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ABSTRACT 

Many wildlife species have established semi-permanent or year-round populations in 

urban landscapes. Animals in cities can often access predictable and abundant resources, 

but at the same time might experience lowered diet quality, exposure to toxicants and 

stressors, and greater pathogen transmission. The health of urban wildlife is relevant to 

humans, especially given risks of zoonotic pathogen transmission. The aim of this 

dissertation is to investigate how urban landscape features, including altered resources 

and exposure to toxicants, can change wildlife behavior, health, and infectious disease. I 

first synthesized the literature to quantify the extent to which urbanization affects four 

metrics of wildlife health; this meta-analysis demonstrated an overall small but 

significant negative effect of urbanization on wildlife health, driven by higher toxicant 

loads and greater parasitism by parasites transmitted through close contact. I next 

examined the individual and environmental predictors of foraging movements of wild 

flying foxes in a recently-established urban population in Adelaide, South Australia. This 

work showed that flying foxes were significantly more likely to forage at sites more 



intensively used by humans, and that flying foxes in better body condition flew shorter 

distances each night, visited fewer foraging sites, and had smaller foraging areas. Using 

data from flying foxes captured in Adelaide and seven other locations across Australia, I 

next examined individual and environmental predictors of metal concentrations in bat fur, 

and associations between metals and bat parasitism. This study demonstrated that flying 

foxes captured at sites surrounded by greater human modification had higher metal 

concentrations in fur, and provided evidence for positive and negative relationships 

between ectoparasite abundance and metal concentrations. Lastly, I developed a 

mechanistic model of host-parasite dynamics to understand the interactive consequences 

of pathogens and toxicants on infection dynamics and population size of wildlife in an 

urbanizing landscape. Results suggested the extent of contaminated habitat across the 

landscape could enhance or reduce impacts of infection on host populations. Collectively, 

this dissertation provides evidence for multiple sublethal effects of urban landscapes for 

wildlife, and suggests important gaps for future work on the movement and survival 

consequences of toxicant exposure in wildlife. 

 

INDEX WORDS: Australia; Body condition; Contaminants; Ecotoxicology; Fruit 

bat; GPS; Movement; Parasite; Pteropus, Urbanization 

 

  



 

 

EFFECTS OF URBAN LANDSCAPES ON WILDLIFE BEHAVIOR, HEALTH, AND 

DISEASE: AUSTRALIAN FLYING FOXES AS A CASE STUDY 

 

by 

 

CECILIA ANNE SÁNCHEZ 

BS, Yale University, 2013 

 

 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2019 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2019 

Cecilia Anne Sánchez 

All Rights Reserved 

  



 

 

EFFECTS OF URBAN LANDSCAPES ON WILDLIFE BEHAVIOR, HEALTH, AND 

DISEASE: AUSTRALIAN FLYING FOXES AS A CASE STUDY 

 

by 

 

CECILIA ANNE SÁNCHEZ 

 

 

 

 

     Major Professor: Sonia Altizer 

     Committee:  Nicole Gottdenker 

        Richard Hall 

        Raina Plowright 

         

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Ron Walcott 

Interim Dean of the Graduate School 

The University of Georgia 

December 2019 

 



 

iv 

 

 

ACKNOWLEDGEMENTS 

I am grateful for the support of many people during my Ph.D. I began my journey with 

flying foxes at the Australian Animal Health Laboratory, where Linfa Wang, Gary and 

Sandy Crameri, Ina Smith, Michelle Baker, Vicky Boyd, Amy Burroughs, and many 

more welcomed me to Geelong and trained me in the laboratory and field.  

 My growth as a scientist has been shepherded by Sonia Altizer, who has served as 

a constant source of encouragement, advice, and enthusiasm. I have gone into her office 

many times feeling dismayed about a setback, and walked out an hour later feeling newly 

buoyed. In particular, her careful critique of my grant applications improved my writing 

and helped me secure the funding I needed to support an international research program. I 

am also thankful for my committee members, Raina Plowright, Richard Hall, and Nicole 

Gottdenker, who helped me to refine my research plan and translate my ideas into 

concrete results. I have benefited from the friendship of many other graduate students, 

including my cohort Cara McElroy, Anya Brown, Mike Ament, Elizabeth Hamman, 

Daniel Baker, Laura Early, and John Spencer. Thank you also to Carly Phillips, Katie 

Worsley-Tonks, Abby Sterling, Amy Briggs, and Altizer labmates Dan Becker, Claire 

Teitelbaum, Paola Barriga, and Dara Satterfield for always listening and helping me get 

through obstacles along the way.  

In the second half of my Ph.D. I had the opportunity to work with John Drake, 

who taught me new strategies for project development, quantitative analyses, and writing. 

I appreciate the support and statistical advice I received from JP Schmidt, Robbie 



 

v 

Richards, Michelle Evans, Joy Vaz, and Eric Marty. Working in the Drake lab also 

allowed me to pursue a three-month fellowship during my final year of graduate school, 

based at the Lincoln Park Zoo’s Urban Wildlife Institute. Thank you to Maureen Murray 

for her mentoring and friendship, and also to Mason Fidino, Liza Lehrer, Seth Magle, 

Jazmin Rios, Cria Kay, Julie Somor, Katie Fowler, and Ivy Yen for welcoming me to the 

zoo research world; my summer in Chicago was one of the best experiences of my Ph.D. 

 My fieldwork could not have taken place without the help of many others. I spent 

my first field season with Adam McKeown and was assisted by Chris Todd and Mark 

Miller. It has been a real pleasure working with Wayne Boardman in Adelaide, who first 

helped me in a pinch when field plans fell through, and who has continued to be a 

generous collaborator and cheerful friend. Terry Reardon, Jason van Weenen, Martin 

O’Leary, Ian Smith, Topa Petit, Kathy Burbidge, and Annette Scanlon also provided 

crucial help with capturing and processing the Adelaide flying foxes. I am indebted to 

Aleasha Amato, Angus Droogran-Turniski, and especially Thomas Tiver, who drove me 

across Adelaide to examine flying fox foraging sites. Thank you to Marc Buentjen from 

e-obs, who helped me program and troubleshoot the GPS loggers. In my travels in 

Australia, I also met and worked with other skilled bat scientists including Lee 

McMichael, Dan Edson, Jenny Mclean, and Ali Peel, whom I admire greatly.  

 Field and laboratory work were funded by a National Science Foundation 

Graduate Research Fellowship, the ARCS Foundation, a National Geographic Early 

Career Grant, the Explorers Club, the American Society of Mammalogists, the Odum 

School of Ecology, and the University of Georgia Graduate School. Mike Penrose, 

Madeline Hannappel, Melinda Camus, and Vicky Boyd helped perform laboratory 



 

vi 

analyses, Maureen Kessler and Dave Westcott contributed samples, and George Cobb, 

Thomas Rainwater, and Matt Chumchal provided equipment, reagents, and lab space. 

 An unexpected benefit of living in Athens was joining the incredible Classic City 

Rollergirls. I am inspired by all of the strong, hard-working women in the league. In 

particular, I am thankful for my closest friends and teammates, Freakachu, BadAsh 

Booher, and Georgia O’Grieffe. 

 Lastly, I would like to thank my family for their constant support during my 

scientific progression. They listened when I was frustrated, offered strategies for 

navigating personal and professional obstacles, and shared in the small and large 

victories. I could not have done this without them. 

  



 

vii 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................... iv 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES ........................................................................................................... xi 

CHAPTER 

 1 INTRODUCTION AND LITERATURE REVIEW .........................................1 

 2 CITY SICKER? A META-ANALYSIS OF WILDLIFE HEALTH AND 

URBANIZATION .............................................................................................6 

 3 BODY CONDITION PREDICTS GREY-HEADED FLYING FOX 

(PTEROPUS POLIOCEPHALUS) FORAGING MOVEMENTS IN AN 

URBAN LANDSCAPE ...................................................................................31 

 4 LAND USE, SEASON, AND PARASITISM PREDICT METAL 

CONCENTRATIONS IN AUSTRALIAN FLYING FOX FUR ....................59 

 5 LANDSCAPE-LEVEL TOXICANT EXPOSURE MEDIATES INFECTION 

IMPACTS ON WILDLIFE POPULATIONS .................................................86 

 6 CONCLUSIONS............................................................................................108 

REFERENCES ................................................................................................................112 

APPENDICES 

 A CHAPTER 2 SUPPLEMENTAL INFORMATION .....................................147 

 B CHAPTER 3 SUPPLEMENTAL INFORMATION .....................................167 



 

viii 

 C CHAPTER 4 SUPPLEMENTAL INFORMATION .....................................183 

 D CHAPTER 5 SUPPLEMENTAL INFORMATION .....................................190 

 

  



 

ix 

 

 

LIST OF TABLES 

Page 

Table 2.1: Description of health metric methodology used by studies in the meta-analysis 

and how directions of health effects were assessed ...............................................26 

Table 3.1: Summary of model outputs for nightly round-trip distance, nightly number of 

foraging sites, foraging area, and core area ...........................................................53 

Table 3.2: Relationships between body condition measures and foraging metrics 

(distance, range) in bats in the Pteropodidae family .............................................54 

Table 4.1: Capture site, date captured, species, and sex of flying foxes from which fur 

and blood samples were analyzed ..........................................................................78 

Table 4.2: Loadings of 13 metals measured in flying fox fur onto three principal 

components retained after parallel analysis ...........................................................79 

Table 4.3: Output for linear models to examine the effect of season, sex, age, and body 

condition (WFR: weight to forearm length ratio) on metal concentrations in fur of 

grey-headed flying foxes in Adelaide, South Australia .........................................80 

Table 5.1: Model parameters with definitions, units, and values used to produce 

figures……. ........................................................................................................ 102 

Table S2.1: ANOVA table from generalized linear models (Poisson errors) assessing 

research effort over time and according to health metric and taxonomic group .153 

Table S2.2: Ranking of mixed-effects models (MEMs) predicting effect size for the 

relationship between urbanization and wildlife health for the full dataset, for each 



