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ABSTRACT 

 There is a long-held assumption that the degree of complexity (fractal dynamics) 

exhibited in neuro-motor output provides information about the system's health and 

adaptive capacity. To date, however, direct evidence of this relationship is limited, in part 

because there are opposing views on how system complexity should be observed and 

interpreted. One view argues that adaptability can be inferred according to the observed 

dynamics of a system functioning under minimal constraint (ie. self-selected unperturbed 

walking), in which pink noise fluctuations reflect the adaptive optimum. The opposing 

view contends that adaptive capacity is better represented by the observed changes in 

system dynamics corresponding to variations in task constraint. This contrast in 

perspective has often led to description of either minimally constrained, or strictly 

constrained behavioral dynamics, with little understanding of their combination and 

connection.  

 This dissertation incorporated the assessment of system dynamics under both 

minimal and task-relevant constraint according to an isometric force tracking paradigm. 

In Experiment 1, we observed subjects force in a no vision preferred-force, constant, sine, 



and pink noise tracking task. This study found that both minimally constrained force 

complexity, and task-relevant dynamical flexibility both predicted general force tracking 

ability. Moreover, minimally constrained dynamics did not correspond with pink noise. 

In Experiment 2, we collected minimally constrained force dynamics, and then had 

subjects practice either a pink noise or brown noise force target for 5 days. This was done 

to determine whether different task constraints elicited unique changes to minimally 

constrained force dynamics over practice. Results from Experiment 2 revealed similar 

alterations to individual's minimally constrained dynamics, in which both groups showed 

more complex force output. Still, this change did not correspond with pink noise 

behavior. Moreover, neither condition demonstrated superiority in adaptive performance 

of a transfer task. 

 Together, these findings support the necessity of unified framework in examining 

complexity according to both intrinsic and task-relevant constraint. To do so may 

improve insight into unique dynamical structures exhibited in specific movement 

paradigms. Moreover, additional research is necessary to understand the specific relations 

between practice and dynamical properties in order to facilitate specific improvement in 

adaptive control.    
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CHAPTER 1 

Introduction 

 Functional and adaptive movement necessitates coherent organization of the 

human system, which in and of itself is comprised of an immense entanglement of 

components and processes operating through a continuum of spatio-temporal scales (ie. 

cellular, neuromuscular, visual, haptic, vestibular, etc.). Moreover, individuals 

continually face novel challenges requiring evolution of system organization according to 

the confluence of contextual constraints imposed by their environments, intrinsic 

composition, and the task at hand (Newell, 1986; Beer., 2014). It is well established that 

humans possess an abundance of coordinative configurations relevant to contextually 

directed behavior (Bernstein, 1967). This fundamental premise, conceptualized as 

Bernstein's degrees of freedom (DoF) problem, is the foundation in which contemporary 

studies are expanding rationale for: a) how the complex array of available DoF's 

assemble across the microscopic-macroscopic levels of observation (Kay, 1988; Chialvo, 

2010); b) what drives the operational assembly (and functional re-assembly) of system 

dynamics (Kugler, Kelso, & Turvey, 1980, 1982); c) what general principles capture and 

characterize changes in system dynamics with adaptation, mal-adaptation, and 

degradation, alike (Newell et al., 2003; Slieman-Malkoun, Temprado, & Hong, 2014).  

 Identifying a reliable index for behavioral stability and flexibility is no straight-

forward task. The contrasting nature of stability and flexibility directly reflects the 

inherent complexity of the human system, as their intricate balance is fundamental to 
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coordinated behavior. Qualitatively, their relationship is an expression of human 

adaptability, as an abundance of macroscopically stable coordinative regimes available to 

the system across relative circumstance (and corresponding constraints) reflects 

positively on the state of individual fitness. As an extension, circumstantial constraint is a 

dynamic process, and thus self-preservation requires the ability for systems to abruptly 

transition to a more appropriate coordinative regime whenever necessary. Quantitatively, 

one could theoretically provide a comprehensive view of an individual's dynamical 

landscape utilizing measures from the Coordination Dynamics framework (Haken, Kelso, 

& Bunz, 1985; Kelso, Shölz, & Schöner, 1986). However, an overarching understanding 

of attractor dynamics in even the most well controlled behavioral paradigm poses an 

immense task. In spite of these issues, numerous measures quantifying statistical 

complexity of behavioral output, that is the time and frequency dependent structure, are 

considered a viable alternative to index system stability/flexibility at any point in time. 

These measures are believed to provide an alternative view on system dynamics in that 

they provide a window into the organization and contribution of the many degrees of 

freedom functioning across the nested array of relevant scales.  

 Fundamentally, measures of performance outcome and task dispersion within/ 

across motor conditions provide tremendous insight into how well individuals optimize 

their behavior according to task demands. These measures alone, however, are 

insufficient for identification of underlying organization of the system's DoF's that 

correspond with the respective task manipulation. While an abundance of motor control 

literature has provided a more comprehensive report of both metrics, there is still a lack 

of clarity as to how individual performance and their underlying dynamics directly relate. 
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This relation becomes ever more convoluted when paradigms requiring indirect inference 

of system stability and flexibility (for ethical reasons or otherwise) are investigated 

(Lipsitz & Goldberger, 1992; Hausdorff, 2007). In any case, such obstacles often lead to 

emphasis on one aspect of motor behavior (performance/dispersion outcome OR system 

dynamics) to index adaptability. That, or both aspects are treated as operationally 

autonomous functions, in which case their proposed relation to adaptation depends on the 

experimental focus. 

 A significant body of literature investigating underlying system dynamics in 

clinical assessment has primarily focused on changes in dynamical complexity with the 

progression of age or degenerative disease (Lipsitz & Goldberger, 1992; Hausdorff et al. 

1996; Vaillancourt & Newell, 2002). In brief, the dynamical complexity in system output 

is determined by the degree of serial correlation between successive time series values 

through analysis of the autocorrelation function. An autocorrelation function that shows 

no dependence of the current state on previous time points is representative of white 

noise, thus presenting no structural interactions between system components. Conversely, 

a function that demonstrates strong persistence (significant dependence of the current 

state on trends of states far removed in time) known as brown noise is interpreted as a 

complex system with component-interaction pathways predominating at slower temporal 

scales. Between the temporally random (white) and robust (brown:         ) is a 

specific structure of fluctuations known as pink noise. When assessed in the frequency 

domain, pink noise presents power law (        ) relations in which fluctuation 

trends are nested proportionally across relevant scales.  
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 The assumption follows that the dynamical self-similarity across scales is 

representative of an "optimally" complex system. That is, there is an abundance of 

component interactions operating across a myriad of scales, and any perturbations within 

nested levels provide the possibility for abrupt reorganization of the system qualitatively 

observed in macroscopic behavior. Numerous groups functioning within this framework 

have proposed that any deviations from       temporal relations (be it toward 

randomness or order) is a consequence of degradation within the system. Moreover, this 

assumption has led to the reciprocal view that complexity measures have diagnostic 

potential over more traditional statistical analyses. Advocates within this framework 

follow the hypothetical premises generally attributed as the "Loss of Complexity" (LOC) 

or "Optimal Variability" (OV) approach in human systems control (Lipsitz & Goldberger, 

1992; Stergiou, Harbourne, & Cavanaugh, 2006). 

 An alternative interpretation of complexity as it pertains to system adaptability is 

the capacity to modulate underlying behavioral dynamics according to relevant 

constraints embedded in the motor task (Vaillancourt, Sosnoff, & Newell, 2004; Sosnoff 

& Newell, 2009). Specifically, behavioral output in a healthy adaptive system will exhibit 

complex interaction-driven dynamics (    ) (Sosnoff & Newell, 2009), however the 

degree of complexity in behavioral output will map to, for example, the dimensionality or 

temporal patterns necessary to perform a specified behavior. Subsequent support of this 

proposed dynamical flexibility is evidenced by comparisons of output complexity in the 

young healthy and aged populations (Vaillancourt & Newell, 2002, 2003).   

 Discord regarding the adaptive value of variations in complexity (abundance and 

interaction of relevant system components) represented in collective dynamics is 
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seemingly predicated on the desire to impose or eliminate external constraint while 

assessing behavior. The majority of studies following the loss of complexity or optimal 

variability hypothesis assess minimally constrained behavioral output (ie. self-selected 

walking pace, abstemious heart rate dynamics), and relate the temporal structure of 

specific output parameters with indirect indices of adaptive capacity (ie. index of fall 

risk) between cohorts (Hausdorff et al., 1997). Conversely, those following the loss of 

adaptability approach have directly imposed external constraints to examine the unique 

dynamics that emerge as a function of, for example, age and neuro-motor health 

(Vaillancourt, Sosnoff, & Newell., 2004; Sosnoff, Valantine, & Newell, 2009).  

 There is an abundance of literature that describes system complexity across many 

behavioral paradigms. However, these same studies exemplify the theoretical 

discrepancies that can arise when competing perspectives function with empirical 

autonomy. It is imperative to examine the compatibility of the LOC/OV and LOA 

frameworks, or whether either approach demonstrates superiority in terms of predictive 

power on indices of adaptive motor control. As an added benefit, assessment of 

unconstrained and constrained behavior would promote a more tangible understanding on 

how system dynamics relate to more traditional metrics of motor ability (ie. performance 

outcomes).   

 Proponents of the pink noise as optimum accounts endorse system assessment 

under minimal constraint. However, in spite of this, contemporary studies suggest that it 

is possible to re-establish pink noise fluctuations in minimally constrained behavior. 

Ironically, this calls for interventions that implement task constraints to facilitate a 

phenomenon known as "complexity matching" (West, Geneston, & Grigolini, 2008). 
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Essentially, interacting systems show an affinity to match complexity as a means to 

optimize the exchange of information. Empirical studies show that this is accomplished 

through the combined contributions of local synchronization and global tuning processes 

(Fine et al., 2015; Almurad, Roume, & Delignières, 2017). So far this technique has 

primarily generated interest from advocates of the LOC/OV approach. However, studies 

have also shown subjects can modify their behavioral complexity according to the task 

demands, that of which has included the degree of complexity in a visual tracking task 

(Sosnoff et al., 2009). Thus, complexity matching may hold more diverse application 

than is currently proposed. 

 The core of this dissertation is to better characterize the relationship between 

behavioral complexity and adaptive motor performance. Specifically, we will assess 

distributional properties of young healthy individuals system complexity in both 

minimally constrained, and task constrained behavioral conditions. While there is 

theoretical evidence to suggest that system dynamics (constrained and unconstrained) 

provide a window into its adaptive potential (Vaillancourt, Sosnoff, & Newell, 2004; Van 

Orden, Kloos, & Wallot, 2011), our goal is to determine whether these dynamics can 

directly predict individual’s capacity to facilitate adaptive perceptuo-motor control. As an 

extension, we investigate whether individual's initial behavioral complexity influences 

whether/how their dynamics change with practice, and whether task demands are 

additional factors that influence the direction/magnitude of dynamical change. Lastly, 

there is proposed benefit to generating intervention protocols according to these 

theoretical tenets. However, the predicted benefits of complexity matching on adaptive 



 

7 

control are still unsubstantiated by empirical study. To this end, critical evaluation of the 

proposed superiority of this technique is a supplemental aim.  
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CHAPTER 2 

Literature Review 

Classical Approach to Variability 

 Variability of motor performance based on tenets from traditional statistics has 

been prevalent, albeit originally of minimal foci, in empirical research for well over 100 

years (Woodworth, 1899). Original statistical inference was traditionally focused on 

central tendency of group distributions in the absence of task manipulation, as deviations 

within and between individual outputs across identical conditions were perceived to be an 

expression of measurement/experimental error. Naturally, the corresponding assessment 

of alterations in averaged output (and subsequent disregard for variance in the response 

variable distribution) with experimental manipulation was of primary importance for 

determining individual performance capacity within the classical literature.  

Nevertheless, the aforementioned research from Bernstein (1967) brought about a 

shift in perspective on variability through illustration of redundancies that can arise both 

intrinsically (i.e. joint relations to the same effector ends) and extrinsically (multiple 

trajectories to the same ends) to collectively provide numerous means for behavioral 

success. Thus, the notion follows that certain types of variability hold inherent value in 

providing a family of solutions for achieving a task with a high level of efficiency. 

Contemporary research has expanded these concepts through assessment of temporal 

dependencies of variability originally discussed through the lens of econometrics (Box et 

al., 2015).  Specifically, time dependent fluctuations in macroscopic behavior are 
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believed to illustrate organization of relevant degrees of freedom contributing to motor 

control at levels that are underpinning the biomechanical and task level.   

 A reductionist extension into assessing intra-individual variability within 

biomedical (specifically aging/disease) literature has generally assumed that 

neurobehavioral sub-systems can be partitioned into smaller, more tractable units. This is 

in large part based on the belief that these sub-systems and their levels of analysis operate 

under relative spatio-temporal autonomy (Mevedev, 1990). Such a perspective is enticing 

in that one can attribute any causal breakdown of behavioral function to 

limitation/degradation of redundant components originally contributing to healthy 

behavior. Note that an additive system is capable of redundancy, and in fact additive 

dynamics would imply that a healthy biological system is composed of many independent 

yet redundant component pathways. In which case this redundancy can be exploited as a 

means to produce approximate equivalence in behavioral output. Provided that the system 

can exploit these independent pathways within/between movements, the successive 

variations in outcomes would conceivably lack temporal structure. Thus, the inherent 

variations in human time series were thought to exhibit an output representative of white 

noise.  

 The opposing view on system organization stems from the concept of degeneracy 

and complexity, in which inter-dependent interactions between components across 

systems/levels/scales lead to emergent system organization with high degree of context 

sensitivity. That is, according to the relevant constraints, numerous inter-dependent 

components may interact along the same pathway. However, changes in constraint may 

demonstrate a characteristic change in functional role/interaction between the same 
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components, thus leading to different pathway interactions (for synopsis on redundancy, 

complexity, and degeneracy, see Kay, 1986; Deliginieres & Marmelat, 2013). Given the 

interaction-dominant dynamics of a complex system (Van Orden, Holden, & Turvey, 

2003), the temporal structure of the system would presumably demonstrate long-range 

correlations.  

Synonymously, complex system analysis in the frequency domain would illustrate 

colored (     ) noise in behavioral output, as the dominant pathways are dependent on 

the component elements functioning according to the specified constraints imposed on 

the system. Thus, complexity science stipulates that      dynamics is a phenomenon 

reflective of a complex, interaction-driven system. That of which is supported by the 

pervasive nature of these scaling relations across a myriad of cognitive (Gilden, 2001) 

and motor tasks (Chen, Ding, & Kelso, 1997; Wing, Daffertshofer, & Pressing, 2004; 

Torre et al., 2011). Beyond this conclusion, however, lies a great deal of debate in regards 

to whether the differences in health and skill can be determined by variations in output 

along the white-brown noise continuum.  

