length is used. As an extreme example, a test constrained to a 

total of two items is liable to operate most effectively—albeit not effectively per se—across all 

examinees by statically presenting two highly discriminating items near the center of θ. Utilizing 

a CAT in which the second item is presented adaptively as a function of the unreliable response 

to the first item is liable to yield highly unstable θ estimates. In sum, there is likely a lower 

bound of item length beneath which CAT algorithms are not able to gain sufficient momentum. 

As seen in Table 1, the present study includes two conditions that are static (i.e., non-adaptive) 

and serve as a frame of comparison for all CAT conditions of the same length. These static tests 

are generated by using best practices for scale creation. That is, items are chosen from the same 
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pool used in the CAT conditions with the aim of tapping the entire range of θ and maximizing 

discrimination parameters.  

I do not offer a specific prediction regarding the overall, absolute value of CAT over 

static testing in ideal point personality assessment. Rather, I posit that the proportion of 

candidates selected (i.e., the cut-score adopted) and certain test characteristics will be 

differentially associated with efficiency and accuracy of employee selection decisions based on 

the CAT. Discussion of each of these characteristics in turn comprises the remainder of this 

paper. First, the impact of setting the cut-score for employee selection at different percentile 

ranks is explored. Second, the number of items presented in an initial testlet prior to 𝜃 estimation 

is discussed as a potential solution for the ambiguity surrounding the meaning of the response to 

any single ideal point item. Third, the use of fully adaptive (sequential) designs versus multistage 

designs is discussed in terms of relative advantages to CAT efficiency. Finally, length-based 

CAT termination criteria of 6 items versus 12 items are presented as a means to explore the 

relative tradeoff between item savings and precision. 

Employee Selection Cut-Score 

 Organizations may score and utilize assessments for employee selection in a variety of 

ways. In large-scale testing contexts, it is common to determine a minimal cut-score that 

applicants must surpass to be considered for hire. Decisions around where to set this cut-score 

vary based on a number of considerations, including the score anticipated to produce minimum 

acceptable on-the-job performance, anticipated selection ratio, and adverse impact (Cascio & 

Aguinis, 2011). More broadly, organizations may utilize an assessment from a “select-in” 

perspective—eliminating as many applicants as possible and retaining only those with the most 

favorable scores—or a “select-out” perspective—removing the bottom of the distribution where 
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scores are particularly low. Due to rampant faking on personality assessments, the top end of the 

distribution is liable to include both those who are genuinely high on the desired trait as well as 

those who have artificially inflated their responses. As a result, some researchers have suggested 

that organizations only utilize personality scores for selecting out the bottom of the distribution 

(Mueller-Hanson et al., 2003). Such an approach serves not only to eschew unfairness for “true” 

high scores but also removes those most undesirable for selection (i.e., those who either cannot 

or will not identify and enact acceptable on-the-job behaviors).  

 In addition to the conceptual issues above, the specific choice of a cut-score has 

important implications for measurement outcomes. Social validity or a highly competitive job 

market may lead organizational decision-makers to set low cut-scores. However, more extreme 

scores (i.e., those particularly low or high on the score distribution) are generally measured with 

less precision than scores in the middle of the distribution. This may become problematic for 

CATs that are fixed length. Namely, choosing a more extreme cut-score will likely result in more 

measurement error and greater misclassification of those whose true θ surpasses/does not surpass 

the cut-score. The present study explores the impact of this issue by examining outcomes for 

CAT conditions with cut-scores set at the 10th, 20th, and 30th percentile of the θ distribution. It is 

common for large organizations with high human capital demands to use such low cut-offs (e.g., 

the military; Drasgow et al., 2012; Stark et al., 2014). But the pattern of findings uncovered from 

manipulating the extremity of the cut-score should be equally useful for informing select-in 

assessment. Assuming a symmetric distribution, the measurement outcomes of the 10th, 20th, and 

30th percentile conditions should be mirrored in the 90th, 80th, and 70th percentiles, respectively. 

The common link between these opposing approaches to selection is that the extremeness of 

scores deemed acceptable/unacceptable has important measurement implications. 
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Initial Item Selection 

From the start of a CAT, the aim is to capture θ as efficiently as possible. As will become 

evident in the discussion below, the best method for doing so in ideal point may be different than 

in traditional dominance-based tests. I propose the potential utility of a two-item or three-item 

testlet, grounding optimal assembly of these testlets in the idiosyncrasies of ideal point modeling. 

The theta indeterminacy challenge. The typical starting strategy for CAT is to assume a 

normal prior distribution for θ and present an initial item that maximizes Fisher’s information at 

θ = 0 (van der Linden & Glas, 2010). When using a dominance model, this effectively presents 

an item with a location very close to θ = 0. This correspondence between location and peak 

information is not true of ideal point items. Therefore, maximizing information using a single 

ideal point item at θ = 0 would require presenting an item intentionally above or below 0 (as any 

item location at θ would provide no information). The issue is that any level of examinee 

(dis)agreement to such an item, apart from selecting the highest response option, leaves the 

algorithm with no information on which direction to head for presentation of subsequent items. 

Practically speaking, this “theta indeterminacy” based on initial item responses will result in very 

large variance around early estimates and poses a challenge for selecting an item that will 

maximize information for a given examinee. In fact, an interesting conundrum arises: If an 

individual strongly disagrees to an item near the center of the trait spectrum, we can be confident 

that they are not near the center. However, because this response is not informative for 𝜃 

estimation (Roberts et al., 2001), we are left with (a) no 𝜃 estimate in the case of maximum 

likelihood estimation or (b) a Bayesian estimate deriving information solely from the prior 

distribution. Assuming a normal prior, the Bayesian estimate would lead us to present the next 

item once again near the center of the trait spectrum, even though we have already ruled that 
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region out! In theory, then, such an approach would require an inefficient number of items be 

presented for θ estimation to build momentum in eliciting variance and triangulating any level of 

θ not in the center of the distribution. 

One solution might be to elicit variance in a given examinee’s responses using a testlet 

consisting of two or more items selected from across the range of θ, prior to the first 𝜃 estimate 

(Williamson et al., 2017). Such an approach has been shown to be incrementally useful in 

dominance item testing to increase 𝜃 stability prior to test adaptation (Kamakura & 

Balasubramanian, 1989; Wang et al., 2016). However, it may be much more useful for ideal 

point item testing compared with dominance if it effectively addresses the theta indeterminacy 

challenge. Several decision points in the assembly of initial testlets need to be addressed. These 

include how many items to include in the testlet, the location of these items, and/or the θ range(s) 

for which to maximize information. I address such decisions in the following sections. 

Two-item testlet. Theoretically speaking, the theta indeterminacy issue could be 

addressed with as few as two items. Given any two partially but not entirely overlapping item 

response curves (IRCs), an individual can be theoretically triangulated based on relative 

agreement to both items (albeit this represents an idealized scenario in which measurement error 

does not play a role, and the response scale is granular enough to pick up on differential 

agreement to the two items). Put another way, the subjective meaning of the level of agreement 

to one item is anchored based on level of agreement to the other. There is, however, one case that 

still represents a blind spot using this methodology. Given that the IRCs overlap, complete lack 

of agreement to both suggests that the individual is either well below the pair of items or well 

above. Admittedly, this leads to the same theta indeterminacy as described after a single item 

response. The crucial difference, from a practical perspective, is the small percentage of 
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examinees for whom this case is anticipated to arise with the use of a testlet. Indeed, invariant 

response patterns (i.e., all strongly agree or all strongly disagree) are a pernicious issue that 

extend to static ideal point tests as well (Williamson et al., 2017). Thus, the present solution is 

not aimed at eliminating all uncertainty, but rather with greatly lessening the issue on the 

aggregate. 

