
PREDICTING PRECISION NITROGEN SIDE-DRESS APPLICATIONS FOR MAIZE WITH 

A SIMULATION MODEL 

by 

ARIANNA TOFFANIN 

(Under the Direction of George Vellidis) 

ABSTRACT 

Three fertilization strategies × three irrigation strategies were compared in replicated plot study 

designed to evaluate management strategies with the potential to improve water use efficiency 

(WUE) and nitrogen use efficiency (NUE) in the southeastern Coastal Plain of the USA. 

Scheduling irrigation using the SmartIrrigation Corn App and automated soil moisture sensor 

networks, and applying side-dress nitrogen using fertigation resulted in higher WUE and NUE. 

One fertigation treatment used the STICS crop growth model (INRA, France) to schedule side-

dress applications.  The model simulations matched field observations well for biomass, nitrogen 

in biomass and yield but did less well for soil water and nitrogen content.  Fertigation scheduling 

with the model resulted in high yield but not in higher NUE than other fertigation scheduling 

approaches.  Using models like STICS to predict the timing of N applications in maize has 

potential but additional research is needed to develop robust methodologies.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

The world is approaching a food supply tipping point. The population is growing and expected to 

reach 10 billion by 2050. We will need to increase yields substantially to feed that many people. 

For most crops, nitrogen (N) is a critical crop input required to produce high yields.  It needs to be 

properly managed because even short periods of deficiency can permanently decrease crop yield 

potential. N is an essential nutrient for plants and at the same time is the most difficult to manage 

among the mineral nutrients. This is because several biological and chemical processes that take 

place in the soil transform N applied as fertilizer to species of N that may lead to environmental 

side-effects of N application. Modern agriculture depends almost exclusively on inorganic 

manmade N fertilizers to produce the food and fiber that the world consumes.  

Nitrogen is typically applied as dry or liquid sources that contain NH4
+ (ammonium), NO3

- 

(nitrate), urea, or a combination of these forms. Through biological and chemical processes in the 

soil, these compounds are transformed to produce two ionic forms of N that are biologically 

available to plants. These critical ions are NH4
+ and NO3

-. For plants to absorb these ions, they 

must be available in the soil solution - the water found in the pores or the soil matrix - or must be 

easily exchangeable from soil particles. Plant roots have a negative charge and can exchange 

cations directly with negatively charged soil particles. In the soil, NH4
+ is quickly converted to 

NO3
- by bacteria through the process of nitrification.  Nitrate (NO3

-) is highly soluble in water and 

easily transported below the crop root zone by rain or excess irrigation. This process is called 
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leaching. Fertilizers that escape the root zone by leaching become environmental contaminants. 

Fertilizers at or near the soil surface can also be lost to the environment with surface runoff 

generated by rain or excess irrigation affecting surface water quality and creating problems of 

eutrophication. The denitrification process can reduce N from the nitrate form (NO3
-) up to the 

nitrous oxide (N2O) form (a reactive greenhouse gas) or N2 gas. Moreover, at high pH conditions 

ammonia volatilization occurs. N loss is a natural process due mainly to the mineralization of soil 

organic matter, but in the recent years it was greatly accelerated by agricultural practices, 

especially the addition of external N sources, resulting in harmful human health and the 

environmental effects. The United Nations Food and Agricultural Organization (FAO) estimates 

that N fertilizer use increased 25% over the past 10 years, exceeding 100 million tons in 2018.  

N source, type and timing of application, and soil characteristics are factors affecting N losses that 

farmers should consider when planning the management in order to increase the overall 

performance of the cropping system while minimizing nutrient losses. 

Maize – the world’s most productive crop 

Maize (Zea Mays L.) is the world’s most productive crop in terms of yield and the most cultivated 

crop in the United States of America with about 33 million hectares harvested in 2018. The State 

of Georgia cultivates an average of about 128,500 harvested hectares, steady since 2008, recording 

an average production of 10,000 kg ha-1. 

Maize is an intensively cultivated crop with high nutritional requirements that overcome the soil 

replenishment capacity, thus relies on external inputs. Among the mineral nutrients, N is the most 

relevant; in Iowa N applications cost averages 18% and 13% of the variable costs in a maize- 

maize and maize -soybean rotation, respectively. N is taken up in the form of NO3
- or NH4

+ 
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available in the soil solution; however, its dynamic nature often makes it the most limiting factor 

in maize production. Therefore, the fraction of applied N fertilizer that is absorbed and used by 

the plant, called nitrogen use efficiency (NUE), is at best around 50%. This means that more than 

half on the N applied may be lost to the environment or is immobilized in the soil organic fraction. 

Managing N applications 

N is therefore the most challenging nutrient to manage and to sustainably intensify agricultural 

systems. N availability and maize response to fertilization are mainly determined by the weather 

pattern during the growing season and are thus difficult to predict because of spatial and temporal 

variability among and within fields. Soil test analysis to assess and schedule N fertilization is 

ineffective due to the difficulty of collecting representative samples and the unreliability of it in 

case of rainfall near the time of sampling that would lead to under or overestimation of the real 

soil N availability, especially in sandy soils where N retention is low. The methods commonly 

used to determine the optimum N rate are based on the yield goal method, where the 

recommendation is made according to historical series of yield data. However, the lack of 

relationship between the economical optimum N rate and the yield level was clearly demonstrated, 

so these methods have low reliability. To overcome this problem, starting in the 1980s, dynamic 

models have been developed to account for interactions between management and environmental 

conditions to estimate N balance and fertilization requirements. The agricultural community is 

showing growing interest in these mathematical models that predict soil N. One of the best known 

is ADAPT-N, developed at Cornell University. However, this model was licensed and requires a 

considerable spending to be applied. What farmers need are inexpensive models that could 

increase N fertilization efficiency. The benefits provided by these systems has been widely 
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assessed and increase when the use is widespread across the agricultural community. Most of the 

maize models used in the United States of America are effective just for the mid-west, which is 

the leading area of maize production in the country. Among the several existing soil-crop 

simulation models, STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) was selected 

to be adapted to the Georgia Coastal Plain for the simulation of N availability in the soil. This 

model is capable of simulating the effect of climate, soil and crop management on the main 

dynamics of the soil-crop environment that influence plant development and the ecology of the 

system. Its strengths are the generality and ability to simulate a wide range of different processes, 

including the development and growth of the crop, and water, carbon and N balances in the soil-

plant environment.  

Fertigation 

Alongside with agricultural models, fertigation is a further strategy that could be used to increase 

NUE. With this system, liquid fertilizer is applied with the irrigation water allowing small doses 

to be applied during the growing season. This increases the potential that applied N will be used 

by the crop and not lost to the environment. Models could therefore help scheduling fertigation 

interventions. Tools like STICS that estimate the amount of biologically available N in the root 

zone and that could give N scheduling information would allow growers to make conscious 

management decisions to move towards sustainable intensification of our agricultural production 

systems. 
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Nitrogen use efficiency 

Beginning in the 1940s, average maize production started to increase boosted by the adoption of 

more productive hybrids and by the use of inorganic N (Christianson, et al.) fertilizer (Pruitt, 2016). 

Since then, the annual average yield in the United States of America has increased from about 2 

Mg ha-1 (Kucharik, et al., 2005) to about 15 Mg ha-1. From the 1980s, average N application rates 

have plateaued at about 155 kg N ha-1, but maize yields have continued to increase by over 135 kg 

ha-1 per year. This indicates that N use efficiency (NUE) was increasing significantly. NUE is the 

total biomass or grain yield produced per unit of applied N fertilizer (kg grain (kg N)-1). It is an 

integration of N uptake efficiency (NUpE) and N utilization efficiency (NUtE) which are the 

capacity of plant roots to acquire N from the soil, and the fraction of plant-acquired N to be 

converted to total plant biomass or grain yield, respectively (Xu, et al., 2012). NUE increased as a 

result of improvements in both hybrid genetics and agronomic practices. Although there are large 

differences in NUpE and NUtE among different maize lines and hybrids (Hirel, et al., 2011), the 

need for continuous improvement in N use efficiency is clear, since NUE in maize has been 

estimated to be less than 50% on average (Raun, et al., 1999). Low N use efficiency in most cases 

is a result of faulty timing of fertilization in respect to maize N uptake (Cassman, et al., 2002) 

(Raun, et al., 1999) (Shanahan, et al., 2008). 

Nitrogen in the plant 

N is an essential macronutrient for plant growth and development. Being the basic building block 

for enzymes and other proteins in the vegetative tissues and the grain, each unit of N supports 6.25 

units of protein production. Besides this, N is an integral part of chlorophyll, whose basic structure, 

called porphyrin ring, is composed of 4 N and 16 C atoms. Thus, an adequate supply of N is 
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associated with high photosynthetic activity, vigorous vegetative growth, and a dark green color 

(Vos, et al., 2005). The extent of photosynthesis during grain filling also strongly influences maize 

grain yield (Muchow, 1988) and can be affected by many factors, including maize variety, climatic 

condition, CO2 level, and temperature, as well as the available N level of the soil  (Jaaffar, et al., 

1988). 

Maize plants contain 1 to 6% N by weight and absorb N as both nitrate (NO3
-) and ammonium 

(NH4
+). Both forms move to plant roots by mass flow and diffusion, so drought conditions can 

reduce plant growth, reducing N transport to plant roots and resulting in low N recovery efficiency 

in dry years (Kim, et al., 2008). Generally, in moist, warm, well-aerated soils, NO3
- in the soil 

solution is greater than NH4
+, thus it is absorbed in higher amounts. The high rate of NO3

- uptake 

causes an increase in rhizosphere pH due to an increase in anion (HCO3
-, OH- and organic anions) 

transport out of cells (P.H., 1981).  Nitrate is absorbed from the external environment into the roots 

by nitrate transporters (NRT1s and NRT2s).  

Once in the plant, NO3
- is reduced through an energy-requiring process that uses 1 NADH and 1 

Fd (ferredoxin) for each NO3
- reduced in protein synthesis (Sechley, et al., 1992). This process 

involves two reactions, the former occurring in the cytoplasm and being the reduction of NO3
- to 

nitrite (NO2
-) catalyzed by the enzyme nitrate reductase (NR), which has an activity that varies 

under the influence of light intensity, CO2 levels, temperature, water availability, and NO3
- supply 

(Beevers, et al., 1969); under low light conditions, nitrate will be stored in the vacuole for future 

use. In the latter reaction, nitrite is further reduced in the chloroplast by the nitrite reductase 

(Kimball, et al., 2019) to produce ammonia (NH3). Both reactions occur in series to avoid the 

accumulation of toxic nitrite, and the ammonia produced is immediately assimilated into amino 

acids by glutamine synthase (Morris, et al.)/glutamate synthase (GOGAT) using 1 ATP. The amino 
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acids are subsequently combined into proteins and nucleic acids. Compared to nitrate metabolism, 

ammonium requires one less reduction step (Havlin, et al., 2016). Although maize is capable of 

absorbing both nitrate and ammonium, a study from 1987 showed an increase in yield in terms of 

number of kernels per ear between 8% and 25% in maize fertilized with a mixture of NO3
- and 

NH4
+ compared to NO3

- alone (Below, 1987). Beside its function as a nutrient, nitrate acts also as 

an important signal to regulate gene expression, plant growth, and development (Krouk, et al., 

2010). Nitrate signaling can be divided into short-term, or primary nitrate response, and long-term 

effects. The primary nitrate response induces, in a matter of minutes, some genes involved in 

nitrate transport and reduction (Wang, et al., 2000) (Wang, et al., 2003) (Wang, et al., 2007) 

(Scheible, et al., 2004) (Gutiérrez, et al., 2007).  

The long-term effects refer to the impact of nitrate on plant growth and development which 

includes effects on the morphogenesis of roots, plant flowering, seed dormancy, stomatal closure 

independent of abscisic acid, the circadian rhythm, and the transport of auxin (Alboresi, et al., 

2005;Krouk, et al., 2010) (Roenneberg, et al., 1996) (Stitt, 1999) (Walch-Liu, et al., 2005) 

(Wilkinson, et al., 2007).  

Uptake pattern and partitioning 

N uptake follows a traditional sigmoidal (S-shaped) uptake pattern with two-thirds of the total 

plant uptake acquired by tasseling/silking (VT/R1) (Figure 1.1) (Bender, et al., 2013). Maize 

requires only a fraction of N during the seedling stage, but its needs escalate rapidly once it reaches 

the V8 growth stage. From V8, maize can reach the VT/R1 stage in about 30 days if temperature 

and moisture conditions are favorable. Such a rapid growth requires a large supply of N equal to 

more than half the total requirement to fulfill the demand of prolific green tissue development. N 
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uptake prior to flowering supports critical ear shoot development, kernel number and potential 

kernel size. However, is important to notice that the plant’s needs for N do not end at tasseling, 

because N used for grain development originates from both remobilized N and continued N uptake 

from the soil, especially in the modern hybrids. Based on recent publications from experiments 

conducted in Illinois and Indiana, the amount of N remobilized from vegetative tissue averages 

38% across different yield levels, which comes from about the 63% of the leaf N content (DeBruin, 

et al., 2013), and less than 20% of the stalk N as documented by further works by Pioneer. These 

studies point out that, as long as the N is available early, it can be stored in different tissues and 

remobilized during grain development. In Iowa, studies demonstrated that approximately 60% 

(134 kg N acre-1) of total N is taken up by R1 for a high-yielding maize crop of about 15000 kg 

Figure 1.1 Total maize N uptake and partitioning in Illinois across four plant fractions: leaf, 

stalk, reproductive and grain tissues. GDDF = growing degree days, Fahrenheit.  (Bender et al., 

2013) 
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ha-1 maize, while the remaining 40% is taken up post-flowering (Abendroth, et al., 2011). In 2012, 

a further work by Ciampitti and Vyn summarized 100 scientific reports covering old (1940 to 

1990) and new (1991 to 2011) hybrids showing that, on average, new hybrids took up 29% more 

N post flowering than old hybrids (Ciampitti, et al., 2012). As a result, researchers, agronomists 

and growers may need to re-evaluate recommendations for timing of N applications to maintain 

adequate N supply throughout maize's reproductive stages.  

Deficiency 

N deficiency is characterized by the yellowing, or chlorosis, of the lower leaves because of the 

loss of protein N from chloroplasts. Under severe N deficiency, the chlorosis turns to necrosis that 

begins at the leaf tip and progresses along the midrib until the entire leaf is dead. The location of 

the symptoms indicates the mobility of N in the plant: as soon as the roots are unable to absorb 

enough N, protein in the older leaves are converted to soluble N and translocated to the active 

meristematic tissue to be reused in the synthesis of new protein (Havlin, et al., 2016). N deficiency 

significantly reduces a plant's capacity to photosynthesize (Boussadia, et al., 2010) by reducing 

the rates of leaf photosynthesis and new leaf area expansion. N deficiency leads to the degradation 

of photosynthetic pigments and proteins, and reduces enzyme synthesis in plants (Polesskaya, et 

al., 2004). Earlier studies in several other crops have also indicated that N deficiency reduces 

ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity (Heitholt, et al., 1991) and 

production. In addition, N deficiency impacts overall plant metabolism through wide 

reprogramming of primary and secondary metabolic pathways (Scheible, et al., 2004). Limited N 

supply causes reduced plant growth and morphological changes such as increased root growth 

relative to shoot growth to explore a larger soil volume. An adaptive mechanism that maize adopts 

as a response to N deficiency is to make better use of the absorbed N within the plant (Marschner, 
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2011). Concerning yield response to N deficiency, Jung et al. (1972) observed equivalent yields 

when a single N application was made from 5 to 8 weeks (V5 to V12 stages) after planting, with 

a decline when N application was delayed until the ninth week or later (Jung, et al., 1972). In 

contrast, Binder et al. (2000) found that maize yields can decline when N applications are delayed 

after 6 weeks (Binder, et al., 2000). The earliest stage they assessed to be associated with 

significant yield reduction was V6, but in different years they also recorded situations where a 

deficit up to VT didn’t show any decrease in yield. 

 

Determine optimum nitrogen fertilization rate 

The determination of the optimum N rate is one of the biggest challenges for farmers being that 

this mineral nutrient undergoes several processes that cause it to be unavailable for crop uptake. 

 

Pre-Sidedress Nitrate Test 

The dynamic nature of N makes the assessment of its availability for the growing season more 

difficult compared to other mineral nutrients that can be easily determined with soil tests. 

However, many N soil tests have been developed during the years, the most important being Pre-

Sidedress Nitrate Test (Magdoff, et al., 1984) whose intent is to adjust a side-dress N 

recommendation linking soil N content during the V4-V5 stage (about 30 days after planting) to a 

critical concentration of soil nitrate.  

Limitations of this practice are (1) the common difficulty of collecting representative samples due 

to cost and likely adverse climatic conditions and (2) its unreliability due to rainfall near the time 

of sampling, which can cause leaching or denitrification of nitrate mineralized from organic 

sources with consequent under or over estimation of the real nitrate supply capacity of the soil 
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(Morris, et al., 2018). In general, soil N tests can reduce the uncertainty in predicting N requirement 

compared to pre-season evaluations (Bundy, et al., 1988) (Andraski, et al., 2002), but present 

weaknesses that classify these methods as slightly reliable. 