Loss of Complexity and Optimal Variability  

 Research on autonomic cardiac function was fundamental to the development of 

analysis techniques devoted to understanding dynamical change with aging and 

pathological degeneration (Lipsitz & Goldberger, 1992; Peng et al., 1995; Ho et al., 1997; 

Marwan et al., 2002). Traditional statistical measures of cardiac time series (µ/sd HR) 

were insufficient in differentiating healthy cohorts from those with congestive heart 

failure (CHF) in spite of the qualitatively observable differences in trends between their 

time series fluctuations. Consequently, studies began to implement non-linear analysis of 
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heart rate time series in the time and frequency domain, and found that CHF cardiac 

dynamics were more deterministic than the young healthy population (Peng et al., 1995; 

Ho et el., 1997). They argued that increased temporal structure with aging or disease 

progression is a direct result of either: 1) a loss or impairment of component interactions 

prevalent to adaptive cardiac regulation (ie. endocrine, neuro- autonomic, local cross 

bridge cycling, etc.) or 2) alterations in the non-linear coupling between components at 

specific spatio-temporal scales. The breakdown of components interacting as a means to 

adaptively modulate cardiac function was interpreted as a systems "loss of complexity". 

The characteristic increase in determinism (shift to brown noise) with disease inferred 

that the system possessed insufficient component interactions pathways vital to sustaining 

healthy cardiac output.   

 While a number of subsequent empirical results have been consistent with the loss 

of complexity hypothesis, a number of studies have reported instances where task 

difficulty, normal aging, and neural degeneration demonstrate an output that moves 

towards completely random fluctuations (Hausdorff et al., 1997). Provided there is a shift 

to random fluctuations in individual time series where it is assumed that individuals 

would once have demonstrated a complex behavioral output, it is argued that certain 

situations can cause a breakdown in interdependence between components. This 

breakdown observed in minimally constrained activity is believed to be an illustration of 

a system with a diminished coordination and stability in the observed behavior. It is 

assumed that proximity to pink noise (fractal scaling) in terms of behavioral output 

represents a system that is near optimal complexity. These premises stem from the 
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original attempts to explain the relative ubiquitous nature of 1/f noise across natural 

systems in a range of scientific domains (Bak, Tang, & Wisenfield, 1987; Bak, 1996).  

Statistically speaking, a system that demonstrates a brownian structure indicates 

fewer component-interactions that predominate behavior, and thus the system within such 

a regime is considered relatively robust. As previously mentioned, a system that lacks 

statistical structure (white noise) is believed to lack functional stability. Bak and 

colleagues (1996) provided the conceptual framework of "Self-Organized Criticality" 

(SOC) in which a system organizes near a critical threshold. SOC supposedly illustrates a 

state where interactions between components at all relevant scales are at their highest, 

and even the most miniscule perturbations within the system at any scale can cause 

abrupt, macroscopic reorganization (Okkels, & Jensen, 1998; Wagenmakers, Farrell, & 

Ratcliff, 2005). Thus, the system is in a state of minimal stability (many components, can 

cause abrupt macroscopic change), in which the behavioral benefit relates to availability 

of nested degrees of freedom contributing to stable yet sensitive coordination. SOC 

models have demonstrated organization near criticality across natural systems (Davidsen 

& Lüthje, 2001) and neural network populations (Bak & Chialvo, 2001; Chialvo, 2010), 

with temporal structures demonstrating self-similar (fractal) pink noise fluctuations.   

 Provided the assumed benefits of criticality (for information on the operationally 

synonymous construct of meta-stability, see Kelso, 2012), along with a number of 

empirical studies showing      dynamics in young healthy individuals, a number of 

research groups are now working under the "optimal variability framework". Here it is 

assumed that      dynamics in behavior is the structural optimum for a stable yet 

flexible system. Thus, any deviation away from the optimum is considered to be 
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contraindicative (Goldberger, Peng, & Lipstiz, 2002; Stergiou & Decker, 2011). 

Subsequently, studies have focused on the development of clinical interventions that 

attempt to enhance complexity of motor characteristics ranging from fractal ventilation 

(Boker et al. 2002), to fractal auditory stimuli as a means to alter gait dynamics in the 

elderly (Hunt, McGrath, & Stergiou, 2014). 

 There is very little argument with the notion that complexity measures hold 

inherent value for providing information about behavioral dynamics otherwise 

inaccessible through more traditional statistical analysis techniques (i.e. global 

performance indices). Furthermore, the relative consistency in which      noise presents 

itself across many natural systems provides a strong case that temporal dynamics are 

functionally relevant to system control. However, while research in the domains of 

human movement and cognition has demonstrated numerous cases where individuals 

show      structure in an output of interest, direct proof of functional significance in 

deviating away from the presumed optimum has proven to be ancillary at best. For 

example, Goldberger and colleagues (2002) provided empirical results of heart rate 

dynamics where the temporal structure in young healthy, elderly healthy, and heart 

failure patients was represented as pink, brown, and white respectively. This is in direct 

contrast with seminal findings from Goldberger (1996), Kim (1997), and colleagues, 

where heart failure patients showed a temporal composition that was highly deterministic 

in nature.  

 In addition to heart rate analysis, Goldberger and colleagues (2002) presented gait 

dynamics (stride) data from healthy and Huntington's patients in which the afflicted 

showed a structure corresponding to white noise. It should be noted that a number of 
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studies have shown this same trend of gait patterns in healthy elderly subjects (Almurad 

et al., 2017). There is a legitimate argument that complexity measures tend to lack 

predictive power in terms of how individual temporal structure deviates from the 

hypothesized optimum based on conditions (or degree of progression) eliciting an 

inconsistent bi-directional shift depending on the study. Such an issue is all the more 

relevant when considering that the original gait studies indirectly related brownian 

characteristics to a higher standardized fall risk score (Hausdorff et al., 1995, 1996, 

1997).  

 The aforementioned discussion cannot discredit the interpretations of those 

advocating pink noise structure as the behavioral optimum across behavioral tasks. 

Indeed, to their credit all aforementioned studies provide consistency in terms of the fact 

that the average behavioral complexity of young healthy groups do show a structure more 

correspondent to      noise. A rare point of discussion, however, is the observed 

variations in within- and between-subject complexity observed in the young healthy 

population (Den Hartigh et al., 2015, 2018). Moreover, studies have shown how tasks 

(even minimally constrained) can significantly alter behavioral structure in populations 

expected to consistently show optimally complex output (Wijnants et al., 2009; Hollis, 

Kloos, & Van Orden, 2009; Athreya, Van Orden, & Reilly, 2012). It comes as no surprise 

then, that papers discussing behavioral complexity stipulate its apparentness in simple, 

over-practiced, repetitive (if discrete) tasks for young healthy individuals. In other words, 

one is expected to consider providing minimal task constraints in order to ensure that 

output reveals an optimum in temporal complexity.  
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 As a reminder, assumptions about pink noise fluctuations representing optimal 

adaptability is predicated on the position that perturbations at any scale can cause an 

abrupt reorganization of the system. In other words, there is greater contribution and 

control of degrees of freedom pertinent to stable/flexible behavior. This begs the question 

as to why one would most generally exhibit the greatest complexity in situations where 

the necessity for adaptive behavior is least prevalent.  

Loss of Adaptability  

 In light of the aforementioned issues in the LOC and OV hypotheses, Vaillancourt 

and Newell (2002) developed an alternative framework focused on the adaptive value of 

modulating individuals isometric force dynamics according to differential external 

constraint. In brief, 3 cohorts (young adults, old, older-old) performed both a constant 

and sinusoidal isometric tracking task based on the supposition that each task represents a 

fundamentally different coordinative regime embodied within the individual’s intrinsic 

dynamics. That is, constant and sinusoidal force output correspond respectively to a fixed 

point or limit cycle attractor (for a comprehensive discussion on attractor dynamics, see 

Kaplan & Glass, 1995). They hypothesized that optimal tracking of a fixed point is 

predicated on coordinating and controlling many functional degrees of freedom as a 

means to mitigate system oscillation. Conversely, optimal performance in the limit cycle 

(oscillatory nature) task would require a reduction in degrees of freedom, especially those 

operating at faster time-scales. This would hypothetically facilitate higher synchrony with 

a perfectly regular structure embedded in the limit cycle condition. While not explicitly 

discussed, their results demonstrated a strong relation between force structure and task in 

young healthy individuals. Conversely, progressive aging apparently limited individual’s 
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ability to differentiate their force dynamics according to each task. Additionally, the 

overall task performance (Root Mean Squared Error) was progressively worse with age 

across all tracking conditions.  

 The premise behind their hypothesis and subsequent findings is predicated on the 

importance of individuals capacity to modulate the relevant DoF's according to 

dimensional constraints embedded in the task. It was expected that young healthy 

individual's retain this capacity, whereas aging is responsible for the decline in ability to 

modulate force dynamics in response to external constraint. Thus, a condition that evokes 

functional limitation (i.e. neural degradation) could logically result in temporal structure 

that corresponds with their stable intrinsic dynamics in the event that they cannot meet 

the dynamics required by external task constraints. 

 An extension from this paradigm was introduced by Sosnoff and colleagues 

(2009), where young healthy subjects were asked to perform a number of tracking 

conditions of varying temporal structure (constant, sine, black noise, brown noise, pink 

noise, white noise targets). They found that young healthy individuals were able to 

roughly match the structure of both the pink and brown noise targets, whereas they 

produced outputs that were more structured than the white noise signal and more 

irregular than the black noise signal, respectively. These findings again provide empirical 

evidence that young healthy individuals have the capacity to modulate their force 

structure (DoF's) based on the dynamics of the task constraints. However, it appears that 

there are limitations to dynamical modification within the confines of the 

structured/colored noise continuum (brown to pink).  
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In another example outside of an isometric force paradigm, Hoos and colleagues 

(2014) assessed dynamics of various gait parameters between competitive marathon 

runners. They found that runners who posted a significantly lower race time actually 

exhibited brown noise stride dynamics, whereas those who finished with a longer race 

time demonstrated patterns that were more correspondent with pink noise fluctuations. 

One can infer that an advanced runner is no less complex than their less adept 

counterparts, and thus there is an effect of behavioral strategy impacting emergent 

dynamics as a means to optimize task performance.   

 To re-iterate, there is a collective agreement on the inherent value to structure in a 

complex system based on the framework of interaction-dominant dynamics. Advocates of 

LOC and OV frameworks suggest that      is the optimum of intrinsic dynamics in a 

minimally constrained system. There is generally minimal emphasis on how the system 

adaptively functions according to the task constraints. Even so, the majority of studies 

employing this framework for rehabilitative purposes have attempted to implement 

interventions (i.e. implementing fractal timers in gait studies, task interaction with young 

healthy subjects) with hopes that subjects retain a more complex output upon post 

assessment of minimally constrained behavior (Hove et al., 2012; Hunt et al., 2014). 

Conversely, the LOA approach emphasizes the value of assessing behavioral dynamics 

according task-imposed constraints, as they argue that adaptability should not be inferred 

according to observed behaviors requiring the lowest degree of adaptability (i.e. 

minimally constrained behavior).  

 Nevertheless, it is fair to state that while the LOA framework lends awareness to 

the limitations in reproducibility of      structure across varying behavioral conditions, 
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there is a lack of clarity on determining whether or not there is still a relation to 

individuals minimally constrained dynamics, and capacity to modulate system dynamics 

when task constraint arises. More importantly, while both literatures stress the 

prospective benefits of specific behavioral dynamics, there is little emphasis on how 

individuals go about systematically accomplishing this phenomenon. Regardless, 

contemporary literature has extended to the domain of practice and intervention 

according to a specific framework relying on dyadic interaction or complex stimulus 

coupling. That of which has the potential to provide novel insight into: 1) two key 

underlying processes that may contribute to alterations in individual dynamics; and 2) 

possible explanations in component interactions determining how individuals are 

matching complexity according to task or intervention technique.   

Complexity Matching 

 Complexity matching (West et al., 2008) is predicated on the notion that inter- 

and intra-system interactions demonstrate the highest degree of information exchange 

when they share a high degree of similarity in terms of their respective temporal 

structure. Furthermore, there is a working conjecture that complex systems possess the 

capacity to synchronize/attune output complexity as a means to promote the optimal 

degree of collective information exchange. An exemplary study in dyadic conversation 

(for more examples on dyadic behavioral matching, see Pickering & Garrod, 2004) found 

that there is a preference in complex structure of verbiage for linguistic 

expression/interpretation, and as such complexity matching holds inherent value to 

efficient communication.  
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 As an extension, contemporary studies on human movement have found that a 

strong correlation in terms of temporal structure can be accomplished in two distinct 

ways. First, individuals have demonstrated the capacity to match complexity indices (i.e. 

DFA scaling exponent) by way of shorter time-scale local synchronization (Torre et al. 

2013; Fine et al. 2015). The second process is attributed to individuals showing a global 

tuning in output (complexity matching) which is suggestive of optimal coordination 

between the two systems (Stephen & Dixon, 2011).  

 The complexity matching phenomenon requires both coordinating systems, or the 

system and perceptuo-motor stimulus to exhibit complex 1/f scaling in their output. An 

extended hypothesis within the complexity matching view states that, in the event that the 

interacting systems differ in degree of fractal scaling, the system that exhibits a lower 

complexity in their behavioral dynamics will act in subordination, and mimic the 

dynamics of their more complex counterpart (Mahmoodi, West, & Grigolini, 2018). 

Recent studies advocating the pink noise as optimum approach have subsequently 

developed studies according to the premise that the combination of complexity matching 

and system subordination may be a viable option to facilitate highly specific alterations to 

individuals minimally constrained dynamics (Almurad, Roume, Delignieres, 2017, 2018).  

Interestingly, a complexity matching study by Almurad and colleagues (2017, 

2018) found that dyadic matching of gait dynamics between young and elderly exhibited 

a distinct contribution of both local-synchrony, and global-matching processes. They 

provided evidence that local-synchrony appeared to be a prevalent factor for matching 

scaling exponents early in practice, with global matching increasing in proportional 

contribution as subjects progressed in the study. Most importantly, they found that 
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subjects were able to retain a more complex gait structure (from white noise) in retention 

test where they performed alone.  

The viability of complexity matching/subordination in intervention paradigms has 

been proposed primarily through the pink noise optimum view on behavioral complexity. 

However, we argue that there is enough evidence- in terms of possible complexity 

matching beyond pink noise, and possible benefit of deviations from pink noise in certain 

contexts- to warrant more comprehensive assessment of complexity matching as a 

facilitator of dynamical change.  

This evidence may be crucial to better understanding causal changes in individual 

dynamics according to adaptive (or lack thereof) regulatory means. Nevertheless, on the 

whole we are still lacking empirical evidence that baseline intrinsic dynamics directly 

relate to performance characteristics (i.e. performance indices, proportion of synchrony 

process contributions). Furthermore, the newfound capacity to assess how individuals are 

actually matching task dynamics necessitate a greater investigation into how individual 

strategies promote similar behavioral outcomes in accordance with their distinct 

minimally constrained outputs. Lastly, there is still a pressing issue as to whether      

behavior demonstrates the best task solution, or whether practice may elicit a shift within 

the fractal continuum that corresponds to more efficient behavior according to the context 

of individual, environment, and task interaction.  
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CHAPTER 3 

Experimental Focus 

 Behavioral complexity is a key issue that continues to be explored both clinically 

and theoretically in motor behavior research.      fluctuation's arguably express 

individual capacity to organize a more abundant set of relevant degrees of freedom 

according to task requirement. Within this framework, any deviations from      

fluctuations are viewed as a negative, and thus behavioral interventions have been 

constructed with this desired output in mind. Alternatively, several groups exemplify 

adaptive capacity according to behavioral dynamics corresponding to contextual 

constraint.  