In addition to determining the size of the testlet, one must determine optimal parameters 

of the items selected. In the two-item testlet case, simply selecting the two items that maximize 

information for a given point estimate—as one might do in a traditional dominance test—yields 

the unsavory possibility that the two item locations/response functions will be too close to 

overlapping. This does little to assuage the initial theta indeterminacy issue, as similar responses 

to both items by an examinee accomplishes little in triangulating where that individual lies on the 

trait spectrum. What is really needed then are two items with optimal spacing on the spectrum 

such that estimation can triangulate where an individual falls in relation to those items.  

An initial item selection criterion based solely on item location, however, (i.e., one item 

at ẟ = -1 and one item at ẟ = 1) may result in the presentation of suboptimal items (low 

discrimination and low information), despite desirable item locations. Thus, I propose the 

following decision rule when assembling an initial two-item testlet in an ideal point personality 

test: (1) present from among all items with ẟ < 0 the item that maximizes information at θ = 0, 

and (2) present from among all items with ẟ > 0 the item that maximizes information at θ = 0. 

This strategy is equivalent to selecting one item for which the second item information function 

(IIF) peak maximizes information at θ = 0 and selecting one item for which the first IIF peak 

maximizes information at θ = 0, respectively. The purpose of this decision rule is to prioritize 

higher quality items (namely, those with high discrimination) while ensuring the items are 
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necessarily distant from each other. Theoretically possible variants of this decision rule with 

qualitatively different intersections of the two IIF’s can be seen in Figure 2. The exact 

parameters of the items to be presented will be dependent upon a given CAT’s available item 

pool. In all cases, however, the two-item testlet will include both the single item that would have 

been presented if solely maximum information at θ = 0 were considered, plus an additional item. 

Due to the increased reliability around 𝜃, I propose that the remainder of the CAT may more 

efficiently narrow in on θ in the two-item testlet case compared with a single item. 

 Three-item testlet. Despite the theoretical sufficiency of the two-item solution, 

measurement error is an issue such that the probability of inconsistent item responses (e.g., 

strongly agreeing to items in different locations) remains relatively high with only two items. All 

else being equal, more items lessen measurement error in θ estimation. But for any given fixed 

length test, the addition of more items to the initial testlet clearly comes at a cost: a point of 

adaptiveness within the test as a whole is lost. The optimal number of items in the initial testlet is 

therefore unclear, requiring empirical evidence regarding how these different conditions fare 

when pitted against each other. I propose adding only one additional item as a means of 

increasing precision over the two-item testlet while allowing as many points of adaptiveness as 

possible to remain in the test as a whole. Specifically, the three-item testlet should consist of the 

two-item testlet assembled according to the rule in the previous section, with the addition of that 

item remaining in the pool that maximizes information at θ = 0. In summary, the present study 

compares three different starting conditions: a single item, a two-item testlet, and a three-item 

testlet. 
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(a) Overlapping peaks       (b) Overlap on the “interior” slope 

 

   
 
(c) Overlap on the “exterior” slope    (d) One IIF subsumed by the other 

 

   
 

 

Figure 2. Possible IIF overlay variants for a two-item ideal point testlet. 
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Multistage versus Sequential Testing 

 After initial presentation of the testlet or first item, items may be presented in sequence, 

with adaptation after each item (i.e., a traditional sequential CAT), or testlets may continue to be 

presented throughout the remainder of the test (i.e., multistage testing). Efficiency in the 

traditional sense would seem to be maximized by adapting after each item to leverage as much 

information as possible in the selection of every single item presented, but efficiency is 

ultimately relative. To the extent that item selection “bounces around” due to unreliable 

estimates in sequential testing, multistage testing may be a better way to estimate θ in a slower, 

steadier manner (Wang et al., 2016). This issue may be particularly relevant in an ideal point 

modeling context. Estimation techniques, generally speaking, have a harder time with all 

possible response patterns to ideal point items compared with dominance (Dalal et al., 2010). 

Thus, although it may make sense in dominance to begin adapting as soon as possible, it may be 

beneficial to recognize the coarseness of measurement in ideal point and attempt to remedy that 

coarseness by boosting reliability in the form of more items in between points of adaptiveness.  

Similar to the initial testlet, determining the number of items to be presented within each 

stage, given a fixed total test length, creates a challenging tradeoff: more items will increase 

reliability within stage but decrease efficiency overall (although, to reiterate, efficiency is greatly 

harmed if too few items are presented, and the next round of item selection is based upon a very 

inaccurate 𝜃). Thus, how many items to include at each stage represents an empirical question to 

be addressed (Luecht et al., 2006). I propose testing both two item stages and three item stages 

because in most employee selection contexts, efficiency is highly valued (i.e., a larger number of 

within-stage items would start to approach the desired total test length). In summary, the present 
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study compares three different item presentation strategies (after initial item presentation): fully 

adaptive, two item stages, and three item stages. 

Test Length 

 Termination rules for CAT may fall into one of two categories: fixed length or variable 

length. Variable length CATs may use a variety of indices to terminate, including a required 

minimum standard error of measurement, the maximum information any remaining item can 

provide given 𝜃, convergence (i.e., a minimum change in consecutive θ estimates), or any 

combination of the above (Babcock & Weiss, 2012). Variable length CATs are advantageous 

from a pure measurement perspective in that they are as efficient as possible for each examinee. 

Nonetheless, fixed length tests may be used in operational contexts due to practical 

considerations, including ease of test creation/administration and examinee fairness perceptions 

(Babcock & Weiss, 2012; Kantrowitz et al., 2011; Stark et al., 2012). In the present study, fixed 

length termination rules are utilized, mimicking most real-world applications of CAT for 

employee selection. The two test lengths to be tested—6 items and 12 items—were chosen to 

represent the expected lower boundary of test length that could still be expected to provide 

reasonably reliable estimates of conscientiousness.  
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CHAPTER 2 

METHOD 

Simulation Data 

 Participants. Data for the simulations were drawn from the survey responses of 1,724 

Amazon Mechanical Turk workers who were originally recruited for a separate validation study 

for a measure of conscientiousness. Responses were removed if they showed evidence of 

insufficient effort responding (Curran, 2016). Of the original 1,768 respondents, 36 were 

removed for completing the survey too rapidly, seven were removed for selecting the same 

response option for all items, and one was removed for excessive missing data. Participants were 

59.18% female and 76.63% White; table 3 shows the complete demographics of the final sample. 

Item pool creation. Model calibration was conducted using the mirt package in R 

(Chalmers, 2012). Based on previous recommendations for the GGUM, item parameters were 

calibrated using marginal maximum likelihood (MML), and person parameters were estimated 

using expected a posteriori (EAP) estimation (Roberts, Donoghue, & Laughlin, 2002). Because 

convergence is a known issue with parameter-heavy models such as GGUM (Huang & Mead, 

2014), the convergence tolerance for calibration was set to .001, a criterion used in past GGUM 

studies (e.g., Roberts et al., 2002; Speer, Robie, & Christiansen, 2016).  

The 180 conscientiousness items used in the present study were originally written from 

an unfolding perspective to cover the entire range of θ. An example of an item with a negative 

location is “I put little time and effort into my work”. An example of a neutral/moderate item is 

“I am comfortable with achieving the same as the average person in life”. An example of an item  
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Table 3 

 

Participant Demographic Information 

 

Variable N %     

Gender 
  

 
Female 1019 59.18  
Male 703 40.82 

Ethnicity 
  

 
White (non-Hispanic/Latino) 1315 76.63  
African American 94 5.48  
Asian/Pacific Islander 98 5.71  
Hispanic/Latino 110 6.41  
Native American/American Indian 9 .52  
Other 23 1.34  
Multiple (non-Hispanic/Latino) 67 3.90 

Employed 
  

 
Yes 1316 76.47  
No 405 23.53 

Education 
  

 
Less than high school 12 .70  
High school/GED 170 9.88  
Some college/Associate's 720 41.86  
Bachelor's 574 33.37  
Professional (Master's, PhD, JD, MD) 244 14.19 

Age  Mean = 34.58, SD = 12.44 
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with a positive location is “I give 100 percent effort for everything that I do”. These items were 

raw and not previously validated. Items that exhibit extreme location parameters or very small 

discrimination parameters are indicative of poor model fit, suggest a violation of 

unidimensionality, and may bias the estimation of other parameters in the model (Carter & 

Zickar, 2011). Thus, the final item pool was created in an iterative process. After calibrating the 

model on all 180 items, any items with extreme location parameters (generally, less than -5 or 

greater than +5) or very poor discrimination (i.e., less than .10) were considered for removal. 