Yield goal methods 

The first generation of simulation models developed to predict the optimum N rate at the beginning 

of the growing season are classified as static, or steady-state. Steady-state models are usually 

developed on average N response across multiple years in different sites and environments. Thus, 

they generally perform well in regions where are developed, and may not be robust in other regions 

with different soil, climate and crop rotations. They do not account for spatial and temporal 

variation of organic matter mineralization, rainfall distribution, soil moisture, temperature, 

hydrology, tillage, landscape position, organic carbon, and soil water-holding capacity in N 

requirements during the growing season (Rutan, et al., 2017). These models are based on the 

Stanford`s equation that quantifies the N application rate (Nfert) as the difference between the total 

N uptake by the crop (Ncrop) and the fraction of this amount provided by the natural soil fertility 

(Nsoil), adjusted by the recovery efficiency (REN). Being very hard to evaluate roots N content, in 

the calculations Ncrop and Nsoil are replaced by U and U0 respectively that consider the N content 

of the only aboveground plant portion (Eq. 1.1). This method is also called “yield goal method” 

because U is estimated primarily from the attended yield (Morris, et al., 2018). 

𝑁𝑓𝑒𝑟𝑡 =
𝑈− 𝑈0

𝑅𝐸𝑁
[1.1] 

REN depends on the area. Lahda et al. (2005) estimated across several US regions an average REN 

for maize of 0.65 ± 0.03 indicating that the 65% of the N applied is used by the plant while the rest 

overcome different processes such as leaching, volatilization, denitrification, immobilization and 
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surface runoff (Ladha, et al., 2005). Stanford in 1973 suggested a simplified version of his own 

equation that became the calculation to set the base N recommendation in all yield-base methods 

historically used in the US Corn Belt (Stanford, 1973) (Eq. 1.2).  

𝑁𝑓 = 𝑛(𝑌𝐺𝑂𝐴𝐿)        [1.2] 

Where YGOAL is the yield goal determined differently from state to state and n is an empirical factor 

known as the “internal N requirement” of maize obtained considering U0 and REN as constants 

and U as directly proportional to yield, its value is usually between 1.79 and 2.14 x 10-2 kg N (kg 

grain)-1. Georgia utilizes the latter. 

A first expansion of the above equation consists in adjusting the calculation with the so called 

“credits” factors that accounts for other sources of N that contribute to the N uptake and that 

thereby reduce Nfert value (Eq. 1.3). These N sources accounting for fertilizer equivalents are 

previous legume crops (NLN), residual N from earlier than the previous growing season (NRLN), 

manure inorganic N from fresh application (Banger, et al.), manure organic N from fresh 

application (NMON), soil nitrate (NSNO3), soil organic matter (Qin, et al.), and residual soil nitrate 

(NRNO3). All these values are empirically estimated, site specific and are subtracted from the base 

recommendation.  

𝑁𝑓 = 𝑛 (𝑌𝐺𝑂𝐴𝐿) − 𝑁𝐿𝑁 − 𝑁𝑅𝐿𝑁 − 𝑁𝑀𝐼𝑁 − 𝑁𝑀𝑂𝑁 − 𝑁𝑆𝑁𝑂3 − 𝑁𝑆𝑂𝑀 − 𝑁𝑅𝑁𝑂3   [1.3]

NLN in Georgia corresponds to 22 to 45 kg ha-1 when maize is rotated with soybean (Glycine max 

L.) or peanuts (Arachis hypogaea L.) (Noland, 2018). Although all these are clear conceptual 

models, they have many limitations. Indeed, yield-based approaches are questioned from early 

2000s mainly for four reasons: (i) the assumption that U0 and REN are constant across space and 

time while they vary greatly depending on soil properties, management practices and climatic 

conditions even through the growing season, (ii) the poor relationship between the recommended 
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N rate and the economic optimum N rate observed in N rate response trials (high maize yields are 

not indicative of high N fertilization need), (iii) lack of a standard methodology to pre-season 

determination of the yield goal, (iv) use of inappropriate adjustments for nonfertilizer N sources 

that should be adjusted for their efficiency factor, data rarely available (Sawyer, et al., 2006). As 

a general statement, all the models based on empirical data are subjected to this kind of problem 

being time consuming and expensive to obtain enough data to get enough accuracy for all 

conditions. However, these equations are the fundamentals of more detailed models, having some 

strength such as the soundness for farmers and the ease to be implemented in the simplest forms. 

Maximum Return to Nitrogen - MRTN 

In 2004 a new static method to determine the fertilizer N rate was first outlined by Nafziger et al. 

(Nafziger, et al., 2004). It is the MRTN (maximum return to nitrogen) nowadays calibrated and 

validated for seven states in the Corn Belt. The goal of this method was to standardize the 

guidelines to N rate recommendations across the different states and environments, making use of 

yield response data rather than crop yield. In this system trial data are fitted with the best response 

function and then uploaded to a database that hence provides the site response to N fertilization. 

The database is constantly updated allowing the application of recent research and being up to date 

with changing climatic conditions, maize hybrids, and crop production practices. This model 

requires state and region of interest, crop rotation, and N and crop price as input to return a 

graphical representation of the net return ($ acre-1) at different N rates between 0 and 250 lb N 

acre-1 (0-280 kg ha-1) highlighting the range of N rate application that allow maximum return to N 

in $ acre-1. The net return is the value of maize production minus the cost of N used. The optimum 

rate range corresponds to the point of yield plateaus after which net returns starts diminishing. 
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However, this method has not been calibrated and validated in the state of Georgia that still uses 

the yield goal system, so we do not delve into the description.  

 

Actual nitrogen recommendations in GA   

The UGA College of Agricultural & Environmental Sciences recommends N fertilization in 

Georgia based on yield goals (Noland, 2018). The traditional fertilization method requires 1.2 

pound (1.34 kg) of N per bushel (25.4 kg) of expected grain yield, which corresponds to a N rate 

of 300 lb N acre-1 (336 kg ha-1) in the average irrigated field with a yield goal of 250 bu/a. This 

rate should be reduced by 20 to 40 pounds per acre maize following peanuts and soybeans, and by 

80 to 100 pounds per acre following alfalfa or a legume winter cover crop that is allowed to bloom. 

The total amount of N applied can be split in several applications. One approach is to apply 25 to 

30% prior to or at planting, and the remainder as a side-dress application when the maize is about 

50 cm high or applied through fertigation in 3 or 4 events at 7 to 10 days intervals from V6 on. 

 

Dynamic models 

As the name suggest, dynamic models account for the dynamic interactions between management 

and environmental conditions to estimate N fertilizer requirements (Setiyono, et al., 2011). The 

development of computer models that simulate natural processes and their interactions is currently 

one of the most promising strategies to predict and keep monitored N availability in the field. As 

stated by Holzworth (2014), simulation models provide benefits to the environment as well as to 

food security and to the overall farm management that are enhanced when the use is widespread 

across the agricultural community (Holzworth, et al., 2014). 
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History of agricultural systems modeling 

Models are fundamental tools to conduct studies in the complex agricultural systems. Agricultural 

simulation models are defined by the USDA (United States Department of Agriculture) as 

approximations of the actual processes, process interactions, and matter and energy exchanges that 

take place in the real world. Process information have been translated into theories and 

mathematical models. These equations are implemented in computer simulation tools, which can 

then be tested, modified, and/or (in)validated against new experimental data (Köhne, et al., 2009). 

Although models are imperfect abstractions of the real world, they are useful for understanding 

and predicting performances of the agro-ecosystem. Agricultural simulation models play 

increasingly important roles in the development of sustainable land management across different 

conditions, especially because data collection might be tedious and impracticable in many 

situations. However, data are needed to develop, run, and evaluate models. Beside research, 

models are promising tools for land managers and policymakers to identify management options 

that maximize sustainability.  

Models are used in Decision Support Systems (DSSs), which are computer software programs that, 

through models and other information, make site-specific recommendations for different 

disciplines, including general crop and land management (Plant, 1989) (Basso, et al., 2013). 

Models can apply from farm level to landscape-scale, national and global level depending on the 

interested target.  

Modeling aims to provide agricultural information to the general public, assist in research and in 

the development of investment decisions, and to informs specific public policy design and 

implementation. 
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Brief history 

The first use of models in agriculture is dated 1950 and was related to economical predictions of 

the effect of policies and to optimize the decisions at farm scale (Heady, 1957;Heady, et al., 1960) 

(Heady, 1957). Soon after, the International Biological Program (IBP) was created with the goal 

of creating research tools to study the complex behavior of ecosystems as affected by a range of 

environmental drivers (Worthington, 1975) (Van Dyne, et al., 1976). This was the turning point in 

implementing the use of models into research to gain insight into natural systems because IBP 

contributed strongly to the evolution of conceptual and mathematical modeling for studying 

natural processes and their interactions in managed systems (Coleman, et al., 2004). Models of 

agricultural production systems were first conceived in the 1960s. Two scientists are considered 

the pioneers of modeling agricultural systems: de Wit and Duncan. The former is a physicist from 

Wageningen University, who in the mid- 1960s believed that agricultural systems could be 

modeled by combining physical and biological principles and developed early computational 

analyses of plant photosynthesis and growth, and soil processes. W. G. Duncan is a chemical 

Engineer who began creating some of the first crop-specific simulation models for maize, cotton, 

and peanut (Duncan, 1971). These works inspired many scientists and engineers who started 

developing and using crop models. In 1969, a regional research project was initiated in the United 

States of America to develop and use production system models in cotton production. Thus, some 

of the first crop models were developed as new ways of studying agricultural systems that differed 

from traditional reductionist approaches, and inspiring others to get involved in a new, risky 

research approach. During this early time period, most agricultural scientists were highly skeptical 

of the value of models. 



 

17 
 

A global price increase of wheat and global shortages in 1972 boosted crop model development 

thanks to a new research program funded in the United States to create crop models for predicting 

the production of major crops that were grown anywhere in the world and traded internationally 

(Pinter Jr, et al., 2003). This led to the development of the CERES-Wheat and CERES-Maize crop 

models by Joe Ritchie and his colleagues in Texas (Ritchie, 1985) (Jones, et al., 1986) that are still 

used as implemented in the DSSAT model. At that time, the scientific community lacked a 

common environment to share scientific advances in this area of interdisciplinary agro-ecosystem 

research. I was in response of this need that Spedding, in 1976, founded the journal Agricultural 

Systems (Spedding, 1976). This tool boosted the knowledge about agricultural system modeling 

and represented a support tool for modelers, creating a collection of scholarly work about models 

and their methods of analysis. During the 1980s there were other notable government-funded 

initiatives in the U.S., Netherlands, and Australia that led to major developments of crop, livestock, 

and economic models. This includes the 1980 US Soil and Water Conservation Act that led to 

development of the EPIC model that is still in use today (Williams, et al., 1983) (Williams, et al., 

1989) and the USAID-funded IBSNAT project that led to the creation of the DSSAT suite of crop 

models that incorporated the CERES and CROPGRO models (Boote, et al., 1998;Boote, et al., 

2010;Jones, 1993) (Hoogenboom, 2012) (Jones, et al., 2003).  

In the early 1990s, a major milestone was the establishment of the first fully funded, 

multidisciplinary crop modeling-oriented research group in Australia that led to the development 

of the APSIM suite of cropping system models that is currently one of the most widely-used suites 

of models (Keating, et al., 2003) (McCown, et al., 1996). 

Alongside, a major event in the development of crop models is the development and diffusion of 

computers in the 1980s. Afterward, individual researchers could work with agricultural system 
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models that were being made available on personal computers or develop their own models. This 

revolution concerned even other fields that contributed to modeling of agricultural systems, such 

as computer graphics, statistical analysis, GIS, and other software being made available on several 

platforms (PC, smartphone, etc...). In addition, the development of the internet and world-wide 

web started a new era of communication and technologies that led to greater collaboration among 

scientists, more rapid development of agricultural models, and improved access to data. About 10 

years later, another important concept was developed: open source software. This notion fits 

perfectly in the scientific community of agricultural system models that is constantly evolving. 

Already, at least two cropping system models (APSIM and DSSAT) allowed free access to model 

source code to enable community-based development of model components for possible inclusion 

in official model versions. In parallel to funded initiatives, scientists started creating consortia and 

networks to enhance collaboration for specific purposes. In 2010 an initiative called AgMIP 

(Agricultural Model Intercomparison and Improvement Project) was created with the goal of 

comparing and improving crop models and using the improved models to assess impacts and 

adaptations to climate change and climate variability at local to global scales. This work led various 

modeling groups to develop models that represent CO2, water and GHG fluxes.  

The continued dedication to develop reliable models has been one of the main features of many 

agricultural modeling efforts for cropping systems, livestock, and economics (Jones, et al., 2017). 

Selection of the crop simulation model 

Differences in crop simulation models (CSMs) 

The long history of crop modelling has produced a large number of models, most of which have 

evolved from a few milestones such as CERES and EPIC (Williams, et al., 1989) (Jones, 1986) in 
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the USA. CSMs usually contain a relatively complete suite of biogeochemical processes, often 

made of sub-models that interact with each other to describe cycles of water, C and N for target 

ecosystems, thus any change in the environmental factors collectively affect a group of 

biogeochemical reactions (Brilli, et al., 2017).  

CSMs are very diverse, depending on the schools of thought behind them, their history, or even 

the programming language in which they are written (Muller, et al., 2019). Crop models differ 

according to their choice of relationships and hypotheses regarding process functioning and 

feedback loops, and their combinations of mechanistic components (e.g. photosynthesis, soil water 

transport) and functional components (also termed phenomenological; e.g. radiation use 

efficiency, stomatal conductance) (van Ittersum, et al., 2003) (Parent, et al., 2014). In other words, 

a typical process can be described by using different approaches, resulting in different final 

outputs. 

Selection of the model 

For the purpose of this research we needed a crop simulation model reflecting the following 

characteristics: (i) publicly available, (ii) run field scale simulation, (iii) ability to simulate maize 

growth, (iv) ability to simulate real-time N availability in the soil-plant environment, (v) easy to 

calibrate, (vi) robust model giving good results in different environments and (vii) ability to make 

in-season N recommendations and the optional ability to (viii) simulate N leaching to quantify the 

N losses. In order to find the most suitable model we reviewed the capability of some of the most 

commonly used to fit our requirements (Table 1.1). A brief description of the models considered 

is provided below. 
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(i) ADAPT-N was developed at Cornell University as a combination of LEACHN model

(Hutson, 20003) and a maize N uptake, growth, and yield model (Sinclair, et al., 1995). It

provides field-specific, locally-adjusted side-dress N recommendations for maize production

that incorporates the effects of local early-season weather, as well as basic soil, management

and crop information.

(ii) APSIM (The Agricultural Production Systems sIMulator) (Keating, et al., 2003) developed

in Australia, simulates several systems through the interaction among plants, animals, soil,

climate and management. The model allows the analysis of the whole-farm system, including

crop and pasture sequences and rotations, and livestock.

(iii) CropSyst (Cropping Systems Simulation Model) is a multi-year, multi-crop, daily time step

crop growth simulation model, developed at the Washington State University (Claudio

O.Stockle, 1994) CropSyst simulates the soil water and N balance, crop phenology, biomass

production, crop yield, residue production and decomposition, soil erosion, and pesticide 

fate. 

(iv) DayCent (Parton, et al., 1994) is the daily time-step version of the CENTURY

biogeochemical model (Parton et al., 1994), able to simulate crop growth, soil C and N

dynamics, N leaching and gaseous emissions (N2O, NO, N2, NH3, CH4 and CO2) in crop

fields, grasslands, forests, and savanna ecosystems. The model allows to simulate also

several management practices and some external disturbances (i.e. fires) (Brilli, et al., 2017).

(v) DNDC (DeNitrification-DeComposition) (Li, et al., 1992) predicts crop growth, soil

conditions of temperature and water content, soil C dynamics, N leaching, and trace gases

emissions. From 2012 DNDC is capable of run biophysical processes of a whole-farm

systems (Li, et al., 2012).
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(vi) DSSAT (Decision Support System for Agrotechnology Transfer) (Jones, et al., 2003) 

integrates the effects of soil, crop variety, weather and management options of over 42 crops. 

DSSAT includes improved application programs for seasonal, spatial, sequence and crop 

rotation analyses. It can predict crop yield, resource dynamics such as for water, N and C, 

environmental impact (i.e. N leaching), evapotranspiration, SOM accumulation and assess 

the economic risks.  

(vii) EPIC (Environmental Policy Integrated Climate) (Williams, et al., 1995) can simulate 80 

crops. It can predict changes in soil, water, nutrient, pesticide movements, and crop yields 

due to effects of management decisions. Moreover, it can also assess water quality, N and C 

cycling, climate change impacts, and the effects of atmospheric CO2. Is primarily designed 

to predict the effects of soil erosion on crop productivity. 

(viii) Maize-N (Setiyono, et al., 2011) combines the Hybrid-Maize model for estimating yield 

(Yang, et al., 2004) with a soil organic matter mineralization scheme and empirical method 

for predicting the response of maize yield to N uptake.  

(ix) QUEFTS (Janssen, et al., 1990) was developed in Wageningen, focusing on tropical 

conditions. The model allows N recommendations based on soil fertility status and economic 

profitability while fewer details are provided on mechanisms of soil N cycling within a 

growing season. 

(x) STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard) (Brisson, et al., 1998) is 

a soil-crop model which is built on a generic framework for plant description. The selection 

of adequate options and parameters values allows to simulate a wide range of plants. The 

model simulates plant growth as well as water, C and N fluxes. It allows to consider the 

effect of a large range of management options on agronomic and environmental outputs. 
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(xi) SWAT (Soil and Water Assessment Tool) is a small watershed to river basin-scale model

used to simulate surface and ground water and predict the environmental impact of land

management practices and climate change. It is widely used in assessing soil erosion, non-

point pollution and regional management (Arnold J. G., 2007).

