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ABSTRACT 

New ways to acquire aerial imagery are improving access to high-resolution aerial imagery 

products for research and commercial applications. While high costs have historically limited 

access to aerial imagery for most organizations, unmanned aerial systems (UAS) are enabling 

broader integration of imagery and geospatial data products to document and visualize 

landscapes of interest. It is more affordable than ever to acquire the necessary UAS equipment 

and computer software and hardware to create 3D models, digital elevation models (DEMs), and 

ultra-high (<10cm) resolution orthomosaic imagery.  This study describes a UAS-based field 

survey methodology and image processing workflow used to map native, exotic and invasive 

aquatic vegetation. It discusses the merits and limitations of UAS for large reservoir management 

and ecological monitoring purposes. The results demonstrate the capacity of small UAS to 

survey, map, and detect features of interest over a large area and support the viability of UAS for 

vegetation surveying. 
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Chapter 1 

Introduction 

Background 

Until recently and despite great potential, unmanned aerial systems (UAS) were not 

broadly integrated into resource management, academic research and commercial activities in the 

United States due to a number of regulatory, social, and technical factors. Prior to the 

establishment of the Small UAS Rule, 14 CFR Part 107 (Part 107) in September 2016, the 

Federal Aviation Administration (FAA) maintained a proscriptive regulatory environment 

regarding commercial UAS operations while it developed the procedures and infrastructural 

capacity to implement a nationwide Unmanned Aircraft Traffic Management System (UTM). 

The goal of the UTM is to safely integrate UAS into the National Airspace System (NAS), 

allowing commercial UAS operations while giving air traffic controllers positional awareness of 

and a method to communicate with UAS, thus minimizing the potential for mid-air collisions 

with other manned and unmanned air traffic. An additional concern is preventing the 

unauthorized incursion of UAS into restricted airspace or sensitive national security areas 

(USDOT 2013). 

Substantial public opposition to commercial UAS operations in the NAS is attributable in part to 

the conflation of UAS with military action by news and entertainment outlets, and fears that 

fundamental notions of property and privacy rights are imperiled by the abuse or misuse of aerial 

surveillance by domestic law enforcement agencies or unscrupulous individuals. Some 

commercial uses have also raised the specter of nuisance and noise pollution, in particular the 
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use of unmanned aircraft for the transportation of property for compensation or hire (McNeal 

2014). FAA’s approval of some commercial UAS operations under Part 107, as well as the recent 

growth in popularity of small UAS for recreational use have made them a common sight, which 

has helped to diminish public opposition. 

Over the last decade, advances in UAS technology in terms of their affordability, ease of 

operation, flight duration, and sensor quality have made them a viable alternative to manned 

aircraft for a number of aerial imaging applications. The revolutionary capabilities of UAS are 

empowering researchers and resource managers with an efficient means to conduct ecological 

monitoring using unmanned aerial surveys, particularly for environments that are difficult to 

access from the ground or to visualize using higher-altitude remote sensing platforms. The ultra-

high spatial resolution and image quality from low-altitude acquisition of UAS imagery 

outperforms the best-available commercial satellite imagery, and is less expensive to acquire, 

particularly for multi-temporal data.  

UAS also offer economic advantages compared to manned aerial photography. When compared 

to manned aircraft, UAS are much less expensive to own and operate in terms of acquisition, 

maintenance, fuel, and the cost to obtain pilot licensure. Low altitude flight obviates the need for 

post-processing to correct for the effects of atmospheric distortion and enables operation under 

cloudy conditions. First-person view (FPV) video transmission allows UAS operators to view 

collected imagery in near real-time and adjust the flight path and sensor orientation as needed, 

making UAS much more responsive to atmospheric conditions or terrain characteristics than 

manned aircraft (Hardin et al. 2019). In aquatic environments, this versatility can minimize the 

adverse impact of specular reflectance, also referred to as sun glint, allowing more reliable 

visualization of submerged features. 
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In recent years, UAS imagery has been used in numerous government and commercial 

applications and academic disciplines, including disaster management and emergency response 

(Antonio 2016), architecture and construction (Levin et al. 2017), agriculture (Hassler and 

Baysal-Gurel 2019), archaeology (Waagen 2019, Wang et al. 2019), and journalism (Adams 

2019). Similarly, UAS is proving to be a valuable tool, offering researchers and resource 

managers a potentially unprecedented capacity to remotely observe and analyze ecological 

phenomena and processes (Tamminga et al. 2015). Indeed, the revolutionary power of UAS for 

resources management lies in the ability to tailor the spatial extent, resolution, and temporal 

frequency of the data to suit specific research objectives (Madden et al. 2015 and 2019). This 

study assesses the overall feasibility of a UAS-based survey approach as compared to traditional 

field and remote sensing methods. It also provides a description of UAS operations in 

challenging field conditions and identifies a set of computational resources and techniques to 

photogrammetrically process large data volumes and create detailed digital image products for 

aquatic resource research, assessment, and management.  

 

Remote Sensing Assessment of Nuisance Aquatic Vegetation 

Nuisance aquatic vegetation has become a global environmental issue associated with 

landscape development, eutrophication of waterways, and climate change (Shivers et al. 2018a 

and 2018b). Aquatic vegetation occurs naturally in creeks, rivers, ponds, lakes and coastal ocean 

water bodies, given proper substrate, nutrients and sunlight. Water quality, quantity and clarity 

can determine the types, abundance and distribution of plants within aquatic systems. A diversity 

of aquatic plant species may include plants that are free floating on the water surface, rooted in 

the substrate with leaves floating on the surface, rooted and emerging above the surface and/or 
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rooted growing submergent or below the surface (Fassett and Ogden 1957, Magee 1981, 

Aulbach-Smith and deKozlowski 1990). Resource managers are often concerned with aquatic 

vegetation inventory and monitoring (Remillard and Welch 1992 and 1993), especially the 

displacement of naturally diverse aquatic plant communities by monotypic stands of native and 

exotic invasive species. Lake managers require efficient methods of detecting invasive plants, 

mapping their distributions, monitoring their spread and determining the effectiveness of 

management decisions (Bogucki et al. 1980, Madden 2004). 

 Remote sensing has been used for decades to map the seasonal growth and distribution of 

aquatic vegetation and particularly, submerged aquatic vegetation (SAV), using imagery 

collected by manned aircraft (Schneider 1966 and 1968, Gammon and Carter 1979, Bogucki et 

al. 1980, Welch et al. 1988 and 1992) and satellites ( Carter and Schubert 1974, Butera 1983, 

Jensen et al. 1984, 1986 and 1987). While these methods are often capable of detecting the 

presence of SAV, widespread adoption of remote sensing methods for aquatic vegetation 

monitoring has been constrained by the high cost and limited ability to detect submerged features 

under all but ideal hydrologic and atmospheric observing conditions (Remillard and Welch 1992 

and 1993). This study evaluates the use of UAS imagery in monitoring the seasonal growth and 

spatial extent of submerged, emergent and free-floating aquatic vegetation in Lake Seminole, a 

large subtropical reservoir located in Southwest Georgia. Lake Seminole has a history of 

nuisance vegetation assessment and considerable investment in control efforts. As such, it is well 

suited to testing the utility of UAS-based remote sensing techniques and analysis. 
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Study Area 

The Apalachicola, Chattahoochee, and Flint Rivers and their respective watersheds cover 

more than 52,000 km2 across three states and are collectively referred to as the Apalachicola-

Chattahoochee-Flint (ACF) Basin (see inset map of Figure 1.1). This Basin contains diverse 

aquatic resources that support important regional economic and recreational uses including 

power generation, municipal water, agricultural irrigation, boating and fishing (Frick et al.1998).  

 

Figure 1.1: Map of Lake Seminole, Georgia study area 

Conflicting priorities between the states of Alabama, Florida, and Georgia regarding issues 

related to the use and management of the ACF River Basin have resulted in a series of lawsuits, 

counter-suits, and appeals which ultimately reached the United States Supreme Court, where the 

case is currently being arbitrated by a Court-appointed Special Master (Hallerman 2018). The 

legal fracas has been so protracted and divisive that it has become known as the “Tri-State Water 
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Wars”. One of the central issues is the contention made by Florida that Georgia’s ground- and 

surface water withdrawals from the ACF Basin for municipal and agricultural use have an 

adverse effect on water quality in the Apalachicola River, and that reduced flows attributable to 

excessive upstream usage pose a threat to environmentally-sensitive and commercially-important 

fisheries (ARC 2018a and 2018b). Lake Seminole, located partly in Georgia (Decatur and 

Seminole Counties) and Florida (Gadsden and Jackson Counties), is a large, shallow, run-of-the-

river reservoir located where the Chattahoochee and Flint Rivers meet to form the Apalachicola 

River. As the nexus of the ACF River system, Lake Seminole exhibits a complex and varied 

ecology which impacts downstream water quality and make it a relevant and multifaceted object 

of study. Biogeochemical processes within the reservoir are greatly affected by the annual 

growth and relative composition of a number of species of aquatic vegetation, in particular the 

non-native and submergent aquatic macrophyte, Hydrilla verticillata (Shivers 2018a).  

Lake Seminole encompasses diverse physical, chemical, and hydrologic conditions, which affect 

patterns and assemblages of vegetation growth. This results in a marked difference in the 

composition of plant communities within Lake Seminole, particularly between the 

Chattahoochee arm and Flint/Spring Creek arms of the reservoir. The growing conditions for 

aquatic vegetation in each arm of the reservoir are largely determined by the characteristics of 

their tributaries, which are in turn determined by the soil characteristics and pattern of land use 

of their respective watersheds. The Chattahoochee and Flint rivers are strikingly different. The 

Chattahoochee River is the most regulated river in Georgia with 13 dams, receives effluent from 

120 publicly-operated treatment works (POTWs) including Atlanta and Columbus, and has 

comparatively little agricultural runoff. The Flint River is predominantly free-flowing, receives 

effluent from only 60 smaller POTWs, and receives large amounts of agricultural runoff (Frick et 
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al. 1998). Due to these factors, the Chattahoochee arm is less turbid, experiences fewer and less 

severe fluctuations in water level, and has lower N and P concentrations than the Flint arm 

(Waters et al. 2015). The coexistence of two hydrologic regimes within the same water body is 

reflected in the assemblages of aquatic vegetation present. In the Chattahoochee arm, floating 

leaf vegetation, including water hyacinth, waterlily, lotus, and watershield predominates, while 

the Flint and Spring Creek arms are macrophyte-dominant (Shivers et al. 2018a). The 

macrophytes present in Lake Seminole include hydrilla, pondweed, eurasian watermilfoil, 

coontail, limnophila, cabomba, and fanwort. Muskgrass, a freshwater green alga, is non-vascular 

but assumes the appearance of a macrophyte in its growth form and predominates in some areas, 

particularly in the middle of dense macrophyte beds where there is lower nutrient and oxygen 

availability (Partridge 1996). Lyngbya, a cyanobacteria which forms dense mats of fibrous 

material on the reservoir’s surface, can periodically engulf other aquatic vegetation in the 

reservoir at certain times of year, particularly at the end of the growing season or following the 

application of aquatic herbicides. In a nutrient-rich environment such as Lake Seminole, 

cyanobacteria proliferation tends to occur in the absence of competition for those nutrients by 

aquatic vegetation (NASA DEVELOP 2014). Cyanobacteria are of particular concern to resource 

managers since they extrude compounds whose toxicity can range from a mild skin irritant to 

potent neuro- and hepatotoxins. Lyngbya has adversely affected wildlife (Dodd et al. 2016), and 

poses a risk to humans as well. Its prevalence in Lake Seminole and its potential for adverse 

health impacts justifed including lyngbya in the vegetation map in this study. However, because 

the appearance of lyngbya in the imagery was the same as senescent macrophytes, it was 

ultimately combined with the mixed macrophyte class. Riparian grasses, including Cuban 

bulrush and giant cutgrass, are present throughout the reservoir along the shoreline. Giant 
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cutgrass’s dense growth form and expansive inter-annual growth (Fox and Haller 2000) caused 

difficulty in determining the apparent shoreline between years and obscured the precise border 

between land and water in the imagery. 

