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ABSTRACT
Many wildlife species have established semi-permanent or year-round populations in
urban landscapes. Animals in cities can often access predictable and abundant resources,
but at the same time might experience lowered diet quality, exposure to toxicants and
stressors, and greater pathogen transmission. The health of urban wildlife is relevant to
humans, especially given risks of zoonotic pathogen transmission. The aim of this
dissertation is to investigate how urban landscape features, including altered resources
and exposure to toxicants, can change wildlife behavior, health, and infectious disease. I
first synthesized the literature to quantify the extent to which urbanization affects four
metrics of wildlife health; this meta-analysis demonstrated an overall small but
significant negative effect of urbanization on wildlife health, driven by higher toxicant
loads and greater parasitism by parasites transmitted through close contact. | next
examined the individual and environmental predictors of foraging movements of wild
flying foxes in a recently-established urban population in Adelaide, South Australia. This

work showed that flying foxes were significantly more likely to forage at sites more



intensively used by humans, and that flying foxes in better body condition flew shorter
distances each night, visited fewer foraging sites, and had smaller foraging areas. Using
data from flying foxes captured in Adelaide and seven other locations across Australia, |
next examined individual and environmental predictors of metal concentrations in bat fur,
and associations between metals and bat parasitism. This study demonstrated that flying
foxes captured at sites surrounded by greater human modification had higher metal
concentrations in fur, and provided evidence for positive and negative relationships
between ectoparasite abundance and metal concentrations. Lastly, | developed a
mechanistic model of host-parasite dynamics to understand the interactive consequences
of pathogens and toxicants on infection dynamics and population size of wildlife in an
urbanizing landscape. Results suggested the extent of contaminated habitat across the
landscape could enhance or reduce impacts of infection on host populations. Collectively,
this dissertation provides evidence for multiple sublethal effects of urban landscapes for
wildlife, and suggests important gaps for future work on the movement and survival

consequences of toxicant exposure in wildlife.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW
We live in an increasingly urban world, with nearly 70% of the world’s human
population expected to live in urban areas by 2050 [1, 2]. Animal biodiversity typically
declines with increasing urbanization because many species are excluded from urban
habitats [3], but some wildlife can thrive. Both unintentionally and deliberately, humans
provide resources that wildlife can use, such as plentiful and predictable food in the form
of garbage or backyard feeders [4, 5], and shelter for roosting or reproduction [6, 7].
Urban areas can also serve as refuges from predators for small mammals and birds [8, 9].
From foxes in Switzerland [10] to otters in Singapore [11], many wildlife species are
establishing semi-permanent or year-round populations in human-dominated landscapes
[12-14]. For example, raccoons can flourish in urban areas due to ample food and higher
survival [15].

However, advantages of urban living can come hand in hand with risks; as one
example, concentrated resources can intensify intra- and interspecific competition [16,
17]. Urban wildlife also face exposure to toxicants such as pesticides, air pollutants, and
polychlorinated biphenyls (PCBs) [18-20]; indeed, pollution has been implicated as a
major driver of wildlife defaunation, especially in aquatic animals [21]. Anthropogenic
stressors like noise and light pollution can also adversely affect health [22, 23]; for

instance, tree frogs exposed to traffic noise had higher stress levels and reduced immune



function [24]. Other urban features such as cars and wind turbines can cause direct
mortality [25, 26].

Importantly, urban landscapes can alter infectious disease dynamics for wildlife
[27]. Wildlife populations may experience higher disease prevalence due to high host
density or pathogen transmission from domestic animals [28]. Toxicants including heavy
metals and PCBs can also reduce immunity, contributing to increased susceptibility to
infectious disease [29]. For example, kestrels exposed to volatile organic compounds in
air displayed reductions in delayed-type hypersensitivity response, a measure of cell-
mediated immunity [30]. In turn, disease in urban wildlife can impact human health,
because wildlife may transmit pathogens to humans [31, 32]. Wild boars have become
more common in Berlin in recent decades as the animals seek anthropogenic food; the
boars can carry Leptospira spp. and have been linked to at least one human leptospirosis
case [33, 34].

My dissertation research investigated how urban landscape characteristics,
including altered resources and exposure to toxicants, can affect wildlife behavior, health,
and infectious disease. Four main goals underpinned this work: (1) analyze previous
work to quantify the extent to which urbanization affects wildlife health metrics (Chapter
2), (2) assess the foraging behavior of wild flying foxes in a recently-established urban
population in South Australia (Chapter 3), (3) compare metal concentrations in Australian
flying foxes captured across a gradient of urbanization (Chapter 4), and (4) develop a
mechanistic model to explore dual effects of toxicants and infection on the population

and disease dynamics of a wildlife population in an urbanizing landscape (Chapter 5).



In Goal 1, | explored the net effects of urbanization on the health of wildlife
populations (Chapter 2). Drawing upon data from more than 100 published studies, I co-
led a phylogenetic meta-analysis to compare four health metrics (body condition, stress,
disease, and toxicant loads) in urban and non-urban wildlife populations. This work is the
first to quantify generalizable relationships between wildlife health and urbanization. The
findings of this chapter suggested that overall, urbanization is harmful to wildlife health,
but that results depended on the health metric and animal taxonomic group studied. A key
finding was that urban wildlife populations had higher toxicant loads than non-urban
populations across all taxonomic groups studied. This chapter also identified geographic
areas and taxonomic groups that have received little research attention to date, and thus
might be priorities for future investigation.

Chapters 3-5 of my dissertation focused on Australian flying foxes (Pteropus
spp.). These bats are highly mobile and can respond flexibly to spatiotemporal changes in
the availability of flowering and fruiting resources. In Australia, flying foxes increasingly
reside in urban areas, owing to loss of natural habitat and planting of fruiting and
flowering trees in cities and suburbs [35-37]. Though flying foxes play an important
ecosystem role as pollinators and seed dispersers [38], human attitudes towards the bats
can be negative, in part because flying foxes can transmit harmful pathogens to other
animals and humans. In Australia, flying foxes can carry Hendra virus, a pathogen that
“spills over” from bats to horses, and occasionally from horses to humans; infection does
not appear harmful to flying foxes, but has high case fatality rates in horses and humans
[39]. Poor nutrition has been implicated as a factor in Hendra virus infection in flying

foxes [40, 41], and given that urban and agricultural resources used by bats might be less
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nutritious than native vegetation [42], it is important to understand how flying foxes use
urban landscapes and how these landscapes can affect their health.

In Chapter 3, | described a multi-year study of the foraging movements of grey-
headed flying foxes (P. poliocephalus) in a recently-established urban population in
Adelaide, South Australia. | used global positioning system technology to track
movements of P. poliocephalus during winter and summer periods, and examined
relationships between foraging metrics and individual and environmental predictors (as
part of Goal 2). This work revealed that body condition was a key predictor of movement
and that Adelaide flying foxes foraged mostly in human-dominated habitats, possibly
owing to the close proximity of resources in these areas.

Given that the meta-analysis in Chapter 2 demonstrated differences in toxicant
loads between urban and non-urban wildlife populations, in Goal 3 | used data from
flying foxes captured in Adelaide and seven other sites across Australia to test if human
land use surrounding flying capture sites predicted exposure to metals (Chapter 4). |
analyzed fur samples from three flying fox species for 13 metal concentrations, and also
assessed several measures of parasitism. A key finding in this chapter was that bats
captured at sites with greater human impact had overall higher metal concentrations in
fur. | found evidence of positive and negative relationships between ectoparasite
abundance and metal concentrations, suggesting multiple causal mechanisms.

In Chapter 5, I extended my work on metal exposure in flying foxes by
developing a mechanistic model to explore how toxicants and infectious disease could
interact to affect a wildlife population (Goal 4). Model results suggested that toxicants

that have little effect on population size in the absence of infection can severely depress
4



population size in the presence of infection when the majority of landscape is
contaminated by toxicants. Impacts on population size were more severe when toxicants
had a high cost to dispersal.

Collectively, this dissertation provides evidence for multiple sublethal health
effects of urban living for wildlife that otherwise appear to acclimate to urban habitats.
Across diverse animal taxa and within the focal study species of flying foxes, | found
support for higher toxicant loads in urban wildlife. My work demonstrates the importance
of considering multiple aspects of health, including toxicants, parasitism, body condition,
and movement, when assessing urban impacts on wildlife. Model exploration shows that
multiple stressors operating together can substantially lower population viability,
intensify animal disease risks, and potentially increase human exposure to zoonotic

pathogens transmitted by wildlife.



CHAPTER 2
CITY SICKER? A META-ANALYSIS OF WILDLIFE HEALTH AND

URBANIZATION!?

! Murray MH*, Sanchez CA*, Becker DJ, Byers KA, Worley-Tonks KEL, Craft ME. Accepted by
Frontiers in Ecology and the Environment. * = equal first authorship. Reprinted here with permission of the
publisher.
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ABSTRACT

Urban development can alter resource availability, land use, and community composition,
which, in turn, influences wildlife health. Generalizable relationships between wildlife
health and urbanization have yet to be quantified and could vary across different
measures of health and among species. We present a phylogenetic meta-analysis of 516
comparisons of the toxicant loads, parasitism, body condition, or stress of urban and non-
urban wildlife populations reported in 106 studies spanning 81 species in 30 countries.
We found a small but significant negative relationship between urbanization and wildlife
health, driven by considerably higher toxicant loads and greater parasite abundance,
greater parasite diversity, and/or greater likelihood of infection by parasites transmitted
through close contact. Invertebrates and amphibians were particularly affected, with
urban populations having higher toxicant loads and greater physiological stress than their
non-urban counterparts. We also found strong geographic and taxonomic bias in research
effort, highlighting future research needs. Our results suggest that some types of health
risks are more pronounced for wildlife in urban areas, which could have important

implications for conservation.

IN ANUTSHELL.:
e We examined the relationships between urbanization and four aspects of wildlife
health: exposure to toxic substances, parasite infection, body condition, and stress

e Our analysis of multiple studies found that, overall, urbanization is harmful to

wildlife health



Urban wildlife species are exposed to more toxic substances and are at greater risk of
direct transmission of parasites as compared with non-urban wildlife

Only a small number of urban wildlife studies focus on amphibians, reptiles, or
invertebrates, or in locations outside of Europe and North America

Future research should focus on less represented wildlife species and locations,
should measure several aspects of health, and aim to identify the consequences to

wildlife health of exposure to toxic substances



INTRODUCTION
Urban areas are rapidly expanding worldwide, and this growth has widespread
consequences for wildlife. Urban wildlife species must cope with different conditions
than their counterparts in non-urban areas; these include altered resource availability,
warmer temperatures, habitat fragmentation, and pollution (Figure 2.1; [1]). As compared
with non-urban areas, cities are associated with increased population densities of wildlife
species [43]; greater frequency and intensity of human disturbance [44]; and altered
community assemblages including humans and invasive, introduced, and domestic
species [45]. These differences affect wildlife physiology, behavior, and health [46].

Wildlife in cities can suffer ill effects from exposure to toxicants (eg pesticides,
heavy metals, persistent organic pollutants); for example, fish exposed to municipal and
industrial wastewater in China had poorer body condition [47]. Toxicants can also
increase susceptibility to infection [48]. Human-induced landscape changes, such as
habitat fragmentation and patchy food distribution, can promote animal aggregation by
limiting dispersal or attracting animals to shared food sources. This aggregation may
increase the spread of parasites transmitted through close contact [49]; parasite deposition
on soil, water, or artificial feeders [50]; and stress through inter- and intraspecific
competition [51]. Urban populations can also exhibit greater chronic stress due to
disturbances associated with urban development [52].

Yet some species can thrive in urban areas. Reliable food in urban habitats can
improve body condition [53], and some urban populations exhibit lower baseline stress
levels than rural conspecifics, in part due to higher resource availability [54]. Changes in

behavior and community composition associated with urbanization can also lead to lower
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parasite prevalence. For instance, urban carnivores like red foxes (Vulpes vulpes) can
have smaller numbers of endoparasites, such as the tapeworm Echinococcus
multilocularis, due to a switch in diet from intermediate rodent hosts to anthropogenic
food [55]. Ectoparasites such as ticks can also be less prevalent among urban wildlife,
potentially due to changes in habitat and exposure [56].

Because urbanization can generate positive and negative health effects that may
be host-, parasite-, or region-specific, predicting the overall effect of urbanization on
wildlife health is challenging. Although a growing body of literature has documented the
changes in wildlife health that occur with urbanization [32], analyses of the overall
effects of urbanization on wildlife health and how these differ across taxonomic groups
and health metrics are lacking. Differences in scale between studies may also obscure
patterns; for example, some mechanisms act at local scales (resource availability),
whereas others extend beyond city limits (noise and light pollution). Understanding net
effects across studies could facilitate predictions about where conservation concerns
could arise and where management of wildlife or habitats will be needed.

To address this knowledge gap, we performed a phylogenetic meta-analysis (ie
accounting for phylogenetic relationships; [57]) of 516 wildlife health records from 106
studies comparing health metrics between urban and non-urban populations. We chose
four metrics to broadly represent health: two direct health outcomes (body condition and
parasitism) and two physiological changes linked to health consequences (stress and
toxicant loads in tissues). Because we were interested both in the overall effect of
urbanization on wildlife health and in drivers of variability, we considered how host and

parasite traits, study location and methodology, and degree of anthropogenic
10



development influence observed outcomes. Because we anticipated bias toward studies
demonstrating poorer health outcomes in more urban areas, we also analyzed publication
bias. Finally, we identified future research directions and potential effects of urbanization

on biodiversity and conservation.

META-ANALYSIS

We identified 7541 published studies on urban wildlife health using a systematic search
([58]; Appendix A Figure S2.1). Of these, 106 met our previously defined inclusion
criteria by being field studies of sufficient sample size (n > 4) that compared body
condition, physiological stress levels, parasitism, or tissue toxicant concentrations
between urban and non-urban populations of the same wildlife species. We considered
including immune function but ultimately did not do so due to variations in methodology
among the papers.

For each comparison of the same measure of health between urban and non-urban
populations of the same species, which we defined as an individual record, we extracted
and documented the host species, health metric assessed (body condition, stress,
parasitism, or toxicants), and study location (study coordinates if provided, or centroid of
a named location). We also extracted test statistics (odds ratios, R?, x?, F), directionality
of the association between urbanization and health, P value, and sample size. We
converted test statistics into the correlation-based r as our standardized effect size [59]. If
statistics were not reported, we calculated odds ratios, Cohen’s d, or used the P value and
sample size to obtain r [60]. We assigned negative values to r when health was lower for

urban wildlife (poorer body condition, greater parasitism, higher baseline stress, lower
11



induced stress response, higher toxicant concentrations; Table 2.1) and converted r into
Fisher’s Z (Zr) as a normalizing transformation using the R package metafor [61, 62].
Studies not reporting sample size or effect direction and studies pooling multiple species
were excluded. For descriptive purposes, we defined effect sizes as significantly different

from zero if their back-transformed 95% confidence intervals (Cls) did not cross zero.

Health metric methodology

We further divided health metrics based on original study methodology (Table 2.1). We
classified whether body condition was measured using qualitative scores, raw quantitative
measures, or size-adjusted quantitative measures [63]. We categorized stress measures as
glucocorticoid concentrations, heterophil-to-lymphocyte ratios (baseline or in response to
a stressor), or other measures (eg oxidative damage, blood glucose). We recorded
whether the parasitism measure was infection status (binary variable), infection intensity
(parasite load), or parasite richness (number of parasite species). Finally, we grouped
toxicants into metals (eg cadmium, lead, mercury) or non-metals (eg pesticides,

polychlorinated biphenyls).

Wildlife and parasite traits

We classified wildlife species into five taxonomic groups: herpetofauna (amphibians and
reptiles), birds, fish, invertebrates, and mammals. We delineated whether a species’ life
history is primarily terrestrial or aquatic using the primary literature or Animal Diversity
Web (http://animaldiversity.org). For parasites, we recorded parasite type as

microparasites (bacteria, viruses, fungi, and protozoa) or macroparasites (helminths and
12



ectoparasites); we created two categories because of low group sample sizes. We used the
Global Mammal Parasite Database to classify parasite transmission route as close contact
(transmitted directly from one individual to another), non-close contact (eg

environmental contamination), vector transmission (eg insect vectors), intermediate hosts

(eg consuming infected prey), or via multiple routes (each as a binary covariate; [64]).

Spatial analysis

We estimated urban development surrounding study sites using global terrestrial human
footprint maps (GHF) in QGIS [65, 66]. The GHF dataset combines population density
and anthropogenic development into a standardized score (0-50), with scores >10
indicating built environments. We extracted GHF values in raster cells surrounding urban
and non-urban study sites, at either the study coordinates or the centroid of a named
location. We calculated the average GHF value within 1-km and 10-km buffers to
measure urbanization at the local scale and account for landscape context surrounding the
site. If a study was performed along an urbanization gradient, we used the GHF values at
the most and least urban sites; if a study had multiple urban and non-urban replicates, we
used the average GHF values. Using these scores, we calculated the mean GHF score
across the urban and non-urban sites (mean urbanization) and subtracted the GHF score
of the most urbanized sites from the least urbanized sites (difference in urbanization) for
each study. The GHF score is available for 1993 and 2009; we used the GHF value
closest to the study year. We subtracted the average score at study sites in 1993 from the
score in 2009 as a measure of change in GHF over time (change in urbanization). We

recorded gross domestic product (GDP) and average GHF score of the study country to
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account for differences in environmental policies in high- versus low-income countries.
Using QGIS, we also measured the inter-site distance between urban and non-urban study
sites to test whether health differences were stronger with greater distance between study

populations.

Statistical analysis
We used a hierarchical random-effects model (REM) accounting for phylogenetic
dependence of individual species relatedness and multiple records within each study to
estimate the size and strength of the overall relationship between urbanization and
wildlife health [60]. To first identify the primary predictors of effect size across our full
dataset (n = 516 records), we fit a set of mixed-effect models (MEMSs) considering
taxonomic group, health metric, species life history, and all two-way interactions.

Given the results of this analysis (see below), we stratified our data by health
metric. We used an MEM to test whether effect size differed among the health metrics
(toxicant concentrations, n = 189; body condition, n = 60; parasitism, n = 194; stress, n =
73). We fit sets of MEMSs separately to each health metric dataset to assess whether
urbanization—wildlife-health relationships vary by wildlife species traits (taxonomic
group, life history), parasite traits (parasite type, transmission route), health metric
methodology, and study country metrics (mean country GHF, log GDP).

In a third analysis applied to data where site location was provided (n = 302
records, 81% of studies), we fit a set of MEMSs with metrics of urbanization intensity
(mean urbanization and difference in urbanization across sites, change in urbanization

between time periods) and inter-site distance as moderators of effect size. We also
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included interaction terms between these urbanization metrics and taxonomic group and
health metric. All models in these three analyses included the same random effects (each
record was nested within its associated study and similarity between closely related
species was accounted for by structuring species within a phylogenetic correlation
matrix) and included weighting by sampling variance using the metafor package.

We tested for evidence of publication bias, which includes preferential
publication of significant over non-significant results or studies with a small effect size
[67]. We generated funnel plots of effect sizes against standard errors to visualize
potential bias for the full dataset and each health metric subset; low bias is expected when
effects with high precision remain close to the mean and effects with low precision are
spread symmetrically from the mean [68]. For each of the funnel plots, we tested for
asymmetry using rank correlation tests [69]. We then used the trim-and-fill method with
an RO+ estimator, which estimates the number of missing records based on the spread of
effect sizes relative to the overall mean, to test whether the number of records missing
due to publication bias differed from zero [70]. We adjusted P values from these two tests
with the Benjamini and Hochberg correction to adjust for multiple comparisons [71].

Statistical analyses are explained in greater detail in Appendix A.

RESULTS

Dataset description

Our dataset included 516 records from 106 published studies quantifying wildlife health
(DRYAD repository: https://doi.org/10.5061/dryad.b74d971). Studies were conducted in

30 countries on all six continents containing cities (Figure 2.2), with more than one-third
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of studies being conducted in the US (n = 38, 36%). GHF scores varied across urban sites
(minimum GHF = 0.7, maximum GHF = 24.9). The parasitism and toxicant datasets each
comprised about one-third of all records (37.6% and 36.6%, respectively), while the
stress and body condition datasets were less well represented (14.1% and 11.6%,
respectively) (Figure 2.3). The predominant health metrics used differed by taxonomic
group (* = 274.49, P < 0.001), with parasitism dominated by mammals (72%), stress and
body condition by birds (64% and 45%, respectively), and toxicants by fish (37%), birds
(29%), and mammals (27%) (Figure 2.3). Our search identified no fish/parasitism
records, mammal/stress records, or invertebrate/body condition records.

Research effort for toxicants and parasitism showed greater growth over time than
for body condition and stress (v = 21.46, P < 0.001; Appendix A Figure S2.2; Table
S2.1), and research effort for birds, fish, and mammals showed greater growth over time
than for herpetofauna and invertebrates (> = 24.98, P < 0.001; Appendix A Figure S2.2;

Table S2.1).

Relationships between urbanization and wildlife health

Across all records, 60% (n = 311) reported a negative relationship between urbanization
and health (r < 0), 37% (n = 190) reported a positive relationship (r > 0), and 3% (n = 15)
reported true null effects (r = 0). The toxicant dataset was dominated by records reporting
negative relationships, while the other health datasets had high variation in effect
direction (Figure 2.3). Within records reporting a negative urbanization—health
relationship, the proportions of significant (ie 95% Cls per effect size do not cross zero)

and non-significant records were approximately equal (48% significant, 52% non-
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significant). Within records reporting a positive relationship, a larger proportion was non-
significant (46% significant, 54% non-significant).

Our REM identified significant heterogeneity in effect sizes across the entire
dataset (12 = 98.06, Qs15 = 12644, P < 0.001), and an overall small but significant
negative correlation between urbanization and wildlife health (r = -0.16,z=2.09, P =
0.04). Comparison among alternative models showed that the interaction between
taxonomic group and health metric best predicted effect size (wi = 1, R? = 0.29, Appendix
A Table S2.2; Q16 = 71.43, P < 0.001; Figure 2.3). Adjusting for multiple comparisons,
this model showed strong negative relationships between urbanization and health for
toxicants in herpetofauna (r = -0.82, 95% CI = -0.94 to —0.53), toxicants in birds (r = —
0.36, 95% CI = -0.55 to —0.14), toxicants in invertebrates (r = -0.92, 95% CI = -0.97 to

—0.80), and stress in invertebrates (r =-0.88, 95% CI =-0.96 to —-0.71).