Among the models described above, only ADAPT-N, Maize-N and QUEFST provide in-season 

N recommendations. However, no one of these fits the selection criteria. Only QUEFTS is 

Table 1.1 Status of the crop models to estimate crop-growth and environmental tradeoffs 

Model Spatial Scale 
Publicly 

available 

Corn 

growth 
CV 

Real-time N 

availability 

In-season N 

recommendation 
Leaching 

ADAPT - N Point - + + + + + 

APSIM Point + + + + - + 

CropSyst Point + + + + - + 

DAYCENT Point + + - + - + 

DNDC Point, regional + + + + - + 

DSSAT Point + + + + - + 

EPIC Watershed + + - + - + 

Maize-N Point - + - - + - 

QUEFTS Point + + + + + - 

STICS Point + + + + - + 

SWAT Watershed + + + + - + 
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available in the public domain, but this has been developed primarily for tropical soils which do 

not match our experimental conditions, and in addition it does not predict leaching and yield.  

According to the simulation scale, EPIC and SWAT are more recommended for bigger areas like 

watersheds. Moreover, the parameterization of SWAT and DSSAT were considered too much 

challenging for the scope of the work. Sansoulet conducted a comparison between STICS, 

DayCent and DNDC simulations in spring wheat and demonstrated that STICS and DNDC 

provided good biomass and plant N predictions for all sites, whereas the results with DayCent 

were not as good, even if they were satisfactory. In the same experiment, STICS was the most 

effective in estimate evapotranspiration and N in the plant under rainfall excess due to its function 

for water excess affecting production (Sansoulet, et al., 2014).  

Overall, STICS was selected as the most suitable for the intent of the research because, beside the 

ability to provide in-season N recommendations, it fits all the criteria of selection. Moreover, it 

stands out for its adaptability due to the modular structure, the minor inputs requirement compared 

to similar models and the robustness of its formalisms. Even though it is important to recall that N 

cycling strongly depends on interactions among plant growth processes, soil water dynamics and 

soil N dynamics that are highly non-linear and thus difficult to predict with simple approaches 

(Brilli et al., 2017). STICS is a crop-oriented model developed and mainly validated in continental 

France but tested in different locations like Guadeloupe (French West Indies) (Sierra, et al., 2003) 

and Eastern Canada (Sansoulet, et al., 2014)  (Jégo, et al., 2011) giving promising results.  

STICS 

The process-based crop simulation model STICS (Simulateur mulTIdisciplinaire pour les Cultures 

Standard), was created at INRA, the French National Institute for Agricultural Research, in 1996 



24 

on initiative of Nadine Brisson (1998). It is a dynamic model that runs in real-time with a daily 

time step using readily available input data and can integrate temporal variabilities for successive 

crops. It is an 'engineering' model in the meaning given by Passioura (1996) because it aspires to 

provide management advices to farmers and sounds predictions to policy makers (Passioura, 

1996). STICS’s strengths are the generality and capability to simulate the effect of climate, soil 

and crop management on a wide range of different processes as the development and growth of 

the crop, and water, carbon and N balances in the soil-plant environment. STICS has a modular 

structure, where every module represents a set of eco-physiological processes occurring in the 

system and is composed of sub-modules dealing with specific mechanisms. The modules are (i) 

crop development, (ii) shoot growth, (iii) yield component, (iv) root growth, (v) water balance, 

(vi) N balance, (vii) microclimate, (viii) crop management and (ix) environment and heat, water

and nitrate transfers. This design makes it a generic model easy to adapt to different crops; 

therefore, the model is currently adapted for nearly 30 species, including annual, perennial, 

herbaceous and woody plants. STICS is written in FORTRAN 77 and can be run under Windows, 

or any PC compatible microcomputer. The creators built it by bringing together different minor 

models: the GOA (Plant), BYM (water), and LIXIM (nitrogen) models, which had also been 

produced by INRA.  

STICS incorporates robust formalisms of a generic nature that lie on known analogies or on the 

simplification of more complex ones. The model simulates the behavior of an average plant 

characterized by its aboveground biomass, leaf area index (LAI), and the biomass of harvested 

organs. The soil is considered as a succession of horizontal layers, each one characterized by its 

content of water and N at the start of the simulation, and its field capacity (Janssen, et al.), bulk 
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density, infiltrability and moisture content at permanent wilting point (PWP). Plant roots are 

defined with their length distribution in the soil profile.  

The atmosphere is represented by a set of climate variables required as input and with a forcing 

function. Other inputs required are management information such as sowing date, fertilizer types 

and rates, and irrigation records and efficiency necessary to simulate the effect of agricultural 

practices. The outputs of STICS reflect the objectives of the model’s creation (Figure 1.2). 

 

Crop development 

In STICS the developmental stages correspond to changes in the trophic or morphological strategy 

of the crop that influences the evolution of LAI or grain filling rather than organogenetic stages 

defined in classical agronomic scales. This module drives crop growth by organizing, throughout 

the cycle, the opening and closing of sinks, the establishment of the photosynthetically active 

system and the activation of remobilization to the storage organs. STICS uses daily updated 

degree-days to control the development. This method permits to consider fluctuations in growth 

rate due to the temperature. The radiation intercepted by the photosynthetically active system, 

Figure 1.2 STICS model functioning principles 
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characterized by leaf are index, is transformed into biomass. In other words, plant growth is driven 

by the carbon balance. However, Ong (1983) and Pararajasingham and Hunt (1991) argued that 

the phasic chronology may be better simulated using a temperature closer to the plant (soil or 

organ) rather that the air temperature (Ong, 1983) (Pararajasingham, et al., 1991). Thus, STICS 

offers the possibility to adopt the idea of Idso et al. (1978) to drive the development by crop 

temperature (Idso, et al., 1978). The conversion from air temperature is assumed to be the 

arithmetic mean of the maximum crop temperature and the minimum crop temperature, these two 

values calculated with an energy balance of respectively the maximum and minimum values of the 

fluxes of net radiation (MJ m-2), soil heat (°C) as a function of wind speed and net radiation, 

evapotranspiration (mm) and aerodynamic resistance (s m-1) which requires wind speed (m s-1), 

crop high (m) and bare soil roughness (m).  

Crop development is divided into seven stages expressed in degree-days: (i) emergence, (ii) 

maximum acceleration of leaf growth, (iii) maximal leaf area index, (iv) beginning of grain filling, 

(v) beginning of net senescence, (vi) physiological maturity, and (vii) harvest. Emergence is

simulated as dependent from three main factors: temperature, sowing depth, and water status of 

the soil that occur to be particularly important as first demonstrated by Bouaziz and Bruckler 

(1989) that linked a good emergence simulation to the good simulation of soil water status in the 

surface soil layers (Bouaziz, et al., 1989). STICS considers three subphases of emergence: (i) seed 

imbibition, (ii) germination, and (iii) shoot elongation. Germination failure is not considered, and 

plant density introduced as an input parameter corresponds to the density of emerged plants 

(Brisson, et al., 2003). Moreover, some plant-dependent sensitivity parameters can be used to 

simulate the effect of water and N stress that can generate delay during maize growth.  
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Shoot growth 

The plant sub-system is characterized by its shoot biomass and leaf area index (LAI). The leaf 

growth (m2 m-2 d-1) is simulated at a canopy scale as a function of the phasic development (m2 

plant-1 degree-day-1), the effective crop temperature (degree-days) and the plant density (plant m-

2) combined with an inter-plant competition factor characteristic for the variety (Singels, et al.,

1991) and the stress indices. The evolution of LAI is in four stages: two of growth, one of stability 

and one of senescence. The leaf area growth rate (m2 plant-1 degree-day-1) is related to the 

phenological stages and is driven by a leaf development unit, values being 1 at emergence and 3 

at the maximum LAI, when the growth stops. The main role of LAI in the model is the interception 

of radiation, on which depends the simulation of crop development, thus the accuracy is especially 

important during early growth and senescence; slightly lower accuracy is acceptable during the 

stability phase because the interception has reached its maximum. Shoot senescence only concerns 

leaves: dry matter and LAI. The concept of leaf lifespan is used for the simulation (Duru, et al., 

1995) and dependents on the evolution of temperature, phenology and stresses are applied to the 

leaf area, that is considered lost through senescence once the lifetime has elapsed.  

The interception of the photosynthetically active radiation (PAR) is estimated using an optical 

analogy, a type of Beer’s law that demonstrated better predictions for homogeneous crops having 

leaves randomly distributed over the area than for canopies in rows, but since maize covers the 

row middles quickly (at V7 stage, about 30 days after emergence), we assume the formalism is 

applicable. The objective is to estimate, on a daily time step, the fraction of radiation intercepted 

by the crop and that transmitted to the soil. The radiation intercepted (MJ m2) is function of LAI, 

of a daily extinction coefficient and of the ratio of PAR to the global radiation.  



28 

The daily production of shoot biomass (t ha-1 d-1) relies on the radiation use efficiency (RUE), 

defined as the slope of the parabolic relationship between accumulated biomass and radiation 

intercepted by the crop (Monteith, 1972), in other words RUE indicate the aboveground dry weight 

increase per unit of intercepted PAR (Kiniry, et al., 1999). This parameter is widely employed in 

crop models (Jeuffroy, et al., 1999), because it synthesizes with just a few parameters the 

photosynthesis process. Accumulation of shoot biomass involves a maximum value of RUE that 

differs based on the crop growth stage. From the juvenile to the vegetative and reproductive stages 

the model simulates the preferential migration of assimilates towards the roots at the beginning of 

the cycle. The reduction of RUE for high radiation explain the parabolic shape of the relation.  

Only abiotic stresses are accounted in STICS and considered independent one from each other, 

unless they impact the same process, situation where just the more severe is considered. Stresses 

are considered as indices varying from 0 to 1 to apply to the RUE function (Sinclair, 1986) that 

reduce plant processes according to the value of related variables such as soil available water 

content for water stress and the N nutrition index (INN) for N stress. INN is the ratio of actual N 

concentration and critical concentration referred to the same biomass. The latter comes from a 

‘critical dilution curve’: a diagnosis tool of N nutrition so that plants below the curve experienced 

N deficiency and plants above it have an optimal growth. Inside the same stress, there are different 

indices according to the developmental stage affected.  

Yield component 

Yield is defined as the weight and the quality of the grain. For determinate crops like maize, STICS 

apply the approach of the ‘dynamic harvest index’ (ratio of grain biomass to total shoot biomass), 

inspired by Spaeth and Sinclair (Spaeth, et al., 1985). This approach assumes a linear variation of 
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the carbon harvest index (g grain (g plant-1)) as a function of time up to a threshold set to avoid 

simulating unrealistic yield, from the onset of grain filling to maturity. The number of grains is 

fixed during a critical period between 20 and 30 days before and after flowering and the mass of 

each grain is then calculated as the ratio of the total mass to the number of grains. The concept of 

harvest index is extended to N (Jérémie Lecoeur, 2001), simulated as an increasing proportion of 

the quantity of N in the biomass (N grain (N plant-1)). Both the harvest indices are calculated on a 

daily time step and sensitive only to the duration of grain filling to include the effect of thermal 

stress; water or N stresses are not accounted. The yield module is affected by almost all the 

STICS’s modules, especially root growth, N balance, water balance, mineralization and the 

interaction rooting-water balance.  

Root growth 

Roots act as water and mineral N absorbers and are described by their growth in depth and density 

profile, separately. Root growth is proportional to temperature (Hunt, 1995) and dependent on 

water stress indices and bulk density; it starts at germination and stops when the leaf growth stops. 

The root profile effective for absorption is calculated with a method for high density crops called 

‘standard profile’ that at each depth reached by the root system associates a profile of effective 

root density with a sigmoid shape, which represent the assumption of an exponential decrease of 

roots with depth (Gerwitz, et al., 1974). The growth rate of the root front is set between 0.1 and 

0.2 cm by growing degree-day for maize. A threshold of 0.5 cm (cm soil-3) is set as the optimal 

root density that permits maximal exploitation of the available water (Bonachela, 1996). In the 

upper layer, the effective root density can reach, but not exceed, this threshold. Thus, the profile 

of effective root density is simulated by a logistic function in the model.  
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Water balance 

The water balance has the purpose of estimating soil water content, water fluxes and water stress 

indices. Weather variables used to compute it are rainfall, that with irrigation represent the water 

inputs, and evapotranspiration (EVT). EVT is composed of soil evaporation and plant 

transpiration. Soil evaporation is calculated in two steps: (i) potential evaporation related to the 

energy available at the soil level and to LAI, and (ii) actual evaporation related to water availability 

(Brisson, et al., 1991). Potential evaporation is calculated with a Beer’s law equivalent which uses 

the reference potential EVT and is linked to the ‘crop coefficient (Kc) approach’ for estimating 

plant requirements. After a rain event, soil evaporation is assumed to be potential up to a threshold 

(mm), and then decrease according to the weather, especially wind speed, and soil type.  

On a daily basis, transpiration equals absorption and is calculated in two steps, using potential 

EVT as the driving variable: potential crop transpiration with no water limitations and relative 

transpiration. The former is a logistic function of LAI which involves the maximum Kc attained 

when LAI is almost 5. The latter is expressed as the ratio of actual to maximal transpiration, is a 

bilinear function of the available water content. Such a formalism assumes that maize can uptake 

water at a maximal rate until the soil water content falls below a threshold determined according 

to root characteristics, stomatal functioning and evaporative demand (Slabbers, 1980) and tends to 

stabilize from a certain root depth. 

 

Nitrogen balance 

The inorganic N pool in the soil can be replenished by the addition of fertilizers, by rainfall (50% 

NH4
+ and 50% NO3

−) or by irrigation water as NO3
−. The N balance in the soil-plant system 

depends on the main N transformations (mineralization, immobilization, nitrification and 
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denitrification) and the mineral N uptake of the crop. These processes depend mainly on soil 

temperature and water content. The net mineralization is the sum of the mineralization of stabilized 

organic matter (OM), also called basal mineralization, and of organic residues. The former is 

calculated as the fraction of active soil organic N times the actual mineralization rate (K2 in kg N 

d-1). The active organic N (t ha-1) is the product of organic N content in the upper layer (%), the

proportion of active organic N (default value 0.35), BD (g cm-3) and mineralization depth (cm). 

K2 is equal to the potential mineralization rate (kg N d-1) at reference conditions times water 

content and temperature effects. These two effects are a linear function (higher water content, 

higher the effect) and a logistic function (over 25°C the rate slows down), respectively. Net 

mineralization from organic residues is assumed to follow the first order kinetics depending on the 

C/N ratio of the residue, soil temperature, water content and available soil N in the vicinity of the 

residues. The NH4
+ derived from mineralization is rapidly transformed to nitrate through the 

process of nitrification that is assumed to occur in the biologically active layer (maximum depth 

of mineralization) according to soil temperature, soil water content and soil pH (low pH, lower 

nitrification and higher NH4
+ concentration), factors that don’t interact with each other. 

Denitrification is calculated as affected by soil temperature and prop erties like water content at 

FC, BD, NO3
− content and actual water content (Hénault, et al., 2005). Both nitrification and 

denitrification are accompanied by N2O emissions, considered a constant proportion of the nitrified 

NH4
+ in satisfactory aerobic conditions, and constant ratio with total denitrification, respectively. 

Once in its mineral forms, N can be taken up by plants in an amount equal to the minimum between 

crop demand and soil supply. The daily N demand (kg N ha-1 d-1) is derived from the ‘critical N’ 

curve, which value decreases as time and plant biomass increase. It is calculated as the product of 

the crop growth rate (t ha-1 d-1) and the derivative of the maximal crop N content (%) relative to 
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the plant biomass (t ha-1). Soil N supply equal to the minimum between the transport flux of nitrate 

from a point in the soil to the closest root via convection and diffusion, and the sink flux as the 

active absorption by the roots according to plant’s capacity to absorb, root density and NO3
− 

concentration.  

 

Transfer of heat, water and nitrate 

STICS accounts for heat transfer: daily thermal amplitude (°C) and soil temperature at depth Z 

(°C) are calculated using the daily thermal amplitude at the surface (difference between maximum 

and minimum crop temperature) and a soil thermal diffusivity coefficient (m2 s-1) (McCann, et al., 

1991).  Water and NO3
− transport are simulated by a reservoir-type model for which microporosity 

is the mandatory compartment that has to be described. Water fills the layers by downward flow 

down to the bottom of the profile or to the layer in which the water content remains below FC. 

Soil layers affected by evaporation can dry until they reach the residual soil water content, while 

in deeper layers, the water is only extracted by the plant and therefore is always above PWP. The 

amount of NO3
− above a certain threshold, is assumed to mix completely with the water of the 

layer and to drain with it. Upwards nitrate movements occur via plant uptake only (Beaudoin, et 

al., 2009). 

 

The FACETS Project 

The Floridian Aquifer Collaborative Engagement and Sustainability (FACETS) project is funded 

by a grant from the Unites States Department of Agriculture, National Institute of Food and 

Agriculture (USDA NIFA) and involves the University of Florida, University of Georgia, Albany 

State University and Auburn University (floridanwater.org). The Floridian aquifer system extends 

http://floridanwater.org/
http://floridanwater.org/
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from South Carolina and South Georgia to the all Florida and parts of Alabama and Mississippi. It 

is the primary source of drinking and irrigation water for most cities and rural areas in central and 

northern Florida as well as eastern and southern Georgia, for a total of nearly 10 million people 

(Marella, et al., 2005).  