 

x 

health metric dataset, and for studies where we obtained quantitative data on 

urbanization between extreme sites; models are ranked by ∆AICc with the 

number of parameters (k), pseudo R2 and Akaike weights (wi) ...........................154 

Table S3.1: Summary of distance and area metrics calculated for each bat ....................171 

Table S3.2: Summary of model outputs for nightly round-trip distance, nightly number of 

foraging sites, foraging area, and core area .........................................................173 

Table S3.3: Results of two logistic regressions to model the probability of a site being 

used or available as a function of the land use at the site and bat age, sex, and 

body condition .....................................................................................................176 

Table S3.4: Plant species identified by ground-truthing suspected foraging sites in 

Adelaide, South Australia, 2016-2018 .................................................................177 

Table S3.5: Results of linear models to explore predictors of flying fox body 

condition…... .......................................................................................................178 

Table S4.1: Sample size and minimum, median, and maximum concentrations of metals 

measured in flying fox fur, separated by species .................................................186 

Table S4.2: Model results for GLMM (Poisson distribution, log link) of ectoparasite 

burden as a function of log-transformed concentrations of 13 metals measured in 

flying fox fur (n = 157; bats from Queensland sites only) ...................................187 

Table S4.3: Model results for GLM (binomial distribution, logit link) of blood parasite 

infection as a function of log-transformed concentrations of 13 metals measured 

in fur (n = 79 from Tolga, Tamworth, and Woolgoolga).....................................188 

Table S5.1: Ranges for parameters varied in the Latin hypercube sampling procedure .192 

  



 

xi 

 

 

LIST OF FIGURES 

Page 

Figure 2.1: Urban wildlife species can be more likely to be exposed to toxicants via 

foraging in polluted environments; here, an American white ibis (Eudocimus 

albus) forages in an urban pond containing litter ..................................................27 

Figure 2.2: The (a) global and (b) European distribution of 106 studies comparing the 

health of urban and non-urban wildlife populations in 30 countries .....................28 

Figure 2.3: Ranges and grand means from random effects models (REMs) for the 

correlations between wildlife health and urbanization ..........................................29 

Figure 2.4: Most supported predictors (ΔAICc = 0) of effect size for each health metric 

dataset (clockwise from top left: toxicants, body condition, stress, parasitism)....30 

Figure 3.1: Population estimates of the Adelaide grey-headed flying fox camp ...............56 

Figure 3.2: GPS tracks of P. poliocephalus during A) winter 2016 (5 bats, yellow paths) 

and winter 2017 (7 bats, orange paths) and B) summer 2017 (9 bats, yellow paths) 

and summer 2018 (11 bats, orange paths) .............................................................57 

Figure 3.3: Predicted relationships between body condition measures and A) nightly 

round-trip distance (shown for both sexes), B) nightly number of foraging sites, 

and C) foraging area (95% MCP) ..........................................................................58 

Figure 4.1: Map of eastern Australia showing the eight sites where flying foxes were 

captured ..................................................................................................................82 



 

xii 

Figure 4.2: Boxplots showing log-transformed concentrations of 13 metals measured in 

flying fox fur ..........................................................................................................83 

Figure 4.3: Biplot of PC1 versus PC3 with loadings of 13 metals measured in 402 flying 

fox fur samples .......................................................................................................84 

Figure 4.4: Predicted counts of ectoparasites as a function of cobalt, mercury, nickel, and 

selenium concentrations in flying fox fur from each respective GLMM ..............85 

Figure 5.1: Schematic of the toxicant-infection model ....................................................103 

Figure 5.2: Equilibrium population sizes as a function of the proportion of toxic habitat in 

a population infected by a virulent pathogen .......................................................105 

Figure 5.3: Population size, infection prevalence, and spillover risk (the density of 

infected animals in toxic habitat) plotted as a function of the proportion of toxic 

habitat in the landscape ........................................................................................106 

Figure S2.1: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) diagram showing the procedure for article exclusion based on titles, 

abstracts, and full text ..........................................................................................163 

Figure S2.2: Change over time in the number of individual records for urban wildlife 

health by health metric (top row) and taxonomic group (bottom row, left to right: 

herpetofauna, birds, fish, invertebrates, and mammals) ......................................164 

Figure S2.3: Most competitive mixed-effect models for how the mean urbanization 

footprint per study and distance between the most rural and urban wildlife 

populations predict effect size .............................................................................165 

Figure S2.4: Funnel plots illustrating the relationship between effect size and standard 

error (shaded circles) and the effect of correcting funnel plot asymmetry (white 



 

xiii 

circles) with trim-and-fill analysis on the estimated true correlation between 

urbanization and health outcomes (solid line) .....................................................166 

Figure S3.1: Logger attachment process ..........................................................................179 

Figure S3.2: Boxplot showing the variation in nightly roundtrip distance (distance from 

the roost to all foraging sites and back in km) within and between bats .............180 

Figure S3.3: Path flown by bat 298 the night of 2/14/2018, traveling in a clockwise 

direction ...............................................................................................................181 

Figure S3.4: Examples of repeated visits to foraging sites over several nights (Bat 132, 10 

nights, pink) and visits to core foraging sites with occasional long-distance 

excursions (Bat 302, 7 nights, yellow).................................................................182 

Figure S4.1: Plots showing significant species differences in log-transformed 

concentrations of metals measured in fur ............................................................189 

Figure S5.1: Results of sensitivity analyses. ....................................................................193 

 

 



 

1 

 

 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

We live in an increasingly urban world, with nearly 70% of the world’s human 

population expected to live in urban areas by 2050 [1, 2]. Animal biodiversity typically 

declines with increasing urbanization because many species are excluded from urban 

habitats [3], but some wildlife can thrive. Both unintentionally and deliberately, humans 

provide resources that wildlife can use, such as plentiful and predictable food in the form 

of garbage or backyard feeders [4, 5], and shelter for roosting or reproduction [6, 7]. 

Urban areas can also serve as refuges from predators for small mammals and birds [8, 9]. 

From foxes in Switzerland [10] to otters in Singapore [11], many wildlife species are 

establishing semi-permanent or year-round populations in human-dominated landscapes 

[12-14]. For example, raccoons can flourish in urban areas due to ample food and higher 

survival [15]. 

However, advantages of urban living can come hand in hand with risks; as one 

example, concentrated resources can intensify intra- and interspecific competition [16, 

17]. Urban wildlife also face exposure to toxicants such as pesticides, air pollutants, and 

polychlorinated biphenyls (PCBs) [18-20]; indeed, pollution has been implicated as a 

major driver of wildlife defaunation, especially in aquatic animals [21]. Anthropogenic 

stressors like noise and light pollution can also adversely affect health [22, 23]; for 

instance, tree frogs exposed to traffic noise had higher stress levels and reduced immune 
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function [24]. Other urban features such as cars and wind turbines can cause direct 

mortality [25, 26].  

Importantly, urban landscapes can alter infectious disease dynamics for wildlife 

[27]. Wildlife populations may experience higher disease prevalence due to high host 

density or pathogen transmission from domestic animals [28]. Toxicants including heavy 

metals and PCBs can also reduce immunity, contributing to increased susceptibility to 

infectious disease [29]. For example, kestrels exposed to volatile organic compounds in 

air displayed reductions in delayed-type hypersensitivity response, a measure of cell-

mediated immunity [30]. In turn, disease in urban wildlife can impact human health, 

because wildlife may transmit pathogens to humans [31, 32]. Wild boars have become 

more common in Berlin in recent decades as the animals seek anthropogenic food; the 

boars can carry Leptospira spp. and have been linked to at least one human leptospirosis 

case [33, 34]. 

My dissertation research investigated how urban landscape characteristics, 

including altered resources and exposure to toxicants, can affect wildlife behavior, health, 

and infectious disease. Four main goals underpinned this work: (1) analyze previous 

work to quantify the extent to which urbanization affects wildlife health metrics (Chapter 

2), (2) assess the foraging behavior of wild flying foxes in a recently-established urban 

population in South Australia (Chapter 3), (3) compare metal concentrations in Australian 

flying foxes captured across a gradient of urbanization (Chapter 4), and (4) develop a 

mechanistic model to explore dual effects of toxicants and infection on the population 

and disease dynamics of a wildlife population in an urbanizing landscape (Chapter 5). 
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In Goal 1, I explored the net effects of urbanization on the health of wildlife 

populations (Chapter 2). Drawing upon data from more than 100 published studies, I co-

led a phylogenetic meta-analysis to compare four health metrics (body condition, stress, 

disease, and toxicant loads) in urban and non-urban wildlife populations. This work is the 

first to quantify generalizable relationships between wildlife health and urbanization. The 

findings of this chapter suggested that overall, urbanization is harmful to wildlife health, 

but that results depended on the health metric and animal taxonomic group studied. A key 

finding was that urban wildlife populations had higher toxicant loads than non-urban 

populations across all taxonomic groups studied. This chapter also identified geographic 

areas and taxonomic groups that have received little research attention to date, and thus 

might be priorities for future investigation. 

Chapters 3-5 of my dissertation focused on Australian flying foxes (Pteropus 

spp.). These bats are highly mobile and can respond flexibly to spatiotemporal changes in 

the availability of flowering and fruiting resources. In Australia, flying foxes increasingly 

reside in urban areas, owing to loss of natural habitat and planting of fruiting and 

flowering trees in cities and suburbs [35-37]. Though flying foxes play an important 

ecosystem role as pollinators and seed dispersers [38], human attitudes towards the bats 

can be negative, in part because flying foxes can transmit harmful pathogens to other 

animals and humans. In Australia, flying foxes can carry Hendra virus, a pathogen that 

“spills over” from bats to horses, and occasionally from horses to humans; infection does 

not appear harmful to flying foxes, but has high case fatality rates in horses and humans 

[39]. Poor nutrition has been implicated as a factor in Hendra virus infection in flying 

foxes [40, 41], and given that urban and agricultural resources used by bats might be less 
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nutritious than native vegetation [42], it is important to understand how flying foxes use 

urban landscapes and how these landscapes can affect their health. 

