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Abstract

With the rapid development of data storage and cloud computing facilities,
volume and velocity are no longer the bottlenecks of big data applications. Va-
riety poses more challenges, as the data we obtain may come from extremely
heterogeneous sources. Clearly, simple integration of di�erent databases by col-
lating data is not enough. Innovative data fusion approaches open up a wide
range of research opportunities in big data research. This thesis will cover data
fusion for large-scale data analysis in the following three levels. Feature level
fusion through semi-parametric model for heterogeneous data, data level fu-
sion through optimal transport map for medical image data, and decision level
fusion through ensemble learning for medical studies.
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Chapter 1

Data Fusion

Big data is also referred to as 3-v data, where the 3-v represents volume, velocity,
and variety. With the rapid development of data storage and cloud computing
facilities, volume and velocity are no longer the bottlenecks of big data applica-
tions. Variety poses more challenges, as the data that we obtain may come from
extremely heterogeneous sources. For example, in medical research and envi-
ronmental sciences, it is a longstanding practice that data are collected locally
at individual data centers (Dalgard et al., 2015; Kim et al., 2014; Rahbar et al.,
2017; T. Zhang et al., 2016). Clearly, simple integration of di�erent databases
by collating data is not enough. Innovative data fusion approaches open up a
wide range of research opportunities in big data research.

Example 1.0.1. Medical research across multiple medical centers.
In medical research, a crucial task is to examine how some physiological mea-

surements that a�ect health. The well known physiological measurements are
body temperature, blood pressure, blood sugar and blood lipid levels, certain hor-
mone levels, etc. Many medical studies are constrained by the number of human
samples that cannot be obtained in a single medical center. Thus, multi-center
study is common for large-scale studies Dalgard et al., 2015; Kim et al., 2014; Rah-
bar et al., 2017. Consider data collected from di�erent departments in hospitals,
such as department of cardiology, department of pediatrics and department of
gynecology. There are several challenges when dealing with these datasets: (1) it is
obviously that the datasets are extremely biased; (2) even when data acquisition is
standardized across centers, there are still center specific or method-specific e�ects
on the measurements (H. H. Zhou et al., 2018); and (3) due to concerns such as
data privacy, it is impractical to share data, especially when data originate from
di�erent medical centers. The first challenge implies that the fitted model will be
unreliable if we only use data from one single department. However, the other two
challenges prevent us from direct pooling data in a post hoc manner across mul-
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tiple centers. It is crucial to e�ectively integrate information from multi-center
data to draw valid conclusions.

Example 1.0.2. Weather forecast across di�erent cities.
Weather forecast is based on data collected in weather stations located in

di�erent cities. Because of the unique geographical conditions in each city, data
from di�erent cities will exhibit heterogeneous patterns. For example, sunlight
will have a dramatic impact on inland temperature, but not in coastal cities.
Thus we need to apply di�erent prediction models to di�erent cities. On the other
hand, because of the spatial correlation, borrowing information from neighbor-
ing cities can make the prediction model more accurate.

Example 1.0.3. Medical image analysis.
In medical image analysis, researchers usually suggest combining images that

are taken under di�erent techniques or from di�erent directions to obtain a more
convincing result. One example is the neuroimaging data generated from di�er-
ent magnetic resonance imaging (MRI) techniques, which provide di�erent views
of brain function. Another example is the echocardiogram data under di�erent
angles, which provide di�erent views of heart structure. In order to understand
the story behind the varied images, we need to generate a fused image that can well
capture the global structure, and detect abnormalities based on the fused result.

Example 1.0.4. Disease screening based on various diagnosis.
We all have such experiences that di�erent clinicians may give di�erent di-

agnoses using the same examination results. In this situation, instead of simply
believing one diagnosis, we are more likely to take the aggregate of multiple conclu-
sions. Moreover, we would probably browse a few websites or go to more clinicians
for more diagnoses before we reach a final conclusion.

For those cases shown in the examples, how to fuse information from di�er-
ent datasets or sources are of particular interest. Data fusion can be performed
at three di�erent levels: data level, feature level, and decision level. The �rst
two examples are cases on feature level fusion, the third example is a data level
fusion, and the last one illustrates a decision level fusion. Compared with the
feature level fusion and decision level fusion, data level fusion preserves more
original information and is more attractive for information extraction. Alter-
natively, feature level fusion can discover new patterns and form new insights
and consequently is often used for information integration. When systematic
decisions need to be made, we need decision fusion methods to focus on the
valuable information that can generate optimal decisions.

In this thesis, we introduce a set of statistical tools for data fusion. We
�rst consider feature level fusion through extending multi-index models for
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heterogeneous data. Then, we introduce an optimal transport approximation
method for data level fusion of medical image data. Finally, we propose an
ensemble machine learning method for decision level fusion.
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Chapter 2

Feature Space Fusion and
Its Application in
Heterogeneous
Scattered Data

With the rapid development of decentralized computing technology, we are fac-
ing data that come from extremely di�erent sources. This type of data is referred
to as the scattered data. Scattered data can be very heterogeneous. For example,
the patients’ age follows completely di�erent distributions in children’s hospi-
tals and in senior centers. Clearly, the simple integration of di�erent databases
by collating data is not enough. There is an urgent need for data fusion methods
to link across di�erent databases.

Multi-index model, which assumes that the response variable depends on q
linear combinations of predictors or q hidden features through some unknown
link functions η, is intensively studied due to its model interpretability and
�exibility. However, how to estimate the feature space and η across di�erent
databases is still an open question and is the key that dictates the ultimate per-
formance of data fusion enterprise. In this article, we present a general feature
space fusion framework to address the heterogeneity issues for the scattered
data. By iteratively estimating and fusing the feature space spanned by the q lin-
ear combinations for each source data, we can obtain a fused feature space that
includes all regression related information. We show theoretically that the fused
feature space is asymptotically consistent under some mild regularity conditions.
We also establish the asymptotic convergence rate of the proposed algorithm.
As we do not impose any assumption on the link function between the response
variable and the predictors for each source data, the decision system obtained
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can be considered a model-free decision system. Furthermore, as we allow the
predictor distributions and link functions to be variable for di�erent source
data, the method can be naturally applied to transfer learning, which can be
extremely challenging for regressions that beyond linear or parametric models.

2.1 Introduction
With the fast development of cloud computing and data storage, we quickly
step in the big data era. A big challenge that we are currently facing is that data
are often collected from extremely di�erent sources. How to extract informa-
tion from very heterogeneous data sources poses extensive research challenges
to the statistician. Clearly, the simple integration of di�erent databases by col-
lating data is not enough. For example, the prognostic e�ect of dobutamine
stress echocardiography di�ers dramatically among di�erent age groups (Bern-
heim et al., 2011). Thus, predicting the prognostic e�ect by collating data from
children’s hospitals and from general hospitals can be very misleading due to
Simpson’s paradox, shown in �gure 2.1. These challenges become extremely
serious in decentralized computing where data have to be computed at indi-
vidual nodes rather than transmitted to a center due to data privacy, security,
ownership, and transmission cost concerns (Fan et al., 2017; H. H. Zhou et al.,
2018; H. H. Zhou et al., 2017). How to properly fuse the information of two
sources of data open up a wide range of options that may dictate the ultimate
performance of big data enterprise.

The multi-index model has been studied for years in statistical literature.
It has been intensively studied in econometrics and statistics communities for
estimating consumer index and for dimension reduction. Classical theory on
the multi-index model requires that both the predictorx and the response y are
homogenous. Admittedly, this assumptions do not hold in many instances, es-
pecially for modern applications with data coming from multiple centers, such
as electronic medical record (EMR) studies in medical researches, price evalua-
tion studies in �nancial services, real-time monitoring studies in environmental
sciences, and etc. (Dalgard et al., 2015; Kim et al., 2014; Rahbar et al., 2017; T.
Zhang et al., 2016). Thus, how to obtain the features or indices parameters that
can be used for all types of source data is very important.

Recently, with the burgeoning of transfer learning, which assumes di�er-
ent distributions between the training data and testing data, our feature space
fusion framework is becoming even more important. For example, if we can
obtain a fused feature space that can be used under any geographical locations
such as inland locations with less sunshine and coastal locations with more sun-
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shine, the weather prediction can be more accurate and simple for local weather
stations. Moreover, if we can �nd common feature space for object images on
both sunny days and heavy raining days, transfer learning between sunny days
and heavy raining days can be much more simpli�ed, and the image recognition
AI tools based on it can be more appropriate for in-�eld deployment.

To overcome the aforementioned problems, we proposed a regression-based
feature space fusion framework, under which we can not only handle the het-
erogeneity such as the domain shift and center-speci�c relationship of the dif-
ferent sources of data, but also achieve the same estimation e�ciency as we can
have for the homogeneous source of data. In particular, we assume that the
response of the sth data center ys depends on the same feature space fused by
linear combinations (indices) of domain-speci�c predictorsxs through domain-
speci�c unknown link functions ηs(·). We refer to the proposed model as the
multi-center multi-index (MCMI) model. To estimate the MCMI model, we
developed a feature space fusion method that integrates the coe�cients of the
predictors without estimate the unknown source-speci�c link functions using
the gradient methods.

Parameter fusion is pioneered by (Haghighat et al., 2016; Hall & Llinas, 1997;
Hall & McMullen, 2004), which proposes to integrate parameters rather than
raw observations for information integration. Under the assumption of some
pre-speci�ed parametric models, e.g., regression model, or quantitative meth-
ods, e.g., gradient descent. Parameter fusion methods are usually conducted
through three steps: (1) specify a parametric model or a quantitative method
that is suitable for pooled-data; (2) within each data center, calculate the local
estimators of the unknown parameters respecting to the pre-speci�ed models or
methods; and (3) integrate the local estimators across all local centers to obtain
a fused estimator. Theoretically, most of the parameter fusion methods were
shown that their estimators are consistent with the pooled-data estimator. As
a result, parameter fusion methods have been utilized by many methods as a
crucial component. These methods range from distributed gradient descent to
divide-and-conquer techniques (Battey et al., 2015; Blanchard & Mücke, 2016;
X. Chen & Xie, 2014; Fan et al., 2017; Guo et al., 2017; Lee et al., 2017; Y. Zhang
et al., 2015).

Despite the wide applications, the performance of parameter fusion meth-
ods highly relies on two critical assumptions, i.e., (1) the predictor variables are
i.i.d. across the local centers, and (2) there exists one global model/method that
is suitable for the pooled data. It is not surprising that, when these assumptions
are violated due to the data heterogeneity, most of these methods may provide
misleading results. Consider the Simpson’s paradox as an example. In Figure 1,
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Figure 2.1: Simpson’s paradox

let the red dots and green dots represent the data collected in two di�erent local
centers, respectively. Suppose a researcher postulates linear regression models
in both local centers, and also �ts a linear regression model for the pooled-data.
One can observe that there is a signi�cant di�erence between the �tted local
models, i.e., marked as red and green lines. One can also observe that the pooled-
data regression line (black dashed line) deviates severely from both of the �tted
local models. These two observations, as stated in Simpson’s paradox, are at-
tributed to the existence of the data heterogeneity in scattered data. As a result,
for heterogeneous scattered data, neither fusing the local parameters from the
local models nor building a simple global model for pooled-data yield valid re-
sults.

The contribution of our space fusion method to the development of multi-
source data learning is two-fold. First, it allows the domain shifting of predictor
space and also allows center-speci�c link functions between di�erent centers.
This assumption relaxation and the MCMI model that our feature space fusion
method relies on includes fully nonparametric models as special cases. There-
fore, it can be considered as a complete model-free data fusion procedure appli-
cable for linking any heterogeneous database. Second, as discussed in section 3,
we proposed both decentralized algorithms and distributed algorithms for the
data fusion procedure to handle big data processing. In general, we believe that
our feature space fusion method should become an indispensable member of
the repository of transfer learning and scatter data learning and recommend its
broad use. As our feature space fusion method can achieve the same estimation
e�ciency for heterogeneous data as homogenous data, we recommend to use
it as a safeguard against possible model-misidenti�cation. In the following, we
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outlined the advantages of our feature space fusion (FSF) algorithm over the
existing parameter fusion algorithm in more details.

1. FSF considers a general multi-index model, which accommodates both
types of data heterogeneity through di�erent predictor distributions and
center-speci�c nonparametric link functions.

2. Rather than fusing the parameters, FSF aims to fuse the feature space.
Compared with the fused parameters, the fused feature space takes a
weaker form to re�ect the “correspondence” among the local models.

3. FSF uses minimum average variance estimation technique to estimate
local feature spaces. The idea iteratively searches for the estimates of the
feature space and the link function.

4. FSF can be naturally applied on the scenario that the local data centers
are connected through a decentralized topology. With the fused feature
space, FSF can be further applied to transfer learning.

Besides the algorithm improvement, we also establish two theoretical results
to ensure the consistency and e�ciency of the proposed FSF method. We show
that in the worst case of data heterogeneity, our method can be as e�cient as
the “best" local model, i.e., the one with the highest e�ciency among all. We
also showed that when data is homogeneous, our method can perform as well
as using the pooled data.

2.2 Model Setup
Single center multi-index model. Given the observations yi ∈ R and xi ∈
Rp for i = 1, · · ·n, we �rst consider the following multi-index model (Elton
et al., 1977; B. Li, 2018; K.-C. Li, 2000) for a single data center,

yi = η(xTi β1, . . . ,x
T
i βq) + εi, i = 1, . . . , n, (2.1)

where η is an unknown link function ,βjs are p-dimensional orthogonal regres-
sion indices of unit length, q is an integer less than p, and {εi}ni=1 are stochastic
errors with mean zero and variance σ2. Notice that given xTi β1, . . . ,x

T
i βq, yi

and xi are independent. Thus, the subspace spanned by B = (β1, . . . ,βq)

contains all information of xi that is related to yi. In the rest of the chapter,
we refer the column space spanned by B as the “feature space" and denote it
by S(B). Model (2.1) is very general, which include single index models (q=1),
linear regression models (η(x) = x) and non-parametric models (B = I) as its
special cases.

The multi-index model has been extensively studied in statistics and econo-
metric societies. The main stream research focused on the mean response re-
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gression E(yi|xi) = η(xTi β1, . . . ,x
T
i βq). There are primarily two types of

methods for identifying the indices, which are the M-estimation methods and
the gradient methods. Treating η as an in�nite-dimensional nuisance parame-
ter, the M-esimation methods �rst obtain a nonparametric estimate η̂ given B,
and then minimize a certain target functional of B, η̂ and the data to generate
an estimate of B. Two examples are the semiparametric maximum likelihood
estimate and the semiparametric least squares estimate. The properties of these
two estimates such as their asymptotic e�ciency have been studies in the liter-
ature Ichimura and Todd, 2007. In spite of their nice theoretical properties,
these estimates are rarely implemented in practice. The main reason for this
is that the computation of these estimates require solving hard optimization
problems and is easily compromised by the curse of dimensionality.

The second group includes those methods that directly utilize the gradi-
ent of E(yi|xi), denoted by m′(xi). Hence, they are referred to as the gra-
dient methods. One basic gradient method is the so called average derivative
method studied by Powell et al., 1986. For single index model, the average deriva-
tive method is developed based on the observation thatm′(x) = β1η

′(β1x).
In other words, β1 is proportional to m′(x) for every x. By taking expecta-
tion ofm′(x) and applying integration by parts, we have β1 is proportional to
E(m′(x)) = −E(yf ′(x)/f(x)) wheref(x) is the marginal density function
ofx. Henceβ1 can be estimated by the sample average of yf ′(x)/f(x) with f
replaced by a nonparametric estimate. The resulted estimate is called the average
derivative estimate. To generalize the gradient method to multiple index, Xia et
al., 2002 propose to use local linear expansion to approximatem(x) and obtain
a tentative estimate of B denoted by B̂. Then, they improve B̂ by minimizing
the average variance estimate, i.e. regression residuals E{

[
yi − η(BTxi)

]2}.
The updates run iteratively until converges.

More speci�cally, we use �gure 2.2 as a toy example to illustrate how to
estimate B in a single data center. Here, we assume the true function η(·) =

(·)2 (green surface in panel (a)) and the trueB = (1, 1)T (red arrow in panel (a)).
Here because B is a vector, we denote it as β. Then, we generate observations
(yellow dots) according to model (2.1). Figure 2.2(b) demonstrates the iterative
steps of the estimation algorithm. To be speci�c, given the estimates η[k−1] (gray
dashed curve) and β[k−1] (red arrow), we �rst calculate β[k] by minimizing the
least square functional,

β[k] = argmin
β

n∑
i

||yi − η[k−1](xTi β)||2,

9



Figure 2.2: Illustration of the estimation algorithm within one single data cen-
ter.

where || · || denotes the Euclidean norm. Then, we estimate η[k] (red dashed
curve) using the technique of local linear regression smoother based on the up-
dated xTβ[k] (yellow dots). Figure 2.2(c) shows the �nal output η̂ (red dashed
curve) and β̂ (red arrow), when the algorithm converge. Details of the estima-
tion for model (2.1) are shown in supplementary materials.