After removing problematic items for a given iteration, the model was re-calibrated and all new 

item parameters were re-evaluated. This process continued until all items demonstrated 

minimally acceptable parameters (i.e., all discrimination parameters greater than .10 and location 

parameters between -5 to 5), suggesting that the item pool was sufficiently unidimensional and 

operated as expected. In total, this process resulted in paring the original 180-item pool down to 

111 items over 12 iterative calibrations. 

Estimated parameters and item-data fit for the final item pool are listed in Table 4. The S-

X2 fit index is distributed as chi-square and serves as an indication of the degree to which 

empirical item responses and model-predicted item responses diverge (Orlando & Thissen, 

2000). Although the S-X2 was statistically significant for 54 out of the 111 items, the RMSEA’s 

were generally small (M = .009, SD = .004), suggesting minimal deviation between empirical 

and model-predicted responses. In the present study, decisions around item removal due to 

suboptimal parameters were weighed against the need for retaining as many items as possible, 

particularly in the middle range of the trait spectrum. Generally speaking, the larger the item 

pool from which a CAT can pull, the more efficient it will be (Flaugher, 2000). Because no item
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Table 4  

 

Final 111-Item Pool Parameters and Item-Data Fit 

  
Parameters  Fit   Parameters  Fit   Parameters  Fit   Parameters  Fit 

Item α δ  S-X2 df RMSEA  Item α δ  S-X2 df RMSEA  Item α δ  S-X2 df RMSEA  Item α δ  S-X2 df RMSEA  

C1_2 .27 -.65  512.70** 416.4 .012  C2_24 .44 1.08  488.16 450.6 .006  C4_13 .27 -.45  456.77** 371.6 .011  C6_9 .50 -.13  504.17** 423.0 .011 

C1_3 1.44 .97  423.01*** 322.2 .013  C2_26 .79 .51  335.11 330.0 .003  C4_14 .68 .95  466.35 416.6 .008  C6_11 .67 .94  468.62 419.2 .008 

C1_5 1.42 .91  477.42*** 367.2 .013  C2_28 .84 1.04  458.20 425.2 .007  C4_15 1.21 .78  353.83 357.4 .001  C6_13 .52 1.15  485.04* 428.2 .009 

C1_7 2.23 1.04  449.76*** 289.8 .018  C2_29 .84 .77  346.81 359.0 .001  C4_16 .70 .89  439.06 416.0 .006  C6_16 1.18 1.16  490.50** 402.4 .011 

C1_9 .87 1.06  510.74*** 398.4 .013  C2_30 .56 1.05  468.16 419.0 .008  C4_17 .54 .38  383.66 357.2 .006  C6_17 .47 -.66  472.15*** 353.4 .014 

C1_10 .80 .93  522.86** 423.0 .012  C3_1 .24 -.77  510.98 460.2 .008  C4_18 .92 .87  442.68 411.0 .007  C6_19 .48 -.76  520.91*** 382.4 .015 

C1_11 .56 -.02  488.49** 399.0 .011  C3_2 1.74 1.01  461.88*** 353.4 .013  C4_20 .98 .53  378.09 347.2 .007  C6_20 .92 1.08  513.56** 405.8 .012 

C1_12 .45 .39  397.59 379.0 .005  C3_3 .93 .80  366.57* 319.4 .009  C4_21 .99 .42  346.99 321.6 .007  C6_21 .43 -.20  500.32** 411.0 .011 

C1_13 1.66 1.01  499.38*** 357.6 .015  C3_5 2.07 .99  381.62*** 275.8 .015  C4_23 .29 -.33  517.67 475.6 .007  C6_22 .68 .21  477.26* 416.8 .009 

C1_15 .71 .39  353.19 338.4 .004  C3_6 .39 -.68  561.78** 457.6 .011  C4_24 1.28 .90  421.08 385.8 .007  C6_23 .39 -.94  506.59*** 392.4 .013 

C1_17 .60 .58  396.04 386.6 .004  C3_7 2.17 1.02  486.36*** 337.6 .016  C4_26 .40 -.07  547.92** 440.2 .012  C6_25 .27 -.61  560.66* 472.4 .010 

C1_19 1.67 .97  364.00** 287.6 .012  C3_8 .42 -.59  516.18** 423.6 .011  C4_27 .58 .31  459.35 426.2 .006  C6_26 2.07 1.08  467.35*** 348.6 .014 

C1_21 .46 -.92  351.53* 295.0 .010  C3_9 .16 -.53  486.46 461.8 .005  C4_30 .31 .23  448.22 416.8 .006  C6_27 .29 -.37  505.50 454.2 .008 

C1_22 1.75 1.04  425.60** 335.6 .012  C3_11 .14 -1.39  540.87 494.4 .007  C5_1 1.38 1.05  367.83* 309.6 .010  C6_28 .49 -.61  491.69*** 364.8 .014 

C1_24 .30 -.17  477.14 421.6 .009  C3_12 .43 -.86  542.71*** 425.4 .013  C5_3 .19 .12  539.52 521.6 .004  C6_29 1.37 1.04  540.92*** 392.4 .015 

C1_25 1.76 .99  395.79** 300.4 .014  C3_14 1.21 .91  485.98** 394.8 .012  C5_4 .31 -.11  473.75 420.8 .008         

C1_26 .63 .55  411.88 402.4 .004  C3_20 1.91 1.02  522.68*** 357.2 .016  C5_8 .80 .89  418.84 370.2 .009         

C1_27 .24 -.64  527.87** 432.8 .011  C3_21 .26 -.90  570.95** 470.2 .011  C5_12 .61 .48  379.82 395.0 .001         

C2_1 .21 -1.03  466.78 442.4 .005  C3_22 .58 .24  419.09* 370.2 .009  C5_13 .39 .10  447.26* 380.6 .010         

C2_2 .27 -.05  459.35 437.2 .005  C3_24 2.37 1.08  522.70*** 355.4 .017  C5_14 .28 -.15  478.97* 406.8 .010         

C2_3 .25 -1.16  580.68* 509.6 .009  C3_27 .85 .87  453.92 408.2 .008  C5_15 .74 .88  402.99 393.8 .003         

C2_5 .43 .45  393.21 382.2 .004  C3_29 .81 .85  402.88 387.0 .004  C5_19 .25 -.42  501.45 451.0 .008         

C2_6 .34 .40  436.77 431.4 .002  C3_30 2.36 1.07  512.60*** 358.6 .016  C5_20 .75 .44  363.76 332.0 .007         

C2_7 1.09 .99  419.10 392.0 .006  C4_1 .51 .41  399.60 388.6 .003  C5_21 .83 .82  407.77 369.2 .008         

C2_8 .41 .09  477.64 434.6 .007  C4_2 .18 .11  510.02 481.4 .005  C5_22 .53 .41  441.38 394.2 .008         

C2_9 .83 .66  421.79 373.6 .009  C4_3 .33 -.51  516.99** 426.0 .011  C5_25 .30 .23  448.40 417.6 .005         

C2_13 1.07 .98  413.99 395.2 .005  C4_4 1.37 1.06  407.27* 353.4 .009  C5_30 .72 .81  427.43 406.6 .005         

C2_14 .91 .93  418.63 400.8 .005  C4_5 .24 -.44  453.40 438.6 .004  C6_1 .79 1.03  457.49* 385.0 .010         

C2_16 .67 1.06  494.86* 427.6 .009  C4_7 .35 -.05  465.98* 404.2 .009  C6_3 1.63 1.04  479.58*** 371.2 .013         

C2_19 .51 .27  438.37 420.4 .004  C4_9 .38 .30  421.49 388.6 .006  C6_4 .81 .53  436.54 397.8 .007         

C2_21 .95 1.21  542.79*** 421.8 .013  C4_11 .29 .04  479.62 417.6 .009  C6_7 .44 -.99  532.19*** 376.6 .015         

C2_23 .26 -.48  515.67 477.0 .007  C4_12 .14 -1.03  389.25 390.4 .002  C6_8 .44 -.41  393.40* 327.2 .011         

Note. RMSEA refers to the Root Mean Square Error of Approximation of the S-X2 index.  