In Chapter 3, I described a multi-year study of the foraging movements of grey-

headed flying foxes (P. poliocephalus) in a recently-established urban population in 

Adelaide, South Australia. I used global positioning system technology to track 

movements of P. poliocephalus during winter and summer periods, and examined 

relationships between foraging metrics and individual and environmental predictors (as 

part of Goal 2). This work revealed that body condition was a key predictor of movement 

and that Adelaide flying foxes foraged mostly in human-dominated habitats, possibly 

owing to the close proximity of resources in these areas.  

Given that the meta-analysis in Chapter 2 demonstrated differences in toxicant 

loads between urban and non-urban wildlife populations, in Goal 3 I used data from 

flying foxes captured in Adelaide and seven other sites across Australia to test if human 

land use surrounding flying capture sites predicted exposure to metals (Chapter 4). I 

analyzed fur samples from three flying fox species for 13 metal concentrations, and also 

assessed several measures of parasitism. A key finding in this chapter was that bats 

captured at sites with greater human impact had overall higher metal concentrations in 

fur. I found evidence of positive and negative relationships between ectoparasite 

abundance and metal concentrations, suggesting multiple causal mechanisms.  

In Chapter 5, I extended my work on metal exposure in flying foxes by 

developing a mechanistic model to explore how toxicants and infectious disease could 

interact to affect a wildlife population (Goal 4). Model results suggested that toxicants 

that have little effect on population size in the absence of infection can severely depress 
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population size in the presence of infection when the majority of landscape is 

contaminated by toxicants. Impacts on population size were more severe when toxicants 

had a high cost to dispersal. 

Collectively, this dissertation provides evidence for multiple sublethal health 

effects of urban living for wildlife that otherwise appear to acclimate to urban habitats. 

Across diverse animal taxa and within the focal study species of flying foxes, I found 

support for higher toxicant loads in urban wildlife. My work demonstrates the importance 

of considering multiple aspects of health, including toxicants, parasitism, body condition, 

and movement, when assessing urban impacts on wildlife. Model exploration shows that 

multiple stressors operating together can substantially lower population viability, 

intensify animal disease risks, and potentially increase human exposure to zoonotic 

pathogens transmitted by wildlife.  
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CHAPTER 2 

CITY SICKER? A META-ANALYSIS OF WILDLIFE HEALTH AND 

URBANIZATION1 

  

  

 
1 Murray MH*, Sánchez CA*, Becker DJ, Byers KA, Worley-Tonks KEL, Craft ME. Accepted by 

Frontiers in Ecology and the Environment. * = equal first authorship. Reprinted here with permission of the 

publisher. 
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ABSTRACT 

Urban development can alter resource availability, land use, and community composition, 

which, in turn, influences wildlife health. Generalizable relationships between wildlife 

health and urbanization have yet to be quantified and could vary across different 

measures of health and among species. We present a phylogenetic meta-analysis of 516 

comparisons of the toxicant loads, parasitism, body condition, or stress of urban and non-

urban wildlife populations reported in 106 studies spanning 81 species in 30 countries. 

We found a small but significant negative relationship between urbanization and wildlife 

health, driven by considerably higher toxicant loads and greater parasite abundance, 

greater parasite diversity, and/or greater likelihood of infection by parasites transmitted 

through close contact. Invertebrates and amphibians were particularly affected, with 

urban populations having higher toxicant loads and greater physiological stress than their 

non-urban counterparts. We also found strong geographic and taxonomic bias in research 

effort, highlighting future research needs. Our results suggest that some types of health 

risks are more pronounced for wildlife in urban areas, which could have important 

implications for conservation. 

 

IN A NUTSHELL: 

• We examined the relationships between urbanization and four aspects of wildlife 

health: exposure to toxic substances, parasite infection, body condition, and stress  

• Our analysis of multiple studies found that, overall, urbanization is harmful to 

wildlife health  



 

8 

 

• Urban wildlife species are exposed to more toxic substances and are at greater risk of 

direct transmission of parasites as compared with non-urban wildlife 

• Only a small number of urban wildlife studies focus on amphibians, reptiles, or 

invertebrates, or in locations outside of Europe and North America 

• Future research should focus on less represented wildlife species and locations, 

should measure several aspects of health, and aim to identify the consequences to 

wildlife health of exposure to toxic substances 
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INTRODUCTION 

Urban areas are rapidly expanding worldwide, and this growth has widespread 

consequences for wildlife. Urban wildlife species must cope with different conditions 

than their counterparts in non-urban areas; these include altered resource availability, 

warmer temperatures, habitat fragmentation, and pollution (Figure 2.1; [1]). As compared 

with non-urban areas, cities are associated with increased population densities of wildlife 

species [43]; greater frequency and intensity of human disturbance [44]; and altered 

community assemblages including humans and invasive, introduced, and domestic 

species [45]. These differences affect wildlife physiology, behavior, and health [46]. 

 Wildlife in cities can suffer ill effects from exposure to toxicants (eg pesticides, 

heavy metals, persistent organic pollutants); for example, fish exposed to municipal and 

industrial wastewater in China had poorer body condition [47]. Toxicants can also 

increase susceptibility to infection [48]. Human-induced landscape changes, such as 

habitat fragmentation and patchy food distribution, can promote animal aggregation by 

limiting dispersal or attracting animals to shared food sources. This aggregation may 

increase the spread of parasites transmitted through close contact [49]; parasite deposition 

on soil, water, or artificial feeders [50]; and stress through inter- and intraspecific 

competition [51]. Urban populations can also exhibit greater chronic stress due to 

disturbances associated with urban development [52]. 

 Yet some species can thrive in urban areas. Reliable food in urban habitats can 

improve body condition [53], and some urban populations exhibit lower baseline stress 

levels than rural conspecifics, in part due to higher resource availability [54]. Changes in 

behavior and community composition associated with urbanization can also lead to lower 
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parasite prevalence. For instance, urban carnivores like red foxes (Vulpes vulpes) can 

have smaller numbers of endoparasites, such as the tapeworm Echinococcus 

multilocularis, due to a switch in diet from intermediate rodent hosts to anthropogenic 

food [55]. Ectoparasites such as ticks can also be less prevalent among urban wildlife, 

potentially due to changes in habitat and exposure [56]. 

 Because urbanization can generate positive and negative health effects that may 

be host-, parasite-, or region-specific, predicting the overall effect of urbanization on 

wildlife health is challenging. Although a growing body of literature has documented the 

changes in wildlife health that occur with urbanization [32], analyses of the overall 

effects of urbanization on wildlife health and how these differ across taxonomic groups 

and health metrics are lacking. Differences in scale between studies may also obscure 

patterns; for example, some mechanisms act at local scales (resource availability), 

whereas others extend beyond city limits (noise and light pollution). Understanding net 

effects across studies could facilitate predictions about where conservation concerns 

could arise and where management of wildlife or habitats will be needed. 

 To address this knowledge gap, we performed a phylogenetic meta-analysis (ie 

accounting for phylogenetic relationships; [57]) of 516 wildlife health records from 106 

studies comparing health metrics between urban and non-urban populations. We chose 

four metrics to broadly represent health: two direct health outcomes (body condition and 

parasitism) and two physiological changes linked to health consequences (stress and 

toxicant loads in tissues). Because we were interested both in the overall effect of 

urbanization on wildlife health and in drivers of variability, we considered how host and 

parasite traits, study location and methodology, and degree of anthropogenic 
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development influence observed outcomes. Because we anticipated bias toward studies 

demonstrating poorer health outcomes in more urban areas, we also analyzed publication 

bias. Finally, we identified future research directions and potential effects of urbanization 

on biodiversity and conservation.  

 

META-ANALYSIS 

We identified 7541 published studies on urban wildlife health using a systematic search 

([58]; Appendix A Figure S2.1). Of these, 106 met our previously defined inclusion 

criteria by being field studies of sufficient sample size (n > 4) that compared body 

condition, physiological stress levels, parasitism, or tissue toxicant concentrations 

between urban and non-urban populations of the same wildlife species. We considered 

including immune function but ultimately did not do so due to variations in methodology 

among the papers. 

 For each comparison of the same measure of health between urban and non-urban 

populations of the same species, which we defined as an individual record, we extracted 

and documented the host species, health metric assessed (body condition, stress, 

parasitism, or toxicants), and study location (study coordinates if provided, or centroid of 

a named location). We also extracted test statistics (odds ratios, R2, χ2, F), directionality 

of the association between urbanization and health, P value, and sample size. We 

converted test statistics into the correlation-based r as our standardized effect size [59]. If 

statistics were not reported, we calculated odds ratios, Cohen’s d, or used the P value and 

sample size to obtain r [60]. We assigned negative values to r when health was lower for 

urban wildlife (poorer body condition, greater parasitism, higher baseline stress, lower 
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induced stress response, higher toxicant concentrations; Table 2.1) and converted r into 

Fisher’s Z (Zr) as a normalizing transformation using the R package metafor [61, 62]. 

Studies not reporting sample size or effect direction and studies pooling multiple species 

were excluded. For descriptive purposes, we defined effect sizes as significantly different 

from zero if their back-transformed 95% confidence intervals (CIs) did not cross zero. 

 

Health metric methodology 

We further divided health metrics based on original study methodology (Table 2.1). We 

classified whether body condition was measured using qualitative scores, raw quantitative 

measures, or size-adjusted quantitative measures [63]. We categorized stress measures as 

glucocorticoid concentrations, heterophil-to-lymphocyte ratios (baseline or in response to 

a stressor), or other measures (eg oxidative damage, blood glucose). We recorded 

whether the parasitism measure was infection status (binary variable), infection intensity 

(parasite load), or parasite richness (number of parasite species). Finally, we grouped 

toxicants into metals (eg cadmium, lead, mercury) or non-metals (eg pesticides, 

polychlorinated biphenyls). 