To estimate model (2.1), consider the local linear smoother of η,

η(BTxj) =
n∑
i=1

{aj + bTj B
T (xi − xj)}wij,

where aj and bj are the coe�cients of Taylor expansion of η at point BTxj ,
and

wij =
Kh{BT (xi − xj)}∑n
l=1Kh{BT (xl − xj)}

is the kernel weight. Here,K(·) is a kernel function andKh = hqK(·/h) with
bandwidth h. In practise, we opt to use the Gaussian kernel and choose the
bandwidth to be h = O(n−1/(p+4)). For simplicity, we denote
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ζ(B, aj, bj) :=
n∑
j=1

n∑
i=1

{
yi −

[
aj + bTj B

T (xi − xj)
]}2

wij.

Details of the MAVE algorithm are shown in Algorithm 1.

Algorithm 1 MAVE algorithm
Input: {xi}ni=1, {yi}ni=1 as de�ned in model (1), kernel matrixK(·), band-
width h.
k ← 0, randomly initialize B[0] ∈ Rp×q.
repeat

(i) Given B[k], for 1 ≤ i, j ≤ n, calculate the kernel weights

w
[k+1]
ij =

(B[k])T (xi − xj)∑n
i=1Kh(B[k])T (xi − xj)

.

(ii) Estimate η[k+1] through kernel method by solving the optimization
problem

a
[k+1]
j , b

[k+1]
j = argmin ζ(B[k], aj, bj)

through weighted least squares.
(iii) Estimate B[k+1] through solving the optimization problem

B[k+1] = argmin
BTB=Iq

ζ(B, a
[k+1]
j , b

[k+1]
j ).

(iv) k ← k + 1.
until converge.

Multiple centers multi-index model. For simplicity, we refer to each in-
dividual data center that can store, process, and transport data as a node. Given
S nodes, we assume that the observations {ysi,xsi}ns

i=1 on node s follows

ysi = ηs(x
T
siβ1, . . . ,x

T
siβq) + εsi, (2.2)

where ηs represents the unknown link function for sth node, and {εsi}ns
i=1 are

mean zero variance σ2 error terms independent of xsi. It is clear that model
(2.2) can well address two di�erent types of nodes’ heterogeneity: (a) the pre-
dictor variables may have heterogeneous distributions across nodes, (b) each
node may have center-speci�c link functions. The only constraint here is that
all nodes share the same feature space, or in another word, the regression indices
B is the same across di�erent data centers. This constraint, we believe is reason-
able and necessary in reality. If this constraint is violated, there is no common
information shared between nodes and correspondingly, there is no need for
data fusion.
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2.3 Feature Space Fusion
We propose the Feature Space Fusion (FSF) algorithm to estimate model (2.2).
Speci�cally, FSF aims to fuse the estimated feature space across all local nodes, as
illustrated in Figure 2.3. Suppose the sth node is connected to the (s−1)th node
and the (s+1)th node in the data network, so that they can communicate with
each other. For the sth node, in the kth iteration, FSF �rst estimates η[k]

s and
B

[k]
s as illustrated in �gure 2.2. The regression indices B[k]

s is then transmitted
to the connected nodes, illustrated by the red arrows. In the meanwhile, these
connected nodes will transmit their local estimates, i.e., B[k]

s−1 and B
[k]
s+1, to the

sth node. Then the feature spaces S(B
[k]
s−1), S(B

[k]
s ), and S(B

[k]
s+1) are fused

together to obtain the fused feature spaceS(B
[k+1]
s ), then the orthogonal bases

ofS(B
[k+1]
s ) are extracted as the common regression indices B[k+1]

s , illustrated
by the green arrows. Here, the matrix B

[k+1]
s should be regarded as a set of

basis respecting to the “average" feature space of the feature spaces S(B
[k]
s−1),

S(B
[k]
s ), and S(B

[k]
s+1). The fused estimate is then used to calculate the link

function η[k+1]
s , until the algorithm converges.

Figure 2.3: Illustration of Algorithm 2.

We now present some essential notations, followed by a detailed algorithm
of FSF. Let J ∈ RS×S be the adjacent matrix of the scattered data structure,
i.e. Jij = 1 when there is connection between node i and node j, otherwise,
Jij = 0. Let Js = (Js1, ...,JsS)T be the s-th column of J, and {s1, ..., sLs}
indicate the Ls nodes that are connected to s-th node, i.e Jsk = 1, for k ∈
{s, s1, ..., sLs}, otherwise, Jsk = 0. In order to describe the aggregation, we
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de�ne a function Γ(·, ·), such that

Γ((B1, ...,BS),Js) = (Bs,Bs1 , ...,BsLs
),

then the fused feature space in sth node can be calculated by

Γ((B1, ...,BS),Js)Ws,

withWs as the given node-speci�ed weight matrix. In simple cases, for example,
when q = 1, or when Bs is sparse enough and the permutation of columns
of Bs is carefully de�ned, we choose W = (ns

ñ
,
ns1

ñ
, . . . ,

nsLs

ñ
)T ⊗ Iq, where

ñ = ns +
∑Ls

l=1 nsl is the pooled sample size for node s and its connected
nodes. When there is no prior assumption on the structure of Bs, ηs and Bs

are confounding with each other in model (2.2). Consider the following toy
example y = xTβ1

xTβ2
+ ε. This model can be written as y = η(BTx) + ε,

with B = (β1,β2) and η(z1, z2) = z1/z2; however, the model can also be
written as y = η∗

(
(B∗)Tx

)
+ ε, with B∗ = (β2,β1) and η∗(z1, z2) =

z2/z1. In such cases, the weight matrix Ws will be more complicated. To
integrate B[k]∗

. from di�erent nodes without mismatching the columns, we
chooseWs to be the eigenvectors corresponding to the �rst q eigenvalues of the
matrix (B

[k]∗
s ,B

[k]∗
s1 , . . . ,B

[k]∗
sLs

)T (B
[k]∗
s ,B

[k]∗
s1 , . . . ,B

[k]∗
sLs

). The detailed FSF
algorithm is provided in Algorithm 2.

Algorithm 2 Feature Space Fusion (FSF) Algorithm
Input: {xsi}ns

i=1, {ysi}
ns
i=1 as de�ned in model (2.2), dimension q, adjacent

matrix J, weight matrix Ws.
k ← 0, randomly initialize B[0]

s ∈ Rp×q.
repeat

(i) Given B
[k]
s , calculate η[k]

s through kernel methods with details rele-
gated to algorithm 1.

(ii) Calculate B[k]∗
s based on η[k]

s .∗

(iii) Let Js be the s-th column of J. Calculate
B[k+1]
s = Γ((B

[k]∗
1 , ...,B

[k]∗
S ),Js)Ws.

(iv) k ← k + 1.

until converge on all nodes.
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Implementation details. Since the dimension q is unknown, we estimate
it through minimizing

CV (q) =
1

n

n∑
j=1

(
yj −

∑n
i=1,i 6=jK

(i,j)
hq

yi∑n
i=1,i 6=jK

(i,j)
hq

)2

,

whereK(i,j)
hq

= Khq{β̂T1 (xi−xj), . . . , β̂Td (xi−xj)}withKhq = hqK(·/h)

being a kernel function with bandwidthh, for q = 1, . . . , p. In practise, we opt
to use the Gaussian kernel and choose the bandwidth to be h = O(n−1/(p+4)).

Under the scattered data scenario, for each q ∈ {1, 2, . . . , p}, we �rst cal-
culateCVs(q), in sth node. Then we exchangeCVs(q) with itsLs connected
nodes to obtain the average,

CV s(q) =
1

Ls + 1

(
CVs(q) +

Ls∑
l=1

CVsl(q)

)
.

When Algorithm 2 converges, all nodes will be synchronized with the same
CV (q). As a result, we choose q by

q̂ = argmin
q∈{1,...,p}

CV (q).

2.4 Theoretical Results
We use the following metric, originally used in Xia et al., 2002, to measure the
distance between the estimated feature spaceS(B̂) ∈ Rq̂×p and the true feature
space S(B0) ∈ Rq×p,

m(S(B̂),S(B0)) =

{
||(Iq −B0B

T
0 )B̂|| if q̂ < q

||(Iq̂ − B̂B̂T )B0|| if q̂ ≥ q

Let B̂D be the estimator ofB0 through Algorithm 2 and B̂s, s = 1, . . . , S,
be the estimator of B0 in the sth node using its local data. We further denote
mD = m(S(B̂D),S(B0))) andms = m(S(B̂s),S(B0))).

To achieve the main theoretical results in this chapter, we need the following
regularity conditions. These conditions are widely used in su�cient dimension
reduction literature, and we refer to B. Li, 2018 for details.

Condition 2.4.1. (i) E(‖xs‖k <∞) for all k > 0, s = 1, . . . , S;
(ii) The third derivatives ofE(xs|ys) andE(xsx

T
s |ys) are bounded and con-

tinuous for s = 1, . . . , S.
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Condition 2.4.2. Denote fxs and fys as the density function of xs and ys for
s = 1, . . . , S.

(i) fxs has bounded fourth derivative;
(ii) fxs is bounded away from 0 in a neighborhoodD around 0;

(iii) fys has bounded derivative;
(iv) fys is bounded away from 0 on a compact support.

Condition 2.4.3. (i) The conditional density fxs|ys is bounded for all s =

1, . . . , S;
(ii) The conditional density f(xs0,xsk)|(ys0,ysk) is bounded for all k ≥ 1 and

s = 1, . . . , S.

Condition 2.4.4. The third derivatives of ηs is bounded and continuous for
s = 1, . . . , S.

Condition 2.4.5. The kernel function K(·) is a spherical symmetric density
function with a bounded derivative, and all the moments ofK(·) exist.

Condition 2.4.2 is needed for the uniform rate of consistency of the kernel
smoothing methods. Condition 2.4.3 is needed for kernel estimation of depen-
dent data. Condition 2.4.4 is imposed to meet the continuous requirement for
kernel smoothing. Condition 2.4.5 is satis�ed by most of the commonly used
kernel functions.

Convergence of the FSF algorithm. Suppose model (2.2) holds and there
are ni, i = 1, . . . , S observations in the sth node, respectively. The following
theorem gives the convergence results of the FSF algorithm.

Theorem 2.4.1. Under conditions 2.4.1 - 2.4.5, Algorithm 2 converges. Further-
more, one has

lim
min{n1,...,nS}→∞

P (mD −ms > 0) = 0, s = 1, . . . , S.

Theorem 2.4.1 shows the proposed algorithm converges and is consistently
superior to all the local estimations.

Theorem 2.4.2. Suppose in each node s, xs in model (2.2) has a density with
compact support, s = 1, . . . , S. Assume conditions 2.4.1 - 2.4.5 hold, when ns →
∞, for s = 1, ..., S, one has

q̂
p→ q,

where “ p→" means converging in probability.
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Theorem 2.4.2 shows the estimated dimension for the proposed algorithm
converges to the true dimension.

Convergence rate of the feature space estimator. Let Op be the or-
der in probability, which is similar to O but for random variables. Let ñ =

ns +
∑Ls

l=1 nsl be the pooled sample size for node s and its connected nodes.
We denote n =

∑S
s=1 ns as the pooled sample size for all nodes. When q = 1,

or when the permutation of columns of Bs are carefully de�ned, we men-
tioned that the node-speci�ed weight matrix Ws can be de�ned as Ws =

(ns/ñ, ns1/ñ, . . . , nsLs
/ñ)T ⊗ Id. The following theorem gives the conver-

gence rate of the proposed feature space estimator.

Theorem 2.4.3. Suppose hs = O(n
−1/(p+4)
s ) for s = 1, . . . , S, and Ws =

(ns/ñ, ns1/ñ, . . . , nsLs
/ñ)T ⊗ Id. Under conditions 2.4.1 - 2.4.5, when p ≥ 2,

one has
m(S(B̂D),S(B0)) = Op

(
n−

3
p+4 log n

)
.

Theorem 2.4.3 states that under the regularity conditions, the estimation
of the proposed method can achieve e�ciency at the same rate as that of the
pooled sample estimator.

2.5 Experimental Studies
Simulations without data heterogeneity. We �rst consider three cases under
the scenario that the data heterogeneity does not exist. Under this scenario, the
estimation using pooled-data is expected to be the best. We set the pooled-data
estimation as the baseline to evaluate our method.
Case 1. We consider the following model with q = 2 and the sample size equals
500 in each node

ysi = βT1 xsi(β
T
1 xsi + βT2 xsi + 1) + 0.5εsi,

i = 1, . . . , 500, s = 1, 2.

Let p = 10, β1 = (0, 1, 0, . . . , 0)T , β2 = (1, 0, . . . , 0)T and B0 = (β1,β2).
The predictor variables xsi are generated from a multivariate normal distribu-
tion N(0, Ip). For each s, {εsi}ni=1 are i.i.d. random errors with the mean
equals zero and the variance equals one.
Case 2. We consider the following model

ysi =
βT1 xsi

0.5 + (βT2 xsi + 1.5)2
+ 0.5εsi,

i = 1, . . . , 500, s = 1, 2,
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with other settings analogous to the ones in Case 1.
Case 3. We consider the case when p = 10 and q = 4,

ysi = βT1 xsi(β
T
2 xsi)

2 + (βT3 xsi)(β
T
4 xsi) + 0.5εsi,

i = 1, . . . , 500, s = 1, 2,

where
• β1 = (1, 2, 3, 4, 0, 0, 0, 0, 0, 0)T/

√
30,

• β2 = (−2, 1,−4, 3, 1, 2, 0, 0, 0, 0)T/
√

35,
• β3 = (0, 0, 0, 0, 2,−1, 2, 1, 2, 1)T/

√
15,

• β4 = (0, 0, 0, 0, 0, 0,−1,−1, 1, 1)T/2,
and B0 = (β1,β2,β3,β4). The setting for xsi and εsi are analogous to the
ones in Case 1.

For each case, we �rst generated 1000 replicated samples, then randomly
divided the samples into two nodes in each replication. We took 100 replications
and plotted the boxplots for the space distance between the estimated feature
space S(B̂) and S(B0) of each method. The results are shown in Figure 2.4,
where the solid red line represents the result for pooled-data. We observe that,
when the data heterogeneity does not exist, the performance of the proposed
FSF method is similar to the performance of the pooled-data estimator and is
signi�cantly superior to all the local estimators.

Figure 2.4: Boxplot of the distance between S(B̂) and S(B0) for each method
under two settings respectively. The results obtained by MAVE applied to full
data is set as a baseline (the red line).

Simulations with the �rst type of data heterogeneity. We then con-
sider three cases where the �rst type of data heterogeneity exists, i.e., the predic-
tor variables have di�erent probability distribution across the nodes. For each
case, two model settings are considered, which are analogous to the ones in Case
2 and Case 3. We set the sample size to be 300 in each node. More details are
relegated to the supplementary material.
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Case 4. For half of the nodes, the predictor variables are i.i.d. generated from the
multivariate uniform distribution [0, 1]d, and the other half are i.i.d, generated
from the multivariate normal distributionN(0, Ip).
Case 5. In this case, the independent predictor variables are normally distributed
in each node with the same covariance matrix Ip and di�erent means µ · 1p.
Case 6. In this case, the independent predictor variables are normally distributed
in each node with the same mean 0 and di�erent covariance matrices σ2 · Ip.

Figure 2.5: Boxplot of the distance between S(B̂) and S(B0) for each method.
The results for Case 4, Case 5, and Case 6 are shown in the left column, middle
column, and the right column, respectively. The above row and the lower row
show the results for two-node cases and four-node cases, respectively.

For each case, we �tted the model with the proposed method and compared
the results to MAVE within each individual node and MAVE applied to the
pooled-data. The simulated results for 100 replicates are shown in Figure 2.5,
where the upper row represents the two-node cases, and the lower row repre-
sents the four-node cases. We �rst observe that the estimation using pooled-data,
at times, performs worse than local estimations. Such an observation can be
attributed to the existence of the data heterogeneity, as stated in the Simpson’s
paradox. We then observe that the proposed FSF method performs signi�cantly
better than all the local estimators. We attribute such a success to the fact that
the proposed method e�ectively integrates the information from local nodes,
resulting in more accurate estimations.