* p < .05. ** p < .01. *** p < .001. 
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demonstrated notably poor fit, all 111 items were retained. The test information function and 

SEM for the final item pool can be seen in Figure 3.  

Convergent validity with an alternate measure of conscientiousness was additionally used 

to corroborate the validity of the final item pool. GGUM latent trait scores correlated at r = .68 

with examinees’ sum scores on a 20-item, dominance-based measure of conscientiousness 

created from the freely available International Personality Item Pool (DeYoung, Quilty, & 

Peterson, 2007; Goldberg, 1992). This moderately high correlation aligns with expectations due 

to both measures tapping the same construct but utilizing different items and response models. 

Procedure 

Real data simulation approaches are common in the CAT literature (Hol et al., 2008; 

Kamakura & Balasubramanian, 1989; Makransky et al., 2013; Reise & Henson, 2000) and were 

used in the current study. This approach allows for higher external validity compared with fully 

simulated data while still leveraging a “known” θ upon which to compare CAT results (Hol et 

al., 2008). Prior to simulation, each individual’s known θ was calculated as the EAP estimate 

based upon responses to all items in the finalized 111-item pool. Within the simulation, 𝜃 is 

calculated only for those items presented and is then compared with θ. 

Static conditions. The 6-item and 12-item static tests were comprised of the 6 and 12 

items (respectively) in the item pool that had the highest α parameters.  

Adaptive conditions. There are currently no widely available programs for conducting 

CAT simulations using ideal point models. Thus, functions from the mirt package were 

combined with new code in R (see Appendix for the R function developed in the present study). 

All simulated tests followed the same general process: 
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Figure 3. Test information and standard error of measurement for the final 111-item pool. 
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1. Present initial item/item testlet. Because all individuals are assumed to have the same 

θ prior to item administration (i.e., θ = 0), the same initial item(s) were presented to 

all examinees within a given condition. 

2. Estimate 𝜃 using EAP estimation, based upon examinee’s actual responses to all 

item(s) presented by the CAT thus far. (In the event that an item presented by the 

CAT did not have a corresponding participant response, the response was simulated 

based on θ.)   

3. Pulling from items in the pool that have not yet been presented, present the item(s) 

that maximize Fisher’s information criterion at 𝜃. 

4. Repeat steps 2-3 until target test length has been reached. 

5. Estimate final 𝜃. 

Study Outcomes 

Outcomes of the present study were classified into two categories: general measurement 

outcomes and employee selection accuracy. All 36 conditions were compared independently on 

the accuracy of employee selection decisions. It should be noted here that general measurement 

outcomes do not vary as a function of the cut-score because they describe the entire distribution, 

irrespective of where this cut-score is placed. Thus, only 12 sets of general measurement 

outcomes are presented, collapsing across cut-scores for otherwise identical test conditions. 

General measurement outcomes. General measurement outcomes upon which 

simulation conditions were compared include root mean square error (RMSE; see equation 2), 

bias (see equation 3), and accuracy of θ recovery (𝑅𝜃𝜃̂). These statistics align with suggested 

indexes of robustness for examinations of measurement accuracy (de Ayala, 1995). 
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                    (2) 

                                       

    

       (3) 

 

Employee selection accuracy. The present study adopted a select-out strategy for 

employee selection. From a testing fairness perspective, false negatives—those classified as 

failing to meet the cut-score despite being above it in reality—represent the biggest liability. Test 

sensitivity is a popular metric for evaluating the efficacy of clinical diagnostic tools (e.g., Altman 

& Bland, 1994). Defined as (True Positives)/(True Positives + False Negatives), a perfect score 

of one indicates that all individuals in the referent category were classified as such.  Sensitivity is 

a useful metric because it is easily interpretable and readily applied to the present study. 

However, it is misleading to compare sensitivity across different cut-score conditions. As the 

cut-score is placed progressively farther away from the midpoint of the distribution, the ratio of 

true positives to false negatives grows larger. Were the cut-score placed in an extreme enough 

location (for instance, θ = -10), sensitivity would be perfect, but only because the density of the 

distribution at that point is so low. Thus, the metric used in the present study is a normalized 

version of sensitivity (𝒜norm), which corrects for the proportion of individuals above the cut-

score (see Carter et al., in press; Haslbeck & Waldorp, 2017). Specifically, the 𝒜norm statistic 

was calculated using the following formula: 

                        𝒜𝑛𝑜𝑟𝑚 =  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 − 𝜋

1 − 𝜋
   

                                     =  
[𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)]⁄   − 𝜋

1 − 𝜋
 ,                    (4)                             
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where π = the known proportion of individuals falling above the cut-score. 

 𝒜norm simplifies to the maximal value of one if and only if all individuals who surpassed 

the cut-score were classified as such. Holding all else constant, as π increases, 𝒜norm decreases. 

A less extreme cut-score is rewarded for yielding the same accuracy as a more extreme cut-score 

because the density of the distribution is greater at a less extreme cut-score. Thus, comparable 

accuracy is harder to achieve because there is a greater raw number of individuals available 

nearby to be misclassified. 
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CHAPTER 3 

RESULTS 

The CAT characteristics of interest in the present study included total test length, the 

number of initial pre-adaptive items presented, and the use of multistage or sequential testing. I 

first present results for general measurement outcomes (i.e., bias, RMSE, and 𝑅𝜃𝜃̂), comparing 

across different conditions. Then I present results of the analyses for employee selection 

accuracy, which incorporates the additional use of cut-score as a predictor. Within each section, 

comparisons are made first between static and adaptive conditions as a whole. This is followed 

by comparisons across different CAT conditions. By collapsing across like conditions, I examine 

the marginal mean differences for each CAT characteristic in turn, comparable to interpreting 

main effects in an ANOVA model.2 Where appropriate, I also draw conclusions about 

interactions of these characteristics. 

General Measurement Outcomes 

 Results when comparing all conditions on bias, RMSE, and 𝑅𝜃𝜃̂ can be seen in Table 5. 

Median SEM is also included in this table as an indicator of reliability within each condition. 

Table 6 presents the same results aggregated by each CAT characteristic in turn. 

Bias. Across all conditions, there was a small degree of systematic negative bias such that 

all tests tended to slightly underestimate θ by approximately .11 units.  Bias was slightly less  

 
2 The partially-crossed design used in the present study necessitated that the single-item start conditions not be 

included in the aggregate statistics for sequential and multi-stage conditions. If the single-item start conditions were 

included, the sequential testing aggregate statistics would be a function of all three start conditions, but the 

multistage testing aggregate statistics would only be a function of the two- and three-item start conditions. The 

single-item start, sequential conditions are a special case that are technically both sequential and multistage. 