 

Wildlife and parasite traits 

We classified wildlife species into five taxonomic groups: herpetofauna (amphibians and 

reptiles), birds, fish, invertebrates, and mammals. We delineated whether a species’ life 

history is primarily terrestrial or aquatic using the primary literature or Animal Diversity 

Web (http://animaldiversity.org). For parasites, we recorded parasite type as 

microparasites (bacteria, viruses, fungi, and protozoa) or macroparasites (helminths and 



 

13 

 

ectoparasites); we created two categories because of low group sample sizes. We used the 

Global Mammal Parasite Database to classify parasite transmission route as close contact 

(transmitted directly from one individual to another), non-close contact (eg 

environmental contamination), vector transmission (eg insect vectors), intermediate hosts 

(eg consuming infected prey), or via multiple routes (each as a binary covariate; [64]).  

 

Spatial analysis 

We estimated urban development surrounding study sites using global terrestrial human 

footprint maps (GHF) in QGIS [65, 66]. The GHF dataset combines population density 

and anthropogenic development into a standardized score (0–50), with scores >10 

indicating built environments. We extracted GHF values in raster cells surrounding urban 

and non-urban study sites, at either the study coordinates or the centroid of a named 

location. We calculated the average GHF value within 1-km and 10-km buffers to 

measure urbanization at the local scale and account for landscape context surrounding the 

site. If a study was performed along an urbanization gradient, we used the GHF values at 

the most and least urban sites; if a study had multiple urban and non-urban replicates, we 

used the average GHF values. Using these scores, we calculated the mean GHF score 

across the urban and non-urban sites (mean urbanization) and subtracted the GHF score 

of the most urbanized sites from the least urbanized sites (difference in urbanization) for 

each study. The GHF score is available for 1993 and 2009; we used the GHF value 

closest to the study year. We subtracted the average score at study sites in 1993 from the 

score in 2009 as a measure of change in GHF over time (change in urbanization). We 

recorded gross domestic product (GDP) and average GHF score of the study country to 



 

14 

 

account for differences in environmental policies in high- versus low-income countries. 

Using QGIS, we also measured the inter-site distance between urban and non-urban study 

sites to test whether health differences were stronger with greater distance between study 

populations. 

 

Statistical analysis  

We used a hierarchical random-effects model (REM) accounting for phylogenetic 

dependence of individual species relatedness and multiple records within each study to 

estimate the size and strength of the overall relationship between urbanization and 

wildlife health [60]. To first identify the primary predictors of effect size across our full 

dataset (n = 516 records), we fit a set of mixed-effect models (MEMs) considering 

taxonomic group, health metric, species life history, and all two-way interactions.  

 Given the results of this analysis (see below), we stratified our data by health 

metric. We used an MEM to test whether effect size differed among the health metrics 

(toxicant concentrations, n = 189; body condition, n = 60; parasitism, n = 194; stress, n = 

73). We fit sets of MEMs separately to each health metric dataset to assess whether 

urbanization–wildlife-health relationships vary by wildlife species traits (taxonomic 

group, life history), parasite traits (parasite type, transmission route), health metric 

methodology, and study country metrics (mean country GHF, log GDP).  

In a third analysis applied to data where site location was provided (n = 302 

records, 81% of studies), we fit a set of MEMs with metrics of urbanization intensity 

(mean urbanization and difference in urbanization across sites, change in urbanization 

between time periods) and inter-site distance as moderators of effect size. We also 
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included interaction terms between these urbanization metrics and taxonomic group and 

health metric. All models in these three analyses included the same random effects (each 

record was nested within its associated study and similarity between closely related 

species was accounted for by structuring species within a phylogenetic correlation 

matrix) and included weighting by sampling variance using the metafor package. 

We tested for evidence of publication bias, which includes preferential 

publication of significant over non-significant results or studies with a small effect size 

[67]. We generated funnel plots of effect sizes against standard errors to visualize 

potential bias for the full dataset and each health metric subset; low bias is expected when 

effects with high precision remain close to the mean and effects with low precision are 

spread symmetrically from the mean [68]. For each of the funnel plots, we tested for 

asymmetry using rank correlation tests [69]. We then used the trim-and-fill method with 

an R0+ estimator, which estimates the number of missing records based on the spread of 

effect sizes relative to the overall mean, to test whether the number of records missing 

due to publication bias differed from zero [70]. We adjusted P values from these two tests 

with the Benjamini and Hochberg correction to adjust for multiple comparisons [71]. 

Statistical analyses are explained in greater detail in Appendix A. 

 

RESULTS 

Dataset description 

Our dataset included 516 records from 106 published studies quantifying wildlife health 

(DRYAD repository: https://doi.org/10.5061/dryad.b74d971). Studies were conducted in 

30 countries on all six continents containing cities (Figure 2.2), with more than one-third 
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of studies being conducted in the US (n = 38, 36%). GHF scores varied across urban sites 

(minimum GHF = 0.7, maximum GHF = 24.9). The parasitism and toxicant datasets each 

comprised about one-third of all records (37.6% and 36.6%, respectively), while the 

stress and body condition datasets were less well represented (14.1% and 11.6%, 

respectively) (Figure 2.3). The predominant health metrics used differed by taxonomic 

group (χ2 = 274.49, P < 0.001), with parasitism dominated by mammals (72%), stress and 

body condition by birds (64% and 45%, respectively), and toxicants by fish (37%), birds 

(29%), and mammals (27%) (Figure 2.3). Our search identified no fish/parasitism 

records, mammal/stress records, or invertebrate/body condition records.  

 Research effort for toxicants and parasitism showed greater growth over time than 

for body condition and stress (χ2 = 21.46, P < 0.001; Appendix A Figure S2.2; Table 

S2.1), and research effort for birds, fish, and mammals showed greater growth over time 

than for herpetofauna and invertebrates (χ2 = 24.98, P < 0.001; Appendix A Figure S2.2; 

Table S2.1).  

 

Relationships between urbanization and wildlife health 

Across all records, 60% (n = 311) reported a negative relationship between urbanization 

and health (r < 0), 37% (n = 190) reported a positive relationship (r > 0), and 3% (n = 15) 

reported true null effects (r = 0). The toxicant dataset was dominated by records reporting 

negative relationships, while the other health datasets had high variation in effect 

direction (Figure 2.3). Within records reporting a negative urbanization–health 

relationship, the proportions of significant (ie 95% CIs per effect size do not cross zero) 

and non-significant records were approximately equal (48% significant, 52% non-
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significant). Within records reporting a positive relationship, a larger proportion was non-

significant (46% significant, 54% non-significant).  

 Our REM identified significant heterogeneity in effect sizes across the entire 

dataset (I2 = 98.06, Q515 = 12644, P < 0.001), and an overall small but significant 

negative correlation between urbanization and wildlife health (r = –0.16, z = 2.09, P = 

0.04). Comparison among alternative models showed that the interaction between 

taxonomic group and health metric best predicted effect size (wi = 1, R2 = 0.29, Appendix 

A Table S2.2; Q16 = 71.43, P < 0.001; Figure 2.3). Adjusting for multiple comparisons, 

this model showed strong negative relationships between urbanization and health for 

toxicants in herpetofauna (r = –0.82, 95% CI = –0.94 to –0.53), toxicants in birds (r = –

0.36, 95% CI = –0.55 to –0.14), toxicants in invertebrates (r = –0.92, 95% CI = –0.97 to 

–0.80), and stress in invertebrates (r = –0.88, 95% CI = –0.96 to –0.71).  

 

Moderators of effect size per health metric 

Because health metrics had greater predictive power than taxonomic group (Appendix A 

Table S2.2), we stratified our data by health metric for more detailed model comparisons. 

Within this analysis, parasite transmission route and animal taxonomic group were the 

top predictors of how urbanization correlates with health (Appendix A Table S2.2). For 

the parasitism dataset, the most parsimonious MEM contained whether parasites were 

transmitted through close contact or another route (ΔAICc = 0.80, wi = 0.11, Q1 = 11.9, P 

< 0.001). Effect sizes were most negative for parasites spread through close contact (β = 

–0.3, z = 3.45, P < 0.001, R2 = 0.25; Figure 2.4).  
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For toxicant and stress datasets, both top MEMs mirrored our first set of analyses, 

with the best model containing taxonomic group (wi = 0.68 and wi = 0.78, respectively); 

no other models were competitive (Appendix A Table S2.2). For the toxicant dataset, this 

MEM explained 21% of effect size variation, and predicted effect size to be most 

negative for herpetofauna and invertebrates (Q4 = 9.22, P = 0.06; Figure 2.4). For the 

stress dataset, this MEM explained 55% of variation and predicted the most negative 

correlations for invertebrates (Q3 = 35.68, P < 0.001; Figure 2.4). No covariates were 

more competitive than an intercept-only model for the body condition dataset (Appendix 

A Table S2.2). A MEM with life history suggested terrestrial wildlife show slightly more 

positive body condition relationships with urbanization than aquatic wildlife (ΔAICc = 

1.81, wi = 0.11), but this was not statistically significant (Q1 = 1.27, P = 0.26; Figure 2.4).  

 

Does intensity of urbanization predict effect size? 

The mean urbanization score (GHF) within 1 km per study and its interactions with 

health metrics explained the most variation in effect size for studies providing study 

locations (1 km: wi = 0.62, R2 = 37%; Q7 = 35.86, P < 0.0001; Appendix A Table S2.2). 

Post-hoc analysis showed this association was only significant for parasitism; more urban 

regions showed more positive effect sizes for parasitism (β = 0.05, P < 0.001) (Appendix 

A Figure S2.3). A model with inter-site distance and its interaction with health metrics 

received marginal support (ΔAICc = 4.05, wi = 0.08, R2 = 0.29; Q7 = 21.86, P < 0.01). As 

distance between contrasting sites increased, effect size became more negative for 

toxicant outcomes (β = –0.02), whereas all other health metrics showed non-significant 

positive relationships with distance (Appendix A Figure S2.3).  
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Publication bias 

We found evidence of publication bias depending on health metric (Appendix A Figure 

S2.4). Funnel plots suggested bias in effect size reporting, which rank correlation tests 

confirmed for the full dataset (toward negative correlations: z = –4.79, P < 0.001) and 

body condition dataset (toward positive correlations: z = 3.89, P < 0.001). We did not 

find significant publication bias for toxicant, parasitism, or stress effect sizes (toxicants: z 

= 1.71, P = 0.12; parasitism: z = –1.62, P = 0.12; stress: z = –1.54, P = 0.12). Trim-and-

fill analyses suggested the number of missing studies did not differ from zero for most 

datasets; for stress data, this analysis suggested that six (± 6) effect sizes greater than the 

mean were missing (P = 0.04). 