Moderators of effect size per health metric

Because health metrics had greater predictive power than taxonomic group (Appendix A
Table S2.2), we stratified our data by health metric for more detailed model comparisons.
Within this analysis, parasite transmission route and animal taxonomic group were the
top predictors of how urbanization correlates with health (Appendix A Table S2.2). For
the parasitism dataset, the most parsimonious MEM contained whether parasites were
transmitted through close contact or another route (AAICc = 0.80, wj = 0.11, Q1 =11.9, P
< 0.001). Effect sizes were most negative for parasites spread through close contact (f =

—0.3,z=3.45, P <0.001, R? = 0.25; Figure 2.4).
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For toxicant and stress datasets, both top MEMs mirrored our first set of analyses,
with the best model containing taxonomic group (w; = 0.68 and w; = 0.78, respectively);
no other models were competitive (Appendix A Table S2.2). For the toxicant dataset, this
MEM explained 21% of effect size variation, and predicted effect size to be most
negative for herpetofauna and invertebrates (Qs4 = 9.22, P = 0.06; Figure 2.4). For the
stress dataset, this MEM explained 55% of variation and predicted the most negative
correlations for invertebrates (Qs = 35.68, P < 0.001; Figure 2.4). No covariates were
more competitive than an intercept-only model for the body condition dataset (Appendix
A Table S2.2). A MEM with life history suggested terrestrial wildlife show slightly more
positive body condition relationships with urbanization than aquatic wildlife (AAICc =

1.81, wi = 0.11), but this was not statistically significant (Q1 = 1.27, P = 0.26; Figure 2.4).

Does intensity of urbanization predict effect size?

The mean urbanization score (GHF) within 1 km per study and its interactions with
health metrics explained the most variation in effect size for studies providing study
locations (1 km: w; = 0.62, R? = 37%; Q7 = 35.86, P < 0.0001; Appendix A Table S2.2).
Post-hoc analysis showed this association was only significant for parasitism; more urban
regions showed more positive effect sizes for parasitism (5 = 0.05, P < 0.001) (Appendix
A Figure S2.3). A model with inter-site distance and its interaction with health metrics
received marginal support (AAICc = 4.05, wj = 0.08, R?=0.29; Q;=21.86,P < 0.01). As
distance between contrasting sites increased, effect size became more negative for
toxicant outcomes (5 = —0.02), whereas all other health metrics showed non-significant

positive relationships with distance (Appendix A Figure S2.3).
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Publication bias

We found evidence of publication bias depending on health metric (Appendix A Figure
S2.4). Funnel plots suggested bias in effect size reporting, which rank correlation tests
confirmed for the full dataset (toward negative correlations: z = -4.79, P < 0.001) and
body condition dataset (toward positive correlations: z = 3.89, P < 0.001). We did not
find significant publication bias for toxicant, parasitism, or stress effect sizes (toxicants: z
=1.71, P =0.12; parasitism: z =-1.62, P = 0.12; stress: z=-1.54, P = 0.12). Trim-and-
fill analyses suggested the number of missing studies did not differ from zero for most
datasets; for stress data, this analysis suggested that six (+ 6) effect sizes greater than the

mean were missing (P = 0.04).

DISCUSSION

Does urbanization pose health risks for wildlife?

Identifying contexts in which urbanization influences wildlife health is critical for
understanding urban adaptation, human—wildlife conflict, and biodiversity conservation
in cities. Our meta-analysis suggests an overall negative relationship between
urbanization and wildlife health, mainly driven by considerably higher toxicant loads and
greater parasite abundance, greater parasite diversity, and/or greater likelihood of
infection by parasites transmitted through close contact. We found no significant
difference in body condition and stress levels with urbanization. For all health metrics,
the direction and magnitude of effect sizes varied greatly by taxonomic group. Our

findings highlight the complexity of urbanization’s effects on wildlife health.
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Across all wildlife taxa, toxicant loads were significantly higher in urban animals
than in their non-urban conspecifics. Although it is not surprising that urban wildlife
species are subject to greater exposure to heavy metals, organic compounds, and
pesticides associated with industrial and anthropogenic features, such as roads and
managed lawns [72], our results demonstrate that this exposure results in uptake into
wildlife tissue. For instance, urban predators like bobcats (Lynx rufus) can be exposed to
anticoagulant rodenticides from consuming contaminated prey [73]. Toxic metals like
cadmium, lead, and mercury can bioaccumulate in tissues through food consumption and
are more abundant in urban populations, as seen in common blackbirds (Turdus merula;
[74]) and common perch (Perca fluviatilis; [75]). Although toxicant exposure can have
downstream effects on wildlife health, including abnormal development, reproduction,
and immune function [48, 76], the biological relevance of relatively higher toxicant
concentrations is less clear, especially across species.

We observed a higher likelihood of infection by parasites transmitted through
close contact, along with greater parasite abundance and diversity, in urban as compared
to non-urban populations, perhaps because some urban-adapted hosts live at higher local
densities due to abundant and patchily distributed food resources. For instance, urban
raccoon populations can reach high densities, potentially promoting rabies transmission
[77]. Conversely, parasite transmission by routes other than close contact (ie transmitted
via vectors, trophic transmission, or environmental contamination) was lower in urban
areas, perhaps due to shifts in habitat availability or host community structure. For
instance, the prevalence of Campylobacter spp in house crows (Corvus splendens) in

Tanzania was higher in rural villages, where infections are more common in poultry than
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in urban villages [78]. Predicting any changes in parasitism with urbanization could
therefore depend on parasite life history.

Our data showed no consistent differences in wildlife body condition with
urbanization. Increased access to resources could buffer populations from negative
effects of urbanization. For example, white-footed tamarins (Saguinus leucopus; [53]) in
urban areas had higher size-adjusted mass than their rural counterparts but also had
higher cholesterol levels, presumably from food provisioning with cholesterol-rich
anthropogenic food. In contrast, rufous-collared sparrows (Zonotrichia capensis) had
lower body mass in urban areas, possibly due to higher intraspecific competition [51].
Given that no model performed better than the null, there appear to be contrasting effects
of urbanization on wildlife body condition.

As with body condition, we did not find significant differences in stress levels
between urban and non-urban populations. Cities may not present additional stressors
beyond those experienced in rural settings; alternatively, variation in stress outcomes
could reflect difficulty in interpreting stress responses across methods (eg heterophil-to-
lymphocyte ratios or glucocorticoid concentrations) or sampling times (eg time of day,
reproductive season). Furthermore, chronically stressed individuals may not show
increased stress measures, which complicates interpretation of results [79]. For instance,
urban ornate tree lizards (Urosaurus ornatus) had lower stress responses relative to their
non-urban counterparts [54], suggesting chronic stress.

Despite an overall negative relationship between urbanization and wildlife health,
we also found ample support for positive health effects. Positive (albeit non-significant)

effects were found for four health metric—taxonomic group pairs: body condition and
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mammals, parasitism and mammals, parasitism and birds, and stress and herpetofauna.
Given the bias toward negative correlations in the dataset, the benefits of urbanization for

wildlife deserve careful consideration.

Future directions
Our results cannot tease apart the causal mechanisms for observed relationships between
urbanization and health, but they do suggest several ways in which future studies could
adopt more mechanistic approaches. First, we recommend that studies examine multiple
health metrics simultaneously; <20% of studies in our analysis did so. This would
identify mechanisms by which toxicant exposure impairs health, such as through altered
immune function, gene expression, or organ function. Second, studies of urban wildlife
health should quantify urbanization using landscape metrics relevant to the focal wildlife
population [80]. For instance, the degree of urbanization can be classified according to
land cover, human population density, or a combination of several metrics [81].
Providing details of study location coordinates and how urbanization was quantified will
also facilitate cross-study comparisons in towns and cities of different sizes. Finally,
researchers should consider how species traits (eg generalist versus specialist diet, social
system, life span) could influence health outcomes. Previous studies have attempted to
predict traits associated with urban adaptation [82], which could aid in predicting health
outcomes in urban areas.

Echoing previous work [83], we found that most published urban wildlife
research has been conducted in cities in North America and Europe (Figure 2.2).

However, many rapidly urbanizing areas are in low- and middle-income countries near
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global biodiversity hotspots [84], where relationships between wildlife health and
urbanization could vary with climatic, ecological, and socioeconomic differences.
Research in South America, Africa, Asia, Australia, and countries with intense urban
development (eg India; Figure 2.2) would improve global inferences. Although the
studies in our meta-analysis were conducted at sites that ranged widely in their degree of
human development (ie human footprint values), it remains unclear whether urban
wildlife studies to date reflect an unbiased representation of global urbanization intensity,
and how other types of land use (eg agriculture) affect wildlife health relative to
urbanization. Furthermore, we recognize the potential for spatial error and change over
time when using point locations to estimate local human footprint from a global dataset
[85]. When we accounted for the degree of urban development, we found that habitats
with greater urban development were associated with lower parasitism (with all
transmission modes combined due to smaller sample size), suggesting that the
transmission of some types of parasites may be interrupted in highly urban areas.
Finally, our meta-analysis revealed taxonomic biases for each health metric; for
example, most toxicant studies focused on fish, whereas most parasitism studies focused
on mammals. These patterns could be driven by their relevance to human health; aquatic
systems receive wastewater outputs from human activity, and most urban wild mammals
share parasites with domestic animals and people [86]. Our results may be biased in
terms of wildlife species representation; species that experience severe health threats in
cities may be rare and therefore less present to be sampled. Even in populations that have
persisted in urban settings, negative effects could be masked; for instance, stress

responses might dull in response to sustained threats [87]. When assessing impacts of
23



urbanization, researchers should attempt to sample a broad suite of species and consider
whether any species lack representation because they are rare or are excluded from urban

areas.

Implications for conservation and policy

Urban living appears to pose several health threats for wildlife, especially through
increased exposure to toxicants like heavy metals and pesticides. Invertebrates and
herpetofauna seem especially vulnerable to toxicant exposure in urban areas, which has
implications for conservation. For example, many amphibian and reptile populations are
already in decline due to fungal diseases, such as chytridiomycosis [88] and snake fungal
disease [89]. Observational studies have linked greater loads of heavy metals and
pesticides with increased susceptibility to infection in toads and frogs [90], highlighting
the threat posed by higher toxicant loads to urban wildlife.

Urban invertebrates appear especially vulnerable to health risks in urban areas
because they exhibited greater increases in toxicant loads and stress levels than non-urban
invertebrates and other wildlife taxa. However, we acknowledge that these results are
based on a small sample. Increased toxicant loads and chronic stress can suppress
immune function, potentially increasing infection risk [48, 76]. For the three bee species
in our study, this could have important consequences for colony health [91] and urban
pollinator conservation, as urban honeybees can be subject to higher concentrations of
pesticides and greater oxidative stress [92]. We found few studies on urban invertebrate
and herpetofauna health; we therefore encourage researchers to examine the health

impacts of urbanization and traits conferring sensitivity in these taxa. Beyond wildlife
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conservation, our results suggest that the risks of toxicant exposure and the transmission
of some wildlife parasites may be higher for domestic animals and the public in urban
relative to non-urban settings. Future research on urban wildlife health will be critical for

maintaining urban biodiversity and public health in our rapidly urbanizing world.
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Table 2.1. Description of health metric methodology used by studies in the meta-analysis

and how directions of health effects were assessed

Health Methods of measurement Direction of association between
metric urbanization and health (health effect)
Toxicants e Metal concentrations (eg lead, copper, Positive for decreased measures; negative for
zinc) increased measures
e Non-metal concentrations (eg
organochlorine pesticides,
polychlorinated biphenyls)
Parasitism e Infection status (ie infected or Positive for decreased measures; negative for
uninfected) increased measures
e Infection intensity (ie number of
parasites per infected individual)
e Parasite richness (number of parasite
species)
Body e Qualitative scores (eg subjective fat Positive for increased measures; negative for
condition score) decreased measures
e Raw quantitative measure (eg body
mass, length)
e Size-adjusted quantitative measure (eg
residuals of mass ~ length regression)
Stress e Glucocorticoid concentrations (higher Positive for decreased baseline measures;

levels indicate more stress)

e Heterophil:lymphocyte ratios (baseline
values or in response to a stressor)

e Other measure

negative for decreased induced measures (ie
in response to a stressor)
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Figure 2.1. Urban wildlife species can be more likely to be exposed to toxicants via
foraging in polluted environments; here, an American white ibis (Eudocimus albus)

forages in an urban pond containing litter.
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Global human footprint: |

Figure 2.2. The (a) global and (b) European distribution of 106 studies comparing the health of urban and non-urban wildlife
populations in 30 countries. For clarity, each study is represented once as the centroid of all within-study locations. Study locations are
based on wildlife taxa (herpetofauna = red stars, birds = green triangles, fish = blue squares, invertebrates = purple circles, mammals =

orange diamonds). Base map shows the 2009 global terrestrial human footprint map, in which darker areas indicate more urban

development.
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Figure 2.3. Range and grand means from random effects models (REMs) for the
correlations between wildlife health and urbanization. The columns represent results
stratified by health metric, while the rows represent results stratified by animal taxonomic
group. Thin lines represent 95% confidence intervals (Cls) for effect sizes of individual
records; thick circles and lines (at the bottom of each panel) represent REM estimates
(uncorrected for publication bias). Cls for individual records that cross the dashed line (r

=0, no relationship between health and urbanization) are partially transparent.
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CHAPTER 3
BODY CONDITION PREDICTS GREY-HEADED FLYING FOX (PTEROPUS

POLIOCEPHALUS) FORAGING MOVEMENTS IN AN URBAN LANDSCAPE?

2 Sanchez CA*, Reardon TB, O’Leary M, van Weenen J, Altizer S, Boardman WSJ. Submitted to
Movement Ecology.
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ABSTRACT

Background. Food resources are a major driver of animal movement, and human-
provided food in urban areas can alter wildlife foraging behavior. In recent decades,
pteropodid fruit bats (flying foxes) have settled in urban areas to feed on fruiting and
flowering trees planted by humans. Understanding the consequences of this shift towards
urban foraging for bat movement and health is important for predicting future bat-human
interactions and associated health risks. In this study, we examined the foraging behavior
of Australian flying foxes to: 1) characterize bat movements in a newly-established urban
population, 2) explore individual and environmental predictors of movement behavior,
and 3) analyze the selection of foraging sites and food plants utilized.

Methods. We deployed lightweight GPS loggers to track the movements of 32 grey-
headed flying foxes (Pteropus poliocephalus) captured in Adelaide, South Australia in
2016-2018. We calculated guantitative metrics including nightly distance traveled,
foraging and core area, and number of foraging sites visited. We used regression models
to analyze whether these foraging metrics were correlated with body condition, age, sex,
daily temperature, and season. We ground-truthed feeding sites to identify plant species
visited, and statistically examined the selection of foraging sites in relation to human land
use.

Results. Bats in better body condition flew shorter distances each night, visited fewer
foraging sites, and had smaller foraging areas. Male bats had longer nightly round-trip
distances than females, and younger bats visited more foraging sites per night. Bats

foraged more in urban residential and recreational sites than less disturbed sites; however,
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we did not quantify nectar or fruit availability at foraging sites and so could not assess
preference.

Conclusions. Our work suggests that the urban flying foxes in Adelaide foraged largely
in human-dominated habitats, and that bats in better body condition made shorter, more
efficient foraging flights. Understanding how animals move across and utilize resources
within human-modified habitats is increasingly important for wildlife conservation and

managing human-wildlife conflicts.

Keywords: Adelaide; fruit bat; GPS tracking; habitat selection; movement ecology;

seasonality; urbanization
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BACKGROUND
Many animals move to acquire food resources [93], with movements ranging from long-
distance annual migrations [94] to daily travels in local environments [95]. At the
individual level, greater foraging success often predicts improved body condition and
energy reserves, translating to increased fitness. Both internal and environmental factors
determine an animal’s foraging movements [96]. For example, home ranges of female
striped mice (Rhabdomys pumilio) increased with scarcity of food plants, fewer
competitors, and larger mouse body mass, among other factors [97], while in European
shags (Phalacrocorax aristotelis), juvenile birds spent more time foraging than adults,
likely to compensate for poorer foraging ability [98].

Urbanization alters the quantity and distribution of resources available to wildlife.
Many animal species disappear from cities altogether, but some wildlife can utilize
human-provided resources and habitats found in urban areas [4, 5]. In terms of foraging
movements, studies that span a diverse range of terrestrial mammals show that animals
living in highly human-impacted environments often travel shorter distances in search of
food, potentially driven by access to predictable resources [99]. Shorter movement
distances in response to human-provided resources can also manifest at larger scales. For
example, Eurasian blackcaps (Sylvia atricapilla) in Germany and Austria are increasingly
wintering in Britain, rather than migrating a longer distance to overwinter in Spain, in
response to supplemental feeding of birds in urban gardens [100].

Reduced movement could benefit wildlife by allowing them to allocate more
resources towards growth, energy storage, or reproduction [101-103]. For instance, a

study of African lesser bushbabies (Galago moholi) reported that urban bushbabies spent
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less time moving, ate more anthropogenic food, and had higher body mass index values
than did rural conspecifics [104]. Yet feeding on urban resources could be costly if those
resources provide lower nutrient content than natural food sources, contain toxicants (e.g.
pesticides, heavy metals), or stimulate harmful behavior (e.g. aggression in response to
high aggregation) [4, 105, 106]. Decreased movement coupled with higher local densities
in urban areas could also increase exposure to pathogens transmitted by fecal-oral routes
or environmental contact, allowing infectious stages to accumulate in the animals’
environment over time [107, 108].

Pteropodid fruit bats (flying foxes) as a group have exhibited changes in
movement in response to anthropogenic resources. These highly mobile animals respond
flexibly to changes in resource distribution and abundance, and in forested environments,
typically show nomadic long-distance movements to track ephemeral flowering and
fruiting resources [109, 110]. Flying foxes increasingly reside in urban areas and feed on
urban and agricultural resources [35]. In Australia, this behavioral shift has been
attributed largely to a combination of native habitat destruction, planting of (largely non-
native) fruiting and flowering trees in cities that offer predictable food, and artificial
watering [36, 37, 111-113]. Shifts in foraging behavior can affect bat health [35].
Human-provided food used by bats might be less nutritious than native vegetation [42].
Because poor nutrition might increase susceptibility to infection [40, 41], and because
flying foxes can transmit viruses to humans, livestock, and pets [114], urban resources
could influence the health of humans and other animals. Therefore, work exploring links
between urban resources, bat foraging movements, and health is crucially needed [115-

117].
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We examined the foraging movements of Australian flying foxes in a recently-
established urban population using global positioning system (GPS) technology. We
collected data from grey-headed flying foxes (GHFF; Pteropus poliocephalus) captured
in Adelaide, South Australia during two winter and two summer periods. The Adelaide
flying fox population formed within the past decade and is located far to the west of the
previous known P. poliocephalus distribution (Figure 3.1). Our study objectives were to
1) characterize bat movements across the novel Adelaide landscape, 2) explore individual
and environmental predictors of movement, and 3) analyze the selection of foraging sites
and food plants utilized. Given that flowers and fruits are more abundant and reliable in
summer than winter [118], we expected bats to fly shorter distances each night and have
smaller foraging areas in summer. We used multiple body condition indices as a proxy
for overall health, and predicted that bats caught in the summer would be in better body
condition owing to higher resource availability and reduced flight energetics. We
expected sex differences in foraging metrics owing to size dimorphism [119] and
different energy requirements (e.g. territory defense, lactation), but did not predict a
direction for this difference given conflicting results in other studies [115, 120]. Based on
previous work on urban flying foxes [111, 121], we expected that Adelaide bats would
forage primarily in human-modified habitats. Finally, we expected that animals that
forage over shorter distances might show greater body condition, if less energy is
expended on movement, or if animals in better condition can better access and defend

nearby resources.
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METHODS

Study population and location

In winter 2010, ~500 GHFF formed a temporary camp in a suburban backyard in
Adelaide, South Australia, growing to ~1200 individuals within a week (T.B. Reardon,
personal observation). Adelaide is >600 km northwest of the previously known range of
P. poliocephalus (Figure 3.1), and their 2010 range expansion might have been driven by
a national shortage in their preferred flowering and fruiting plants [122]. Bats appeared to
leave Adelaide (i.e. a camp could not be located) soon after the shortage was over but a
camp was again observed in Adelaide in early 2011 when ~50 GHFF settled in the
Adelaide Botanic Gardens. The population began to grow and after reaching ~400
individuals, was relocated to nearby Botanic Park (34°54'56.7"S, 138°36'24.7"E) by the
Department for Environment and Water. Population counts using direct observation
(aided by 10 x 42 mm binoculars) began in 2011 (Figure 3.1). The population has grown
to more than 20,000 individuals at times, primarily through interstate immigration, with
intermittent declines owing to mortality during extreme heat events as well as recent

emigration during an apparent food shortage (J. van Weenen, personal observation).

Bat capture, logger attachment, and data collection

We captured 310 total P. poliocephalus by mist net in August (winter) and February
(summer) periods during 2015-2018 as part of a larger study to characterize the health
and behavior of the Adelaide flying fox population (W. Boardman, unpublished data).
Bats were captured pre-dawn as they returned to the roost after foraging and placed in

individual cotton bags. We transported the bats to the Adelaide Zoo Animal Health
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Centre and anesthetized them with inhalant Isoflurane [123]. We recorded each bat’s sex,
weight to the nearest 1 g with a digital scale, and forearm length to the nearest 1 mm with
vernier calipers. Age in years was estimated by a single person (W. Boardman) based on
molar wear and coloration. Each bat was assigned a body condition score (BCS; from 1-5
with higher values indicating better condition) based on palpation of pectoral muscles and
prominence of the sternum [124].

Following the protocol of de Jong [125], we attached 159 data loggers (e-obs
GmbH, Munich, Germany) to 32 GHFF (Aug. 2016: n = 5; Feb. 2017: n = 9; Aug. 2017:
n=7; Feb. 2018: n = 11) to track their movements (Appendix B Figure S3.1). Only male
and non-pregnant female bats weighing >600g were considered for logger deployment.
The loggers are battery and solar powered and collect GPS, acceleration, altitude, speed,
and heading data. Acceleration was recorded every 30 s on three axes throughout the
night (~6pm-7am local time). The frequency of GPS fixes was acceleration-informed
[126], such that fixes were collected more frequently during flight (every 30 s), and less
frequently during rest or minor movement (every 45 min). The roost was visited daily to
remotely download the previous night’s data using a handheld e-obs base-station. We
downloaded 1 — 14 consecutive nights of movement data from each logger (209 nights

total).