The problem of water pollution caused by agricultural practices raised concerns, especially related 

to the most fragile environments, such as rivers and springs, with which the Floridian aquifer is 

particularly rich (Figure 1.3). The FACETS project recognizes this problem and aims to achieve 

economic sustainability of agriculture and silviculture in North Florida and South Georgia while 

Figure 1.3 Map of the Floridan aquifer with more susceptible area highlighted (unconfined 

system) 
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protecting water quantity, quality, and habitat. This goal is being pursued through three main 

objectives: 

1. Build a comprehensive modeling platform to predict the impacts of alternative land use

and production practices on the water in the area;

2. Engage stakeholders to understand changes needed to achieve economic sustainability

through their involvement in exploring different scenarios;

3. Conduct innovative agricultural Best Management Practice (BMP) research and

demonstration projects. Develop and deliver digital decision toolkit and training programs

for stakeholders.

My research addresses the third objective of the FACETS project and involves developing the 

ability to schedule N applications in maize with a simulation model for the digital decision toolkit. 

The simulation model will be incorporated into a smartphone app to help farmers with scheduling 

N fertilization applications. This type of tool is particularly important in sandy Coastal Plain soils 

of this area where N is very mobile. In this area, excessive rainfall or excessive irrigation events 

easily lead to N leaching. 

Hypotheses 

1. We hypothesize that the yield of the treatments where side-dress N fertilization is applied

will be higher than the traditional fertilization approach;

2. We hypothesize that the simulation run with the STICS model will be accurate and

representative of the real observed conditions;

3. We hypothesize the predictions to be consistent through spatial and temporal variability.
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Objectives 

1. Adapt, calibrate, and validate the STICS model for maize production in the Coastal Plain

soils of Georgia.

2. Use the STICS model to predict the timing of nitrogen side-dress applications

3. Evaluate the performance of the model and provide recommendations on whether it is

appropriate for use in the digital decision toolkit.
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CHAPTER 2 

MATERIALS AND METHODS 

Experimental site 

The experiment was carried out at the University of Georgia’s C.M. Stripling Irrigation Research 

Park (SIRP) near Camilla, GA (31° 16' 55.2"N, 84° 17' 38.04"W). Geographically, SIRP is located 

in the Lower Flint River Basin within the southeastern Coastal Plain. The average annual air 

temperature is 19.4 °C and the mean annual rainfall is 1314 mm. The soil is deep, well-drained, 

moderately permeable and kaolinitic with 0 to 5 % slopes (Lucy series soil - USDA Natural 

Resources Conservation Service). It is loamy sand on the upper layers and sandy loam, or sandy 

clay loam, in the deeper layers. The experiment began in 2018 and was carried out in three small 

fields cropped in a peanut-maize-cotton rotation. Each field was 1.2 ha, for a total of 3.6 ha site. 

Each field was divided into 27 plots of about 98 m2 (14 m long × 7 m wide) each one composed 

of 8 crop rows and surrounded by buffer zones as shown in Figure 2.1. The treatment structure 

was a factorial of three irrigation treatments and three N fertilization strategies (9 treatments in 

total) that were arranged in a completely randomized design with three replications. These 

treatments were used in each of the three fields described above, with the difference that each field 

had a different crop sequence (Figure 2.1). The sequence of crops in 2018/2019 was maize/cotton 

in one field, peanuts/maize in the second field, and cotton/peanuts in the third field. 

All crops were preceded by a rye cover crop (Secale cereale) established in November and 

terminated the following spring using herbicides. For maize, rye was killed around the end of 
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February. Maize was sown using strip tillage at the end of March. Tillage and sowing were 

performed concurrently. Maize cultivar P1870 (Pioneer) was sown at a plant density of about 80 

000 seeds ha-1 (0.91 m between rows, 0.125 m within rows) on March 29th and March 27th in 2018 

and 2019, respectively. This is a yellow maize cultivar with good performance in both irrigated 

and higher yielding non-irrigated environments.  

In 2018, N application was uniform among treatments at pre-planting and planting and differed 

among treatments for side-dress applications. The pre-planting application used a dry urea based 

pre-plant fertilizer application about three weeks before planting at 56 kg N ha-1. At sowing, 

additional 50 kg N ha-1 was applied as 50% of a 28-0-0-5 fertilizer and 50% of a 20-17-0-2.5 

formulation. Side-dress N applications used a liquid urea-based of grade 28-0-0-5, in different 

(a) 

(b) 

 

 

 

Figure 2.1 Crop grown in each of the blocks during 2018 and 2019 (a), and experimental 

layout of the 27 plots of each field (b) 

 

Lateral 
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amounts among treatments. Similar applications took place in 2019 with 57 kg N ha-1 applied at 

pre-planting, 34 kg N ha-1 at planting, 56 kg N ha-1 as a common first side-dress application and 

successive applications different in amount and timing among treatments (Table 2.1). 

Weed control was performed using glyphosate herbicide applications before and after emergence 

(total of 7.60 l ha-1 in 2018 and 7.02 kg ha-1 in 2019). Rainfall, solar radiation, minimum and 

maximum air temperature, air humidity and wind speed were recorded daily at a standard weather 

station located 550 m from the plots. Maize was harvested on August 21st in 2018 and August 26th 

in 2019.  

Irrigation strategies 

The experimental site was irrigated with a lateral irrigation system equipped with variable rate 

irrigation controls. Each of the plots shown in Figure 2 can be irrigated with unique application 

rates. The irrigation strategies evaluated in 2018 and 2019 were a combination of standard / 

traditional strategies and emerging strategies with potential to improve irrigation water use 

efficiency (WUE). The three irrigation strategies tested were (i) the traditional checkbook method, 

(ii) the University of Georgia Smart Sensor Array (UGA SSA) and (iii) the SmartIrrigation Corn

App. In this study, the University of Georgia Corn Checkbook method was considered a standard 

/ traditional strategy and is recommended by the University of Georgia Extension Services. It was 

developed from a historical average of evapotranspiration (ET). It recommends weekly 

applications of irrigation water based on historical average ET minus rain received during the 

week. This method is designed to ensure that the crop is never water-stressed and as a result is 

conservative and during normal to high precipitation years, often leads to over-irrigation (Noland, 

2018).  
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The UGA SSA is an irrigation scheduling system that makes irrigation recommendations based on 

soil water tension (SWT) readings. The soil water tension (in kPa) indicates the suction force 

required from a plant to extract water from the soil. The more negative this value, the drier the 

soil, while values close to 0 kPa indicates saturated conditions (Vellidis, et al., 2013). This system 

is composed of nodes, each one incorporating a sensor circuit board powered by two 1.5 V batteries 

that acquires values from three Watermark® soil moisture sensors (Irrometer, Riverside, 

California, USA) (Thomson, et al., 1987) (Shock, et al., 2003) measuring SWT at three different 

depths (0.20, 0.40, and 0.60 m below soil surface for maize). Nodes send sensor data through radio 

transmission to the base station located in a strategic position (usually at the center pivot point). 

This is designed to receive all sensor data at regular intervals defined by the operator (Liakos, et 

al., 2015). Then the data are sent to a server and displayed in a dedicated website where a graphical 

interface informs real-time field conditions to the user (Vellidis, et al., 2008). Default thresholds 

are set to trigger irrigation. 

The SmartIrrigation Corn App is one of several smartphone applications included in the 

SmartIrrigation Apps Suite and is still under development. It uses a simplified daily soil water balance 

that considers field capacity, rooting depth, evapotranspiration (ETc), rainfall, maximum 

allowable depletion, and irrigation system characteristics to estimate a daily plant available root 

zone soil water deficit. Evapotranspiration is estimated from a reference ET (ETo), which is 

calculated with the Penman-Monteith equation multiplied by a crop coefficient (Kc). 

Meteorological data (daily mean temperature, wind speed, relative humidity, and solar radiation) 

are obtained from the closest weather station. Daily Kc values are extracted from a crop coefficient 

curve. The Corn App model sends notifications to the user when the root zone soil water deficit 

(%) exceeds established thresholds. Based on the deficit, the user can manage the irrigation 

treatment to balance the deficit. A default notification deficit threshold of 50% is suggested from 

https://smartirrigationapps.org/
https://smartirrigationapps.org/
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emergence to prior to tasseling (611 GDDs). From tasseling to the end of the dough growth stage 

(1214 GDDs), the default notification deficit is reduced to 33%. Finally, the default notification 

deficit is set back to 50% from the beginning of dent to maturity. The notification thresholds may 

be changed by the user. 

 

Nitrogen fertilization treatments 

The treatments tested in 2018 were a combination of standard/traditional practices and emerging 

practices with potential to improve nitrogen use efficiency (NUE).  The traditional practice was to 

use the UGA Extension Service recommendation of multiplying yield goal in bu ac-1 by 1.2 to 

calculate the N application rate. Based on prior yields at the field, the yield goal was set to 250 bu 

ac-1 and the associated N application rate was 300 lb N ac-1 or 336 kg N ha-1.  

The emerging practice evaluated was fertigation, or the application of fertilizer through the 

irrigation system. This practice was selected because it can be used to apply side-dress nutrients 

 

 

Table 2.1 Total N rate of the fertilization treatments of maize of 2018 and 2019 with specifics 

on the timing of application 

Year Fertilization Strategy 
N rate 

kg ha-1 

N applied (kg ha-1) 

Preplant Planting 
Side-dress 

common kg ha-1 /event no. events 

2018 

Traditional 336 56 50 - 226 1 

Fertigation high 336 56 50 - 57 4 

Fertigation low 280 56 50 - 43 4 

2019 

Traditional 337 57 34 56 95 2 

Fertigation Scheduled 280 57 34 56 27 5 

Fertigation Model 315 57 34 56 34 5 
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in small doses throughout the growing season and theoretically should result in higher NUE as less 

N is likely to be lost via leaching. Fertigation was evaluated using both the 1.2 multiplication factor 

for determining the N application rate and a 1.0 multiplication factor. The lower multiplication 

factor resulted in an application rate of 250 lb N ac-1 or 280 kg N ha-1, and it was selected because 

we hypothesized that higher NUE would require less N to achieve the same yield. 

The three fertilization treatments used in the study were:  (i) the traditional method with a total of 

336 kg N ha-1 applied as preplant (56), at planting (50), and as one side-dress application (226), 

Table 2.2 Experimental treatments of growing season 2018 and 2019 for maize 

2018 2019 

Treatment 

no. 

Irrigation 

Treatment 

Fertilization 

Treatment 

Irrigation 

Treatment 

Fertilization 

Treatment 

1 Corn App1 × Fertigation2 High3 Checkbook × Fertigation Scheduled8 

2 Corn App × Traditional4 Corn App × Traditional9 

3 Corn App × Fertigation Lower5 Corn App × Fertigation Model10 

4 Checkbook6 × Fertigation High Checkbook × Fertigation Model 

5 Checkbook × Traditional Corn App × Fertigation Scheduled 

6 Checkbook × Fertigation Lower UGA SSA × Fertigation Scheduled 

7 UGA SSA7 × Fertigation High UGA SSA × Fertigation Model 

8 UGA SSA × Traditional UGA SSA × Traditional 

9 UGA SSA × Fertigation Lower Checkbook × Traditional 
1 SmartIrrigation Corn App estimates daily plant available soil water deficit and recommends irrigation accordingly 
2 Application of fertilizer through the lateral irrigation system 
3 336 kg N ha-1 applied as preplant (56), at planting (50), and four scheduled fertigation events (57 kg N ha-1 each for 

a total of 228 kg N ha-1) 
4 336 kg N ha-1 applied as preplant (56), at planting (50) and as one side-dress application (226) 
5 280 kg N ha-1 applied as preplant (56), at planting (50), and four scheduled fertigation events (43 kg N ha-1 each for 

a total of 172 kg N ha-1) 
6 Traditional irrigation method based on historical ET data 
7 Sensor-based irrigation strategy based on soil water tension (kPa) thresholds 
8 280 kg N ha-1 applied as preplant (57), at planting (34), one common side-dress application (56) and five scheduled 

fertigation events (27 kg N ha-1 each for a total of 133 kg N ha-1) 
9 336 kg N ha-1 applied as preplant (57), at planting (34) and as one side-dress application (226) 
10 315 kg N ha-1 applied as preplant (57), at planting (34), one common side-dress (56) and five customized fertigation 

events (34 kg N ha-1 each for a total of 170 kg N ha-1) 
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(ii) 336 kg N ha-1 applied as preplant (56), at planting (50), and four scheduled fertigation events 

(57 kg N ha-1 each for a total of 228 kg N ha-1), and (iii) 280 kg N ha-1 applied as preplant (56), at 

planting (50), and four scheduled fertigation events (43 kg N ha-1 each for a total of 172 kg N ha-

1). In 2019 the second fertigation treatment was replaced by scheduling side-dress N applications 

according to the STICS model predictions and resulted in 315 kg N ha-1 applied as preplant (57), 

at planting (34), one common side-dress (56) and five customized fertigation events (34 kg N ha-1 

each for a total of 170 kg N ha-1). The traditional fertilization method in 2019 was slightly different 

from 2018. The total of 336 kg N ha-1 was split in pre-planting (57), planting (34), one common 

side-dress application (56) and two side-dress of 95 kg ha-1 each. In Fertigation Schedule treatment 

of 2019, 280 kg N ha-1 were applied as preplant (56), at planting (50), one common side-dress 

application (56) and four scheduled fertigation events (27 kg N ha-1 each for a total of 133 kg N 

ha-1). The treatments and associated N rates are presented in Table 2.1.  

Table 2.2 presents the combination of irrigation and fertilization treatments for 2018 and 2019 and 

the treatment numbers they were assigned during each year. 

 

Data collection and sampling procedures 

Soil water tension  

To monitor soil moisture continuously during the growing season, UGA SSA sensor nodes were 

installed at the center of each of the 27 experimental plots. SWT was recorded hourly at 0.2, 0.4, 

and 0.60 m for the entire growing season. Figure 2.2 is an example of a SWT data from plot 231-

3 (App × App). 
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Soil sampling and analysis 

A manual auger (76 mm or 3 in diameter) was used to collect soil cores from each plot at four 

depths: 0-0.15 m, 0.15-0.30 m, 0.30-0.60 m and 0.60-0.90 m. A first sampling of one core/plot 

was conducted in February, before the growing season began, to determine soil texture, soil 

moisture, and soil nutrient concentrations. Then, one core/plot was collected monthly during the 

growing season from April to July, and a final sampling was carried out in September, after 

harvest. Collected soil samples were used to calculate the soil gravimetric water content (θg) and 

pH, P, K, Mg, Ca, S, B, Zn, Mn, Fe and Cu content, CEC, % base saturation, and organic matter, 

Nitrate-N, Ammonia-N and TKN detection. Volumetric water content was determined by 

weighing soil before and after being dried at 80°C for 72 hours. The remaining variables were 

Figure 2.2 Soil water tension (SWT) readings in kPa for node 19 – Corn App × Fertigation 

model – of 2019 showing the trend of SWT over time at the three depths (0.20 m, 0.41 m and 

0.61 m) of the Watermark® sensors 
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determined by a commercial soil-testing laboratory (Waters Agricultural Laboratories, Camilla, 

Ga).  

Because of budgetary limitations, in 2019, the number of sampling sites was reduced from 27 to 9 

plots (three replications of three treatments), and the samples analyzed only for nitrate and 

ammonium content.  

Biomass sampling and analysis 

Prior to both maize growing seasons, a sample of the rye cover crop was collected from a 0.23 m 

× 0.46 m area and the tissue was analyzed for total Kjeldahl nitrogen (TKN) (Nelson, et al., 1973). 

To evaluate seasonal biomass and N accumulation in the aboveground maize biomass, plants in 

0.91 m (a linear yard) of row were collected at five dates at V5 (vegetative leaf stage 5), V10 

(vegetative leaf stage 10), V15 (vegetative leaf stage 15), R2 (reproductive blister), R4 

(reproductive dough), and R6 (physiological maturity) stages. Plant stalks were cut at the soil 

surface, counted and separated into three components: stems (stalks and leaf sheaths), leaves (leaf 

blades) and ears. The components were oven dried at 80°C for 72 hours and the dry weight was 

collected. The samples were analyzed for TKN (%) by the Waters Agricultural Laboratories 

(Camilla, Georgia). In 2019, leaf area (cm2) was also measured using a Leaf Area Meter (LI-COR 

3100) and used to derive the leaf area index. 

Statistical methods 

The effects of irrigation and fertilization, and the interaction term irrigation × fertilization on yield, 

NUE and WUE were evaluated using a two-ways analysis of variance (ANOVA). A further 

ANOVA was performed including the layer effect on N content in the soil. When the ANOVA 

resulted in a significant test, further statistical evaluation was conducted using the Tukey-Kramer 
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HSD test. The relationships between continuous variables and categorical factors were examined 

using the Oneway platform and additional analysis of means comparison were performed using 

the Tukey-Kramer HSD test. The statistical analyses were conducted using JMP 14 (SAS Institute, 

Cary, NC). 

 

Partial nutrient balance  

To make an overall estimation of the impact of fertilizations on soil fertility, a partial nutrient 

balance (PNB) was calculated using equation 2.1. PNB is the simplest form of nutrient recovery 

efficiency and indicates the amount of nutrient take up in relation to the amount applied (Fixen, et 

al., 2015).  