 

DISCUSSION 

Does urbanization pose health risks for wildlife? 

Identifying contexts in which urbanization influences wildlife health is critical for 

understanding urban adaptation, human–wildlife conflict, and biodiversity conservation 

in cities. Our meta-analysis suggests an overall negative relationship between 

urbanization and wildlife health, mainly driven by considerably higher toxicant loads and 

greater parasite abundance, greater parasite diversity, and/or greater likelihood of 

infection by parasites transmitted through close contact. We found no significant 

difference in body condition and stress levels with urbanization. For all health metrics, 

the direction and magnitude of effect sizes varied greatly by taxonomic group. Our 

findings highlight the complexity of urbanization’s effects on wildlife health. 
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 Across all wildlife taxa, toxicant loads were significantly higher in urban animals 

than in their non-urban conspecifics. Although it is not surprising that urban wildlife 

species are subject to greater exposure to heavy metals, organic compounds, and 

pesticides associated with industrial and anthropogenic features, such as roads and 

managed lawns [72], our results demonstrate that this exposure results in uptake into 

wildlife tissue. For instance, urban predators like bobcats (Lynx rufus) can be exposed to 

anticoagulant rodenticides from consuming contaminated prey [73]. Toxic metals like 

cadmium, lead, and mercury can bioaccumulate in tissues through food consumption and 

are more abundant in urban populations, as seen in common blackbirds (Turdus merula; 

[74]) and common perch (Perca fluviatilis; [75]). Although toxicant exposure can have 

downstream effects on wildlife health, including abnormal development, reproduction, 

and immune function [48, 76], the biological relevance of relatively higher toxicant 

concentrations is less clear, especially across species.  

 We observed a higher likelihood of infection by parasites transmitted through 

close contact, along with greater parasite abundance and diversity, in urban as compared 

to non-urban populations, perhaps because some urban-adapted hosts live at higher local 

densities due to abundant and patchily distributed food resources. For instance, urban 

raccoon populations can reach high densities, potentially promoting rabies transmission 

[77]. Conversely, parasite transmission by routes other than close contact (ie transmitted 

via vectors, trophic transmission, or environmental contamination) was lower in urban 

areas, perhaps due to shifts in habitat availability or host community structure. For 

instance, the prevalence of Campylobacter spp in house crows (Corvus splendens) in 

Tanzania was higher in rural villages, where infections are more common in poultry than 
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in urban villages [78]. Predicting any changes in parasitism with urbanization could 

therefore depend on parasite life history. 

Our data showed no consistent differences in wildlife body condition with 

urbanization. Increased access to resources could buffer populations from negative 

effects of urbanization. For example, white-footed tamarins (Saguinus leucopus; [53]) in 

urban areas had higher size-adjusted mass than their rural counterparts but also had 

higher cholesterol levels, presumably from food provisioning with cholesterol-rich 

anthropogenic food. In contrast, rufous-collared sparrows (Zonotrichia capensis) had 

lower body mass in urban areas, possibly due to higher intraspecific competition [51]. 

Given that no model performed better than the null, there appear to be contrasting effects 

of urbanization on wildlife body condition.  

As with body condition, we did not find significant differences in stress levels 

between urban and non-urban populations. Cities may not present additional stressors 

beyond those experienced in rural settings; alternatively, variation in stress outcomes 

could reflect difficulty in interpreting stress responses across methods (eg heterophil-to-

lymphocyte ratios or glucocorticoid concentrations) or sampling times (eg time of day, 

reproductive season). Furthermore, chronically stressed individuals may not show 

increased stress measures, which complicates interpretation of results [79]. For instance, 

urban ornate tree lizards (Urosaurus ornatus) had lower stress responses relative to their 

non-urban counterparts [54], suggesting chronic stress.  

 Despite an overall negative relationship between urbanization and wildlife health, 

we also found ample support for positive health effects. Positive (albeit non-significant) 

effects were found for four health metric–taxonomic group pairs: body condition and 
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mammals, parasitism and mammals, parasitism and birds, and stress and herpetofauna. 

Given the bias toward negative correlations in the dataset, the benefits of urbanization for 

wildlife deserve careful consideration. 

 

Future directions  

Our results cannot tease apart the causal mechanisms for observed relationships between 

urbanization and health, but they do suggest several ways in which future studies could 

adopt more mechanistic approaches. First, we recommend that studies examine multiple 

health metrics simultaneously; <20% of studies in our analysis did so. This would 

identify mechanisms by which toxicant exposure impairs health, such as through altered 

immune function, gene expression, or organ function. Second, studies of urban wildlife 

health should quantify urbanization using landscape metrics relevant to the focal wildlife 

population [80]. For instance, the degree of urbanization can be classified according to 

land cover, human population density, or a combination of several metrics [81]. 

Providing details of study location coordinates and how urbanization was quantified will 

also facilitate cross-study comparisons in towns and cities of different sizes. Finally, 

researchers should consider how species traits (eg generalist versus specialist diet, social 

system, life span) could influence health outcomes. Previous studies have attempted to 

predict traits associated with urban adaptation [82], which could aid in predicting health 

outcomes in urban areas.  

Echoing previous work [83], we found that most published urban wildlife 

research has been conducted in cities in North America and Europe (Figure 2.2). 

However, many rapidly urbanizing areas are in low- and middle-income countries near 
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global biodiversity hotspots [84], where relationships between wildlife health and 

urbanization could vary with climatic, ecological, and socioeconomic differences. 

Research in South America, Africa, Asia, Australia, and countries with intense urban 

development (eg India; Figure 2.2) would improve global inferences. Although the 

studies in our meta-analysis were conducted at sites that ranged widely in their degree of 

human development (ie human footprint values), it remains unclear whether urban 

wildlife studies to date reflect an unbiased representation of global urbanization intensity, 

and how other types of land use (eg agriculture) affect wildlife health relative to 

urbanization. Furthermore, we recognize the potential for spatial error and change over 

time when using point locations to estimate local human footprint from a global dataset 

[85]. When we accounted for the degree of urban development, we found that habitats 

with greater urban development were associated with lower parasitism (with all 

transmission modes combined due to smaller sample size), suggesting that the 

transmission of some types of parasites may be interrupted in highly urban areas.  

 Finally, our meta-analysis revealed taxonomic biases for each health metric; for 

example, most toxicant studies focused on fish, whereas most parasitism studies focused 

on mammals. These patterns could be driven by their relevance to human health; aquatic 

systems receive wastewater outputs from human activity, and most urban wild mammals 

share parasites with domestic animals and people [86]. Our results may be biased in 

terms of wildlife species representation; species that experience severe health threats in 

cities may be rare and therefore less present to be sampled. Even in populations that have 

persisted in urban settings, negative effects could be masked; for instance, stress 

responses might dull in response to sustained threats [87]. When assessing impacts of 
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urbanization, researchers should attempt to sample a broad suite of species and consider 

whether any species lack representation because they are rare or are excluded from urban 

areas. 

 

Implications for conservation and policy 

Urban living appears to pose several health threats for wildlife, especially through 

increased exposure to toxicants like heavy metals and pesticides. Invertebrates and 

herpetofauna seem especially vulnerable to toxicant exposure in urban areas, which has 

implications for conservation. For example, many amphibian and reptile populations are 

already in decline due to fungal diseases, such as chytridiomycosis [88] and snake fungal 

disease [89]. Observational studies have linked greater loads of heavy metals and 

pesticides with increased susceptibility to infection in toads and frogs [90], highlighting 

the threat posed by higher toxicant loads to urban wildlife.  

 Urban invertebrates appear especially vulnerable to health risks in urban areas 

because they exhibited greater increases in toxicant loads and stress levels than non-urban 

invertebrates and other wildlife taxa. However, we acknowledge that these results are 

based on a small sample. Increased toxicant loads and chronic stress can suppress 

immune function, potentially increasing infection risk [48, 76]. For the three bee species 

in our study, this could have important consequences for colony health [91] and urban 

pollinator conservation, as urban honeybees can be subject to higher concentrations of 

pesticides and greater oxidative stress [92]. We found few studies on urban invertebrate 

and herpetofauna health; we therefore encourage researchers to examine the health 

impacts of urbanization and traits conferring sensitivity in these taxa. Beyond wildlife 
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conservation, our results suggest that the risks of toxicant exposure and the transmission 

of some wildlife parasites may be higher for domestic animals and the public in urban 

relative to non-urban settings. Future research on urban wildlife health will be critical for 

maintaining urban biodiversity and public health in our rapidly urbanizing world. 
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Table 2.1. Description of health metric methodology used by studies in the meta-analysis 

and how directions of health effects were assessed 

 

Health 

metric 

Methods of measurement Direction of association between 

urbanization and health (health effect) 

Toxicants ● Metal concentrations (eg lead, copper, 

zinc) 

● Non-metal concentrations (eg 

organochlorine pesticides, 

polychlorinated biphenyls) 

  

Positive for decreased measures; negative for 

increased measures 

Parasitism ● Infection status (ie infected or 

uninfected) 

● Infection intensity (ie number of 

parasites per infected individual) 

● Parasite richness (number of parasite 

species) 

Positive for decreased measures; negative for 

increased measures 

Body 

condition 

● Qualitative scores (eg subjective fat 

score) 

● Raw quantitative measure (eg body 

mass, length) 

● Size-adjusted quantitative measure (eg 

residuals of mass ~ length regression) 

Positive for increased measures; negative for 

decreased measures 

Stress ● Glucocorticoid concentrations (higher 

levels indicate more stress) 