Simulations with the second type of data heterogeneity. Finally, we
consider a more complicated case that the link function ηs(·)’s take di�erent
forms in di�erent nodes. The data in node one and node two are generated
with the settings that are analogous to the settings, as in Case 1 and Case 2, re-
spectively. The results for 100 replications are showed in Figure 2.6. We observe
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that the pooled-data estimation has the worst performance, due to the fact that
the link functions are node-speci�c. We also observe that the proposed method
outperforms the local estimations and the pooled-data estimation in both bias
and variance.

Figure 2.6: Left pannel: visualizations of di�erent link functions. Right panel:
the boxplot of the distance between S(B̂) and S(B0) for each method.

2.6 Real Data Analysis
Multi-department medical data. Due to some practical concerns, it is sensi-
ble to transfer patients’ medical records between di�erent departments. Most
times, the records can only be shared under the agreement of patients. For such
medical researches, data cannot be directly gathered or pooled. The clinical
response of patient i in department s, i.e., ysi, can be considered as multivariate
functions or mappings of q biomarkers that quanti�ed by the projected data
BTxsi, whereB ∈ Rq×p does not depends on either s or i. As the medical pro-
tocols are often di�erent across di�erent departments, such as the department
of cardiology, the department of pediatrics, and the department of gynecology.
To describe the data heterogeneity, we allow the unknown function ηs(·) to be
di�erent in each department with data xsi not identically distributed for each
s = 1, . . . , S. The data record 96 factors of medical examination information
and the coagulation factor for 1,172 patients from seven di�erent departments
in hospitals in Shanghai. Because there are fewer than 30 records collected in
the third, �fth, and seventh department, we did not take those part of data. By
treating each department as one node, we applied the proposed FSF method to
�t the model. Under each replication, we randomly chose a sample of size 30
from node 1 (the �rst department) as our testing set. The rest data were used
for training.
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Weather report data. Weather report data for 49 cities in Australia from
Dec 12, 2008, to Jun 24, 2017, have been recorded. There are 142,000 records
with 24 variables. Among the variables, there are categorical variables such as
wind direction, level of cloudiness, whether rains today (y/n), etc. The quan-
titative variables are temperature, wind speed, humidity, pressure, etc. We ran-
domly chose 14 cities to train the model by treating each city as a node in the
scattered data system, i.e.,S = 14. The region-speci�c geographical conditions
result in the data heterogeneity. We chose six quantitative variables (wind speed,
humidity, and pressure, each recorded daily at 9 AM and 3 PM) as the predictor
xsi, to predict if it will rain in the next day. The response ysi is the risk of raining
the next day (quantitative). We randomly chose 100 observations from the 12th
node as our testing set and used the rest data of the 14 nodes for training.

House price data. The data records the house prices in Melbourne from
the year 2016 to 2017, including house type, distance from the central business
district (CBD), land size, building size, longitude, latitude, etc.. We focus on
one certain house type (marked as “h" in the dataset), and choose the distance
from CBD, land size and building size as the predictors. Using the longitude
and latitude information, we create a new predictor indicates the distance from
the bay. The data is partitioned to 13 areas, as shown in Figure 2.7 by K-means
clustering. Each area is treated as a node. We randomly picked 100 data points
from the 10th node as our testing data and used the rest data for training.

Figure 2.7: Visualization of the house price data. The right panel show the
partition of the dataset using K-means clustering.

For all three real data analyses, we compared the testing MSE of our method
with those of support vector regression (SVR), simple neural network (SNN),
and minimum average variance estimation (MAVE). All three methods were ap-
plied to the pooled-data. We also list the testing MSEs for each individual node
based on its own data. To evaluate our method, we reported the relative im-
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provements of the decentralized method over other methods, which is de�ned
as

IMP = (MSEothers −MSEFSF )/MSEothers.

An IMP greater than 0 implies that the proposed FSF method performs better.
The results listed in Table 2.1 show the mean improvements after 20 replicates.
We also listed the �rst decile (10-quantile) of the results. For the weather report
data, it took too much time to run SVR since the pooled-data volume is too big.
From the result, we see that most time, the decentralized method can signi�-
cantly outperform other methods. For the house price data, the decentralized
method performs similarly as the 10th and 11th nodes (marked as red) and sig-
ni�cantly better than others. Those “non-signi�cance" in 10th and 11th nodes
may be caused by two reasons, 1) the testing data came from the 10th node, and
2) the 11th node is far away from others.

Table 2.1: The mean improvement (Mean IMP) of the proposed FSF method
over other methods, with the �rst decile presented as well.

Medical Research
pooled-data Single node

Method SVR SNN MAVE 1 2 3 4
Mean IMP .57 .68 .42 .34 .41 .51 .39
1st Decile .45 .52 .09 .06 .20 .39 .18

Weather Report
pooled-data Single node

Method SVR SNN MAVE 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Mean IMP – .51 .33 .30 .28 .24 .34 .30 .27 .29 .31 .32 .37 .28 .28 .30 .32
1st Decile – .24 .05 .07 .01 .02 .08 .06 .03 .02 .02 .03 .08 .04 .00 .04 .06

Housing Price
pooled-data Single node

Method SVR SNN MAVE 1 2 3 4 5 6 7 8 9 10 11 12 13
Mean IMP .49 .89 .36 .38 .41 .44 .60 .42 .44 .44 .45 .59 .39 .27 .38 .45
1st Decile .30 .83 .17 .08 .17 .17 .43 .21 .18 .12 .16 .40 -.11 -.07 .01 .20

2.7 Concluding Remarks
We address the data heterogeneity in data fusion and propose a feature space
fusion method for scattered datasets. We con�rm the asymptotic convergence
of the algorithm, the e�ciency of the estimation, and the consistency of the
estimated dimension theoretically. We show that our method works well on
heterogeneous scattered data. We would like to extend the algorithm to a more
complicated network and consider the asynchronous algorithms to further re-
duce the computational cost in the near future.
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Chapter 3

Image Fusion through
Optimal Transport Map
and Its Application in

Echocardiogram

There is a long and rich history of Optimal Transport Map (OTM): initiated
by Monge in the 18th century and reinvigorated by modern machine learning
applications like generative networks and transfer learning. Though the math-
ematical properties of OT have been extensively studied, the Wasserstein dis-
tance induced by an empirical OTM su�ers from a slow convergence rate when
the dimensionality is large. In high dimensional regime, the empirical distri-
bution summarized from a random sample with a �xed sample size is usually
atypical of the population due to the “curse of dimensionality". Without any
smoothness constraint, the empirical OTM that pursues a one-to-one map to
minimize the Wasserstein distance between two high-dimensional random sam-
ples will inevitably lead to severe over-�tting. To address this issue, we propose a
novel estimator of OTM named Smoothed Monge Map (SMM). SMM tackles
the “curse of dimensionality" problem by applying coordinate-wise smoothing
spline to the empirical OTM. By imposing smoothness penalties, SMM bal-
ances the in-sample goodness of �t and the roughness of the transport map.
When the dimensionality d > 4, under mild conditions, SMM can e�ectively
alleviate the over-�tting issue and improve the convergence rate fromO(n−1/d)

toO(n−1/2). Numerical studies on synthetic datasets justi�ed the superior per-
formance of SMM in comparison with mainstream competitors. Further, we
apply SMM to a challenging echocardiogram analysis testing problem.
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3.1 Introduction
These years, the rapid development of computer vision and machine learning
techniques has triggered a medical technology revolution. The deep learning
algorithms have been developed for medical image processing, especially for
echocardiograms S. Chen et al., 2019; Ghorbani et al., 2020; Madani et al., 2018;
Ouyang et al., 2019; J. Zhang et al., 2018. In echocardiogram analysis, one ma-
jor task is to tracing the myocardial movement of the endocardium of the left
ventricle (LV-Endo). Deep learning methods, such as CNN, have been applied
in recent years. However, such methods require large quantity of labeled image.
With huge image diversity, labeling LV-Endo could be super labor-intensive.
To address the image diversity problem, we propose a reference-based tracing
method. Instead of labeling on individual echocardiogram, we label on a refer-
ence image which can well capture the myocardial structure. The reference im-
age is generated through image fusion. One possible choice is the “Wasserstein
barycenter” (Cuturi & Doucet, 2014). To obtain the Wasserstein barycenter
as the reference image of echocardiogram, the key is to well approximate the
Optimal Transport Map (OTM).

Nowadays, as a powerful tool to quantify the minimum “distance" between
two metric spaces, OTM has been reinvigorated in a remarkable proliferation of
modern data science applications, including machine learning (Alvarez-Melis
et al., 2018; Arjovsky et al., 2017; Canas & Rosasco, 2012; Courty et al., 2016;
Flamary et al., 2018; Meng et al., 2019; Peyré, Cuturi, et al., 2019), statistics
(Cazelles et al., 2018; Del Barrio et al., 2019; Panaretos & Zemel, 2019), computer
vision (Ferradans et al., 2014; Peyré, Cuturi, et al., 2019; Rabin et al., 2014; Su
et al., 2015), and so on.

Despite its popularity, the Wasserstein distance induced by an empirical
OTM su�ers from a slow convergence rate when the dimensionality is large.
A stylized feature of high-dimensional data is that the empirical distribution
summarized from a random sample with a �xed sample size is usually atypical
of the population due to the “curse of dimensionality". Suppose that we ob-
serve two i.i.d. samples {ai}ni=1 ∈ Rd and {bi}ni=1 ∈ Rd from two continuous
probability distributions α and β, respectively. When d > 4, the 2-Wasserstein
distance induced by the empirical OTM between {ai}ni=1 and {bi}ni=1 con-
verges to its population counterpart at a slow rate of orderO(n−1/d) (Dudley,
1969; Fournier & Guillin, 2015). Unfortunately, this rate is tight in the sense
that the upper and lower bounds meet except for a positive constant (Weed &
Bach, 2019). Like many well-studied nonparametric methods, the empirical
OTM that minimizes the in-sample goodness of �t without any smoothness

23



constraints will inevitably run into severe over-�tting issues. The slow conver-
gence issue has already hindered the broad applications of OTM with high-
dimensional datasets.

A good amount of existing literature has been devoted to addressing the
“curse of dimensionality” issue of empirical OTM. The convergence rate can
be re�ned when the measures are supported on low-dimensional sub-domains:
Weed and Bach, 2019 proposed to �nd an implicit dimension d0 of the data and
proved that the convergence rate could be re�ned when d0 � d. However, the
calculation of d0 is not straight forward and d0 may not necessarily be much
smaller than d. Genevay et al., 2019 studied the sinkhorn divergence, a regular-
ized variant of the Wasserstein distance. The authors showed that the converges
rate of sinkhorn divergences is getting closer to the orderO(n−1/2), as the reg-
ularization parameter diverges. Nevertheless, the sinkhorn divergence pays the
price on creating a bias term that can dominate the variance part in some real
applications (Genevay et al., 2019). Forrow et al., 2019 proposed an estimator
for Wasserstein distances using factored couplings as regularization. Though
the proposed estimator converges to its expectation at the rate ofO(n−1/2) for
�xed d, there is no theoretical guarantee that this estimator can overcome the
“curse of dimensionality" issue in general high-dimensional setups.

To address the aforementioned problems, we propose a novel estimator
of OTM named Smoothed Monge Map (SMM). SMM tackles the “curse of
dimensionality" issue by applying coordinate-wise smoothing spline to the em-
pirical OTM. By imposing smoothness penalties, SMM balances the in-sample
goodness of �t and the roughness of the transport map. When the dimension-
ality d > 4, under mild conditions, SMM can e�ectively alleviate the over-
�tting issue and improve the convergence rate of the p-Wasserstein distance
from O(n−1/d) to O(n−1/2). Thus, SMM can induce a consistent empirical
Wasserstein distance in the high-dimensional regime. Numerically, we show
that SMM outperforms several state-of-the-art OTM estimators through exten-
sive synthetic experiments. With such empirical Wasserstein distance , we can
approximate the Wasserstein barycenter more precisely. A more precise Wasser-
stein barycenter of the echocardiogram provides a better reference image which
can represent the “standard heart”. We also prove the asymptotic normality of
the empirical Wasserstein distance which paves the way for applying SMM to
test the distributional equivalence of two samples. In echocardiogram analy-
sis, researchers study echocardiogram from di�erent directions and fuse them
together to recover the 3-D myocardial movement features of the heart. The
current echocardiogram classi�cation heavily relies on clinicians’ experiences

24



1 Also called the Monge
map.

2 For all Ω ⊂ Rd,
φ (α)(Ω) = α(φ−1(Ω))

and domain-speci�c knowledge, and thus are highly subjective (Michel et al.,
2017). The testing enables us a quantitative-based classi�cation method.

3.2 Problem setup

3.2.1 Monge map and Wasserstein distance
The optimal transportation theory has been widely studied in mathematics,
probability, and economics, see (Ferradans et al., 2014; Reich, 2013; Su et al.,
2015) and references therein. Let α ∈ Rd and β ∈ Rd be two continuous
probability measures de�ned on a proper probability space. To focus on the
contexts that are most relevant to machine learning applications, we assume
that at least one of the two measures α and β has a continuous density with
respect to the Lebesgue measure. The Monge problem with an L2 transport
cost aims to �nd the an optimal transport map (OTM)1 φ∗ : Rd → Rd that
solves the following minimization problem

φ∗ = inf
φ∈Φ

∫
Rd

‖a− φ(a)‖2dα(a), (3.1)

where ‖ · ‖ is the vector norm, and the set Φ includes all push forward maps2

φ (·) that satisfy φ (α) = β and φ−1(β) = α. Throughout this chapter, we
work on the moderate or high dimensional case such that d > 4. Under the
above setups, the Brenier’s theorem (Brenier, 1991) guarantees the existence of
the Monge map and proves that the Monge problem is equivalent to the Kan-
torovich formulation of the optimal transport problem (Kantorovich, 2006;
Kantorovitch, 1958).

The Monge map naturally induces a meaningful distance, named Wasser-
stein distance (Peyré, Cuturi, et al., 2019; Villani, 2008), between the two mea-
sures. With the Monge map in (3.1), the 2-Wasserstein distance between α and
β is de�ned as

W2(α, β) =

(∫
Rd

‖a− φ∗(a)‖2dα(a)

)1/2

.

In practice, the underlying measuresα and β are usually not observable. In-
stead, solving the optimal transport problem between two empirical measures
has been considered as the essential component in many machine learning appli-
cations, such as computer vision and domain adaptation (Bhushan Damodaran
et al., 2018; Courty et al., 2017; Courty et al., 2014; Courty et al., 2016; Perrot
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et al., 2016). Suppose that we observe two i.i.d. samples {ai}na
i=1 ∈ Rd and

{bi}nb
i=1 ∈ Rd from the measures α and β, respectively. For ease of presenta-

tion, we assume na = nb = n and all the observations are equally weighted.
The methodology and theory developed in this chapter can be easily extended
to the case when na 6= nb.

The empirical Monge map φ̂ : Rd → Rd with an L2 transport cost is
de�ned as

φ̂ = argmin
φ∈Φn

n∑
i=1

‖ai − φ(ai)‖2, (3.2)

where Φn is the set that contains all one-to-one maps from {ai}ni=1 to {bi}ni=1.
The combinatorial optimization of the matching problem in (3.2) has been
long studied. Some successful algorithms include the Hungarian algorithm
(Bertsimas & Tsitsiklis, 1997; Kuhn, 1955) and auction algorithm (Bertsekas,
1981, 1992), among others. Then, the empirical 2-Wasserstein distance can be
calculated as

W2(an, bn) =

(
1

n

n∑
i=1

‖ai − φ̂(ai)‖2

)1/2

. (3.3)

3.2.2 Curse of dimensionality
Like many machine learning, statistics, and optimization problems that involve
probability measures inRd, the convergence of empirical 2-Wasserstein distance
su�ers from the so-called “curse of dimensionality" issue Bellman, 2015. When
the dimensiond increases, the empirical measures summarized from the samples
{ai}ni=1 and {bi}ni=1 become decreasingly representative to their population
counterparts. Hence, the convergence of W2(an, bn) to W2(α, β) is slow. It
has been shown that the convergence rate of the empirical 1-Wasserstein dis-
tance is lower bounded by the orderO(n−1/d), and this order is asymptotically
tight Dudley, 1969. Some recent studies (Fournier & Guillin, 2015; Weed &
Bach, 2019) have justi�ed that such a lower bound is inevitable in general d > 4

settings. In this subsection, we elaborate on this “curse of dimensionality" phe-
nomenon by unveiling the connection between the empirical Monge map and
the nearest neighbor distance.