There is no argument that a more complex output may represent an adaptive 

optimum in particular situations. There is, however, the possibility that it may not 

represent an optimum in all behavioral situations. Still, there has been little attempt to 

understand whether minimally constrained dynamics, along with their proximity to      

scaling, hold any predictive power for adaptive neuro-motor control. Furthermore, there 

is little understanding whether or not there is a direct relation between complexity 

measures and a more traditional indices of motor ability.  

 The aforementioned issues hold additional significance provided the inherent 

relations between practice, learning, and contemporary approaches to 

behavioral/rehabilitative intervention. There are advocates for promoting optimal 

complexity in individuals through these interventions. However, given the possibility that 
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a shift in the colored noise continuum according to task holds benefit, it is important to 

consider whether or not young healthy individuals alter their intrinsic dynamics 

according to practice in tracking a specific force structure. 

Purpose Statement 

 The purpose of this study is to determine how intrinsic control of relevant DoF's 

impacts task specific alterations in isometric force dynamics, and its relation to direct 

indices of performance in the young healthy population (Experiment 1). Furthermore, we 

want to determine whether practicing conditions at opposite ends of the colored noise 

spectrum cause persistent change to an individual's intrinsic isometric force dynamics, 

and whether specific practice regimes are comparable in terms of adaptive performance 

and control (Experiment 2).  

Experiment 1: 

The goal of Experiment 1 is to empirically illustrate both minimally constrained, 

and task relevant behavioral dynamics across a series of isometric tracking tasks. We aim 

to illustrate the relationship between intrinsic dynamics and task relevant shifts in force 

complexity. Additionally, a major aim of the study is to determine whether minimally 

constrained and task relevant dynamics hold any predictive power of adaptive control as 

indexed by measures of tracking performance. Baseline minimally constrained conditions 

consist of a self-selected force output with no visual target, force trace, or performance 

measure after any trial. In an attempt to limit extraneous constraints (i.e. non-preferred 

force) we will use their minimally constrained data to determine the force at which they 

will track targets with varying spatio-temporal properties.  
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 Hypothesis 1: Based on recent pilot data, and results from previous studies 

(Athreya et al., 2012; Ducharme, & Van Emmerik, 2018, Novak & Newell (in 

preparation), 2018) young healthy individuals intrinsic force dynamics will vary within 

the colored noise spectrum.  

 Hypothesis 2: Young healthy individuals will exhibit similar directional shifts in 

their task relevant force dynamics according to the specified tracking task. However, the 

magnitude of shift will depend on proximity to their minimally constrained force output. 

 Anticipated findings and their significance: It is anticipated that young healthy 

individuals intrinsic dynamics will vary in complexity, however their output will fall 

within the colored noise spectrum (pink to brown). Regardless of their intrinsic force 

complexity, subjects will show characteristic changes in force dynamics specific to the 

force target. An added question that holds major significance is determining whether 

force dynamics are related to adaptive capacity as indexed by traditional tracking 

performance measure across task conditions. 

Experiment 2: 

The goal of Experiment 2 is to determine whether practice according to specified 

task constraints (temporal complexity) results in alterations to individual’s minimally 

constrained force structure. Additionally, this experiment is designed to test how practice 

elicits change in the relative contribution of processes (local error corrective, global 

complexity matching) relevant to temporal matching based on their assigned practice 

regime. The final aim of this study is to determine whether either practice regime 

demonstrates superiority in terms of adaptive tracking performance through 

implementation of a transfer tracking condition.  
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 Hypothesis 1: Post assessment of minimally constrained dynamics will show a 

shift in force output complexity corresponding to dynamics of the practiced task.  

 Hypothesis 2: Local synchrony will be most prevalent early on in practice, 

however global complexity matching will continue to increase throughout practice for 

both groups.   

 Hypothesis 3: While individuals will show a characteristic shift in their intrinsic 

dynamics, there will be no differences between practice groups in terms of performance 

outcome of a transfer task given their ability to utilize synchronization process at both the 

global and local level of the task.    
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COUPLING IN ISOMETRIC FORCE TRACKING
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Abstract 

 The aim of this study was to investigate the relationship between preferred 

tendencies of isometric force dynamics, alterations to these dynamics according to 

various force-tracking demands, and adaptive perceptual-motor performance as indexed 

by isometric tracking accuracy. Participants initially produced and maintained their 

preferred force level without visual feedback for 30 trials. This was followed by isometric 

tracking of three visual force targets (constant, pink noise (≤ 12 Hz.), sine wave (1 Hz.)) 

for 30 trials (each) according to their preferred force range. Subjects demonstrated long-

range correlations in all experimental conditions, however, their self-selected force 

complexity (indexed by DFA) was not representative of pink noise dynamics as is 

generally expected in minimally constrained behavior. Alterations to both the average 

and between trial distribution of a subject’s DFA scaling coefficient was dependent on 

task constraints. The intrinsic dynamics assessment predicted tracking performance 

according to a generalize-able U-shaped function over the range of between-subjects 

preferred force DFA. Tracking performance was also predicted by an individual’s 

dynamical flexibility, as indexed by the magnitude of difference between their task-

relevant DFA exponents. These findings provide further evidence of a relationship 

between behavioral dynamics and adaptive performance. Intrinsic and task-relevant 

dynamics were both influential factors, and thus their collective assessment may expand 

our understanding of system organization and adaptive motor control.  
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Introduction 

 It is generally accepted that humans are inherently complex entities. By 

definition, a complex system consists of many interacting components (or elements) 

functioning across numerous scales in space and time (Mitchell & Newman, 2001; 

Delignieres & Marmelat, 2012; West, 2006). The pervasive phenomenon of long-range 

serial correlations in behavioral time series is considered to reflect functional complexity 

underpinning the dynamics of an individual's system (Van Orden, Holden, & Turvey, 

2003; Diniz et al., 2011). That is, temporal properties of behavioral fluctuations are 

thought to represent both the degree of stability in terms of emergent coordination 

between functional elements, and the flexibility to re-organize said elements according to 

factors that critically perturb the system in its current state (Van Emmerik & Van Wegen, 

2000).  

 A contemporary research agenda aims to identify general principles driving 

functional alterations to intra-individual coordination dynamics across many phenomena 

(ie. aging, adaptation, disease, etc) (Peng et al., 1995; Goldberger et al., 2002; Hausdorff 

et al., 1995, 2005). Several approaches, most notably the Loss of Complexity (LOC) and 

Optimal Variability (OV) hypotheses, operate according to assumptions that behavioral 

and physiological dynamics demonstrate the highest degree of complexity when time 

and/or frequency domain analysis exhibit      scaling, also known as fractal or pink 

noise fluctuations (Torre & Wagenmakers, 2009; Kello et al., 2010; Delignieres & 

Marmelat, 2012; Wijnants, 2014). Provided       scaling best accommodates stability 

and flexibility of the system, the LOC and OV approaches hold it to be representative of 

optimal adaptability (Torre & Balasubramaniam, 2011). Thus, any shift towards more 
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random (white noise) or deterministic (    ; brown noise) fluctuations in output is a 

consequence of pathology, mal-adaptation, or sub-optimal control (Hove et al., 2012; 

Washburn et al., 2015; Ducharme & Van Emmerik, 2018). 

 A major criticism of the LOC and OV approach stems from instances where 

behavioral output in otherwise young healthy individual's deviates from      scaling 

(Chen et al., 1997, 2001; Kello et al., 2007). Proponents of the LOC/OV frameworks 

contend that scaling relations underpinning behavior are dictated by the balance between 

the flexibility of task and inherently intrinsic constraints (Van Orden, Kloos, & Wallot, 

2011; Washburn et al., 2015). Pink noise fluctuations are thus exhibited when task 

constraints are sufficient for realization of a specified behavior (ie. individuals must 

walk) yet marginal so as to allow the system to coordinate the optimum contribution of 

component-interaction processes (ie. individuals should walk at their preferred pace) (see 

Van Orden et al., 2011 for extensive discussion). Consequently, advocates of this 

framework generally minimize task constraints while studying behavioral dynamics as a 

function of, for example, aging (Almurad et al., 2018), pathology (Hove et al., 2012), and 

developmental disorder (Stergiou et al., 2013). In the instances where task constraints are 

imposed and manipulated to explore alterations in behavioral dynamics (ie. speed vs. 

accuracy paradigm), the overarching theme is exploration of movement parameters that 

exhibit pink noise fluctuations (Athreya et al., 2012; Hunt, McGrath, & Stergiou, 2014; 

Washburn et al, 2014).  

 An alternative interpretation, known as the Loss of Adaptability approach, 

proposes that adaptability is better represented by the neuro-motor system's capacity to 

re-organize in response to any multitude of context specific constraints (Ganz et al., 
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1996; Vaillancourt & Newell, 2002; Newell et al., 2003). This extends from the premises 

of coordinative structures, in which the organization of the functional DoF's underlying 

macroscopic behavior is in large part constrained according to dimensional properties 

demanded by the task (Kay, 1988). Vaillancourt and Newell (2002) provided supporting 

evidence to this interpretation in an aging study (young healthy, elderly, older-elderly 

groups) utilizing isometric force tracking. While not expressly discussed, their data 

clearly demonstrate that young healthy individuals significantly shifted their force 

complexity according to unique properties of each target (approximately pink noise in 

constant target tracking; brown noise in oscillatory target tracking). Elderly subjects 

demonstrated a smaller shift in force dynamics, and the older-elderly group showed no 

shift in their force dynamics across conditions. Studies have further corroborated a shift 

from      towards      (brown noise) fluctuations as a function of, for example, 

specific force tracking demands (Sosnoff, Valantine, & Newell, 2009), stride parameters 

on marathon performance (Hoos et al., 2014), and stroke parameters on training in 

competitive swimming (adolescents) (Barbosa et al., 2015). 

 The aforementioned studies provide insight to the prospect that shifts in 

behavioral dynamics within the continuum of the colored noise spectrum (pink to brown) 

should not be immediately written off as a negative or spurious result. Nevertheless, the 

experimental scope of the studies just reviewed is limited in two capacities. First, the 

majority of studies within this framework assess individual dynamics corresponding 

solely to the specified experimental tasks. However, a constraints-based approach to 

motor behavior stipulates that stable coordination emerges according to a confluence of 

organismic, environmental, along with task constraints (Newell, 1986). Therefore, 
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capturing individual’s intrinsic dynamics barring task constraints may still factor into 

how system organization is modulated when task and environmental factors are imposed 

(Kelso, 1995). Second, while studies with the capacity to report actual indices of 

individual or group performance have done so, the direct relationship between these 

measures and individual's within-trial dynamics remains unclear. 

 Regardless of interpretation, there is agreement that complexity measures may 

possess significant value as biomarkers for a system's adaptive capacity (West, 2006; 

Sturmberg & West, 2013). A generalized concept across definitions of adaptability is the 

ability to modify one’s behavior in accordance with novel constraints or conditions. 

Directly relating individual dynamics to adaptability necessitates a more direct approach 

on validating these measures according to their unique domain of study. A viable solution 

is to test whether dynamics hold predictive power in conjunction with domain specific 

ability scores (ie. performance scores, stability via perturbation). Most importantly, the 

field as a whole would benefit from studies across relevant paradigms providing a 

comprehensive characterization of intrinsic and task specific dynamics.  

 In the current study, we investigate how minimally constrained individual 

dynamics impact coordination and performance according to manipulations of the task 

dynamics. Specifically, we asked individuals to produce their preferred isometric force 

and we developed three tracking tasks corresponding to that preferred range. All subjects 

were required to match their force output to three tracking targets differing in 

dimensionality (constant force: fixed point; oscillatory force: limit cycle; pink noise force 

/     : chaotic). Our experiment was designed to investigate three primary questions.  
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 First, do young adult healthy individual's exhibit a self-selected force output 

corresponding to      pink noise? It is well established that continuous behavioral 

processes tend to function within the colored noise spectrum (pink to brown noise) 

(Collins & DeLuca, 1993; Sosnoff et al., 2009; Wijnants et al., 2012). However, there are 

few data on minimally constrained dynamics in the force domain, and thus the 

distribution of subject's force complexity is currently unknown. We expect that this 

population will fall within the colored noise continuum, as deviations towards random 

(white noise) behavior would infer a lack of stable coordination, and thus a breakdown in 

functional (multi-scale) element coupling relevant to continuous force production. As an 

extension, we predict that subjects will vary across the colored noise continuum (ie. pink 

to brown noise) in their minimally constrained force output. This prediction is based on 

the assumption that complexity of behavioral output does not necessarily reflect the 

absolute peak of complex coordinative possibilities available to individuals. Individuals 

can differ significantly in lifestyle activity, and thus their individual dynamics may differ 

according any number of factors ranging from skill to metabolic efficiency (Cavanagh & 

Williams, 1982; Hoos et al., 2014).  

 Second, does an individual’s intrinsic force dynamics (preferred tendencies) 

impact how force complexity shifts according to dimensional (spatial and temporal) 

properties of the task? The previous literature suggests that task dynamics elicit a general 

shift in average force complexity. Additionally, there appears to be change in magnitude 

of the force complexity shift as a function of task according to age groups (Vaillancourt 

& Newell, 2002; Sosnoff et al., 2009). However, provided the expectation that there will 

be differences in individuals self-selected force complexity, we wish to explore whether 
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self-selected force complexity impacts the direction and magnitude of the force 

complexity shift as a function of task. We predict that subjects will demonstrate similar 

shifts towards more random and deterministic force output according to the specified 

force target. However, the magnitude of their force complexity shift will depend on their 

intrinsic dynamics as reflected in their self-selected force output.  

 Third, does the intrinsic force dynamics and/or task relevant complexity relate to 

traditional outcome measures of performance? Whether      intrinsic, or specific 

criterion (task) dynamics predict better tracking performance is unclear. Intuitively, one 

could argue for both cases, as they could represent either the ability to exploit more 

relevant DoF's in a generalized manner, or the ability to reorganize DoF's optimally 

according to task demands. To our knowledge, there have been no attempts in the 

isometric tracking literature to illustrate the direct influence of force complexity 

characteristics on tracking performance. 

 

Methods 

Subject's 

 30 self-reported right-handed subjects (age: 23 ± 5 years, 16 Male) from the 

university population participated in this study. The subjects were not trained in fine 

manual tasks, were not competitive weight lifters, and had no previous history of 

neurological disorder. Written informed consent was obtained from all participants in 

congruence with the IRB approval from The University of Georgia. Two subjects (1 

male) could not complete testing, and subsequently were removed from all analysis.  
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Procedures 

 Subjects were given approximately 5 min of familiarization with procedures 

related the experimental protocol before testing. They were instructed to apply force on a 

load sensor via abduction at the distal phalanx of the index finger on their dominant hand. 

During familiarization, subjects were provided feedback of all three forces (Fx, Fy, 

Fz)and moments (Mx, My, Mz). Subjects were instructed to attend to feedback of their 

normal force (Fz), and asked to manipulate different force levels in order to explore their 

force preference. That is, subjects were asked to search for a force range that they could: 

a) perform and maintain comfortably for an extensive duration, and b) perceivably 

modulate with the greatest precision. The non-dominant hand was to rest in a 

homologous position during testing. Upon familiarization individual maximum voluntary 

contraction (MVC) was calculated by having subject's produce their maximum force over 

3 trials at 6 s per trial. While MVC was not utilized in any way for experimental setup, 

we collected their absolute force capacity in order to determine whether this was a 

contributing factor to individual differences in force characteristics.  