● Heterophil:lymphocyte ratios (baseline 

values or in response to a stressor) 

● Other measure 

Positive for decreased baseline measures; 

negative for decreased induced measures (ie 

in response to a stressor) 
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Figure 2.1. Urban wildlife species can be more likely to be exposed to toxicants via 

foraging in polluted environments; here, an American white ibis (Eudocimus albus) 

forages in an urban pond containing litter. 
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Figure 2.2. The (a) global and (b) European distribution of 106 studies comparing the health of urban and non-urban wildlife 

populations in 30 countries. For clarity, each study is represented once as the centroid of all within-study locations. Study locations are 

based on wildlife taxa (herpetofauna = red stars, birds = green triangles, fish = blue squares, invertebrates = purple circles, mammals = 

orange diamonds). Base map shows the 2009 global terrestrial human footprint map, in which darker areas indicate more urban 

development.
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Figure 2.3. Range and grand means from random effects models (REMs) for the 

correlations between wildlife health and urbanization. The columns represent results 

stratified by health metric, while the rows represent results stratified by animal taxonomic 

group. Thin lines represent 95% confidence intervals (CIs) for effect sizes of individual 

records; thick circles and lines (at the bottom of each panel) represent REM estimates 

(uncorrected for publication bias). CIs for individual records that cross the dashed line (r 

= 0, no relationship between health and urbanization) are partially transparent.  
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Figure 2.4. Most supported predictors (ΔAICc = 0) of effect size for each health metric 

dataset (clockwise from top left: toxicants, body condition, stress, parasitism). Squares 

show the predicted means and 95% CIs from the respective mixed-effects models, and 

circles show individual records scaled by their sample size. The dashed line shows no 

relationship between health and urbanization (r = 0). 
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CHAPTER 3 

BODY CONDITION PREDICTS GREY-HEADED FLYING FOX (PTEROPUS 

POLIOCEPHALUS) FORAGING MOVEMENTS IN AN URBAN LANDSCAPE2 

  

 
2 Sánchez CA*, Reardon TB, O’Leary M, van Weenen J, Altizer S, Boardman WSJ. Submitted to 

Movement Ecology. 
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ABSTRACT 

Background. Food resources are a major driver of animal movement, and human-

provided food in urban areas can alter wildlife foraging behavior. In recent decades, 

pteropodid fruit bats (flying foxes) have settled in urban areas to feed on fruiting and 

flowering trees planted by humans. Understanding the consequences of this shift towards 

urban foraging for bat movement and health is important for predicting future bat-human 

interactions and associated health risks. In this study, we examined the foraging behavior 

of Australian flying foxes to: 1) characterize bat movements in a newly-established urban 

population, 2) explore individual and environmental predictors of movement behavior, 

and 3) analyze the selection of foraging sites and food plants utilized.  

Methods. We deployed lightweight GPS loggers to track the movements of 32 grey-

headed flying foxes (Pteropus poliocephalus) captured in Adelaide, South Australia in 

2016-2018. We calculated quantitative metrics including nightly distance traveled, 

foraging and core area, and number of foraging sites visited. We used regression models 

to analyze whether these foraging metrics were correlated with body condition, age, sex, 

daily temperature, and season. We ground-truthed feeding sites to identify plant species 

visited, and statistically examined the selection of foraging sites in relation to human land 

use. 

Results. Bats in better body condition flew shorter distances each night, visited fewer 

foraging sites, and had smaller foraging areas. Male bats had longer nightly round-trip 

distances than females, and younger bats visited more foraging sites per night. Bats 

foraged more in urban residential and recreational sites than less disturbed sites; however, 
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we did not quantify nectar or fruit availability at foraging sites and so could not assess 

preference.  

Conclusions. Our work suggests that the urban flying foxes in Adelaide foraged largely 

in human-dominated habitats, and that bats in better body condition made shorter, more 

efficient foraging flights. Understanding how animals move across and utilize resources 

within human-modified habitats is increasingly important for wildlife conservation and 

managing human-wildlife conflicts.  

 

Keywords: Adelaide; fruit bat; GPS tracking; habitat selection; movement ecology; 

seasonality; urbanization 
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BACKGROUND 

Many animals move to acquire food resources [93], with movements ranging from long-

distance annual migrations [94] to daily travels in local environments [95]. At the 

individual level, greater foraging success often predicts improved body condition and 

energy reserves, translating to increased fitness. Both internal and environmental factors 

determine an animal’s foraging movements [96]. For example, home ranges of female 

striped mice (Rhabdomys pumilio) increased with scarcity of food plants, fewer 

competitors, and larger mouse body mass, among other factors [97], while in European 

shags (Phalacrocorax aristotelis), juvenile birds spent more time foraging than adults, 

likely to compensate for poorer foraging ability [98].  

Urbanization alters the quantity and distribution of resources available to wildlife. 

Many animal species disappear from cities altogether, but some wildlife can utilize 

human-provided resources and habitats found in urban areas [4, 5]. In terms of foraging 

movements, studies that span a diverse range of terrestrial mammals show that animals 

living in highly human-impacted environments often travel shorter distances in search of 

food, potentially driven by access to predictable resources [99]. Shorter movement 

distances in response to human-provided resources can also manifest at larger scales. For 

example, Eurasian blackcaps (Sylvia atricapilla) in Germany and Austria are increasingly 

wintering in Britain, rather than migrating a longer distance to overwinter in Spain, in 

response to supplemental feeding of birds in urban gardens [100].  

Reduced movement could benefit wildlife by allowing them to allocate more 

resources towards growth, energy storage, or reproduction [101-103]. For instance, a 

study of African lesser bushbabies (Galago moholi) reported that urban bushbabies spent 
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less time moving, ate more anthropogenic food, and had higher body mass index values 

than did rural conspecifics [104]. Yet feeding on urban resources could be costly if those 

resources provide lower nutrient content than natural food sources, contain toxicants (e.g. 

pesticides, heavy metals), or stimulate harmful behavior (e.g. aggression in response to 

high aggregation) [4, 105, 106]. Decreased movement coupled with higher local densities 

in urban areas could also increase exposure to pathogens transmitted by fecal-oral routes 

or environmental contact, allowing infectious stages to accumulate in the animals’ 

environment over time [107, 108].  

Pteropodid fruit bats (flying foxes) as a group have exhibited changes in 

movement in response to anthropogenic resources. These highly mobile animals respond 

flexibly to changes in resource distribution and abundance, and in forested environments, 

typically show nomadic long-distance movements to track ephemeral flowering and 

fruiting resources [109, 110]. Flying foxes increasingly reside in urban areas and feed on 

urban and agricultural resources [35]. In Australia, this behavioral shift has been 

attributed largely to a combination of native habitat destruction, planting of (largely non-

native) fruiting and flowering trees in cities that offer predictable food, and artificial 

watering [36, 37, 111-113]. Shifts in foraging behavior can affect bat health [35]. 

Human-provided food used by bats might be less nutritious than native vegetation [42]. 

Because poor nutrition might increase susceptibility to infection [40, 41], and because 

flying foxes can transmit viruses to humans, livestock, and pets [114], urban resources 

could influence the health of humans and other animals. Therefore, work exploring links 

between urban resources, bat foraging movements, and health is crucially needed [115-

117]. 
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We examined the foraging movements of Australian flying foxes in a recently-

established urban population using global positioning system (GPS) technology. We 

collected data from grey-headed flying foxes (GHFF; Pteropus poliocephalus) captured 

in Adelaide, South Australia during two winter and two summer periods. The Adelaide 

flying fox population formed within the past decade and is located far to the west of the 

previous known P. poliocephalus distribution (Figure 3.1). Our study objectives were to 

1) characterize bat movements across the novel Adelaide landscape, 2) explore individual 

and environmental predictors of movement, and 3) analyze the selection of foraging sites 

and food plants utilized. Given that flowers and fruits are more abundant and reliable in 

summer than winter [118], we expected bats to fly shorter distances each night and have 

smaller foraging areas in summer. We used multiple body condition indices as a proxy 

for overall health, and predicted that bats caught in the summer would be in better body 

condition owing to higher resource availability and reduced flight energetics. We 

expected sex differences in foraging metrics owing to size dimorphism [119] and 

different energy requirements (e.g. territory defense, lactation), but did not predict a 

direction for this difference given conflicting results in other studies [115, 120]. Based on 

previous work on urban flying foxes [111, 121], we expected that Adelaide bats would 

forage primarily in human-modified habitats. Finally, we expected that animals that 

forage over shorter distances might show greater body condition, if less energy is 

expended on movement, or if animals in better condition can better access and defend 

nearby resources. 
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METHODS 

Study population and location 

In winter 2010, ~500 GHFF formed a temporary camp in a suburban backyard in 

Adelaide, South Australia, growing to ~1200 individuals within a week (T.B. Reardon, 

personal observation). Adelaide is >600 km northwest of the previously known range of 

P. poliocephalus (Figure 3.1), and their 2010 range expansion might have been driven by 

a national shortage in their preferred flowering and fruiting plants [122]. Bats appeared to 

leave Adelaide (i.e. a camp could not be located) soon after the shortage was over but a 

camp was again observed in Adelaide in early 2011 when ~50 GHFF settled in the 

Adelaide Botanic Gardens. The population began to grow and after reaching ~400 

individuals, was relocated to nearby Botanic Park (34°54'56.7"S, 138°36'24.7"E) by the 

Department for Environment and Water. Population counts using direct observation 

(aided by 10 x 42 mm binoculars) began in 2011 (Figure 3.1). The population has grown 

to more than 20,000 individuals at times, primarily through interstate immigration, with 

intermittent declines owing to mortality during extreme heat events as well as recent 

emigration during an apparent food shortage (J. van Weenen, personal observation). 

 

Bat capture, logger attachment, and data collection 

We captured 310 total P. poliocephalus by mist net in August (winter) and February 

(summer) periods during 2015-2018 as part of a larger study to characterize the health 

and behavior of the Adelaide flying fox population (W. Boardman, unpublished data). 