Although labeled as sequential for ease of interpretation, these conditions also meet the rule for multistage as 

defined in the present study: the number of items presented in the initial testlet is equal to the number of items 

presented in each stage (i.e., one). 
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Table 5 

 

General Measurement Outcomes for each Study Condition 

 

Test Length/Condition Median SE Bias RMSE 𝑅𝜃𝜃̂  
      

6 items 
    

 
Static .604 -.124 .731 .676  
Single item start, sequential .600 -.113 .728 .676  
Two-item start, sequential .370 -.102 .654 .750  
Two-item start, multistage .369 -.093 .651 .752  
Three-item start, sequential .368 -.101 .653 .751  
Three-item start, multistage .366 -.086 .651 .750 

12 items 
    

 
Static .586 -.134 .725 .687  
Single item start, sequential .578 -.120 .710 .699  
Two-item start, sequential .323 -.113 .628 .776  
Two-item start, multistage .322 -.109 .615 .786  
Three-item start, sequential .324 -.114 .631 .773  
Three-item start, multistage .318 -.106 .619 .783 

Note. Median SE = median standard error of measurement of 𝜃. 
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Table 6 

 

General Measurement Outcomes Across Study Conditions 

 

Test Characteristic k Bias M Bias SD RMSE M RMSE SD 𝑅𝜃𝜃̂ M 𝑅𝜃𝜃̂ SD 
        

Static 2 -.129 .005 .728 .003 .681 .005 

Adaptive 10 -.106 .010 .654 .035 .750 .034 

6-item length 6 -.103 .012 .678 .036 .726 .035 

12-item length 6 -.116 .009 .655 .045 .751 .041 

Single-item start 2 -.116 .004 .719 .009 .687 .011 

2-item start 4 -.104 .008 .637 .016 .766 .016 

3-item start 4 -.102 .010 .639 .014 .764 .014 

Sequential 4 -.108 .006 .642 .012 .763 .012 

Multistage 4 -.099 .009 .634 .017 .768 .017 

Note. k = number of conditions with specified characteristic. M = mean of all included 

conditions. SD = standard deviation of all included conditions. 
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severe within all ten adaptive conditions as a group compared with the two static conditions as a 

group (see Table 6). Aggregating results across study conditions by test length, starting 

condition, and multistage vs. sequential testing illustrated that all three of these test 

characteristics had a negligible impact on bias. 

RMSE and 𝑹𝜽𝜽̂. Examining RMSE and 𝑅𝜃𝜃̂ in Table 6 led to congruent conclusions; 

thus, both are discussed in tandem presently.3 As a group, the ten adaptive conditions generated 

more precise estimates than the two static conditions. Regarding test length, 12-item tests as a 

group generated slightly more precise estimates than the 6-item tests as a group. However, 

RMSE and 𝑅𝜃𝜃̂ were not meaningfully different between the 12-item static test and the 6-item 

static test (i.e., a difference of .006 and .011, respectively). Advantages from greater test length 

were thus driven by the adaptive test conditions. Examining different starting conditions within 

adaptive conditions only, the single-item start conditions generated less precise estimates than 

the two-item start conditions and the three-item start conditions. However, there was no 

meaningful difference in the RMSE and 𝑅𝜃𝜃̂ between the two-item start conditions and three-

item start conditions Examining multistage conditions as a whole and sequential conditions as a 

whole revealed that the two testing strategies did not differ meaningfully on RMSE or 𝑅𝜃𝜃̂.  

In sum, adaptive tests were more precise than static tests, 12-item tests were slightly more 

precise than 6-item tests, two- and three-item start conditions were more precise than single-item 

start conditions, and the multistage conditions did not differ from sequential. Notably, starting 

condition had a larger effect on precision than did any other CAT characteristics. Relatedly, all 

 
3 RMSE and 𝑅𝜃𝜃̂ are closely related but not perfectly so. In general, the greater the error in estimating theta-hat, the 

more that theta-hat rank ordering will diverge from theta and lead to lower correlations between theta and theta-hat. 

Theoretically, however, large RMSE could be due to systematic bias and a large 𝑅𝜃𝜃̂ could still be observed. 
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CATs outperformed their same-length static test counterpart except for the single-item start 

CAT.  

Employee Selection Accuracy 

𝒜norm for each of the 36 study conditions can be seen in Table 7. Table 8 presents the 

same results aggregated by each CAT characteristic in turn. Unexpectedly, the static conditions 

as a group demonstrated higher normalized sensitivity than did the adaptive conditions as a 

group. Regarding test length, 12-item tests as a group demonstrated higher normalized sensitivity 

than the 6-item tests as a group. Opposite of the findings for general measurement outcomes, the 

single-item start conditions demonstrated higher normalized sensitivity than the two-item start 

conditions and three-item start conditions. The two-item start conditions and three-item start 

conditions did not differ from each other meaningfully. Multistage and sequential testing 

conditions did not differ meaningfully. Finally, moving from the 10th to 20th to 30th percentile 

cut-scores resulted in progressively higher normalized sensitivity. There were a greater number 

of raw false negatives in the 30th percentile (M = 70.25) compared with the 20th percentile (M = 

61.75) and the 10th percentile (M = 42.17) cut-score conditions. After normalization of 

sensitivity, however, the 30th percentile provided the most value in correct identifications above 

and beyond simple guessing. 

  In sum, static tests were more accurate in employee selection than static tests, 12-item 

tests were more accurate than 6-item tests, single-item start conditions were more accurate than 

two- and three-item start conditions, and the multistage conditions did not differ from sequential. 

Additionally, cut-score interacted with test length. As test length increased, the impact of the cut-

score on normalized sensitivity weakened. 
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Table 7 

 

Normalized Employee Selection Accuracy (𝒜norm) for each Study Condition 

 

 

Test Length/ Condition 

10th percentile 

(θ = -.947) 

20th percentile 

(θ = -.740) 

30th percentile 

(θ = -.589)      

6 items 
   

 
Static .770 .830 .843  
Single item start, sequential .790 .775 .817  
Two-item start, sequential .530 .675 .757  
Two-item start, multistage .570 .685 .737  
Three-item start, sequential .530 .680 .753  
Three-item start, multistage .740 .705 .757 

12 items 
   

 
Static .840 .890 .873  
Single item start, sequential .850 .885 .877  
Two-item start, sequential .770 .800 .813  
Two-item start, multistage .790 .795 .803  
Three-item start, sequential .780 .805 .820  
Three-item start, multistage .770 .795 .817 

Note. Percentile headings refer to the placement of the cut-score. 
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Table 8 

 

Normalized Employee Selection Accuracy (𝒜norm) Across Study Conditions 

 

Test Characteristic k 𝒜norm M 𝒜norm SD     

Static 6 .841 .038 

Adaptive 30 .756 .087 

6-item length 18 .719 .092 

12-item length 18 .821 .038 

Single-item start 6 .832 .042 

2-item start 12 .727 .090 

3-item start 12 .746 .077 

Sequential 12 .726 .098 

Multistage 12 .747 .066 

10th percentile 12 .728 .111 

20th percentile 12 .777 .072 

30th percentile 12 .806 .045 

Note. k = number of conditions with specified characteristic. M = mean of all included 

conditions. SD = standard deviation of all included conditions. 
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CHAPTER 4 

DISCUSSION 

Implications for Measurement Theory and Practice 

The primary aim of the present study was to examine the feasibility of creating an 

efficient, accurate CAT using relatively few ideal point items to measure conscientiousness. 

CAT has recently gained popularity as a method by which to increase testing efficiency, and 

ideal point models are now generally recognized as superior representations of the item response 

process (LaPalme et al., 2018). Thus, it is important to identify if the significant costs associated 

with creating ideal point CATs is justified by the value beyond traditional static tests. In addition 

to comparing ideal point static and adaptive tests, I sought to identify the conditions in starting 

the CAT, presenting items, terminating the CAT, and determining cut-score placement that result 

in optimal general measurement outcomes and accuracy in making dichotomous selection 

decisions. I review the implications from the present study for each of these test characteristics in 

turn, highlighting where general measurement and selection accuracy outcomes converge and 

where they diverge. 