Let a0 be a �xed point in [0, 1]d and {bi}ni=1 be a sample drawn from the
uniform density with domain on [0, 1]d. The nearest neighbor of a0 in sample
{bi}ni=1 is the point that minimizes a pre-speci�ed distance metric. Suppose
the distance is measured by the Euclidean norm, the nearest neighbor b∗ of a0
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Figure 3.1: Left panel: the square of the nearest neighbor distanceD2
n converges

to 0 at the rate of O(n−2/d). Right panel: rather than linear interpolation,
non-parametric regression method provides a smoothed curve that avoids over-
�tting.

is de�ned as
b∗ = argmin

b∈{bi}ni=1

‖a0 − b‖2.

Moreover, the random variableD2
n:=||a0−b∗||2 is called the nearest distance of

a0 to the sample{bi}ni=1. The de�nition of the nearest neighbor and the nearest
neighbor distance in a d = 2 case is illustrated in the left panel of Figure 3.1.
The red point is a0, the blue points are {bi}ni=1, the red solid line connects a0

to its nearest neighbor b∗, andD2
n is indicated as the length of the red solid line.

Intuitively, one would expect the nearest neighbor distanceD2
n converges

to zero as n → ∞(Evans et al., 2002; Percus & Martin, 1998). However, the
convergence rate will su�er from the increase of dimensionddramatically due to
the natural of space �lling. It is shown in Evans et al., 2002 thatD2

n uniformly
converges to 0 at the rate of O(n−2/d), as n → ∞. Indeed, the “curse of
dimensionality" is a long-standing issue in high-dimensional nearest neighbor
algorithms that cause various di�culties in data mining, machine learning, and
database technologies (Andoni & Indyk, 2006; Hinneburg et al., 2000; Muja
& Lowe, 2014; Salton, 1989).

Similarly, the empirical Monge map su�ers from the “curse of dimensional-
ity" as it requires a one-to-one map between two observed samples. Suppose that
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we draw two i.i.d. samples {ai}ni=1 and {bi}ni=1 from the same uniform density
function µwith domain on [0, 1]d. For each point in {ai}ni=1, we can �nd its
Monge mapped point φ̂(ai) and its nearest neighbor b∗(ai) both in {bi}ni=1,
respectively. Notice that, φ̂(ai) and b∗(ai) are not necessarily coincide as the
nearest map is not a one-to-one map. Besides, one can build the folloiwg con-
nection between the empirical 2-Wasserstein distance and the nearest neighbor
distance as follows

var (W2(an, bn)) = E

[
1

n

n∑
i=1

‖ai − φ̂(ai)‖2

]

≥ E

[
1

n

n∑
i=1

‖ai − b∗(ai)‖2

]
= E

[
D2
n(ai)

]
= O(n−2/d).

The above results show that the variance of the empirical 2-Wasserstein dis-
tance is lower bounded by the convergence rate of the nearest neighbor distance,
which is of order O(n−2/d). The cause of the slow convergent of variance is
the nature of the one-to-one map, which perfectly minimizes the in-sample
distance but fails to accurately infer the underlying distance between two prob-
ability measures when the samples are less representative in high-dimensional
space. An analogy is to consider �tting a non-parametric regression without
any smoothness constraints. We will end up with an over-�tting model that
minimizes the in-sample �tting error with a zigzag curve that produces a huge
variance.

To overcome the aforementioned “curse of dimensionality" issue, we pro-
pose to add smoothness constraints to the Monge problem. The new method,
named Smoothed Monge Map (SMM), provides a non-parametric smoothed
variant of the empirical Monge map. SMM is less prone to over-�tting when d
is large. We introduce the details, implementations, and advantages of SMM in
the next section.

3.3 Methodology

3.3.1 Nonparametric regression and smoothing splines
Suppose that we �t a random sample{yi,xi}ni=1 ∈ R1+d with a nonparametirc
regression model

yi = η(xi) + εi, i = 1, . . . , n,
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3 Similar estimates can be
obtained by other non-
parametric regression meth-
ods, like kernel smoothing
and wavelet methods.

where η is an unknown function to be estimated and {εi}ni=1 are independent
and zero mean random errors. A large family of nonparametric regression meth-
ods (e.g. Fan, 2018; Györ� et al., 2006; Wasserman, 2013) estimate the function
η by minimizing a penalized least squares loss function

1

n

n∑
i=1

{yi − η(xi)}2 + λJ(η), (3.4)

where J(η) is a roughness penalty (Gu, 2013; Wahba, 1990; X. Wang et al., 2011).
The smoothing parameter λ, which can be selected based on the generalized
cross-validation criterion (Wahba & Craven, 1978), controls the trade-o� be-
tween the goodness-of-�t and the “roughness" of η. The minimization of (3.4)
is over the functional forms of η in a reproducing kernel Hilbert spaceH, which
can yield a smoothing spline estimate for η3.

The right panel of Figure 3.1 gives a toy example of the smoothing spline
method. Compared with the linear interpolation (blue line), the smoothing
spline (green curve) can “smooth-out” the variance contributed by the errors
{εi}ni=1 and is less prone to over-�t the responses (black dots)

3.3.2 Estimation of smoothing splines
The standard formulation of smoothing splines minimizes (3.4) in a reproduc-
ing kernel Hilbert space H = {η : J(η) < ∞}, where J(·) is a squared
semi-norm. LetNJ = {η : J(η) = 0} be the null space of J(η). Further, we
assume thatNJ is a �nite-dimensional linear subspace ofH with basis {ξi}mi=1,
wherem is the dimension ofNJ . LetHJ denote the orthogonal complement
ofNJ inH such thatH = NJ ⊕HJ . Then,HJ is also a reproducing kernel
Hilbert space with J(·) being the squared norm. The reproducing kernel of
HJ is denoted byRJ(·, ·).

The well-known representer theorem (Wahba, 1990) states: although the
original penalized least squares problem for smoothing splines is formulated in
the in�nite-dimensional spaceH, the solution of it lies in a �nite-dimensional
space. Speci�cally, there existd = (d1, . . . , dm)T and c = (c1, . . . , cn)T , such
that the minimizer of (3.4) inH is given by

η(x) =
m∑
k=1

dkξk(x) +
n∑
i=1

ciRJ(xi, x).

Let Y = (y1, . . . , yn)T be the response vector, S be an n×mmatrix whose
(i, j)th entry is denoted as ξj(xi), and R be an n × n matrix whose (i, j)th
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entry is denoted asRJ(xi, xj). According to the representer theorem, solving
(3.4) is equivalent to minimize

argmin
d∈Rm,c∈Rn

1

n
(Y − Sd−Rc)T (Y − Sd−Rc) + λcTRc.

The solution of the above minimization problem admits a closed form as
the minimizer (d̂, ĉ) is the solution of the following linear system of equations(

STS STR

RTS RTR + nλR

)(
d̂

ĉ

)
=

(
STY

RTY

)
.

3.3.3 Smoothed Monge map
The success of the smoothing spline inspires us to improve the empirical Monge
map φ̂ by considering a “smoothed" variant φ̃. The proposed method, named
Smoothed Monge Map (SMM), aims to �t univariate smoothing splines for
each dimension of the empirical Monge map.

Figure 3.2: Illustration of the smoothed Monge map.

We illustrate the idea of Smoothed Monge Map through a toy example illus-
trated in Figure 3.2. Let µ and ν be two uniform densities on [(0, 0)T , (1, 0)T ]

and [(1, 1)T , (2, 1)T ], respectively. Note that the supports of µ and ν are es-
sentially one-dimensional and the Monge map from µ to ν, i.e. φ∗(µ), can be
explicitly written as φ∗((x1, x2)T ) = (x1 + 1, x2 + 1)T . We generate {ai}6

i=1

and {bi}6
i=1 as two random samples from µ and ν, and calculate their empir-

ical Monge map φ̂(an). In Figure 3.2(a), {ai}6
i=1 and {bi}6

i=1 are plotted as
the red dots and green dots. Besides, φ∗(µ) and φ̂(an) are plotted as the pink
dashed arrows and solid black arrows, respectively. The deviations between
the pink and black arrows indicate that the empirical Monge map over-�ts the
random sample. Then, we marginally �t nonparametric regressions between
{φ̂(ai)}6

i=1 and {ai}6
i=1. The �tted curve (actually a straight line in this case)

of the �rst dimension is plotted in Figure 3.2(b). The collection of the marginal
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Algorithm 3 Smoothed Monge Map

Input: data points {ai}ni=1 ∈ Rd, {bi}ni=1 ∈ Rd

Step 1: Calculate the empirical Monge map between {ai}ni=1 and {bi}ni=1,
denote the map as φ̂;
Step 2:
for j in 1 : d do

Calculate the smoothing spline estimator η̃(j) : Rd → R of the regres-
sion problem

φ̂(ai)j = η(j)(ai) + εij, i = 1, . . . , n.

end for
Step 3: For anya0 ∈ Rd on the support ofµ, the density of{ai}ni=1; De�ne
the smoothed Monge map φ̃ as

φ̃(a0) = (η̃(1)(a0), . . . , η̃(j)(a0))T .

Step 4: The smoothed 2-Wasserstein distance is calculated as

W̃2 =

(
1

n

n∑
i=1

‖ai − φ̃(ai)‖2

)1/2

.

estimators forms a smoothed Monge map φ̃(an). In Figure 3.2(c), we replace
the empirical Monge map φ̂(an) by the Smoothed Monge Map φ̃(an) (blue
solid arrows). As we can see, the Smoothed Monge Map avoids the over-�tting
issue and well match the population ones. The details of the Smoothed Monge
map is summarized in Algorithm 3 below.

3.3.4 Implementation details and computational cost
In Algorithm 3, the computational cost mainly resides in Step 1 and Step 2. In
Step 1, the computational cost for calculating the empirical Monge map with the
auction algorithm is of orderO(n2 log(n)) (Schwartz, 1994). In each iteration
of Step 2, the computational cost of solving the smoothing spline estimation is
of orderO(n3) when d ≥ 4.

The computation of Algorithm 3 can be accelerated by a basis selection
method. The basis selection method uses q < n sampled basis functions instead
of n basis functions to approximate the full-sample estimator, resulting in a
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computational cost of orderO(nq2). Then, the overall computational cost of
Algorithm 1 is reduced to the order O(n2 log(n) + dnq2). As suggested in
(Ma et al., 2015), we can choose q to be Cn2/9 for some positive constant C .
When the dimensionality d does not diverge too fast with the sample size n (i.e.
d = O(n1/2)), the computational cost of Algorithm 1 is of orderO(n2 log(n)).

3.4 Theoretical Results
In this section, we present the major theoretical results of this chapter. Due to
the space limitation, more technical lemmas and detailed proofs are deferred to
a supplemental �le. To begin with, we list the technical assumptions required
for the delivery of the theoretical results.

Assumption 3.4.1. (a) α and β are Borel probabilities on Rd with positive
densities in the interior of their convex support.

(b) Let Hd be the d-dimensional Hausdor� measure on a closed set S . We
assume supp(u) ⊆ S .

(c) α and β have finite (4 + δ)th moments for some δ > 0.

The assumption (a) is a standard condition in optimal transportation the-
ory, which allows us to avoid many di�cult discussions for irrelevant measure-
theoretical scenarios. For most continuous probability distributions that are
well de�ned on Rd, the assumption (a) is naturally satis�ed. The assumption
(b) is required to prove the lower bound for the empirical Wasserstein distance .
The assumption (b) can be satis�ed in our problem setups as Rd with its usual
topology is a locally compact d-dimensional Hausdor� space. The assump-
tion (c) imposes mild �nite moment conditions on α and β. We may relax this
assumption to require only the �nite 4th moments. We do not pursue that
approach, as it is not the focus of this chapter.

Next, we present the lower bound for the 2-Wasserstein distance induced
by an empirical OTM. This theorem clearly unveils the slow convergence issue
caused by the “curse of dimensionality".

Theorem 3.4.1 (Lower bound for empirical Wasserstein distance). Under As-
sumption 3.4.1 (a) and (b), we have

W2(an, bn)−W2(α, β) & n−1/d.

The following theorem provides not only
√
n-consistency but also asymp-

totic normality for the 2-Wasserstein distance induced by SMM. In practice,
the asymptotic variances can be estimated by the random samples.
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Theorem 3.4.2 (Asymptotic Normality for SMM). Under Assumption 3.4.1
(a) and (c), we have

√
n
(
W̃2

2
(an, bn)− EW̃2

2
(an, bn)

)
→ N(0,

σ2(α, β) + σ2(β, α)

2
),

as n → ∞. Denote ψ∗ is the OTM from β to α, the asymptotic variance is the
average of the following two terms

σ2(α, β) =

∫
Rd

(
‖a‖2 − 2φ∗(a)

)2
dα(a)

−
(∫

Rd

(
‖a‖2 − 2φ∗(a)

)
dα(a)

)2

,

and σ2(β, α) =

∫
Rd

(
‖b‖2 − 2ψ∗(b)

)2
dβ(b)

−
(∫

Rd

(
‖b‖2 − 2ψ∗(b)

)
dβ(b)

)2

.

Remark 3.4.1. The results in Theorem 3.4.2 can be naturally extended to two
random samples with unequal sizes. Suppose that we have two empirical measures
an and bm with n 6= m. The asymptotic normality for SMM follows√

nm

n+m

(
W̃2

2
(an, bm)− EW̃2

2
(an, bm)

)
→ N(0,

m

n+m
σ2(α, β) +

n

n+m
σ2(β, α)).

3.5 Experimental Studies

3.5.1 Simulation studies
In this subsection, we assess the performance of the proposed Smoothed Monge
Map (SMM) with simulated examples. Let pA and pB be two continuous prob-
ability distributions that satisfy the following two probability models.

Uniform Model: pA and pB are two independent uniform distri-
butions supported on [2, 3]× [0, 1]d−1;

Normal Model I: pA and pB are two independent d-dimensional
multivariate normal distributions. Speci�cally, pA = Nd(µA,ΣA) and
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4 Monge and NS are imple-
mented by the R package
“transport” (Schuhmacher
et al., 2019). Sinkhorn di-
vergence methods are im-
plemented by the Python
package “POT" (Flamary &
Courty, 2017).

pB = Nd(µB,ΣB), where we set µA = µB = 0, ΣA = Id, ΣB =

0.8|i−j| (i, j = 1, . . . , d).

Normal Model II: pA = Nd(µA,ΣA) and pB = Nd(µB,ΣB),
where we set µA = 0, µB = 1, ΣA = Id, ΣB = 0.8|i−j| (i, j =

1, . . . , d).

In the Uniform Model, it is easy to check thatW 2
2 (pA, pB) = 4. In

the Normal Model,W 2
2 (pA, pB) admits a closed form:

||µA − µB||22 + tr
(

ΣA + ΣB − 2(Σ
1/2
A ΣBΣ

1/2
A )1/2

)
.

For each probability model, we draw two i.i.d. samplesAn = {ai}ni=1 and
Bn = {bi}ni=1 from distributions pA and pB , respectively. Then, we estimate
W2(pA, pB) by SMM and the other 5 mainstream competitors:

1. The empirical Monge estimator (MONGE);
2. The estimator yielded by network simplex (NS);
3. Sinkhorn divergence with ε = 0.1 (SD(0.1));
4. Sinkhorn divergence with ε = 1 (SD(1));
5. Sinkhorn divergence with ε = 10 (SD(10)) 4;

The empirical Monge estimator is calculated as equation (3.3). The network
simplex algorithm (Courty et al., 2014; Cuturi, 2013; Peyré, Cuturi, et al., 2019)
is a widely used algorithm that solves the optimal transport problem with the
Kantorovich formulation. The Sinkhorn divergence (Genevay et al., 2018) is
calculated as

W2(pA, pB; ε)− (W2(pA, pA; ε) +W2(pB, pB; ε)) /2,

whereW2(·, ·; ε) is the regularized 2-Wasserstein distance and ε is a regulariza-
tion parameter that trades bias for “smoothness". The Sinkhorn divergence im-
proves the computational cost of the empirical Monge map fromO(n3 log(n))

toO(n2) (Altschuler et al., 2017; Cuturi, 2013; Peyré, Cuturi, et al., 2019). How-
ever, it is an inconsistent estimator of Wasserstein distance and su�ers from the
convergence issue in practice when d is large.

In this simulation , we set n ∈ {101.5, 102, 102.5, 103}, d ∈ {6, 9, 12}.
For each scenario, we simulate 100 replications. The estimation performance is
measured by the absolute deviation (AD):

AD = |Ŵ 2
2 (An,Bn)−W 2

2 (pA, pB)|,
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where Ŵ2(An,Bn) is the 2-Wasserstein distance estimated by SMM or one of
the other 5 competitors above. In Figure 3.3, Figure 3.4, and Figure 3.5, we plot
the mean (solid lines) and standard deviation (vertical bars) of AD over 100
replications with respect to the sample size n in a in log-log scale.

Figure 3.3: Uniform Model: the mean and standard deviation of the abso-
lute deviation of 2-Wasserstein distance estimates with respect to n (in log-log
scale).