Figure 1.2 depicts the range of vegetative assemblages in Lake Seminole, including (a) floating-

leaf dominant, (b) hydrilla dominant, and (c) mixed aquatic vegetation. Table 1 lists the primary 

aquatic species found in the reservoir. Figure 1.3 displays an aerial and terrestrial view of the 

most commonly observed and identifiable species in the survey.  

(a)  

 

(b)      
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Figure 1.2: Common vegetative assemblages in Lake Seminole: (a) Floating-leaf dominant, (b) 

Hydrilla dominant, and (c) Macrophyte and floating leaf mix  

 

I – SUBMERGED AQUATIC 

VEGETATION (SAV) 

 

III – FLOATING LEAF 

1.1 Hydrilla verticillata (Hydrilla) 3.1 Eichhornia crassipes (Water Hyacinth) 

1.2 Elodea canadensis (Pondweed) 

 
3.2 Nymphaea spp. (Waterlily) 

1.3 Limnophila sessiflor (Limnophila) 3.3 Nelumbo lutea (American Lotus) 

1.4 Myriophyllum spicatum (Eurasian water-

milfoil) 

 

3.4 Brasenia schreberi (Watershield) 

 

1.5 Cabomba caroliniana (Fanwort) 
IV – RIPARIAN 

 

1.6 Ceratophyllum demersum (Coontail) 4.1 Zizaniopsis miliacea (Giant Cutgrass) 

1.7 Chara (Muskgrass, Stonewort) 
4.2 phragmites australis (Phragmites) 

 

II – OPEN WATER 
4.3 Oxycaryum cubense (Cuban Bulrush) 

 

 

Table 1: Species of Aquatic Vegetation Present in Lake Seminole (Brent Mortimer, USACE 

Aquatics Specialist, personal communication) 

(c)                
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Ground View Aerial View 

a)  

b)  

c)  
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d)  

e)  

f)  
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g)  

h)  

 

Figure 1.3: Common aquatic vegetation species found in Lake Seminole, photographed from 

ground-level (left) and the corresponding aerial view (right), including: a) American Lotus 

(Nelumbo lutea); b) Hydrilla (Hydrilla verticillata); c) Pondweed (Elodea canadensis); d) Cuban 

Bulrush (Oxycaryum cubense); e) Waterlily (Nymphaea); f) Water Hyacinth (Eichhornia 

crassipes); g) (Lyngbya wollei); and h) Muskgrass (Chara) 
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Research Objectives 

Given the impact of aquatic vegetation in Lake Seminole on ecological processes that 

affect water quality and quantity (Partridge 1996), this study aims to develop a methodology that 

can be used to effectively assess the abundance and distribution of aquatic vegetation species at a 

high level of spatial and temporal resolution. The method should be relatively cost efficient, use 

readily available equipment and software, include a defined and tested workflow for data 

collection, processing and analysis, and provide researchers and resource managers with 

information required for both understanding the complex aquatic system and making sound 

management decisions.  

Specific objectives are: 

1. To develop a methodology using Unmanned Aerial System (UAS) technology to acquire 

true-color aerial imagery of a large reservoir at multiple time periods, use best practices 

for the management of large image data sets and perform Structure from Motion 

photogrammetry to create fine-scale digital elevation models and seamless orthomosaics 

suitable for mapping and monitoring aquatic vegetation; 

2. To use these image data to classify and map emergent, submerged, and free-floating 

aquatic vegetation, with particular emphasis on H. verticillata (hydrilla); and 

3. Determine whether UAS imagery can be applied to detect inter- and intra-annual changes 

in vegetation coverage 
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Chapter 2 

Review of Concepts and Literature 

This chapter summarizes the literature and concepts which contribute to the theoretical 

framework of this study and highlight the progression of remote sensing applications to 

vegetation mapping and aquatic ecosystems monitoring. 

Aquatic Ecology 

As in many reservoirs throughout the Southeastern United States, Hydrilla verticillata, 

commonly known as hydrilla, has been the predominant form of aquatic vegetation in Lake 

Seminole since shortly after its accidental introduction to the reservoir in the 1960’s (Eubanks 

and Morgan 2001). A submergent macrophyte native to subtropical Southeast Asia, hydrilla 

thrives in Lake Seminole’s warm, shallow waters with low turbidity and high nutrient content. 

Hydrilla growth provides numerous beneficial ecosystem services, enhancing water quality 

through phytoremediation, the uptake of harmful substances into the plant’s biomass 

(Chathuranga et al. 2014, Shivers et al. 2018), nutrient sequestration (Wang et al. 2007), 

inhibition of harmful algal growth (Zhang et al. 2012), and providing habitat for aquatic 

organisms (Sammons and Maceina 2006). Conversely, due to its invasiveness and potential for 

explosive growth which can outcompete other forms of submerged aquatic vegetation and reduce 

overall species diversity (Cox et al. 2014), hydrilla is classified as a noxious weed in most areas 

of the United States (Evans et al. 2005).                       

Hydrilla grows into dense, extensive beds which span the depth of the water column in the photic 

zone and represent a serious navigation hazard, as plant material can easily become entangled in 
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conventional outboard boat motors, stalling or even destroying them. The United States Army 

Corps of Engineers (USACE), vested with the responsibility to manage all navigable waterways 

in the United States, has employed numerous methods in its attempt to control or eradicate 

hydrilla. Control measures include manual removal, chemical and biological controls, 

manipulating environmental parameters known to affect hydrilla growth, and developing 

predictive models to simulate hydrilla response to the other control techniques (Welch et al. 

1988, Kumar et al. 2019). One of the most effective means to control hydrilla has been the 

application of the aquatic herbicide fluridone. However, even if herbicides are used to treat the 

foliage, hydrilla can regenerate from its turions, tubers submerged in the sediments. Prolonged 

aquatic herbicide use also leads to the proliferation of herbicide-resistant genetic variants of 

hydrilla. For example, in Florida’s Kissimmee Chain of Lakes a fluridone-resistant strain of 

hydrilla persists as the dominant phenotype even eight years following the cessation of 

fluoridone applications (Netherland and Jones 2015). As with any systemic herbicide 

application, there is a potential for unintended adverse effects on plants and animals other than 

the target species. Freshwater mollusks are just one species experiencing collateral damage from 

chemical hydrilla control regimes (Archambault et al. 2015). 

While in some areas USACE efforts have achieved localized elimination of or a reduction in 

hydrilla coverage, eradication remains an elusive goal (Cox et al. 2014). For the foreseeable 

future, hydrilla will continue to dominate the assemblage of aquatic vegetation found in Lake 

Seminole and in shallow reservoirs throughout subtropical regions of the United States. With 

dismal prospects for complete eradication, scholarship and reservoir management are 

transitioning towards more targeted, local intervention and the development of long-term 

monitoring strategies using ground-based and remote sensing technologies to: (1) detect and map 



 

16 

hydrilla coverage; (2) better understand the environmental and climatic factors that influence its 

growth and distribution; and (3) examine its role in influencing aquatic ecological and 

biogeochemical processes (Remillard and Welch 1992, Rotta et al. 2016, Kumar et al. 2019). 

To that end, researchers at the Joseph W. Jones Ecological Research Center have for the last 

several years conducted surveys documenting the intra- and inter-annual changes in the spatial 

extent and species composition of Lake Seminole’s aquatic vegetation (Shivers et al. 2018a and 

2018b, NASA DEVELOP 2014). A number of survey methods have been employed, including 

boat-based global positioning system (GPS) data collection and remote sensing approaches. 

GPS-based field surveys of the reservoir have been conducted to determine the maximum spatial 

extent of hydrilla and relate its growth to environmental factors such as turbidity and nutrient 

availability. Shivers et al. (2018a) provided GPS-based vegetation coverage estimates for the 

reservoir over a three-year period. The survey was limited to peak coverage, late August and 

September, and took two people, a GPS unit, and a specialized boat four to six weeks to 

complete, plus substantial post processing. They observed annual variation in SAV coverage 

which was linked to water clarity associated with flood pulses during the growing season. 

However, a limitation (other than time and cost) was only semi-quantitative estimates of SAV 

bed composition. Additionally, a 2014 NASA DEVELOP project used Lake Seminole as a study 

area and compared 30-meter resolution Landsat imagery with in-situ data reflectance data in an 

effort to detect and map seasonal hydrilla growth (NASA DEVELOP 2014). This study was 

limited by rather coarse spatial resolution (30m) of the Landsat-8 Operational Land Imager 

(OLI) sensor imagery, as well as frequent cloud cover in the region during the growing season. 
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Remote Sensing 

A consistent feature in the development of the remote sensing field is that the emergence 

of novel means to acquire data precipitates advances in related technologies, techniques and best 

practices that are better able to exploit the new data. Remote sensing has been used for decades 

to map the seasonal growth and distribution of submerged aquatic vegetation (SAV) using 

imagery collected by satellites and manned aircraft (Welch et al. 1988, Schuchman et al.2013, 

Fritz et al. 2017), but it has only very recently become possible to conduct such studies using 

UAS (Colomina and Molina 2014, Mishra et al. 2018). In the United States, the ban on 

commercial UAS operations prior to promulgation of Part 107 largely precluded academic and 

educational use, limiting the overall contribution of American universities and research 

institutions to the literature of applied UAS studies.  