A PNB value close to 1 roughly indicates that plant uptake is approximately the same as fertilizer 

applied and that soil fertility is maintained at a steady state. A PNB well below 1 indicates 

excessive fertilization and avoidable losses. In contrast, PNB above 1 indicates that more N is 

taken up by the crop than applied. 

𝑃𝑁𝐵 =
𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑁 𝑟𝑎𝑡𝑒
       [2.1] 

 

Model Parameterization 

As described in the Introduction, the STICS model (version 9.1; 2019) was selected to perform the 

mathematical simulation of soil N during the maize growing season. The ultimate goal of the 

mathematical simulation was to use STICS to schedule fertigation applications as a function of 

soil N concentrations. To match the experimental data, ammonium and nitrate contents in the soil 

(kg ha-1) were selected as the model’s daily outputs. To estimate these parameters the model 

required the parameterization of six groups of variables: (i) general parameters, (ii) plant 
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parameters, (iii) initial conditions, (iv) soil parameters, (v) crop management information and (vi) 

weather data.  

General parameters 

The water stress option was deactivated because it was assumed that all the irrigation strategies 

maintained soil moisture at optimal levels during the growing season. Soil tillage and compaction 

effects were set to 0 to simulate conservation tillage as it is not included as an option in the model. 

All the other general parameters remained unchanged as default options. 

Plant parameters 

In STICS, crop parameters are divided into a set of common parameters and a set of cultivar-

specific parameters (Figure 2.3). Crop development is a function of growing degree days (GDDs), 

calculated using equation 2.2, where Tmax and Tmin are the respectively maximum and minimum 

daily temperature, and Tbase the minimum temperature for phasic development, set for maize at 

10°C. Any temperature below Tbase have no influence on development. 

𝐺𝐷𝐷 =
(𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛)

2
− 𝑇𝑏𝑎𝑠𝑒 [2.2] 

The development was set to be driven by the temperature within the canopy derived from an energy 

balance with a daily time step. This method relies on the calculations of the sum of evaporative 

fluxes and net radiation. The latter is calculated using an albedo value of 0.25 typical of loamy 

sand soil and long wave radiation calculated using the Brutsaert formula (Brutsaert, 1982). The 

LAI option was chosen for driving leaf dynamics. The radiation interception of the canopy is 

calculated through a Beer’s law optical analogy whose extinction coefficient is set to 0.7 
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(Beaudoin, et al., 2009). This option was selected for its simplicity compared to the radiation 

transfer method that requires the input of several critical parameters.  

Root growth is simulated using the standard profile approach to get the profile of effective 

absorption and is assumed to take place up to a depth of 0.9 m and to stop at the end of the leaf 

growth stage.  

Figure 2.3 Screenshot of plant parameterization of the STICS model. Each folder contains a 

set of default parameters that can be edited by the user 
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Water uptake is simulated using the crop coefficient approach that is set as a maximum value of 

1.20 according to FAO (Allen R.G., 1998). Default values were used for all the other water uptake 

parameters. 

The critical N concentration curve parameters in STICS are defined as common parameters and 

they are not specific to cultivars. The calculation of parameters influencing the critical N 

concentration curve were optimized for the simulation to match values of N in the aboveground 

plant biomass.  

In the crop module of STICS, a new maize variety was created and called P1870 because of the 

relatively large differences in yield between French cultivars included in the model and the cultivar 

used in the study. Crop development as a function of growing degree days was determined using 

the phenological stages prediction incorporated in the SmartIrrigation Corn App.  

Soil 

STICS considers the soil as a succession of horizontal layers, each one characterized by its 

moisture and N content at the start of the simulation, and its field capacity (Janssen, et al.), bulk 

density, infiltrability and moisture content at permanent wilting point (PWP). The profile was 

divided into three layers of 1-0.30 m, 0.31-0.60 m and 0.61-0.90 m, respectively. The soil texture 

at the field site was mainly loamy sand in the top layer and sandy loam or sandy clay loam below. 

A constant bulk density value of 1.6 g cm-3 (Henry F. Perkins, 1986) was used. Values of 

gravimetric water content at FC and PWP are estimated using the Van Genuchten model (Liang, 

et al., 2016). Gravimetric water content at FC was set between 14 and 23 % and at PWP between 

4 and 8 %.  
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Default infiltration values suggested in the STICS manual were 45 mm d-1 in topsoil with coarse 

texture and 24 mm d-1 in subsoil of the same textural class (Beaudoin, et al., 2009). The 

macroporosity, capillary rise, nitrification and denitrification functions were activated.   

Weather station and climate file 

Input weather data files, including maximum and minimum temperature (°C), global radiation (MJ 

m-2), precipitation (mm) and wind speed (m s-1), were created using data from the local Georgia

Weather Network weather station. The weather station is located at SIRP and is called “Camilla”. 

The data files were then created and characterized in STICS as located at 31.2° N latitude and 

collecting data at a height of 2.5 m.  

Potential evapotranspiration (PET) was calculated with the Priestley-Taylor method (Priestley, et 

al., 1972) because it is the least demanding method that doesn’t require vapor pressure, value that 

the weather station do not provide on a daily basis. This function relies on a site-dependent 

coefficient that for many soil surface conditions is 1.26 and shows to give far better results in 

humid environments that in arid ones (Beaudoin, et al., 2009), which is the case of the humid 

subtropical climate of the experimental area. Inorganic N concentration in the rain was considered 

negligible according to the data of the National Atmospheric Deposition Program (NADP) from a 

site located in the Tift County, about 78 km from the experimental site.  

Crop management and simulation initialization 

Rye biomass remaining in the field before sowing was set to remain on the soil surface and 

quantified through rye tissue analysis as 0.5 t ha-1 with an 88 % of water on the fresh weight, 44 

http://georgiaweather.net/
http://georgiaweather.net/
http://georgiaweather.net/
http://georgiaweather.net/
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% of carbon on the dry matter and a C:N ratio of 27:5. STICS does not include a strip tillage 

practice option so tillage was parameterized as no tillage. 

Seeding is defined by the date, sowing depth set at 50 mm, seeding density corresponding to about 

8 plants per m2 (≈ 80300 seeds ha-1) and the variety sown (P1870). Irrigation efficiency is set to 

85 % taking place above the canopy and all the irrigation events were recorded as Julian Day of 

Figure 2.4 Screenshot of the STICS model showing the parameterization / input of crop 

management information. Each folder contains a set of default parameters that can be edited by 

the user 
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application and amount in mm. STICS allows the simulation of just one type of fertilizer during 

the growing season. Urea ammonium nitrate (UAN) solution was selected as the source of N 

applied at the soil surface. Fertilization events were characterized by the date of application 

expressed in Julian Day of the year and the amount of N applied in kg ha-1 (Figure 2.4). 

Simulations were performed from the date of first soil sampling to harvest (Figure 2.5). 

Initialization values of soil water content and nitrate and ammonium content were derived from 

the first soil samples.  

Model calibration and validation 

Successful simulation of soil N content relies on successful simulation of soil water content. This 

is because, especially in coarse soils, the major losses of N from the root zone occurs by leaching 

of nitrate with water through the soil profile. For this reason, the model was calibrated for soil 

water content first. The model was calibrated for soil N and aboveground biomass in subsequent 

stages. STICS simulates volumetric soil water content (SWC) in terms of mm3 mm-3 of three 

Figure 2.5 Screenshot of STICS running function, where USM is unit of simulation 
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selected layers of 0-0.30 m, 0.31-0.60 m and 0.61-0.90 m. The water balance used by STICS to 

calculate the water status of the soil and the plant is based on estimating the water requirements of 

the soil/leaf system on the one hand and on the water supply to the soil/root system on the other 

(Brisson, et al., 2003). The observed values of SWT (kPa) obtained from the UGA SSA system 

were used to calibrate the SWC simulation. SWT data were converted into SWC through the water 

retention curves. These curves are difficult and time consuming to create, so the Retention Curve 

(RETC) computer program (RETC, 2009) was used to perform a neural network prediction of the 

Van Genuchten model’s parameters given texture and bulk density. The values obtained were in 

accordance with the values obtained by Liang et al. (2015) for the same type of soil (Liang, et al., 

2016). The three Watermarks® sensors reading the SWT were located at 0.20 m, 0.40 m and 0.60 

m depth, so in order to compare the recoded values with the model’s output of SWC at 30 cm and 

60 cm the two deeper values were combined into a weighted average. A weighted average rather 

than a simple average was used because we assumed that more soil water extraction took place in 

the shallower portions of the soil profile. To the sensor at 0.20 m was assigned a weighting factor 

of 0.7 while the sensor at 0.40 m was assigned a weighting factor of 0.3. After the SWC calibration 

was completed, the observed values of NO3
- and NH4

+ in the soil and in the aboveground biomass 

(kg ha-1) were used to calibrate the soil and plant N content. Data from treatments 1 and 5 of 2018 

(Table 2.2) were used for model calibration. Treatment five received the higher amount of 

irrigation water (checkbook method) and N (traditional method). Treatment one received a smaller 

input of irrigation water (app method) and the same amount of N as treatment one except that the 

side-dress N was applied in four events using fertigation. 

The calibration was conducted using the optimization algorithm included in the STICS software. 

This option gives the possibility to optimize most of the model parameters according to the 
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observed data. This is a minimization procedure based on the simplex method using the least 

square criterion. The optimization stops when the spread between the criterion of each iteration 

has reached a minimum of 10-4 or after 1000 iterations (Brisson, et al., 2003).  

A first step to conduct parameter optimization is to choose which parameters to optimize. These 

should be the parameters that most influence the accuracy of the output. The optimization process 

00relied on the STICS manual and the work of Ruget et al. (2002) who run an intramodule analysis 

to assess the level of significance of parameters of each module (Beaudoin, et al., 2009) (Ruget, et 

al., 2002). 

The most influential parameters for simulating maize development are the GDD of the filling stage, 

and the sowing depth. For simulation of LAI development, the most influential parameters are 

plant density and the duration of the stage between emergence and maximum acceleration of leaf 

growth.  

For root growth, the most influential parameters are the depth at which root density is half the 

density at the surface (cm), that is strictly correlated to water uptake, and the growth rate in the 

soil profile (cm degree day-1). In the soil module, there are several influential parameters that are 

related to water and N balance.  They are field capacity of the layer (% of dry soil), bulk density 

of the layer (g cm-3), soil organic N content of the upper layer (%), depth at which the maximum 

evaporation ends (mm) and infiltration capacity of the soil (mm d-1). In addition to these, the 

maximum crop coefficient is another important parameter affecting water balance. The thickness 

of the active layer for mineralization (cm) and the maximal nitrate uptake rate by the low affinity 

uptake system of roots (μmole cm-1 h-1) are additional important parameters for the N balance. The 

yield module is mainly influenced by the rate of increase of the carbon harvest index (g grain (g 

plant)-1 day-1) and the duration of grain filling.  
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After calibration, the model was validated in two steps: (i) using the 2018 data from the remaining 

seven treatments and (ii) in real-time between planting and harvest in 2019. 

 

Fertigation scheduling from model prediction 

In 2019, for treatments 3, 4 and 7 (Table 2.2), side-dress N was scheduled based on soil N 

predictions by STICS. A minimum rate of 280 kg N ha-1 was set as the fertilization baseline. About 

half of this amount (131 kg N ha-1) was applied as pre-plant, at planting, and one liquid side-dress 

application. The remaining was applied via fertigation when a decrease in soil N was predicted by 

the model. The amount applied at each fertigation event was held constant at 34 kg N ha-1. The 

entire soil profile (0-0.9 m) was considered when monitoring soil N. No distinction was made for 

the early stages because the initial N content of the third layer (0.60-0.90 m) was low, and because 

roots were assumed to reach the third layer around V8, stage of starting of the fast vegetative 

growth (Archontoulis S., 2017). In total, fertilizer was applied with five fertigation events for a 

total of 315 kg N ha-1. The fourth and fifth events occurred at 70 and 78 DAP (after tasseling) 

which is later than originally planned but it was driven by the model predicting very low soil N at 

that time. 

 

Model evaluation 

The simulations were compared with measured values. Evaluation was performed using the 

hydroGOF package in the R environment. The indices used to assess the performance of the model 

are the mean absolute error (MAE) (Eq. 2.3), the normalized root mean squared error (NRMSE) 

normalized to the range of observed data (Eq. 2.4), the coefficient of determination (R2) (Eq. 2.5), 

and the index of agreement (d) (Eq. 2.6):  
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𝑁
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𝑖=1

) [2.6] 

Where N is the total number of data, Mi and Pi are the measured and predicted values, respectively, 

Mave and Pave are the average of the measured and predicted values, respectively. MAE and 

NMSE ranges from 0 to +∞, where 0 is a perfect fit. R2 and d ranges from 0 to 1, where 1 indicates 

a perfect fit. MAE measures the average difference between prediction and observations in 

absolute value, and all individual differences have equal weight. RMSE, and consequently 

NRMSE, gives a relatively high weight to large errors. MAE and NRMSE quantify the departure 

of the model outputs from the measurements adding up the errors. R2 and d instead, focus on the 

correlation between model predictions and measurements, in other word they compare the trends. 

The index d was developed by Willmott (1981) and is sensitive to extreme values due to the 

squared differences but more consistent than R2 (Willmott, 1981). Legates D.R. (1999) stated that 

d represented a remarkable improvement in respect to the coefficient of determination. 

Additional assessment of the model performances was conducted using the lack of fit method 

developed by Whitmore (1991). The variance ratio (F) is calculated as shown in equation 2.7 where 

N in the number of points at which there are observations, n is the number of replicates at each 

point, Oij is the observed value at point j, replication i, Oj is the average observation at point j, Sj 

is the simulated value at point j and df are the degrees of freedom. SSE is the sum of squares due 

to pure error. 
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To interpret the calculated F, it is necessary to have the F-table for the desired level of significance. 

The significance (α) level used was 0.05. If F < Fα the lack of fit error is small and the simulation 

is accurate; if F > Fα, and the lack of fit is significantly greater than error, the model could almost 

certainly be improved (Yang, et al., 1999). This method is particularly valuable in respect to the 

abovementioned indices because it takes into consideration the natural variability of the observed 

data. Data were evaluated per variable within treatments. 

𝐹 =  

 ∑ 𝑛𝑗(𝑂𝑗−𝑆𝑗)𝑁
𝐽=1  2

𝑑𝑓

∑ ∑ 𝑛𝑗(𝑂𝑗−𝑆𝑗)
2𝑛𝑗

𝐼=1
𝑁
𝐽=1 

𝑑𝑓

[2.7] 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Experimental results 

Weather data and water use 

Crop development is a function of accumulated growing degree days (GDDs) which are calculated 

using eq 2.1. Accumulated GDDs and rainfall amounts for the 2018 and 2019 growing seasons, 

Figure 3.1 (a) Accumulated growing degree days (GDDs) (°C) and (b) cumulative precipitation 

(mm) for the 2018 and 2019 maize growing season expressed in days after planting (DAP)

(a) 

(b)
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from planting to maturity, are shown in Figure 3.1. Maturity was set to 1800 °C GDDs. 

Temperatures were generally higher in 2019, which resulted in maturing occuring10 days earlier 

than 2018. The lower temperatures of 2018 may be a function of the higher precipitation rate that 

is associated with less solar radiation entering the atmosphere. During 2018 total rainfall from 

planting to maturity was 750 mm, while in 2019 it was 434 mm. Although the 2018 precipitation 

was over half on the annual average rainfall of 1300 mm, maize requires approximately 960 mm 

of water from planting to maturity (Noland, 2018). For this reason and because precipitation was 

not evenly distributed during the growing season, regular irrigation applications were needed. 

(a) (b

) 

Figure 3.2 Cumulative amount of water applied per irrigation treatment (mm) of maize 

compared to cumulative rainfall in (a) 2018 and (b) 2019. App is the SmartIrrigation Corn App, 

Checkbook is the traditional irrigation method based on historical ET data, UGA SSA is a 

sensor-based irrigation strategy. 
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Figure 3.2 shows the water uses by the three different irrigation treatment during 2018 and 2019. 

The Checkbook irrigation scheduling tool was considered the traditional / standard treatment in 

this experiment. Irrigation water savings were calculated using the irrigation water used by the 

Checkbook method as the baseline. The Checkbook method required 325 mm of irrigation in 2018 

and 477 mm in 2019. In 2018, scheduling with the SmartIrrigation Corn App (hereafter referred 

to as the App) required 140 mm of irrigation and resulted in 57 % less water used compared to the 

Checkbook method. Scheduling with the UGA SSA wireless sensor system required 135 mm of 

irrigation and resulted in 59 % less water used. In 2019, scheduling with the App required 282 mm 

and resulted in 40 % less water than the Checkbook strategy. Scheduling with the UGA SSA 

required 257 mm and resulted in 53 % less water. 

Biomass 

A two-way ANOVA was used to evaluate the effect of irrigation and fertilization treatments on 

aboveground biomass and N content in the plant during the 2018 growing season. The analyses 

showed no significant effects of irrigation and fertilization on all the dates of sampling except for 

the 13 June 2018 that had a p-value of 0.03 for biomass and 0.053 for N in the plant due to the 

irrigation treatment. Tables 3.1 and 3.2 show mean values of biomass and N in the plant and their 

significance. 