 Before any tracking tasks were introduced, all subjects were asked to produce 30 

trials (20 s duration) of their preferred force. Subjects were not provided visual feedback 

of their output during any portion of the trial, however, they were notified on screen 

when each trial was completed. Upon trial block completion, individual force properties 

were assessed to match each experimental target to the confines of their preferred force 

distribution. Specifically, their average preferred force output corresponded as the mean 

force value for all experimental conditions, while their force distribution (between trial) 

dictated the boundary range for fluctuation magnitudes (± 2 SD) for all relevant targets.  
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 Target order of the constant, sine wave, and pink noise conditions was 

randomized for each participant. A total of 30 trials within each target condition was 

performed before proceeding to the next task. Subjects were instructed to produce force 

on the load cell so that a yellow feedback line matched a red target line located on the 

center of the screen. Upon completion of a trial, participants received knowledge of 

results (KR) of root mean square error (RMSE) related to their force output. The duration 

of each trial was 20 s. The first 3 s of each trial were removed from RMSE calculations in 

order to remove any negative impact on their KR score. In order to reduce any transient 

effects of fatigue, the subjects were provided with as much time as they needed to recover 

between trials, and were given at least 5 min of rest between each block condition. The 

duration of testing for each subject was approximately 1.25-1.5 hours.  

Apparatus  

 Subject's sat in a stationary chair approximately 23 in (58 cm) away from a 20 in 

(51 cm) LCD computer monitor. In front of the monitor were two ATI Entran ELFS-B3 

force load cells spaced approximately 7.5 in (19 cm) apart. The output from each trial 

was amplified and sampled at (640) Hz by a 16-bit Coulbourn A/D board. 

Although no physical constraints were applied during testing, subjects were asked to 

maintain the same posture and keep their elbows, forearms, wrists, and palms flat on the 

surface throughout the experiment. Feedback of the force output was given to subjects 

through a 20 in (51 cm) HP monitor with a resolution of 1920 x 1080 pixels. The force 

trace on the screen was set at a pixel-to-Newton ratio of 64 p/N.  
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Data Analysis 

 The first 3 and last 2 s of each trial were removed from the data of each trial in 

order to remove any transient gradations in force that precede target matching. Data 

processing was performed with Matlab 8.1 (Mathworks Inc.). Subject's normal force (Fz) 

output was recorded at 640 Hz. and subsequently decimated by a factor of 5 (128 Hz) 

prior to analysis. Data were filtered using a fourth-order zero-lag Butterworth filter with a 

cutoff frequency of 20 Hz. 

 Descriptive Measures: Subject's mean absolute (N) and relative (%MVC) force 

output were calculated in the self-selected force condition. Relative force was calculated 

by dividing subject's mean absolute force (N) over their absolute MVC (N).  

 Force Variability: Intra-subject force variability was assessed by within-trial 

standard deviation (N).  

 Force Accuracy: Subject's tracking accuracy was assessed by their absolute 

Constant Error (CE) of force output (N) within each trial (Schutz & Roy, 1973; Guth, 

1990). The equation for absolute CE is: 

 

     
        

 
        (1) 

 

where x is subject's force, T is the corresponding target force, and N is the total number 

of discrete data points used for calculation. Absolute CE indicates the average amount in 

which subject's deviate from the target, and thus measures force accuracy irrespective of 

differences in force variability (force SD (N)) according to each task. 
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Structure of Variability. The time dependent force structure in the self-selected 

force condition and as a function of force target was assessed by Detrended Fluctuation 

Analysis (DFA) (Peng et al., 1995). DFA integrates raw time series data, divides this 

integrated series into boxes with equal window length, and within each box least squares 

fit line is applied. In order to detrend the data, each linear fit is subtracted for each 

window. The root mean square (RMS) variability is calculated within each window, and 

averaged across windows of the same size. These calculations are repeated at a range of 

window sizes, in which a regression slope (α) of the log-log relation between RMS 

variability and window size (time scale) captures the degree of self-similarity in a signal. 

DFA α values correspond to different deterministic structures on the force signal (white 

noise: α = 0.5, pink noise: α = 1.0, brown noise: α = 1.5).  

 Model: Model fitting was performed prior to regression analysis via the fit 

function in MatLab 8.1 (Mathworks Inc.). Tracking accuracy (individual's average CE) as 

a function of self-selected DFA for all force targets (constant, pink, sine wave) was fitted 

to 1st, 2nd, and 3rd order polynomial models. The model selected for further analysis was 

determined ultimately by the lowest Bayesian Information Criterion (BIC) value.   

Inferential Statistics: Based on model fitting, 2nd order polynomial regression 

analysis was performed on tracking accuracy of each target (constant, pink, sine target | 

CE |) (dependent variables). The aim was to determine whether intrinsic force dynamics 

predicted tracking accuracy in a manner specific to each tracking condition. The 

independent variable (Self-Selected DFA) was standardized prior to model fitting and 

regression analysis. In the event that assumptions of homoscedasticity were violated, a bi-

square weighted regression was supplemented to our analysis. 
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A linear bi-variate regression was performed on the magnitude of shift between 

intrinsic and task relevant force dynamics (SS x CN, PK, SN target shift in DFA) as a 

function of the individual's self-selected DFA. Magnitude of shift was calculated by 

subtracting subject's average task specific DFA from their average self-selected DFA. 

The aforementioned analysis techniques focus primarily on the unique relation 

between force dynamics and performance according to the task demands. As an 

extension, we investigated the generalize-ability of force dynamics, both intrinsic and 

task relevant, on overall isometric tracking ability. Thus, individual's average between 

task absolute CE was calculated as our dependent variable of interest. We performed the 

same model fitting techniques on our independent variables of interest that characterize 

both intrinsic force dynamics and dynamical flexibility. From here we performed a 

multiple regression on average absolute CE, where a stepwise selection process compared 

models with differing variables of interest.  

Repeated Measures: The Shapiro-Wilk test of normality was performed prior to 

any repeated measures analysis. If assumptions of normality were met, a traditional one-

way repeated measures ANOVA was performed. In the event that the assumption of 

normality was violated, a Friedman non-parametric K-related samples test was 

implemented.  

A one way (4 target condition) repeated measures ANOVA was performed using 

subject's average between trial DFA output for every condition to determine how 

individual force dynamics shift as a function of tracking conditions.   
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A Friedman non-parametric test was run on standard deviation of individual's 

DFA output in order to determine how force dynamics are constrained as a function of 

task condition.  

A Friedman non-parametric samples test was also run on average SD and absolute 

CE in order to determine how each tracking task impacts subject's overall force 

variability in conjunction with their tracking accuracy (| CE |).  

All statistical analyses were considered to be significant when the probability of 

making a type 1 error was less than 5% (p< .05). If the assumption of sphericity using 

Mauchly's test was violated in the repeated measures ANOVA, a Huynh-Feldt correction 

was used to adjust the statistical degrees of freedom. Only those main effects that reach 

significance (p< .05) are reported. Model fitting and regression analysis were first 

performed in MatLab 8.1 (Mathworks Inc.). The remaining analyses were performed 

using IBM SPSS software. 

 

Results 

 Figure 4.1 provides an illustration of a single trial from one participant’s force-

tracking time-series in the constant, pink noise, and sine wave tracking tasks, 

respectively. Young healthy subjects produced an average absolute force (af) of 2.4 

Newton's (SD: 1.3 (N)), along with an average relative force (rf) of 13% MVC (SD: 8%). 

Neither force characteristic showed a clear relationship with individual's self-selected 

DFA output (af x ssDFA (R: .097), rf x ssDFA (R: -.11)).  
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Force Accuracy and Variability 

 The distributions of between subject CE and SD according to each tracking 

condition are illustrated in Figures 4.2A and 4.2B, respectively. The Friedman test found 

no significant differences in absolute constant error across all tracking conditions,   (2) 

0.64, p = 0.73. The Friedman test did, however, find significant differences between 

subject's force standard deviation (N) as a function of tracking condition,   (2) 42.64, p 

< 0.001. Post Hoc analysis using Wilcoxon signed-rank tests revealed that the sine wave 

target showed significantly higher force variability compared to the constant (Z = 4.62, p 

< 0.001), and pink noise (Z = 4.62, p < 0.001) targets, respectively.  

Complexity of Force Output (DFA) 

 Figure 4.2C illustrates the distribution of between subject DFA scaling coefficient 

according to each testing condition. Figure 4.2D provides the same illustration in terms of 

individual's between trial standard deviation (SD) of their DFA output.  

The 1 way (4 target condition) repeated measures ANOVA revealed significant shifts in 

subject's mean DFA output as a function of force tracking conditions, (F(2.29, 61.91) = 

118.91,  p < 0.001,   
  = 0.82). Post Hoc analysis found significant differences in DFA 

between all conditions. The order of average DFA output from most complex to most 

deterministic was the constant target (M: 1.17, SD: 0.08), pink target (M: 1.20, SD: 0.05), 

self-selected force (M: 1.32, SD: 0.07), and sine target (M: 1.4, SD: 0.07) conditions, 

respectively.  

 The Friedman non-parametric test revealed that the distribution of individual's 

between trial DFA (SD) significantly differed according to tracking condition,   (3) 

42.81, p < 0.001. Post Hoc analysis using Wilcoxon signed-rank tests revealed that DFA 
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SD significantly differed between all conditions except for the constant target and pink 

target tasks. Specifically, SD of self-selected DFA was significantly larger than the 

constant (  = -3.006, p = .003), pink (  = -3.96, p < .001), and sine (  = -4.33, p < .001) 

tracking conditions. SD of DFA was also significantly larger for both the constant and 

pink noise conditions when compared respectively to the sine wave target condition: CN 

(  = -4.39, p < .001), PK (  = -4.14, p < .001).  

Tracking accuracy as a Function of Self Selected DFA 

 As shown in all panels of Figure 4.3, tracking accuracy (|CE|) followed a U-

shaped function (also, see Table 1), in which the cluster of most accurate subject's across 

tracking tasks corresponded to a DFA scaling coefficient of approximately 3.0-3.5. Both 

the standard model fitting procedures and the bi-square re-weighted fittings determined 

that a U-shaped function was the best representation of the data compared to linear and 

cubic models.  

Shift in Force DFA as a Function of Self Selected DFA 

 Figure 5.4 illustrates the impact of individual's intrinsic force dynamics on the 

magnitude of their shifts in force complexity according to task constraint. Simple 

regressions showed a significant relationship between self-selected DFA and subsequent 

changes to mean DFA across all tracking conditions, SS x CN (p = 0.015), SS x PK (p < 

0.001), SS x SN (p = 0.001). Figures 5.4a and 5.4b show the collective shifts towards a 

more complex force output in the constant and pink noise tracking conditions, whereas 

figure 5.4c shows the sine wave condition eliciting shifts to a more regular output. 

Correspondingly, we found that the magnitude of changes in force complexity according 

to task constraint was predicted by proximity to individual's self-selected force dynamics.  



 

50 

A Generalized Function of Force Dynamics on Tracking Ability 

 Results from our analysis of force dynamics on average absolute CE can be found 

in both Table 2 and Figure 4.5. Intrinsic force dynamics were characterized according to 

individual's self-selected DFA. Dynamical flexibility refers to the magnitude with which 

individuals are able to shift their dynamics between tasks, thus representing their 

flexibility in control of the relevant degrees of freedom in visuo-motor force coupling. 

Depending on the individual, the largest shift in DFA was seen between the sine wave 

condition and either the constant or pink noise task. In all cases there was a much greater 

shift between the sine task and both conditions, and thus we calculated the magnitude of 

shift between sine/constant and sine/pink. The average between these values was found to 

be the most appropriate variable indexing dynamical flexibility.  

 Multiple regression found that self-selected force DFA and individual's average 

shift in DFA were both significant predictors of their general tracking accuracy (|CE|), 

(F(3,27) = 9.40, p < 0.001), in which both variables accounted for 54% of the variance in 

performance. There was a generalizable u-shaped function between accuracy and self-

selected DFA, with the optimum scaling coefficient interval between 1.30-1.35 (~1.32). 

There was a linear relationship between average DFA shift and tracking accuracy, where 

improved performance was predicted by a larger magnitude of difference between task 

relevant DFA scaling coefficients.  

 

Discussion 

 This study investigated the influence of healthy adult individual's intrinsic 

dynamics, and flexibility of their task-relevant dynamics, on adaptive control across a 
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range of visuo-motor tracking tasks. Specifically, we tested the theoretical position that 

pink noise fluctuations represent the optimum in system coordination, and thus: a) is an 

ubiquitous characteristic of unperturbed/unconstrained behavior in the healthy adult 

population (Lipsitz & Goldberger, 1992; Kloos & Van Orden, 2010; Van Orden et al. 

2011), and b) directly relates to system adaptability (Stergiou & Decker, 2011; 

Ducharme, 2018; Ducharme & Van Emmerik, 2018). Our findings demonstrate that 

young healthy subject's do exhibit long-range correlations in their intrinsic force output, 

however, the distributional properties within this condition differ from the conventional 

expectations of pink noise behavior. Our findings also revealed considerable flexibility of 

individual's force output in terms of coordination and performance in visuo-motor 

coupling. Most importantly we provide robust evidence for a generalized relation 

between intrinsic dynamics and adaptability, as indexed by tracking performance over the 

range of force tracking tasks.  

Force Variability and Tracking Performance 

 As expected, the inherent spatiotemporal properties of our tracking tasks required 

individuals to manipulate the variability of their absolute force output (SD). The 

isometric tracking literature has quantified performance in terms of absolute (ie. standard 

deviation (SD)) and relative (ie. coefficient of variation (CV)) force variability as an 

index of consistency, or utilized a combined index of tracking accuracy and consistency 

(ie. root mean square error (RMSE)) (Loscher & Gallasch, 1993; Slifkin & Newell, 1999, 

2000; Vaillancourt & Newell, 2001; Christou et al., 2002). Subsequent reports of these 

outcome measure show significant changes in performance according to manipulations in 

the task force requirement, visual information, or a combination of both. While subjects 
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produced the same average force, the unique spatial and temporal variations between 

tracking conditions required alterations to force consistency (SD) (See Figures 4.1 & 

4.2b).  

 Nevertheless, young healthy subjects were able to sustain their force accuracy 

across all tasks. Similar studies have reported performance differences as a function of 

target according to subject's RMSE scores (Sosnoff et al., Newell, 2009; Studenka & 

Newell, 2013). Our results, however, suggest that consistency and accuracy measures 

require distinct assessment in the event that task manipulations are disproportionately 

related in terms of, for instance, force consistency. In fact, the capacity to modulate force 

variability to preserve accurate visuo-motor coupling may be an exemplary marker of 

flexible adaptation in and of itself. In which case future studies on aging, pathology, and 

rehabilitation could investigate how the force variability/accuracy relationships manifest, 

both general and task specific, according to each population of interest.  