CAT versus static ideal point testing. Generally, precise measurement requires a 

greater number of ideal point than dominance-based items (Dalal et al., 2010; Williamson et al., 

2017), which I posited might limit CAT’s utility if the number of ideal point items necessary for 

precision approaches the length of a traditional static test. Past personality research demonstrates 

that CAT is useful for dominance-based, single-stimulus items (Hol et al., 2008; Makransky et 

al., 2013) and for ideal point, forced-choice items (Drasgow et al., 2012; Houston et al., 2006; 



43 

 

Schneider et al., 2009). The present study extended this evidence to the ideal point, single-

stimulus item format. When compared to a same-length static test, CAT conditions in the present 

study performed better in terms of general measurement. As further support for the improvement 

in precision when utilizing adaptive instead of static tests, all but one of the 6-item CATs yielded 

better 𝑅𝜃𝜃̂ than the 12-item static test. This mirrors past research that CAT can effectively halve 

the number of items used in assessment (van der Linden & Glas, 2010).  

However, the value of an ideal point CAT depends on the purposes of testing. When the 

goal of testing was to provide accurate estimates across the entire theta distribution, the value of 

CAT compared with static ideal point testing was relatively high. However, when the aim in the 

present study was to mimic a real-world selection context by dichotomously selecting individuals 

above a cut-score, the static conditions actually performed better than CAT. The reason for this 

finding can be decomposed into a study-specific component and a more generalizable 

component. The performance of any static test in a selection context will be highly contingent 

upon where the test provides statistical information and where the cut-score is placed. In the 

present study, it happened that the most informative items in the pool provided a great deal of 

information in the theta range where cut-scores were placed (i.e., -1 < θ < 0). As a result, there 

was little for the CAT to improve upon: the static tests were already well-positioned to precisely 

discriminate individuals in that theta range (see Figure 4). Thus, the deck was stacked against the 

adaptive conditions, so to speak, as the present situation represents a best-case scenario for static 

test use. At a more general level, this finding illustrates that adaptive does not always provide 

value.  

Test developers must take into account the amount of information provided by static 

items near the cut-score when considering if CAT is necessary for superior outcomes. Were the  
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(a) 6-item static test 

 

 
(b) 12-item static test 

 

 
 

Figure 4. Test information and standard error of measurement for the final (a) 6-item static test 

and (b) 12-item static test. 
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cut-scores in the present study placed where the static tests provided minimal information (e.g., θ 

= 1), the adaptive conditions would have likely performed comparatively better than the static. In 

total, results are suggestive that CAT will provide more value when measured against general 

measurement outcomes than dichotomous selection decisions. Ultimately, comparative 

performance between static and adaptive on selection accuracy is as much a function of the 

sufficiency of the static test as it is about the efficiency of the adaptive test. 

Initial item selection. Ultimately, the complex parameterization of ideal point items 

proved not to be an insurmountable obstacle in developing an efficient CAT in the present study. 

However, not all CAT conditions performed equally well. This was most apparent when 

examining the starting condition manipulation. Across all outcomes, the single-item start CAT 

condition generally performed similarly to the static condition, whereas all other CAT conditions 

hung together. In other words, when examining general measurement outcomes, evidence was 

found to support the theta indeterminacy issue.  Beginning adaptation on only a single item 

response proved to be minimally useful. This is likely because ideal point models cannot 

differentiate lack of endorsement of an item due to being above or below that item without 

additional information. In turn, the value of CAT over static may be largely negated when initial 

𝜃 estimates are unstable. Notably, there was no difference in performance between the two-item 

start and three-item start conditions, suggesting that responses to as few as two items provide 

CAT sufficiently reliable information upon which to coarsely triangulate 𝜃. Conversely, the 

inclusion of a 3rd item did not result in a meaningful reduction in performance. Both are viable 

starting conditions for CAT.  

The finding that the single-item start conditions performed better than two- and three-

item start conditions on employee selection accuracy was unanticipated. This finding is 
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particularly surprising considering that the single-item start conditions exhibited slightly more 

negative systematic bias and slightly more overall error than the others. In turn, one would 

expect that more individuals would drop below the cut-score and reduce normalized sensitivity 

in the single-start conditions. It is possible that this finding resulted from the idiosyncrasies of 

the item pool used, a point discussed further below. 

Multistage versus sequential testing. The present study aimed to identify the ideal 

balance between the number of points of adaptiveness (efficiency) and the accuracy of the 

estimates upon which adaptiveness is based (stability). Multistage and sequential testing were 

tested as two competing ongoing item presentation strategies. Theoretically, sequential testing 

represents the more efficient testing strategy because it leverages each new piece of 

information—each item response—as it is provided, instantly providing feedback to CAT 

regarding the appropriate direction to head (van der Linden & Glas, 2010). However, to the 

extent that θ estimation from very few ideal point items is unstable, multistage testing provides a 

potential solution by collecting more information prior to each point of estimation (Wang et al., 

2016). Despite the theoretical differences in the two approaches, multistage and sequential 

testing were equally effective strategies for both general measurement and employee selection. 

There seems to be a degree of equifinality between the two approaches: multistage may be 

slower and steadier throughout the test, whereas sequential is initially more unstable but gains 

precision at the end. 

Because multistage and sequential testing are equally effective from a measurement 

perspective, practitioners may wish to take additional outcomes into consideration when deciding 

between the two. Multistage testing generally has fewer computational demands and elicits more 
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positive applicant reactions than sequential testing (Stark & Chernyshenko, 2006), although 

additional research in this area is warranted. 

Test length. As anticipated, the 12-item test length conditions outperformed the 6-item 

test length conditions across all outcomes. More telling than the relative performance of the 6-

item and 12-item conditions overall is the moderating effect that length exerted on other 

characteristics. 𝑅𝜃𝜃̂ did not increase meaningfully from the 6-item static test to the 12-item static 

test. In the present case, the 12-item test simply provided additional items with similar locations 

to the 6-item test, so the contribution was minimal. Adding items with locations similar to those 

already in a test is particularly unhelpful in ideal point testing compared with dominance-based 

testing due to the greater need for triangulating θ. Differences in reliability between the 6-item 

and 12-item adaptive tests were more marked than for static, suggesting that the addition of more 

items gave the CAT more time to build momentum, so to speak, in matching item location to 

person theta. From an absolute perspective, 6-item CATs yielded fair reliability, which may be 

acceptable in certain contexts, such as research. However, even the 12-item CATs did not obtain 

a reliability of .80, suggesting more items may be needed for applied, high-stakes testing 

(Nunnally, 1978). 

Employee selection cut-score. When organizational decision-makers utilize personality 

assessments from a select-out perspective, a decision must ultimately be made regarding where 

the cut-score should be placed. In settings with large hiring needs or a focus on test fairness, cut-

scores may be placed low so as to eliminate only those who are truly unqualified. However, 

evidence from the present study suggests that more extreme cut-score placement may result in 

poorer selection accuracy. Results in the present study relied on a normalized sensitivity metric, 

which does not directly address the utility of the selection criterion to an organization per se. The 
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placement of cut-scores must be carefully informed by desired yield ratios and job analytic data 

that identifies the level of the desired trait necessary for effective job performance. Nonetheless, 

cut-score placement should also be carefully considered as an important contributor to decision 

accuracy and, by extension, test fairness and legal defensibility. 

Limitations 

 The use of real-data simulations in the present study represents a middle ground between 

testing using fully simulated data and testing in an operational setting. This provides the 

advantage of leveraging known information upon which to judge the performance of the CAT 

while capturing response patterns that occur in the real world. However, this design has several 

drawbacks, as discussed next. 

Non-manipulability of item parameters. Characteristics of the item pool may impact 

the efficiency of CAT and may limit the generalizability of the present study. The real-data 

simulation approach used presently estimates item parameters rather than manipulating them—as 

would be done in a full simulation. Therefore, conclusions may not completely generalize to 

other item pools. A uniform distribution is desirable for CAT so that it can readily match items to 

any estimated level of θ. However, the TIF in Figure 3 demonstrates that the pool used in the 

present study did not yield a uniform distribution of item locations. Many items had a location 

near δ = 1. Although items were written to tap the entire distribution, writing items that 

effectively tap the middle of the distribution can be a challenge (Cao, Drasgow, & Cho, 2014; 

Huang & Mead, 2014), which may have contributed to the non-optimal item pool.  