Since the mid-2010s, the rapidly improving capabilities and relative affordability of UAS have 

been leveraged for mapping aquatic environments. Flynn and Chapra (2014) used a quadcopter 

UAS to acquire aerial images of the Clarke Ford River in western Montana at 18 time periods 

during the growing season in order to map the seasonal development of the nuisance algae 

Cladophora glomerate. Feature detection was then applied to the orthomosaic imagery to 

delineate the percentage of the study area affected by Cladophora at each time interval. They 

report 90-92% accuracy in identifying Cladophora, but did not map any other species of aquatic 

vegetation. Flynn and Chapra (2014) focused only on identifying a single species, and the 

accuracy values would likely be lower in the event that other algae or aquatic vegetation were 

present.  

Tung-Ching and Chou (2015) used a fixed-wing UAS to map aquatic vegetation in a small 

reservoir in Taiwan and relate vegetation coverage to water quality parameters from in-situ water 
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sampling. UAS was shown to fill spatiotemporal gaps in available satellite data that would 

otherwise confound mapping of highly localized, seasonal events such as aquatic vegetation 

growth. Without the high spatiotemporal resolution offered by the UAS, it was not possible to 

link vegetation growth with other water quality parameters using regression modeling. Their 

study linked UAS imagery with simultaneously collected water quality information (turbidity, in 

situ nutrient and phytoplankton measurements).  The UAS sensor was modified to record green, 

red, and near-infrared (NIR) spectral bands to create false color composite images. With ground 

control points, the final model achieved a spatial accuracy of +/- 4.5cm. The final results were 

used to develop a regression model predicting chlorophyll-a and total phosphorus concentrations, 

with highly significant results (P<0.05, r2>0.9). 

Very high spatial resolution imagery has been used to differentiate between and classify surface 

features and various species of vegetation in aquatic ecosystems using geographic object-based 

image analysis (GEOBIA) process (Hay and Castilla 2008). GEOBIA consists of image 

segmentation, training area selection and feature classification, and may either be an automated 

(unsupervised) or semi-automated (supervised) process (Hay et al. 2002, Lang et al. 2009, 

Blaschke et al. 2014). During image segmentation, statistical measures of the spatial relationship 

and spectral similarity between adjacent pixels are used to partition a raster image into pixel 

groupings representing discrete image objects (Blascke et al. 2008). The segmentation process 

can yield segments of a range of sizes by altering the input parameters, which include scale 

factor, merge factor and kernel size. The scale parameter determines the number of iterations in 

the algorithm and ultimately controls the size of the output image-objects. As the scale parameter 

increases, there are fewer iterations and the pixel groupings are coarser. For unsupervised 

classification, the user simply specifies a target number of classes, and segments are grouped into 
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the specified number of classes automatically using an unsupervised classification algorithm 

such as ISODATA or Maximum Likelihood Classifier (MLC) (Green 2017). For a supervised 

classification, training area selection must be conducted manually. Training area selection 

involves identifying portions of the segmented raster which represent a particular feature or land 

cover type (Green 2017). Training area samples should reflect the range of spectral and textural 

heterogeneity that exist within a particular class across the study area. In situations where 

excessive in-class spectral variation exists due to differences in phenology or illumination, 

certain features may have to be split into more than one class during training area selection and 

merged following the classification step. The training areas identified are used as input to 

classify the remainder of the segmented raster, using a machine-learning algorithm such as 

support-vector machine (SVM) or random forest/random trees (Blascke 2010).  

 Kim et al. (2011) compared the classification accuracy of single-scale and multi-scale GEOBIA 

and the effect of incorporating ancillary data to map water, vegetation, and bare mud in a salt 

marsh ecosystem. Segmentation was achieved using the Multiresolution Segmentation (MRS) 

algorithm, which computes spectral and shape heterogeneity of neighboring pixels and groups 

them according to the scale parameter. They reported user’s accuracy of 82% for their most 

detailed model. 

Zhang et al. (2013) used a method called ensemble analysis to incorporate multiple separate 

datasets with varying spatial resolution as part of a GEOBIA classification to map vegetation in 

the Florida Everglades. The combination of Light Detection and Ranging (LiDAR) elevation 

data, multispectral satellite imagery, and true-color National Agricultural Imagery Program 

(NAIP) imagery produced a highly accurate (91%) map of 11 vegetation types. While it did not 

utilize UAS imagery, this study demonstrates how elevation data can be incorporated as ancillary 
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data in an image classification workflow to improve feature detection and presents a possible 

method for enhancing true-color UAS imagery with multispectral information from satellites.  

This study will contribute to the literature on UAS-based remote sensing of aquatic vegetation by 

identifying best practices and operational limitations for UAS operations in subtropical 

environments. The literature review indicates that there is a much greater focus on data 

processing and image analysis than there is on data acquisition. This study will also address 

questions of scale. By attempting to map such a large extent (~90km2), the feasibility of 

implementing UAS in favor of alternative remote sensing platforms for monitoring at a 

landscape scale will be assessed.  
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Chapter 3 

Methodology 

This chapter provides an overview of the factors which influenced survey design and 

implementation (Figure 3.1), and methods used to preprocess, photogrammetrically-reconstruct, 

and classify the aquatic vegetation survey data. 

 

Figure 3.1: Conceptual Diagram of Survey Design for UAS Data Acquisition 
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Small Unmanned Aerial Systems (sUAS) Regulatory Environment 

Prior to the Small UAS Rule taking effect in 2016, it would have required a manned 

pilot’s license to conduct the survey described herein for commercial, research, or educational 

purposes under the auspices of any private corporation, nonprofit, or academic institution. Only 

recreational use was permitted under Part 101(e). The only legal means of procuring permission 

to operate a UAS commercially was a Section 333 exemption. Section 333 exemptions were 

awarded sparingly and at the FAA’s sole discretion. The application process was lengthy and 

expensive and there was no guarantee that the request would even be considered. Part 107, 

issued in August of 2016, was widely lauded for establishing a clear set of rules for remote pilot 

licensure and defining operating conditions of small unmanned aircraft systems (sUAS) (FAA 

2016). 

To become certified as a remote pilot under Part 107, the applicant must be a US citizen, clear a 

background check and pass an aeronautical knowledge exam every two years. Commercial UAS 

operations are limited to under 400 feet (121.9 meters) above ground-level (AGL) during 

daylight hours in Class G airspace, with flights in Class D and E airspaces allowable subject to 

approval by local air traffic control. UAS operations are precluded in all restricted areas that are 

published in aeronautical charts or announced through FAA’s Notice to Airmen (NOTAM) 

system. Laws, ordinances, and regulations at the local, state, or federal level may exclude 

additional areas or add other operating restrictions. Since this study proposed operating over a 

reservoir managed by USACE, it was necessary to obtain a Special Activities Permit from the 

USACE district office in Mobile, Alabama. As a condition of the permit, operations were 

required to maintain a minimum distance of 150 meters away from three security-sensitive sites: 

the USACE Lake Seminole field office, the Woodruff Lock and Dam and hydro-electric power 
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plant, and a correctional facility in Sneads, Florida. Prudence suggested maintaining a more 

generous buffer. These three facilities are collocated at the southernmost extremity of the 

reservoir, which is where the reservoir is deepest. Although hydrilla and other aquatic plant 

species are present to some extent in this area, they are limited to near-shore verges and are 

insignificant when compared to the vast vegetated expanses covering much of the rest of the 

reservoir. As such, it was reasoned that this area could be omitted without harming the ability to 

accurately estimate vegetation coverage for the reservoir as a whole. If necessary, vegetative 

coverage in these areas could be estimated using conventional survey methods, or by assuming 

based on bathymetric data that aquatic vegetation is present at water depths less than three 

meters. 

Further operational conditions under Part 107 are that the UAS must weigh less than 55lbs 

(<25kg), not exceed 160 kilometers-per-hour, and the remote pilot must keep the UAS within 

either their visual line of sight or that of a designated visual observer with whom they are in 

direct communication. The UAS cannot be operated directly over non-participating individuals 

or from a moving vehicle, except in unpopulated or very remote areas. The remote pilot assumes 

responsibility for ensuring that the UAS is in good condition and must maintain it or make 

repairs as recommended by the manufacturer. Any UAS operation which does not meet these 

requirements must receive a waiver from the FAA prior to execution, for which the applicant 

must demonstrate that sufficient risk mitigation for the proposed operations are in place.  

This survey complied with all the above listed requirements, including UAS registration, remote 

pilot certification, the receipt additional airspace authorization, and rules for commercial 

operations under Part 107. 
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Site Considerations 

In 2016, the area surveyed consisted of the entire reservoir, with the exception of some 

backwater areas, riverine portions of the Flint River and Chattahoochee arms of the reservoir, 

and areas where UAS operations were not allowed per the conditions of the special activities 

permit. In 2017, after a review of the 2016 survey, it was decided to omit certain areas of the 

reservoir whose bathymetric depth or other hydrologic factors made the presence of aquatic 

vegetation unlikely. Figure 3.2 provides a depiction of the areas surveyed in 2016 (Figure 3.2 

(a)) and 2017 (Figure 3.2 (b)). Table 2 summarizes the individual and aggregate geographic 

extent of the surveys, and the associated data volumes. 

 2016 2017 Total 

Data Volume: Video (GB) 618.6 302.4 921.0 

Data Volume: Image (GB) 351.0 169.2 520.2 

Data Volume: Orthomosaic (GB) 20.2 28.0 48.2 

Data Volume: Total (GB) 989.8 499.6 1,489.2 

Flight Line Distance (km) 736.37 769.93 1,506.30 

Reservoir Area (km2) 116.37 116.37 116.37 

Total Area Video Coverage (km2) 77.06 78.30 155.36 

Reservoir Area Video Coverage 

(km2)  

66.77 61.83     128.60 (gross) 

88.27 (net) 

Reservoir Area Orthomosaic 

Coverage (km2) 

38.75 29.42 49.02 

Data Reconstructed (%) 58.0% 47.6% 55.5% 

Reservoir Area Reconstructed (%)   33.3% 25.3% 42.3% 

 

Table 2: Summary statistics for UAS surveys of Lake Seminole by survey year 
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(a) 

 

(b)  

 

Figure 3.2: UAS coverage of study area in survey years 2016 (a) and 2017 (b)  
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The nature of the land use surrounding the reservoir was also taken into consideration during 

flight planning. Lake Seminole has a number of residential developments along the shore, as well 

as a great deal of State-owned timber land and protected wildlife refuges. Survey flight plans 

were designed to avoid encroachment on private property and minimize the potential for 

nuisance, as UAS operations near one’s back yard or boat dock could reasonably engender 

annoyance or skepticism of the pilot’s motives on the part of the landowner. It was hoped to 

demonstrate that UAS operations could help address an ecological issue of local importance 

without appearing to compromise geographic privacy or creating a nuisance which might 

generate public opposition to future monitoring efforts using UAS.  