Identification of foraging plants
To characterize bat diet breadth and preferences, we ground-truthed a subset of locations
that we suspected were visited by bats. We visualized movement tracks in Google Earth,

identified clusters of GPS fixes as potential foraging sites, and collected flower, leaf,
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bark, and/or fruit samples for subsequent identification at the State Herbarium of South
Australia. However, we were not able to quantify the food resources available at the time

of foraging (e.g. nectar flow, fruit abundance and ripeness).

Calculation of foraging distance and area

All movement and statistical analyses were performed in the R computing environment v
3.4.3 [127]. The dataset was first trimmed so that only the first fix of each GPS burst was
retained (bursts are useful for improving estimation of altitude, speed, and heading,
which were not needed in this study). We calculated the number of hours each bat was
tracked per night and subsequently excluded incomplete nights (< 8 hours of data). We
calculated the nightly distance flown by each bat by summing the distance between
successive GPS points [128]. When a bat began and ended its flight at the roost, we
designated this a round-trip, and calculated the median and maximum round-trip distance
for each bat. We excluded non-round-trip nights from further calculations because we
believe this represented aberrant behavior (Additional file 2: calculation of foraging
distance and area).

We estimated the area traversed by tracked GHFF using minimum convex
polygons (MCPs). The foraging and core areas for each bat were calculated respectively
as the areas of 95% and 50% MCPs constructed with the adehabitatHR package [129].
We restricted calculation of foraging and core areas to bats with at least three round-trips,
conservatively assuming that small sample sizes would not accurately estimate area. We
also constructed seasonal 95% MCPs for use in habitat selection analyses (described

below).
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Estimating number of foraging sites

In addition to visually identifying the largest clusters of GPS points in Google Earth for
ground-truthing purposes (described above), we used a systematic protocol to identify
foraging sites. We first filtered out all high-speed GPS fixes (ground speed >2 m/s), then
generated a distance matrix for remaining points [130]. We identified low speed clusters
(at least 6 low-speed points within 60m of each other), calculated the centroid of each
[131, 132], and excluded clusters within 200m of the roost. We considered all remaining
cluster centroids to be foraging sites. We calculated the nightly number of foraging sites
used by each bat and the straight-line distance from each foraging site to the roost, and
identified the most distant foraging site visited by each bat [133]. For our habitat
selection analyses, we repeated this procedure to identify the location of foraging sites for
each bat over all nights of its logger deployment, but used a more conservative definition

of a foraging site (at least 12 low-speed points) to identify more heavily used sites.

Statistical analyses

We used regression models to assess the importance of individual and environmental
predictors in explaining variation in nightly round-trip distance and nightly number of
foraging sites. We fit generalized linear mixed models (GLMMSs) with maximum
likelihood, using a gamma distribution and log link for the distance model, and a Poisson
distribution and log link for the number of sites model [134]. For both distance and
number of sites, we set bat age, sex, body condition, season, maximum daily temperature,

and hours tracked as fixed effects, and batlD and date as random effects.
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Maximum daily temperature data were downloaded from the Australian
Government Bureau of Meteorology (Adelaide Kent Town station, #23090, located
~1.3km SE from the roost). In addition to body condition score, we derived two
additional measures of body condition. We calculated weight to forearm ratio (WFR),
which is a commonly used metric of condition in bats [135]. We also calculated a scaled
mass index (SMI), which controls for covariation in body length and body mass
associated with growth [136] (Additional file 2: calculation of scaled mass index). For
each outcome variable, the three measures of body condition (WFR, BCS, and SMI) were
included individually in three separate candidate models. We used Akaike information
criterion corrected for small sample size (AICc) to rank models [137, 138], and refit the
best-supported model with restricted maximum likelihood, for which we reported model
estimates. We visualized residual plots with the DHARMa package [139].

To examine predictors of foraging area and core area, we fit generalized linear
models (GLMs) with a gamma distribution and log link; random effects were not
included because foraging and core areas were derived per individual across nights. We
included age, sex, body condition, season, and the number of nights a bat was tracked as
predictors. We again included the three body condition measures individually in three
separate models for each outcome variable, and used AlICc to rank models.

To examine the selection of foraging sites within the area bats traverse (third-
order habitat selection [140]), we compared the land use at foraging sites to that of
randomly chosen locations. We examined habitat selection separately by season, as
available resources can change seasonally. We designated the centroids of foraging sites

(see above) as “used” sites, and generated random ““available” sites within the seasonal
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95% MCPs (excluding the ocean), such that for each season, there was a 10:1 ratio of
available to used sites. Due to logistical constraints, nectar and fruit resources were not
quantified at the foraging sites or randomly-generated available sites. We randomly
assigned bats to available sites in proportion to the number of foraging sites used by a
bat. We obtained a land use raster of the Catchment Scale Land Use of Australia [141],
which provides land use classes at three hierarchical scales according to the Australian
Land Use and Management (ALUM) Classification (version 8) at a 50m resolution. We
used the “Extract Values to Points” tool in ArcGIS 10.4.1 [142] to determine the tertiary
(i.e. finest scale) land use of used and available sites. We performed two logistic
regressions, one for each season, to model the probability of a site being used or available
as a function of the land use at the site and the body condition, sex, and age of the
associated bat. To reduce the number of land use classes for the regression, we condensed
the tertiary land classes into five categories, similar to the ALUM primary classes: 1)
Natural, 2) Agricultural and Plantation Production, 3) Residential and Farm
Infrastructure (including urban and rural residential), 4) Non-residential Intensive Use
(e.g. intensive animal production, industrial, recreation, transportationy and 5) Water. As
with the movement analyses, we included the three body condition measures in separate
models for each season, and used AlICc to rank models.

Finally, we examined whether bat body condition differed by season. We
constructed three linear models with the body condition measures (WFR, BCS, SMI) as
separate outcome variables, and season, sex, and age as predictor variables. WFR was

modeled with a gamma distribution (log link), and SMI was modeled with a normal
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distribution. Due to the limited range of values, BCS was binned into two groups (<3 and

>3) and modeled with a binomial distribution.

RESULTS

Data loggers were deployed on 14 female and 18 male P. poliocephalus; bats weighed
between 640g and 1008g, corresponding to a logger burden of <2.5% body weight, well
under the recommended 5% threshold for bats [143]. After excluding nights with <8
hours of data and non—round-trip nights, we retained approximately 90% of the data
(186/209 nights). Nightly round-trip distance varied widely within and between bats
(Appendix B Figure S3.2). The median round-trip distance was 31.93 km, and the largest
round-trip distance was 179.34 km (Appendix B Figure S3.3). The most distant foraging
site was 40.47 km from the roost (straight line distance). Distance and area metrics for
each bat are summarized in Appendix B Table S3.1.

We observed foraging site fidelity in GHFF movement patterns. Some bats made
repeated visits to the same foraging site over multiple nights with little deviation in flight
path, while others visited a few core foraging sites with occasional long-distance
excursions to other sites (Appendix B Figure S3.4). Flying foxes typically visited 2-6
foraging sites per night (Appendix B Table S3.1). During the winter, foraging paths
appeared primarily north-south oriented (Figure 3.2A), while summer foraging paths

clustered closer to the roost (Figure 3.2B).
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Predictors of foraging distance, area, and number of sites visited
Bats in better body condition flew shorter distances each night, visited fewer foraging
sites each night, and had smaller foraging areas (Figure 3.3, Table 3.1; Appendix B Table
S3.2). Specifically, holding other explanatory variables constant, a one-unit increase in
BCS was associated with a 43% decrease (95% Wald confidence interval: 61% — 19%
decrease) in nightly round-trip distance, and a 31% decrease (95% CI: 44% — 14%
decrease) in the number of nightly foraging sites. Similarly, a one-unit increase in WFR
was associated with an 86% decrease (95% CI: 97% — 38% decrease) in foraging area.
Models incorporating BCS and WFR were well supported by model selection, but SMI
received little to no support (Appendix B Table S3.2).

We also found that males had longer nightly round-trip distances than did females
(Table 3.1). Holding other explanatory variables constant, male bats traveled 37% farther
in their nightly round-trip distance than did female bats (Figure 3.3). Finally, bat age
predicted the number of nightly foraging sites, with younger bats visiting more sites per
night. An estimated one-year increase in age was associated with a 6% decrease in the
number of nightly foraging sites. We found no significant predictors of core foraging area

in our analyses (Table 3.1).

Habitat selection

Our automated foraging site classification identified 203 sites (137 summer, 66 winter).
Nearly all foraging sites belonged to one of three tertiary land classes: urban residential
(100 sites; subclass of Residential and Farm Infrastructure), recreation and culture (59

sites; subclass of Non-residential Intensive Use), and public services (13 sites; subclass of
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Non-residential Intensive Use). Season-specific logistic regressions showed that,
controlling for the habitat available in Adelaide (95% MCPs), the probability of a site
being used for foraging was significantly predicted by land use (Appendix B Table S3.3).
In summer, bats had 21.1 times the odds (95% CI: 5.1 — 87.5) of foraging at Non-
residential Intensive Use sites and 16.1 times the odds (95% CI: 3.9 — 66.4) of foraging at
Residential and Farm Infrastructure sites, compared to foraging at Natural sites. In
winter, bats had 12.3 times the odds (95% CI: 2.8 — 53.4) of foraging at Non-residential
Intensive Use sites and 7.2 times the odds (95% CI: 1.7 — 30.6) of foraging at Residential
and Farm Infrastructure sites, compared to foraging at Natural sites. Models
incorporating BCS, WFR, and SMI were equally supported by model selection;
coefficients reported above are for the model with WFR, as this is the simplest condition

measure of the three.

Foraging plants

We identified 21 unique species of plants from 150 suspected foraging sites identified in
Google Earth (Appendix B Table S3.4). At these sites, we primarily observed plant
species in the Myrtaceae family, especially lemon-scented gum (Corymbia citriodora),
blue gum (Eucalyptus leucoxylon), and Mugga ironbark (E. sideroxylon); and in the
Moraceae family, including common fig (Ficus carica) and Moreton Bay fig (F.
macrophylla). Palm trees (Arecaceae family) were also popular, although these were
rarely identified to species owing to difficulty in obtaining physical samples. Most plant
species identified at foraging sites were native to Australia (18/21), with about half of

these native to South Australia (7/18). Four species documented here were previously
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identified as significant food for GHFF in other areas of Australia (having high weighted
productivity*reliability scores; [144]. We found good accordance between foraging sites
identified with Google Earth versus our automated procedures; 43% of Google Earth sites

were within 10 m of an auto-identified site, and 69% were within 50 m.

Body condition predictors

Linear models indicated that when body condition was measured as SMI, bats were in
significantly better condition in winter than in summer (Appendix B Table S3.5). When
condition was measured as WFR, male bats and older bats had significantly greater body
condition (Appendix B Table S3.5). Season did not predict changes in body condition
when measured as WFR, and no predictors tested here (sex, age, season) explained

changes in body condition when measured as BCS.

DISCUSSION

Our study documents the fine-scale foraging movements of GHFF in a newly-established
urban population in South Australia. Flying foxes typically foraged at a small number of
sites (six or fewer) located near the roost, with occasional excursions to more distant
sites, including the longest one-night round-trip (~180 km) observed in this species to our
knowledge. Foraging distances observed here were similar to those reported in previous
studies of flying foxes roosting in urban areas [133, 145]; comparisons of area are more

difficult to make owing to the variety of methods used in past studies.
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Among bats examined here, better body condition predicted shorter foraging
distances and the use of fewer foraging sites. Our finding of negative relationships
between flying fox body condition and foraging movements aligns with several other
studies (Table 3.2). Negative condition—-movement relationships could result from several
underlying mechanisms. On the one hand, body condition might determine movement
behavior; for example, flying foxes can be territorial [38], and bats in better condition
might better defend feeding sites near the roost, forcing bats in poorer condition to travel
to more distant sites [146]. On the other hand, changes in movement might alter body
condition. Conducting long-distance flights, potentially to explore for new resources
[147, 148], could deplete bats’ energy and decrease body condition. As a third
explanation, resource distribution and quality could control both movement and bat body
condition. If high-quality resources are present near the roost, this could simultaneously
decrease foraging distance and the number of foraging sites visited while boosting body
condition.

Past work on flying fox movements further showed that the direction of
condition—foraging metric relationships varies among studies, and within a study, can
depend on the body condition measure used (Table 3.2). This emphasizes the importance
of measuring body condition in multiple ways [63] to improve conclusions drawn
regarding relationships between body condition and foraging metrics. In particular,
different body condition measures might change on different time scales, and some body
condition measures might better reflect overall health and nutrition for a given species.
For example, a qualitative measure like BCS that relies on physical examination of an

animal might be better able to capture changes in fat or muscle that reflect resource
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acquisition over weeks or months. More generally, improved measures to assess bat body
condition are needed, as current measures can be subjective (BCS) or difficult to employ
in the field (quantitative magnetic resonance analysis [149]).

We found little evidence for seasonal differences in bat foraging movements or
associations between movement and daily temperature. Resources planted in Adelaide
might act as a buffer against seasonal variation. Previous work reported that in
Melbourne, 13 plant species providing food for GHFF grew naturally, but 87 non-native
species had been planted after European settlement [112]. The authors proposed that non-
native plants provide a continual source of food for flying foxes during times of natural
resource scarcity (May — August). Our finding of greater bat condition (when measured
as SMI) in winter than summer ran counter to predictions based on resource availability.
However, in insectivorous bats, SMI has been proposed to be a less informative predictor
of condition than simple body mass [150], so our finding should be interpreted
cautiously.

The observations of longer nightly round-trip distances among male flying foxes,
and greater foraging site visits among younger bats, might be explained by sex and age
differences in roost emergence times and exploratory flights. Previous work examining
GHFF emergence timing (i.e. when bats leave the roost at night to forage) showed that
males typically left the roost later than females [151]. In this case, bats that emerge later
might travel farther to reach non-depleted resources, if high-quality patches in closer
proximity to roosts are used by bats that emerge first. In Pacific flying foxes (P.
tonganus) younger bats engage in longer, exploratory flights [147], which could explain

our finding that they visited a larger number of foraging sites. Alternatively, younger bats
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may not be adept at identifying productive foraging sites, necessitating them to visit
multiple sites to meet their dietary needs. As with body condition, younger bats might be
also forced away from foraging sites by territorial bats. An important caveat for results
reported here is that age estimation based on visual inspection of tooth wear is difficult,
as wear begins early in life for flying foxes [152].

In terms of site selection, bats tracked in our study were more likely to forage at
residential and other human-modified sites than in less-disturbed natural environments. In
particular, bats foraged primarily in urban residential and recreational sites (e.g. parks),
consistent with flying fox studies in other parts of Australia and elsewhere [111, 153,
154]. Because we did not survey resource availability in natural areas, it is difficult to
assess whether flying foxes foraged less in these areas due to lack of resources or due to a
preference for resources in other habitats. Past work suggested that flying foxes prefer
native species that produce abundant nectar, and that there may be a threshold of
flowering intensity above which animals seek out these resources [109]. If abundant
nectar is not available, flying foxes use urban resources [37]. Unlike urban sites, we
found no evidence that agricultural sites were more likely to be used for foraging than
natural sites, suggesting that at least in Adelaide, agricultural resources are not
disproportionately used by flying foxes. In other parts of Australia and the world, orchard
fruit consumption by flying foxes is commonly reported, economically costly, and a
source of human-bat conflict and pathogen transmission [155]. If the Adelaide GHFF
population continues to grow, or new camps form in South Australia, it is possible that

selection of foraging sites could change.
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Our work adds to the small but growing body of literature on the movement of
flying foxes in urban environments, and is relevant to diverse stakeholders including land
managers, orchardists, airport managers, and electric companies [155-158]. In particular,
bats comprised the most airstrikes by planes in Australia from 2006-2015 [159]. Our goal
of tracking movement patterns that are representative of a recently-formed urban bat
camp, which numbers nearly 20,000 individuals at present, was limited by the high cost
of data loggers and consequently, the small number of bats monitored here. At the same
time, the number of bats tracked here matches or exceeds that of several other papers
published on flying fox movements during the past decade (Table 3.2). Our goal was to
capture fine-scale foraging data, and we prioritized frequent collection of GPS fixes over
a short-term period. Because movement patterns might change during other parts of the
year (e.g. mating season, which typically occurs for GHFF in March-April; [38]), longer-
term studies that examine flying fox movements throughout the course of a year are
needed. Work contrasting movement patterns of flying foxes in urban and non-urban

colonies is also necessary.

CONCLUSIONS

We examined the foraging movements of Australian flying foxes in a recently-
established, previously undescribed urban population. Our work suggests that in
Adelaide, urban flying foxes foraged largely in human-dominated habitats, and that bats
in better body condition made shorter, more efficient foraging flights. Understanding how
animals move in human-modified habitats is important for wildlife conservation and

managing human-wildlife conflicts. Studying the diet, health, and movements of animals
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that host zoonotic pathogens is also relevant for human health. Future GPS tracking
studies and continuing improvements in technology are likely to uncover intricacies of

local and global animal movements.
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Table 3.1. Model outputs for nightly round-trip distance and number of foraging sites,
foraging area, and core area. Three candidate models (using separate measures of body
condition) were created for each response variable and ranked by AlCc. The best-
supported model for each response is reported here; see Table S3.3 for all candidate
models. Bolding indicates P values < 0.05. BCS: body condition score; WFR: weight to

forearm ratio; maxTemp: maximum daily temperature.

Response Term Estimate | SE torz | P
variable
Nightly round- | age -0.04 0.05 |-0.84 | 0.402
trip distance sex(male) 0.31 0.16 [2.01 [0.044
(n =185) BCS -0.57 0.18 |-3.09 | 0.002
season(winter) | 0.22 0.30 [0.72 |0.471
maxTemp -0.02 0.02 |-0.93 | 0.352
hours -0.07 0.08 |-0.85 | 0.396
Nightly number | age -0.06 0.03 |-2.07 | 0.038
of foraging sites | sex(male) 0.11 0.09 [1.19 |0.233
(n =185) BCS -0.38 0.11 |-3.34 | 0.001
season(winter) | -0.08 0.18 |-0.46 | 0.647
maxTemp -0.01 0.01 |-0.46 | 0.647
hours 0.03 0.07 [0.37 [0.710
Foraging area age 0.01 0.16 |0.04 |0.972
(n=27) sex(male) 0.93 0.51 |1.84 |0.081
WFR -1.98 0.66 |-2.98 | 0.007
season(winter) | -0.31 0.49 |-0.63 | 0.532
nights 0.17 0.11 |150 |0.149
Core area age 0.01 0.17 |0.08 |0.938
(n=27) sex(male) 0.74 053 [140 |0.177
WFR -1.15 0.70 |[-1.65 [0.114
season(winter) | 0.17 0.52 |0.33 |0.742
nights 0.03 0.12 | 0.25 |0.803
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Table 3.2. Relationships between body condition and foraging metrics (distance, range) in bats in the Pteropodidae family. Only
studies published within the last ten years are included. Negative relationships between body condition and foraging metrics are
shaded. Image credits: P. dasymallus by Koolah, A. jubatus by de Jong et al. 2013, and P. lylei by Malene Thyssen licensed under CC
BY-SA 3.0 E. helvum by Kayt Jonsson and P. rufus by Bernard Dupont licensed under CC BY 2.0. P. alecto by Andrew Mercer

licensed under CC BY-SA 4.0. P. poliocephalus by Michelle Power used with permission.  linear model performed using data from

the paper. ° t-test performed using data from the paper. 50% utilization distribution, kernel method. ¢95% utilization distribution,

kernel method. ¢ 100% minimum convex polygon. f80% cluster core area

Species and sample size Condition | Foraging metric (unit) Direction of P Source
measure condition — foraging
metric relationship

Orii’s flying fox WFR Mean daily home range (ha) Positive 0.762 [154]
(Pteropus dasymallus
inopinatus); n =19

Giant golden-crowned | BCS Mean nightly distance (km) Negative 0.73° [125]
flying fox (Acerodon Maximum nightly distance (km) Positive 0.45°
jubatus); n=6 Mean distance to foraging areas (km) Positive 0.80°
Mean number of foraging areas per night | Negative 0.41°
WFR Mean nightly distance (km) Positive 0.732
Maximum nightly distance (km) Positive 0.932
Mean distance to foraging areas (km) Negative 0.20?
Mean number of foraging areas per night | Negative 0.657
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Species and sample size Condition | Foraging metric (unit) Direction of P Source
measure condition —
foraging metric
relationship

Straw-coloured fruit WFR Mean nightly distance (km) Positive 0.041* | [133]
bat (Eidolon helvum); Maximum distance to foraging sites (km) | Positive 0.078%
n=16 Core area’ (ha) Positive 0.066°

Foraging area® (ha) Positive 0.0562
Madagascan flying fox | WFR Home range® (ha) Negative 0.822 [148]
(Pteropus rufus); Foraging area’ (ha) Negative 0.712
n=15
Black flying fox BCS Mean nightly distance (km) Negative 0.047 | [115]
(Pteropus alecto); Mean distance to foraging areas (km) Negative 0.064°
n=11 Mean number of foraging areas per night | Negative 0.26°

Weight Mean nightly distance (km) Positive 0.70°

Mean distance to foraging areas (km) Negative 0.55

Mean number of foraging areas per night Positive 0.63
Lyle’s flying fox WFR Maximum nightly distance (km) Negative 0.026° | [153]
(Pteropus lylei); Core area‘ (sq. km) Negative 0.25°
n=13 Foraging area® (sq. km) Negative 0.22°
Grey-headed flying BCS Nightly round-trip distance Negative 0.04 This
fox (Pteropus Nightly number of foraging sites Negative 0.0008 | study
poliocephalus); n =32 | WFR Foraging area Negative 0.007
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Figure 3.1. Population estimates of the Adelaide grey-headed flying fox camp. Points
indicate observer counts of flying foxes. Arrows indicate GPS data collection periods of
the current study. The inset shows a partial map of Australia, with the typical range of the
grey-headed flying fox shaded in red, and the approximate location of Adelaide indicated

by a star.
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Figure 3.3. Predicted relationships between body condition measures and A) nightly

round-trip distance (shown for both sexes), B) nightly number of foraging sites, and C)

foraging area (95% MCP). Shaded areas represent 95% confidence intervals. Predictions

are generated from GLMMs (distance, foraging sites) and a GLM (foraging area).