This may have had a bearing on the unexpected presence of bias within all conditions. 

Bias in the present study may be reflective of the idiosyncratic nature of the item parameters as 

opposed to a function of test algorithms. Items with high discrimination parameters were favored 
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for static and adaptive conditions alike, but just so happened to hover disproportionately around 

a location of δ = 1. Theta estimation is optimal across the entire distribution when item locations 

are evenly dispersed across the distribution. Thus, a fairer test of differences across conditions 

might entail developing a more uniform item location distribution. As an additional piece of 

evidence, bias did not uniformly impact θ estimates. Exploratory analyses revealed that negative 

bias was problematic particularly for individuals with θ > 1. Figure 5 shows theta plotted against 

bias for all examinees on the 6 item—2 item start—multistage condition (note, however, that this 

pattern is representative of all conditions in the present study, static and adaptive alike). This 

may have occurred because the large majority of items around δ = 1 did not support precise 

estimation for individuals near that location. 

The characteristics of the item pool also may have played a role in the finding that more 

extreme cut-scores yield poorer employee selection accuracy. The information at any given point 

(e.g., a cut-score) in the theta distribution is inextricably related to the features of the underlying 

item pool. In this way, the finding that the 30th percentile cut-score yields optimal selection 

accuracy may not be generalizable to all situations. Rather, certain cut-scores will be better 

positioned to yield high accuracy depending upon the characteristics of the item pool used. 

Ecological validity concerns. The present study draws on the assumption that item 

responses generalize to real-world contexts. Nested within this assumption are two related 

assumptions: (1) the order and number of items within test conditions would not meaningfully 

alter responses to the original 180-item measure and (2) the research context in which data were 

collected generalizes to actual applicant behavior.  

Regarding the first point, there is ample evidence that context in general and item order 

specifically impacts interpretation and evaluation of items (Schwarz, 1999). Previous research  
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Figure 5. True theta plotted against bias (𝜃 minus θ) for the 6-item—2 item start—multistage 

adaptive condition. 
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suggests that examinee perceptions of how they are performing on a CAT can impact affective 

reactions and motivation (Tonidandel, Quiñones, & Adams, 2002). Although such research has 

focused on tests of cognitive ability, it is plausible that applicants may attempt to infer their 

performance on the assessment relative to the way in which personality items change in location 

as they progress through a CAT. In a related vein, specific to the present study is the use of 

testlets. Presentation of certain items together may have unanticipated context effects (Ortner, 

2008). That is, the parameters of an item may change depending on other items in the testlet. 

User reactions could also potentially be impacted by presenting multiple items followed by 

single items, as the ability to review and edit answers in a testlet may receive better user 

reactions (Stark & Chernyshenko, 2006). There does not exist any evidence suggesting that such 

context effects threaten the present study’s validity systematically, but future field research is 

nonetheless warranted to explicitly test for these effects. 

Second, the examinee responses used in the present study were collected for research 

purposes. A large body of research indicates that individuals in selection settings are motivated 

and able to distort their responses to appear more favorable, whereas individuals in research 

contexts answer more honestly (Mueller-Hanson et al., 2003). Because dishonest responding 

may impact not only mean score but also item response functions, results of the present study 

should be applied tentatively to operational contexts.  

Future Directions 

Fully simulated data. The present study established that, given a specific item pool, 

adaptive testing can provide an improvement upon static testing when measuring outcomes at the 

level of the entire distribution but may not improve employee selection decisions based on a set 

cut-score. Future studies should adopt an entirely simulated approach (i.e., simulating both item 
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responses and item parameters) in order to exert more control over the item pool than was 

possible in the present study. Doing so would allow for a greater variety of situations to be 

explicitly tested. One particularly critical question to be addressed would be the functioning of 

the ideal point CAT when the item pool is completely optimal (i.e., there are highly 

discriminating items across the entire span of θ) and theta distribution is normal. Such a situation 

may yield superior CAT performance compared with static when dichotomously selecting 

employees. Alternative distributions of item parameters and the theta distribution could also be 

systematically manipulated to identify how various real-world contexts might impact CAT 

utility. Finally, systematic manipulation of the number of items in the pool—in an absolute sense 

and relative to the length of the test—would also provide valuable information, given that item-

writing is a costly process but that too few items can diminish the value of CAT (Flaugher, 

2000). 

 User reactions to ideal point CAT. Literature on user reactions to CAT in operational 

settings is essentially non-existent (cf. Kantrowitz et al., 2011). Evidence suggests that 

individuals perceive ideal point items (in a static test) as less accurate and more difficult than 

dominance-based items. Further, such reactions appear to be driven by the belief that test 

administrator interpretations of responses to middle items are liable to be inaccurate due to the 

possibility of disagreeing from above or below an item (Harris, McMillan, & Carter, under 

review). It is plausible that such items being presented in isolation, as is done in a CAT, may 

aggravate this concern (and rightfully so if test characteristics are not carefully constructed to 

account for the theta indeterminacy issue). Considering that applicant reactions to selection 

practices impact evaluations of the organization and acceptance of job offers (Chapman, 



53 

 

Uggerslev, Carroll, Piasentin, & Jones, 2005; Hausknecht, Day, & Thomas, 2004), it is important 

to consider this outcome in addition to measurement outcomes.  

 Optimizing initial testlet design. The present study suggests that an initial testlet is 

important for effective ideal point CAT functioning. One general future question to be addressed 

is the relative importance of the locations of the items in the testlet compared with the 

discrimination parameters. The assembly strategy for the testlets presently was relatively 

rudimentary: the two-item testlet was comprised of one item that maximized Fisher’s 

information above θ = 0 and one item that maximized it below θ = 0. Dividing the θ distribution 

in half at 0 is logical considering that this represents the mean of the distribution, but this still 

represents an arbitrary decision. There are many possible variants of this approach that remain to 

be tested. Systematically manipulating the locations of the two items in the testlet relative to each 

other, relative to the moments of the θ distribution, and relative to information provided may 

provide valuable insight into optimal testlet creation. 

 Role of non-statistical constraints. In the present study, item presentation was based 

purely upon statistical considerations. In operational settings, numerous other constraints are 

likely to factor into test assembly, particularly item exposure rates. Item overexposure is a 

concern in CAT due to the relatively higher probability that highly discriminating items will be 

presented across many examinees. Such overexposure may threaten the security of the item pool 

by uniformly or non-uniformly impacting examinee prior familiarity with the items. Although 

this is traditionally a stronger concern for ability items that possess an objectively correct 

answer, it may still have implications for personality assessments. Thus, future research should 

examine how constraining item exposure impacts the functioning of an ideal point CAT.  
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The nature of ideal point modeling allows for an additional possible constraint that is not 

applicable in dominance-based modeling. In dominance-based modeling, presenting an item with 

high information necessitates an item location close to 𝜃. With ideal point modeling, the item 

location will necessarily be either above or below 𝜃. As previously discussed, evidence suggests 

that manipulating item locations can have important implications for how examinees believe they 

are performing and their overall liking of an assessment (Tonidandel et al., 2002). Thus, future 

research may investigate incorporation of nonstatistical constraints unique to ideal point items, 

such as differentially weighting for presentation items above or below interim 𝜃. 

 Information criteria options. Fisher’s Maximum Information Criterion (MIC) 

represents the most common strategy for selecting the next item in a CAT and was used 

presently (van der Linden & Glas, 2010). There are two other item selection algorithms that may 

prove particularly valuable for ideal point personality CAT: Kullback-Leibler Information 

(Chang & Ying, 1996) and Maximum Interval Information (Van Rijn, Eggen, Hemker, & 

Sanders, 2016). Both of these “global information” indices differ from MIC in that their 

computation prioritizes presenting an item that discriminates across an interval of θ as opposed 

to a point on the continuum. They essentially act as a floodlight, whereas MIC acts as a spotlight. 