Force Dynamics 

 We adopted a self-selected force condition by virtue of the constraints-based 

approach to within system coordination (Newell, 1986; Kay 1988). Specifically, 

emergent coordination of the neuro-motor system results from a confluence of intrinsic, 

environmental, and task constraints acting on it. By prescribing minimal imposition of 

environmental and task constraints (ie. self-selected force as opposed to prescribed force, 

no visual information) we aimed to provide the conditions necessary for a system to 

freely express the intrinsic dynamics. The continuous nature of our force-time paradigm 

in conjunction with extensive trial repetitions within conditions also allowed a more 
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comprehensive outline of the average and distributional properties of individual's 

dynamics according to relevant constraints.  

 The DFA results from the self-selected force condition support the notion that 

healthy adult neuro-motor output exhibits long range correlations associated with 

interaction dominant dynamics. However, there were no instances where subject's 

exhibited pink noise fluctuations, and the majority of force dynamics were closer in 

proximity to brown noise. We cannot explicitly state why this was the case, however we 

can speculate several possibilities that relate to several findings in the relevant literature.  

 A possible explanation for a more regular output in young healthy adults 

corresponds with a theoretical proposal that degree of long-range correlation is 

proportionally related to energetic efficiency (Ahn & Hogan, 2013; Dotov, Bardy, & 

Dalla Bella, 2016). A recent study by Marx (2019) monitored college student’s daily 

activity with accelerometers. They found that subjects who consistently performed 

endurance exercise demonstrated higher DFA values compared to all other sub groups 

(ie. weight lifters, controls). Another possibility is the nature of activities involving 

manual dexterity. Specifically, manual control in many situations involves a continuous 

shift from oscillatory/rhythmic behavior, to fixed-point precision-based control 

(Mathiowetz et al., 1985). In a motor control sense, it is plausible that these force 

dynamics are an expression of a lifetime of task relevant constraints driving the system to 

stable shifts in interactive processes, and thus reflecting a balance between more random 

and more deterministic dynamics.  

 The results from the force tracking conditions supported our second hypothesis, in 

that individual's force complexity was driven by the dimensional properties of each task. 
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Athreya and colleagues (2012) found that feedback of force output alone increases force 

complexity, in which they proposed that a "whitening" of the signal was a consequence 

of visual information affording the facilitation of visuo-motor error correction. However, 

our findings show that further constraint in the task dimension is a driving force in the 

organization of interacting control processes, thereby producing a bi-directional shift 

along the range of 1/f like force fluctuations. It is bi-directional in the sense that, when 

compared with their intrinsic force complexity, subject's force output shifted towards 

pink noise in the constant and pink noise tracking conditions and towards brown noise in 

the sine wave tracking task (see Figure 4.2C).  

 Adaptive shifts in force complexity according to task demands have been 

previously reported in a young healthy population (Vaillancourt & Newell, 2002; Sosnoff 

et al., 2009). Our results show just how these shifts correspond to their 1/f dynamics, in 

that there is a direct relation on both the direction and magnitude in which they shift from 

these dynamics according to task-imposed constraints. Individuals with intrinsic 

dynamics near      show a larger shift towards      in the sine wave condition, 

whereas those who are intrinsically near      show a larger shift towards      in the 

constant and pink noise tracking conditions (see Figure 4.4). Intuitively, this relation is to 

be expected, however, an explicit reporting of these results is necessary when considering 

previous findings (Vaillancourt & Newell, 2002), where the magnitude of change in force 

complexity decreased according to age. Future studies could examine whether the relative 

rigidity of elderly subject's task relevant dynamics relate proportionally with their 

intrinsic tendencies. In which case adapting manual force modalities to expand on their 

dynamical range may be a key factor for the development of therapeutic modalities.  
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 The current study is unique to the isometric tracking domain in that we: a) 

outlined individual's intrinsic force dynamics, and b) provided a comprehensive 

illustration of the distributional properties of subject's force dynamics across 

experimental conditions (30 trials compared to typically no more than 10). A much larger 

sample size per condition allowed us to expand on how task demands constrain 

dynamical properties of individual force output. That is, how visual information and 

corresponding spatio-temporal properties of each condition constrain variations in force 

complexity from trial to trial. The self-selected force condition showed the greatest 

degree of variation in between trial complexity compared to all other conditions (see 

figure 4.2D). Furthermore, the sine wave tracking condition showed a significant 

reduction in how subjects vary their complexity compared to all other tasks.  

 A well-established hypothesis holds that 1/f like output represents a system driven 

by interaction-dominant dynamics, and subsequently the degree of system complexity is 

contingent upon a more weighted contribution of faster timescale processes available for 

action (Sosnoff et al., 2008, 2009; Ofori, Samson, & Sosnoff, 2010). Vaillancourt and 

Newell (2002) proposed that the dimensional properties of the task at hand dictate how 

force complexity is modulated. Essentially, an oscillatory task requires attenuation 

whereas a fixed-point task requires augmentation of faster time scale control processes to 

optimize goal-oriented behavior.  

 However, our findings reveal that an individual's average force complexity alone 

provides an incomplete picture to how different tasks constrain behavioral dynamics. 

Apparently, conditions that require attenuation of faster timescale processes are also more 

rigid in how individual's coordinative regimes may vary. That, or healthy individuals 
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have developed a highly stable coordinative regime in controlling their force oscillations, 

thus limiting the amount in which their force complexity needs to vary (Serrien, 2008; 

Snapp-Childs, Wilson, & Bingham, 2015). In any case, the added dimension of 

individual's complexity distribution requires consideration for future experimental 

inquiry. 

Force Dynamics Predict Task Performance 

 The idea that intrinsic dynamics provides important insight into how the system 

functions, performs, and evolves has been established through extensive research on 

bimanual rhythmic coupling (Kelso & Zanone, 1992; Zanone & Kelso, 2002; Kostrubiec 

et al., 2002, 2012). We provide supporting evidence that this premise can be generalized 

to studies using different movement paradigms, along with different metrics of system 

coordination. However, we also show the necessity for a more comprehensive and critical 

understanding of intrinsic dynamics in a manner that is specific to each experimental 

paradigm. In our case, there was a clear and general u-shaped function between tracking 

accuracy and self selected DFA. The most adept subjects were clustered at a force 

complexity that can be approximated as central to the colored noise continuum. More 

importantly, they were centered in terms of the interval that may approximate the 

bounded range of complexity in minimally constrained force output of humans. In which 

case this range does not corroborate with the frameworks suggesting that optimal system 

dynamics should be universally characterized through pink noise behavior.   

 Studies have also established a flexible range in 1/f behaviors according to task 

demands on visuo/auditory-motor coupling in force tracking and gait (Sosnoff et al., 

2009; Hunt et al., 2014). However, to our knowledge this is the first study to show a 
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direct relation between dynamical flexibility and adaptive task performance. Specifically, 

average tracking accuracy was better in subjects who showed a larger range in between 

task DFA output. These findings provide preliminary evidence for a number of research 

directions. Future studies could expand our understanding of influential factors such as 

aging and pathology on dynamical flexibility. Furthermore, learning and rehabilitation 

paradigms could examine how affected populations can go about increasing their 

dynamical flexibility. These prerequisite steps could influence how practitioners 

instantiate future interventions for adaptive behavior.  

 The perception that adaptive capacity is explicitly reflected by the emergent 

dynamics of a system performing under ideal conditions is, in our estimation, 

fundamentally erroneous. Such an approach infers that the only relevant constraints 

governing adaptive coordination and behavior come from the system itself (ie. 

organismic). This also extends to the assertion that optimal behavioral dynamics can be 

universally characterized as a      process, as this undervalues how a lifetime of 

environmental and task constraints shape system dynamics in the service of adaptive 

behavior.  

Thus, a metric for adaptability requires the implementation of contextual 

constraint so as to estimate individual’s dynamical flexibility in relation to behavioral 

performance. This in turn also provides insight into causal factors describing the 

plausible deviations in intrinsic dynamics from paradigm to paradigm that may predict 

optimal performance. For example, we speculate that the nature of manual dexterity 

requires a continual modulation of the degrees of freedom relevant to kinetic output. In 

which case the necessity to either switch or shift from rhythmic to fixed point control 
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may have be responsible for resultant intrinsic dynamics. Furthermore, proximity of 

intrinsic dynamics to each task may relate to flexibility. Figure 4.5 clearly shows that the 

most adept subjects exhibited self-selected force DFA ~ 1.30 in conjunction with a 

greater range in between task DFA. While such an explanation is speculative at best, we 

contend our general approach holds inherent value to advancing insights into complexity 

and adaptive behavior. 
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Tables 

Table 4.1 

Regression equations describing isometric tracking accuracy (|CE|), and shifts in DFA 

(α) as a function of self-selected force DFA (α) 

 
Polynomial regression equations Goodness of fit 

Dependent 

variables          
  R² 

Standard model: 

    

Constant Target 

CE 

0.0248 0.0085 0.0213 0.34 

Pink Target CE 0.0276 0.0114 0.0188 0.29 

Sine Target CE 0.0398 0.0067 0.0152 0.43 

Weighted model:     

Constant Target 

CE 

0.0223 0.0031 0.0088 0.78 

Pink Target CE 0.0231 0.0302 0.0246 0.72 

Sine Target CE 0.0339 0.0077 0.0450 0.41 

Standard model:     

SS x CN Shift 0.434 -0.442 --- 0.21 

SS x PK Shift 0.583 -0.533 --- 0.43 

SS x SN Shift 1.042 -0.726 --- 0.37 

Note: The first standard model section and subsequent weighted model sections represent 

regression equations describing force tracking accuracy as a function of force complexity. 

The presence of heteroscedasticity within functions was addressed in the weighted model 

section, where we fitted models utilizing the bi-square weight method for robust least 

squares regression. This method implements an iteratively reweighted least-squares 

algorithm for calculation. Unique weights are applied to every data point according to 

their proximity with the fitted function, thereby limited the impact of extreme outliers. 

The third standard model section represent linear regression equations for the shift in 

mean DFA as a function of self selected DFA.  
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Table 4.2 

Multiple regression equation describing overall isometric tracking accuracy (|CE|) as a 

function of self-selected force DFA, and average shift in task relevant force DFA (R² = 

0.54) 

 B SE B t p VIF 

Constant 

4.719 1.463 3.225 0.004 --- 

SS-DFA -7.111 2.221 -3.203 0.004 1012.514 

SS-DFA² 2.722 0.839 3.245 0.003 1016.025 

Av. DF-Shift -0.196 0.071 -2.777 0.010 1.113 

Note: The dependent variable for regression was individual's averaged |CE| between 

tracking conditions. SE = standard error for B. VIF represents the collinearity statistic 

variance inflation factor. Significant structural collinearity was expected between both 

self selected DFA terms, however the primary variable of interest in this statistic is 

average DFA shift.  
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Figures 

 

Figure 4.1. Example of force-time series in the constant, pink noise, and sine wave tracking 

conditions. All trials are the 15th trial from the same subject across conditions. 
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Figure 4.2. Violin plots demonstrating changes in young healthy subject's mean absolute CE (A), 

mean SD of force output (B), mean DFA scaling exponent (α) (C), and subject's between trial SD 

of their DFA scaling exponent (α) (D) as a function of force tracking conditions (SS= Self 

Selected Force, CN= Constant Target, PK= Pink Target, SN= Sine Wave Target). Each condition 

distribution is presented, in which color spectrum corresponds to frequency cluster. The higher a 

frequency of occurrence, the lighter the color under the curve. The red lines correspond with each 

conditions Interquartile Range (IQR). 
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Figure 4.3. Individual's mean tracking accuracy (|CE|) as a function of mean DFA scaling 

exponent across all tracking conditions. The solid line represents a 2nd order polynomial least 

squares fit. The dashed line represents a 2nd order polynomial least squares fit when a bi-square 

reweighting algorithm is implemented. The corresponding regression  equations for all fitted 

functions can be found in the first and second sections of table 1.  
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Figure 4.4: Shift in mean DFA scaling exponent according to tracking task as a function of self 

selected DFA. The regression equations for all fitted lines can be found in the third section of 

table 1.   
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Figure 4.5: General tracking accuracy (average |CE|) as a function of intrinsic force dynamics 

(self-selected DFA) and dynamical flexibility (average difference between sine/constant & 

sine/pink target DFA). The contour surface corresponds to the multiple regression equation in 

Table 2.   
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CHAPTER 5 

THE ROLE OF COMPLEXITY MATCHING ON INTRINSIC, AND TASK SPECIFIC 

ISOMETRIC FORCE DYNAMICS: A PRACTICE STUDY
2
   

                                                 
2
 Novak, T. S. & Newell, K. M. To be submitted to Nonlinear Dynamics, Psychology, 
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Abstract 

  Previous research has developed opposing perspectives on the role of system 

dynamics, and more specifically the degree of temporal complexity in these dynamics, as 

an index of adaptability. Based on these views, current literature is also extending beyond 

the level of system description to the domain of rehabilitative intervention. An active 

hypothesis is that      dynamics represents an optimally adaptive system, and thus 

intervention studies should strive to elicit this output in individuals minimally constrained 

behavior. Recent findings suggest that the complexity matching phenomenon is a viable 

approach to establishing greater complexity in behavioral dynamics according to dyadic 

interaction, or perceptuo-motor coupling. This study tested whether the degree of 

complexity embedded in a visual stimulus led to unique alterations in complexity of force 

output with practice. Furthermore, we tested the hypothesis that practicing a      target 

was superior in facilitating adaptive force control. Twenty subjects were instructed to 

perform 5 days of tracking practice in either a pink noise (    ) or brown noise (    ) 

tracking target. Their preferred-force dynamics were assessed prior to the start of 

practice, and directly upon its completion. Furthermore, a transfer condition was 

implemented where the pink group switched to a brown target, and the brown group 

tracked a pink target. Both groups preferred-force dynamics were more complex after 

practice, however, their force dynamics in the tracking task could be differentiated 

according to their target assignment. No differences in transfer performance were found 

between the two practice regimes. Together, these results suggest that complexity 

matching may facilitate unique changes to force dynamics according to visuo-motor 
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constraint, however differing temporal patterns may lead to similar changes in minimally 

constrained behavior.   
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Introduction 

 Essentially all observable actions and outcomes from a biological system are 

fundamental expressions of the coordination of a complex system. Behavioral dynamics 

in human movement is exemplary to this concept, as even the most mundane activity 

necessitates coherent coupling of system components functioning through a nested array 

of spatio-temporal scales (ie. neural, musculoskeletal, biomechanical). To that end, a 

growing body of literature has established that measures of time and frequency dependent 

fluctuations in human output lend insight to underpinning dynamics contributing to 

intrapersonal coordination (Passos et al., 2009; Rhea, & Kiefer, 2014). Specifically, long 

memory      fluctuations often exhibited in human output are representative of a system 

coordinated via interaction-driven dynamics. However, the functional significance of 

     fluctuations in human behavior, that is the quantified expression of system 

complexity, continues to be a point of scientific conjecture (Wijnants, 2014).   