Figure 3.4: Normal Model I: the mean and standard deviation of the
absolute deviation of 2-Wasserstein distance estimates with respect to n (in log-
log scale).
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Figure 3.5: Normal Model II: the mean and standard deviation of the
absolute deviation of 2-Wasserstein distance estimates with respect to n (in log-
log scale).

As shown in Figure 3.3, Figure 3.4 and Figure 3.5, SMM (red line) performs
well in all scenarios. The estimation error of SMM converges fast to zero re-
gardless of the dimensionality d and the data generating process. MONGE
(purple lines) and NS (pink lines) yield the same result in all scenarios, which is
expected as the Brenier’s theorem (Brenier, 1991) guarantees the equivalence of
the Monge formulation and the Kantorovich formulation under our simulation
setups. Besides, the estimation error of MONGE and NS decreases slowly as d
increases, indicating that they are vulnerable to the “curse of dimensionality".

The three SD methods perform well in the Uniform Model; neverthe-
less, they do not perform well in the both Normal Models. For example,
SD(0.1) and SD(1) perform even worse than MONGE, the naive Monge esti-
mator. Also, we observe that the estimation errors of SD(10) fail to converge
to zero as n increase. The inconsistent performance of SD methods shows that
the bias term is largely a�ected by the true Wasserstein distance between two
distributions and the choice of regularization parameter.

3.5.2 Hypothesis testing for distributional equivalence
Testing the equivalence of two probability distributions is a fundamental but
challenging problem in statistics and machine learning. For example, in bio-
statistics, this two-sample test is essential for distinguishing the distributions of
the treatment and control groups. For generative models, a problem of interest
is to distinguish the real and synthesized populations.

This testing problem can be formulated as follows. Suppose that we observe
two samplesAn = {ai}ni=1 and Bm = {bj}mj=1 from two underlying distri-
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butions α and β, respectively. The null and alternative hypotheses are de�ned
as

H0 : α = β versus HA : α 6= β.

Without any distributional assumption of α and β under the null, the above
test is a non-parametric testing problem. As a measure of divergence between
distributions, the Wasserstein distance has long been used for carrying out non-
parametric two-sample tests (Del Barrio et al., 2000; Del Barrio et al., 1999;
Munk & Czado, 1998; Ramdas et al., 2017). However, the existing literature
of Wasserstein distance-based two-sample tests are mainly focused on the uni-
variate case since the empirical Wasserstein distance su�ers from the “curse of
dimensionality". To address this issue, we propose to use the Smoothed Monge
map (SMM) betweenAn andBn as a modi�ed test statistic when d is moderate
or large. We also compare the performance of SMM with the empirical Wasser-
stein distance-based test (WD), the MMD test (MMD) (Gretton et al., 2012),
and the Sinkhorn divergence-based test (SD(ε)) (Ramdas et al., 2017) with the
regularization parameter ε being 0.1, 1, and 10.

Figure 3.6: Power vs. sample size for di�erent testing method. The upper
row represent Mixture Gaussian Model and the lower row repre-
sent Mixture Beta Model. Each column represent a di�erent number
of dimension d.

For an overall sample size N , we generate a treatment group size nt from
a binomial distribution Binomial(N, 0.5), and set the test group size as nc =

N − nt. We consider the following two models

(I) Mixture Gaussian Model: For the treatment group, we gener-
ate nt i.i.d. observations from a d-dimensional mixture-Gaussian distri-
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bution,

aij ∼
1

2
Normal(1, 1) +

1

2
Normal(−1, 1),

i = 1, . . . , nt, j = 1, . . . , d.

For the control group, we generate nc i.i.d. observations from another
d-dimensional mixture-Gaussian distribution

bij ∼
1

2
Normal(1, 1) +

1

2
Normal(−1, 0.8),

i = 1, . . . , nc, j = 1, . . . , d.

(II) Mixture Beta Model: For the treatment group, we generate nt
i.i.d. observations from a d-dimensional mixture-Beta distribution,

aij ∼
1

2
Beta(5, 7) +

1

2
Beta(7, 5),

i = 1, . . . , nt, j = 1, . . . , d.

For the control group, we generate nc i.i.d. observations from another
d-dimensional mixture-Beta distribution

bij ∼
1

2
Beta(4, 5) +

1

2
Beta(5, 4),

i = 1, . . . , nc, j = 1, . . . , d.

We set the overall sample size N ∈ {100, 200, . . . , 500} and the dimen-
sionality d ∈ {2, 4, 6, 8}. The signi�cant level is set to be 0.05 for all tests. For
each two-sample test method, the asymptotic variances, as well as the critical
values, are calculated with 500 replications. We empirically evaluate the power
of a test as the percentage of replications that the null hypothesis was correctly
rejected, based on 500 independent replications.

Figure 3.6 presents the power versus sample size for the two-sample tests
based on di�erent OTM estimators. It is no surprise that the performance of
WD gradually deteriorates as the dimensionalityd increases. This observation is
in-line with the “curse of dimensionality" issue, as we have discussed. Sinkhorn
divergence based methods have mediocre performance for all four values of d.
SD(0.1) and SD(1) performs better than WD when d = 6 and d = 8. This
justi�ed the �nding in Genevay et al., 2019 that the Sinkhorn divergence reduces
over-�tting by imposing a regularization term. However, a large regularization
value can create an overwhelming bias term that can hurt the performance of the
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Sinkhorn method. As an example, SD(10) has the worst performance among all
competitors. MMD method has a decent performance in all cases, as its power
increases with the sample size. In general, SMM outperforms its competitors,
and its power converges to one fast when d ≥ 4. The testing results supported
our claim that SMM is able to overcome the “curse of dimensionality" issue and
induce a consistent estimator of Wasserstein distance.

Figure 3.7: Illustration of echocardiogram tracing procedure and application
results.

We apply the reference-based tracing method to trace the myocardial move-
ment through SMM. We label on a reference image, which is the empirical
Wasserstein barycenter of echocardiograms. Then we transport the labeled ref-
erence image to each individual image. The procedure is illustrated in �gure 3.7.
After the transportation, the transported label can capture LV-Endo in every
frame of individuals. Combining all frames together, the transported labels
trace the myocardial movement of LV-Endo. The tracing results are showed in
�gure 3.8.
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Figure 3.8: Tracing results of LV-Endo in echocardiogram through SMM.

We further evaluate our tracing result by calculating the movement features
of certain segments of LV-Endo. We regard the feature values manually ob-
tained by clinicians as the golden truth. When comparing the results of SMM
and the manually obtained values, we claim that the tracing result is valid. The
results are showed in table 3.1.

Table 3.1: Myocardial movement features for each segments in LV-Endo.

Method Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7
Manual -11 -17 -28 -29 -29 -21 -17
SMM -12 -16 -27 -31 -29 -19 -14

3.6 Concluding Remarks
We propose a novel optimal transport map estimator, named Smoothed Monge
Map (SMM). SMM tackles the “curse of dimensionality" problem by apply-
ing univariate smoothing splines to each dimension of the empirical OTM.
Hence, SMM can e�ectively alleviate the over-�tting issue and overcome the
“curse of dimensionality." The 2-Wasserstein distance induced by SMM is

√
n-

consistent and admits an optimal normality property. The superior perfor-
mance of SMM over mainstream competitors has been justi�ed by numerical
experiments. Besides, we apply SMM to test the distributional equivalence of
two high-dimensional random samples. In real data analysis, we use SMM to
generate the reference image and transport the labeled points to each individual
image. The transported labled points can help trace the myocardial movement
of LV-Endo in echocardiogram. SMM also has the potentially to be employed
in various interesting applications, including but not limited to image classi�-
cation, domain adaptation, image registration, and generative model.
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Chapter 4

Echocardiography Based
Screening for Coronary
Heart Disease Using An

Ensemble Machine
Learning Approach

Coronary heart disease is a global epidemic that leads to roughly 1/3 of deaths
worldwide. Extensive clinical evidence suggests that a preventive screening of
coronary heart disease at an earlier stage can greatly reduce mortality rate. The
popular preventive procedures, e.g, the stress ECG test, are labor intensive and
time consuming for clinicians. Moreover, these procedures may increase the
risk of heart failure and are practically infeasible for senior subjects or subjects
with disability. To address these issues, we present an echocardiography based
screening method that only uses clinical records and myocardial movements as
diagnosis features. We develop a ensemble machine learning approach to screen
the patients. The entire practice only takes 30 seconds to complete. Based on a
clinical trail that is conducted in the Beijing Hospital, the prediction accuracy
of our method on testing data can reach 88% accuracy. Our work lays a founda-
tion for the deployment of echocardiography-based screening tools for global
improvements of cardio health.

4.1 Introduction
Coronary heart disease(CHD) is a global epidemic that led to 17.92 million
(roughly 1/3 of) deaths worldwide in 2016 (Arnett et al., 2019; Lloyd-Jones
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et al., 2010; Roth et al., 2017; Turco et al., 2018). It is reported that the ischemic
heart disease, a late stage of CHD, killed 8.92 million people in 2015 and ranked
as the number one killer among all diseases (Roth et al., 2017). The growing
mortality rate of CHD not only causes signi�cant loss on human resources
but also causes many social problems. For example, the medical cost for CHD
has increased exponentially in the past decades. Extensive clinical evidence sug-
gests that a preventive screening of CHD at an earlier stage can greatly reduce
mortality rate, improve prognosis, and more importantly, provide therapeutic
guidance for patients (Thomas et al., 2018). A powerful screening method is
highly desirable to curtail the global mortality burden and the social problems
that come with CHD.

Despite the urgent needs, an e�cient and clinically e�ective CHD screen-
ing procedure is still lacking because patients in very early stages of CHD usu-
ally have no visible clinical symptoms; as a consequence, CHD remains one
of the leading causes of death even among developed countries. The majority
of CHD diagnostic procedures are the radiology based approach such as com-
puted tomography angiography (CTA) and coronary angiography (CA). These
methods can directly visualize coronary artery and quantify the level of artery
occlusion, and thus are considered as the gold standard for diagnosis. Though
the radiology based methods are fairly e�ective in CHD diagnosis, their appli-
cations on preventive practice, especially on screening asymptomatic subjects
are severely limited by the high operational cost, the requirement of expensive
and high-maintenance equipment, the need for experienced medical researchers
(Nicholls, 2019). More importantly, these procedures may bring the potential
surgical risk and the radiology side e�ect on subjects.

A much less explored alternative are the echocardiography based diagnosis
methods, which are commonly used to visualize the movements of the my-
ocardium. Because CHD prevents patients’ coronary artery from e�ciently
pumping blood to maintain healthy myocardial movements, echocardiograms
provide a clue for CHD’s diagnosis as it can be used to visualize myocardial
movements. In fact, clinical practice suggests that some echo-cardiology based
techniques, such as two dimensional speckle tracking (2D-STE) (Blessberger &
Binder, 2010a), can indeed infer CHD with obvious symptoms such as severe
coronary artery occlusion. Accumulating evidence shows that some dynamic
features extracted by 2D-STE, such as global longitudinal strain (Skaarup et al.,
2018) and time-to-peak strain change, are signi�cantly di�erent between the
control group and patients with myocardial ischemia (Yang et al., 2013). These
clinical observations suggests that echocardiography might be the new promise
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for CHD screening as abnormal myocardial movement can be used to infer
CHD (Blessberger & Binder, 2010b).

Although 2D-STE based screening is promising for its low operational cost,
high practical convenience and high clinical safeness, how to e�ectively use it
for individual assessment of cardio health is still an open question. There are
no e�ective assessment models that can single out early-stage CHD patients
with adequate sensitivity and speci�city. It remains unknown which set of
echocardiography based features can e�ectively quantify the signi�cance of the
myocardial change in response to minor myocardial anomaly. The current 2D-
STE based research heavily relies on clinicians’ experiences and domain-speci�c
knowledge, and thus are highly subjective (Michel et al., 2017). Moreover, the
requirement of laboratory-based practice as opposed to in-�eld and real-time
analysis, limits their utility for large-scale population practice. Thus, in spite
of the great promise, the preventive impact of 2D-STE technique still has not
been achieved.

Coronary angiography is the gold-stand to con�rm the stenosis. Although
there are a huge number of CHD patients in the world, angiography is not rec-
ommended to all suspicious patients for its potential complication. Particularly,
angiography is not appropriate for elder patients and those with severe renal fail-
ure or other end-stage organ failure. This echocardiogram AI model is almost
applicable to in all those patients. Even more, it can help to rule out coronary
heart disease, avoiding unnecessary coronary angiography. Coronary computed
tomography angiography (CTA) requires contrast agents, so patients with renal
and cardiac dysfunction are at greater risk. Moreover, the negative predictive
value of coronary CTA was more sensitive. Tests like MRI and single-photon
emission computed tomography (SPECT), which take too much time or have
other side e�ects, are not commonly used.

Recently, the rapid development of computer vision and machine learn-
ing techniques has triggered a medical technology revolution. For example,
the �rst clinical-grade computational pathology algorithm was proposed in
(Campanella et al., 2019) for diagnosis of three types of cancers with an aver-
age accuracy of around 0.98. The deep learning algorithms have been devel-
oped for image processing for echocardiograms (Madani et al., 2018; J. Zhang
et al., 2018). These unprecedented e�orts changed our decision supporting sys-
tem from experience-based decisions to quantitative-based decisions. Statistical
models in place of highly skilled personnel plays a pivotal role in disease diag-
nosis. Unlike traditional health assessment methods which heavily relies on
medical researchers’ experience, the quantitative based methods rely on a series
of quantitative, reliable, reproducible, multiplexed measurements that are ex-
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tracted from large amounts of clinical practices. Their application requires no
user intervention for �eld deployment and data capture, which can e�ectively
bypass subjective errors.

In this article, we propose a novel ensemble machine learning method for
2D-STE based CHD assessment. In particular, we develop a classi�cation stack-
ing method to aggregate prediction power of 19 popular machine learning meth-
ods to provide best possible prediction outcomes. Using the new approach to
learn a model from echocardiographic data, we can achieve much higher sensitiv-
ity and speci�city than that using existing methods. The model obtained from
our method can automatically trigger an early stage CHD warning, and thus can
greatly save human e�orts. The proposed methods integrate results of multiple
popular machine learning models, each of which has around a 70% prediction
accuracy for patients that need revascularization. By borrowing strengths from
di�erent machine learning models, our proposed model improves the classi�ca-
tion accuracy from 70% to 88%, which supports our proposal of prototyping
a tool for future population-based cardio health assessment.

4.2 Methods and Materials

4.2.1 Human Subjects
The study was approval by the Institutional review board of Beijing Hospital,
and appropriate individual subject consent was provided for subjects.

The echocardiogram was performed by one experienced clinician on a GE
Vivid E9 system (GE Medical Systems, Horten, Norway). Patients’ images were
stored in the same machine. Images were transported to o�ine system EchoPac
version 201 (GE Healthcare, Horten, Norway), further analyzed by an experi-
enced investigator.

4.2.2 Data and Feature
From March 2018 to October 2019, 836 subjects was enrolled in clinical trial
(NCT03905200), of which 555 were diagnosed as CHD positive by coronary
angiography (CA) or coronary computed angiography (CCA). Among the 555

CHD positive subjects, 424 of them were also examed by echocardiography one
day before angiography was conducted. Patients with CAG level less than 3 are
classi�ed as CHD negative, others are classi�ed as CHD positive.

We choose 67 features (numerical) in 2D-STE together with 5 clinic features
(categorical) as our predictors to predict the risk of CHD.
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4.2.3 Ensemble machine learning
We aim to build classi�cation model that takes the features from echocardiogra-
phy as input and predict whether the subject has CHD. Current classi�cation
methods rely on various underlying model assumptions, which hold the key to
the success of the methods. When the data is highly heterogeneous and noisy
such as the echocardiographic data that we are analyzing, it is not clear which
model is adequate as the underlying assumptions are usually hard to validate.
Single classi�cation model does not provide satisfactory prediction results.

Figure 4.1: Flowchart of the two-level model stacking.