Bats were captured pre-dawn as they returned to the roost after foraging and placed in 

individual cotton bags. We transported the bats to the Adelaide Zoo Animal Health 
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Centre and anesthetized them with inhalant Isoflurane [123]. We recorded each bat’s sex, 

weight to the nearest 1 g with a digital scale, and forearm length to the nearest 1 mm with 

vernier calipers. Age in years was estimated by a single person (W. Boardman) based on 

molar wear and coloration. Each bat was assigned a body condition score (BCS; from 1-5 

with higher values indicating better condition) based on palpation of pectoral muscles and 

prominence of the sternum [124]. 

 Following the protocol of de Jong [125], we attached 15g data loggers (e-obs 

GmbH, Munich, Germany) to 32 GHFF (Aug. 2016: n = 5; Feb. 2017: n = 9; Aug. 2017: 

n = 7; Feb. 2018: n = 11) to track their movements (Appendix B Figure S3.1). Only male 

and non-pregnant female bats weighing >600g were considered for logger deployment. 

The loggers are battery and solar powered and collect GPS, acceleration, altitude, speed, 

and heading data. Acceleration was recorded every 30 s on three axes throughout the 

night (~6pm-7am local time). The frequency of GPS fixes was acceleration-informed 

[126], such that fixes were collected more frequently during flight (every 30 s), and less 

frequently during rest or minor movement (every 45 min). The roost was visited daily to 

remotely download the previous night’s data using a handheld e-obs base-station. We 

downloaded 1 – 14 consecutive nights of movement data from each logger (209 nights 

total).  

 

Identification of foraging plants 

To characterize bat diet breadth and preferences, we ground-truthed a subset of locations 

that we suspected were visited by bats. We visualized movement tracks in Google Earth, 

identified clusters of GPS fixes as potential foraging sites, and collected flower, leaf, 
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bark, and/or fruit samples for subsequent identification at the State Herbarium of South 

Australia. However, we were not able to quantify the food resources available at the time 

of foraging (e.g. nectar flow, fruit abundance and ripeness). 

 

Calculation of foraging distance and area 

All movement and statistical analyses were performed in the R computing environment v 

3.4.3 [127]. The dataset was first trimmed so that only the first fix of each GPS burst was 

retained (bursts are useful for improving estimation of altitude, speed, and heading, 

which were not needed in this study). We calculated the number of hours each bat was 

tracked per night and subsequently excluded incomplete nights (< 8 hours of data). We 

calculated the nightly distance flown by each bat by summing the distance between 

successive GPS points [128]. When a bat began and ended its flight at the roost, we 

designated this a round-trip, and calculated the median and maximum round-trip distance 

for each bat. We excluded non–round-trip nights from further calculations because we 

believe this represented aberrant behavior (Additional file 2: calculation of foraging 

distance and area). 

 We estimated the area traversed by tracked GHFF using minimum convex 

polygons (MCPs). The foraging and core areas for each bat were calculated respectively 

as the areas of 95% and 50% MCPs constructed with the adehabitatHR package [129]. 

We restricted calculation of foraging and core areas to bats with at least three round-trips, 

conservatively assuming that small sample sizes would not accurately estimate area. We 

also constructed seasonal 95% MCPs for use in habitat selection analyses (described 

below). 
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Estimating number of foraging sites 

In addition to visually identifying the largest clusters of GPS points in Google Earth for 

ground-truthing purposes (described above), we used a systematic protocol to identify 

foraging sites. We first filtered out all high-speed GPS fixes (ground speed >2 m/s), then 

generated a distance matrix for remaining points [130]. We identified low speed clusters 

(at least 6 low-speed points within 60m of each other), calculated the centroid of each 

[131, 132], and excluded clusters within 200m of the roost. We considered all remaining 

cluster centroids to be foraging sites. We calculated the nightly number of foraging sites 

used by each bat and the straight-line distance from each foraging site to the roost, and 

identified the most distant foraging site visited by each bat [133]. For our habitat 

selection analyses, we repeated this procedure to identify the location of foraging sites for 

each bat over all nights of its logger deployment, but used a more conservative definition 

of a foraging site (at least 12 low-speed points) to identify more heavily used sites.  

 

Statistical analyses 

We used regression models to assess the importance of individual and environmental 

predictors in explaining variation in nightly round-trip distance and nightly number of 

foraging sites. We fit generalized linear mixed models (GLMMs) with maximum 

likelihood, using a gamma distribution and log link for the distance model, and a Poisson 

distribution and log link for the number of sites model [134]. For both distance and 

number of sites, we set bat age, sex, body condition, season, maximum daily temperature, 

and hours tracked as fixed effects, and batID and date as random effects.  
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Maximum daily temperature data were downloaded from the Australian 

Government Bureau of Meteorology (Adelaide Kent Town station, #23090, located 

~1.3km SE from the roost). In addition to body condition score, we derived two 

additional measures of body condition. We calculated weight to forearm ratio (WFR), 

which is a commonly used metric of condition in bats [135]. We also calculated a scaled 

mass index (SMI), which controls for covariation in body length and body mass 

associated with growth [136] (Additional file 2: calculation of scaled mass index). For 

each outcome variable, the three measures of body condition (WFR, BCS, and SMI) were 

included individually in three separate candidate models. We used Akaike information 

criterion corrected for small sample size (AICc) to rank models [137, 138], and refit the 

best-supported model with restricted maximum likelihood, for which we reported model 

estimates. We visualized residual plots with the DHARMa package [139].  

To examine predictors of foraging area and core area, we fit generalized linear 

models (GLMs) with a gamma distribution and log link; random effects were not 

included because foraging and core areas were derived per individual across nights. We 

included age, sex, body condition, season, and the number of nights a bat was tracked as 

predictors. We again included the three body condition measures individually in three 

separate models for each outcome variable, and used AICc to rank models. 

 To examine the selection of foraging sites within the area bats traverse (third-

order habitat selection [140]), we compared the land use at foraging sites to that of 

randomly chosen locations. We examined habitat selection separately by season, as 

available resources can change seasonally. We designated the centroids of foraging sites 

(see above) as “used” sites, and generated random “available” sites within the seasonal 



 

42 

 

95% MCPs (excluding the ocean), such that for each season, there was a 10:1 ratio of 

available to used sites. Due to logistical constraints, nectar and fruit resources were not 

quantified at the foraging sites or randomly-generated available sites. We randomly 

assigned bats to available sites in proportion to the number of foraging sites used by a 

bat. We obtained a land use raster of the Catchment Scale Land Use of Australia [141], 

which provides land use classes at three hierarchical scales according to the Australian 

Land Use and Management (ALUM) Classification (version 8) at a 50m resolution. We 

used the “Extract Values to Points” tool in ArcGIS 10.4.1 [142] to determine the tertiary 

(i.e. finest scale) land use of used and available sites. We performed two logistic 

regressions, one for each season, to model the probability of a site being used or available 

as a function of the land use at the site and the body condition, sex, and age of the 

associated bat. To reduce the number of land use classes for the regression, we condensed 

the tertiary land classes into five categories, similar to the ALUM primary classes: 1) 

Natural, 2) Agricultural and Plantation Production, 3) Residential and Farm 

Infrastructure (including urban and rural residential), 4) Non-residential Intensive Use 

(e.g. intensive animal production, industrial, recreation, transportation) and 5) Water. As 

with the movement analyses, we included the three body condition measures in separate 

models for each season, and used AICc to rank models. 

 Finally, we examined whether bat body condition differed by season. We 

constructed three linear models with the body condition measures (WFR, BCS, SMI) as 

separate outcome variables, and season, sex, and age as predictor variables. WFR was 

modeled with a gamma distribution (log link), and SMI was modeled with a normal 
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distribution. Due to the limited range of values, BCS was binned into two groups (≤3 and 

>3) and modeled with a binomial distribution. 

 

RESULTS 

Data loggers were deployed on 14 female and 18 male P. poliocephalus; bats weighed 

between 640g and 1008g, corresponding to a logger burden of <2.5% body weight, well 

under the recommended 5% threshold for bats [143]. After excluding nights with <8 

hours of data and non–round-trip nights, we retained approximately 90% of the data 

(186/209 nights). Nightly round-trip distance varied widely within and between bats 

(Appendix B Figure S3.2). The median round-trip distance was 31.93 km, and the largest 

round-trip distance was 179.34 km (Appendix B Figure S3.3). The most distant foraging 

site was 40.47 km from the roost (straight line distance). Distance and area metrics for 

each bat are summarized in Appendix B Table S3.1.  

 We observed foraging site fidelity in GHFF movement patterns. Some bats made 

repeated visits to the same foraging site over multiple nights with little deviation in flight 

path, while others visited a few core foraging sites with occasional long-distance 

excursions to other sites (Appendix B Figure S3.4). Flying foxes typically visited 2-6 

foraging sites per night (Appendix B Table S3.1). During the winter, foraging paths 

appeared primarily north-south oriented (Figure 3.2A), while summer foraging paths 

clustered closer to the roost (Figure 3.2B). 
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Predictors of foraging distance, area, and number of sites visited 

Bats in better body condition flew shorter distances each night, visited fewer foraging 

sites each night, and had smaller foraging areas (Figure 3.3, Table 3.1; Appendix B Table 

S3.2). Specifically, holding other explanatory variables constant, a one-unit increase in 

BCS was associated with a 43% decrease (95% Wald confidence interval: 61% – 19% 

decrease) in nightly round-trip distance, and a 31% decrease (95% CI: 44% – 14% 

decrease) in the number of nightly foraging sites. Similarly, a one-unit increase in WFR 

was associated with an 86% decrease (95% CI: 97% – 38% decrease) in foraging area. 

Models incorporating BCS and WFR were well supported by model selection, but SMI 

received little to no support (Appendix B Table S3.2). 