 Reliable description of a systems coordination dynamics has been historically 

limited to studies on bi-manual rhythmic coupling (Haken, Kelso, & Bunz, 1985; Kelso, 

2012; Tognoli, & Kelso, 2014). However, contemporary research in motor behavior and 

neurophysiology is expanding to a variety of movement paradigms according to the 

premise that temporal correlations of human time series describe: a) the adaptive state of 

an individual's coordinated behavior (Den Hartigh, Cox, Gernigon, & Van Yperen, 

2015), and b) how these properties change with breakdowns in coordination as a result of, 

for instance, frailty (Lipsitz & Goldberger, 1992; Lipsitz, 1994), pathology (Goldberger 

et al., 2002), and mal-adaptation (Thurner, Mittermaier, & Erhenberger , 2002). Current 

trends in complexity research point to prospective influence in the domain of applied 
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rehabilitation (Uchitomi et al., 2011; Manor, & Lipsitz, 2013; Marmelat et al., 2014; 

Hove, & Keller, 2015). However, at present there are two distinct interpretations 

regarding the relationship between complexity of system dynamics and adaptive capacity. 

While there is relative autonomy between these approaches in empirical study, their 

general aims correspond with developing future intervention paradigms to improve an 

individual’s neuro-motor function. 

 Advocates of the loss of complexity (LOC) (Lipsitz & Goldberger, 1992) and 

optimal variability (OV) (Stergiou & Decker, 2011) frameworks operate according to the 

premise that      fluctuations, also known as fractal pink noise, is the optimum in 

system adaptability. This logic stems from the notion that pink noise dynamics represents 

a system that best accommodates stability and flexibility in their dynamical organization 

(for extensive review, see Van Order, Kloos, & Wallot, 2011; Harrison, & Stergiou, 

2015). More structured output ( ~      , brown noise) is indicative of increased stability 

at the expense of flexibility, as fewer component-interaction pathways are predominating 

in behavior. However, a more robust system presumably limits the capacity for adaptive 

reorganization of the system when appropriate. Uncorrelated output (~     , white noise) 

indicates a lack of system stability, presumably via breakdowns in component-interaction 

pathways. 

  A key point of debate on this approach, however, is the lack of concrete 

understanding as to why long-range correlations in behavior are so inclined to 

modification with varying degrees of constraint on action (Wijnants, 2014). Marginal 

attempts have been made to explain this phenomenon (Van Orden, Kloos, & Wallot, 

2011), however, the more prevalent approach consists of experimental paradigms 
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implementing minimally constraining tasks to compare populations of interest (Kello et 

al., 2007). Nevertheless, this method has successfully illustrated      fluctuations in 

minimally constrained behavior of young healthy subjects across a number of neuro-

motor tasks (Kello et al., 2008, 2010; Van Emmerik et al., 2016).  

 The loss of adaptability (LOA) framework (Vaillancourt & Newell, 2002, 2003) 

emphasizes adaptive capacity according to an individual’s ability to reorganize system 

dynamics in accordance with dimensional demands of a specified task. This premise is 

built on the interpretation that cross-scale elements and processes embedded in the 

system represent degrees of freedom (DoF's) (ie. neural pools, motor units, joint 

relations, etc.) operating across multiple system levels. Furthermore, a confluence of 

individual, environmental, and task constraints govern the dynamical organization of a 

system as a means to facilitate appropriate behavior (Newell, 1986). The ability to 

modify functional degrees of freedom according to task dimensionality- be it towards a 

more or less complex behavioral output- is thus considered to be a better reflection of 

system adaptability. This requires experimental studies to expressly modify task 

constraint, and in doing so have found differences in flexibility of behavioral dynamics as 

a function of aging and degeneration in health (Sosnoff & Newell, 2008; Sosnoff, 

Valantine, & Newell, 2009; Studenka & Newell, 2013). 

 To reiterate, the distinguishing factor between frameworks studying complexity as 

adaptability is their focus on system dynamics according to imposition or limitation of 

constraint. The LOC/OV frameworks are essentially emphasizing system adaptive 

capacity through observation of an individual’s intrinsic dynamics. Conversely the LOA 

approach emphasizes the role of constraint on action, and subsequently the ability to 
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modulate system dynamics in response to task manipulation. In either case, a primary 

objective beyond description of adaptive capacity is to optimize practice/training 

interventions and integrate them into contemporary rehabilitative modalities. A relatively 

novel perspective on complex system coordination provides rationale for functional 

modifications in system complexity, and is currently considered a viable basis for 

intervention development.  

 The complexity matching approach is being used to characterize inter- and intra-

system coordination across a range of perceptuo-motor paradigms. This includes dyadic 

interaction (Coey, Washburn, Hassebrock, & Richardson, 2016), coupling to complex 

stimuli (ie. dynamical timers) ( Rhea, Kiefer, D’Andrea, Warren, & Aaron, 2014), intra-

system coordination (ie. autonomic and central nervous system processes) (Rigoli, 

Holman, Spivey, & Kello, 2014) and explanation of neural network structures (Mafahim 

et al., 2015). The overarching principle predicting complexity matching is predicated on 

system(s) capacity and inclination to coordinate or synchronize their behavioral dynamics 

as a means to optimize information exchange (West, Geneston, & Grigolini, 2008) (for 

extended discussion, see Sokolov, Klafter & Blumen, 2002). An ancillary extension of 

this premise proposes that in the event that two systems differ in their respective 

complexity, the less complex system will act in subordination and subsequently alter their 

dynamics according to output of its counterpart (Mahmoodi, West, & Grigolini, 2018). 

 Support for complexity matching beyond theoretical conjecture is based on 

empirical evidence of convergence in      fluctuations of interacting systems (or system 

levels) in several movement paradigms (Hunt, McGrath, & Stergiou, 2014; Coey et al., 

2018; Schloesser, Kello, & Marmelat, 2019). Detailed analysis within these studies has 
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found that dynamical convergence is accomplished through a culmination of two neuro-

motor processes. There is a local synchrony, which is representative of short time scale 

coordinated behavior. An example of this would be dyadic mimicking, in which an 

individual adjusts their movement according to short time-scale observations of their 

partners behavior. The second process, known as global complexity matching, is believed 

to occur when the system itself begins to inherently shift behavioral dynamics in 

correspondence with its counterpart (Fine, Likens, & Amazeen, 2015; Deligniéres, 

Almurad, & Roume, 2016).  

  Recent studies advocating the pink noise optimum approach have tested whether 

complexity matching is a viable option for "re-establishing" individual dynamics. 

Specifically, researchers have implemented fractal (      stimuli (auditory timers) 

(Hove, Suzuki, Uchitomi, Orimo, & Miyake, 2012), or used dyadic interaction (between 

young and elderly) (Almurad, Roume, & Deligniers, 2017; Almurad, Roume, Blain, & 

Deligniers, 2018) paradigms to assess coordinative shifts within and between individual 

outputs. Almurad and colleagues (2018) studied minimally constrained gait dynamics of 

the elderly, followed by an intervention where they walked side by side with young 

subjects over a course of 12 testing sessions. As a follow up, subjects performed a 

retention session where they walked individually. The study found that elderly subjects 

shifted parameters of their gait dynamics towards      fluctuations (from white noise) 

with practice, and to some extent exhibited a degree of retention in complex gait 

dynamics. Furthermore, they found that both local synchrony and global complexity 

matching remained present in a subject's behavior across practice.  
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 The general assumptions of the complexity matching approach coincide with 

tenets of LOC and OV. They theorize that the true optimum of information exchange is 

directly reflected in      behavior (Mahmoodi, West, & Grigolini, 2018), and thus 

subsequent intervention should attempt to re-establish pink noise fluctuations in an 

individual’s behavioral dynamics. However, in our estimation such a rigid view blatantly 

disregards the evidence suggesting that movement dynamics emerge as a consequence of 

constraint on action (Newell, 1986; Kugler, & Turvey, 1987). This is exemplified by 

studies that show unique changes in subjects behavioral dynamics  according to specific 

spatio-temporal properties embedded in perceptuo-motor tasks (Vaillancourt & Newell, 

2002; Newell, Broderick, Deutsch, & Slifkin, 2003; Studenka et al., 2014). Thus, the 

confluence of constraints that pervade coordinated behavior could logically alter intrinsic 

dynamics across the complexity continuum if there is adaptive benefit according to 

prevalent factors beyond information exchange. For example, Hoos and colleagues 

(2014) found that total marathon race times were lower in individuals who's stride 

dynamics were closer to      brown noise fluctuations. A plausible explanation on the 

relation behind better performance and more regular behavior could be reflected by 

dynamical economy that emerges in the service of bio-energetic efficiency. In such a 

case, it is logical to assume that adaptable individuals who train with more established 

partners could act in subordination, thereby exhibiting less complex stride dynamics. 

Moreover, there is no reason to believe that this case would not also show a combination 

of local and global matching processes contributing to adaptive coordination and control.  

 The purpose of this study is to examine whether a subject’s intrinsic force 

dynamics can be changed with practice, and if so whether the direction of change is 
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proportional to the complexity embedded within the respective task. To test this, subjects 

practiced an isometric tracking task according to a force target that had a temporal 

structure corresponding with either      pink noise (DFA = 1.0), or      brown noise 

fluctuations (DFA = 1.5). We tested the hypothesis that subjects will show shifts in their 

intrinsic force complexity, where the direction of change will relate their assigned 

practice target. 

 Empirical evidence suggests that the complexity matching phenomena observed 

in the motor control literature results from a combination of local synchronization and 

global complexity matching processes. Provided the theoretical position that complexity 

matching is beneficial for adaptive coordination, a primary question is whether these 

phenomena can be harnessed by way of complex system-system or system-stimulus 

interaction. However there is limited understanding on the complementary relation of 

both processes, in addition to how their contributions to coordinated behavior changes 

with time. As an extension, complexity matching is exclusively discussed in terms of the 

proposed ideal circumstance where at least one system or corresponds with      

dynamics. However, adaptability relates to the capacity to coordinate and perform in 

circumstances that may not fit this criterion. Thus, a supplementary aim is to test whether 

there are differences in both local and global matching processes over time according to 

the target complexity in which they are assigned. We hypothesize that global complexity 

will continue to change over practice for both groups, whereas changes in local 

synchronization will be exhibited primarily in the beginning stage of practice.  

 Perhaps the most important question along this line of research is whether we can 

distinguish a specific practice regime as superior for developing adaptive behavior. We 
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believe that adaptability in this paradigm is represented by the combination of flexibility 

in force dynamics according to tracking demands in conjunction with the ability to 

perform each task with a high degree of tracking accuracy. Thus, a transfer task was 

implemented in our study to test whether tracking groups differed in their ability 

modulate force dynamics, and accurately track a force target with a novel dynamical 

pattern. We hypothesized that both groups would show a characteristic shift in their force 

complexity according to the temporal demands of the transfer task, and in doing so there 

would be no difference in their capacity to accurately track the transfer target. Global 

complexity matching processes appears to be the primary focus in much of the 

contemporary literature. However, our hypothesis of no differences in group tracking 

performance is based on the assumption that early adaptive coordination is in part reliant 

on changes to local synchronization processes. We do not know whether the proportional 

contribution of local correction processes is driven by interaction dynamics (task 

constraint) or if there is a generalized pattern exhibited across testing conditions. Thus, an 

exploratory component of this paper addresses whether we see differences between 

groups in terms of local synchronization at the beginning and end of practice, in addition 

to in the transfer tracking condition. If this process is a generalized feature, we would 

expect local synchrony patterns to relate on day 1 of practice and transfer of both 

conditions. Conversely, we would expect to see groups diverge in the transfer condition if 

local synchrony is driven according to task constraint.  
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Methods 

Subjects 

 Two groups (n=10 per group) of self-reported right-handed subjects (Group 1: 

age: (26) ± (4) years, 5 Male; Group 2: age (27)± (5) years, 5 Male) from the University 

of Georgia population  participated in this study. The subjects were not trained in fine 

manual tasks, were not competitive weight lifters, and had no previous history of 

neurological disorder. It should be noted that six participants from Experiment 1 also 

took part in this study. Written informed consent was obtained from all participants in 

congruence with the IRB approval from The University of Georgia.  

Procedures 

  Subjects were given approximately 5 min of familiarization with procedures 

related the experimental protocol before testing. Participants were instructed to apply 

force on a load sensor via abduction at the distal phalanx of the index finger on their 

dominant hand. During familiarization, subjects were provided feedback of all three 

dimensions of force (Fx, Fy, Fz) and moments (Mx, My, Mz). Subjects were instructed to 

attend to feedback of their normal force (Fz), and asked to manipulate different force 

levels in order to explore their force preference. The non-dominant hand rested in a 

homologous position while testing commenced. Upon familiarization, individual 

maximum voluntary contraction (MVC) was calculated by having subjects produce their 

maximum force over 3 trials at 6 s per trial. While MVC was not utilized in any way for 

experimental setup, we collected absolute force capacity in order to determine whether 

this was a contributing factor to differences in individual and group force characteristics.  



 

86 

 Before any tracking tasks were introduced, all subjects were asked to produce 15 

trials (20 s duration) of their preferred force. Subjects were not provided visual feedback 

of their output during any portion of the trial, however, they were notified on screen 

when each trial was completed. Upon trial block completion, individual force properties 

were assessed to match each experimental target to the confines of their preferred force 

distribution.   

 Participants were pseudo-randomly assigned to one of two experimental groups: 

pink noise target (DFA:  α = 1.0), or brown noise target (DFA:  α = 1.5) tracking 

conditions. Subjects tracked their assigned target for 5 consecutive days at 30 trials per 

session. The first testing session took place after subjects produced their 15 self-selected 

force trials. During the tracking task, subjects were provided knowledge of results (KR) 

at the end of each trial providing them with their Root Mean Squared Error (RMSE). In 

an effort to limit any influence of fatigue, subjects were required to take a minimum 1 

min break after every 5 trials until the testing session was completed. Subjects were 

asked to match the target to the best of their ability, while attempting to continually 

minimize the RMSE score within every trial.  

 Upon completion of their 5th practice session, subjects performed the same 

preferred force protocol specified on testing day 1. Thereafter, subjects performed a 

transfer task, in which the pink noise practice group performed 15 trials of the brown 

noise target condition, and the brown noise practice group performed 15 trials of the pink 

noise target condition.  

 Force Variability and Accuracy: Task performance was assessed through within 

trial standard deviation (SD), and absolute constant error ( |CE| ) of the subjects force 
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output in all trials and tracking conditions (practice (days 1-5), transfer (day 5) target 

conditions). 

 Structure of Variability. Detrended Fluctuation Analysis (DFA) (Peng et al., 

1995) was used to calculate force complexity of every trial for individual’s self-selected 

force (days 1 & 5), practice (days 1-5), and transfer (day 5) conditions. Subjects average 

DFA scaling coefficient (α). 

 Force Synchrony: Wavelet cross-coherence was used to assess how subjects 

synchronized their force output to each tracking target. Within this technique, each signal 

(ie. 1/f target and subjects force output) undergoes spectral decomposition, which then 

allows for assessment of the strength of synchrony between subject force and target 

oscillations across the continuum of relevant frequencies (for extended review, see 

Grinsted, Moore, & Jeverejeva, 2004). Much like DFA in the time domain, wavelet 

cross-coherence is a robust analysis technique when working with non-stationary 

datasets. A Morlet wave of order 12 was used for our analysis. We assessed coherence at 

6 frequency scales by partitioning all coherence time points within the 0-2, 2-4, 4-6, 6-8, 

8-10, and 10-12 Hz frequency bands. Point to point coherence values were averaged 

across time within each frequency band, followed by an averaging of all values within 

each 2 Hz band of interest. This analysis was performed on all trials for the practice and 

transfer tracking conditions.  