These options remain largely unexplored as they pertain to ideal point items (Makransky et al., 

2013). However, global information criteria may be very useful for early ideal point item 

responses considering the relatively low confidence we have around early 𝜃 estimates. No 

interval, no matter how wide, is likely to resolve the theta indeterminacy issue. But in 

combination with initial testlets, estimation may be optimized by exploring other information 

criteria options. 
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APPENDIX A 

R CODE FOR CAT FUNCTION 

Function argument definitions are as follows: 

 
mirtobject A calibrated GGUM model object in the mirt package with class 

‘SingleGroupClass’. 
alliteminfo A matrix containing item information, crossing any number of discrete 

theta values (rows) with items used in above mirtobject (columns). 

First column must be the theta values. Can be generated using the 

mirt::iteminfo() function item-by-item, then binding the results. 

Column names must be of format c(“theta”, “name of first item”,…, 

“name of n item”). A greater number of rows increases computational 

demands in the initial creation of the matrix but will result in higher 

CAT precision.  
estimationmethod Method for theta estimation. See mirt::fscores() documentation. 
totallength Termination criteria for CAT (i.e., total number of items presented). 
startlength Number of items presented in initial testlet. 
stagelength Number of items presented in each stage except the first stage. A 

value of 1 (default) represents a traditional sequential CAT. 

 
CATsimGGUM <- function(mirtobject, alliteminfo, estimationmethod = "EAP",     

           totallength, startlength = 1, stagelength = 1){ 

   

  #throw error for nonsensical input combinations 

  if( any((startlength + stagelength) > totallength, 

          !((totallength-startlength)/stagelength)%%1==0))  

    stop('combination of total test length, initial testlet length, and stage  

    length is not possible') 

   

  #create imputed responses- CAREFUL, if there were any individuals with ALL 

  #missing responses, fscores() will simply remove this person without a   

  #marker for where this case was located 

  imputedresponses <- as.data.frame(imputeMissing(mirtobject,  

    fscores(mirtobject, method = estimationmethod))) 

   

  #create blank table to hold final results 

  tempoutput <- data.frame() 

   

  #compute number of stages in total that will be presented 

  numberofstages <- ((totallength-startlength)/stagelength)+1 

   

  ####Identify Starting Items#### 

  #finds the single item (column) for which theta (row) has maximum info  

  #compared with all items. Does so by finding finite theta in the table  

  #closest to current theta estimate (in this case, 0) 
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  #uses all alliteminfo columns except theta 

   

  startitem1 <- names(which.max(alliteminfo[which(abs(alliteminfo$theta- 

                0)==min(abs(alliteminfo$theta-0))),-1])) 

   

  #is the item that shows maximum info above doing so on its second or first   

  #peak? (ie what's its location?). Extract all item parameters. 

 

  itemparmsTEMP <- coef(mirtobject)[1:length(coef(mirtobject))-1] 

  #*#additional two steps to remove CI's for mirtobjects that have them 

  if(length(unlist(itemparmsTEMP[1]))>7){ 

  simpparms <- function(x){x[1,]} 

  itemparmsTEMP <- lapply(itemparmsTEMP,simpparms) 

  } 

  #*# 

  itemparms <- data.frame(matrix(unlist(itemparmsTEMP), ncol = 7, byrow =  

               TRUE)) 

  itemparms <- cbind(data.frame(attr(itemparmsTEMP,"names"),stringsAsFactors  

               = FALSE),itemparms) 

  colnames(itemparms) <- c("item","a","b","t1","t2","t3","t4","t5") 

   

  #find second item for two+ item testlets that will have max info on the     

  #other side of theta=0 from startitem1 

   

  itemsEASY <- as.vector(itemparms[which(itemparms$b<0),"item"]) 

  itemsHARD <- as.vector(itemparms[which(itemparms$b>0),"item"]) 

   

  if (itemparms[which(itemparms$item == startitem1),"b"]>=0){ 

    startitem2 <- names(which.max(alliteminfo[which(abs(alliteminfo$theta- 

                  0)==min(abs(alliteminfo$theta-0))), itemsEASY])) 

  } else { 

    startitem2 <- names(which.max(alliteminfo[which(abs(alliteminfo$theta- 

                  0)==min(abs(alliteminfo$theta-0))), itemsHARD]))   

  } 

   

  #find the 3rd item for the 3-item testlet (third most informative item in  

  #the assessment at theta = 0) 

   

  startitem3 <- names(which.max(alliteminfo[which(abs(alliteminfo$theta- 

                0)==min(abs(alliteminfo$theta-0))),!(colnames(alliteminfo)  

                %in% c(startitem1,startitem2, "theta"))])) 

   

  #create initial testlet 

  ifelse(startlength==1, assign("initialtestlet",startitem1), 

  ifelse(startlength==2,assign("initialtestlet",c(startitem1,startitem2)),        

  ifelse(startlength==3,assign("initialtestlet",c(startitem1,startitem2, 

         startitem3)), stop('initial testlet longer than 3 not currently     

     supported')))) 

   

  ###RUN THE CAT FOR EACH INDIVIDUAL; i = stage, j = individual### 

   

  for (j in 1:nrow(imputedresponses)){ 

     

    #reset the available item pool for each new individual 

    itempool <- alliteminfo 

     

    for (i in 1:numberofstages){ 
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      #what item(s) presented in this stage 

      if (i==1){ 

        itemspresented <- initialtestlet 

        thetahat <- 0 

      } else { 

        temppool <- itempool 

        for (k in 1:stagelength){ 

          assign(paste0("stageitemnumber",k),   

                 names(which.max(temppool[which(abs(temppool$theta-  

                 thetahat[1])==min(abs(temppool$theta-thetahat[1]))), -1]))) 

          temppool <- temppool[,!(names(temppool) %in%  

                      get(paste0("stageitemnumber",k)))] 

        } 

        itemspresented <- unlist(mget(ls(pattern = "^stageitemnumber"))) 

        rm(list = ls(pattern = "^stageitemnumber")) 

      } 

       

      #dynamically create new columns and record within the master dataframe  

      #for this stage which item(s) were chosen 

      for (k in 1:length(itemspresented)){ 

        tempoutput[j,paste0("Item",k,"Stage",i)] <- itemspresented[k] 

      } 

       

      #record for current loop all items presented to j thus far 

      if (i==1){ 

        testthusfar <- itemspresented 

      } else { 

        testthusfar <- c(testthusfar,itemspresented) 

      } 

       

      #pass response pattern to theta estimation, leaving all non-presented  

      #items as NA 

       

      fullresponsevector <- as.numeric(rep(NA,ncol(imputedresponses))) 

      fullresponsevector[(colnames(imputedresponses) %in% testthusfar)] <-  

        imputedresponses[j,colnames(imputedresponses) %in% testthusfar] 

      fullresponsevector<-unlist(fullresponsevector) 

       

      thetahat <- fscores(mirtobject, response.pattern = fullresponsevector,  

                  method = estimationmethod, append_response.pattern = FALSE,  

                  full.scores.SE = TRUE) 

       

      #record estimation results 

      tempoutput[j,paste0("interiminteriinterimtheta",i)] <- thetahat[1] 

      tempoutput[j,paste0("interimthetaSE",i)] <- thetahat[2] 

       

      #update item pool 

      itempool <- itempool[,!(colnames(itempool) %in% testthusfar)] 

    } 

     

    #get final theta/SE's in common format for comparison across conditions 

    tempoutput[j,"finaltheta"] <- thetahat[1] 

    tempoutput[j,"finalthetaSE"] <- thetahat[2]  

  } 

  return(tempoutput) 

} 