Partial nutrient balance 

Despite the lack of significance of the treatments on N uptake, PNB values close to 1 (Eq. 2.1) 

show that the amount of N taken up by the crop is generally close to the amount applied. This 

index roughly indicates that the soil fertility will be sustained at a steady state (Fixen, et al., 2015). 
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However, this calculation doesn’t take into consideration the amount of N that will return to the 

Table 3.1 Results of ANOVA of the effects of irrigation and fertilization treatments on the average 

aboveground biomass accumulation in kg ha-1 among the growing seasons in 2018 and 2019. Different 

letters indicate statistical differences between the values of the same date 

   Biomass (kg ha-1) 

Year Treatment 27-Apr 31-May 13-Jun 26-Jul 16-Aug 

2018 

Irrigation 

Checkbook1 258 a 6268 a 9498 a 22704 a 24021 a 

UGA SSA2 260 a 6496 a 7957 b 21573 a 22007 a 

App3 235 a 6376 a 9306 ab 23787 a 24291 a  

Fertilization 

Traditional4  242 a 6426 a 9377 a 23395 a 25435 a 

F.5 High6 241 a 6490 a 9120 a 21866 a 22388 a 

F. Low7 269 a 6224 a 8264 a 22803 a 22495 a 
        

   29-Apr 29-May 14-Jun 31-Jul 14-Aug 

2019 

Irrigation 

Checkbook 632 a 22678 a 35178 a 34361 a 29188 a 

UGA SSA 556 a 18885 a 30491 b 35700 a 29474 a 

App 539 a 22539 a 30615 b 28899 a 29932 a 

Fertilization 

Traditional8  632 a 22678 a 35178 a 34361 a 29188 a 

F. Scheduled9 556 a 18885 a 30491 b 35700 a 29474 a 

F. Model10 539 a 22539 a 30615 b 28899 a 29932 a 
1 Traditional irrigation method based on historical ET data  
2 Sensor-based irrigation strategy based on soil water tension (kPa) thresholds 
3 SmartIrrigation Corn App estimates daily plant available soil water deficit and recommends irrigation 

accordingly 
4 336 kg N ha-1 applied as preplant (56), planting (50) and one side-dress application (226) 
5 F is the abbreviation for fertigation or the application of fertilizer through the irrigation system 
6 336 kg N ha-1 applied as preplant (56), planting (50), and four scheduled fertigation events (57 kg N ha-1 each) 
7 280 kg N ha-1 applied as preplant (56), planting (50), and four scheduled fertigation events (43 kg N ha-1 each) 
8 336 kg N ha-1 applied as preplant (57), planting (34) and as one common side-dress application (56) and two 

customized side-applications (95) 
9 280 kg N ha-1 applied as preplant (57), planting (34), one common side-dress application (56) and five scheduled 

fertigation events (27 kg N ha-1 each) 
10 315 kg N ha-1 applied as preplant (57), planting (34), one common side-dress (56) and five customized 

fertigation events (34 kg N ha-1 each) 
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soil with stovers, nor N from mineralization of the soil organic matter or N inputs from rain and 

irrigation water. Although mineralization of soil N was not measured, studies indicate that even in 

Table 3.2 Results of ANOVA of the effects of irrigation and fertilization treatments on the average N 

content of the aboveground biomass in kg ha-1 among the growing seasons in 2018 and 2019. Different 

letters indicate statistical differences between the values of the same date 

   N in plant (kg ha-1) 

Year Treatment 27-Apr 31-May 14-Jun 26-Jul 16-Aug 

2018 

Irrigation 

Checkbook1 9 a 134 a 201 a 279 a 310 a 

UGA SSA2 9 a 128 a 155 b 273 a 284 a 

App3 8 a 137 a 190 ab 312 a 323 a 

Fertilization 

Traditional4  9 a 140 a 185 a 292 a 336 a 

F.5 high6 8 a 132 a 192 a 286 a 291 a 

F. lower7 9 a 127 a 169 a 285 a 290 a 
        

   29-Apr 29-May 26-Jun 31-Jul 14-Aug 

2019 

Irrigation 

Checkbook 29 a 419 a 539 a 388 a 349 a 

UGA SSA 26 a 453 a 484 a 413 a 324 a 

App 25 a 355 a 504 a 337 a 392 a 

Fertilization 

Traditional8  29 a 419 a 539 a 388 a 349 a 

F. Scheduled9 26 a 453 a 484 a 413 a 324 a 

F. Model10 25 a 355 a 504 a 337 a 392 a 
1 Traditional irrigation method based on historical ET data  
2 Sensor-based irrigation strategy based on soil water tension (kPa) thresholds 
3 SmartIrrigation Corn App estimates daily plant available soil water deficit and recommends irrigation 

accordingly 
4 336 kg N ha-1 applied as preplant (56), planting (50) and one side-dress application (226) 
5 F is the abbreviation for fertigation or the application of fertilizer through the irrigation system 
6 336 kg N ha-1 applied as preplant (56), planting (50), and four scheduled fertigation events (57 kg N ha-1 each) 
7 280 kg N ha-1 applied as preplant (56), planting (50), and four scheduled fertigation events (43 kg N ha-1 each) 
8 336 kg N ha-1 applied as preplant (57), planting (34) and as one common side-dress application (56) and two 

customized side-applications (95) 
9 280 kg N ha-1 applied as preplant (57), planting (34), one common side-dress application (56) and five scheduled 

fertigation events (27 kg N ha-1 each) 
10 315 kg N ha-1 applied as preplant (57), planting (34), one common side-dress (56) and five customized 

fertigation events (34 kg N ha-1 each) 

 

 

 



62 

similar soils, mineralization rates can be as high as 75 kg ha-1 yr-1 (Egelkraut, et al., 2003). PNB 

results are shown in Table 3.3. 

Yield 

Figure 3.3 shows maize yield (t ha-1) results for each of the nine treatments during 2018 and 2019. 

A two-way ANOVA was conducted to compare the effects of irrigation, fertilization treatments 

and their interaction on yield in each year. There was not a significant effect of irrigation and 

fertilization treatments on yield at the p < 0.05 level. Yield was consistent throughout the 

Table 3.3 PNB of all the treatments of 2018 and treatments 3, 6 and 9 of 2019 

Fertilization treatment N rate applied N plant PNB 

2018 

Traditional1 

336 331 1.01 

336 376 0.89 

336 299 1.13 

F.2 high3

336 298 1.13 

336 285 1.18 

336 290 1.16 

F. lower4

280 336 0.83 

280 268 1.04 

280 263 1.07 

2019 

Traditional5 337 349 0.97 

F. Scheduled6 280 349 0.80 

F. Model7 315 389 0.81 
1 336 kg N ha-1 applied as preplant (56), planting (50) and one side-dress application (226) 
2 F is the abbreviation for fertigation or the application of fertilizer through the irrigation system 
3 336 kg N ha-1 applied as preplant (56), planting (50), and four scheduled fertigation events (57 kg N ha-1 each) 
4 280 kg N ha-1 applied as preplant (56), planting (50), and four scheduled fertigation events (43 kg N ha-1 each) 
5 336 kg N ha-1 applied as preplant (57), planting (34) and as one common side-dress application (56) and two 

customized side-applications (95) 
6 280 kg N ha-1 applied as preplant (57), planting (34), one common side-dress application (56) and five scheduled 

fertigation events (27 kg N ha-1 each) 
7 315 kg N ha-1 applied as preplant (57), planting (34), one common side-dress (56) and five customized fertigation 

events (34 kg N ha-1 each) 
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treatments and the year of production with an overall average of 15.4 and 16 tons of grain per 

hectare in 2018 and 2019, respectively. The lack of significant differences between irrigation 

Figure 3.3 Average yield (t ha-1) for each irrigation and fertilization treatment in 2018 and 

2019. Two-way ANOVA run separately for 2018 and 2019 showed no differences in treatments 

effect. App is the SmartIrrigation Corn App, Checkbook is the traditional irrigation method 

based on historical ET data, UGA SSA is a sensor-based irrigation strategy. F is the abbreviation 

for fertigation, or the application of fertilizer through the irrigation system. F. high treatment 

applied 336 kg N ha-1 splitting the side-dress among four events; F. lower used the same 

fertilization strategy with a lower total rate (280 kg ha-1); Traditional applied 336 kg N ha-1 

recurring to only one side-dress application. F. Model is the strategy of application of side-dress 

according to the STICS model where the total rate was 315 kg N ha-1; F. Scheduled was 280 kg 

N ha-1. 
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treatments is in accordance with Orfanou (2019), that in the same geographic area of the Coastal 

Plain tested the Checkbook irrigation method and the sensor-based UGA SSA reporting no 

significant effect of amount of applied irrigation on final maize yield (Orfanou A., 2019). The 

absence of impact of the fertilization strategies on yield is an unexpected result, especially in the 

highly rainy season of 2018.  

According to Bundy (2006), side-dress N applications were likely to produce benefits in yield by 

avoiding N loss compared to preplant-applied N in conditions where the risk of leaching is high, 

such as in coarse-textured sandy soils (Bundy, 2006). The disagreement could be explained by the 

fact that the traditional strategy tested was not just a preplant-application. The total N rate was 

divided between pre-planting, planting and one side-dress at 40 DAP, while the split fertigation 

strategies had the side-dress amount divided into four events later in the season. It is also possible 

that yield differences were not observed because even the lowest N treatment (280 kg N ha-1) 

provided more than enough N for the growing conditions at this site. It is also likely that additional 

N was made available via the mineralization of organic matter that was available in the soil profile. 

NUE and WUE 

Uniformity of yield among treatments beside the differences in rates of water and N applied 

suggests a difference in efficiency of the treatments. Two-way ANOVA was used to investigate 

the effects of irrigation and fertilization factors on NUE and WUE in 2018 and 2019. NUE showed 

a significant effect of factors at p < 0.05 level. In 2018 the p-value was 0.0018 and the significance 

was very close to 0.05 in 2019 (p-value = 0.0752). Further statistical evaluation using the Tukey 

HSD test indicated the fertilization method to be the source of significance. In 2018 the mean score 
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for the lower fertigation method (M = 57.3, SD = 1.3) was significantly different than the 

traditional and high fertigation conditions (M = 47.4 and 46.4, SD = 1.3). Also, in 2019 the 

fertigation scheduled method which was the same as the lower fertigation treatment of 2018, (M 

= 54.6, SD = 1.4) was significantly different from the traditional fertilization method (M = 47.5, 

SD = 1.4). However, the fertigation model treatment (M = 51.1, SD = 1.4) did not significantly 

Figure 3.4 Results of the Tukey HSD test to compare means of NUE (kg grain (kg N)-1) for 

different fertilization treatments in 2018 and 2019. Fertigation is the application of fertilizer 

through the irrigation system. Traditional applied 336 kg N ha-1 recurring to preplant, planting, 

and one side-dress application; Fertigation lower used a rate of 280 kg N ha-1 by splitting the 

side-dress application among four events; Fertigation high applied 336 kg N ha-1 using the same 

strategy of fertigation lower. For 2019, Fertigation Scheduled had a rate of 280 kg N ha-1 applied 

at pre-planting, planting, one side-dress common between treatments and five other side-dress; 

Fertigation Model is the strategy of application of side-dress according to the STICS model 

where the total rate was 315 kg N ha-1. 
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differ from the other two fertilization treatments tested in 2019. Figure 3.4 shows the results of the 

Tukey HSD test by analyzing each year separately. Bars with different letters within the same year 

are significantly different.  A significant effect of the factors was seen also on WUE with p-values 

< 0.0001 in both years due to the effect of the irrigation factor. Further statistical evaluation using 

the Tukey HSD test indicated that the mean score of 1099.6 and 1178.5 kg grain ha-1 mm-1 of 

irrigation water of the App and UGA SSA methods were significantly different than the traditional 

Checkbook of 493.7 kg grain ha-1 mm-1. This gap occurs because App and Sensors are responding 

to actual environmental conditions by getting daily updates during the season, while the 

Checkbook method schedules according to historical average water demand that do not account 

for changes in ET rates. For the same reason, the difference is made bigger in years with abundant 

rain.  

The 2019 growing season was drier and required higher irrigation water application (257 to 477 

mm). Although WUE was lower compared to 2018 (more irrigation water was needed to grow the 

crop), significantly lower WUE was recorded for the Checkbook method for which the mean was 

33.9 kg grain ha-1 mm-1. In 2019 there was also a significant difference between the WUE of the 

App (61.3 kg grain ha-1 mm-1) and the UGA SSA (69.8 kg grain ha-1 mm-1) scheduling methods 

(Figure 3.5). This is likely explained because during 2019 temperatures were unusually high and 

relative humidity unusually low for extended periods during the growing season. This resulted in 

higher than normal reference (Penman-Monteith) ET rates which directly affected daily crop water 

use calculations (ETc) in the App.  We hypothesize that estimated ETc rates were greater than 

actual ETc rates and this resulted in the App overestimating the need for irrigation.  
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Soil 

A three-way ANOVA was conducted to evaluate the effect of treatments and soil layers on the soil 

N content. The analysis was conducted by soil layer 1 (0-0.30 m), layer 2 (0.31-0.60 m) and layer 

3 (0.61-0.90 m) for the each of soil sampling dates of the season. The shallowest layer that consists 

mostly of topsoil (layer 1) consistently had higher N content than the subsoil layers (layer 2 and 

layer 3) throughout the growing season. Irrigation and fertilization treatments did not appear to 

have an effect on soil N, so only the effect of depth was further investigated and is reported in 

Table 3.4.  As described earlier, in 2019 soil samples were collected in only nine of the 27 plots 

and this more limited number of samples did not support the use of ANOVA analyses. Based on 

the 2018 results, we hypothesized that depth was the only factor having effect on soil N content 

and the Tukey HSD test was used to compare the means of each layer. Results of the 2019 analyses 

are reported in Table 3.1 and are similar to results from 2018 with one exception. The data from 

the 31 July 2019 sampling showed no significant difference between layers.  

Table 3.4 Average mineral N (NO3
- and NH4

+) in the soil profile among three depths (0-0.3 m, 0.31-

0.6 m and 0.61-0.9 m) in the five sampling dates among the growing seasons. Different letters 

indicate statistical differences between the values of the same date 

N in the soil (kg/ha) 

Year Soil depth 11-Apr 25-May 27-Jun 25-Jul 10-Sep

2018 

0-0.30 cm 56 a 32 a 33 a 22 a 5 a 

0.31-0.60 cm 25 b 11 b 18 ab 9 b 4 a 

0.61-0.90 cm 28 b 15 b 27 b 14 b 4 a 

29-Apr 29-May 26-Jun 31-Jul 14-Aug

2019 

0-0.30 cm 106 a 57 a 61 a 19 a 32 a 

0.31-0.60 cm 11 b 12 b 55 ab 19 a 29 a 

0.61-0.90 cm 10 b 6 b 26 b 18 a 20 a 
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Model results 

The primary goal of this work was to evaluate the STICS model’s suitability to predict soil N 

content available for maize uptake under southeastern growing conditions. Differentiating between 

the vegetative and reproductive stages of maize development is important in understanding soil N 

uptake by the plant and for interpreting the results of model simulations as most soil N uptake 

takes place during the vegetative stage. Consequently, the vegetative stage is the period of greatest 

Table 3.5 Evaluation indices of the simulations of the calibration treatments 1 (Corn App × 

Fertigation High) and 5 (Checkbook × Traditional) from 2018 

SWC1 layer 12 (mm3/mm3) Soil N layer 1 (kg/ha) 

Treatment MAE D NMRSE R2 MAE d NMRSE R2 

1 0.04 0.62 28.10 0.28 21.72 0.65 77.90 0.45 

5 0.04 0.73 23.90 0.38 14.76 0.85 33.50 0.71 

SWC layer 22 (mm3/mm3) Soil N layer 2 (kg/ha) 

Treatment MAE d NMRSE R2 MAE d NMRSE R2 

1 0.05 0.60 35.70 0.32 15.55 0.11 151.10 0.01 

5 0.02 0.64 20.90 0.29 20.86 0.18 151.00 0.00 

Soil N layer 34 (kg/ha) 

Treatment MAE d NMRSE R2 

1 9.36 0.82 28.40 0.58 

5 10.28 0.36 166.60 0.26 

Biomass Dry Weight (kg/ha) N in plant (kg/ha) 

Treatment MAE d NMRSE R2 MAE d NMRSE R2 

1 1693.51 0.98 10.70 0.99 17.44 0.99 7.50 0.99 

5 897.92 1.00 4.30 0.99 24.37 0.97 10.40 0.93 
1 Soil Water Content 
2 Soil depth 0-0.30 m 
3 Soil depth 0.31-0.60 m 
4 Soil depth 0.61-0.90 m 



 

69 
 

interest for this study. Tasseling (flowering) is a key stage because it is the transition between the 

 

 

Table 3.6 Evaluation indices of simulations from 2018 organized by variable 

 SWC1 layer 12 (mm3/mm3)  Soil N layer 1 (kg/ha) 

Treatment MAE d NMRSE R2  MAE d NMRSE R2 

2 0.04 0.66 27.80 0.38  19.47 0.60 60.90 0.33 

3 0.04 0.61 23.30 0.23  21.44 0.70 48.00 0.35 

4 0.05 0.55 38.20 0.27  21.44 0.70 48.00 0.35 

6 0.06 0.65 27.20 0.48  14.85 0.84 35.50 0.68 

7 0.05 0.63 24.50 0.33  24.45 0.55 69.90 0.08 

8 0.05 0.65 38.30 0.47  14.71 0.83 38.70 0.72 

9 0.05 0.66 29.60 0.38  18.89 0.80 51.10 0.74 
          

 SWC layer 23 (mm3/mm3)  Soil N layer 2 (kg/ha) 

Treatment MAE d NMRSE R2  MAE d NMRSE R2 

2 0.04 0.56 47.30 0.26  21.16 0.21 106.20 0.03 

3 0.03 0.66 28.90 0.27  17.29 0.15 108.10 0.03 

4 0.04 0.41 74.50 0.22  17.54 0.06 182.30 0.02 

6 0.05 0.34 79.10 0.15  17.58 0.08 143.10 0.09 

7 0.04 0.61 29.60 0.23  20.13 0.13 126.60 0.02 

8 0.06 0.47 56.00 0.32  16.33 0.45 144.30 0.41 

9 0.05 0.50 44.00 0.15  25.80 0.38 67.20 0.00 
          

      Soil N layer 34 (kg/ha) 

Treatment           MAE d NMRSE R2 

2      14.66 0.65 37.90 0.19 

3      15.63 0.39 57.90 0.02 

4      15.84 0.10 79.60 0.08 

6      8.53 0.48 85.40 0.11 

7      12.15 0.61 53.10 0.13 

8      11.74 0.56 75.80 0.25 

9      18.29 0.18 70.50 0.21 
          

 Biomass Dry Weight (kg/ha)  N in plant (kg/ha) 

Treatment MAE d NMRSE R2  MAE d NMRSE R2 

2 1292.83 0.99 7.10 0.98  15.29 0.99 7.60 0.97 

3 965.31 1.00 4.40 0.99  26.72 0.98 10.60 0.96 

4 1617.12 0.99 9.40 0.99  22.65 0.98 10.20 0.98 

6 1223.53 0.99 7.70 0.98  9.96 1.00 4.50 0.99 

7 2632.46 0.97 14.80 0.98  35.06 0.96 15.50 0.94 

8 2184.28 0.98 11.50 1.00  25.16 0.98 10.30 0.99 

9 1877.12 0.98 11.30 0.97  28.63 0.97 13.50 0.94 
1 Soil Water Content 
2 Soil depth 0-0.30 m 
3 Soil depth 0.31-0.60 m 
4 Soil depth 0.61-0.90 m 
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vegetative and reproductive stages of maize development. The vegetative stage corresponds to 

approximately the first 60 days after planting (DAP). In this study, tasseling began at about 65 

DAP in 2018 and 60 DAP in 2019.  