Discrete predictors are held constant at their proportions.
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CHAPTER 4
LAND USE, SEASON, AND PARASITISM PREDICT METAL CONCENTRATIONS

IN AUSTRALIAN FLYING FOX FUR?

3 Sanchez CA, Penrose M, Kessler MK, Becker DJ, McKeown A, Hannappel M, Boyd V, Camus MS,
Padgett-Stewart T, Lunn T, Peel AJ, Westcott DA, Rainwater TR, Chumchal MM, Cobb GP, Altizer S,
Plowright RK, Boardman WSJ. To be submitted to Environmental Science & Technology.
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ABSTRACT

Urban-living wildlife can be exposed to metal contaminants dispersed into the
environment through industrial, domestic, and technological applications. Metal exposure
carries lethal and sublethal consequences, depending on dose and frequency of exposure,
and the age and condition of animals. In particular, heavy metals such as arsenic, lead,
and mercury can damage organs and act as carcinogens. Many species of bats reside and
forage in human-modified habitats, and could be exposed to contaminants in air, water
and food. Here we quantified 13 metals in fur samples from three flying fox species
captured at eight sites across Australia. For a subset of bats, we assessed ectoparasites,
blood parasites, and viral infection. We examined relationships between metal
concentrations and environmental (land use surrounding capture site, season) and
individual predictors (species, sex, age, body condition, parasitism). As expected, bats
captured at sites with greater human impact had higher metal loads. At one site, bats had
lower metal concentrations in summer than in winter, possibly owing to changes in food
availability and foraging. Relationships between ectoparasites and metals were mixed,
suggesting multiple causal mechanisms. Because some bats harbor pathogens that can
transmit to humans and other species, future research exploring interactions between
metal exposure, immunity, and infection is needed to assess consequences for pathogen

transmission and bat health.
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INTRODUCTION

Wildlife in urban areas face exposure to environmental toxicants (e.g., heavy metals,
pesticides, persistent organic pollutants) through contaminated food, water, and air [28].
Landscape maintenance of urban green spaces such as parks and lawns can introduce
fertilizers and pesticides into soil and waterways, facilitated by high impervious surface
cover [160]. Water can also be contaminated with point source toxicants such as
industrial wastewater and oil or chemical spills [161, 162]. Pesticides used to poison
nuisance wildlife can reach non-target species via bioaccumulation (i.e., persistence in
tissues and organs) and biomagnification (i.e., passing up through the food chain) [163-
165]. North American bald eagles provide a striking example of biomagnification:
dichlorodiphenyltrichloroethane (DDT) used to control insects during the 1940s-60s
subsequently accumulated in fish and eagles, causing thinning of eagle eggshells and
reproductive failure [166-168]. Transportation and industrial activities can degrade air
quality, sometimes across large distances, such as observed for atmospheric deposition of
polychlorinated biphenyls [18, 169, 170]. Even after contaminant-generating sources are
removed from an environment, toxicants themselves can persist for months to years, and
continue to harm wildlife [171]. One recent meta-analysis found that urban wildlife had
significantly higher toxicant loads than non-urban conspecifics across diverse animal taxa
[172].

Heavy metals such as mercury and lead, and metalloids such as arsenic, are
naturally occurring trace elements that can reach toxicity at relatively low levels of
exposure from anthropogenic activities. Some metals such as cobalt, copper, iron, and
zinc can serve as micronutrients essential to biochemical and physiological functions, yet
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become toxic at higher levels of exposure through their interactions with enzymes
involved in metabolism, detoxification, and damage repair. Other metals such as
cadmium, lead, and mercury have no known biological function, and represent systemic
toxicants that can damage organs and disrupt DNA even at low levels of exposure.
Consequences of metal exposure for humans and vertebrate animals include altered
foraging and other behaviors resulting from neurological damage, reduced body
condition, physical deformities, reduced fecundity, and mortality [173-176]. Some
animals exposed to toxicants show lower immune function or reduced behavioral
defenses such as grooming [177, 178]. For example, female tree swallows breeding at
mercury-contaminated sites had higher mercury concentrations in blood and weaker
immune response than birds at non-contaminated sites [76]. Additionally, negative effects
of metal exposure can be exacerbated by other stressors (e.g., competition, predation,
food limitation, habitat alteration) [179, 180]. Laboratory rats experimentally exposed to
both concentrated air pollutants and chronic social stress exhibited elevated levels of
inflammation biomarkers [181].

Bats as a group are well-suited to study biological and environmental predictors
of metal exposure [182]. Their long lifespans (up to 40 years [183]) permit metal
accumulation in organs and tissues over time, and their high mobility and dietary breadth
allow them to forage in natural and human-modified habitats. Most studies of exposure to
metals and other toxicants in bats have focused on insectivorous species [184-186], likely
because there is a clearer exposure route (i.e., uptake through insect prey). Fruit bats (that
feed on nectar, pollen, and fruits) are increasingly settling in urban and agricultural areas,

where they consume introduced and cultivated plant species [35, 187], which could
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expose bats to food resources laden with pesticides or metals [188-190], or polluted
waterways [191]. Experimental dosing has suggested fruit bats absorb more lead than do
other mammals [192], which might make species in this group especially vulnerable to
negative toxicant effects. If toxicants impair immune function in bats, this could increase
their exposure to (or slow their recovery from) pathogens. Because some bats host viruses
and other pathogens that can be transmitted to domesticated animals and humans,
impaired immune function owing to metal exposure could pose public health risks [193].
Some studies have reported high concentrations of toxicants in bats infected with fungal
or viral pathogens, but failed to demonstrate a causal association [194, 195].

In this study, we examined the metal exposure of three Pteropus fruit bat species
(flying foxes) captured at eight sites across Australia between 2015 and 2018.
Specifically, we measured the concentrations of 13 metals in fur samples, including
mercury, lead, and cadmium, for which low levels of exposure are known to cause
toxicity for vertebrates. We tested for relationships between metal concentrations and
environmental (land use surrounding bat capture site, season) and individual-level
predictors (species, sex, age, body condition). We predicted that metal concentrations
would be higher for bats captured in areas with greater human modification (e.g.,
urbanization, industrialization, agriculture), and in older bats and those with poorer body
condition. We also assessed ectoparasite burden, haemosporidian parasite infection
status, and viral infection status in a subset of bats, as additional indicators of health.
High metal concentrations might predict positive infection status, although the direction
of this relationship could vary among parasites. For example, some metals might weaken

bat immune defenses or reduce grooming behavior, leading to a positive relationship
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between metal concentrations and parasitism. Alternatively, if metals are toxic to
parasites, such as might occur if enzymatic pathways in the parasites themselves are

disrupted, then exposure could reduce infection for some parasite groups [196].

METHODS

Animal capture and sampling

Three species of pteropodid flying foxes (black flying fox, BFF, Pteropus alecto;
spectacled flying fox, SFF, P. conspicillatus; grey-headed flying fox, GHFF, P.
poliocephalus) were captured between June 2015 and September 2018 at eight sites
across three Australian states (Queensland, New South Wales, and South Australia)
(Figure 4.1, Table 4.1). Flying foxes were captured between pre-dawn using mist nets as
they returned from nightly foraging, and anesthetized under veterinary supervision with
inhalant isoflurane [123]. We recorded each bat’s species, sex, weight (nearest g), and
forearm length (nearest mm). Body condition was calculated as the ratio of weight to
forearm length (WFR). Age in years was estimated for South Australia bats (n = 207); all
other bats were assigned to an age class (adult, subadult, or juvenile) based on secondary
sexual characteristics [119]. The number of ectoparasitic bat flies (family Nycteribiidae)
was recorded if present. A fur clipping (~20-80 mg) was taken from the chest or back of
bats. In total, we obtained fur samples from 721 flying foxes at four sites in Queensland
(Goldsborough, Hervey Bay, Redcliffe, Tolga, Toowoomba), two sites in New South
Wales (Tamworth, Woolgoolga) and one site in South Australia (Adelaide; Figure 4.1,
Table 4.1). After all samples were collected, flying foxes were allowed to recover from

anesthesia and released at the capture site.
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Urine was collected from bats captured from four of the eight sites (n = 39; Figure
4.1). We palpated bats’ abdomens gently to express urine and collected samples in 1.5
mL screw-cap tubes (Axygen, Union City, CA). Samples were placed on cooler packs in
the field and later stored at ~ -20°C. Blood smears were prepared for bats captured from
three sites (n = 82; Figure 4.1). Using a 25-gauge needle, blood was drawn from the
cephalic vein and a drop was used to make a thin blood smear in the field.

Fieldwork in Queensland was authorized under section 173P of the Nature
Conservation Act 1992. Fieldwork in New South Wales was authorized under section
132c of the National Parks & Wildlife Act, 1974 (SL101396). Fieldwork in South
Australia was authorized by the Government of South Australia Department of
Environment, Water and Natural Resources (M26371-4). Ethical approval was granted by
the CSIRO Ecosystem Sciences Animal Ethics Committee (13-02), the University of
Adelaide Animal Ethics Committee (S-2015-028), the University of Georgia Animal
Ethics Committee (A2015 03-028-R3), and the Griffith University Animal Ethics

Committee (ENV/10/16/AEC).

Analyses of biological samples

Fur samples were analyzed at Baylor University for ten metals: cadmium, chromium,
cobalt, copper, lead, nickel, selenium; strontium; tin, vanadium, and two metalloids:
antimony and arsenic, following previously published methods [197] (see Supplementary
Material for details). Briefly, fur samples were individually weighed (~0.05 g) and placed
in borosilicate glass tubes (VWR International, Radnor, PA). Batches of 25-30 samples
were digested with nitric acid and hydrogen peroxide in a series of heating and cooling
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steps, then filtered into acid-rinsed Erlenmeyer flasks (VWR International) and diluted in
ultrapure water. Blanks were included for each batch. Human hair standard (Sigma-
Aldrich, St. Louis, MO) was used as a standard reference material, with one reference
sample included for each bat capture site. Samples were analyzed by inductively coupled
plasma mass spectrometry (ICP-MS) using a 7900 ICP-MS (Agilent Technologies, Santa
Clara, CA). Metal concentrations are reported in ng/g.

Following metal analyses, remaining fur samples were sent to Texas Christian
University and analyzed for total mercury (methylmercury + inorganic mercury;
hereafter, mercury) using direct mercury analysis (DMA-80 Direct Mercury Analyzer,
Milestone, Shelton, CT), which uses thermal decomposition, gold amalgamation, and
atomic absorption spectroscopy [198]. Quality assurance included reference (National
Research Council of Canada Institute for National Measurement Standards) and duplicate
samples. Reference samples (DORM-4) were analyzed every 10 samples, and the mean
recovery percentage for DORM-4 was 103 + 4.31% (n = 81). Duplicate samples were
analyzed every 20 samples, and the mean relative difference percentage was 6.83 +
7.05% (n = 44). Limited amounts of hair available for analysis and low concentrations
resulted in some samples (n = 55) falling below the mercury detection limit (0.1 ng,
approximately 0.6 ng/g); these values were subsequently estimated as half of the
detection limit (i.e., 0.05 ng) divided by the sample weight. Mercury concentrations are
reported in ng/g.

Blood smears (n = 82) were examined at the University of Georgia for blood
parasites (order Haemosporida). Smears were stained with Modified Wright’s stain and

the monolayer of each blood smear was scanned at both 500X and 1000X magnifications
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by a board-certified veterinary clinical pathologist (M. Camus). Samples for which one or
more infected erythrocyte were detected were scored as positive for blood parasites.
Urine samples (n = 39) were shipped on cooler packs to the Australian Animal
Health Laboratory (Geelong, Victoria). Samples were condensed into eight pools and
screened for 11 paramyxoviruses (Cedar virus, Geelong paramyxovirus, Grove virus,
Hendra virus, Hervey virus, Menangle virus, Nipah virus, Teviot virus, Tioman virus,
Yarra Bend paramyxovirus, Yeppoon virus) using a multiplex bead X-Tag assay for

nucleic acid detection [199].

Statistical analyses

All statistical analyses were performed in the R computing environment v 3.6.1 [127]. In
initial data exploration, six fur samples were found to have extremely low concentrations
of all metals except mercury. Because these samples were processed consecutively in the
laboratory, we considered it likely that a technical error had occurred and excluded those
values from analyses described below. Due to the extreme range in values, metal
concentrations were log-transformed for further analyses.

We calculated summary values for metal concentrations for the three flying fox
species. We used generalized linear mixed models (GLMMs) to first compare species
differences in metal concentrations while controlling for site. For each metal, we used the
ImerTest package [200] to run a GLMM (gamma distribution, log link) with species as a
fixed effect and site as a random effect. Pairwise comparisons of species means were
made with the multcomp package [201] with a Holm adjustment for multiple
comparisons.
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To determine whether bats captured at sites with greater human impact had higher
metal concentrations, we calculated the average Human Footprint (HFP) score within a
20 km buffer (typical foraging range for flying foxes [202, 203]) around each site. HFP
ranges from 0-50, and is a composite measure of human impacts including population
density, and the proportion of land area assigned to agriculture, built environments, and
transportation. We used the most recent human footprint dataset available (2009) from
Venter and colleagues [66] to calculate this score. We next used a principal component
analysis (PCA) on all metal concentrations in fur to create a composite index of metal
exposure. Metal concentrations were log-transformed, then centered and scaled to have
unit variance. Horn’s parallel analysis supported retention of the first three principal
components [204]. We then used three LMMs [200] (gaussian distribution, identity link)
to test whether site HFP explained variation in PC1, PC2, or PC3. We included species
and sex as fixed effects, and site as a random effect in each model (n = 402).

For bats captured in Adelaide (n = 202 GHFF), we examined the effect of season,
sex, body condition, and age on metal concentrations in fur. We focused on Adelaide
because 1) it was the only site at which bats were captured multiple times in separate
seasons (two summer and two winter sampling periods), and 2) it allowed us to avoid
possible confounding effects of species or site on relationships between metal
concentrations and sex, body condition, and age. We used a separate linear model
(gaussian distribution, identity link) for each metal, with season, sex, WFR, and
estimated age (in years) as predictor variables.

To examine associations between ectoparasites and metal concentrations, we only

considered data from flying foxes caught in Queensland (five sites), as <1% (2/254) of
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flying foxes from New South Wales and South Australia had ectoparasites. We used the
glmmTMB package [134] to run a GLMM (Poisson distribution, log link) to model
ectoparasite burden (number of ectoparasites per bat) as a function of each metal (n =
157). We included species, sex, WFR, and age class (adults versus non-adults) as
additional fixed effects and site as a random effect. We checked for multicollinearity in
the ectoparasite models using the performance package [205]; if any variance inflation
factors (VIFs) were > 10, we sequentially removed predictor variables with the highest
VIF until all remaining VIFs were < 10 [206].

Lastly, we examined the probability of blood parasite infection in GHFF and SFF
captured at three sites (blood smears were not made for one of the four sites where blood
was collected). We used a GLM (binomial distribution, logit link) to model infection
status as a function of each metal concentration in fur, species, sex, WFR, and age class
(n =79). Site was not included to avoid perfect separation of data. We checked for

multicollinearity in the blood parasite models as described above.

RESULTS

Most fur samples used for metal analysis were from BFF (n = 339; 47.0%) and GHFF (n
= 336; 46.6%); the remainder were from SFF (n = 46; 6.4%). GHFF had the largest
spatial distribution, with samples from across nearly ten degrees of latitude and six of
eight sites (Figure 4.1; Table 4.1). Slightly more than half of samples were from females
(n =395, 54.8%). We prepared blood smears for 82 of the 721 flying foxes (Table 4.1,
SFF in Tolga; GHFF in Tamworth and Woolgoolga). Microscopic examination of blood
smears revealed that nearly 60% (48/82) of smears contained intraerythrocytic
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haemosporidian gametocytes [207]. Pooled urine samples (n = 39; SFF in Goldsborough
and Tolga; GHFF in Tamworth and Woolgoolga) were negative for all 11 viruses for

which we screened.

Metal concentrations in relation to species and human footprint

Minimum, median, and maximum values for concentrations of 13 metals measured in fur
are presented in Appendix C Table S4.1. Among fur samples, copper, tin, and strontium
consistently had the highest median concentrations across species, while mercury,
cadmium, and antimony had the lowest median concentrations (Figure 4.2). Controlling
for site, we found significant differences between species in mean concentrations of six
metals (Appendix C Figure S4.1). SFF had significantly higher concentrations of
cadmium and cobalt than BFF and GHFF, and significantly higher concentrations of
selenium than GHFF. BFF had significantly higher concentrations of chromium and
strontium than GHFF, and significantly higher concentrations of vanadium than SFF.
There were no significant pairwise differences among bat species for concentrations of
antimony, arsenic, copper, lead, mercury, nickel, and tin.

Principal component analysis showed support for three principal components for
which adjusted eigenvalues were greater than 1. Specifically, PC1, PC2, and PC3
respectively explained 37.1%, 14.2%, and 11.2% of the variation in metal concentrations
in fur. PCA loadings are provided in Table 4.2; we considered loadings with an absolute
value >0.258 as significant [208]. PC1 was loaded positively by all metals, with eight
metals above this cutoff; we therefore considered PC1 to represent overall metal load.

PC2 had significant positive loadings of arsenic and significant negative loadings of
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cobalt, strontium, and vanadium. PC3 had significant negative loadings of cadmium,
cobalt, mercury, and selenium.

Calculation of human footprint values across sampling locations showed that
Adelaide and Redcliffe had the highest human footprint scores (28.0 and 26.9
respectively); Tamworth, Toowoomba, and Hervey Bay had moderate scores (11.7, 11.1,
and 10.9 respectively); and Woolgoolga, Tolga, and Goldsborough had the lowest scores
(9.3,5.9, and 5.7 respectively). Analysis of associations between metal composite values
(PC1, 2, and 3) and human footprint (LMM analyses) showed a significant positive
relationship between metal PC1 score (overall metal load) and human footprint score (5 =
0.12, SE = 0.020, p = 0.011; Figure 4.3). A post-hoc comparison of species means
showed that SFF had significantly higher metal PC1 scores than GHFF (estimated mean
difference = 1.76, SE = 0.50, p = 0.001). There were no significant predictors of metal
PC2 score. With respect to metal PC3 score, male bats had significantly higher values
than females (# = 0.22, SE = 0.081, p = 0.006), and there were significant differences in
PC3 scores between species (BFF-GHFF = 0.97, SE = 0.34, p = 0.005; BFF-SFF = 3.04,
SE =0.72, p = 6.7 e-5; GHFF-SFF = 2.07, SE = 0.68, p = 0.005; Figure 4.3), but not

among sites with different human footprint values.

Seasonal and individual predictors of metal concentrations

Linear models demonstrated consistent seasonal differences in metal concentrations from
GHFF captured in Adelaide (Table 4.3). Nine metal concentrations in fur (antimony,
arsenic, cadmium, chromium, cobalt, copper, lead, strontium, and tin) were significantly

lower in summer than in winter; concentrations of mercury and nickel were significantly
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higher in summer. There was limited evidence of sex, body condition, and age-associated
differences in metal concentrations. Male bats had significantly lower concentrations of
cadmium, mercury, and strontium than females. Better body condition (higher WFR) was
significantly associated with higher concentrations of mercury and lower concentrations
of tin and vanadium. Age was significantly correlated with higher concentrations of

mercury and tin. We found no significant predictors of selenium concentrations in fur.

Relationships between metals and parasites

We found significant relationships between ectoparasite burden and four of the 13 metals.
In a GLMM, ectoparasite burden was positively correlated with nickel and selenium
concentrations and negatively correlated with cobalt and mercury concentrations (Figure
4.4; Appendix C Table S4.2). There was a positive association (p = 0.051) between
chromium and ectoparasite burden. There were no effects of other metal concentrations
(antimony, arsenic, cadmium, copper, lead, strontium, tin, vanadium), species, sex, WFR,
and age class on ectoparasite burden. We found no significant relationships between
blood parasite infection status and any of the 13 metals, but bats in worse body condition
had a greater probability of blood parasite infection (Appendix C Table S4.3). Infection

status did not vary by species, sex, or age class.

DISCUSSION

Our analysis of metal concentrations in 721 fur samples from three species of flying
foxes captured at eight sites across Australia aligns well with a limited number of prior
studies showing low levels of metal exposure among frugivorous bats [185, 209]. In one
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phylogenetic comparative study of 29 bat species, frugivores generally had the lowest
total mercury concentrations in fur, typically ranging from 10-100 ng/g, compared with
concentrations of 1000-34000 ng/g for most insectivores [210]. Similarly, median total
mercury concentrations reported here were 18.9, 25.1, and 36.8 ng/g for BFF, GHFF, and
SFF respectively. Low mercury concentrations for frugivorous mammals in general has
been attributed to low diet connection to aquatic ecosystems, where mercury
contamination can reach biologically significant levels. Another study reported mean
concentrations of lead in fur for three groups of Australian flying foxes: 1) urban with
liver/kidney concentrations of lead higher than toxic cutoffs in domestic animals (20750
ng/g), 2) urban with liver/kidney concentrations below these cutoffs (5820 ng/g), and 3)
non-urban (850 ng/g) [211]. Median lead concentrations in our study were 1260, 1640,
and 2260 ng/g for BFF, GHFF, and SFF respectively, which are consistent with the two
groups of bats that did not have toxic concentrations of lead in their livers or kidneys.
Importantly, our study provides a substantial dataset for future comparisons of metal
concentrations in flying foxes that are currently experiencing a rapidly changing
landscape in Australia.

Controlling for site, we observed significant species-level differences in
concentrations of several metals. SFF and BFF typically had higher metal concentrations
in fur than GHFF. These differences might be due to dietary differences between flying
fox species [38, 203], or might reflect differences in species distribution. In particular,
SFF have a limited geographic range (far North Queensland [38]). The tropical rainforest
habitat of the SFF might have naturally higher levels of some metals than the sclerophyll

(e.g. eucalypts) habitat of the GHFF and BFF captured in this study; alternatively, the
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two sites at which we caught SFF could be near an unknown anthropogenic toxicant
source.