The extreme heat and frequent precipitation throughout much of the growing season in 

southwestern Georgia presented technical challenges for conducting UAS operations. Showers 

and thunderstorms on and around Lake Seminole are a frequent but unpredictable occurrence, 

and usually appear with little warning in the early- to mid-afternoon. Even when UAS flights 

were not prevented by rainfall, this convective weather pattern did at times adversely impact the 

quality of imagery. Evanescent cloud cover would often cause random and abrupt changes in 

surface illumination that altered the perceived spectral characteristics of identical features 

between images in a flight line, and even moderate breezes could create enough surface chop to 

obscure submerged vegetation. With little shade afforded by the aluminum fishing boat from 

which operations were conducted and temperatures often in excess of 35℃, there were frequent 

problems with electronic equipment overheating and malfunctioning or entering failsafe mode. 

Efforts to shield equipment from direct sun exposure or limit contact with radiative surfaces 

proved moderately successful; however, even in the shade, high ambient temperatures and 

humid, stagnant air limited the ability of internal fans and heatsinks to remove waste heat from 
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sensitive electronics. The UAS itself was not immune to these effects. On multiple occasions, 

after a few successive flights the UAS would malfunction with an unspecified error message 

when attempting to transmit the flight plan from the remote control to the UAS. This problem 

never occurred in cooler weather and would resolve once the aircraft cooled down, which 

suggested overheating of one or more internal components. The ambient external temperatures 

during the hottest parts of the day exceeded the 40℃ and 35℃ maximum operating temperatures 

of the UAS (DJI 2016), and iPad flight controller (Apple, Inc. 2019), respectively. Survey 

efficiency therefore benefitted greatly from implementation of a number of heat mitigation 

strategies. Shading of all electronic equipment was achieved using clamp umbrellas and towels. 

Direct contact between any batteries, electronic equipment or the UAS with metal surfaces was 

avoided by interposing white poster board. Only by effectively mitigating direct sun exposure 

and boosting air flow was it possible to fly the UAS continuously throughout the day in intense 

summer heat.  

 

Survey Equipment 

        A DJI Phantom 3 Professional, a lightweight (1.28kg) quadcopter-style UAS, was used for 

this study, as depicted in Figure 3.3. The standard RGB camera was fitted with a color polarizer 

lens filter to reduce glare and overexposure from the brightly-illuminated water surface. 

Modifications were made to the remote control to boost its signal transmission and enable HDMI 

video output. Live, HD-resolution video could then be viewed through FPV flight goggles at any 

point in the flight, enhancing situational awareness and the ability to adjust and verify the 

suitability of camera settings for actual field conditions. While the iPad tablet computer running 

the flight planning interface did provide a live video feed through the USB to lightning cable, the 
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playback quality was poor and outdoor lighting conditions created too much glare to visualize 

the screen clearly. It was also necessary to close the lid of the tablet enclosure for extended 

periods of time to conserve battery and avoid overheating, which limited its use for flight 

monitoring purposes. Eight UAS flight batteries, a mobile power source, and a four-bay charging 

station were sufficient to enable continuous flight throughout the day. Each battery takes 

approximately one hour to charge at 100 Watts (W). A 400W charger capable of simultaneously 

charging four batteries was connected by a power inverter to an automotive battery. Using this 

method, four batteries could be recharged while the other four were used. The maximum number 

of flights conducted in a single day was 20. Starting with eight charged flight batteries, two 

automotive batteries provided enough power to charge the additional 12 flight batteries needed. 

Deep-cycle lead-acid marine batteries were initially used, and while relatively cheap (around 

$50USD), they were cumbersome (>28kg each) and their power storage capacity attenuated 

rapidly before failing altogether at the end of the 2016 survey. They were replaced for the 2017 

survey with a lithium ion mobile power supply, which had roughly the same power storage 

capacity but was smaller, lighter (11.3kg), had an integrated power inverter and sturdy carrying 

case, but was much more expensive ($1,000USD). Another viable but costlier solution would 

have been to purchase a total of 20 flight batteries for a total cost of around $2,400USD. 
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Figure 3.3: Photograph of field survey equipment and operating conditions 

 

Survey Design 

        The survey was designed to maximize daily areal coverage while minimizing conditions 

that might negatively affect image quality or adherence to the Part 107 operational requirements. 

All flights were carried out at 120 meters AGL with 100-meter spacing between flight lines. In 

the 2016 survey, a variety of flight line directions and sensor orientations were evaluated to 

determine the best combination of parameters. A top priority was to minimize image noise 

introduced by specular reflectance, the random diffraction of light from the surface of water. 

Figure 3.4 gives an example of the negative impact that surface reflectivity, sensor angle, and 
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atmospheric conditions can have on the quality of the resulting orthomosaic imagery. Images 

taken at nadir were found to have the highest levels of specular reflectance, and greater obliquity 

resulted in a progressively milder impact, given the same sensor direction and time of day. 

However, high obliquity imagery is more computationally demanding to process than nadir 

imagery, and the effective ground-sample distance (GSD) is reduced due to the increased 

distance between the target and sensor. A 30º oblique angle was determined to provide an 

optimal reduction in specular reflectance without adversely impacting spatial resolution or 

processing time. 

The UAS model used in this survey did not have the capability to alter sensor direction 

independently of the aircraft frame and so was fixed with respect to the direction of flight. In 

order to avoid sun glint, oblique images need to be directed away from the sun, so the flight 

planner should consider the time of day when choosing flight line orientation. For example, an 

oblique image facing East would be severely impacted by sun glint in the morning but would not 

be affected by mid-afternoon. When a mission’s flight lines were oriented East to West, the 

sensor direction had to be manually reoriented to face either East or West depending on the time 

of day. Such frequent, on-the-fly changes to the flight plans created additional processing 

difficulties and precluded the development of a standardized, repeatable survey structure. Also, 

failure of image alignment during photogrammetric reconstruction would frequently occur when 

oblique images were oriented in opposite directions between adjacent flight lines, particularly if 

the images contained a substantial number of trees or other vertical elements. It was not deemed 

efficient in terms of per-flight areal coverage to fly “sideways”, orienting the sensor 

perpendicular to the flight line. Since the UAS video format’s field of view is wider side-to-side 
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(4096 pixels) than top-to-bottom (2160 pixels), the area covered by each flight line is greatly 

diminished and requires flight lines to be closer together to ensure sufficient side overlap.  

 

Figure 3.4: Striping in an orthomosaic from cloud-induced overexposure  

 

Another component of overall survey efficiency is to minimize the distance between the start and 

end points of the flight line from the point of takeoff or home point location, therefore utilizing 

the most battery life for the survey portion of the flight. UAS operations from a boat offered 

greater flexibility than on land with respect to the location of and transit time between home 

points. Changing home points every four to six flights was found to be a suitable compromise 

between the conflicting priorities of maximizing flight battery efficiency and minimizing transit 

time between home point locations. Figure 3.5 illustrates how the nature of the land cover, and 

decisions related to flight line and sensor orientation and obliquity are accounted for in flight 

planning. Figure 3.5(a) is problematic logistically because it is westward facing, which will be 

compromised by sun glint if flown in the afternoon, transects open water, and is comprised of 
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multiple short flight lines. Figure 3.5 (b) is optimal because it is north-facing and can be flown 

any time of day, the lines do not transect a large expanse of open water, and it is comprised of 

only two lines. 

  

 a)  b)  

 

Figure 3.5: Examples of flight line and sensor orientations used: a) a problematic flight design; 

and b) an optimal flight design  

 

The survey design developed iteratively during the 2016-2017 seasons to address the issues 

outlined above. The optimal combination of factors determined include: 1) North-South oriented 

flight lines, 2) northerly sensor direction, and 3) a 30º oblique sensor angle. These were found to 

offer optimal areal coverage, consistently minimize specular reflectance throughout the day, and 

the potential for uniform application across the study area. The only exceptions to this pattern 

were portions of the Flint River arm of the reservoir where a number of factors justified limited 

deviation in flight line orientation. This arm of the reservoir runs East-West, and vegetated areas 

along the banks are bifurcated by a large expanse of open water. In some areas, a single East-
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West oriented flight on each bank could effectively substitute for several North-South oriented 

flights, which would mostly cover open water.   

 

Data Acquisition 

        The UAS sensor used was capable of capturing true-color still images at 12MP (4000x3000 

pixels) and video at up to 4K (4096x2160 pixels) resolution, which translates to a GSD of 

approximately 7 cm when flown at 120 meters above ground level (AGL), near the maximum 

UAS flying height allowed under Part 107. Still images can be captured at a maximum rate of 

one of per second, and 4K video at a rate of 24 frames per second (fps). Whereas still images 

record sensor GPS location in Exchangeable Image File (EXIF) metadata, video frames do not 

contain any location information. The lack of GPS data and the additional time needed to render 

still frames are drawbacks to using video, but there are also a number of advantages. While a 

one-second sampling rate would in general provide enough overlap between successive images 

to photogrammetrically reconstruct a scene, sometimes a shorter time interval may be required, 

depending on UAS velocity, flying height, and the nature of the land cover being mapped. For 

example, images comprised mostly of spectrally-homogenous open water can confound the 

image matching process unless highly redundant images are available. Unlike still images, video 

guarantees that the data collected will be sufficient to map a scene under a wide range of 

operational conditions, eliminating the possible need to re-survey the area, which could be 

impractical or even impossible. 

Although a 4K video frame is lower resolution than a 12MP still image (8.847 million vs. 12 

million pixels), this difference is attributable to differing aspect ratios and does not affect the 

GSD of the resulting image. For this survey, the aspect ratio of 4K video offers a slight 
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advantage over still images in terms of image width (4096 vs. 4000 pixels), and its reduced 

height (2160 vs. 3000 pixels) is compensated for by rendering frames with a shorter time interval 

between images. 