Table 3.7 Evaluation indices of simulations from 2019 organized by variable 

SWC1 layer 12 (mm3/mm3) Soil N layer 1 (kg/ha) 

Treatment MAE d NMRSE R2 Treatment MAE d NMRSE R2 

1 0.06 0.50 24.10 0.12 3 19.06 0.90 28.10 0.88 

2 0.04 0.56 19.10 0.13 6 23.80 0.83 36.50 0.68 

3 0.06 0.48 26.90 0.09 9 13.05 0.95 15.00 0.91 

4 0.05 0.57 23.00 0.16 

5 0.04 0.61 20.20 0.16 Soil N layer 2 (kg/ha) 

6 0.04 0.55 23.30 0.09 Treatment MAE d NMRSE R2 

7 0.04 0.65 26.50 0.22 3 18.66 0.10 71.70 0.16 

8 0.04 0.61 19.20 0.20 6 26.51 0.19 63.00 0.23 

9 0.05 0.48 23.50 0.10 9 21.09 0.15 83.00 0.00 

SWC layer 23 (mm3/mm3) Soil N layer 34 (kg/ha) 

Treatment MAE d NMRSE R2 Treatment MAE d NMRSE R2 

1 0.05 0.49 28.60 0.23 3 8.66 0.45 35.70 0.22 

2 0.03 0.55 31.60 0.29 6 11.78 0.41 38.30 0.02 

3 0.03 0.60 24.30 0.26 9 6.85 0.54 50.70 0.02 

4 0.04 0.45 37.60 0.16 

5 0.07 0.43 41.50 0.13 

6 0.02 0.56 21.40 0.28 

7 0.04 0.67 33.00 0.43 

8 0.04 0.52 32.60 0.43 

9 0.03 0.49 20.80 0.12 

Biomass Dry Weight (kg/ha) N in plant (kg/ha) 

Treatment MAE d NMRSE R2 Treatment MAE d NMRSE R2 

3 7280.08 0.80 34.20 0.60 3 125.00 0.72 38.00 0.34 

6 7937.43 0.84 28.10 0.76 6 104.35 0.79 31.10 0.62 

9 8226.03 0.80 32.60 0.62 9 111.59 0.76 31.40 0.49 
1 Soil Water Content
2 Soil depth 0-0.30 m 
3 Soil depth 0.31-0.60 m 
4 Soil depth 0.61-0.90 m 
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Two treatments (Checkbook × Traditional, App × Fertigation high) from 2018 were used for 

calibrating the model. The seven remaining 2018 treatments and all 2019 nine treatments were 

used to validate the model’s performances. Four evaluation indices were used to assess the 

performance of the model. The results of the evaluation indices are reported in Table 3.5 for the 

calibration, in Table 3.6 for the validation of 2018 and in Table 3.7 for the validation of 2019.  As 

described in the previous chapter, MAE and NRMSE quantify the departure of the model outputs 

from the measurements adding up the errors. As a result, predictions that follow the trend with a 

consistent under-prediction or over-prediction do not appear to be useful. In this study, the ability 

of the model to match the observed trends in the data is more important. Because of this d and R2 

were primarily used to assess performance as they measure the correlation between model 

predictions and observations; in other word they compare the trends. Table 3.8 illustrates the 

Table 3.8 Evaluation of model performances according to the observed values using lack of 

fit method organized by variable. F < F0.05 represent a good simulation; F > F0.05 mean that the 

model can be improved 

Variable 
Calibration Validation 2018 Validation 2019 

F F0.05 F F0.05 F F0.05 

Soil N layer 11 5.98 2.35 3.63 1.60 3.65 1.90 

Soil N layer 22 53.57 2.35 11.33 1.60 9.41 1.90 

Soil N layer 33 7.72 2.35 4.03 1.60 2.62 1.90 

Biomass DW4 4.29 2.35 3.36 1.60 42.54 1.72 

N in plant 3.64 2.35 2.42 1.60 52.06 1.72 

Yield DW 3.23 6.94 8.97 2.76 3.78 2.46 

N in grain     5.13 2.46 
1 Soil depth 0-0.30 m 
2 Soil depth 0.31-0.60 m 
3 Soil depth 0.61-0.90 m 
4 Dry weight is abbreviated by DW 
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results of the lack of fit test showing the F calculated and the respective Fα from the F-table. Good 

simulations have F < Fα.  

Soil water content - calibration 

Simulation of soil water content (SWC) is important not only to estimate plant water uptake, but 

also to calculate N mineralization and nitrification that are strongly dependent upon soil moisture. 

For this reason, SWC was the first variable to be calibrated. As mentioned in the previous chapter, 

(a) 

Figure 3.6 Dynamics of measured (dots) and simulated (lines) SWC in successive soil layers 

over time expressed as DAP for calibration treatment 5 (Checkbook × Traditional) (a) and 

treatment 1 (App × Fertigation high) (b) of 2018. The bar graphs show irrigation (red) and 

rainfall (blue) expressed in mm over the same x axes 

(b)
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data from the soil moisture probes were collected up to a depth of 0.60 m. SWC simulations to the 

top two layers of the soil profile from which field observations were available. 

Among the four indices used for the model evaluation, the index of agreement (d) consistently 

resulted in higher values compared to the R2, in agreement with Valbuena, et al. (2019). This index 

ranges from 0 to 1 with results closer to 1 indicating good model performances.  

In the treatments used for calibration, d for SWC of layer 1 is respectively 0.73 in treatment 5 

(Checkbook × Traditional) and 0.62 in treatment 1 (App × Fertigation high), while in layer 2 is 

0.64 and 0.60 (Table 3.5). In treatment 5 and especially in the second soil layer, observed water 

content was mostly higher than the simulated values (Figure 3.6).  

One explanation for this trend is that gravimetric water content at FC of the layer was set to 12 % 

of dry soil and multiplied by bulk density (1.6 g cm-3) to obtain volumetric water content (VWC) 

at FC, which was estimated at 19.2 mm3 mm-3 (Liang, et al., 2016). Simulations do not match the 

higher observed values because FC is set as the upper threshold, with exception of four peaks 

during the season in which the very high rainfall resulted in simulations over FC. However, the 

general trend of the simulation of SWC of both treatments used for the calibration is in agreement 

with the observed values.  

It is important to point out that the observed values of SWC carry some errors. First, the values of 

the second layer result from the weighted average of two sensors located at 0.4 m and 0.6 m, 

respectively. Also, SWT values are the average of the readings at 7:00 am of the three replicates 

and therefore may be not representative of the average daily condition calculated by the model. 

For the same reason, errors can also result from rainfall events or high ET rates that occurred 

during the day that are not captured by the sensor data used for the observed values.  
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The conversion of SWT to VWC through predicted water retention curves is a further possible 

source of error. Ultimately, the plant canopy can influence the moisture condition around the probe 

by either deflecting irrigation water away from the sensor or channeling it towards the sensor 

probes.  

 

Soil water content – validation 2018 

The remaining treatments of 2018 all of which had different irrigation and fertilization strategies 

than the ones used for calibration where used to validate the calibrated model. Validation results 

Figure 3.7 Dynamics of measured (dots) and simulated (lines) SWC in the soil during the 

growing season expressed in DAP for treatment 9 (UGA SSA × Fertigation lower) in 2018. The 

bar graphs show irrigation (red) and rainfall (blue) expressed in mm over the same x axes 
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of SWC from treatment 9 (UGA SSA × Fertigation lower) are shown in Figure 3.7. Results from 

Figure 3.8 Dynamics of measured (dots) and simulated (lines) SWC in the soil during the 

growing season expressed in DAP for treatment 3 (a), 6 (b) and 9 (c) of 2019 (App × Fertigation 

Model, UGA SSA × Fertigation scheduled and Checkbook × Traditional). The bar graphs show 

irrigation (red) and rainfall (blue) expressed in mm over the same x axes 

(a) (b) 

(c)
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the other six treatments are reported in Figure A.1 in Appendix A. For treatment 9, as well as for 

the other validated treatments of 2018, the model described the changes in water content well. The 

average index of agreement of SWC was 0.63 in layer 1 and 0.51 in layer 2. R2 was 0.36 and 0.24, 

respectively, all acceptable values for simulations of field studies.  

Soil water content – validation 2019 

In 2019, the model was validated for all nine treatments. There are similar soil texture conditions 

between the two fields where maize was cultivated in 2018 and 2019. Both have a loamy fine sand 

topsoil and a sandy loam subsoil, with the difference that in 2018 layer 2 is classified as loamy 

fine sand, while in 2019 layer 2 is classified as a sandy loam. 

Validation results of SWC for treatments 3 (App × Fertigation Model), 6 (UGA SSA × Fertigation 

Scheduled) and 9 (Checkbook × Traditional) are reported in Figure 3.8. Validation of the- 

remaining treatments are shown in Appendix A, Figure A.4.Values of the evaluation indices for 

SWC of 2019 were lower than those of 2018 which was expected as growing conditions were 

different from the 2018 conditions used to calibrate the model. The average d was 0.56 for layer 1 

and 0.53 for layer 2. Average R2 was 0.14 and 0.26 in layer 1 and 2, respectively. SWC values in 

2019 had a wider range than in 2018 due to the frequent, but not substantial, rainfall that caused 

notable fluctuations in the dynamics, especially in the stages of fast vegetative growth (before 60 

DAP). There was considerable rainfall on DAP 114, amounting to a total of 92 mm. This rainfall 

caused a large peak in simulated soil moisture, especially in layer 1, exceeding the measured values 

in treatments 6 and 9 but especially treatment 9.  It is not clear why the shallow sensors in this 

treatment did not respond especially since the sensors located in layer 2 responded and matched 

the simulated SWC. 
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Soil nitrogen content - calibration 

Figure 3.9 shows the simulated response and observations of soil mineral N content in three 

successive layers of 2018 treatments 5 and 1 used for calibration. The simulation trends responded 

to fertilization events with a rapid increase of the amount of layer 1 that later on was absorbed by 

the plant or leached to the lower layer after rainfall events. N in layer 1 is simulated accurately. In 

treatment 5, d = 0.85, R2 = 0.71 and in treatment 1, d = 0.65, R2 = 0.45. Similarly, predictions of 

layer 3 reported good indices values (d = 0.36 and 0.82 in treatments 5 and 1, respectively). On 

the contrary, N content in layer 2 is not well simulated. The same discrepancies between the 

simulation of the different layers is shown by the F values (Table 3.7). All the F values calculated 

were higher than the threshold (F0.05) suggesting that the overall N simulation can be improved, 

Figure 3.9 Dynamics of measured (dots) and simulated (lines) N in the soil in successive soil 

layers over time expressed as DAP for calibration treatments 5 (a) and 1 (b) of 2018 (Checkbook 

× Traditional and App × High nitrogen). Black bars represent fertilizer applications in kg N ha-

1. The bar graphs show irrigation in red and rain in blue expressed in mm over the same x axes 

 

(b) (a) 
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but the magnitude of the divergence for layer 2 is much more relevant than layer 1. Compared to 

observed N, STICS over-predicted total mineral N at the third sampling date that took place at 

tasseling (DAP 63). Because the simulated peak in N that occurs prior to the sampling date matches 

the trend that is simulated in layers 1 and 3, one possible explanation is that the laboratory analysis 

did not accurately capture the N in the soil sample or that depths were inaccurately sampled during 

sample collection. This explanation is supported by good predictions of aboveground biomass and 

N in the plant at the same sampling date (Figure 3.12) which indicate that the model was 

performing well. Another possible explanation is that the model may have under-predicted 

leaching of N from layer 2. This explanation can not be confirmed due to the absence of leaching 

Figure 3.10 Dynamics of measured (dots) and simulated (lines) SWC and N in the soil during 

the growing season expressed in DAP for treatment 9 (UGA SSA × Fertigation lower) in 2018. 

Black bars in (b) represent fertilizer applications in kg N ha-1. The bar graphs show irrigation 

in red and rain in blue expressed in mm over the same x axes 
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observations or of measured mineralization values that could be used to compute a simplified N 

mass balance. 

 

Soil nitrogen content – validation 2018 

Treatment 9 (Figure 3.10) as well as the other validated treatments of 2018 (Figure A.2) had similar 

trends and evaluation indices as the calibration treatments. The over-prediction of the third 

observed point is consistent throughout the simulations. Average d values were 0.70 for layer 1, 

0.18 and 0.10 for layer 2 and 0.46 for layer 3. Layer 3 actually reported poor predictions in two 

treatments out of seven (Treatments 4 and 9) with d values of 0.10 and 0.18; the reason is the 

considerable under-prediction of the second observed point that could result from the same above-

mentioned problem of N percolation through the profile.  

 

Soil nitrogen content – validation 2019 

In 2019, the model provided a more accurate estimate of soil N content than the calibration (Figure 

3.11). Observed values of N in the soil were collected only in treatments 3, 6 and 9. The simulation 

of the first 0.3 m of the soil profile was excellent (d = 0.90, 0.83, 0.95; R2 = 0.88, 0.68, 0.91). 

Simulation of layer 2 was poor for all treatments (d = 0.10, 0.19, 0.15) and layer 3 was good with 

average d of 0.47, very close to the accuracy observed in the validation in 2018. 

  

Aboveground biomass, nitrogen in the plant and grain - calibration 

As already mentioned earlier, aboveground biomass and biomass N content are simulated well by 

the model (Figure 3.12 a, b, d, e). The evaluation indices d and R2 have values close to the best fit: 

d values for biomass simulation are 1.00 for treatment 5 and 0.98 for treatment 1, while for N in 
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the aboveground biomass d is respectively 0.97 and 0.99; R2 values are between 0.93 and 0.99. 

Figure 3.11 Dynamics of measured (dots) and simulated (lines) soil mineral N during the 

growing season expressed in DAP for treatment 3 (a), 6 (b) and 9 (c) of 2019 (App × Fertigation 

Model, UGA SSA × Fertigation scheduled and Checkbook × Traditional). Black bars represent 

fertilizer applications in kg N ha-1. The bar graphs show irrigation (red) and rainfall (blue) 

expressed in mm over the same x axes 

 

 

(a) (b) 

(c) 
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These variables allow to clearly notice the difference in the method of evaluation of the different 

indices. Despite the very good results of d and R2, F values are slightly higher than F0.05 

suggesting further improvement of the model.  

Leaf are index (LAI) data were collected in 2019. However, simulations of LAI returned 

unreasonably high values. This parameter of the model requires additional calibration but because 

its poor simulation does not appear to affect other biomass-related simulations, simulation results 

were not reported here.  

Figure 3.12 Results of calibration treatments 5 (Checkbook × Traditional) and treatments 1 

(App × High nitrogen) of 2018 for aboveground biomass dry weight (a, d), plant N content (b, 

e) and grain dry weight (c, f). Lines represent the model simulations and dots the observed

values over time expressed as days after planting (DAP) 

(a) (b) (c) 

(d) (e) (f)
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After the model was calibrated, the simulated grain filling period began at 67 DAP, which was 

between the range observed in the field study. The predicted duration of grain filling was 62 days. 