In support of the idea that human mediated landscape-level changes, including
urbanization and industrial activities, affect fruit bat toxicant exposure, we found a
significant, positive association between metal PC1 score (i.e., overall metal load) and
human footprint values surrounding capture sites. This is consistent with a previous
report of higher Pb concentrations in fur, bones, and tissues of Australian flying foxes
from urban areas, in which urban bats could have been exposed to greater atmospheric
deposition from car and industrial emissions [211]. We also found generally lower
concentrations of metals in GHFF captured in Adelaide in summer (February) compared
to those captured in winter (August). Although the timing of fur moult might influence
metal concentrations [212-214], we found the opposite effect than would be expected
(i.e., lower concentrations after moulting), given that moult has been reported to occur in
June for GHFF [215]. Instead, these seasonal differences in metal levels might also be
linked to land use; specifically, seasonal differences in food availability could drive
changes in foraging movements. Blossoming of flowering species can be scarcer during
winter [118], leading bats to forage more on reliable urban resources [111], which could
expose them to more pollution. While our findings suggest that land use surrounding bat
roosts can influence metal concentrations, flying foxes are highly mobile and can move
long distances between roosts [110]. Therefore, although we know the sites at which bats
were captured, we cannot determine how long a bat has stayed at that site or whether bats

from urban roosts are foraging within the urban environment.
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In contrast to previous work [211, 214], we collected biological samples from
live, outwardly healthy bats, suggesting that the metal concentrations we detected were
not sufficient to cause acute toxicity. However, exposure to metals can have sub-lethal
effects. Indeed, we found that higher concentrations of chromium and nickel in fur were
associated with greater ectoparasite burden. In experimental studies, chromium and
nickel have been demonstrated to have immunosuppressive effects in small mammals,
sometimes causing increased susceptibility to infection and mortality [216, 217]; it seems
plausible that these metals might reduce flying foxes’ immune defenses against
ectoparasites. Another explanation might be that higher metal concentrations cause
lethargy in flying foxes, resulting in lower grooming rates and higher ectoparasite loads.
Finally, instead of a direct link between metal concentrations and ectoparasites, particular
bat roosts could independently have both higher metal concentrations and ectoparasites.

In contrast, higher concentrations of cobalt and mercury were significantly
associated with lower ectoparasite burden. One possible explanation is that these metals
could be toxic to the parasites themselves. A study of mallard ducks found that birds with
higher lead concentrations had both lower intensity and richness of helminths, which was
attributed to direct toxic effects of lead on helminths or upregulation of duck immune
function by lead [218]. Alternatively, higher concentrations of cobalt or mercury could
stimulate bat activity. For instance, common loon chicks with higher mercury
concentrations in blood spent less time riding on their parents’ backs and more time
preening [219]. A third explanation is that ectoparasites could be acting as sinks for
metals; however, this phenomenon is more typically observed with helminths [220].

Future work testing metal concentrations in bat ectoparasites would be valuable.
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Bats as a group face many stressors, including toxicant exposure, habitat loss,
climate change and extreme weather events, disease, and hunting by humans [25, 182].
Our work shows that even frugivorous bats, which are expected to have fewer dietary ties
to toxicants, still face exposure to many metals, and that at least some of these metals
carry a physiological cost in the form of greater parasitism. Looking forward, there is a
crucial need for research on immune effects of toxicants in bats. For example, a study of
vampire bats in Belize linked higher concentrations of total mercury in fur to higher
neutrophil counts and weaker bacterial killing ability [221]. In Australia, flying foxes (in
particular BFF and SFF) can transmit deadly Hendra virus to horses and then to humans;
transmission events typically occur in peri-urban areas, where bats are drawn due to
planted food resources [222]. If these urban areas are also where flying foxes face the
most toxicant exposure, this could contribute to bat susceptibility to infection and viral

shedding, which might increase the potential for spillover infections.
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Table 4.1. Capture site, date captured, species, sex, and age class of flying foxes from which fur samples were analyzed for metal

concentrations. BFF: black flying fox, GHFF: grey-headed flying fox, SFF: spectacled flying fox.

State Site Capture Species Sex Age class Total
date BFF | GHFF | SFF | Female | Male | Adult | Subad. | Juv
New South | Tamworth™’ July 2015 |0 24 0 8 16 10 10 4 24
Wales Woolgoolga™ | July 2015 |1 22 0 9 14 19 4 0 23
Queensland | Goldsborough™ | June 2015 | 0 0 11 3 8 11 0 0 11
Hervey Bay July 2018 | 15 45 0 28 32 39 12 9 60
Redcliffe May 2018 | 53 6 0 30 29 38 7 14
July 2018 | 45 26 0 43 28 18 10 43 190
Sept. 2018 | 60 0 0 27 33 43 7 10
Tolga™ June 2015 | 0 0 35 19 16 31 1 3 35
Toowoomba June 2018 | 46 2 0 28 20 25 5 18
July 2018 | 63 3 0 37 29 35 16 11 171
Sept. 2018 | 56 1 0 26 31 26 7 24
South Adelaide Aug. 2016 | 0 49 0 28 21 Not assessed
Australia Feb. 2017 |0 57 0 40 17 207
Aug. 2017 | 0 48 0 33 15
Feb. 2018 | 0 53 0 36 17
Total 339 |336 46 395 326 295 |79 | 136 | 721

“Urine samples collected at this site

"Blood smears collected at this site
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Table 4.2. Loadings of 13 metals measured in flying fox fur onto three principal

components retained after parallel analysis.

Metal PC1 | PC2 PC3
antimony | 0.35 | 0.10 0.21
arsenic 0.28 |0.34 0.11

cadmium |0.21 | -0.074 -0.57
chromium | 0.35 | -0.00088 | 0.15

cobalt 0.13 | -0.55 -0.35
copper 0.38 ]0.12 0.15
lead 0.33 |0.15 -0.25
mercury 0.019 | 0.20 -0.42
nickel 0.16 |-0.23 -0.073
selenium | 0.27 | 0.17 -0.33
strontium | 0.21 | -0.51 0.17
tin 0.37 |0.15 0.11

vanadium | 0.28 | -0.35 0.23

79



Table 4.3. Output for linear models to examine the effect of season, sex, age and body
condition (WFR: weight to forearm length ratio) on metal concentrations in fur of grey-
headed flying foxes in Adelaide, South Australia. n = 202 for all metals except selenium

(n =200) and mercury (n = 195).

Metal Term Estimate | SE t p
antimony | season(summer) | -0.38 0.070 |-5.45 1.5e-7
sex(male) 0.086 0.065 |1.33 0.19
WFR -0.090 0.054 |-1.66 0.10
age 0.016 0.021 |0.78 0.44
arsenic season(summer) | -0.40 0.089 |-4.51 1.1e-5
sex(male) -0.052 0.083 | -0.63 0.53
WFR 0.088 0.070 |1.26 0.21
age 0.035 0.027 |1.32 0.19
cadmium | season(summer) | -0.68 0.079 |-8.55 3.5e-15
sex(male) -0.17 0.074 | -2.27 0.02
WFR 0.062 0.062 |1.01 0.31
age 0.032 0.024 |1.33 0.19
chromium | season(summer) | -0.30 0.083 | -3.62 3.8e-4
sex(male) 0.11 0.077 |1.45 0.15
WFR -0.049 0.065 |-0.76 0.45
age 0.023 0.025 ]0.91 0.36
cobalt season(summer) | -0.29 0.084 | -3.38 8.7e-4
sex(male) -0.089 0.078 |-1.14 0.26
WFR -0.059 0.066 |-0.89 0.37
age 0.040 0.025 |1.56 0.12
copper season(summer) | -0.33 0.045 |-7.19 1.3e-11
sex(male) -0.017 0.042 |-0.41 0.69
WFR -0.045 0.035 |-1.28 0.20
age -0.0079 | 0.014 |-0.58 0.56
lead season(summer) | -0.87 0.081 |-10.68 | <2e-16
sex(male) -0.12 0.075 |-1.55 0.12
WFR -0.049 0.063 | -0.77 0.44
age 0.0068 0.024 ]0.28 0.78
mercury season(summer) | 0.32 0.077 |4.18 45e-5
sex(male) -0.30 0.071 |-4.30 2.8 e-5
WFR 0.42 0.060 |6.99 45e-11
age 0.062 0.023 | 2.66 0.01
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nickel season(summer) | 0.38 0.18 2.14 0.03
sex(male) -0.22 0.17 -1.31 0.19
WFR 0.19 0.14 1.36 0.18
age -0.088 0.054 |-1.63 0.10
selenium | season(summer) | 0.0051 0.078 |0.066 | 0.95
sex(male) -0.024 0.071 |-0.35 0.73
WFR 0.071 0.061 |1.15 0.25
age 0.028 0.023 |1.21 0.23
strontium | season(summer) | -0.45 0.092 | -4.86 2.3e-6
sex(male) -0.18 0.085 |-2.13 0.04
WFR 0.041 0.072 | 0.57 0.57
age 0.029 0.028 |1.05 0.29
tin season(summer) | -0.21 0.043 | -4.96 1.5e-6
sex(male) -0.035 0.040 |-0.89 0.38
WFR -0.089 0.033 | -2.66 0.01
age 0.032 0.013 | 2.46 0.02
vanadium | season(summer) | -0.11 0.086 |-1.26 0.21
sex(male) -0.0026 | 0.080 |-0.033 |0.97
WFR -0.14 0.067 |-2.09 0.04
age 0.040 0.026 | 1.56 0.12
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Figure 4.1. Map of eastern Australia showing the eight sites where flying foxes were

captured. The area of each bubble corresponds to the number of flying foxes sampled

from that site, with further details provided in Table 4.1. Fur samples were collected from

flying foxes captured at all sites. Urine and blood smears were collected for sites in

orange. Urine was collected for sites in yellow.
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Figure 4.2. Boxplots showing log-transformed concentrations of 13 metals measured in
flying fox fur. Sample sizes for each species—metal combination can be found in
Appendix C Table S4.1. In each boxplot, the middle line represents the median value,
box represents the interquartile range, the whiskers extend to 1.5 times the interquartile
range, and any points beyond this range are plotted separately. BFF: black flying fox,

GHFF: grey-headed flying fox, SFF: spectacled flying fox
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Figure 4.3. Biplot of PC1 versus PC3 with loadings of 13 metals measured in 402 flying
fox fur samples. The shape of each point represents species (BFF: black flying fox,
GHFF: grey-headed flying fox, SFF: spectacled flying fox). Each point is colored
according to the Human Footprint (HFP) score of the capture site. Scores were condensed
into three categories: high (Adelaide and Redcliffe), medium (Tamworth, Toowoomba,

and Hervey Bay), and low (Woolgoolga, Tolga, and Goldsborough).
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Figure 4.4. Predicted counts of ectoparasites as a function of cobalt, total mercury,
nickel, and selenium concentrations in flying fox fur from each respective GLMM. Raw
data are overlaid as points. All metal concentrations are log-transformed and in units of

ng/g. BFF: black flying fox, GHFF: grey-headed flying fox, SFF: spectacled flying fox.
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CHAPTER 5
LANDSCAPE-LEVEL TOXICANT EXPOSURE MEDIATES INFECTION IMPACTS

ON WILDLIFE POPULATIONS*

4 Sanchez CA, Altizer S, Hall RJ. To be submitted to Biology Letters.
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ABSTRACT

Anthropogenic landscape modification such as agricultural intensification and
urbanization can expose wildlife populations to toxicants that have profound effects on
their health and behavior. In particular, toxicants can have complex interactions with
infection dynamics and animal movement. We developed a mechanistic model to
understand the interactive consequences of pathogens and toxicants on a wildlife
population, by exploring toxicant effects on host movement, survival, and pathogen
transmission in a toxicant-contaminated landscape. We found that the proportion of the
landscape contaminated by toxicants was a crucial determinant of pathogen impacts.
When a small fraction of the landscape was contaminated, costs to movement and
survival from toxicant exposure trapped infected animals in contaminated habitats and
reduced landscape-level transmission, especially if toxicant exposure reduced infection
success. However, these effects were reversed when the majority of the landscape was
contaminated. Intermediate levels of landscape contamination minimized infection
prevalence and maximized the density of infected hosts in contaminated habitat, a proxy
for the risk of pathogen spillover to humans. These results highlight how sublethal effects
of toxicants can be crucial determinants of pathogen impacts on wildlife populations that

may not manifest until landscape contamination is widespread.
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INTRODUCTION

Anthropogenic toxicants such as persistent organic pollutants, heavy metals, and
pharmaceutical products are widespread [223-225] and have profound effects on wildlife
health and behavior [178, 226-228]. Urban wildlife populations tend to have higher
toxicant loads than nonurban populations [172] and may be especially at risk of negative
health effects. Toxicant exposure has been linked to increased infection susceptibility due
to immune suppression [229], notably in marine mammals [230, 231] but also birds
[232], amphibians [233], and fish [234]. For instance, green frog (Rana clamitans)
tadpoles exposed to pesticides experienced greater encystment by trematode cercariae
[235], which was attributed to immunosuppressive effects of the pesticides. Toxicants
might also increase infection in a population by inducing greater production of infectious
stages, as observed in snails that shed more cercariae when exposed to the herbicide
glyphosate [236].

However, toxicants could also reduce infection in a wildlife population, such as
by Killing or depressing the production of free-living parasite stages (e.g. pesticide effects
on the amphibian fungus Batrachochytrium dendrobatidis [237]). Toxicants can also
reduce aggression [238], decreasing the likelihood of infectious contacts between
individuals. Heavy metals can upregulate immune function in some species (e.g. lead in
mallards [218], copper in blow flies [239], which could reduce susceptibility to parasites.
A mechanism that could reduce transmission of density-dependent pathogens is toxicant-
driven declines in host density [240, 241].

Sometimes toxicants and infection act in concert to produce unexpected effects

[242]. Their combination may be detrimental to a host, as observed with juvenile
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roundhead galaxias (Galaxias anomalus) that exhibited no changes in survival when
exposed to a trematode parasite or glyphosate singly, but reduced survival when exposed
to both [236]. In other cases, toxicants and infection together may benefit a host. For
instance, zebrafish (Danio rerio) infected with a bacterial pathogen and exposed to a high
dose of phenanthrene (a polycyclic aromatic hydrocarbon) had higher survival than
uninfected fish exposed to the same phenanthrene dose [243], while bumblebees (Bombus
terrestris) inoculated with a microsporidian parasite and exposed to a pesticide exhibited
improved learning [244]. These studies underscore the importance of considering the
effects of toxicants and infection on wildlife together, rather than in isolation.

In addition to altering infection outcomes, toxicants have been shown to affect
animal movement, both in the laboratory (e.g. decreased and increased activity in fish
exposed to heavy metals [245]) and the wild (e.g. lower flight height and movement rate
in golden eagles (Aquila chrysaetos) exposed to lead [246]). Toxicants can reduce
movement directly by causing physical deformities [90, 174] or indirectly (e.g. impaired
memory and collision avoidance in insects exposed to neonicotinoid pesticides [247,
248]). If habitats contaminated by toxicants attract wildlife (e.g. agricultural crops treated
with pesticides [249]; artificial wetlands constructed to treat wastewater [250]), but then
impair subsequent movement, these habitats could act as ecological traps. For example,
migrating white-crowned sparrows (Zonotrichia leucophrys) experimentally dosed with a
neonicotinoid insecticide at a stopover site exhibited reduced feeding, rapidly lost body
fat, and needed extra time before they were ready to continue migrating [173].

Although previous work has explored how toxicants can interact with infection at

a local scale [240, 242, 251], it is currently unknown how the ubiquity of toxicant-
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contaminated habitats across landscapes used by wildlife influence population viability
and infection dynamics at larger scales, especially when toxicants have sublethal effects
on infection susceptibility and animal movement. Here, we develop a compartmental
model of host-parasite dynamics to study joint effects of toxicants and infection for a
wildlife species whose range includes toxicant-contaminated habitat. We further place
our model in the context of urbanizing landscapes, where we expect more humans and
higher toxicant levels (e.g. due to industrial pollution, transportation emissions, pesticide
application). Specifically, we explore how population and infection dynamics respond to
varying 1) the amount of toxicant-contaminated landscape and 2) the effects of toxicants
on infection, movement, and survival. We examine three outcomes of interest: population
size, infection prevalence, and the density of infected animals in toxic habitat as a proxy

for the risk of pathogen spillover from animals to humans.

METHODS

Model development and parameters

We categorize animals according to their infection status and location as susceptible (S)
or infected (1), with the subscripts T and P denoting occupancy of “toxic” habitat
(contaminated by toxicants) or “pristine” habitat (free from toxicants). The parameter f
represents the fraction of the overall landscape that is contaminated; thus 1 — f represents
the fraction of the landscape that is pristine. Animals in toxic habitat potentially incur
costs to fecundity, survival, and movement, and increased or decreased transmission risk.

A schematic of the model is provided in Figure 5.1.
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Demography: Animals are born into the susceptible class at a density-dependent
rate. In both habitat types the maximum per capita birth rate is bo and the density-
dependent term in each type reflects the relative amount of pristine and toxic habitat (b1 /
(1 1) and b1/ f respectively). In pristine habitat, susceptible animals experience
mortality at rate m. In toxic habitat, susceptible animals experience mortality at rate m /
(1 — cm), where cm represents the mortality cost imposed by negative effects of toxicants.

Infection: Density-dependent pathogen transmission occurs in pristine and toxic
habitat at respective rates fp and fr. In pristine habitat, infected animals experience
mortality at rate m + x, where w is the additional disease-induced mortality. In toxic
habitat, infected animals experience mortality at rate (m + 1) / (1 — acm), where o controls
the net effect of being infected while in toxic habitat on survival. If a is < 1, being in
toxic habitat offsets the negative consequences of infection (e.g. toxicants stimulate
immune defense), while if « is > 1, being in toxic habitat amplifies disease-induced
mortality (i.e. greater than additive effects of toxicants and disease on survival). In both
habitat types, animals recover from infection at rate v.

Movement: Animals disperse at per capita rate ¢ in pristine habitat and ¢ (1 — Cy)
in toxic habitat, where c, is the cost of toxicants on dispersal. The probability that
animals switch habitats during dispersal depends on the relative frequencies of each
habitat type. If an animal moves between habitats, it maintains its infection status.
However, when an animal disperses out of toxic habitat, for simplicity we assume it
immediately “recovers” from all ill effects of toxicants. The differential equations
describing the model are provided below, and a summary of model parameters and their

default values appears in Table 5.1.
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dditp = (bo — bl(f+;lp))(sp +1Ip) —mSp = BpSplp + vIp —0fSp + (1 — c5)(1 — f)St Eq. 1
L = BpSplp — (m + W]p = YIp = of Ip + o(1 = ) (1 = Nl Eq. 2
= (bo - MS++IT))(5T +1r) = 2 Sr = BrSrlr +yIr + ofSp —o(1—c)(1 = f)Sr Eq.3
U = BrSely — T iy + oflp — o (1= ¢)(1 = Dy Eq. 4

Model parameterization and analysis

Our model was motivated by a hypothetical flying fox (fruit bat) host species infected
with a virus. These animals feed on fruiting and flowering plant species in natural, urban,
and agricultural landscapes [35, 110], where they face exposure to toxicants including
pesticides and heavy metals [184, 185]. In natural forested landscapes, flying foxes roost
communally in camps and periodically relocate as food sources are depleted [109, 252].
In human-altered habitats where food availability is more stable (and where toxicant
exposure is more likely), camps persist longer through time [36]. Additionally, flying
foxes are reservoirs of pathogens that can be transmitted to domestic animals and
humans, notably Hendra and Nipah viruses [253]. In order for our model to apply more
generally to other wildlife species, and given uncertainty on how viruses circulate in bats
[254], we model transmission as a simple density-dependent process with no lasting
immunity from infection. Further details of model parameterization are provided in
Appendix D, describing demographic, dispersal, and infection parameters relevant to

flying foxes and their viruses. To explore the generality of our findings to other systems,
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extensive sensitivity analyses were performed by co-varying multiple model parameters
using Latin Hypercube Sampling [255].

We examined three outcomes of interest in our analyses. The landscape-level
effects of toxicants and infection on population viability were quantified by the
equilibrium population size, N* = Sp+ Ip+ Sp + I1. The net effect of contaminated habitat
on landscape-level infection processes was quantified by the equilibrium infection
prevalence, P* = (Ip + I1) / N*. We defined “spillover risk” as the density of infected
animals in toxic habitat, since we assumed this is where humans and wildlife are most
likely to co-occur. Spillover risk was quantified as the total number of infected animals in
toxic habitat divided by the habitat’s relative frequency, p = I+* / f, and thus represents
the total number of infected animals if 100% of the landscape was contaminated.

For each landscape contamination scenario, we initiated the model with 50,000
hosts, 100 of which were infected with a virus; hosts were distributed between toxic and
pristine habitats according to the relative proportion of those habitats in the landscape.
We imposed a low cost of toxicants on survival, and a moderate synergistic effect of
infection and toxicants on survival. We explored six cases in which we co-varied the
pathogen transmission rate in toxic habitat relative to pristine habitat, and the cost of
toxicants on dispersal. The three scenarios for transmission were: the pathogen is less
transmissible in toxic habitat (5t < fp); no difference in transmission between habitat
types (Bt = fp); and the pathogen is more transmissible in toxic habitat (5t > fp). For
these three scenarios the cost of toxicants for host dispersal was either low (¢, = 0.2) or
high (c, = 0.8). All other model parameters were held constant across simulations (Table

5.1).
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To explore how wildlife population and infection dynamics are affected by
increasing contamination on the landscape, we varied the fraction of the landscape that is
contaminated, f, from 1% to 99%, representing the transition from a totally pristine
landscape to a totally contaminated one. For each value of f, we recorded the population
size, infection prevalence, and spillover risk after 50 years (simulations revealed that 50
years was sufficient for populations and infection to reach an equilibrium). All model
analyses were performed in R version 3.6.1 [127], and we used the deSolve package
[256] to solve the system of differential equations.