To improve the classi�cation performance, we apply a number of popular
classi�cation methods to our data and employ the ensemble machine learning
approach borrow the strength of all these classi�ers and build the �nal predic-
tion model. The ensemble machine learning methods can be divided into three
classes: bagging, boosting, and stacking (Z.-H. Zhou, 2012). In particular, bag-
ging aims to reduce variance; boosting decreases bias, and stacking improves
the prediction. We opt to the use the stacking (Breiman, 1996; Wolpert, 1992).
This approach is particularly popular when the signal-to-noise ratio of the data
is low. We propose here a two-step classi�ers stacking method, under which we
�rst train individual classi�er using randomly sampled training data and then
train the stacked classi�er model using the rest of training data (validation data).
By randomly partition the training set multiple times, we can reduce the classi-
�cation error that caused by wrong model aggregation. In particular, we divide
the 424 subjects into a training set which contains 360 subjects and a testing set
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which contains 64 subjects. The training set was further divided into a �rst step
training set with 288 randomly selected subjects and a �rst step validation set
with 72 subjects. For �rst step training set, we repeatedly sample 58 individuals
randomly from it as a validation set for the �rst level model ensemble, and use
the rest of 230 subjects to train the candidate models. In this chapter, we build
19 candidate classi�ers using 19 most popular machine learning approaches
and select the the best of them by majority votes. As shown in Figure 4.1, by
sampling 10 times the validation error is starting to saturate although further
improvement can be made with more patients enrolled.

4.3 Results

4.3.1 Feature Extraction
For each patient, the recorded echocardiography consists of three parasternal
short-axis standard sections: mitral valve section, papillary section and apical
section, as well as three apical standard sections: 4-chamber view section, 2-
chamber view section, and the longitudinal long-axis view section. Left ven-
tricular wall (LVW) was divided into 17 segments, each of which was analyzed
individually. Peak systolic longitudinal and radial strains were assessed in all 17
segments. The epicardium and endocardium of the left ventricle (LV) were
traced automatically and adjusted manually when required at the end-systole.
Mid-myocardial border was determined at the midpoints between the endo-
cardial and epicardial borders. The regions of interest (ROI) covers the endo-
cardium, myocardium, and epicardium. ROI was adjusted locally if it is o�-
track. In 2D-STE echocardiography, the most important parameter is strain,
which quanti�es the deformation of myocardium by recording the contrac-
tions. Layer-speci�c analysis of endocardial, mid-myocardial, and epicardial
strains were performed in the six views for the radial strain. Global longitudinal
strain (GLS) is obtained by averaging the values of all segments. Myocardium
usually consists of three heterogeneous layers of muscle �bers (Vendelin et al.,
2002).

To assess the deformation of certain myocardial regions such as the left ven-
tricular wall (LVW), we �rst divide the entire LVW into 17 functional homoge-
neous segments, and then generate a strain tensor to record the deformation of
all sub-regions. The tensor strain is simply a regional extension of strains that
are commonly used to quantify the shortening, thickening and lengthening of
each sub-region’s myocardium in both longitudinal and radial directions and
in a short period.
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As the longitudinally orientated myocardial �bres is the most susceptible to
ischemia (Skaarup et al., 2018), we use global longitudinal strain (GLS) to form
features that can help predict CHD. It was shown in (Delgado et al., 2008) that
the GLS can successfully predict CHD (AUC=0.92) for patients with non–ST-
segment elevation acute coronary syndromes (NSTE-ACS).

Ventricular contractive dysfunction occurs prior to ECG change in sub-
endocardium. As the left ventricular wall which consists three layers of muscle
�bres with heterogeneous strains (Vendelin et al., 2002). Layer-speci�c strain
is associated with coronary artery disease independently(L. Zhang et al., 2016).
In coronary disease, layer-speci�c strain is quite helpful because longitudinally
orientated myocardial �bres located in the sub-endocardium is known to be
most susceptible to ischemia (Reimer et al., 1977). The diagnostic accuracy
tends to be higher than ECG, troponin, and GRACE that is computed using
tomography (Caspar et al., 2017). Recently, global longitudinal strain has been
recommended as the top priority index in diagnosing diverse cardiac diseases
(Nagueh et al., 2016; Nauta et al., 2018).

In myocardium, micro-vascular communications are network structured
which can form some dual arterial perfusion zones. Simply relying on single
index might be inaccurate to decide the etiology. In our model, assessment of
myocardium ischemia was measured by longitudinal strain, strain rate, time
to peak, and a speci�c layer strain. Such multiple indices integration strategy
employed by our model can reduce the prediction error by each index (Gjesdal
et al., 2007; L. Zhang et al., 2016).

Table 4.1: P-values of 2D-STE features.
GLPS (p-value: 0.002) PSD

Epi Mid Endo
p-value .024 .049 .076 .731

Peak strain Strain rate Time to peak SAX-AP (p-value: 0.876)
Epi Mid Endo

p-value .024 .041 .179 .982 .952 .598
SAX-PM (p-value: 0.503) SAX-MV (p-value: 0.277)

Epi Mid Endo Epi Mid Endo
p-value .663 .654 .682 .247 .175 .516

We chose 64 features (numerical) in 2D-STE together with 5 clinic fea-
tures (categorical) as our predictors to build the classi�cation model to predict
whether the subject has CHD, as shown in table 4.2.
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Figure 4.2: P-values measuring di�erences on PSS, SSR and TP of 17 segments
between case and control groups.

Table 4.2: Features chosen to be predictors in CHD prediction model.
2D-STE features

Peak systolic strain (PSS) 17 segments
Longitudinal strain (mid-layer) Rate of systolic strain (SSR) 17 segments

Time-to-peak (TP) 17 segments
Mitral valve level (MV) 3 layers (ENDO/MID/EPI)

Global strain for radio (GS) Papillary muscle level (PM) 3 layers
Apical level (AP) 3 layers

Global longitudinal peak strain (GLPS) 3 layers (ENDO/MID/EPI)
Peak standard deviation (PSD)

Clinic features
Age (integer)
Gender (M/F)
Hypertension (Y/N)
Diabetes (Y/N)
Hyperlipemia (Y/N)
Smoke (Y/N)
Family history (Y/N)

4.3.2 Principle component analysis
To reduce the dimension of features, we applied principle component analysis
(PCA) on the 17 segments of peak systolic strain (PSS), rate of systolic strain
(SSR) and time-to-peak (TP).
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Figure 4.3: Correlation matrix of global longitudinal strains and radial strains
of apical level, papillary muscle level and mitral valve level.

Figure 4.4: Correlation matrix of 17 segments on PSS, SSR and TP. The column
in the left panel represents the correlationship of 17 segments for PSS, SSR and
TP respectively.
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Figure 4.5: Screeplot of PCA on peak systolic strain, systolic strain rate and
time-to-peak.

We �rst study the correlations among the numerical features. Figure 4.3
shows the correlation matrix of global longitudinal strains and radial strains.
We can see that longitudinal strains are poorly correlated with radial strains,
and for radial strains, each level is poorly correlated with each other. Figure 4.4
shows the correlation matrix of 17 segments on PSS, SSR and TP. From the
plot, we can see that PSS is correlated with SSR, while TP is poorly correlated
with PSS and SSR. When examing the correlationship of all 17 segments for
PSS, SSR and TP respectively, we can see that for PSS, SSR and TP, the apex
and apical layer are highly correlated; for PSS, six segments in the middle layer
are highly correlated to their neighboring segments in the basal layer; for SSR,
middle layer and basal layer are poorly correlated; and for TP, the correlation
of all 17 segments are higher. Based on the results of the correlation study, we
choose to conduct PCA on PSS, SSR and TP respectively. Figure 4.5 shows the
scree-plots of PCs for these three types of features. We can �nd obvious ankles
in each plot, which can lead us choosing the number of PCs. Figure 4.6 is the
heatmaps of the �rst 3 PC loadings for PSS, SSR and TP. From Figure 4.6, we
can see that 1) for PSS, the �rst PC represents the apex, the apical layer and the
basal/mid anteroseptal; the second PC represents the basal/mid inferoseptal,
the basal/mid inferior, and the basal/mid inferolateral; the third PC represents
the basal/mid anterior and the basal/mid anterolaterial. 2) for SSR, the �rst PC
represents the apex and the apical layer; the second PC represents the basal/mid
anteroseptal and the basal/mid inferolateral; the third PC represents the basal
layer. 3) for TP, the �rst PC represents the overall average of the 17 segments;
the second PC represents the basal/mid anterior, the basal/mid anterolateral,
and the basal/mid inferolateral; the third PC is similar as the second PC. Thus
we choose the �rst 3 PCs for PSS and SSR, and the �rst 2 PCs for TP.
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Figure 4.6: Heatmaps of contributions of 17 segments in �rst three PCs of peak
systolic strain, systolic strain rate and time-to-peak. Column from left to right
represents the �rst PC to the third PC respectively, and the top row represents
PSS, the middle row represents SSR and the bottom row represents TP.

4.3.3 Two-step classi�er stacking
Our implementation achieved an accuracy of 0.877 on the test set, with sensi-
tivity 0.903 and speci�city 0.843. The accuracy is signi�cantly better than 0.71
the highest accuracy achieved by an individual model and constituting a 23.5%
improve compared with its performance on the test set (Tab. 4.3). Figure 4.7
shows ROC curves for each individual model and our stacking model. The
solid black line represents our 2-level stacking model and other colored lines
represent each individual model in table 4.3 respectively. The result shows the
AUC for the individual models range from 0.503 to 0.773, while the AUC for
the stacking model is 0.904, which is signi�cantly higher than the individuals.

Figure 4.7: ROC curves on 2-level stacking model and individual models.
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Table 4.3: Testing accuracy of individual classi�cation model.
Model Accuracy
logistic regression .68
penalized logistic regression .71
cumulative probability model .69
random forest .59
weighted subspace random forest .59
SVM with class weight .70
SVM with polynomial kernel .66
SVM with radial kernel .64
K-nearest neighbor .58
LDA .70
sparsed LDA .59
naive Bayes .64
Bayes generalized linear model .68
Gaussian process with polynomial kernel .70
Gaussian process with radial kernel .65
Neural network .63
Monotone multi-layer perceptron neural network .69
model average neural network .65
stochastic gradient boosting .58

4.4 Discussion
The contribution of our 2D-STE echocardiography screening method is twofold.
First, its can e�ectively use the information obtained from echocardiography for
CHD screening reduce the mortality and morbidity. Second, it is the �rst auto-
matic and clinically applicable screening method which can greatly save medical
e�orts. Some imaging technologies have been applied in the prevention work
to reduce the morbidity and mortality (Gomez-Pardo et al., 2016). However,
echocardiogram is one of the most promising modalities in the cardiovascular
�eld.

Comparing to other modalities, 2D-STE echocardiography has its unique
advantages. The sub-endocardial myocardial �bres are oriented longitudinally,
so the longitudinal myocardial function is a�ected primarily when ischemia
is onset. The global longitudinal strain presenting the ventricular contractive
dysfunction occurs prior to ECG change. Therefore, the machine learning
model is able to o�er more information than the ECG. Conventional echocar-
diographic parameters are mainly based on a visual assessment of the ventricular
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wall motion. Subtle abnormalities might be unresolved by human eyes (Caspar
et al., 2017). The ability of conventional echocardiogram is limited in diagnos-
ing CHD, especially in the early stage. 2D-STE image is able to detect minimal
abnormalities of systolic function (Delgado et al., 2008; Di Bella et al., 2014).

Coronary angiography is the gold-stand to con�rm the stenosis. Although
there are a huge number of CHD patients in the world, angiography is not rec-
ommended to all suspicious patients for its potential complication. Particularly,
angiography is not appropriate for elder patients and those with severe renal fail-
ure or other end-stage organ failure. This echocardiogram AI model is almost
applicable to in all those patients. Even more, it can help to rule out coronary
heart disease, avoiding unnecessary coronary angiography. Coronary computed
tomography angiography (CTA) requires contrast agents, so patients with renal
and cardiac dysfunction are at greater risk. Moreover, the negative predictive
value of coronary CTA was more sensitive. Tests like MRI and single-photon
emission computed tomography (SPECT), which take too much time or have
other side e�ects, are not commonly used.

The potential clinical applications of this echocardiogram machine learning
model are enormous. STE was applied clinically as a supplementary diagnostic
method before, and now practical to those suspicious coronary patients. We
clinicians have the responsibility to apply the safest and most e�ective means to
the high risk populations. Study has demonstrated that early intervention can
reduce the mortality and major events in coronary heart disease patients (Gaye
et al., 2017). We are sure that this machine learning tool in the study would have
the revolutionary impact in the diagnosis modality strategic. With this novel
implement, speckle tracking image is not a supplementary, but a practical and
ideal non-invasive method for the early diagnosis of coronary heart disease for
clinical physicians. In fact, this machine learning model of 2D-speckle tracking
will also be helpful in re-evaluating the recovery from ischemia events after
initial hospitalization. Also, it can be recommended as routine in the routine
physical examination. This machine learning echo-model is now ready to be
applied in daily clinical practice. The global rates of coronary heart disease and
its injurious e�ects would decrease largely with this novel application. It would
be a giant leap in the public health control work.

Our study is a single center study. The data derived from the same ven-
dor machine. The di�erences of echo-cardiographic inter-vendors and post-
processing algorithms were not taken into account. During processing, if the
images were not clear enough, the software can not accurately recognize the
epicardial or endocardial border. Therefore, it may have some bias to the re-
sults. Another limitation is that the Speckle tracking analysis process was not
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automatically. The individual di�erence between physicians might also have
some impact to the interpretation.
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Chapter 5

Conclusion

In the big data era, observations in di�erent modes are generated from vastly
di�erent sources. Data fusion that combines multi-source data into fused data
is widely used to extract information from a large variety of data and may dictate
the ultimate performance in big data enterprise. In this thesis, we illustrate data
fusion through three levels, data level fusion, feature level fusion, and decision
level fusion. We propose a set of statistical methods under each level of data
fusion. The methods are shown to be e�ective in information integration. In
Chapter II, we introduce the feature space fusion method. Such a method can
integrate common features of di�erent datasets while retaining data heterogene-
ity. In Chapter III, we combine optimal transport with smoothing splines to
improve the estimation of Wasserstein distance . With better estimation, we can
generate e�ective references and provide a more accurate image tracing process.
In Chapter IV, we discuss how to use ensemble learning to improve predicting
power in CHD screening problem. Data methods can also be applied to image
classi�cation, domain adaptation, and generative model. Future studies might
explore data fusion methods under network structures, or consider data fusion
under certain practical concerns such as data privacy and communication limi-
tations.
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Appendix A

Proof for Chapter 2

A.1 Proofs of main theoretical results

Let µB(u) = E
(
X|BTX = u

)
and wB(u) = E

{
XXT |BTX = u

}
. fol-

lowing conditions 2.4.1 - 2.4.5, we �rst show the convergence of algorithm 2. To
simplify the notation, we consider only two-node case, i.e. S = 2, and de�ne
the weight matrix

W = (w1, w2)T ⊗ Ip, (A.1)

where w1 + w2 = 1. Recall that the estimate of B within node s in the t-th
iteration isB(t). Let ρ(s)
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where x̃(s)

ij,t = b
(s)
j,t ⊗ x

(s)
ij as de�ned in section 2. Following Step III, we then

estimateB(s)
(t+1) in node s. By fusing neighboringB(s)

(t+1)’s, here areB(1)
(t+1) and

B
(2)
(t+1), we obtain the estimate B(t+1) in the next iteration. By Lemmas 1-5

below, we can establish the following recurring relationship

`
(
B(t+1)

)
− ` (B) = Θ

{
`
(
B(t)

)
− ` (B)

}
+ e(t) (A.3)

with |Θ| < 1 and |e(t)| = o(1) almost surely. Here | · | is the spectral norm of
matrix. Such a recurring relationship implies the convergence of the algorithm.
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Before the proof, we need to introduce some notations. Let

G(u) = E(Y |BTx = u), δkh =
{

log n/
(
nhk
)}1/2

,

δn = (log n/n)1/2, rkh = h2 + δkh,

and xix = xi − x.
Letµkp =

∫
K (v1, · · · , vp) vk1dv1 · · · dvp. Let fB(u) be the density func-

tion ofBTx, νB(x) = µB
(
BTx

)
− x, and

wB(x) = wB
(
BTx

)
− µB

(
BTx

)
µTB
(
BTx

)
.

For simplicity, we denote fB(BTx) by fB(x), and µB(BTx) by µB(x). For
any square matrix A, A−1 denotes the inverse if exists, and A+ denotes the
Moore-Penrose inverse. LetDx be any impact set of Rp.

In order to prove the convergence of the algorithm, we introduce a set of
lemmas (Lemma A.1.1 - A.1.4), whose proofs are similar to those of the lemmas
in Xia et al., 2007.

Lemma A.1.1. Let(
ax
bxh

)
=

{
n∑
i=1

Kh (xix)

(
1

xix/h

)(
1

xix/h

)>}−1

×
n∑
i=1

Kh (Xix)

(
1

xix/h

)
Yi.

Under the assumptions, if h ∝ n−ζ with 0 < ζ < 1/p, then we have

ax = G(BTx) +
1

2

q∑
κ=1

∇2
κ,κG(BTx)h2 +O

(
h3 + δph|x ∈ Dx

)
,

bx =∇G(BTx) + {µ2pnhf(x)}−1
n∑
i=1

Kh (xix) (xix/h) εi

+O (rph|x ∈ Dx) .