 It is important to note that we illustrated the contribution of local synchrony and 

global matching according to the changes in DFA (global) in addition to alteration in 

wavelet cross-coherence (local). It is extremely difficult to partition both processes, 
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however if changes to both variables are non-proportional, we can infer a shift in their 

relative contributions over time.  

 Inferential Statistics: In order to assess how each dependent variable of interest 

changed as a function of practice (both within and between days) the average output 

across 10 consecutive trials was calculated prior to inferential analysis. A three-way (2 

group x 3 block x 5 day) mixed between-within subject repeated measures ANOVA was 

performed on the dependent variables DFA, | CE |, and SD. 

 The effect of practice on changes to individual force complexity was assessed 

with a two-way (2 group x 2 day (day 1 & day 5 SS force conditions) mixed between-

within subject repeated measures ANOVA on subjects averaged DFA.  

 A two-way (2 group x 2 tracking condition) mixed between-within subject 

repeated measures ANOVA was performed on the dependent variables | CE |, SD, and 

DFA. This was done to assess practice regime revealed differences in ability to modulate 

force dynamics and tracking performance according to novel tracking constraints. For 

each dependent variable, the last 15 trials on practice day 5 were averaged and compared 

to the transfer condition.  

 Two separate ANOVA's were used on wavelet-coherence measures. First, a three-

way (2 group x 5 day x 6 frequency band) mixed between-within subject repeated 

measures ANOVA was used to assess how local synchrony processes evolved over 5 

days of practice. Another three-way (2 group x 3 day x 6 frequency band) mixed 

ANOVA was used with the first 15 trials of practice day 1, last 15 trials of practice day 5, 

and the 15 transfer task trials. This explored whether local synchronization processes 
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operate in a generalized fashion, or if task constrain drives proportional contributions 

across the relevant frequencies.  

 All statistical analyses were considered to be significant when the probability of 

making a type 1 error was less than 5% (p< .05). If the assumption of sphericity using 

Mauchly's test was violated, a Huynh-Feldt correction was used to adjust the statistical 

degrees of freedom. Only those main effects and interactions that were significant (p< 

.05) are reported. Analyses were performed using IBM SPSS software.  

 

Results 

 Figure 5.1 provides an illustration individual's force time-series according to both 

the pink noise (1a) and brown noise (1b) tracking conditions, respectively. Subjects 

produced an average absolute force of 3.1 N (SD: 2.2 (N)) in the initial self-selected force 

testing condition, followed by 2.9 N (SD: 1.8 (N)) in post-practice self-selected force. 

Subjects preferred force output remained stable after testing, as indexed the strong 

positive correlation between subjects pre and post self-selected force exhibited in Figure 

5.2 (R=0.83).  

Force DFA as a function of practice 

 Figure 5.3a illustrates how DFA changed as a function of practice for both 

tracking groups. The corresponding ANOVA revealed a significant main effect of group, 

(F(1, 18) = 4.64, p < 0.05,   
  = 0.82) with the brown noise practice group exhibiting a 

larger DFA scaling coefficient throughout practice (brown noise group (α = 1.15), pink 

noise group (α = 1.09)). The main effect of day was nearly significant (p = 0.053), in 

which the pink noise tracking group showed a consistent decrease their DFA scaling 
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coefficient across practice days. The brown noise tracking group generally exhibited a 

steady DFA scaling coefficient across all days of practice.   

Tracking performance as a function of practice 

 Tracking accuracy: There were no significant main effects or interactions on 

tracking accuracy as indexed by | CE |.  

 Force Variability: Analysis of group force variability (SD) as a function of 

practice revealed significant main effects of day,(F(1.43, 25.67) = 6.82, p = 0.008,   
  = 

0.28), testing block, (F(1.56, 27.85) = 9.69, p < 0.001 ,   
  = 0.04), in addition to a 

significant day x block, (F(2.33, 41.85) = 4.19, p < 0.05,   
  = 0.19) interaction. Post-hoc 

analysis found that subjects SD was highest in the first 10 trials (block 1) for the first 

three days of practice (all p < 0.05). After three days of practice force variability became 

consistent across trial blocks. Both groups showed the greatest decrease in force 

variability within the first three days of practice. 

 The results of both tracking accuracy and force variability are illustrated on figure 

5.3c. As stated the results, subject's in both groups showed the highest SD in the first 

block of the early practice days. Otherwise the performance measured remained relatively 

stable for both practice groups.  

Self-selected force dynamics 

 Figure 5.4a illustrates how practice regime influenced individuals self-selected 

force DFA. The corresponding ANOVA revealed a significant main effect of day, (F(1, 

18) = 12.13, p = 0.003 ,   
  = 0.40). Both groups exhibited a decrease in their DFA 

scaling coefficient in their post testing preferred-force condition (pre: α = 1.30, post: α = 

1.23). 
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Transfer 

 DFA: Force dynamics as a function of practice group, and condition (practice vs. 

transfer) are illustrated in figure 5.4b. The corresponding ANOVA revealed a significant 

group x condition interaction, (F(1,18) = 18.10, p < 0.001,   
  = 0.50). Post-hoc analysis 

found a significant divergence in DFA scaling coefficient in the practice condition (pink: 

α = 1.06, brown: α = 1.14)(p = 0.02), however there was a convergence in scaling 

coefficient between groups when they performed the transfer task. Additionally, the pink 

noise practice group showed a larger shift in DFA between the practice and transfer 

condition compared to the brown group (practice: α = 1.06, transfer: α =1.11, p < 0.001). 

     Tracking Performance: Significant group x day interactions were found for both 

tracking accuracy (| CE |), (F(1,18) = 9.16, p < 0.01,   
  = 0.34) and force variability 

(SD), (F(1,18) = 6.60, p < 0.05,   
  = 0.27) between the day 5 of practice and transfer. 

Post hoc analysis revealed that the major differences in tracking performance were on 

day five of practice (both p < 0.05). It should be noted that there was a slight increase in 

tracking error for the brown noise group on the fifth day of practice compared to day's 1-

4. However, in the transfer condition, accuracy and force variability converged between 

the two groups.  

Synchrony 

 Figure 5.5 illustrates the between-groups differences in cross-coherence across the 

partitioned bandwidths according to practice days 1, 5, and transfer. Line colors coincide 

with the colored noise structure that each group/individual practiced. This was 

maintained in the transfer condition, and so the pink line still represents the pink group 
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performing the transfer task, and vice versa. The wide solid lines represent group 

averages, while the smaller lines show individuals average coherence within each band.  

Practice: Analysis of variance revealed significant main effects of frequency, (F(1.51, 

27.10) = 25.78, p < 0.001,   
  = 0.59), and day, F(4, 72) = 6.10, p < 0.001,   

  = 0.25),  in 

addition to significant frequency x group, F(1.51, 27.10) = 3.90, p < 0.05,   
  = 0.18) and 

frequency x day, F(7.22, 129.94) = 4.18, p < 0.001) interactions in wavelet-coherence as 

a function of practice.  

 A comprehensive report of pair-wise comparisons can be found after the reporting 

of transfer coherence. However, here we highlight that both groups showed the greatest 

alteration to their force synchrony over practice days in the 0-2 Hz. frequency band. 

Specifically, 0-2 Hz. coherence increased significantly (p < 0.05) in the first three days of 

practice. Thereafter coherence stabilized for both practice groups.  

Transfer: A significant main effect of frequency, (F(1.89, 33.95) = 23.36, p < 0.001,   
  = 

0.57), along with significant day x group, (F(1.42, 25.62) = 6.19, p < 0.05,   
  = 0.26), 

day x frequency, (F(4.64, 83.47) = 2.71, p < 0.05,   
  = 0.13), and day x frequency x 

group, (F(4.64, 83.47) = 7.51, p < 0.001,   
  = 0.29) interactions were revealed in wavelet 

cross-coherence as a function of transfer.  

 The brown noise practice group only showed significant shifts of coherence in the 

0-2 Hz. frequency band between all days. There was a large increase in coherence at this 

band when comparing days 1 and 5 of practice (p = 0.04). However subjects decreased 

their coherence in the transfer condition (tracking pink noise target) to a level of 

synchrony that corresponded to the first practice day.  
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 The pink noise practice group showed significant changes in coherence between 

days in the 0-2, 2-4, and 4-6 Hz frequency bands (all p < 0.05). Coherence increased 

between days 1 and 5 of practice in the 0-2 Hz band, and in the transfer condition 

synchrony increased to an even greater degree. A similar effect of practice was exhibited 

in the 2-4 Hz. band, however coherence significantly decreased when subjects performed 

the transfer task. The 4-6 Hz. band was relatively stable over practice, but this value also 

decreased significantly in the transfer task.  

 Observable differences in tracking synchrony were found between practice groups 

as a function of both practice and transfer. On day 1 of practice, the brown noise group 

showed a significantly higher coherence in the 0-2 Hz. frequency band (p = 0.05). 

Statistical significance was nearly reached in the 2-4 and 8-10 Hz. bands. Differences in 

group coherence were non-significant on day 5 of practice, however, the largest 

differences were still observed at the 0-2 Hz. band. Significant group differences in the 

transfer condition were found at the 4-6, and 8-10 Hz. frequency bands. While the 0-2, 2-

4, and 10-12 Hz. bands were not statistically significant (all p < 0.09), Figure 5.5 shows 

the qualitative changes to group coherence when they tracked the opposite groups 

practice regime target as a transfer task. There was a switch in the 0-2 Hz. band, where 

the pink noise practice group showed a higher coherence there in the brown noise target 

condition. However, in this same condition, the pink group also showed greater 

coherence at the high frequency bands (6-12 Hz.).  
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Discussion 

 The present experiment examined the role of temporal complexity of a visual 

target on force coordination while subjects practiced an isometric tracking task. 

Furthermore, we assessed whether practice in one of two distinct targets (     brown 

noise; (     pink noise) led to unique alterations in the temporal complexity of subject's 

preferred force output. Current literature is emphasizing the adaptive value of "re-

establishing" complexity in behavioral dynamics, and the complexity matching 

phenomenon appears to be a viable factor for achieving this result. It is necessary, 

however, to expand on practical applications of complexity matching and whether it 

warrants consideration beyond coincidental occurrence. Thus, the motivation of this 

experiment was to determine whether the degree of complexity in a perceptuo-motor 

stimulus influenced characteristics of system coordination, along with adaptive capacity 

in isometric force control.   

 The results show partial support for our first hypothesis in that isometric tracking 

practice did elicit a change to subject's preferred force dynamics. There was a strong 

correlation between subject's average force output on both days of practice. When 

instructed to produce their preferred force after day 5 of practice, we made it clear that 

this did not mean they should try to mimic their force output from the first testing 

session. Studies show that young healthy individuals demonstrate relatively stable 

kinematic and kinetic output (ie. stride length and frequency in normal over-ground 

walking) under minimally constraining movement conditions (Malatesta et al., 2010; 

Raburn, Merritt, & Dean, 2011). Our results extend this evidence to the force domain, 
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and while there was relative stability of subject's absolute preferred force, they exhibited 

a notable change to their preferred force dynamics. 

 However, contrary to our expectation, practice regime did not influence the 

direction of change in subject's preferred force complexity. Average preferred force 

dynamics were more complex on day 5 for both groups, with their DFA coefficients 

converging to a value that fell directly between pink and brown noise fluctuations (pink 

DFA= 1.0, brown DFA= 1.5, pink/brown self-selected DFA= ~1.25). Thus, in our case 

the results do not support a bi-direction complexity matching effect. We cannot discount 

the possibility of a complexity matching effect on minimally constrained output for the 

pink noise group, however, an alternative explanation that predicts similar outcomes as 

those found in this study limit our capacity to clearly support it as a causal factor.  

 Previous isometric tracking studies have found that subjects increase their force 

complexity over practice when the visual target is a fixed point, or has temporal structure 

with specific asynchronous fluctuations (ie. white, pink) (Ranganathan & Newell, 2008; 

King & Newell, 2013). Spectral decomposition consistently shows increased 

contributions of faster frequency control processes with practice. It is suggested that this 

increase in spectral contribution at faster timescales illustrates the release and 

exploitation of redundant degrees of freedom available to the system as subjects practice 

force tracking (Hu & Newell, 2010; Studenka, King, & Newell, 2014). To our 

knowledge, this is the first study to provide evidence that this phenomenon could extend 

to minimally constrained force dynamics.  

 More importantly, these findings exemplify the necessity to differentiate whether 

complexity matching holds any value over interventions that can also facilitate 
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exploitation of system DoF's in behavior over practice. Complexity matching requires a 

complex output from interacting systems, or both the system and perceptuo-motor 

stimulus (West et al. 2008). While many studies show that behavioral complexity is 

directly affected by task constraint, there is little data that compares how minimally 

constrained dynamics change with practice according to a variety of task regimes. Future 

studies could investigate this while expanding on their specific impacts on change and 

retention of the systems behavioral dynamics.  

 While complexity matching cannot be confirmed as a primary factor of change in 

subject's preferred force dynamics, this phenomenon was certainly apparent in the force 

tracking conditions. Overall, there were clear differences in force complexity between 

both practice regimes. As expected, the brown noise group showed more deterministic 

force output compared to the pink noise group. These results corroborate numerous 

studies that show differences in force dynamics according to tracking demands 

(Vaillancourt & Newell, 2002; Sosnoff, Valantine, & Newell, 2009). An unexpected 

finding, however, was the unique complexity functions over practice observed between 

the two groups. Specifically, the pink noise group showed a consistent decrease in their 

DFA output as they progressed through 5 days of practice. Conversely, DFA was 

consistent across all days for subjects practicing in the brown noise condition.  

 The aforementioned findings may hold important insight into the unique 

contributions of local synchrony and global complexity matching processes according to 

task demands. Both conditions showed consistently stronger synchrony with the longer 

time-scale fluctuations embedded in the force target. Moreover, changes in synchrony 

were most prevalent in the first three days of practice for both groups, with no changes 
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occurring thereafter. While there was a plateau in local synchrony contributions, average 

DFA for the pink noise group continued to shift through the remaining session, thereby 

provide supporting evidence for our second hypothesis. That is, local synchrony 

processes increased their proportional contributions in the early to middle stages of 

practice. Thereafter, subjects force dynamics continued to shift towards that of the target. 

Thus, force dynamics continued to align with the target without relying on local 

synchronization, presumably through global complexity matching. 

 While the same trend in local synchrony was found for the brown noise group, 

there was never a change in their DFA output. Although the brown noise group did show 

a higher DFA output within the tracking condition across days of practice, the actual 

scaling exponent was still more proximal to pink noise than brown. We speculate that this 

is in part because temporal structure may interact significantly with the magnitude of 

fluctuations to change the actual degree of complexity matching in manual force control. 

Numerous studies have found the largest differences in subject's force complexity when 

they're performing fixed point (constant line) (DFA ~ 1.0), and rhythmic (sine wave) 

(DFA ~ 1.5) tracking behavior (Vaillancourt & Newell, 2002; Newell et al., 2003). There 

is a more deterministic pattern of rhythm in the brown noise target compared to pink, 

however, the predominance of very low frequency oscillations in conjunction with the 

relatively low wave magnitude suggests that there was still a high degree of precision 

control in the task. This does not discredit a complexity matching effect, as the brown 

noise group was sensitive to the force structure enough to maintain a more deterministic 

output. However temporal-structure alone may not drive global changes to system 

dynamics in a bi-directional manner. Manual coordination functions across a continuum 
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of tasks that emphasize varying degrees of fine motor and rhythmic behaviors. Future 

studies could examine the influence of both magnitude and structure of system/stimulus 

fluctuations on complexity matching, and whether there is a change in coordinative 

behavior according to their interaction. If so, there is still a possibility for a bi-directional 

complexity matching effected as proposed in hypothesis 1.  