We also explored the sensitivity of infection prevalence to parameter variation
using Latin hypercube sampling. We varied five parameters related to toxicants,
infection, and movement: transmission in toxic habitat (1), infection-induced mortality
(), the cost of toxicants to movement (c,), the cost of toxicants to survival (cm), and the
net effect of being infected while in toxic habitat on survival («); parameter ranges are
provided in Appendix D Table S5.1. Using the Ihs package [257], we generated 5000
samples from a Latin hypercube design in which parameters were distributed uniformly
and retained samples for which o < 1/cm. To derive partial rank correlation coefficients
(PRCCs) between parameters and equilibrium infection prevalence we used the
sensitivity package [258]. We performed sensitivity analyses for three values of f

representing low, intermediate, and high levels of toxic habitat in the landscape.
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RESULTS

Scenario 1: Toxicants have a small movement cost

We visualized population size, infection prevalence, and spillover risk as a function of f,
the fraction of the landscape contaminated by toxicants (Figures 5.2 and 5.3). In the
absence of infection, host population size declines monotonically with the extent of
landscape contamination (Figure 5.3A). However, the magnitude of the decline is low,
even at high values of f, indicating largely sub-lethal effects of toxicant exposure in the
absence of infection. In the presence of infection, population size initially increases with f
at low levels of landscape contamination, then decreases (Figure 5.2). The initial increase
is driven mainly by an increase in susceptible hosts in toxic habitat, reflecting reduced
transmission at low host density and higher mortality of infected individuals there.
Further, since toxicant exposure reduces dispersal rates, infected hosts are less likely to
return to pristine habitat to transmit infection. As f increases and pristine habitat shrinks,
density-dependent transmission and host population size in pristine habitat declines. In
toxic habitat, reduced host dispersal capacity causes overcrowding, which reduces
reproduction through density-dependent effects, and increases both transmission and
mortality from combined effects of toxicants and infection. Together these result in
overall population declines. When transmission risk is lower in toxic than pristine habitat,
toxic habitat acts as a sink for the pathogen (Figure 5.3A, dotted line); host population
size increases with f even when more than 50% of the landscape is contaminated, and
relatively small population declines occur only when almost all of the landscape is

contaminated. Conversely, when transmission is enhanced in toxic habitat (Figure 5.3A,
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dashed line), the combined effects of toxicants and infection drive more severe
population declines in an increasingly contaminated landscape.

Increasing the proportion of toxic habitat also has non-linear effects on infection
prevalence (Figure 5.3B), with overall prevalence decreasing with f until more than half
of the landscape is contaminated, and then increasing. This reflects the relatively large
reduction in transmission in pristine habitat as the landscape becomes contaminated,
which is outpaced by an increase in transmission in toxic habitat once it is the commonest
habitat type. Prevalence drops further, and over a larger range of f, when transmission is
lower in toxic habitat, while prevalence remains relatively high when habitat
contamination increases transmission.

Spillover risk (i.e. the density of infected individuals in toxic habitat) has a hump-
shaped relationship with landscape contamination (Figure 5.3C). When transmission is
the same in each habitat type, spillover risk is highest when approximately 50% of the
landscape is contaminated. Spillover risk is much lower, and maximized when most
habitat is contaminated, when toxicants reduce transmission. Conversely, when toxicants
increase transmission, peak spillover risk is higher and occurs at a lower value of f (i.e.
before most of the landscape is contaminated). Across all scenarios, as an increasing
fraction of the landscape becomes contaminated, population size is maximized first (i.e.
at a lower value of f), followed by the peak in spillover risk, followed by the minimum in

overall infection prevalence.
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Scenario 2: Toxicants have a large movement cost

Increasing the cost of contamination on dispersal results in more severe impacts on
population size across all transmission scenarios (Figure 5.3D). When transmission in
toxic habitat is greater than or equal to transmission in pristine habitat, the population
size decreases monotonically with increasing landscape contamination (Figure 5.3D).
When transmission is lower in toxic habitat, population size initially decreases at very
low f, but then increases with increasing f. However, infection still strongly regulates the
population to less than 60% of the disease-free population size. Compared to when the
cost to dispersal is low, infection prevalence drops more rapidly to a lower minimum
(Figure 5.3E), and spillover risk increases more rapidly to a higher maximum (Figure
5.3F); minimum prevalence and maximum spillover risk both increase with the

transmission rate in toxic habitat.

Sensitivity analyses

Increases in disease-induced mortality, costs of toxicants on survival, and combined
effects of toxicants and infection on mortality had a strong negative effect on infection
prevalence for all three levels of landscape contamination (f = 0.1, f =0.5, and f = 0.9;
Appendix D Figure S5.1). In contrast, increasing pathogen transmission in toxic habitat
had a positive effect on prevalence. Increasing the cost of toxicants on movement had a
negative effect on prevalence at low and intermediate levels of landscape contamination
and no effect on prevalence at a high level of landscape contamination. Upper observed

prevalence values from Latin Hypercube Sampling were ~0.8.
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DISCUSSION

Many wild species are found in increasingly human-modified landscapes, potentially
influencing their exposure to toxicants. We developed a mechanistic model to understand
the consequences of toxicant exposure on host-pathogen dynamics, through sub-lethal
effects of toxicants on host movement and behavioral or immunological effects on
transmission risk, as well as synergistic lethal effects of infection and toxicant exposure.
While toxicants had little negative effect on host population size in the absence of
infection, we found that the extent of contaminated habitat across the landscape could
enhance or reduce impacts of infection on host populations. Contaminated habitat can
potentially act as a sink for pathogens when most habitat is pristine, but typically
exacerbated pathogen-related declines once the majority of the landscape was
contaminated. In landscapes that became increasingly contaminated over time, we
consistently found that population declines preceded the maximum spillover risk. The
largest population impacts of the pathogen were seen when infection prevalence was
lower in more contaminated landscapes, indicating high mortality from the combined
effects of infection and toxicants.

Unexpectedly, we found cases in which toxicants can benefit a wildlife
population. Population size can increase when the landscape changes from being totally
pristine to having a small fraction of toxic habitat. When rare, toxic habitat may reduce
transmission of density-dependent pathogens, prevent infected animals from returning to
pristine habitat if toxicants reduce movement, and purge infected individuals from the
population through elevated mortality. Further, if toxicants lower transmission of a

virulent pathogen, then increasing landscape contamination can lead to higher maximum
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population size and a net increase in population compared to a pristine landscape.
Moderate toxicant-induced movement costs conveyed some benefits to host populations
by trapping infected individuals in contaminated habitats; however, when movement
costs were too high, the net effect on population size tended to be negative, since
contaminated habitats become overcrowded, reducing density-dependent fecundity and
increasing toxicant-induced mortality of uninfected and infected individuals.

Our results suggest that animal species whose movement is severely impaired by
toxicants could be most negatively affected by landscape contamination. For example,
amphibians closer to agricultural areas or lawns have been shown to have higher risk of
limb malformations, likely due to pesticide exposure [259]. In one study, deformity rates
of newly-metamorphosed toads reached nearly 50% at some sites, though it was unclear
whether deformity was due to pesticides, heavy metals, parasite infection, or a
combination of factors [90]. Future work could examine the impact of malformations on
dispersal ability in amphibians, and investigate the degree to which other vertebrate
species experience toxicant-induced deformities [260] or other impairments to
movement.

A previous model that explored effects of environmental stressors (e.g.
eutrophication, heavy metals) on host disease dynamics found that negative, positive, and
non-linear relationships between stress and disease were possible, but that increasing
stress generally reduced disease due to stress-mediated declines in host density [240].
This model assumed that contamination affected the entire environment, and that stress
increased susceptibility to infection [240]. By incorporating toxic and pristine habitats in

our model, and creating scenarios in which transmission could be lower in toxic habitat,
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we found that host population size could increase while infection prevalence still
decreased.

Our model made several simplifying assumptions that may not hold in other
systems. For example, we assumed that an animal immediately recovers from all ill
effects of toxicants if it moves out of toxic habitat. However, some toxicants can
accumulate in the body (e.g. heavy metals like chromium and nickel [261]), which could
potentially reduce or negate any beneficial effects of reduced pathogen exposure. Model
extensions could allow toxicant concentrations to accumulate in hosts as they stay longer
in toxic habitat, and for toxicants to decrease gradually when hosts leave. Adding
different host age and sex classes could also allow inclusion of maternal transfer of
toxicants (e.g. through placental transfer or lactation [262]). Additional work could also
consider how movement could act as a stressor, revealing negative effects of toxicants.
For instance, severe energy expenditure can mobilize toxicants stored in body fat, as
observed in Mexican free-tailed bats (Tadarida brasiliensis) that experienced pesticide
poisoning after being subjected to simulated migratory flight [263].

Our work suggests that increasing urbanization, if accompanied by greater levels
of toxicants, could cause drastic declines in wildlife populations facing other stressors
such as infectious disease. Only very low landscape contamination was beneficial for
population size, as toxic habitat offered a refuge from infection. When considering
population viability, wildlife managers should seek to assess multiple health metrics in a
focal species, including toxicant exposure and infection prevalence, and also consider the

degree of contamination in the surrounding landscape.
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Table 5.1. Model parameters with definitions, units, and values used to produce figures.

Process Parameter Definition Units Value
Demography m Natural death rate 1/year 0.1
bo Maximum per capita birth rate 1/host/year 0.4
b1 Density-dependent per capita birth 1/host/year (bo-m)/50000
rate
Cm Cost of toxicants to survival 0.2
Infection Bp Transmission rate in pristine habitat 0.006
Pt Transmission rate in toxic habitat 0.0015, 0.006, 0.0105
y Recovery rate 1/year 36.5
U Disease-induced mortality 1/year 0.25
a Effect of infection and toxicants on 2
survival
Movement f Fraction of the overall landscape 0.01-0.99
that is contaminated
o Per capita dispersal rate 1/movement/year -log(0.1)
Co Cost of toxicants to dispersal 0.2,0.8
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Figure 5.1. Schematic of the toxicant-infection model. A. Boxes represent the number of
Susceptible (S) or infected (1) individuals in pristine (P) or toxic (T) habitat. The
parameter f represents the fraction of the overall landscape that is contaminated by
toxicants; thus 1 — f represents the fraction of the landscape that is pristine. Horizontal
arrows represent movement between pristine and toxic habitats, vertical arrows represent

transitions between the susceptible and infected classes (i.e. infection and recovery), and
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diagonal arrows represent demographic processes (i.e. births and deaths). Dotted lines
represent processes that could be affected by toxicants (movement out of toxic habitat,
pathogen transmission in toxic habitat, and deaths in toxic habitat). B. Figure showing
differential mortality based on infection status (susceptible or infected) and habitat type
(pristine or toxic). In pristine habitat, susceptible animals experience only natural
mortality, while infected animals experience natural and disease-induced mortality. In
toxic habitat, susceptible animals experience natural mortality and mortality imposed by
toxicants. Infected animals experience natural mortality, disease-induced mortality, and
toxicant-induced mortality. Being infected while in toxic habitat can also produce greater

than additive effects on mortality.
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Figure 5.2. Equilibrium population sizes as a function of the proportion of toxic habitat
in a population infected by a virulent pathogen. The overall population size across the
landscape is denoted by the thick black line. Susceptible and infected host population
sizes are denoted by solid and dashed lines, respectively, with the line color indicating the
population size in pristine (blue) and toxic (red) habitats. Here, the transmission rate is
assumed equal across habitat types (6t = fp = 0.006) and the cost to dispersal from toxic

habitat is relatively low (c, = 0.2); other parameter values are provided in Table 5.1.
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Figure 5.3. Population size, infection prevalence, and spillover risk (the density of
infected animals in toxic habitat) plotted as a function of the proportion of toxic habitat in
the landscape. Rows indicate scenarios where the cost to dispersal from toxic habitat is
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(A-C) low (¢, = 0.2) or (D-F) high (c, = 0.8). Pathogen transmission in pristine habitat is
constant (Bp = 0.006). Line style indicates the three scenarios for transmission rate in
toxic habitat: less than, equal to, or greater than Sp (7 = 0.0015, 0.006, and 0.0105;
dotted, solid, and dashed lines, respectively). Population size in the absence of infection
is also shown for comparison in panels A and D (dashed-dotted line). Other parameter

values are provided in Table 5.1.
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CHAPTER 6

CONCLUSIONS
The overarching aim of this dissertation was to examine how urban landscape features,
including altered resources and exposure to toxicants, affect wildlife behavior, health, and
infectious disease. | first used meta-analytic techniques to quantify the impacts of
urbanization on four wildlife health metrics (Chapter 2). I next tracked the foraging
movements of urban flying foxes in Adelaide, South Australia and identified key
predictors of their movement (Chapter 3). | then quantified metal concentrations in fur of
flying foxes captured at eight locations across Australia and assessed relationships
between metals and human land use, as well as flying fox parasitism (Chapter 4). Finally,
| built a mechanistic model to explore interactive effects of toxicants and infectious
disease on population size and disease dynamics of wildlife in an increasingly
contaminated landscape (Chapter 5).

A main result of Chapter 2 was that comparisons of toxicant loads between urban
and non-urban wildlife populations were heavily dominated by negative health
relationships (i.e. greater toxicant concentrations in urban wildlife). However, our dataset
had geographic and species biases, demonstrating gaps for future research. For instance,
we identified few studies conducted outside of North America and Europe, and no health
comparisons of urban and non-urban bat populations, even though bats make up
approximately 20% of all mammal species [264]. In Chapter 4, | assessed metal

concentrations in flying foxes captured at sites ranging in human impact, as measured by
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human footprint scores. The results of this work supported the pattern found in Chapter 2,
as flying foxes captured in sites surrounded by higher human impact had greater overall
metal loads.

Fur samples were collected from live, outwardly healthy flying foxes, suggesting
that the metal concentrations we measured were not sufficient to cause acute poisoning in
the animals. Yet results of Chapter 5 show that in the presence of an infectious pathogen,
sublethal effects of toxicants on movement and survival can cause a substantial decrease
in wildlife population numbers. This is especially relevant to Australian flying foxes, as
these animals host a variety of pathogens, among them Hendra virus and other
paramyxoviruses [265]. | found that spectacled and black flying foxes typically had
higher metal concentrations in fur than grey-headed flying foxes (Chapter 4); spectacled
and black flying foxes are also considered primary reservoirs for Hendra virus [266, 267]
suggesting that these species may be especially at risk of interactive toxicant—infection
effects.

Metal exposure might also increase susceptibility of flying foxes to other stressors
such as extreme heat events [268], cyclones [269], or food shortages [252]. Future work
could compare metal concentrations, for example, in fur of flying foxes that survive or
die during a heat stress event to test whether metals are a risk factor. Food shortages
might be even more likely to reveal negative effects of metals or other toxicants on
survival, as toxicants could be mobilized from storage in the body as resources are
depleted. Determining the clinical effects of toxicants on flying fox health is an important

topic for future research.

109



Though Chapter 2 demonstrated an overall negative effect of urbanization on
wildlife health, it also provided ample support for health benefits, with nearly 40%
(190/516) of records in the dataset reporting a positive urbanization—health relationship.
Results from this work hinted that urban mammals may have better body condition than
their non-urban counterparts. My finding that Adelaide flying foxes that foraged closer to
the roost and at fewer sites were in better body condition (Chapter 3) suggests that one
way urban areas improve wildlife body condition is by providing reliable food resources
nearby, thereby decreasing energy expenditure. Though there has been some research
comparing nutritional values of agricultural versus native fruits [42], future work to
assess nutritional content of urban resources used by flying foxes would be valuable, as
would more nuanced measures of body condition for flying foxes. Extending to other
species, body condition was the least studied health metric in the meta-analysis dataset
(12% of records; Chapter 2), revealing a need for more research on how body condition is
affected by urbanization. Improved methods to assess body condition for wildlife would
be an important first step to understand how condition varies in urban and non-urban
populations [63].

In Chapter 5, we assumed that toxicant exposure and pathogen transmission occur
within the same habitat; for example, animals drawn to a constructed wetland used to
treat wastewater could be exposed to heavy metals and be infected by conspecifics.
However, for central-place foragers such as flying foxes, which roost at one site during
the day but forage at several sites during the night, toxicant exposure could occur
separately from infection (e.g. exposure to pesticides at feeding sites, but infection at the

roost where bats are aggregated). Future work could explore modeling frameworks that
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explicitly compare infection dynamics for species that roost communally and disperse to
forage across contaminated and uncontaminated habitats. In general, it would be useful to
investigate the routes by which different species uptake different toxicants.

In the meta-analysis of Chapter 2, urban populations of birds and mammals
exhibited a (statistically non-significant) pattern of having less parasitism than non-urban
populations. Similarly, results of Chapter 5 showed that increasing landscape
contamination caused a decline in infection prevalence over low to intermediate levels of
contamination. However, at high landscape contamination, infection prevalence began to
rise again. The studies included in our meta-analysis dataset ranged in urbanization, as
measured by human footprint scores (0.7 to 24.9), but did not represent the upper limits
of urbanization (maximum human footprint value of 50). Future work comparing
parasitism measures of urban and non-urban wildlife might reveal non-linear or positive
relationships between urbanization and infection if wildlife are captured at sites
encompassing a larger urbanization gradient.

As more wildlife are acclimating to urban areas, it is essential to understand how
their foraging resources, behavior, and health are changing. Seeing urban wildlife can
excite and inspire humans, but can also cause conflict. Depending on the species, we may
want to attract some animals to urban areas by providing resources that can sustain
healthy populations, yet exclude others by making urban habitat less attractive or
providing resources in natural areas. Flying foxes are one example of a group that may
increasingly require new management strategies to keep populations healthy while
reducing public health risk; this dissertation provides new data that could help guide

management decisions.
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Supplemental methods

Systematic search details

We identified published studies on urban wildlife health through Web of Science and
CAB Abstracts using the following search strings: (*urban* OR city OR cities OR town)
AND (health OR disease OR pathogen OR infect* OR *parasite OR bacteria* OR virus
OR fung* OR ecto* OR helminth* OR condition OR survival OR stress OR tox*) AND
(wild*), with restrictions on research area. The Web of Science search was restricted by
language (ENGLISH), citation index (SCI-EXPANDED), and research area (ECOLOGY
OR EVOLUTIONARY BIOLOGY OR ENVIRONMENTAL SCIENCES OR
VETERINARY SCIENCES OR BIODIVERSITY CONSERVATION OR ZOOLOGY
OR PARASITOLOGY OR PUBLIC ENVIRONMENTAL OCCUPATIONAL HEALTH
OR INFECTIOUS DISEASES OR MICROBIOLOGY OR TOXICOLOGY OR
PATHOLOGY OR MYCOLOGY OR IMMUNOLOGY OR HEMATOLOGY OR
ENVIRONMENTAL STUDIES OR ENTOMOLOGY OR BIOTECHNOLOGY
APPLIED MICROBIOLOGY OR GASTROENTEROLOGY HEPATOLOGY OR
VIROLOGY OR ONCOLOGY OR BIOLOGY OR ORNITHOLOGY OR
ENDOCRINOLOGY METABOLISM OR URBAN STUDIES). The CAB Abstracts
search was restricted by language (English), publication type (academic journals), and

research domain (ecology and environmental sciences).

Statistical analysis
To assess differences in research effort over time, we tabulated the number of records per

year and by taxonomic group and health metric. We fit two generalized linear models
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with Poisson errors, one with the interaction between year and taxonomic group and
another with the interaction between year and health metric.

To examine relationships between urbanization and wildlife health, we used a
hierarchical phylogenetic meta-analysis framework with study and species as random
effects [270]. We nested observation within study to account for pseudoreplication, as
72% of studies had multiple effect sizes. To account for phylogenetic dependence, the
covariance structure of the species random effect used the correlation matrix of an animal
phylogeny obtained from the Open Tree of Life with the rotl and ape packages [271-
273]. All models had the same random effects fit with rma.mv in the metafor package
[62].

We first used a random effects model (REM) to estimate the overall relationship
between urbanization and wildlife health (ie the mean effect size) across our full dataset
(n =516). To then identify the primary predictors of effect size, we fit a set of mixed-
effect models (MEMS) that considered animal taxonomic group, health metric, life
history (aquatic versus terrestrial), and their two-way interactions. We excluded the
MEM with an interaction between life history and taxonomic group because we lacked
complete data for all combinations of the levels of these variables). From each model, we
derived a pseudo R? using the variance components [274]. We used maximum likelihood
(ML) to compare models with AlCc [137], and refit MEMs with REML to derive R?. We
considered MEMs with AAICc < 2 to be competitive, and visualized top MEMSs by back-
transforming Zr into r. For the REM, we used the REML-estimated variance components

to quantify I1? as a measure of heterogeneity.
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Given the results of this analysis (health metric had more explanatory power than
animal taxonomic group), we stratified our data by each health metric dataset to test
support for animal, parasite, and environmental traits as mechanisms that underlie
relationships between urbanization and wildlife health. That is, we fit four sets of MEMs,
with a separate model set for each health metric dataset. Six predictor variables were
common to the global MEM for each dataset: animal taxonomic group, life history, mean
country human footprint (average global human footprint score of the country in which a
study was located), country gross domestic product (GDP; log-transformed), the
interaction between mean country human footprint and life history, and the interaction
between country GDP and life history. In addition to these six variables, each global
MEM for the four datasets included dataset-specific predictor variables. The global MEM
for the body condition dataset (n = 60) included how condition was quantified (raw
measure of mass or size, mass adjusted for length, or qualitative scores) as a predictor
variable. The global MEM for the parasitism dataset (n = 194) included the following
predictor variables: parasite type (microparasite, macroparasite), parasite measure
(whether infection status was measured as a binary variable, infection intensity, or
parasite richness), if the parasite is transmitted via close contact, non-close contact,
vectors, or an intermediate stage (four separate binary variables), if the parasite is
transmitted by one versus multiple transmission routes (binary), the interaction between
parasite type and mean country human footprint, the interaction between parasite type
and country GDP, the interactions between parasite type and the five transmission route
variables, and all two-way interactions among the transmission route variables. The

global MEM for the toxicant dataset (n = 189) included toxicant type (whether toxicants
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were metals or non-metals (eg pesticides)), the interaction between toxicant type and life
history, the interaction between toxicant type and mean country human footprint, and the
interaction between toxicant type and country GDP as predictor variables. The global
MEM for the stress dataset (n = 73) included stress measure (whether stress metrics were
based on glucocorticoid levels (eg hair cortisol), leukocyte profiles (eg HL ratios), or
other measures (eg oxidative damage, blood glucose)), the interaction between stress
measure and life history, the interaction between stress measure and mean country human
footprint, and the interaction between stress measure and country GDP as predictor
variables. We excluded any MEMs containing an interaction between two predictor
variables if we lacked data for any combination of the levels of these variables). We
generated candidate sets of all possible MEMs per dataset with the MuMIn package
[138], limiting each candidate MEM to four predictors to ensure that the number of
models considered did not exceed the sample size for each dataset [137]. We again used
AICc to compare candidate models within each dataset.