Lemma A.1.2. Let

ΣB′

n (x) = n−1

n∑
i=1

Kh

(
B′Txix

)( 1

B′Txix/h

)(
1

B′Txix/h

)T
,

(
aB
′

x

bB
′

x h

)
=
{
nΣB′

n (x)
}−1

n∑
i=1

Kh

(
B′Txix

)( 1

B′Txix/h

)
Yi.
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Under the assumptions, if h ∝ n−ζ with 0 < ζ < 1/p, then we have

aB
′

x =G
(
BTx

)
+∇TG

(
BTx

)
(B −B′)T νB′(x)

+
1

2

d0∑
κ=1

∇2
κ,κG

(
BTx

)
h2

+ VB′1n (x) +O
(

∆B′

n |x ∈ Dx, B′ ∈ B
)
,

bB
′

x h =∇G
(
BTx

)
h+QB′

1 (x)h3 + VB′2n (x)

+O
(

∆B′

n |x ∈ Dx, B′ ∈ B
)
,

where B = {B : BTB = Iq}, ∆B′
n = h4 + δ2

d0h
+ hδB′ + δ2

B′ with δB′ =

|B′ −B|,

QB′

1 (x) =
1

2
f−1
B′ (x)∇2G

(
BTx

)
∇fB′(x)

+
1

6
µ4q

{
∇3

1,1,1G
(
BTx

)
, . . . ,∇3

q,q,qG
(
BTx

)}T
,

VB′1n (x) = EB′n,1(x)− h∇>fB′(x)EB′n,2(x),

VB′2n (x) = EB′n,2(x)− h∇fB′(x)EB′n,1(x),

EB′n,1(x) = {nfB′(x)}−1
n∑
i=1

Kh

(
B′Txix

)
εi,

and

EB′n,2(x) = {nfB′(x)}−1
n∑
i=1

Kh

(
B′Txix

) (
B′Txix/h

)
εi.

Lemma A.1.3. LetxB′ij = bB
′

j ⊗xij wherebB′j = bB
′

xj
. Suppose conditions 2.4.1

- 2.4.4 hold and h ∝ n−ζ with 0 < ζ < 1/q and δB′/h→ 0. We have{
n−2

n∑
j,i=1

Kh

(
B′Txij

)
xB

′

ij x
B′

ij

}−1

= (Iq ⊗B)M−1
0

(
Iq ⊗BT

)
h−2

+ (Iq ⊗B)L0 + LT0
(
Iq ⊗BT

)
+

1

2
D̃+

+O{(r̃qh + δB′) /h|B′ ∈ B} ,
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where M0 = E
{
fB (xi)∇G

(
BTxi

)
∇TG

(
BTxi

)}
, r̃qh = h2 + δqh +

δ2
qh/h

2, L0 is a constant matrix, and

D̃ = E
{
fB (xi)∇G

(
BTxi

)
∇TG

(
BTxi

)
⊗ wB (xi)

}
.

Lemma A.1.4. Suppose conditions 2.4.1 - 2.4.4 hold and h ∝ n−ζ with 0 < ζ <

1/q and δB′/h→ 0. We have

n−2

n∑
j,i=1

Kh

(
B′Txij

)
bB
′

j ⊗ xij
{
Yi − aB

′

j − ` (B)> xB
′

ij

}
= D` (B′ −B) + Φn +O

{
∆̃B′

n |B′ ∈ B
}
,

where
∆̃B′

n = h4 + δ2
qh + δB′rqh/h+ δ2

B′ + δnh,

Φn = n−1

n∑
i=1

fB (xi)∇G
(
BTxi

)
⊗ νB(xi)εi,

and

D = E
{
fB (xi)∇G

(
BTxi

)
⊗ νB (xi)

[
∇G

(
BTxi

)
⊗ νB (xi)

]T}
.

Let δ(t) = δB′
(t)

denote the estimation error in the t-th iteration. By (A.2),
lemmas A.1.3 and A.1.4 and the facts that (Iq⊗BT )D = 0 and (Iq⊗BT )Φn =

0 if δ(t) log n/h(t) = o(1) and δn/h2
(t) = o(1), we have

Γ(t+1) =` (B0) + D̃+
0 D0`

(
B(t) −B0

)
+ D̃+

0 Φn + (Id0 ⊗B0)L0O
(
c(t)
n

)
+O

{
∆̃
B(t)
n +

(
δ(t) + δn

) (
rd0h(t) + δ(t)

)
/h(t)

}
= (Id0 ⊗B0)

{
` (Id0) +O

(
c(t)
n

)}
+ D̃+

0 D0`
(
B(t) −B0

)
+ D̃+

0 Φn

+O
{

∆̃
B(t)
n +

(
δ(t) + δn

) (
rd0h(t) + δ(t)

)
/h(t)

}
,

where c(t)
n = ∆̃

B(t)
n /h2

(t) + δ(t) + δn. Since δqh(t)/h(t) = o(1), we have

M(Γ(t+1)) = BΛ(t)
n +O

{
δn + δ(t) + ∆̃

B(t)
n

}
,
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where Λ
(t)
n = Iq +O

(
c

(t)
n

)
andM(·) is de�ned in section 2. Note that

Λ̃(t+1)
n =

{
M
(
Γ(t+1)

)}>M (
Γ(t+1)

)
=
(
Λ(t)
n

)2
+O

{
δn + δ(t) + ∆̃

B(t)
n

}
.

If c(t)
n = o(1) almost surely, then by step III in section 2,

B(t+1) =M
(
Γ(t+1)

){
Λ̃(t+1)
n

}−1

= B +O
{
δn + δ(t) + ∆̃

B(t)
n

}
.

It follows that

`
(
B(t+1)

)
=` (B) + D̃+D`

(
B(t) −B

)
+ D̃+Φn

+O
{
c̃(t)
n

(
δ(t) + δn

)
+ ∆̃

B(t)
n

}
,

where c̃(t)
n = c

(t)
n +

(
rqh(t) + δ(t)

)
/h(t). Thus for node s,

`
(
B

(s)
(t+1) −B

)
=D̃+

s Ds`
(
B(t) −B

)
+ D̃+

s Φns

+O
{
c̃(t)
ns

(
δ(t) + δns

)
+ ∆̃

B(t)
ns

}
, s = 1, 2.

From algorithm 1, we have B(t+1) = (B
(1)
(t+1), B

(2)
(t+1))W = B

(1)
(t+1)W1 +

B
(2)
(t+1)W2, where W = (W1,W2) is the given weight matrix following the

form (A.1). Note that `(B(s)
(t+1)Ws) = W T

s ⊗Ip`(B
(s)
(t+1)) for s = 1, 2. Denote

D̃+
s Φns +O

{
c̃

(t)
ns

(
δ(t) + δns

)
+ ∆̃

B(t)
ns

}
= e

(s)
(t) . H. Wang and Xia, 2008 has

showed that |e(s)
(t) | = o(1) fors = 1, 2. By the fact that (W1+W2)T⊗Ip = Ipq

and |D̃+
s Ds| = |B̃B̃T |/2, where B̃ is the orthogonal complement of B, i.e

(B, (̃B)) = Ip (H. Wang & Xia, 2008), we have

`(B(t+1)) = W T
1 ⊗ Ip`(B

(1)
(t+1)) +W T

2 ⊗ Ip`(B
(2)
(t+1))

= `(B) +
(
W T

1 ⊗ IpD̃+
1 D1 +W T

2 ⊗ IpD̃+
2 D2

)
`(B(t) −B)

+W T
1 ⊗ Ipe

(1)
(t) +W T

2 ⊗ Ipe
(2)
(t) .

Denote Θ = W T
1 ⊗ IpD̃+

1 D1 +W T
2 ⊗ IpD̃+

2 D2 and e(t+1) = W T
1 ⊗ Ipe

(1)
(t) +

W T
2 ⊗ Ipe

(2)
(t) . To prove the convergence, we need to show (i) |Θ| < 1; and (ii)

|e(t+1)| = o(1).
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(i)
|Θ| ≤ |W T

1 ⊗ IpD̃+
1 D1|+ |W T

2 ⊗ IpD̃+
2 D2|

≤ |W T
1 ⊗ Ip||D̃+

1 D1|+ |W T
2 ⊗ Ip||D̃+

2 D2|
= w1|D̃+

1 D1|+ w2|D̃+
2 D2| = |B̃B̃T |/2 < 1.

(ii)
|e(t+1)| ≤ |W T

1 ⊗ Ip||e
(1)
(t) |+ |W

T
2 ⊗ Ip||e

(2)
(t) |

= w1|e(1)
(t) |+ w2|e(2)

(t) | = o(1).

Thus the convergence of the algorithm is proved. Next we will show the consis-
tency and e�ciency.

Lemma A.1.5. Suppose a set of random variablesXn are bounded, i.e. there exists
an b ∈ R+, s.t. |Xn| ≤ b. IfXn = op(1), then

E(|Xn|) = o(1). (A.4)

Proof. Recall thatXn = op(1) means that ∀ε > 0, limn→∞ P (|Xn| ≥ ε) =

0.
Follow the de�nition, ∀ε > 0, let fn(x) be the density function ofXn, we

have

E(|Xn|) =

∫
X
|xn|fn(x)dx

=

∫
|Xn|≥ε0

|Xn| fn(x)dx+

∫
|Xn|<ε

|Xn| fn(x)dx

< b

∫
|Xn|≥ε

fn(x)dx+ ε

∫
|Xn|<ε

fn(x)dx. (A.5)

Notice that as n→∞,∫
|Xn|≥ε

fn(x)dx = P (|Xn| ≥ ε)→ 0,

and ∫
|Xn|<ε

fn(x)dx = P (|Xn| < ε) ≤ 1,

thus,
lim
n→∞

E(|Xn|) < ε.

Thus,E(|Xn|) = o(1).
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Lemma A.1.6. Suppose {Xn} is a sequence of random variables, as n → ∞,
E(Xn) → 0 and var(Xn) → 0, then limn→∞ P (Xn > 0) = 0, i.e. for all
ε, δ > 0, there existsN > 0, when n ≥ N ,

P (Xn > δ) < ε. (A.6)

Proof. Let µn = E(Xn), σn = var(Xn). For all δ > 0, notice that |Xn −
µn| ≥ |Xn| − |µn|, so

P (|Xn − µn| >
δ

2
) ≥ P (|Xn| >

δ

2
+ |µn|). (A.7)

Since µn → 0, n → ∞, then there exists N0 > 0, for n ≥ N0, |µn| < δ
2

.
Thus

P (|Xn| >
δ

2
+ |µn|) ≥ P (|Xn| > δ). (A.8)

In addition, σn → 0 as n→∞, then for all ε > 0, and for the previous δ > 0,
there existsN1 > 0, for n ≥ N1, σn < ε× δ

2
, let k = 1√

ε
, we have kσn < δ

2
.

Thus
P (|Xn − µn| >

δ

2
) ≤ P (|Xn − µn| > kσn). (A.9)

With (A.7), (A.8) and (A.9), together with Chebyshev’s inequality, we have, for
all ε, δ > 0, there existsN = maxN0, N1, when n ≥ N ,

P (Xn > δ) ≤ P (|Xn| > δ) < P (|Xn − µn| >
1√
ε
σn) ≤ ε.

A.2 Proof of Theorem 2.4.1
Proof. Suppose the process is within two nodes. From Theorem 2, asni →∞,
we have d̂→ q. Thus we consider

m2(B̂, B) = Tr{B̂T (I − PB)B̂},

where PB = B(BTB)−1BT . Under the constrain BTB = I , PB = BBT .
Denote P = I − PB , notice P is also a symmetric projection matrix and is
�xed.

Denote the estimates obtained in a single node is B̂k, k = 1, 2. Then
B̂ = (B̂1, B̂2)W , where W T = (W T

1 ,W
T
2 ) is the 2p × p coe�cient matrix,

i.e. B̂ = B̂1W1 + B̂2W2. Without lose of generality, we assume that B̂ is
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orthogonal. In fact, if B̂T B̂ 6= I , we further make the QR-decomposition
B̂ = QBRB and use QB as our estimation. Then we can see that QB =

(B̂1, B̂2)WR−1.
For simplify, we denote m = m(B̂, B), m1 = m(B̂1, B) and m2 =

m(B̂2, B). Thus

m2 = Tr{(B̂1W1 + B̂2W2)TP (B̂1W1 + B̂2W2)}
= Tr(W T

1 B̂
T
1 B̂1W1) + Tr(W T

2 B̂
T
2 B̂2W2) + 2 Tr(W T

1 B̂
T
1 PB̂2W2)

≤m2
1 Tr(W1W

T
1 ) +m2

2 Tr(W2W
T
2 )

+ 2 Tr(B̂T
1 PB̂2) Tr(W2W

T
1 ) (A.10)

Denote ω1 = Tr(W1W
T
1 ), ω2 = Tr(W2W

T
2 ) and ω12 = Tr(W2W

T
1 ),

then from (A.10), we have

E(m2) ≤ ω1E(m2
1) + ω2E(m2

2) + 2ω12E
(

Tr(B̂T
1 PB̂2)

)
. (A.11)

Now we look at the termE
(

Tr(B̂T
1 PB̂2)

)
in (A.11). LetB∗k = PB̂k, k =

1, 2, since P is a symmetric projection matrix, B̂T
1 PB̂2 = B∗T1 B∗2 . Then we

rewrite the term asE
(
Tr(B∗T1 B∗2)

)
= Tr

(
E(B∗T1 B∗2)

)
.

Because (B∗1 −B∗2)T (B∗1 −B∗2) is semi-positive de�nite. In another word,
we have

Tr{E
(
(B∗1 −B∗2)T (B∗1 −B∗2)

)
} ≥ 0,

then

2 Tr
(
E(B∗T1 B∗2)

)
= Tr

(
E(B∗T1 B∗2)

)
+ Tr

(
E(B∗T2 B∗1)

)
≤Tr

(
E(B∗T1 B∗1)

)
+ Tr

(
E(B∗T2 B∗2)

)
=E(m2

1) + E(m2
2). (A.12)

Plug (A.12) back into (A.11), we have

E(m2) ≤ (ω1 + ω12)E(m2
1) + (ω2 + ω12)E(m2

2). (A.13)

In particular, consider d = 1. Let β̂1 and β̂2 be the estimate ofβ in node 1
and node 2 respectively. Denote

β̃ = w1β̂1 + w2β̂2,
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wherew1 andw2 are some coe�cients. Then the estimate of β in our method
is β̂d = β̃

||β̃|| . By de�nition,

m2 = βT (I − β̂dβ̂Td )β = β̂Td (I − ββT )β̂d =
1

||β̃||2
β̃T (I − ββT )β̃.

DenoteA = I − ββT , notice thatA is a projection matrix, then

E(m2) =
E
(

(w1β̂1 + w2β̂2)TA(w1β̂1 + w2β̂2)
)

||β̃||2

=
w2

1E(β̂T1 Aβ̂1) + w2
2E(β̂T2 Aβ̂2) + 2w1w2E(β̂T1 Aβ̂2)

||β̃||2
. (A.14)

LetAβ̂i = (β∗i1, . . . , β
∗
ip), i = 1, 2. Then

E(β̂Ti Aβ̂i) =

p∑
j=1

E
(
(β∗ij)

2
)
, i = 1, 2,

and

E(β̂T1 Aβ̂2) =

p∑
j=1

E(β∗1jβ
∗
2j).

By Cauchy–Schwarz inequality,

E(β∗1jβ
∗
2j) ≤

√
E
(
(β∗1j)

2
)
E
(
(β∗2j)

2
)
≤
E
(
(β∗1j)

2
)

+ E
(
(β∗2j)

2
)

2
.
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Thus (A.14) can be rewritten as

E(m2) (A.15)

=
1

||β̃||2

p∑
j=1

{
w2

1E
(
(β∗1j)

2
)

+ w2
2E
(
(β∗2j)

2
)

+ 2w1w2E(β∗1jβ
∗
2j)
}

≤ 1

||β̃||2

p∑
j=1

{
w2

1E
(
(β∗1j)

2
)

+ w2
2E
(
(β∗2j)

2
)}

+
1

||β̃||2

p∑
j=1

{
w1w2

[
E
(
(β∗1j)

2
)

+ E
(
(β∗2j)

2
)]}

=
1

||β̃||2

p∑
j=1

{
w1(w1 + w2)E

(
(β∗1j)

2
)}

+
1

||β̃||2

p∑
j=1

{
+w2(w1 + w2)E

(
(β∗2j)

2
)}

=
1

||β̃||2
{
w1(w1 + w2)E(β̂T1 Aβ̂1) + w2(w1 + w2)E(β̂T2 Aβ̂2)

}
=

1

||β̃||2
{
w1(w1 + w2)E(m2

1) + w2(w1 + w2)E(m2
2)
}
. (A.16)

Notice that ||β̃||2 = w2
1||β̂1||2 +w2

2||β̂2||2 + 2w1w2β̂
T
1 β̂2, and β̂T1 β̂2 ≤

||β̂1||2||β̂2||2. By the constraint of β̂, we know that ||β̂1|| = ||β̂2|| = 1,
and without loss of generality, we can assume that β̂T1 β̂2 ≥ 0, thus ||β̃||2 ≥
w2

1 + w2
2. Together with (A.15), we can get

E(m2) ≤ uE(m2
1) + vE(m2

2), (A.17)

where u = w1(w1+w2)

w2
1+w2

2
and v = w2(w1+w2)

w2
1+w2

2
only depend onw1 andw2 we set.