A major disadvantage of using video frames is the absence of GPS tags which can be utilized by 

the photogrammetric software to initialize the coordinate system, scale, and orientation of the 

model, reduce image alignment time, and simplify the georeferencing process. To address this 

limitation, a method to extract, format, and append GPS location data to video frames was 

identified. The UAS flight planning application includes an option within the advanced video 

settings called “Create Video Caption” which, when enabled, outputs a companion text file in 

SubRip Subtitle (SRT) file format for each video. During video playback, text from the SRT file, 

which includes sensor settings (ISO, shutter speed, f-number), time stamp, GPS location, and 

barometer value (flying height in meters above takeoff elevation) is superimposed on the video 

and refreshes at one second intervals. The video duration and frame rate from the video metadata 

are used to pair each extracted video frame with the most-closely corresponding SRT entry. If 

the frame extraction rate significantly differs from or is offset to the SRT sampling interval, the 

location of the frame is determined by linear interpolation between the X and Y coordinates of 

the two closest entries while assuming a constant velocity. The coordinates of each frame are 

then collated into a table in comma separated values (.csv) format containing four values: file 

name, longitude, latitude, and flying height. The .csv can then be imported into the 

photogrammetric software as location metadata. This method presented a number of 

shortcomings that should be noted. First, locational precision is limited to >10 meters since the 

coordinate values displayed in the video caption are truncated to 4 decimal places, while EXIF 

tags from a UAS image are recorded to 12 decimal places. Next, the assumption underlying the 
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determination of intermediate camera locations based on linear interpolation, namely constant 

velocity along the flight path, is belied in practice by a feature of the flight planning software 

used. The software restricts the maximum distance between any two subsequent waypoints in the 

flight plan to 6,000 feet (1828.8 meters). At each waypoint, the UAS is programmed to 

decelerate from cruising speed to a stop as it approaches the waypoint before accelerating back 

to cruising speed. Finally, the SRT to .csv conversion required multiple additional steps and was 

necessarily more time consuming than automatic EXIF metadata import. A simpler and more 

user-friendly method to capture location metadata from the UAS flight to aid in georeferencing 

was determined subsequent to the Lake Seminole surveys. It involves simply taking a few still 

images at the beginning and end of a survey flight before and after video collection. This takes 

an insignificant amount of flight time and provides an enormous benefit. Ideally, the still images 

should be well-distributed throughout the scene to minimize georeferencing error.  These few 

still images, which overlap with the video frames, provide sufficient coordinate system 

information to georeference the orthomosaic. The referencing results were significantly more 

accurate, even when the referenced still images were not well-distributed in the scene. Given the 

comparative ease of this georeferencing method, it is not then necessary to provide location 

metadata for the video frames through the previously described SRT conversion process. 

The process of converting a video to a set of still images is straightforward and may be 

accomplished using a number of freely-available software programs. Blender Render v.2.69 was 

used for video frame extraction. A .blend program file template was created to store pre-defined 

processing and output parameters, and required the user only to select a video file, specify the 

last frame in the video, and select the folder location and file name prefix for the output still 

frames. Using a template file for still frame extraction ensured consistency in the parameters 
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used to process several hundred video files. The frame extraction process can be time-

consuming, (60-90 minutes to render frames from a single flight) but is not computationally 

demanding and can be run on a 32-bit operating system. The processing was distributed across 

several computers reading and writing from a network attached storage (NAS) device. The frame 

rendering parameters control image size, anti-aliasing options, color depth, image format, and 

compression level. No digital filters or alterations to brightness, contrast, or saturation values 

were made prior to photogrammetric reconstruction. Image size can be the same as the input 

video resolution (4096x2160p) or downscaled by two to 2048x1080p resolution to minimize 

processing time. Downscaling images can allow for processing larger image sets on the hardware 

available with negligible effects on model quality. Frames were rendered at a rate of 1 per 

second, anti-aliased, and saved as Joint Photographic Experts Group (JPEG) images. The 

average file size was between 2-3 megabytes (MB). Tagged Image File Format (TIFF), Portable 

Network Graphics (PNG), and Bitmap (BMP) image file formats were all evaluated in terms of 

their relative size and image quality. There was little apparent difference in image quality 

between a 2MB JPEG and a 32MB BMP rendering of the same frame, so it was decided to use 

smaller JPEGs. Since random-access memory (RAM) usage during photogrammetric 

reconstruction is a limiting factor and proportional to aggregate image file size, smaller 

individual files enable larger and higher quality models to be generated with the available 

amount of RAM. The SRT captions were then converted into a .csv which used the same naming 

convention and sampling rate as the video frames, so that they can automatically be assigned to 

the correct image in the photogrammetric processing program.  
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Photogrammetric Processing 

        Structure from Motion (SfM) photogrammetry was then performed using Agisoft 

Metashape Professional software (formerly known as Agisoft Photoscan). While 

photogrammetry has been used for over a century to map terrain and elevations (Frank and 

Manten 1969), SfM is a recent development resulting from application of machine-learning and 

computer vision algorithms to traditional photogrammetry. SfM is a much more powerful and 

applicable than traditional photogrammetry because it enables the computer to solve the camera 

location for each image, whereas in traditional photogrammetry the sensor location and 

orientation had to be known a priori, and the calculations required to reconstruct images other 

than nadir aerial images were prohibitively difficult. The SfM process produces a fully 

reconstructed three-dimensional (3D) scene from a series of overlapping 2D images. The process 

uses machine-learning algorithms and iterative bundle-block adjustment procedures to identify 

corresponding features in overlapping images and solve for the camera locations and assign all 

matched points a coordinate in 3D space and RGB color. Using this initial alignment, an 

exhaustive set of point matches is computed, resulting in a dense point cloud. A triangulated 

mesh model is then generated from the dense point cloud. The mesh faces are assigned an RBG 

color based on the average of the vertex colors from the dense point cloud. An image texture can 

also be generated by projecting the source images onto the mesh model. SfM can yield incredibly 

detailed and photorealistic models (Wang et al. 2019), and can be used to map and represent a 

range objects from the microscopic (Plisson and Zotkina 2015) to the landscape scale (Smith, 

Carrivick, and Quincey 2016). 

The workflow to perform SfM may vary depending on the limitations of computer hardware, 

desired model quality, and size of the project. A general workflow used in this study is depicted 
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in Figure 3.6. The hardware specifications of the workstation(s) to be used in photogrammetric 

processing, including central processing unit (CPU) core count and base frequency, graphics 

processing unit (GPU) core count, and available random-access memory (RAM) all play a role in 

determining the maximum achievable model size and reconstruction quality. Reconstruction was 

attempted initially using a single workstation equipped with 16 GB of RAM and a quad-core 

CPU with an integrated graphics card. This system was only able to process image sets, referred 

to as chunks, of 100-200 images within a reasonable time frame (subjectively, less than 24 

hours). Frequently, protracted photogrammetric reconstruction on a very large dataset would 

result in program or computer crashes, necessitating repetition of the entire process. This is both 

frustrating and inadvisable from an efficiency standpoint. Computer calculations for the bundle 

block adjustment and dense point cloud generation can be greatly accelerated by the addition of 

even a single dedicated GPU. Photogrammetric processing using only CPU or an integrated GPU 

is not recommended. The computer hardware limitations described led the initial survey dataset 

to be processed in several hundred chunks of 100-200 images each. Images were output during 

video extraction with a file nomenclature and folder structure organized by flight ID and flight 

line sequence number. Prior to executing the reconstruction process, overlapping images were 

loaded manually to chunks by referencing the flight plans. Image thumbnails were visually 

scanned, and images containing mostly open water that would have insufficient tie points to 

align properly were disabled so that they would not be used in the alignment process. Where 

intervening open water bifurcated a flight line into two or more spatially discontinuous segments, 

the chunk would be duplicated and processed separately. The chunk nomenclature would be 

amended to reflect a sub-flight division (i.e., 2016_Flight37_Line1_Segment1). This was 
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necessary to keep track of the myriad chunks to ensure that they would align with the appropriate 

adjacent chunks in subsequent steps. 

Processing very large scenes in many small increments is not recommended. Alignment and 

union of adjacent chunks based on dense cloud comparison caused distortions or failed 

altogether and the many chunks became progressively more tortuous to keep track of. However, 

given initial hardware limitations, this was the only option available, and orthomosaics of up to 

2,000 images were ultimately produced using this method, so it might be sufficient for smaller 

study areas. 

In order to efficiently process the very large image sets (over 115,000 images total) this survey 

produced, more numerous and powerful computational resources were required. Using Agisoft 

Metashape, each processing step can be distributed amongst a number of computers in a local 

network which is much faster and more efficient than with a single computer. A multi-

workstation and NAS setup was assembled specifically for the purpose of processing this survey 

imagery. Four workstations with high available RAM (32-64GB), CPUs with high base 

frequency (>3.0 GHz) and core-count (>10), and multiple graphics cards were networked to 

process the surveys. The workstations were custom-built for photogrammetric processing. The 

marginal impact of adding graphics cards on overall processing time diminishes with each 

additional card, so with four workstations and eight available graphics cards, the optimal 

configuration is for each to contain two GPUs. With this hardware setup, no maximum imagery 

quantity threshold was identified for the number of images that could be processed in a single 

chunk for the image alignment step. The largest chunk contained over 21,000 images and aligned 

in under four hours. Now, instead of having to divide flights into multiple chunks due to 

computational limitations, twenty or more flights could be processed in a single chunk. The 
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image alignment step for an entire annual survey dataset can be accomplished in a single day in 

three to four chunks, which can be duplicated and sub-aligned where spatial discontinuities exist. 

In cases where large numbers of images failed to align due to predominance of open water, the 

chunk can be duplicated, the aligned images removed, and the previously unmatched images 

aligned. This was faster and lessened the opportunities for human error in chunk compilation and 

processing. Following the alignment step, the sparse point cloud was manually evaluated and 

modified. Generally speaking, the initial alignment on large projects does not match all of the 

photos, and sometimes spurious image alignments miscalculate the camera position, which 

cascades into subsequent calculations, warping what should be a planar surface into an 

involuting nautilus shell-like formation. The frequency of this behavior is less frequent (but not 

absent) when image GPS tags are applied and is greater with low tie point land cover types, such 

as open water. When images do not initially align correctly or at all, they may be selectively 

aligned or refined using the ‘Align Selected Cameras’ command. If there is a spurious alignment, 

alignment for certain or even all cameras can be reset and realigned in a stepwise fashion. 

Starting by aligning a small subset of images covering an area high in textural variety and 

verticality seemed to more reliably form a planar initial alignment. Conversely, starting 

alignment with poorly focused images, large amounts of open water, and homogenous land cover 

types tended to enhance undesirable curvilinearity in the model. 

For each chunk, the user should also verify the Reconstruction Region, the bounding box 

delimiting the area to be reconstructed, is positioned appropriately. The Reconstruction Region is 

initialized during the image alignment step and does not change with subsequent manual image 

alignment. The ‘Reset Region’ function may cut off the edges of long or narrow point clouds. 