To understand the influence of urban development, we examined the subset of
data for which site location was provided (n = 302), allowing us to calculate the average
GHF score across the most and least urban sites within a study (the mean urbanization),
the quantitative difference in GHF scores between the most and least urban sites in a
study (the difference in urbanization), and the change in study site GHF scores from 1993
and 2009 (the change in urbanization). We compared a set of MEMs that included either
the mean urbanization, the difference in urbanization, the change in urbanization (each

calculated at 1-km and 10-km buffers; six models), or the distance between the most and
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least urban sites. We also considered each of these seven urbanization metrics in an

interaction with health metric and with animal taxonomic group.
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Table S2.1. ANOVA table from generalized linear models (Poisson errors) assessing

research effort over time and according to health metric and taxonomic group

x p

Counts ~ year*health

Year 353.55 <0.001
Health 127.71 <0.001
Year:health 21.46 <0.001
Counts ~ year*taxonomy

Year 353.55 <0.001
Taxonomy 216.79 <0.001
Year:taxonomy 24.98 <0.001
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Table S2.2. Ranking of mixed-effects models (MEMs) predicting effect size for the relationship between urbanization and wildlife
health for the full dataset, for each health metric dataset, and for studies where we obtained quantitative data on urbanization between

extreme sites; models are ranked by AAICc with the number of parameters (k), pseudo R? and Akaike weights (wi)

MEM s fit to full dataset (n = 516) k R? AAICc  wi
~ health metric + taxonomic group + health metric:taxonomic group + 1 17 029 O 1
~ life history + health metric + 1 014 1273 O
~ health metric + 1 0.12 1494 0
~ health metric + taxonomic group + 1 0.15 1551 0
~ life history + health metric + life history:health metric + 1 0.11 15.67 0
~ life history + 1 0.05 2066 O
~1 0 2531 O
~ taxonomic group + 1 0.04 26 0
MEM s fit to toxicant dataset (n = 189) R? AAICc  wi
~ taxonomic group + 1 021 O 0.68

0.1 5.07 0.05
0 6.2 0.03
0.08 7.12 0.02
0.07 7.17 0.02
0.08 7.18 0.02
0.05 7.49 0.02
0.09 7.57 0.02
0.13 7.76 0.01
0.08 7.93 0.01
0.1 8.04 0.01
0 8.1 0.01
0 8.15 0.01
0 8.31 0.01
0.03 9.11 0.01

~ life history + 1

~1

~ life history + GDP + 1

~ life history + toxicant type + 1

~ life history + Country human footprint + 1

~ GDP + toxicant type + GDP:toxicant type + 1

~ life history + toxicant type + life history:toxicant type + 1
~ Country human footprint + GDP + toxicant type + GDP:toxicant type + 1
~ life history + GDP + life history:GDP + 1

~ life history + GDP + toxicant type + GDP:toxicant type + 1
~ toxicant type + 1

~ GDP+1

~ Country human footprint + 1

~ life history + Country human footprint + GDP + 1
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~ life history + GDP + toxicant type + 1

~ life history + Country human footprint + toxicant type + 1

~ life history + Country human footprint + life history:Country human footprint + 1

~ life history + GDP + toxicant type + life history:GDP + 1

~ life history + GDP + toxicant type + life history:toxicant type + 1

~ life history + Country human footprint + toxicant type + life history:toxicant type + 1

~ GDP + toxicant type + 1

~ life history + Country human footprint + GDP + life history:GDP + 1

~ Country human footprint + toxicant type + 1

~ Country human footprint + GDP + 1

~ life history + Country human footprint + GDP + toxicant type + 1

~ life history + Country human footprint + GDP + life history:Country human footprint + 1
~ life history + Country human footprint + toxicant type + Country human footprint:toxicant type + 1
~ life history + Country human footprint + toxicant type + life history:Country human footprint + 1
~ Country human footprint + GDP + toxicant type + 1

~ Country human footprint + toxicant type + Country human footprint:toxicant type + 1

~ Country human footprint + GDP + toxicant type + Country human footprint:toxicant type + 1
MEM s fit to body condition dataset (n = 60)

~1

~ life history + 1

~ Country human footprint + 1

~ life history + GDP + life history:GDP + 1

~ GDP+1

~ condition + 1

~ life history + Country human footprint + 1

~ taxonomic group + 1

~ life history + GDP + 1

~ Country human footprint + GDP + 1

~ life history + Country human footprint + GDP + life history:GDP + 1

~ life history + Country human footprint + life history:Country human footprint + 1

~ condition + Country human footprint + 1

~ condition + GDP + 1
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~ life history + Country human footprint + GDP + 1

~ life history + Country human footprint + GDP + life history:Country human footprint + 1
~ condition + Country human footprint + GDP + 1

MEM s fit to parasite dataset (n = 194)

~ close + Country human footprint + 1

~ close +1

~ close + Country human footprint + nonclose + 1

~ close + Country human footprint + GDP + 1

~ life history + close + Country human footprint + 1

~ life history + close + Country human footprint + life history:Country human footprint + 1
~ close + Country human footprint + nonclose + close:nonclose + 1

~ close + GDP + 1

~ life history + close + 1

~ close + nonclose + 1

~ close + Country human footprint + parasite measure + 1

~ close + parasite measure + 1

~ close + nonclose + close:nonclose + 1

~ close + Country human footprint + GDP + nonclose + 1

~ life history + close + Country human footprint + GDP + 1

~ life history + close + GDP + 1

~ life history + close + GDP + life history:GDP + 1

~ close + GDP + nonclose + 1

~ Country human footprint + parasite type + Country human footprint:parasite type + 1
~ Country human footprint + parasite type + 1

~ close + Country human footprint + nonclose + parasite measure + 1

~ life history + close + Country human footprint + parasite measure + 1

~ Country human footprint + vector + 1

~ close + Country human footprint + GDP + parasite measure + 1

~ Country human footprint + 1

~ Country human footprint + GDP + parasite type + GDP:parasite type + 1
~ life history + close + parasite measure + 1

~ close + GDP + nonclose + close:nonclose + 1
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~ close + GDP + parasite measure + 1

~ close + nonclose + parasite measure + 1

~ vector +1

~ parasite type + 1

~ Country human footprint + nonclose + parasite type + Country human footprint:parasite type + 1
~ Country human footprint + mroute + parasite type + Country human footprint:parasite type + 1
~ Country human footprint + mroute + 1

~1

~ Country human footprint + GDP + parasite type + Country human footprint:parasite type + 1
~ Country human footprint + mroute + parasite type + 1

~ Country human footprint + nonclose + parasite type + 1

~ Country human footprint + GDP + parasite type + 1

~ GDP + parasite type + GDP:parasite type + 1

~ Country human footprint + parasite type + parasite measure + Country human footprint:parasite type + 1
~ Country human footprint + nonclose + 1

~ Country human footprint + parasite type + parasite measure + 1

~ close + nonclose + parasite measure + close:nonclose + 1

~ Country human footprint + GDP + 1

~ Country human footprint + GDP + vector + 1

~ mroute + 1

~ life history + Country human footprint + 1

~ life history + Country human footprint + life history:Country human footprint + 1

~ Country human footprint + intermediate + 1

~ Country human footprint + parasite measure + 1

~ Country human footprint + parasite measure + vector + 1

~ nonclose + 1

~ life history + close + GDP + parasite measure + 1

~ GDP + vector + 1

~ mroute + parasite type + 1

~ close + GDP + nonclose + parasite measure + 1

~ GDP + nonclose + parasite type + GDP:parasite type + 1

~ nonclose + parasite type + 1

157

WO WwoMNIORERWWWDNNWOOOGWO APPSR, WOOGODNDDND OO

0.19
0.2

0.09
0.11
0.13
0.08

0.1

0.15
0.14
0.13
0.01
0.12
0.05
0.14
0.17
0.03

0.06
0.02
0.02
0.05
0.05

0.15

0.12
0.17

0.09

6.44
6.5

6.52
7.18
7.18
7.19
7.23
7.24
7.3

7.36
7.45
7.47
7.6

7.63
7.72
7.86
7.98
7.98
7.99

8.01
8.01
8.01
8.13
8.4

8.66
8.69
8.7

8.71
8.73
8.8

8.94

0.01
0.01
0.01

o

O O O O OO OO0 O0ODO0ODO0ODO0ODO0ODO0ODO0ODO0ODO0ODO0ODO0OO0O0O0O0OO0OO0O O Oo oo



GDP + mroute + parasite type + GDP:parasite type + 1

parasite measure + vector + 1

GDP + parasite type + 1

life history + 1

Country human footprint + mroute + parasite type + mroute:parasite type + 1
GDP +1

intermediate + 1

Country human footprint + GDP + mroute + 1

parasite measure + 1

Country human footprint + GDP + mroute + parasite type + 1

Country human footprint + mroute + parasite measure + 1

Country human footprint + GDP + nonclose + parasite type + 1

parasite type + parasite measure + 1

GDP + parasite type + parasite measure + GDP:parasite type + 1

Country human footprint + nonclose + parasite type + nonclose:parasite type + 1
Country human footprint + nonclose + parasite measure + 1

Country human footprint + intermediate + nonclose + 1

Country human footprint + GDP + nonclose + 1

Country human footprint + nonclose + parasite type + parasite measure + 1
Country human footprint + mroute + parasite type + parasite measure + 1
Country human footprint + GDP + parasite type + parasite measure + 1

GDP + mroute + 1

life history + Country human footprint + GDP + 1

life history + Country human footprint + GDP + life history:Country human footprint + 1
life history + Country human footprint + GDP + life history:GDP + 1
Country human footprint + intermediate + GDP + 1

mroute + parasite measure + 1

Country human footprint + GDP + parasite measure + 1

life history + Country human footprint + parasite measure + 1

life history + Country human footprint + parasite measure + life history:Country human footprint + 1
Country human footprint + intermediate + parasite measure + 1

mroute + parasite type + mroute:parasite type + 1
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intermediate + nonclose + 1

Country human footprint + GDP + parasite measure + vector + 1
nonclose + parasite measure + 1

GDP + nonclose + 1

GDP + mroute + parasite type + 1

nonclose + parasite type + nonclose:parasite type + 1

GDP + nonclose + parasite type + 1

mroute + parasite type + parasite measure + 1

nonclose + parasite type + parasite measure + 1

GDP + parasite measure + vector + 1

life history + GDP + 1

life history + GDP + life history:GDP + 1

intermediate + GDP + 1

life history + parasite measure + 1

intermediate + parasite measure + 1

GDP + parasite measure + 1

Country human footprint + intermediate + nonclose + intermediate:nonclose + 1
Country human footprint + GDP + mroute + parasite measure + 1
GDP + parasite type + parasite measure + 1

Country human footprint + intermediate + nonclose + parasite measure + 1
Country human footprint + GDP + nonclose + parasite measure + 1
Country human footprint + intermediate + GDP + nonclose + 1

GDP + mroute + parasite measure + 1

life history + Country human footprint + GDP + parasite measure + 1
intermediate + nonclose + intermediate:nonclose + 1

intermediate + nonclose + parasite measure + 1

Country human footprint + intermediate + GDP + parasite measure + 1
GDP + mroute + parasite type + mroute:parasite type + 1
intermediate + GDP + nonclose + 1

GDP + nonclose + parasite measure + 1

mroute + parasite type + parasite measure + mroute:parasite type + 1
taxonomic group + 1
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12.56
12.58
12.61
12.62
12.74
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GDP + nonclose + parasite type + nonclose:parasite type + 1

GDP + mroute + parasite type + parasite measure + 1

nonclose + parasite type + parasite measure + nonclose:parasite type + 1
GDP + nonclose + parasite type + parasite measure + 1

life history + GDP + parasite measure + 1

life history + GDP + parasite measure + life history:GDP + 1
intermediate + GDP + parasite measure + 1

intermediate + nonclose + parasite measure + intermediate:nonclose + 1
intermediate + GDP + nonclose + intermediate:nonclose + 1
intermediate + GDP + nonclose + parasite measure + 1

taxonomic group + parasite measure + 1

MEMs fit to stress dataset (n = 73)

l

1§

1§

1§

1§

1§

l

taxonomic group + 1

life history + GDP + 1

GDP +1

life history + 1

life history + Country human footprint + GDP + life history:Country human footprint + 1
life history + Country human footprint + GDP + 1

life history + GDP + life history:GDP + 1

~1

GDP + stress measure + 1

Country human footprint + GDP + 1

life history + Country human footprint + life history:Country human footprint + 1
life history + Country human footprint + 1

life history + Country human footprint + GDP + life history:GDP + 1

stress measure + 1

Country human footprint + 1

Country human footprint + GDP + stress measure + 1

GDP + stress measure + GDP:stress measure + 1

Country human footprint + GDP + stress measure + Country human footprint:stress measure + 1
Country human footprint + stress measure + 1

Country human footprint + GDP + stress measure + GDP:stress measure + 1
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13.33
13.54
13.54
13.55
13.87
13.87
13.96
14.77
14.83
14.91
15.45
AAICc

5.67
6.99
7.3
7.38
7.48
7.94
8.12
8.71
8.84
9.42
9.67
9.86
10.38
10.41
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13.09
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0 15.18 0
R? AAICc Wi
037 0 0.62
035 151 0.29
0.29 4.05 0.08

~ Country human footprint + stress measure + Country human footprint:stress measure + 1
Quantitative urban (n = 302)

~ mean urbanization_1000*health metric

~ mean urbanization_10000*health metric

~ inter-site distance*health metric

B N o ooN®O®O® X A
S
o
©

~ mean urbanization_1000 1063 0
~ difference in urbanization_10000*health metric 0.2 1162 0
~ change in urbanization_10000*health metric 0.2 11.99 0
~ change in urbanization_1000*health metric 021 1218 O
~ difference in urbanization_1000*health metric 019 1229 0
~ mean urbanization_10000 007 1246 O
= 1 0 1551 0
~ mean urbanization_1000*taxonomic group 10 015 1611 O
~ difference in urbanization_1000*taxonomic group 10 0.14 17.29 0
~ difference in urbanization_10000 2 0 17.33 0
~ change in urbanization_10000 2 0 17.51 0
~ difference in urbanization_1000 2 0 17.53 0
~ inter-site distance 2 0 17.57 0
~ change in urbanization_1000 2 0 1758 0
~ inter-site distance*taxonomic group 10 0.12 182 0
~ mean urbanization_10000*taxonomic group 10 0.11 1868 O
~ difference in urbanization_10000*taxonomic group 10 0.1 1952 0
~ change in urbanization_10000*taxonomic group 10 0.03 229 0
~ change in urbanization_1000*taxonomic group 10 0 24.67 0

Notes: Explanation of predictor variables:

Health metric methodology

Health metric: aspect of health (body condition, parasitism, stress, or toxicants) that was compared between urban and non-urban
wildlife populations.

Condition: whether an animal’s body condition was measured using a qualitative (eg fat score), raw quantitative (eg body length), or
adjusted quantitative (eg mass/length) metric.
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Parasite measure: infection status as a binary variable, infection intensity, or parasite richness.

Stress measure: whether animal stress was measured based on glucocorticoid levels (eg hair cortisol), leukocyte profiles (eg HL
ratios), or other measures (eg oxidative damage, blood glucose).

Toxicant type: whether a toxicant was a metal or non-metal (eg pesticide).

Wildlife traits

Taxonomic group: whether the wildlife species belonged to herpetofauna (amphibian or reptile), birds, fish, invertebrates, or
mammals.

Life history: whether most of a species’ life history is spent in an aquatic or terrestrial environment.

Parasite traits

Close: parasite transmitted through close contact as defined by the Global Mammal Parasite Database (GMPD; 0/1)
Intermediate: parasite transmitted through trophic dynamics as defined by the GMPD (0/1);

Nonclose: parasite transmitted through non-close contact as defined by the GMPD (0/1);

Vector: parasite transmitted via a vector as defined by the GMPD (0/1);

Mroute: parasite transmitted via a single GMPD transmission route or more than one route (0/1);

Parasite type: microparasite (bacterium, fungus, protozoan, virus) or macroparasite (ectoparasite, helminth).

Metrics of urbanization

Country human footprint: average Global Human Footprint (GHF) score of the country in which a study was located.

GDP: gross domestic product (GDP) of the country in which a study was located (log-transformed).

Inter-site distance: the distance between the most and least urban sites in a study (quarter-root transformed).

Change in urbanization: the difference in GHF scores between 1993 and 2009 within a study (with 1-km or 10-km buffer around
each set of coordinates).

Difference in urbanization: the difference in GHF scores between the most and least urban sites within a study (with 1-km or 10-km
buffer around each set of coordinates).

Mean urbanization: the average GHF score across the most and least urban sites within a study (with 1-km or 10-km buffer around
each set of site coordinates).
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Figure S2.1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) diagram showing the procedure for article exclusion from the meta-analysis
based on titles, abstracts, and full text. Articles were included if they compared the body
condition, stress, toxicant loads, or the prevalence, intensity of infection, or diversity of
parasites or pathogens across urban and non-urban populations of the same wildlife
species.
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Figure S2.2. Change over time in the number of individual records for urban wildlife health by health metric (top row) and taxonomic

group (bottom row, left to right: herpetofauna, birds, fish, invertebrates, and mammals).
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Figure S2.3. Most competitive mixed-effect models for how the mean urbanization footprint per study and distance between the most
rural and urban wildlife populations predict effect size. The filled polygons and colored lines show the means and 95% confidence
interval for the interaction between health metric and inter-site distance. Circles show individual records scaled by their sample size,
and the dashed line shows no relationship between health and urbanization.
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Figure S2.4. Funnel plots illustrating the relationship between effect size and standard
error (shaded circles) and the effect of correcting funnel plot asymmetry (white circles)
with trim-and-fill analysis on the estimated true correlation between urbanization and
health outcomes (solid line). The central dashed line shows where Z; = 0 (no effect),
while the solid line shows the estimated mean effect size after adjusting for potential
publication bias. pregtest IS the P value for the association between effect size and standard
error; pmissing 1S the P value for the null hypothesis that no records are missing due to

publication bias.
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Supplemental methods
Calculation of scaled mass index (SMI)

We calculated SMI [136] as one of three measures of flying fox body condition. SMI is
_ Lo1Psma
calculated as M; = M; [L—] where:

M, = scaled index for individual i,
M; = body mass of individual i
L; = linear body measurement of individual i (here, forearm length)
Ly = a chosen linear body measurement within the range of L
bsy4 = a scaling exponent calculated from an SMA/RMA (standardized or reduced major
axis) regression of mass on length measurements from the study population

We used the median forearm length of all Adelaide flying foxes captured from
2015-2018 as our value of L, (n = 306; 4 of the 310 individuals captured during this time
period were missing a forearm length measurement). This produced a L, value of 161.05
mm.

Before calculating bg,, 4, We first plotted body weight (g) by forearm length (mm)
(again from all Adelaide flying foxes captured from 2015-2018) to identify potential
outliers [136]. Three bats had noticeably shorter forearm lengths (<140 mm). In a boxplot
of forearm length, these three points extended beyond the range of the lower whisker (Q1
— 1.5 IQR). We therefore chose to exclude them when calculating bg,,,. We next
conducted a likelihood ratio test using the sma function in the smatr package [275] to
determine whether the slopes of an SMA regression of log-transformed body weight (g)
on log-transformed forearm length (mm) were significantly different for males and

females. We failed to reject the null hypothesis that the slopes were equal (likelihood
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ratio statistic: 0.51, df = 1, P = 0.48), indicating that it was appropriate to use one bg4
value for males and females. Bundling male and female measurements produced a bg 4

value of 4.65 (95% CI: 4.36 — 4.96).

Calculation of foraging distance and area

All movement and statistical analyses were performed in the R computing environment v
3.4.3 [127]. The dataset was first trimmed so that only the first fix of each GPS burst was
retained (bursts are useful for improving estimation of altitude, speed, and heading,
which were not needed in this study). We calculated the number of hours each bat was
tracked per night and subsequently excluded incomplete nights (< 8 hours of data). We
calculated the nightly distance flown by each bat by summing the great circle distance
between successive GPS points using the spDists function in the sp package [128].
Nightly roundtrip distance (from the roost to foraging sites and back) flown by each bat
was calculated by summing the great circle distance If the first or last GPS point of a
night’s track was >100m from the roost’s center (e.g. due to battery depletion or
movement outside the GPS collection window), the distance between the roost and the
starting or ending point was added to the roundtrip distance for that night. If both the last
GPS point of one night and the first point of the next night were >100m from the roost,
this was a potential indication that the bat did not return to the roost during the day.
Following examination of the GPS tracks in Google Earth, we found that on four
occasions, bats did not to return to the roost in the morning and instead spent the day
elsewhere; after a second night, they returned to the roost. Three of these days away from

the roost occurred on the same date, which was also the first day following logger
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deployment on those bats. We therefore chose to exclude non—round-trip nights from
further calculations because we believe this represented aberrant behavior. The maximum
foraging distance was calculated as the straight-line distance from the roost to the
furthest foraging site identified by our automated procedure [133]. Summary statistics
(median roundtrip distance, maximum roundtrip distance) were calculated for each bat.
We estimated the area traversed by tracked GHFF using minimum convex
polygons (MCPs). The foraging and core areas for each bat were calculated respectively
as the areas of 95% and 50% MCPs constructed with the adehabitatHR package [129].
We restricted calculation of foraging and core areas to bats with at least three round-trips,
conservatively assuming that small sample sizes would not accurately estimate area. We
also constructed seasonal 95% MCPs (i.e. one winter MCP for all bats tracked in Aug.
2016 and Aug. 2017, one summer MCP for all bats tracked in Feb. 2017 and Feb. 2018)

for use in habitat selection analyses.
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Table S3.1. Summary of distance and area metrics calculated for each bat. Shaded rows indicate capture in winter (August) and white

rows indicate capture in summer (February). Nights of data were counted when at least 8 hours of data were collected and the bat

made a round-trip from the roost and back.