The simulation ended about 20 days before the actual harvest date because the model predicted 

that the grain was ready to harvest. This coincided well with observed maturity. Harvest was 

delayed by a few days to allow for the moisture content of the grain to decrease naturally. 

Additional delays were caused by scheduling of the grain plot harvester. 

The simulation of grain dry weight corresponded well to the observed value in treatment 5 (Figure 

3.12 c), while treatment 1 was slightly over-predicted (Figure 3.12 f). F value from the calibration 

was lower than the respective F0.05 showing reliable model simulation. Performance indices were 

not used for this variable because there was only on observed value per simulation. 

Aboveground biomass, nitrogen in the plant and grain – validation 2018 

Results from the validation simulation of the 2018 treatment 9 are shown in figure 3.13. The 

simulation results for all the other treatments are shown in figure A.3 in Appendix A. Among all 

Figure 3.13 Dynamics of measured (dots) and simulated (lines) aboveground biomass (a), N in 

the plant (b) and grain dry weight (c) of treatment 9 (UGA SSA × Fertigation lower) in 2018 

(a) (b) (c)
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treatments, the average predicted N in aboveground biomass (316 kg ha-1) was slightly higher than 

the observed (305 kg ha-1). The average observed N uptake was also greater than the average 

simulated uptake.  The observed and simulated N uptake was greater than that of published uptake 

estimates (287 kg ha-1) of hybrids cultivated in the Corn Belt for similar yields (Bender, et al., 

2013). However, for the vegetative stage prior to tasseling which is of greatest interest to this study 

because it is when side-dress N is applied, the average simulated amount of N in the plant (144 kg 

ha-1) was lower than estimated by Bender et al. (180 kg ha-1). This might suggest an under-

prediction in the uptake before tasseling and over-prediction in N uptake after tasseling that would 

also explain the excess N in the soil predicted at DAP 63 and the under-prediction of soil N during 

the reproductive stage of maize. However, it is difficult to identify and quantify possible errors 

because of the lack of samples between V6 and VT. In addition, studies like the one conducted by 

Bender et al. (2013) are not available for the environmental conditions and varieties of the 

southeastern Coastal Plain. Simulation of yield was not as good as the calibration treatments 

according to the lack of fit evaluation method.  

 

Aboveground biomass, nitrogen in the plant and grain – validation 2019 

The simulations results of the 2019 treatments for aboveground biomass and N content matched 

the first and the last observed points, while intermediate observations were under-predicted by the 

model (Figure 3.14). The weather during the 2019 growing season may be the cause of the 

difference in biomass accumulation and N content. Index of agreement (d) for biomass was 0.80, 

0.84 and 0.80 in treatments 3, 6 and 9, respectively, which are lower than 2018, but nevertheless 

indicate good performance. The d values for biomass N content were 0.72, 0.79 and 0.76 in 

treatments 3, 6 and 9 respectively. F values were substantially higher than the threshold of 
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significance. High values of biomass N content compared to 2018 were observed at 63 and 79 

Figure 3.14 Dynamics of measured (dots) and simulated (lines) aboveground biomass (a, c, e) 

and N in the plant (b, d, f) during the growing season expressed in DAP for treatment 3 (a, b), 

6 (c, d) and 9 (e, f) of 2019 (App × Fertigation Model, UGA SSA × Fertigation scheduled and 

Checkbook × Traditional) 

(b) 

(c) (d) 

(e) (f) 

(a)
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DAP. Between middle June (79 DAP) and the end of July (126 DAP) a sharp decrease of biomass 

Figure 3.15 Dynamics of measured (dots) and simulated (lines) grain dry weight (a, c, e) and 

N in the grain (b, d, f) during the growing season expressed in DAP for treatment 3 (a, b), 6 (c, 

d) and 9 (e, f) of 2019 (App × Fertigation Model, UGA SSA × Fertigation scheduled and

Checkbook × Traditional). 

(a) (b) 

(c) (d) 

(e) (f) 
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N content was observed that approached 200 kg N ha-1 in treatment 3, 70 kg ha-1 in treatment 6 

and 150 kg ha-1 in treatment 9. The abrupt decrease which was not observed in 2018 and is not an 

expected trend (DeBruin, et al., 2013), was most likely the result sampling one or small ears per 

plant at 63 and 79 DAP that did not reach maturity and were aborted by the plant. Most mature 

plants had only one full ear. Field observations show that the average number of ears per linear 

yard (0.914 m) of maize were 13 and 11 respectively at 63 and 79 DAP, and 8 at 126 DAP close 

to maturity. The small plateau in the simulation curves around 60 DAP corresponds to the tasseling 

stage during which plant biomass and N uptake slow down (Bender, et al., 2013). 

Despite the difference in weather pattern and biomass accumulation, grain yield was accurately 

predicted (Figure 3.15 a, c, e). In 2019, the grain was analyzed for TKN and the model simulated 

this variable relatively well without calibration (Figure 3.15 b, d, f). 

This is because the simulation of N in the grain is directly related to the amount of N in the biomass 

and the harvest index calculated to simulate yield. Good simulation of biomass and grain yield is 

reflected in good simulation of N in the grain. Similarly, to dry weight of grain, no statistical 

evaluation was conducted on this variable due to the insufficient number of observed values.  

The biggest difference between observed and simulated N in the grain was in treatment 3 in which 

the observed N was slightly higher than that observed in treatments 6 and 9. This result may be 

because the treatment received a fertigation application after tasseling. Mueller, et al. (2017) also 

observed higher N content in grain when N fertilizer was applied after tasseling. However, there 

is no evidence of this difference in treatments 4 and 7 that also received N via fertigation after 

tasseling (Figure A.5, Appendix A). 
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Summary  

Overall, model validation was determined to be good as the evaluation indices from validation 

were similar to those from calibration. The best-simulated variables were aboveground biomass 

and biomass N content.  

SWC of layer 2 was worse simulated compared to layer 1. This is in contrast to the relatively good 

simulation of SWC in layer 1. Saglam M. (2017) also observed lower accuracy in the prediction 

of subsoil water content and attributed it to uncertainties in root water uptake parameterization and 

spatial differences in root distribution. 

Simulations performance of soil N for layers 1, soil N for layer 3, SWC of layer 1 and SWC of 

layer 2 were similar. As with SWC, the worst agreement with observed data occurred for layer 2. 

Overall, the evaluation of the lack of fit showed poor predictions for all the variables (yield dry 

weight was the only not significant variable at the 0.05 level). Significance of all the variables 

indicate a lack of fit error which is significantly different from experimental error. The 

discrepancies were higher for N in the soil of layer 2 among all the simulations, and for biomass 

and N in the plant in 2019. However, the uniformity of the results between calibration and 

validation is meaningful. It suggests that the performance of the model was consistent between 

treatments.  

Fertigation Model treatment 

Side-dress fertilizer was applied to 2019 treatments 3, 4 and 7 by scheduling fertigation with the 

STICS model. For these treatments, daily simulations were run during the growing season to 

monitor the evolution of N content in the soil profile. Fertigation was scheduled when simulated 

soil N began to decrease sharply. Figure 3.16 shows the final trend of N from the first date of soil 



88 

sampling to harvest. As described earlier, during 2019, soil samples were collected in nine of the 

27 plots and so soil N content data were available only for only one of the model fertigation 

treatments (Treatment 3 – App × Fertigation Model).  

Because roots are likely to reach a depth of 0.60 m by the V7 stage (Archontoulis S., 2017), which 

in this study corresponded to about 40 DAP and extend beyond that as the plant grows, all three 

soil layers were considered in the model. The minimum N application rate set for this model 

fertigation treatment was 280 kg ha-1 of which 135 kg ha-1 was to be applied through fertigation in 

34 kg ha-1 increments. This was the minimum rate that could be reliably replicated by the fertilizer 

injection system used in the study. As shown in Figure 3.16, the similar trends between treatments 

Figure 3.16 Dynamics of measured (dots) and simulated (lines) total N in the soil profile during 

the growing season expressed as DAP for treatment 3 (a), 4 (b) and 7 (c) of 2019 (App × 

Fertigation Model, Checkbook × Fertigation Model and UGA SSA × Fertigation Model). Black 

bars represent fertilizer applications in kg N ha-1. The bar graphs show irrigation (red) and 

rainfall (blue) expressed in mm over the same x axes. Grey background identifies post-

flowering stages 

(a) (b) (c)
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justified the uniformity in dates of fertigation. Fertilization was triggered whenever a drop in total 

soil nitrogen content was detected by the model. Three events took place before tasseling: 48 DAP, 

54 DAP and 58 DAP. During tasseling, the model showed a sharp decrease in soil N but fertigation 

was postponed until after tasseling to avoid interference during the critical pollination stage. The 

next fertigation event was applied at 71 DAP. A week later, the model showed that soil N had 

decreased to 65 kg ha-1 and the decision was made to apply another dose of 34 kg ha-1 at 78 DAP. 

This decision was made because the scientific literature reports that modern maize hybrids uptake 

significant amounts of after tasseling. (DeBruin, et al., 2013) reported that 37 % of the total uptake 

occurs post-flowering. Distribution of N uptake during the crop life cycle is shown in (Figure 1.1).  

The first fertigation driven by the model occurred 14 days after the first event of the scheduled 

treatment, at stage V9/V10. This delay did not affect yield indicating that there was adequate soil 

N from the earlier applications to support vigorous growth during V9/V10.  

Comparison of the simulation with the observed values of treatment 3 (Figure 3.16 a) shows that 

soil N after tasseling was under-predicted by the model. This suggests that the last fertigation event 

might have been avoided resulting in increased NUE without causing a decrease in yield. This 

conclusion is supported by the similar yield results of the scheduled fertigation treatments that did 

not receive the fifth fertigation application. Further analysis of the model is needed to determine 

why it under-predicted soil N after tasseling.  

The method currently used to trigger fertigation has important limitations. It does not include an 

estimate of future plant nitrogen requirements and as such, it is not able to estimate how much 

more N should be applied to meet plant needs. Furthermore, the scientific literature does not 

provide soil N value below which additional N should be applied as a function of crop phenological 

stage. As a result, fertigation was triggered when a sharp decline in soil N was predicted by the 
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model. Another obstacle that was encountered during the study was that due to time constraints, 

the model was not fully calibrated at the time that side-dress N was needed during the 2019 

growing season. As a result, the model simulations used to apply fertigation were likely not 

optimal. the fertigation model treatment was applied according to a primitive model adjustment. 

Additional research is needed to determine how and when to trigger fertigation with a simulation 

model. 
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CHAPTER 4 

CONCLUSIONS 

Field experiment 

Efficient use of irrigation water and N management is important to minimize agricultural 

contributions to nitrate pollution of groundwater and optimize profits for maize producers. Results 

from this study suggest that both water and nitrogen recommendations currently used in Georgia 

overestimate maize requirements. The methods recommended by the University of Georgia 

Extension Service and which were used as the baseline “traditional” methods in this study are the 

Checkbook method for irrigation and a 1.2 multiplier to determine N application rates based on 

yield goals in bu ac-1, respectively. In this study, these traditional methods were compared to 

irrigation and fertilization management strategies with potential to improve WUE and NUE.  

For both years of the study, WUE for the UGA SSA and SmartIrrigation Corn App irrigation 

scheduling strategies were statistically significantly better the than the Checkbook strategy (Figure 

3.5). Although these two strategies had similar performance, the Corn App does not require soil 

moisture sensor installation after planting and removal prior to harvest. However, the Corn App 

does require accurate precipitation data and if a weather station is not close by, an automated rain 

gage is needed in or near the field for peak performance.  

Average grain yield achieved at the study site ranged from 13.5 to 18.5 tons ha-1 with no 

statistically significant differences between treatments (Figure 3.3). However, the fertigation 

strategy that used a 1.0 multiplier to determine N application rates based on yield goals in bu ac-1 
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used considerably less N than the traditional method. Consequently, NUE for this strategy was 

statistically significantly higher (Figure 3.4). The hypothesis that side-dress N applied via 

fertigation would result in higher yields was rejected. This is likely because even the lowest 

fertilizer treatment (280 kg ha-1 or 250 bu ac-1) provided more than enough N to meet the fields’ 

yield potential under the environmental conditions encountered in 2018 and 2019. Additional 

research is needed to determine this threshold.  

STICS 

The principal objective of this study was to adapt, calibrate, and validate the STICS model for 

maize production under the growing conditions of the southeastern Coastal Plain and specifically 

the Lower Flint River basin. The model was adapted to local conditions using observed data, values 

from the literature and the STICS’s optimization function. Calibration was conducted using data 

from relatively uniform environmental conditions from two treatments of a one-year dataset, 

similarly to the strategy used by Jégo, et al. (2011), that led to good evaluation results. Validation 

was conducted using different irrigation and fertilization strategies from 2018 and 2019. Validation 

showed that the calibrated cultivar P1870 provided good predictions of aboveground biomass, 

nitrogen uptake, yield, and nitrogen in the grain. STICS gave good predictions for 2019 despite 

that growing season being hotter and shorter than the 2018 season used for calibration. Observed 

crop growth stages were consistent with the simulated phenology. Simulations of soil water and 

nitrogen content were not as good as the simulation of crop variables. Soil water content simulation 

could be improved by using actual soil water retention curves of the soils used in the study rather 

than curves developed using the van Genuchten method. Soil moisture sensors that measure 
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volumetric water content would also likely improve the simulation results by providing directly 

comparable observations.  

Most of the discrepancies between the simulated and the measured soil N content values were 

observed as over-predictions during the period of rapid maize growth. This was probably due to 

underprediction of nitrogen percolation through the soil profile, or to a mistake in the simulation 

of nitrogen uptake that in reality could be higher in the vegetative phase of development and lower 

afterwards. The under-prediction of observed values after tasseling would confirm the second 

assumption. To overcome this problem and assess the actual uptake pattern, more observation 

points should be collected during the critical phase of rapid vegetative growth between V8 and VT 

(30 to 60 DAP). Four or five points during the growing season may be enough to catch the general 

trend, but not to properly define it.  

In this study, three different fertilizer types were used prior to planting, at planting and for the side-

dress applications. The model does not allow the user to differentiate between the fertilizer type 

used in the fertilization events. This likely reduces the model’s ability to accurately estimate soil 

N content. Another simulation variable which requires improvement is LAI. That being said, the 

accuracy obtained in this context is still useful to reproduce main trends in the response of output 

variables associated to seasonal weather conditions, soil and management practices.  

Overall, the hypothesis that STICS predictions are representative of observed conditions in the 

southeastern Coastal Plain can be accepted, but there is still room for improvement of the model. 

The last hypothesis of consistent predictions through spatial and temporal variability is proved by 

the homogeneity of evaluation indices among different treatments and years. However, the model 

should be further evaluated in different experimental conditions in terms of weather patterns and 

soil conditions. Indeed, is important to take into consideration that the calibration was performed 
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using data from a wet year that do not ensure that the simulations would be acceptable in very dry 

conditions (Gao X., 2018). Exhaustive evaluation would reinforce the assessment that model 

simulations can accurately capture the relative differences between treatments. 

Model-based fertilization scheduling 

A model-based methodology was presented in this thesis to identify the optimum timing of N side-

dress application. The performance of the proposed methodology indicated that although 

promising, this approach is not yet robust enough to provide reliable recommendations. It should 

be noted that the identification of optimum timing of application is a complex problem (Mesbah, 

et al., 2017). The approached used in this study to use simulated decreases in soil N may not be 

the best strategy to trigger fertilization and further studies are necessary to develop an improved 

approach. However, the use of a process-based crop model is an important step towards 

development of a reliable digital decision toolkit able to make accurate predictions and to gain 

trust from the final user, the farmer. 
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Figure A.1 Dynamics of measured (dots) and simulated (lines) SWC during the growing season 

expressed as DAP for treatments 2 (a), 3 (b), 4 (c), 6 (d), 7 (e) and 8 (f) of 2018. The bar graphs 

show irrigation in red and rain in blue expressed in mm over the same x axes 

(e) (f) 
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Figure A.2 Dynamics of measured (dots) and simulated (lines) N in the soil during the growing 

season expressed as DAP for treatments 2 (a), 3 (b), 4 (c), 6 (d), 7 (e) and 8 (f) of 2018. Black bars 

represent fertilizer applications in kg N ha-1. The bar graphs show irrigation in red and rain in blue 

expressed in mm over the same x axes 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure A.3 Dynamics of measured (dots) and simulated (lines) aboveground biomass, N in 

aboveground biomass and grain dry weight during the growing season expressed as DAP for 

treatments 2 (a, b, c), 3 (d, e, f), 4 (g, h, i), 6 (l, m, n), 7 (o, p, q) and 8 (r, s, t) of 2018 

(o) (p) 

(r) (s) 

(q) 

(t)
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Figure A.4 Dynamics of measured (dots) and simulated (lines) SWC during the growing season 

expressed as DAP for treatments 2 (a), 4 (b), 5 (c), 7 (d) and 8 (e) of 2019. The bar graphs show 

irrigation in red and rain in blue expressed in mm over the same x axes 

(a) (b) 

(c) (d) 

(e)
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Figure A.5 Validation of grain dry weight and N in the grain of treatments 1 (a, b), 2 (c, d), 4 (e, 

f), 5 (g, h), 7 (i, l) and 8 (m, n) of 2019. Lines represent the model simulations and dots the observed 

values at different successive soil layers over time expressed as days after planting (DAP) 

(i) (l) 

(m) (n) 