The reconstruction region must be resized manually in these cases. 
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Once all cameras are satisfactorily aligned, the ‘Optimize Cameras’ tool is used to correct for the 

effects of lens distortion on the point cloud using Brown’s distortion model. The UAS camera 

lens distortion coefficients for Brown’s distortion model were calculated by collecting numerous 

images of a computer monitor displaying a black and white checkerboard pattern from multiple 

angles, adding these images to a chunk, and applying the ‘Lens Calibration’ tool. The 

coefficients to Brown’s distortion model are calculated and then applied to the survey images, 

and the ‘Optimize Cameras’ tool is run. Following initial optimization, the point clouds were 

then filtered and thinned according to statistical measures of each point’s accuracy using the 

‘Gradual Selection’ tool in Metashape. The goal of tie point filtering is to increase the accuracy 

of the tie points used to reconstruct the dense cloud, eliminating noise and roughness in the 

reconstructed surface and resulting in a better model. Metashape analyzes tie points, common 

features automatically identified on multiple images, and scores each point according to its 

reconstruction uncertainty, projection accuracy, and reprojection error. Points with high 

reconstruction uncertainty were eliminated first, then cameras were optimized. Then, error values 

for the remaining points are then automatically recalculated. The same steps are applied to the 

projection accuracy and reprojection error. Points with a value higher than a specified target 

level are selected and removed. The target levels for each parameter are empirically derived 

(Gatewing 2017). It is preferable to remove tie points in multiple iterations rather than a single 

step (Mayer, Pereira and Kersten 2018). In this situation, too many tie points may be removed, 

leading to partial or null results in the dense cloud step. This effect was pronounced in areas 

mixed with deeply submerged vegetation and open water. It is better to include some inaccurate 

points than remove points beyond a critical threshold (Röder, Hill, and Latifi 2017). When to 

terminate iterative point removal should be assessed on a case-by-case basis and the point cloud 

https://www.researchgate.net/scientific-contributions/2126646757_Marius_Roeder
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should be inspected prior to reconstructing the dense cloud to verify that sufficient tie points 

remain. 

When optimization yields a satisfactory alignment, a dense point cloud is reconstructed. The tie 

points are used as a basis for the reconstruction and all possible matching points are calculated, 

yielding the dense point cloud. Medium or low quality settings are recommended for chunks 

with more than 5,000 images, and very low quality for those with greater than 5,000 images.  

If scene topography is uniform or the structure of vertical elements are irrelevant to the task, it is 

possible to skip dense cloud generation altogether and create a mesh directly from the sparse 

cloud. This model will have a much lower polygon count than if a dense cloud were used, but it 

may be beneficial to produce a rapid initial result to check alignment and texture quality prior to 

processing at a higher quality level.  

Elevation data, including DEM and bare-earth digital terrain models (DTMs) can be generated in 

Metashape following dense cloud generation. DEMs are used in subsequent steps to identify and 

mask out areas of the orthomosaic that are irrelevant to the analysis, such as the trees and 

riparian vegetation on islands and along the shore. A DTM can save processing time during mesh 

generation by excluding above ground elements from reconstruction. The following steps are 

used to exploit the DTM. The ‘Classify Ground Points’ tool assigns points to the ground class if 

the point lies below a threshold angle from the lowest points within a specified region of the 

model. The default values for the Classify Ground Points tool provided satisfactory results for 

this step. Since the reservoir’s surface is virtually flat, above water points are easily classified. 

Once the dense cloud is classified, a mesh can be generated using ground points only. The ‘Build 

DEM’ tool is then run using the ground-points-only mesh, which yields a DTM. Topographic 

contours are then generated from the DEM. The contour best representing the reservoir’s surface 
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is selected both visually and numerically. The vertical coordinate system defaults to meters 

AGL, with zero being the UAS starting elevation. Since the UAS takeoff elevation is just above 

the water, the shoreline boundary contour was assumed to be somewhere close to zero. Multiple 

contours for a narrow range (-1 to 1 meters) were generated and overlaid on the orthomosaic in 

Metashape to visually identify the contour that best fit the shoreline, which was then exported as 

a polygon shape file to mask land area in the orthomosaic prior to image segmentation and 

classification. 

Once the 3D model and DEM have been generated, the final step in the photogrammetric 

reconstruction process is to build an orthomosaic and export it to a GIS software for further 

image analysis. When building the orthomosaic, it is recommended to use a mesh generated with 

the highest quality setting possible for a given model size. For very large datasets (>5,000 

images), Metashape is prone to freeze or crash when the quality level is set above medium (high 

or ultra-high quality settings). Metashape creates orthomosaics by projecting the texture of the 

3D model onto a plane lying orthogonal to the top-down view. The orientation of the projection 

plane is calculated automatically for every model using the georeferencing data. In the event the 

mesh lacks or has incomplete georeferencing data, the projection plane does not always 

correspond well to the model, which can yield a warped orthomosaic. When the model lacks 

image metadata, the ‘Reset Region’ and ‘Rotate Object’ tools can be used to correctly orient the 

model with respect to the view angle. When image metadata is present and this issue occurs, the 

tools to rotate or transform the 3D model are disabled. This situation must then be resolved by 

rotating the model in the viewer window to the desired top-down view and specifying ‘Current 

View’ instead of the default ‘Top-Down’ option in the Build Orthomosaic dialog box. This issue 

was infrequent when the model contained image location metadata, but did still occur in some 
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cases. For these cases, it was hypothesized that the misalignment arose from the program 

assuming in the absence of sensor orientation data that the images were taken at nadir, when they 

were in fact at an oblique angle. Importing sensor orientation values and re-processing the 

dataset could potentially resolve the issue for affected models. Once the orthomosaic is generated 

and inspected in Metashape, it is exported for further analysis in ArcMap GIS software. The 

orthomosaics were exported in GeoTiff format, since it is a lossless format and stores 

georeferencing data in the same file as the image. The orthomosaic’s reference data were 

transformed from a geographic coordinate system (WGS 1984) to a projected coordinate system 

(WGS 1984 UTM Zone 16N) prior to export. Products of this photogrammetric reconstruction 

workflow were a dense point cloud, 3D model, georeferenced orthomosaic image, DEM, DTM, 

and topographic contours. This process could produce additional data products which could be 

used for visualization and analysis purposes, which will be addressed in Chapter 5.  

 

Figure 3.6: Diagram of the photogrammetric reconstruction workflow used 

 



 

45 

Geographic Object-Based Image Analysis (GEOBIA) 

          A geographic object-based image analysis (GEOBIA) process was then performed on the 

photogrammetrically-generated orthomosaics. The GEOBIA process consisted of three stages: 

image segmentation, training area selection, and image classification. Image segmentation 

involves partitioning a raster into groups of pixels with similar characteristics, known as 

segments, that represent discrete image objects. Raster segments are generated based on 

evaluation of statistical measures of each pixel’s spatial relationship and spectral similarity. 

Segment size, the minimum number of pixels needed to constitute a discrete segment, varies 

according to the relative importance of spectral detail, spatial detail, and minimum segment size. 

The segment size parameter was determined to be the most important factor in achieving an 

appropriate segmentation scale, echoing the findings of Kim et al. (2014). When the 

segmentation scale parameter is set to one, processing time is increased, a larger set of training 

samples is required by large amounts of within-class spectral variability, since even the smallest 

individual object is composed of numerous segments. At the opposite extreme, a large minimum 

segment size in the thousands risks obscuring smaller, more dispersed objects, such as floating 

leaf vegetation which are often not spatially contiguous. This also confuses the training selection 

because the merged segment color will potentially include pixels from a number of different 

classes. Large minimum segment sizes were found to poorly differentiate between open water 

and deeply submerged macrophytes, leading to poor classification accuracy. A minimum 

segment size of 16 was determined iteratively to be the most appropriate scale for identifying 

floating leaf vegetation and limiting the overestimation of open water area. Figure 3.7 illustrates 

the impact of the minimum segment size parameter on segmentation results by showing an area 
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of mixed macrophyte and floating leaf vegetation at progressively greater minimum segment 

sizes.  

   
Figure 3.7: The impact of minimum segment size on segmentation results, showing minimum 

segment sizes, from left to right, of: 1, 16, and 1,600 

 

Once a segmented raster is generated, a training sample file is created manually through image 

interpretation. Training areas are a subset of segments selected to best represent a given 

vegetation or land cover type, and are used as the basis for classifying the rest of the segmented 

image. Classification accuracy is highly dependent on the quality of the training area selected. 

The training segments should be comprehensive and exhaustive, such that every object in the 

image is represented by a class in the training sample, and each spectral variant of an object is 

represented by its own class. This may necessitate that a single vegetation class be initially 

comprised of multiple classes which are merged following image classification into a single 

class. The training set should contain at least twenty discrete segments for each class (Green 

2017), but in practice it was found to require a much higher number of segments, to avoid a 

software-generated warning message about low sample size, and potentially poor classification. 

A sample size of around 150 segments was used for the classification presented herein. 

It is important to keep in mind the desired or attainable level of detail of the classification 

scheme when selecting training areas. For example, broadly inclusive training segments would 
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be appropriate if the end goal were to simply determine presence/absence of vegetation. A 

progressively more discriminating selection is required to distinguish between vegetation types 

(such as SAV vs. floating leaf), individual species, or phenologic stage of an individual species. 

Training areas must also account for within-class spectral variation caused by differences in 

illumination, such as shadows or sun-glint. These areas should be classified separately and 

merged with the appropriate vegetation class following image classification. 

Image classification is accomplished by applying the training results to an algorithm which then 

determines the spatial and spectral attributes of each class and categorizes the entirety of the 

segmented image accordingly. The algorithms used were Maximum Likelihood Classifier, ISO 

Cluster Classifier, Random Forest (also referred to as Random Trees in ArcGIS software), and 

Support Vector Machine (SVM). 

 The data produced by Metashape were imported into ArcMap 10.5 for the GEOBIA analysis. 

The images were clipped to exclude land and riparian species from the classification, greatly 

simplifying analysis and reducing processing time, as land classes exhibited greater within-class 

spectral variability and were not relevant to the research objective. The segmentation and 

classification steps were then applied in a batch process to each orthomosaic using the 

ModelBuilder function. Processing time varied according to the size of the input raster, specified 

minimum segment size, as well as the number of input bands, and ancillary raster inputs 

included. Following segmentation, training sample files were manually produced for each raster. 

Differences in scene illumination, phenological stage and relative abundance and assemblage of 

classes prevented the uniform application of a single training area file to multiple orthomosaics. 

While in some areas, individual species and phenological stage were readily identifiable from the 

imagery, spectral similarities between certain species, in particular submerged non-hydrilla 
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macrophytes, resulted in unreliable classification results at the species level. Therefore, although 

the training samples were selected at a fine level of detail, including species and phenology, it 

was decided for the final classification map to reclassify and merge classes to a broader 

classification hierarchy. This improved classification accuracy and provided a consistent 

classification scheme with previous in-situ and remote sensing-based vegetation surveys in the 

study area. Therefore, with the exception of hydrilla, the classification scheme used in the final 

classification map corresponded to the Plant Community column of the classification scheme 

presented in Table 3 below. Although the classification was generalized, the results were more 

detailed in terms of spatial coverage than previous surveys. 