Bat  Capture Sex Est. Weight Forearm WFR BCS SMI Nights  Median Max. Max. Avg. 50% 95%
ID date age (Q) length of data  nightly nightly foraging nightly ~ MCP MCP

) (mm) roundtrip  roundtrip  distance number (km?)  (km?)

distance distance (km) foraging
(km) (km) sites

106  8/8/2016 F <2 673 160 421 3 693.77 7 20.51 115.06 40.47 3.0 113.53 277.12
110 8/8/2016 M <2 657 160 411 35 6872 6 74.70 109.10 40.46 2.8 183.93 557.53
115 8/9/2016 M 6 883 163 542 4 83497 8 15.58 20.63 6.31 2.1 2.03 6.92
121  8/9/2016 M 45 909 166 548 4 789.7 10 16.18 80.42 25.84 2.3 9496  171.72
132 8/9/2016 M  6-8 1008 173 583 4 720.83 10 27.12 29.04 9.76 1.9 5.82 17.64
199  2/21/2017 F 4 716 161 445 25 72747 5 47.00 55.33 15.78 4.2 1212 33.89
200  2/21/2017 F 3 688 169 407 3 5576 10 13.35 108.38 21.38 4.7 37.14  501.98
201  2/21/2017 M 3-4 768 164 468 3 70587 9 48.77 60.52 15.77 3.9 78.73 24451
203 2/22/2017 M 4 808 167 484 3 680.74 7 23.33 42.49 10.14 4.7 3.56 24.20
204  2/22/2017 M 34 744 164 453 25 67803 6 30.92 40.05 10.30 5.2 1849  41.60
205  2/22/2017 F 4-5 761 168 453 25 61846 6 54.11 87.34 30.66 4.0 7494  229.87
206* 2/22/2017 F 3-4 718 161 446 25 71696 2 34.24 37.80 11.45 3.5 -- -
207 2/22/2017 F 6-7 743 170 437 25 58584 9 17.17 87.59 34.75 3.1 4153  238.49
208 2/22/2017 F 3 690 172 401 25 51518 6 30.75 143.30 17.15 4.5 85.38  770.30
209  8/11/2017 F 3-4 701 158 444 35 77751 3 52.68 83.26 35.85 4.3 53.16  131.20
210 8/11/2017 M  3-4 670 158 424 3 732.26 6 50.48 66.43 26.10 4.0 41.80 135.71
211* 8/11/2017 F 5-6 640 151 424 3 86343 2 28.61 37.71 15.10 2.5 - -
215  8/11/2017 F 4 668 162 412 3 649.99 3 18.29 59.39 16.77 6.3 13.38  102.91
217  8/11/2017 M  3-4 666 159 419 35 69865 3 21.50 89.42 34.65 6.0 107.77  176.62
218  8/12/2017 M  3-4 718 161 446 35 72951 4 70.93 89.63 32.28 4.5 35.50  210.54
226 8/12/2017 M  6-8 696 157 443 3 78345 6 67.47 102.81 21.98 5.2 158.52  428.76
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264  2/11/2018 M 3-4 734 167 4.40 3.5 620.12 5 35.04 50.79 14.33 2.6 4415  71.08
265  2/11/2018 M 4 791 161 4.91 3 79443 7 28.74 80.25 31.46 4.7 35.71  221.14
269* 2/11/2018 F 5 732 160 4.58 3.5 7612 0 - -- -- -- -- --
277*  2/11/2018 M 6 793 161 493 4 796.44 2 19.61 29.35 7.33 4.0 -- -
287  2/11/2018 F 5 772 168 460 4 632.62 5 13.44 16.50 3.69 3.2 1.45 5.36
289  2/11/2018 M 5 701 170 4.12 2.5 552.72 10 36.37 88.89 31.35 5.2 50.33  526.66
291  2/11/2018 M 7 796 168 4.74 3.5 650.49 11 16.34 110.51 31.84 2.1 45.60  800.91
298  2/13/2018 M 5 750 164 4.57 3.5 689.33 6 42.55 179.35 25.13 3.5 364.04  1596.60
302 2/13/2018 M 5 762 168 4.54 3 626.16 7 39.58 76.25 17.49 4.3 39.51  361.65
306 2/13/2018 F 8+ 700 163 4.29 3 661.92 4 58.06 59.90 23.00 3.3 64.85  90.38
310* 2/21/2018 F NA 800 168 4.62 4 657.38 1 45.70 45.70 15.48 6.0 - -

*Core area and foraging area were not calculated for bats with less than 3 nights of data.
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Table S3.2. Summary of model outputs for nightly round-trip distance, nightly number of foraging sites, foraging area, and core area.
Three candidate models (using separate measures of body condition) were created for each response variable and ranked by A AlCc. P

values < 0.05 are in bold. BCS: body condition score; WFR: weight to forearm ratio; SMI: scaled mass index; maxTemp: maximum

daily temperature; hours: nightly hours of tracking data collected; nights: number of nights that a bat was tracked

Response Model AAICc Term Estimate SE torz P
variable
Nightly ~age+sex+BCS+ O age -0.04 0.05 -0.84 0.40
roundtrip season + maxTemp sex(male) 0.31 0.16 2.01 0.04
distance + hours BCS -0.57 0.18 -3.09 0.002
(n=185) season(winter)  0.22 030 0.72 0.47
maxTemp -0.02 0.02 -0.93 0.32
hours -0.07 0.08 -0.85 0.40
~age+sex+ WFR 2091 age -0.001 0.06 -0.02 0.98
+ season + sex(male) 0.35 0.17 2.02 0.04
maxTemp + hours WFR -0.55 0.22 -2.47 0.01
season(winter)  0.12 0.30 0.40 0.69
maxTemp -0.01 0.02 -0.63 0.53
hours -0.07 0.08 -0.77 0.44
~age +sex + SMI+ 9.38 age -0.07 0.06 -1.19 0.23
season + maxTemp sex(male) 0.18 0.18 1.00 0.32
+ hours SMI -0.0004  0.001 -0.29 0.77
season(winter)  0.03 0.33 0.08 0.93
maxTemp -0.01 0.02 -0.69 0.49
hours -0.07 0.09 -0.78 0.43

173



Nightly ~age +sex+BCS+ 0 age -0.06 0.03 -2.07 0.04
number of season + maxTemp sex(male) 0.11 0.09 1.19 0.23
foraging sites + hours BCS -0.38 0.11 -3.34 0.0008
(n=185) season(winter)  -0.08 018 -046  0.65
maxTemp -0.01 0.01 -0.46 0.65
hours 0.03 0.07 0.37 0.71
~age +sex + WFR  2.22 age -0.03 0.04 -0.95 0.34
+ season + sex(male) 0.14 0.11 1.34 0.18
maxTemp + hours WFR -0.40 0.14 -2.88 0.004
season(winter)  -0.18 0.18 -1.00 0.32
maxTemp -0.004 0.01 -0.33 0.74
hours 0.04 0.07 0.55 0.58
~age +sex+ SMI+ 11.07 age -0.08 0.04 -2.08 0.04
season + maxTemp sex(male) 0.03 0.12 0.23 0.82
+ hours SMI -0.0004  0.0008 -0.46 0.65
season(winter)  -0.20 0.20 -0.97 0.33
maxTemp -0.005 0.01 -0.39 0.70
hours 0.02 0.07 0.28 0.78
Foraging ~age+sex+WFR O age 0.01 0.16 0.04 0.97
area + season + nights sex(male) 0.93 0.51 1.84 0.08
(n=27) WFR -1.98 0.66 -2.98 0.007
season(winter)  -0.31 0.49 -0.63 0.53
nights 0.17 0.11 1.50 0.15
~age +sex+ SMI+ 6.68 age -0.04 0.15 -0.26 0.80
season + nights sex(male) 0.84 0.52 1.64 0.12
SMI -0.006 0.004 -1.55 0.14
season(winter)  -0.05 0.56 -0.08 0.93
nights 0.03 0.11 0.26 0.80
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~age +sex + BCS+ 8.52 age -0.12 0.15 -0.79 0.44

season + nights sex(male) 0.68 0.50 1.35 0.19

BCS -0.41 0.55 -0.75 0.46

season(winter)  -0.52 0.54 -0.97 0.35

nights 0.07 0.11 0.62 0.54

Core area ~age+sex+WFR O age 0.01 0.17 0.08 0.94
(n=27) + season + nights sex(male) 0.74 0.53 1.40 0.18
WFR -1.15 0.70 -1.65 0.11

season(winter)  0.17 0.52 0.33 0.74

nights 0.03 0.12 0.25 0.80

~age +sex+SMI+ 299 age -0.04 0.15 -0.26 0.80

season + nights sex(male) 0.58 0.52 1.13 0.27

SMI -0.002 0.004 -0.42 0.68

season(winter)  0.15 0.56 0.27 0.79

nights -0.07 0.11 -0.63 0.53

~age +sex + BCS+ 3.07 age -0.06 0.15 -0.39 0.70

season + nights sex(male) 0.57 0.50 1.15 0.26

BCS -0.16 0.54 -0.29 0.77

season(winter)  0.04 0.53 0.07 0.95

nights -0.06 0.10 -0.60 0.56
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Table S3.3. Results of two logistic regressions to model the probability of a site being
used or available as a function of the land use at the site and bat age, sex, and body
condition. Values are reported for B (beta) coefficient, SE (standard error), OR (odds
ratio) and 95% CI (Wald confidence interval). 95% Cls that do not cross 1 are considered

significant and marked in bold.

Summer
Variable B SE OR 95% CI
Land use Natural Reference  -- -- --
Agricultural and 0.44 0.87 156 0.28-8.58
plantation production
Non-residential 3.05 0.73 21.12 5.10-87.52
intensive use
Residential and farm 2.78 0.72 16.13 3.92-66.39
infrastructure
Water 1.29 1.01 362 0.50-26.23
Age -0.02 0.07 098 0.85-1.13
Sex Female Reference  -- -- --
Male -0.04 0.23 096 0.61-1.50
WFR 0.23 041 125 0.56-2.82
Winter
Variable B SE OR  95% CI
Land use Natural Reference  -- -- --
Agricultural and -0.04 092 097 0.16-5.89
plantation production
Non-residential 2.51 0.75 12.29 2.83-53.39
intensive use
Residential and farm 1.98 0.74 722 1.70-30.61
infrastructure
Water 1.73 1.03 564 0.75-42.68
Age -0.01 0.09 099 0.83-1.18
Sex Female Reference  -- -- --
Male 0.06 0.34 106 0.55-2.06
WFR -0.19 0.27 083 0.49-1.39
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Table S3.4. Plant species identified by ground-truthing suspected grey-headed flying fox
foraging sites in Adelaide, South Australia, 2016-2018. Only plants identified to species

level are included. Gray shading indicates that a species is considered a significant food

plant for grey-headed flying foxes [144].

Family Plant species Common name Native to | Native to
Australia | South
Australia
Fabaceae Acacia pendula Weeping myall Yes Yes
Loranthaceae | Amyema miquelii Box mistletoe Yes Yes
Corymbia citriodora Lemon-scented gum Yes No
C. maculata Spotted gum Yes No
Eucalyptus aff. Sand mallee Yes No
eremophila
E. aff. robusta Swamp mahogany Yes No
E. camaldulensis Red river gum Yes Yes
E. fasciculosa Pink gum Yes Yes
Myrtaceae E. globulus Tasmanian bluegum Yes No
E. leucoxylon Blue gum Yes Yes
E. megacornuta Warty yate Yes No
E. microcarpa Grey box Yes Yes
E. occidentalis Flat topped yate Yes No
E. sideroxylon Mugga ironbark Yes No
E. stricklandii Strickland’s gum Yes No
E. viminalis Ribbon gum Yes Yes
Ficus carica Common fig No No
Moraceae F. macrophylla Moreton Bay fig Yes No
F. platypoda Small-leaved Moreton | Yes No
Bay fig
Oleaceae Olea europaea Olive No No
Arecaceae Phoenix canariensis Canary Island date No No
palm
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Table S3.5. Results of linear models to explore predictors of flying fox body condition.
WFR was modeled with a gamma distribution (log link) and SMI was modeled with a
normal distribution. Due to the limited range of values, BCS was binned into two groups

(<3 and >3) and modeled with a binary distribution. P values < 0.05 are in bold.

Model Term Estimate SE t P
WFR ~ season + sex + age  season(winter) -0.02 0.03 0.55 0.585
sex(male) 0.07 0.03 245 0.02
age 0.02 0.01 260 0.02
BCS ~season + sex + age  season(winter) 1.11 0.83 134 0.18
sex(male) 1.33 084 159 0.11
age 0.18 0.28 0.66 0.51
SMI ~ season + sex + age  season(winter) 86.39 27.31 3.16 0.004
sex(male) 21.08 26.84 0.79 0.44
age 12.07 894 135 0.19

WFR: weight to forearm ratio. BCS: body condition score. SMI: scaled mass index

178



Figure S3.1. Logger attachment process. A) Glue is applied to the back of the bat where

fur has been clipped. B) Logger in place on the bat following attachment.
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Figure S3.2. Boxplot showing the variation in nightly roundtrip distance (distance from
the roost to all foraging sites and back in km) within and between bats. The median

roundtrip distance was 31.93 km (1% quartile: 16.98; 3™ quartile: 52.78).
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Figure S3.3. Path flown by bat 298 the night of 2/14/2018, traveling in a clockwise
direction. The total distance was 179.35km. The location of the roost is marked with a red

triangle.
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Figure S3.4. Examples of repeated visits to foraging sites over several nights (Bat 132,
10 nights, pink) and visits to core foraging sites with occasional long-distance excursions

(Bat 302, 7 nights, yellow). The location of the roost is indicated by a red triangle.
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Supplemental methods

Fur sample digestion and analysis by ICP-MS

At Baylor University, fur samples were analyzed for the presence of ten metals
(cadmium, chromium, cobalt, copper, lead, nickel, selenium, strontium, tin, vanadium)
and two metalloids (antimony and arsenic; hereafter referred to as metals).

Fur digestions were performed in batches of 25 to 30 samples. Blanks were
included for each batch. Human hair standard (Sigma-Aldrich, St. Louis, MO) was used
as a standard reference material (SRM); one SRM sample was included for each bat
capture site. To digest a fur sample, approximately 0.05g of fur was weighed to the
nearest 0.001g and transferred to a borosilicate glass tube (VWR International, Radnor,
PA). Next, 0.25 mL of genpure water and 2.5 mL of 1:1 HNOs (Fisher Scientific,
Waltham, MA) were added. Samples in a batch were heated for 15 minutes at 95°C +
5°C, then left to cool. Next, ImL of concentrated HNO3z was added to each sample, and
the samples were heated for 30 minutes at the same temperature. After cooling, 0.25mL
of genpure water and 0.75mL of 30% H20- (Fisher Scientific) was added to each sample,
and the samples was heated for 60 mins at the same temperature. Samples were then
filtered into acid-rinsed Erlenmeyer flasks (VWR International). Before filtration, filters
were dampened with genpure water. Samples weighing close to 0.05g were filtered into
25mL flasks, samples below the desired weight were filtered into 10mL flasks, and
blanks and SRMs were filtered into 20mL flasks. After pouring each sample, each tube
was rinsed with genpure water and the contents were poured through the filter. After the

filters drained, a small amount of genpure water was applied around the filter to filter any
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sample left on the sides. Samples were then diluted. Samples in the 25mL flasks were
diluted to 25mL and the samples in 10mL flasks were diluted to 10mL.

Metal concentrations in fur were determined using an Agilent 7900 ICP-MS.
Metal standards were ordered from Sigma-Aldrich. Standards were mixed and diluted to
10ppm. The ICP-MS metal mix internal standard (10ppm standard, Agilent
Technologies, Santa Clara, CA). A concentration curve was generated using calibration
standards ranging in concentrations from 0.01ppb to 1000ppb. Calibrations were only
accepted if all the desired metal responses had a linear distribution with an R2-value of
greater than 0.995. Calibration blanks were included. The standard at the midpoint of the
calibration curve was used as a Continuing Calibration Check (CCC) for quality control.
The CCC was analyzed every 20 samples to ensure instrument stability. Internal
standards were used to monitor percent recovery. If responses fell below 85% or rose
above 120% recovery, standards and outlier samples were rerun. Fur weights were used
in combination with the dilution volume to determine a dilution factor (dilution factor =

dilution volume / weight) for each sample.
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Table S4.1. Sample size and minimum, median, and maximum concentrations of metals measured in flying fox fur, separated by

species. Concentrations are reported to a maximum of three significant figures.

Sample | Analyte Unit Black flying fox Grey-headed flying fox Spectacled flying fox
n min | median max n min | median max n min | median | max

Fur antimony ng/g 162 | 121 | 904 516 277 141 83.0 1290 45 1193 49.3 189
arsenic ng/g 162 | 20.7 | 190 1780 277 | 284 212 3460 45 1321 93.7 596
cadmium ng/g 162 | 5.27 | 38.6 321 277 |3.10 31.2 510 45 154 84.0 3300
chromium | ng/g 162 | 269 | 1450 8320 277 | 261 1080 16700 45 | 530 885 8860
cobalt ng/g 162 | 3.60 | 202 35300 277 | 784 74.3 1170 45 | 55.6 387 3420
copper ng/g 162 | 2030 | 9000 46900 277 | 2620 | 9960 111000 |45 | 2660 | 6130 22000
lead ng/g 162 | 172 | 1260 9960 277 | 179 1640 28900 45 | 228 2260 32300
(total) nag/g 274 | 1.38 | 18.9 416 314 | 5.67 25.1 119 43 | 3.91 36.8 262
mercury
nickel ng/g 162 | 120 | 718 19700 277 | 125 440 247000 |45 |421 658 1840
selenium?® ng/g 162 | 46.5 | 450 1880 275 | 46.3 | 484 3380 45 | 945 610 1540
strontium ng/g 162 | 2650 | 17900 | 118000 | 277 | 743 3510 103000 |45 | 1250 | 3390 8960
tin ng/g 162 | 1270 | 5170 27600 277 | 1150 | 5420 53900 45 | 2180 | 4020 12600
vanadium ng/g 162 | 46.0 | 460 3860 277 1169 154 1570 45 | 286 |847 210

1Two additional selenium concentrations were below detection level.
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Table S4.2. Model results for GLMM (Poisson distribution, log link) of ectoparasite
burden as a function of log-transformed concentrations of 13 metals measured in flying
fox fur (n = 157; bats from Queensland sites only). Capture site was included as a random
effect. WFR: weight to forearm ratio. Black flying fox is the reference level for species

and adult is the reference level for age class.

Model term Estimate | SE z p
antimony -0.12 0.20 -0.56 | 0.57
arsenic 0.049 0.16 0.30 0.77
cadmium -0.14 0.19 -0.77 10.44
chromium 0.27 0.14 1.95 0.05
cobalt -0.21 0.096 |-2.15 |0.03
copper -0.38 0.27 -1.42 | 0.16
lead 0.042 0.19 0.23 0.82
(total) mercury -0.23 0.11 -2.19 |0.03
nickel 0.49 0.12 4.13 3.7e-5
selenium 0.73 0.21 3.42 6.2e-4
strontium -0.44 0.23 -1.91 | 0.06
tin -0.077 0.30 -0.26 | 0.80
vanadium 0.023 0.25 0.093 ]0.93
sex(male) -0.11 0.21 -0.52 | 0.60
WFR -0.21 0.22 -0.96 | 0.34
species(GHFF) 0.32 0.67 0.48 0.63
species(SFF) 1.06 0.77 1.38 0.17
age class -0.13 0.38 -0.35 [0.73
(juvenile/subadult)
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Table S4.3. Model results for GLM (binomial distribution, logit link) of blood parasite
infection as a function of log-transformed concentrations of 13 metals measured in fur (n
=79 from Tolga, Tamworth, and Woolgoolga). Grey-headed flying fox is the reference

level for species.

Model term | Estimate | SE z p
antimony 0.90 0.75 |1.20 0.23
arsenic -0.90 059 |-152 ]0.13
cadmium 0.29 0.61 | 0.47 0.64
chromium 0.57 1.07 | 0.54 0.59
cobalt -0.30 043 |-0.69 |0.49
copper -1.28 1.18 |-1.09 |0.28
lead -0.96 058 |-1.64 |0.10
total mercury | 0.53 0.52 |1.03 0.30
nickel -1.04 151 |-0.69 |0.49
selenium 0.81 0.98 |0.83 0.41
strontium 247 1.32 | 1.87 0.06
tin 0.97 2.07 |0.47 0.64
vanadium 0.53 1.03 |0.51 0.61
sex(male) 0.34 0.76 |0.45 0.65
WFR -2.92 1.21 |-242 |0.02
species(SFF) | -0.41 123 |-0.34 |0.74
age class -1.29 1.68 |-0.77 |0.44
(juvenile/

subadult)
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Figure S4.1. Plots showing significant species differences in log-transformed concentrations of metals measured in fur. A GLMM
(gamma distribution, log link) was used for each metal, with species as a fixed effect and site as a random effect. Predicted means and
95% confidence intervals are depicted by an orange dot and black bars, while jittered raw data are plotted as gray points. Species
pairwise comparisons were performed with a Holm adjustment for multiple comparisons. Plots are not displayed for those metals with

no significant species differences (antimony, arsenic, copper, lead, mercury, nickel, tin).
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Supplemental methods
Details of model parameterization

Demography and movement: The density-independent birth rate, bo, was estimated by

taking the maximum annual number of offspring raised by a flying fox [36], and equating
this to the expected number of births in one year, e?0*(1 ¥ The mortality rate, m, was
obtained from [276], corresponding to a 10-year lifespan. The density-dependent
component of the birth rate, by, was fixed so that the disease-free carrying capacity in a
toxicant-free landscape is 50,000, i.e. b1 = (bo — m)/50000. Some flying foxes move
between roosts frequently (every 1-2 weeks) while others can spend months at a site
[110]; here, the baseline dispersal rate, o, was set assuming that the probability of
remaining in the same location for one year, e~9*(1¥¢47) = (.1, The recovery rate, y, was
estimated as the reciprocal of an expected infection duration of 0.027 years (i.e. 10 days),

based on a mid-range estimate of duration of viremia [254].
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Table S5.1. Ranges for parameters varied in the Latin hypercube sampling procedure

Parameter Definition Range
S Transmission rate in toxic habitat Srp £ 0.75%fp
7 Disease-induced mortality 0-1
Co Toxicant-imposed movement cost 0.05-0.95
Cm Toxicant-imposed survival cost 0.05-0.95
a Net effect on mortality of being infected while 0-19.9

in toxic habitat
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Figure S5.1. Results of sensitivity analyses. Left column: Predicted equilibrium (50

years) infection prevalence with varying parameter values (see Table S5.1) using Latin

Hypercube Sampling to sample the parameter space. Right column: Partial Rank

Correlation Coefficient (PRCC) sensitivity analysis. PRCC values indicate the strength

and direction of association between model parameters and infection prevalence. Results

0.1, middle row: f

are provided for three values of landscape contamination (top row: f

0.9).

0.5, bottom row: f =
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