Sincem2
1 = op(1) andm2

2 = op(1). From (A.13) and lemmaA.1.5

E(m2) = o(1),

Thus we haveE(m) = o(1) and var(m) = o(1).
Let Yn1,n2 = m −mk, for k = 1, 2. Easily we can prove E(Yn1,n2) → 0

and var(Yn1,n2)→ 0, as n1, n2 →∞. By Lemma A.1.6, we have

lim
n1,n2→∞

P (Yn1,n2 > 0) = 0.
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Lemma A.2.1. Suppose {Xn} and {Yn} are two sets of non-negative random
variables, and {an} is a series converges to 0, i.e. limn→∞ an = 0. If we have
Xn = Op(an) and limn→∞ P (Yn > Xn) = 0, then

Yn = Op(an).

Proof. By the de�nition of “Op", we have that for all ε > 0, there exists an
N∗ > 0 andM > 0, such that when n ≥ N∗, P (Xn > Man) < ε/2.

Since limn→∞ P (Yn > Xn) = 0, then for this ε, there exists anN∗∗ > 0,
such that when n ≥ N∗∗, we have P (Yn > Xn) < ε/2.

LetN = max{N∗, N∗∗}, then we have

P (Yn > Man) = P (Yn > Xn > Man) + P (Xn ≥ Yn > Man)

≤ P (Yn > Xn) + P (Xn > Man)

< ε. (A.18)

From (A.18), we then have Yn = Op(an).

A.3 Proof of Theorem 2.4.3

Proof. Suppose the bandwidth hs ∼ n
−1/(p+4)
s for s = 1, 2, and the weight

matrix W = ( n1

n1+n2
, n2

n1+n2
)T ⊗ Ip. By (A.13), we have E(m2) ≤ (ω1 +

ω12)E(m2
1) + (ω2 + ω12)E(m2

2) with ωs = Tr(WsW
T
s ) = pw2

s , s =

1, 2 and ω12 = Tr(W2W
T
1 ) = pw1w2, where w1 = n1

n1+n2
and w2 =

n2

n1+n2
. By the fact that E(ms) = 0 and ms = Op

(
n
− 3

p+4
s log ns

)
for

s = 1, 2 (Xia et al., 2007; Xia et al., 2002), we have thatE(m2
s) = var(ms) =

O

(
n
− 6

p+4
s (log ns)

2

)
for s = 1, 2. Let n = n1 + n2, we have

wsE(m2
s) = O

(
ns

n
n
− 6

p+4
s (log ns)

2

)
= O

(
n−

6
p+4 (log n)2

[(
ns

n

)1− 6
p+4

(
logns

logn

)2
])

.

Notice that whenp ≥ 2, the term
(
ns

n

)1− 6
p+4

(
logns

logn

)2

< 1, thuswsE(m2
s) <

O(n−
6

p+4 (log n)2). In the end, we haveE(m2) ≤ p (w1E(m2
1) + w2E(m2

2)) =

66



O(n−
6

p+4 (log n)2), i.e. m = Op(n
− 3

p+4 log n). Then the theorem is proved.
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Appendix B

Proof of Chapter 3

B.1 Proof of Theorem 3.4.1
First, we presents some de�nitions and lemmas to facilitate the proof of Theo-
rem 1.

De�nition B.1.1. Let M be a compact metric space. Given a set S ⊆ M , the
ε-covering number of S, denotedNε(S), is the minimum k such that there exists
k closed balls B1, . . . , Bk of diameter ε, and S ⊆ ∪1≤i≤kBi. The ε-dimension
of S is the quantity

dε(S) :=
logNε(S)

− log ε
.

In the following theoretical discussions, it is convenient to work with mea-
sures instead of sets. The following de�nition (Dudley, 1969; Weed & Bach,
2019) extends the ε-covering number to the language of entropy (Posner et al.,
1967).

De�nition B.1.2. Given a measure µ onM , the (ε, τ)-covering number is

Nε(µ, τ) := inf {Nε(S) : µ(S) ≥ 1− τ} ,

and the (ε, τ)-dimension is

dε(µ, τ) :=
logNε(µ, τ)

− log ε
.

Note that the (ε, τ)-covering number and (ε, τ)-dimension are monotonic
decreasing as τ increases. This implies that we can de�ne the following upper
and lower limits of the (ε, τ)-dimension.
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De�nition B.1.3. The upper and lower Wasserstein dimensions are defined re-
spectively

d∗p(µ) := inf

{
s ∈ (2p,∞) : lim sup

ε→0
dε(µ, ε

sp
s−2p ) ≤ s

}
,

d∗(µ) := lim
τ→0

lim inf
ε→0

dε(µ, τ).

Lemma B.1.4 (c.f. Theorem 1 in Weed and Bach, 2019). Letµn be the empirical
measure of µ summarized from a random sample of size n, and p ∈ [1,∞). If
s > d∗p(µ) and t < d∗(µ), then

E[Wp(µ, µn)] . n−1/s and Wp(µ, µn) & n−1/t.

Proof of Theorem 3.4.1. First, we extend the lower bound result in Lemma
B.1.4 to the case of two empirical measures an and bn that are supported on
n observations drawn from α and β, respectively. Suppose that there exists a
triple of positive constants e, τ and t such that

Nε(an, τ) ≥ ε−t (B.1)

for all e ≤ ε.
Given e and n, if we choose a small enough t such that ε = n−1/t/2 ≥ e.

Let S = ∪b∈supp(bn)B(b, ε/2). Then, we have

Nε(an, τ) ≥ ε−t > n,

and hence an(S) < 1 − τ . This is equivalent to show that, for any a ∼ an,
the probability of the event E = {‖a, supp(bn)‖ ≥ ε/2} is at least τ .

Then, if (ai, bi) are i.i.d. observations of the coupling of an and bn, we
have the following inequality holds

W p
p (an, bn) = E [‖ai, bi‖p] ≥ E [‖ai, supp(bn)‖p]

≥ τ(ε/2)p = τ4−pn−p/t.

This immediately yields the following lower bound for the empirical Wasserstein
2 distance

W2(an, bn) ≥ τ4−1n−1/t. (B.2)

By the de�nition of d∗(µ), we can show that the condition in (B.1) can be satis-
�ed if we choose t < d∗(µ).
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Next, we show under Assumption 1 (b), for any p ∈ [1, d/2], d ≤ d∗(α).
When Assumption 1 (b) holds, for all τ > 0, there exists a σ > 0 such that any
set T for which α(T ) ≥ 1− τ satis�esHd(T ) ≥ σ.

Then, for any covering{B(xi, ε)} of T by balls of radius ε, we must have∑
i ε
d ≥ σ.

Therefore, such a covering contains at least σε−d balls. Then, we have

logNε(α, τ)

− log ε
≥ d+

log σ

− log ε
. (B.3)

By taking limits to both sides of (B.3), we arrive at d∗(α) ≥ d.
Combing the results in (B.2) and (B.3), we �nish the proof of Lemma 1.

B.2 Proof of Theorem 3.4.2
First, we present a useful lemma to bound the asymptotic variance of the 2-
Wasserstein distance induced by a Smoothed Monge Map. Then, the proof of
Theorem 2 should immediately follow the results of this lemma.

Lemma B.2.1. Let α and β be two densities with finite 4 + δ moments for some
δ > 0. Let {ai}ni=1 and {bj}mj=1 be two i.i.d. random sample drawn from α

and β, respectively. Further, we use an and bm to denote the empirical measures
of {ai}ni=1 and {bj}mj=1. Then, we have

var
(
W̃ 2

2 (an, bm)
)
≤ C(α, β)

n
+
C(β, α)

m
, (B.4)

where

C(α, β) = 8
(
E(‖a1 − a2‖2‖a1‖)

)
+ 8

(
(E‖a1 − a2‖4)1/2

( ∫
Rd

‖b‖4dβ(b)
)1/2
)
,

andC(β, α) is defined in a symmetric way.

Proof of Lemma B.2.1. According to the de�nition of the Smoothed Monge
Map, W̃ 2

2 (an, bm) is invariant with respect to any permutations within{ai}ni=1

or any permutations within {bj}mj=1.
We draw a′1 and b′1 from α and β as two copies of a1 and b1 which are

independent of {ai}ni=1 and {bj}mj=1. Then, we use a′n and b′m to denote the
empirical measures of {a′1,a2, . . . ,an} and {b′1, b2, . . . , bm}, where we re-
placea1 and b1 witha′1 and b′1. Further, we introduce the following notations
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for the (squared) 2-Wasserstein distances induced by Smoothed Monge Maps.

Z1 = W̃ 2
2 (an, bm), Z2 = W̃ 2

2 (a′n, bm), and Z3 = W̃ 2
2 (an, b

′
m).

Follow the Efron-Stein inequality, one can see that

var
(
W̃ 2

2 (an, bm)
)
≤ n

4
E(Z1 − Z2)2 +

m

4
E(Z1 − Z3)2. (B.5)

First, we bound E(Z1 − Z2)2. Denote ψ and ψ′ the Smoothed Monge
Maps from an to bm and from a′n to bm, respectively. We de�ne πi,j as the
probability that ψ assigns to the pair (ai, bj), and ci,j = ‖ai − bj‖2. Also,
we de�ne π′i,j and c′i,j in a similar fashion for samples {a′1,a2, . . . ,an} and
{b1, b2, . . . , bm}. With the notations above, we have

Z2 =
n∑
i=1

m∑
j=1

c′i,jπ
′
i,j and Z1 ≤

n∑
i=1

m∑
j=1

ci,jπ
′
i,j.

Since the Smoothed Monge Map does not force a one-to-one map, replacing
a1 witha′1 will not a�ect the cost functions for i ≥ 2. In other words, we have
ci,j = c′i,j for i ≥ 2. Then we have

Z1 − Z2 ≤
m∑
j=1

π′1,j(c1,j − c′1,j) ≤ ‖a1 − a′1‖ (B.6)

×
m∑
j=1

π′1,j (‖a1‖+ ‖a′1‖+ 2‖bj‖) .

(B.7)

As we apply equal weights to observations, we have
∑m

j=1 π
′
1,j = 1

n
. Thus,

we can simplify (B.7) by

Z1 − Z2 ≤ ‖a1 − a′1‖

{
1

n

(
‖a1‖+ ‖a′1‖

)
+ 2

m∑
j=1

‖bj‖

}
.

Then, follow Theorem 3.1 in Del Barrio and Loubes, 2019, we have

n

4
E(Z1 − Z2)2 ≤ C(α, β)

n
. (B.8)
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To bound the second term on the right hand side of (B.5), we utilize the
following exchangeability

E

(
m∑
j=1

π′1,j‖bj‖4

)
=

1

n
E

(
n∑
i=1

m∑
j=1

π′i,j‖bj‖4

)

=
1

n
E

(
1

m

m∑
j=1

π′i,j‖bj‖4

)
=

1

n
E
(
‖bj‖4

)
.

Again, follow Theorem 3.1 in Del Barrio and Loubes, 2019, we have

m

4
E(Z1 − Z3)2 ≤ C(β, α)

m
. (B.9)

By plugging (B.8) and (B.9) back to (B.5), we �nish the proof of Lemma
B.2.1.

Proof of Theorem 3.4.2. Suppose that we have two densities α and β that
satisfy Assumption 1. Let {ai}ni=1 and {bj}nj=1 be two i.i.d. random samples
drawn from α and β, respectively. Then, according to Lemma B.2.1, the vari-
ance of the (squared) 2-Wasserstein distance induced by the Smoothed Monge
Map between {ai}ni=1 and {bj}nj=1 is upper bounded by

var
(
W̃ 2

2 (an, bn)
)
≤ C(α, β) + C(α, β)

n
.

Given nvar
(
W̃ 2

2 (an, bn)
)

is bounded, the central limit theorem naturally
yields the following statement

√
n
(
W̃ 2

2 (an, bn)− E[W̃ 2
2 (an, bn)]

)
→ N(0, σ2

W ), (B.10)

where σ2
W is the limit of nvar

(
W̃ 2

2 (an, bn)
)

as n→∞.
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Let φ(·) andψ(·) be the the optimal transport maps from α to β and from
β to α, respectively. We de�ne the following two variances

σ2(α, β) =

∫
Rd

(
‖a‖2 − 2φ∗(a)

)2
dα(a)

−
(∫

Rd

(
‖a‖2 − 2φ∗(a)

)
dα(a)

)2

,

and σ2(β, α) =

∫
Rd

(
‖b‖2 − 2ψ∗(b)

)2
dβ(b)

−
(∫

Rd

(
‖b‖2 − 2ψ∗(b)

)
dβ(b)

)2

.

Next, we would like to show that the asymptotic variance satis�es

σ2
W =

σ2(α, β) + σ2(β, α)

2
. (B.11)

Similar as the notations used in the proof of Lemma B.2.1, we draw a′1
and b′1 from α and β as two copies of a1 and b1 which are independent of
{ai}ni=1 and {bj}nj=1. We use a′n and b′n to denote the empirical measures of
{a′1,a2, . . . ,an} and {b′1, b2, . . . , bn}, where we replace a1 and b1 with a′1
and b′1. Then, we de�ne the following three residual terms

R1 = W̃ 2
2 (an, bn)−

∫
Rd

(
‖a‖2 − 2φ(a)

)
dan(a)

−
∫
Rd

(
‖b‖2 − 2ψ(b)

)
dbn(b),

R2 = W̃ 2
2 (a′n, bn)−

∫
Rd

(
‖a‖2 − 2φ(a)

)
da′n(a)

−
∫
Rd

(
‖b‖2 − 2ψ(b)

)
dbn(b),

R3 = W̃ 2
2 (an, b

′
n)−

∫
Rd

(
‖a‖2 − 2φ(a)

)
dan(a)

−
∫
Rd

(
‖b‖2 − 2ψ(b)

)
db′n(b).

To prove (B.11) is equivalent to show that

n

2
var(R1)→ 0, as n→∞. (B.12)
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To prove (B.12), according to the Efron-Stein inequality, it is su�ce to show
that

n2E(R1 −R2)2 → 0 and n2E(R1 −R2)2 → 0 as n→∞.

We will prove the �rst claim and the second one naturally follows by the sym-
metry. Denote φ̃ and ψ̃ the Smoothed Monge Maps from an to bn and from
bn to an, respectively. The almost sure convergence of the empirical Monge
map and the consistency of the smoothing spline estimator together imply that
φ̃→ φ and ψ̃ → ψ a.s..

Then, we can write out W̃ 2
2 (an, bn) as

W̃ 2
2 (an, bn) =

∫
Rd

(
‖a‖2 − 2φ̃(a)

)
dan(a)

+

∫
Rd

(
‖b‖2 − 2ψ̃(b)

)
dbn(b). (B.13)

Also, we have

W̃ 2
2 (a′n, bn) ≥

∫
Rd

(
‖a‖2 − 2φ̃(a)

)
da′n(a)

+

∫
Rd

(
‖b‖2 − 2ψ̃(b)

)
dbn(b). (B.14)

With (B.13) and (B.14), we can upper bound the di�erence betweenR1 and
R2 by

R1 −R2 ≤ 2

∫
Rd

(
φ(a)− φ̃(a)

)
dan(a)− 2

∫
Rd

(
φ(a)− φ̃(a)

)
da′n(a)

=
2

n

{[
φ(a1)− φ̃(a1)

]
−
[
φ(a′1)− φ̃(a′1)

]}
. (B.15)

With the almost sure convergence of the Smoothed Monge Map, the results in
(B.15) implies the almost sure convergence ofn(R1−R2), i.e. n(R1−R2)→ 0

a.s..
Besides, according to the Theorem 3.2 in Del Barrio and Loubes, 2019, we

know thatn2(R1−R2) is uniformly integrable. Therefore, we �nish the proof
by concluding that n2E(R1 −R2)2 → 0 as n→∞.
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