 To reiterate, a transfer condition was implemented in this study to determine 

whether practice of a specific target influenced subject's adaptive capacity. Specifically, 

we wanted to test whether assumptions that the pink noise condition is a superior training 

modality could be substantiated.  

 As expected, there was an interaction effect on DFA between groups when 

comparing day 5 of practice and the transfer condition. Average DFA for the pink noise 

group shifted to a higher value in transfer, while average DFA decreased for the brown 

noise group. What is interesting is the fact that while the direction of shift was as 

expected, the absolute value of average pink group DFA was higher when tracking the 

brown noise target than average brown group DFA was when tracking the pink target. 

This was not statistically significant, however, it did also correspond with the pink noise 

group showing higher coherence of the faster frequency bands in the transfer (brown 

noise) condition. It is possible that the pink noise condition did allow subject's to better 

attune to the faster frequencies in both tracking conditions. However, this did not 

correspond with any changes in their ability to accurately track the transfer target. 

Performance was comparable for both groups, which suggests that in terms of traditional 

adaptive performance, neither condition showed superiority.  



 

99 

 It is apparent that local synchronization at slower frequencies predominates in 

force control. We found that there was a switch in pattern coherence strength between 

practice groups in the transfer task. Essentially, local synchrony patterns appear to be 

highly task specific in the young healthy population. While previous studies suggest that 

overall dynamical flexibility under varying constraint is predictive of adaptive behavior 

(Vaillancourt & Newell, 2002; Novak & Newell (in preparation)), it is yet to be 

determined how local and global matching processes are altered according to adaptation, 

mal-adaptation, or system degradation.   

 

Conclusion 

 In conclusion, we provide supporting evidence that practice facilitates change in 

minimally constrained force complexity. Complexity matching patterns differed between 

practice groups during force tracking, in which the contribution and evolution of global 

matching was unique to the complexity embedded in the force target. However group 

differences in task-relevant dynamics did not extend to the minimally constrained 

condition. Instead, both groups showed similar increases in minimally constrained force 

complexity. Moreover, ability to perform in the transfer condition was not dependent on 

the assigned practice regime. These results show that complexity matching measures may 

be a valuable asset for future assessment of adaptive control. However, it is important to 

distinguish whether complexity matching is a causal factor for dynamical change, or just  

a variation of intervention techniques that facilitate a generalized increase of system 

degrees of freedom with practice. 
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Figures 

 

Figure 5.1: Example of the force-time series of one subject tracking the pink noise (a) 

and brown noise (b) force target. Both figures represent the 10th trial on day 1 of practice 

(a) and transfer (b). 
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Figure 5.2: Correlation of subjects average self-selected force output (N) at baseline (x-axis) and 

after the 5th day of tracking practice (y-axis). Each dot represents one subject, and the 

corresponding red line represents the least squares fitted line. 
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Figure 5.3: Figure 5.3a illustrates the qualitative change in average group DFA (α) as a function 

of practice. 3b illustrates the overall differences in average group α which reached statistical 

significance. 3c illustrates group standard deviation (SD), and absolute constant error (|CE|) as a 

function of trial block and day of practice. For better clarity, days 1,3, and 5 were selected for 

plotting. Note that the x-axis has two numbers separated by a colon. The first number represents 

day, and the second number represent the corresponding trial block. Triangles represent the pink 

noise practice group, while squares represent the brown noise practice group. Solid lines 

correspond with SD, while the dotted lines show |CE|.   
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Figure 5.4: Figure 5.4a illustrates both group and individual shifts in self-selected DFA (α) at 

baseline, and after 5 days of tracking practice. The remaining figures illustrate characteristic 

differences in DFA (α)  (4b), |CE| (4c), and SD (4d) between the last 15 trials of practice on day 

5, and all 15 transfer trials. Pink lines correspond with the group that practiced with the pink 

noise target, and brown correspond with the brown noise practice group. Thick solid lines 

represent group averages, while the thin dotted lines show individual averages. 

  

C D 



 

111 

 

Figure 5.5: Wavelet cross-coherence on practice day 1 (5.5a), practice day 5 (5.5b), and transfer 

(5.5c). Coherence range is between 0-1. Higher coherence values correspond with stronger 

coupling between force and target at the specified frequency (Hz) band. Pink lines represent the 

pink noise practice group, and brown represents the brown noise practice group. Thick solid lines 

are the group mean, while thin dotted lines are individual averages in coherence at each frequency 

band.  
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CHAPTER 6 

General Discussion 

 The general aim of this dissertation was to provide a more comprehensive 

examination of the role of complexity in adaptive motor control. Separate isometric force 

tracking experiments were designed to address key theoretical issues in this area of study 

on two fronts.  

 Experiment 1 addressed several ambiguities that stem from historical accounts of 

system complexity and adaptive behavior. A supplemental aim was to assess the 

compatibility of central tenets from the Loss of Complexity (Lipsitz & Goldberger, 

1992)/ Optimal Variability (Stergiou et al., 2006) hypotheses with those of the Loss of 

Adaptability framework (Vaillancourt & Newell, 2002; Sosnoff, Valantine, & Newell, 

2007). Experiment 2 examined the role of external constraint on change in minimally 

constrained dynamics according to tracking practice. There is a working conjecture that 

the complexity matching is a viable technique to elicit specific change to system 

dynamics (West et al. 2008; Mahmoodi et al., 2018). However, the majority of empirical 

study is aligned with the central premises of the LOC/OV frameworks. Thus, we also 

tested the assumption that complexity matching according to pink noise dynamics 

provides a discernible advantage in adaptive tracking performance.  Together, these 

studies highlight the necessity for a unified approach in systematic examination of system 

complexity in future study.  
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 The following sections will expand on the theoretical relevance of our 

experimental findings. This discussion will also consider future research directions 

necessary to expand on the current view.  

Collective Assessment of Isometric Force Dynamics 

 As previously discussed, there is a dearth of literature that illustrates minimally 

constrained dynamics in conjunction with dynamics according to multichotomous task 

constraint. This is especially true in the isometric tracking literature, in spite of its 

popularity for assessing motor learning/control through the combined lens of traditional 

performance and non-linear analysis (Slifkin & Newell, 1999; Christou, Grossman, & 

Carlton, 2002; Lodha, Coombes, & Cauraugh, 2012; Jin et al., 2019).   

 As previously stated, both experiments found that young adult's minimally 

constrained force output was not distributed around      scaling, and instead varied near 

the middle of the pink-brown noise continuum. Even after 5 days of practice in 

conditions that exhibited task-relevant dynamics near pink noise, their minimally 

constrained dynamics shifted directly central to the pink-brown noise continuum.  

 These findings are still compatible with the position that minimally constrained 

force output exhibits dynamics representative of a complex, degenerate, self-organizing 

system (Edelman & Gally, 2001; Prokopenko, Boschetti, & Ryan, 2009). However, this 

challenges the position that brown noise behavior (in young/healthy) is a consequence of 

external constraint provoking exaggerated intrinsic control (Van Orden et al., 2011; 

Washburn et al., 2015). Both experiments followed suggestions made for empirical 

studies attempting to mediate intrinsic and external constraint (to show pink noise), and 
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found that subjects who exhibited the most complex preferred-force dynamics were still 

more deterministic than pink noise behavior.  

 Alternative interpretations predict that increases in external constraint and/or 

volition on behavior will lead to a "whitening" of individual's output (Dingwell & 

Cusumano, 2008, 2010). Support of this in the isometric force domain stipulated that 

visual information increased force complexity in a condition that did not necessitate 

tracking behavior (Athreya, Van Orden, & Riley, 2012). However, our findings show that 

increased volition and/or perceptual information exhibited a bi-directional shift from 

subject's preferred force DFA depending on the specific force target.  

 Perhaps a more pragmatic approach to understanding behavioral complexity is 

assessing the system according to both minimal constraint and representative conditions 

pertinent in everyday life. We contend that, specific to manual force control, emergent 

coordination falls along a continuum of behaviors that require both static and rhythmic 

control. Their emergent force complexity under minimal constraint falls between the 

complexity exhibited in either behavior. It is possible, then, that the observed intrinsic 

dynamics function as a middle ground to the emergent dynamics that continually arise 

according to pervasive static and rhythmic function. We do not argue that the quantitative 

results may be relatively unique to our paradigm of interest. However collective 

observation is feasible for the majority of relevant paradigms. To do so may provide 

valuable insight about the nature of minimally constrained dynamics in relation to the 

multitude of emergent behaviors observed with everyday constraint.  

 An alternative discussion point on force complexity relations pertains to 

hypothesis 2 of experiment 1. Our motivation was to expand on the flexibility of 
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behavioral dynamics observed in numerous movement paradigms (Vaillancourt & 

Newell, 2002; Hunt, Mcgrath, & Stergiou, 2014). Vaillancourt and Newell (2002) framed 

the LOA approach according to the alterations in static or rhythmic force dynamics as a 

function of age. They argued that the constant and sine wave tracking tasks correspond 

with unique intrinsic attractor dynamics available to the system (fixed point/limit cycle). 

In which case, the direction of change in force complexity was believed to co-vary 

differently  with age/disease according to the dimension of the corresponding intrinsic 

attractor.  

 As discussed in chapter 3, these findings provided indirect evidence that young 

healthy subjects showed a greater degree of dynamical flexibility compared to the elderly 

group. Moreover, the relative consistency in elderly subject's force complexity allude to 

the possibility that they were functioning according to their intrinsic force tendencies. 

Our findings align with the results from Vaillancourt & Newell (2002) in terms of the 

differences in force complexity between both constant and sine tracking tasks. However, 

we also found that these differences also correspond with predictable shifts from their 

preferred-force dynamics. While they showed the same direction of change, the 

magnitude of shift depended on how much their intrinsic dynamics corresponded with the 

specific task.  

 The location and relative rigidity of elderly subjects force complexity begs the 

question as to whether this corresponds with their intrinsic dynamics. This was a  

motivating factor for outlining dynamical change in young healthy subjects, as this 

preliminary evidence provides a unique perspective on dynamical change in the 
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complexity literature. Future study is necessary, however, to corroborate this function in 

other modalities, and determine its functional significance on neuro-motor health. 

Force Complexity on Adaptive Control 

 The specific distribution of force dynamics in both experiments did not align with 

predictions from the LOC/OV frameworks. However, our findings provided the much 

needed empirical support for a tangible relationship between behavioral complexity and 

adaptive motor control. More importantly, we provide evidence that both minimally 

constrained dynamics and dynamical flexibility (task relevant) are relevant for predicting 

isometric tracking performance. Thus, the unique assessment of dynamics according to 

opposing frameworks are not only compatible, but a more united approach according to 

both tenets is worth consideration in future study. It appears the customary attitude of 

empirical autonomy may inhibit a more comprehensive account of complexity as an 

adaptability index.  

 The prediction of better performance according to greater dynamical flexibility is 

an important finding from a unique perspective. However, this does correspond with 

broader tenets that stipulate the relevance of dynamical sensitivity in effective perceptuo-

motor control (Nishimoto & Tani, 2004). The generalized U-shaped function found 

between minimally constrained force DFA and tracking performance, however, remains 

somewhat confounding. A U-shaped function in and of itself is conceivably aligned with 

the tenets of LOC/OV, however the vertex would expectedly align with pink noise 

behavior. As discussed in chapter 4, we speculated that the observed function (and 

location) relates in part to the coordinative regimes relevant in manual force control. In 

which case, intrinsic force dynamics that are centralized in respect to the dynamics that 
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emerge according to static and rhythmic behavior may possess a coordinative 

composition that affords better overall performance. In which case, this may reflect a sort 

of goldilocks paradigm in the enabling/attenuation of the DoF's relevant in isometric 

force control.  

 In general, there is still a pressing need to further examine the relationship 

between complexity measures and adaptive control. This is relevant in terms of both 

experimental paradigm (ie. gait, postural control), and adaptability measures (ie. stability, 

various perceptuo-motor performance metrics). Specific to force tracking, it is necessary 

examine the relationship between minimally constrained dynamics and dynamical 

flexibility in different populations of interest. There is obvious benefit to understanding 

the unique changes to both functions according any number of intrinsically constraining 

factors. Moreover, it is important to examine whether unique intervention techniques can 

address the specific deficiencies exhibited on an individual basis.  

Complexity Matching and Future Interventions 

  Study of complexity matching along the lines of adaptive behavior have put a 

premium on the sub-premise of system subordination (Mahmoodi et al., 2018). 

Obviously, this is a product of the central assumptions from LOC/OV, and thus this 

technique is prevalent due to the prediction that it can facilitate very specific changes to 

system dynamics. However, our results show that relevant practice literature (our second 

experiment included) may operate with too narrow a view in terms of how task 

constraints predict/cause specific change in emergent behavior. 

 Let us consider that emergent coordination is a product of the momentary 

confluence of individual, environmental, and task constraints (Newell, 1986). Provided 
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there are many elements that define a task constraint (ie. type/degree of information, 

temporal structure, kinetic parameter) it is reasonable to assume that manipulation of 

single element within the task limits the capacity to predict and facilitate coordinative 

change. Take for example the findings from Almurad and colleagues (2017), where 

subjects in the experimental condition matched/retained a degree of loco-motor 

complexity after matching the gait of a young healthy person. Control subjects were 

required to walk alone, and did not show change in their gait complexity. A reasonable 

question is whether complexity matching was the source of change to behavioral 

dynamics, or whether this was simply a consequence of differences in terms of the degree 

of information presented to each group over practice.  

 The same can be said for our experiment, where the primary manipulation was  

the dynamical complexity embedded in subject's visual target. Manipulation of this single 

element did elicit differences in force dynamics between the tracking conditions, 

although both groups were still closer in proximity to pink noise compared to brown. 

This finding, in conjunction with identical shifts in both groups’ minimally constrained 

behavior may imply that the temporal structure alone is not sufficient to facilitate bi-

directional changes in minimally constrained complexity. This is supported by evidence 

presented in a study by Marmelat and colleagues (2014), where the degree of complexity 

matching was contingent upon a minimum threshold of variation (coefficient of variation 

≥ 3%) embedded in complex auditory-motor stimuli. 

 At present, our findings suggest that complexity matching may be useful to 

determine the means by which individual's coordinate and couple their behavior to an 

external system or stimulus. However, the effectiveness of this technique on relatively 
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sustained alterations to system dynamics is still unknown. There is a possibility that this 

phenomenon interacts with other elements of task constraint, which in and of itself is an 

interesting avenue for future research. In a broader sense, questions about relevant 

elements of task constraint are at the heart of numerous findings from the current work. 

Two of which include the functional significance of you healthy subjects force 

complexity location/distribution, and its corresponding U-shaped function on adaptive 

tracking performance. In any case, these findings highlight the necessity for an integrated 

approach on assessing system complexity.  
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