 

Land 

Cover 
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Absence 

Plant 
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Species 

 

Zonal (Depth) 
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Aquatic 
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Hydrilla 

Pondweed 
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Emergent 

Submergent 

 

Healthy 
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Floating Leaf  

Water hyacinth 

Waterlily 

American lotus 

 

Emergent 

 

Healthy 

Senescent 

Bloom 

Algae Lyngbya 

Chara 

Emergent 

Submergent 

 

Table 3: Vegetation Classification Scheme 
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Once the training samples were created, they were input along with the segmented raster to train 

multiple pixel- and object-based classifiers, including the Maximum Likelihood Classifier, 

Random Trees Classifier and Support Vector Machine Classifier. In addition, an unsupervised 

pixel-based ISO cluster classification was performed on the unsegmented raster. Following 

classification, classes were merged using the ‘Reclassify’ tool from the ArcMap 3D Analyst 

Extension according to the above-mentioned classification hierarchy. Five classes were 

ultimately created in the final classified maps: floating leaf vegetation, hydrilla, mixed 

macrophyte, lyngbya, and open water. Due to between-class confusion, it was decided to merge 

mixed macrophyte and lyngbya classes, yielding four classes. Following reclassification, 

accuracy assessment for each of the classified maps was conducted. 200 randomly-generated 

accuracy assessment points (50 for each class) were placed within the boundaries of the 

segmented raster using an equalized stratified random sampling scheme. The map classification 

values for each point were compared to a ground truth classification value, which was 

determined by manual interpretation of the unsegmented raster. From these data, confusion 

matrices were generated using the ‘Compute Confusion Matrix’ tool, which reported user’s 

accuracy and producer’s accuracy for each class, overall model accuracy, and Kappa coefficient 

for each classifier. 
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Chapter 4 

Results  

      This study sought to 1) use a consumer-grade UAS to collect remote sensing data of aquatic 

vegetation in Lake Seminole, Georgia at multiple time periods and under varied phenological 

and atmospheric conditions; and 2) use these data to classify and map emergent, submerged, and 

free-floating vegetation. Geographic object-based image analysis was used to delineate and 

classify aquatic vegetation at the plant community level. It was intended to assess whether this 

method would constitute an improvement over alternative survey methodologies in detecting 

inter- and intra-annual changes in vegetation coverage for ecological monitoring and reservoir 

management. 

The orthomosaic imagery (~7cm spatial resolution) generated from the 2016 survey is presented 

in Figure 4.1. An unsupervised pixel-based ISO cluster classification was performed for each 

orthomosaic and amalgamated into one classified map of vegetation over a 38 km2 area of Lake 

Seminole (Figure 4.2). Due to the fact that a different training set would need to be applied to 

each orthomosaic for a supervised image classification, a reservoir-scale map of vegetation using 

supervised classification was not completed. This will be addressed further in Chapter 5. Figure 

4.3 depicts supervised classification results for a subset of the reservoir. This 507-hectare site, 

known locally as Sealy’s Point, was selected due to its central location in the reservoir between 

the Spring Creek and Flint River arms and its high diversity of vegetation assemblages, including 

hydrilla dominant, floating leaf dominant, and heterogenous areas, as well as open water of 

different hues. Essentially all of the vegetation classes present in the reservoir are depicted in this 



 

51 

single orthomosaic, minimizing spectral variation due to atmospheric conditions on multiple 

flight days. The results of a previous in-situ vegetation classification survey (Shivers et al. 

2018b) are shown in Figure 4.4 to provide a comparison between the results of this survey and 

previous survey methods. Figure 4.5 shows the UAS orthomosaic (a) and unclassified segmented 

raster (b) of Sealy’s Point. The supervised and unsupervised vegetation classification results for a 

portion of the study area are presented in Figure 4.6 (a-d). In general, lyngbya was not reliably 

differentiated in the ISO cluster classification, and so this class was merged with mixed 

macrophyte in Figure 4.6 (b). The results of the accuracy assessment are presented in Table 4. 

Overall, Random Forest was found to provide the best classification accuracy (78.5%). The 

classification accuracy for the highest-performing model was slightly lower but in the same 

range as Husson et al. (80.4%), Tung-Ching and Chou (90%), and Kim et al. (91%). 
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Figure 4.1: UAS orthomosaic coverage of Lake Seminole in 2016 

 

Figure 4.2: Unsupervised ISO classification of vegetation in Lake Seminole 
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Figure 4.3: Map of Sealy’s Point vegetation classification test area 

 

Figure 4.4: Map displaying the results of Shivers’ 2014 vegetation survey of Sealy’s Point 
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Figure 4.5 (a): 2016 Unclassified segmented orthomosaic image of Sealy’s Point 

 

Figure 4.5 (b): Unclassified segmented raster of Sealy’s Point 



 

55 

 

Figure 4.6 (a): Supervised Maximum Likelihood Classifier of Sealy’s Point 

 

Figure 4.6 (b): Unsupervised ISO Cluster Classifier of Sealy’s Point 



 

56 

 

Figure 4.6 (c):  Supervised Random Forest Classifier of Sealy’s Point 

 

Figure 4.6 (d): Supervised Support Vector Machine Classifier of Sealy’s Point 
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a) Confusion Matrix for Maximum Likelihood Classifier 

 

Class Value Floating 

Leaf 

Hydrilla Mixed 

Macrophyte 

Open 

Water 

Total User’s 

Accuracy 

Floating Leaf 3 0 3 0 6 0.5 

Hydrilla 0 17 0 0 17 1.00 

Mixed Macrophyte 6 30 54 1 91 0.593 

Open Water 1 23 24 38 86 0.442 

Total 10 70 81 39 200  

Producer’s 

Accuracy 

0.300 0.243 0.667 0.974  0.560 

Kappa      0.372 

 

b) Confusion Matrix for ISO Cluster Classifier 

Class Value Floating 

Leaf 

Hydrilla Mixed 

Macrophyte 

Open 

Water 

Total User's 

Accuracy 

Floating Leaf 8 4 11 0 23 0.348 

Hydrilla 2 39 32 3 76 0.513 

Mixed Macrophyte 8 17 24 1 50 0.480 

Open Water 0 14 2 35 51 0.686 

Total 18 74 69 39 200  

Producer's 

Accuracy 

0.444 0.527 0.348 0.897  0.530 

Kappa      0.341 

 

c) Confusion Matrix for Random Forest Classifier 

Class 

Value 

Floating 

Leaf 

Hydrilla Mixed 

Macrophyte 

Open 

Water 

Total User's 

Accuracy 

Floating Leaf 7 0 2 0 9 0.778 

Hydrilla 0 41 5 3 49 0.837 

Mixed Macrophyte 3 20 74 1 98 0.755 

Open Water 0 9 0 35 44 0.795 

Total 10 70 81 39 200  

Producer's 

Accuracy 

0.700 0.586 0.913 0.897  0.785 

Kappa      0.679 
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d) Confusion Matrix for Support Vector Machine Classifier 

Class Value Floating 

Leaf 

Hydrilla Mixed 

Macrophyte 

Open 

Water 

Total User's 

Accuracy 

Floating Leaf 6 3 5 0 14 0.429 

Hydrilla 0 31 12 1 44 0.705 

Mixed Macrophyte 4 25 63 1 93 0.677 

Open Water 0 11 1 37 49 0.755 

Total 10 70 81 39 200  

Producer's 

Accuracy 

0.600 0.443 0.778 0.949  0.685 

Kappa      0.539 

 

Table 4: Confusion Matrices for a) Maximum Likelihood Classifier b) ISO Cluster Classifier c) 

Random Forest Classifier and d) Support Vector Machine Classifier 

 

The results indicate that with the UAS image data of Lake Seminole, machine learning classifiers 

outperformed pixel-based classifiers, (53% and 56% overall accuracy for pixel-based classifiers 

vs. 78.5% and 68.5% for machine learning classifiers). The range of Kappa values ranged from 

0.372 for ISO Cluster which was the lowest, to Random Forest which had the highest Kappa 

value (0.679). The ISO cluster classifier greatly overestimated the abundance of floating leaf 

compared to all the other classifiers. Random Forest had the highest overall accuracy (78.5%), 

while the ISO classifier had the lowest (53.0%). The Maximum Likelihood classifier greatly 

under-represented hydrilla, so although it had a 100% producer’s accuracy for hydrilla, user’s 

accuracy was 24.3%. Overall, Random Forest performed the best with identifying hydrilla 

(58.6% user’s and 83.7% producer’s accuracy).  

Given the very high resolution of the imagery and the ability to distinguish individual species 

visually, the overall accuracy of the classified maps is lower than anticipated. There are a 

number of factors that are believed to impact classification accuracy. This survey was limited by 



 

59 

the available sensor to RGB spectral bands, unlike other studies where an NIR band was 

included. The inclusion of NIR would be expected to substantially improve accuracies, perhaps 

even comparable to accuracies of 90% and above, as reported by Tung-Ching and Chou (2014). 

Other relevant factors include overexposure of senescent plant material, the proliferation of 

lyngbya, spectral variation (real and atmospherically-induced), phenological differences, and 

similar spectral signatures and growth form between macrophytes. The relative impact of these 

factors on the accuracy of the classified map are scale-dependent; that is, the larger the 

geographic area mapped, the greater the spectral variability that is introduced in the data 

collection process. However, the vegetation extent identified in this study correspond well to the 

2014 vegetation map of Sealy’s Point produced by Shivers (Figure 4.4), and provide a 

considerably higher level of detail. 

The results of this study support the assertion by Husson et al. (2014) that UAS-based remote 

sensing presents “great potential for lake and river vegetation identification and mapping at the 

species level, as well as for abundance estimates”; however, the moderate classification accuracy 

achieved in this study suggests that more work still needs to be done to establish best practices in 

data acquisition and processing to minimize the sources of classification error that were 

identified.   
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Chapter 5 

Discussion and Conclusion 

        This study demonstrated the ability to utilize a small, quadcopter-style UAS to conduct 

ecological monitoring of an extensive geographic area in subtropical climate conditions. 

Chapters 1 and 2 provided context and a rationale for the relevance and suitability of the 

proposed study, a review of relevant literature, and research objectives. Chapter 3 outlined a 

workflow for collecting and processing UAS video to create orthomosaic imagery of a reservoir 

in southwestern Georgia, and use this imagery to map aquatic vegetation at the plant community 

level. It also discussed complications which arose and proposed methods to address those 

complications. Chapter 4 presented the results of these efforts in the form of classified vegetation 

maps and associated confusion matrices, and provided a comparison with an in-situ survey of the 

same area. This chapter will relate the results of this study to the literature, assess the limitations 

of the study and propose improvements to future studies.   

 

Limitations 

          A number of shortcomings in the survey design and implementation limited the ability of 

this study to address intra- and inter-annual changes in aquatic vegetation coverage. The extent 

of the study area was ambitiously large and tested the operational limits of the equipment as well 

as the remote pilot. Over the course of many days of transporting heavy equipment to remote 

locations and operating in extremely hot and unpredictable weather, there were gaps in data 

acquisition attributable to human error and equipment failure.   
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A noteworthy difference between this study and previous aquatic vegetation surveys using UAS-

based remote sensing data is the data volume, and the methods to solve operational, 

organizational, and computational challenges inherent in working with Big Data. Over 115,000 

images were processed in this study, some in chunks of over 20,000 images, much larger than 

the mosaics of 200-300 images created by Husson et al. (2014) and 100-250 images by Flynn 

and Chapra (2014). This study demonstrates the feasibility of processing much larger image sets, 

and therefore larger geographical areas, than previous studies. The surveys generated almost one 

terabyte (TB) of video files, all of which had to be transferred, renamed, and rendered into still 

images, and at each stage the integrity of the data is vulnerable to small mistakes. For example, 

an incorrectly entered flight name when rendering still frames could overwrite data from another 

flight, and the mistake might not be caught until the image matching failed during 

photogrammetric reconstruction. Correcting mistakes like this were time-consuming and 

difficult, even when the same person flew the imagery and processed the data; it could be much 

harder to identify and fix such errors in an organizational setting where multiple people are 

working on different stages of the process at different times. 

Discontinuities and gaps in the data were also caused in a number of areas where the 

photogrammetric process failed to align the images correctly, particularly in predominantly open 

water areas. Additionally, there was insufficient understanding of how variations in phenologic 

and atmospheric conditions would affect the ability to consistently segment and classify the 

imagery in order to make meaningful comparisons between years. Where overlapping coverage 

between subsequent years did exist, imprecise georeferencing (positional errors generally ranged 

from 10 to 15 meters using the .srt captions as reference metadata) made inter-annual 

comparisons difficult. The survey design and workflow presented here did not exist in its final 
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form prior to data collection. Rather, it developed iteratively over the course of three seasons of 

field work and surveys of other sites. It was not possible to retroactively employ appropriate data 

collection procedures, so in some cases shortcomings in the survey data precluded uniform 

application of the methods described. For instance, the method to convert SRT video captions 

into GPS reference data for a set of extracted video frames was identified after field work on 

Lake Seminole had concluded. It was only during subsequent aerial imagery work that this 

method to automatically georeference orthomosaics created from video frames was identified, 

and so the orthomosaics for this study had to be manually georeferenced using control points. 

This form of georeferencing did not allow for reliable assessments of inter-annual changes in 

vegetation growth, as the layers from different years did not overlap perfectly. 

Generating a shoreline mask from DEM-derived contours turned out to not be practicable. It was 

incorrectly assumed that for the entire reservoir, the water level could be represented by a single 

elevation contour; however, the elevation of the water surface trended downward by a few 

meters between the upper reaches or the reservoir and the confluence. This was particularly 

evident in long, narrow portions of the reservoir such as Spring Creek. Additionally, the 

existence of riparian vegetation and uneven shoreline topography meant that the elevation 

contours did not follow the actual shoreline for any appreciable length. It was possible for 

limited areas to edit and merge several contour lines together to create a shoreline boundary, but 

manual digitization based on visual inspection of the imagery turned out to be a more reliable 

and time-efficient approach.  

Although it was hypothesized that the lower flying height of UAS compared to manned aircraft 

or satellite imagery would lessen the impact of atmospheric effects on image quality, the unique 

operating conditions of low-altitude flight and small image footprint created other sources of 
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error and inconsistency that need to be addressed. The primary issue is the amount of time 

needed to cover the survey area given the small image footprint and slow operating velocity 

(around 40km/hour). While imagery of the entire reservoir could be obtained with a single 

manned aircraft flight or satellite image, it took at least two full weeks to cover the survey area 

with a UAS. Changes in phenology and scene illumination from differing weather conditions 

during this longer time period introduced in-class and between-class spectral variations. These 

spurious spectral distinctions complicated image segmentation and classification by preventing 

the application of one classification training set to the entire survey area. Differences in the 

classified map would therefore be attributable to differences in training area selection rather than 

actual changes in vegetation coverage, limiting the overall reliability of the classification.  

While image segmentation based on RGB spectral signature alone worked reasonably well in 

many areas, particularly for emergent macrophytes, in many areas there was significant 

confusion between spectrally-similar classes. In particular, distinguishing between submerged 

macrophytes and open water, and topped out, senescent vegetation of all types was problematic. 

Senescent vegetation, either bleached nearly white by the sun, or covered in lyngbya, exhibited a 

nearly identical appearance. While different growth pattern and other contextual cues enable a 

human interpreting the image to differentiate between water lily and senescent hydrilla, the 

image classification algorithms, which relied primarily on spectral signature, did not effectively 

differentiate between these classes. This could be improved by incorporating bathymetric data 

and a set of classification rules. For instance, one of the biggest areas of confusion was beds of 

senescent hydrilla overtopped with lyngbya being misclassified as floating leaf vegetation. These 

beds were located in deep water, so a classification rule limiting floating leaf to shallower waters 

(1-2 meters) would eliminate floating leaf from consideration and increase the likelihood of it 
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being correctly classified as hydrilla. Misclassification between open water and deeply 

submerged macrophytes were not so much due to spectral similarity as to over-generalization at 

the segmentation step. This was common in areas of high turbidity and when imagery was 

collected in cloudy conditions. Deeply-submerged vegetation adjacent to open water would be 

apparent upon visual interpretation of the imagery, but the segmented image would amalgamate 

these areas with open water segments. The only method identified to solve this problem was to 

decrease the minimum segment size to one, the problems with which were discussed in Chapter 

3. One possible solution to this problem would be the use of Multiple Resolution Segmentation 

(MRS), also referred to as multi-scale GEOBIA, where initially a large scale factor would be 

used to segment the image into general classes such as open water, upland and wetland 

vegetation. Portions of the image that are not satisfactorily segmented could then be subset and 

re-segmented using progressively smaller scale factors. This could also increase the classification 

accuracy of floating leaf vegetation and other, smaller features of interest in the image. Kim et al. 

(2014) reported a 6% increase in accuracy of multi-scale GEOBIA over single-scale GEOBIA 

(82% vs. 76%). 

 

Future Directions 

        A solution to many of the problems presented in this study would be to use a faster UAS 

with a longer flight time and higher flying height, such as a fixed-wing UAS (i.e., the senseFly 

eBEE). The ultra-high resolution, multitemporal imaging capabilities of UAS may be in excess 

of what is needed merely to identify the presence of certain vegetation types, and so increasing 

flying height would not necessitate outfitting the UAS with a higher-resolution sensor. The larger 

image footprint from flying higher would make the survey much more efficient with negligible 
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results on spatial resolution, and could allow the survey to be conducted in as little as one day, 

limiting atmospheric and phenological sources of spectral variability. Increasing the size of the 

image footprint would also increase the reliability of the photogrammetric process in areas where 

open water predominates, since more features would be present in each image. Limiting the 

variability caused by phenological and atmospheric changes would also allow for more reliable 

comparison of classification results between time periods. Flying faster and higher could also 

allow aerial surveys to be conducted at more frequent time intervals. Drawbacks to using a fixed-

wing UAS such as the eBEE include greater impacts of ambient wind on the stability of the 

aircraft and sensor, which can increase image blur. Cost is also a factor, since the price of the 

eBEE is an order of magnitude greater than the DJI Phantom (Madden et al. 2019). Improving 

the on-board sensor capability to include near infrared could provide datasets robust enough for 

researchers to develop a more nuanced understanding of how changes in climate and human 

activities alter aquatic vegetation growth, and the role of aquatic macrophytes in biogeochemical 

processes (Tung-Ching and Chou 2015). The DJI Phantom can be equipped with an NIR-capable 

sensor, such as the MicaSense RedEdge M-Series, as in Lussem et al. (2019), for around $5,000 

USD. This is expected to be necessary in order to reliably differentiate between macrophyte 

species. 

Timing multiple surveys to coincide with different species’ most distinctive phenological stage 

(i.e., during bloom) would yield more precise estimates of intra-annual and inter-annual 

variations. Monthly aerial surveys during the growing season of smaller, monotypic vegetation 

stands could be used to calculate growth rates for individual species and assess competition 

between exotic and native species. Inter-annual surveys could enable precise delineation of 

surface area coverage and reveal trends in the relative dominance of any particular species 
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between years, and relate the observed changes to fluctuations to changes in ecological 

conditions, including air and water temperature, nutrient flows, and precipitation in the 

watershed (Shivers 2018a). This type of survey methodology could enable the gross primary 

productivity (GPP) of the entire reservoir to be calculated.  

 

Conclusion 

        This study dealt primarily with orthomosaic imagery derived from photogrammetrically-

produced 3D models, but did not directly utilize the 3D models for analysis purposes. The use of 

photogrammetric 3D models from UAS imagery for monitoring, analysis, and visualization of 

results would be a fruitful object for future ecological research in aquatic environments. UAS-

generated 3D models, coupled with the emerging technologies of virtual and augmented reality 

hardware and applications, promise unparalleled opportunities for remotely visualizing, 

analyzing, and interacting with our world. By loading the 3D models from the Lake Seminole 

survey into virtual reality headset such as Oculus Rift, researchers could study the same 

environment at real-world scale in three dimensions, instead of inspecting a 2D image on a 

screen. The capacity to create a 3D virtual environment from the survey data presented in this 

study already exists and, in fact, would require only a few more steps to be fully realized. Virtual 

reality simulations from UAS-derived SfM photogrammetry are becoming more common in 

video games and entertainment media, but are not yet being implemented in natural resource 

management initiatives.  

Although flaws in the survey design and execution limited this study in terms of being able to 

classify vegetation uniformly at the species level or compare inter-annual vegetation coverage, 

the results show the potential for UAS imagery to be a valuable asset in ecological monitoring of 
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aquatic environments. Improvements in survey design to ensure consistency, and further 

enumeration of the segmentation and classification workflow could produce highly accurate 

vegetation maps not just at the species level, but at the individual plant level, thereby opening 

new opportunities for ecological research. Progressively finer scales of visualization will not 

only help answer current research questions, but also open up entirely new avenues of inquiry, as 

epitomized by the ecologist E. O. Wilson’s statement that “a lifetime can be spent in a 

Magellanic voyage around the trunk of a single tree”.  
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