 We also found that males had longer nightly round-trip distances than did females 

(Table 3.1). Holding other explanatory variables constant, male bats traveled 37% farther 

in their nightly round-trip distance than did female bats (Figure 3.3). Finally, bat age 

predicted the number of nightly foraging sites, with younger bats visiting more sites per 

night. An estimated one-year increase in age was associated with a 6% decrease in the 

number of nightly foraging sites. We found no significant predictors of core foraging area 

in our analyses (Table 3.1). 

 

Habitat selection 

Our automated foraging site classification identified 203 sites (137 summer, 66 winter). 

Nearly all foraging sites belonged to one of three tertiary land classes: urban residential 

(100 sites; subclass of Residential and Farm Infrastructure), recreation and culture (59 

sites; subclass of Non-residential Intensive Use), and public services (13 sites; subclass of 
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Non-residential Intensive Use). Season-specific logistic regressions showed that, 

controlling for the habitat available in Adelaide (95% MCPs), the probability of a site 

being used for foraging was significantly predicted by land use (Appendix B Table S3.3). 

In summer, bats had 21.1 times the odds (95% CI: 5.1 – 87.5) of foraging at Non-

residential Intensive Use sites and 16.1 times the odds (95% CI: 3.9 – 66.4) of foraging at 

Residential and Farm Infrastructure sites, compared to foraging at Natural sites. In 

winter, bats had 12.3 times the odds (95% CI: 2.8 – 53.4) of foraging at Non-residential 

Intensive Use sites and 7.2 times the odds (95% CI: 1.7 – 30.6) of foraging at Residential 

and Farm Infrastructure sites, compared to foraging at Natural sites. Models 

incorporating BCS, WFR, and SMI were equally supported by model selection; 

coefficients reported above are for the model with WFR, as this is the simplest condition 

measure of the three. 

 

Foraging plants 

We identified 21 unique species of plants from 150 suspected foraging sites identified in 

Google Earth (Appendix B Table S3.4). At these sites, we primarily observed plant 

species in the Myrtaceae family, especially lemon-scented gum (Corymbia citriodora), 

blue gum (Eucalyptus leucoxylon), and Mugga ironbark (E. sideroxylon); and in the 

Moraceae family, including common fig (Ficus carica) and Moreton Bay fig (F. 

macrophylla). Palm trees (Arecaceae family) were also popular, although these were 

rarely identified to species owing to difficulty in obtaining physical samples. Most plant 

species identified at foraging sites were native to Australia (18/21), with about half of 

these native to South Australia (7/18). Four species documented here were previously 
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identified as significant food for GHFF in other areas of Australia (having high weighted 

productivity*reliability scores; [144]. We found good accordance between foraging sites 

identified with Google Earth versus our automated procedures; 43% of Google Earth sites 

were within 10 m of an auto-identified site, and 69% were within 50 m. 

 

Body condition predictors 

Linear models indicated that when body condition was measured as SMI, bats were in 

significantly better condition in winter than in summer (Appendix B Table S3.5). When 

condition was measured as WFR, male bats and older bats had significantly greater body 

condition (Appendix B Table S3.5). Season did not predict changes in body condition 

when measured as WFR, and no predictors tested here (sex, age, season) explained 

changes in body condition when measured as BCS. 

 

DISCUSSION 

Our study documents the fine-scale foraging movements of GHFF in a newly-established 

urban population in South Australia. Flying foxes typically foraged at a small number of 

sites (six or fewer) located near the roost, with occasional excursions to more distant 

sites, including the longest one-night round-trip (~180 km) observed in this species to our 

knowledge. Foraging distances observed here were similar to those reported in previous 

studies of flying foxes roosting in urban areas [133, 145]; comparisons of area are more 

difficult to make owing to the variety of methods used in past studies. 
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Among bats examined here, better body condition predicted shorter foraging 

distances and the use of fewer foraging sites. Our finding of negative relationships 

between flying fox body condition and foraging movements aligns with several other 

studies (Table 3.2). Negative condition–movement relationships could result from several 

underlying mechanisms. On the one hand, body condition might determine movement 

behavior; for example, flying foxes can be territorial [38], and bats in better condition 

might better defend feeding sites near the roost, forcing bats in poorer condition to travel 

to more distant sites [146]. On the other hand, changes in movement might alter body 

condition. Conducting long-distance flights, potentially to explore for new resources 

[147, 148], could deplete bats’ energy and decrease body condition. As a third 

explanation, resource distribution and quality could control both movement and bat body 

condition. If high-quality resources are present near the roost, this could simultaneously 

decrease foraging distance and the number of foraging sites visited while boosting body 

condition.  

Past work on flying fox movements further showed that the direction of 

condition–foraging metric relationships varies among studies, and within a study, can 

depend on the body condition measure used (Table 3.2). This emphasizes the importance 

of measuring body condition in multiple ways [63] to improve conclusions drawn 

regarding relationships between body condition and foraging metrics. In particular, 

different body condition measures might change on different time scales, and some body 

condition measures might better reflect overall health and nutrition for a given species. 

For example, a qualitative measure like BCS that relies on physical examination of an 

animal might be better able to capture changes in fat or muscle that reflect resource 
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acquisition over weeks or months. More generally, improved measures to assess bat body 

condition are needed, as current measures can be subjective (BCS) or difficult to employ 

in the field (quantitative magnetic resonance analysis [149]). 

We found little evidence for seasonal differences in bat foraging movements or 

associations between movement and daily temperature. Resources planted in Adelaide 

might act as a buffer against seasonal variation. Previous work reported that in 

Melbourne, 13 plant species providing food for GHFF grew naturally, but 87 non-native 

species had been planted after European settlement [112]. The authors proposed that non-

native plants provide a continual source of food for flying foxes during times of natural 

resource scarcity (May – August). Our finding of greater bat condition (when measured 

as SMI) in winter than summer ran counter to predictions based on resource availability. 

However, in insectivorous bats, SMI has been proposed to be a less informative predictor 

of condition than simple body mass [150], so our finding should be interpreted 

cautiously.  

The observations of longer nightly round-trip distances among male flying foxes, 

and greater foraging site visits among younger bats, might be explained by sex and age 

differences in roost emergence times and exploratory flights. Previous work examining 

GHFF emergence timing (i.e. when bats leave the roost at night to forage) showed that 

males typically left the roost later than females [151]. In this case, bats that emerge later 

might travel farther to reach non-depleted resources, if high-quality patches in closer 

proximity to roosts are used by bats that emerge first. In Pacific flying foxes (P. 

tonganus) younger bats engage in longer, exploratory flights [147], which could explain 

our finding that they visited a larger number of foraging sites. Alternatively, younger bats 
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may not be adept at identifying productive foraging sites, necessitating them to visit 

multiple sites to meet their dietary needs. As with body condition, younger bats might be 

also forced away from foraging sites by territorial bats. An important caveat for results 

reported here is that age estimation based on visual inspection of tooth wear is difficult, 

as wear begins early in life for flying foxes [152]. 

In terms of site selection, bats tracked in our study were more likely to forage at 

residential and other human-modified sites than in less-disturbed natural environments. In 

particular, bats foraged primarily in urban residential and recreational sites (e.g. parks), 

consistent with flying fox studies in other parts of Australia and elsewhere [111, 153, 

154]. Because we did not survey resource availability in natural areas, it is difficult to 

assess whether flying foxes foraged less in these areas due to lack of resources or due to a 

preference for resources in other habitats. Past work suggested that flying foxes prefer 

native species that produce abundant nectar, and that there may be a threshold of 

flowering intensity above which animals seek out these resources [109]. If abundant 

nectar is not available, flying foxes use urban resources [37]. Unlike urban sites, we 

found no evidence that agricultural sites were more likely to be used for foraging than 

natural sites, suggesting that at least in Adelaide, agricultural resources are not 

disproportionately used by flying foxes. In other parts of Australia and the world, orchard 

fruit consumption by flying foxes is commonly reported, economically costly, and a 

source of human-bat conflict and pathogen transmission [155]. If the Adelaide GHFF 

population continues to grow, or new camps form in South Australia, it is possible that 

selection of foraging sites could change. 
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Our work adds to the small but growing body of literature on the movement of 

flying foxes in urban environments, and is relevant to diverse stakeholders including land 

managers, orchardists, airport managers, and electric companies [155-158]. In particular, 

bats comprised the most airstrikes by planes in Australia from 2006-2015 [159]. Our goal 

of tracking movement patterns that are representative of a recently-formed urban bat 

camp, which numbers nearly 20,000 individuals at present, was limited by the high cost 

of data loggers and consequently, the small number of bats monitored here. At the same 

time, the number of bats tracked here matches or exceeds that of several other papers 

published on flying fox movements during the past decade (Table 3.2). Our goal was to 

capture fine-scale foraging data, and we prioritized frequent collection of GPS fixes over 

a short-term period. Because movement patterns might change during other parts of the 

year (e.g. mating season, which typically occurs for GHFF in March-April; [38]), longer-

term studies that examine flying fox movements throughout the course of a year are 

needed. Work contrasting movement patterns of flying foxes in urban and non-urban 

colonies is also necessary. 

 

CONCLUSIONS 

We examined the foraging movements of Australian flying foxes in a recently-

established, previously undescribed urban population. Our work suggests that in 

Adelaide, urban flying foxes foraged largely in human-dominated habitats, and that bats 

in better body condition made shorter, more efficient foraging flights. Understanding how 

animals move in human-modified habitats is important for wildlife conservation and 

managing human-wildlife conflicts. Studying the diet, health, and movements of animals 
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that host zoonotic pathogens is also relevant for human health. Future GPS tracking 

studies and continuing improvements in technology are likely to uncover intricacies of 

local and global animal movements.  
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Table 3.1. Model outputs for nightly round-trip distance and number of foraging sites, 

foraging area, and core area. Three candidate models (using separate measures of body 

condition) were created for each response variable and ranked by AICc. The best-

supported model for each response is reported here; see Table S3.3 for all candidate 

models. Bolding indicates P values < 0.05. BCS: body condition score; WFR: weight to 

forearm ratio; maxTemp: maximum daily temperature. 

 

Response 

variable  

Term Estimate SE t or z P 

Nightly round-

trip distance  

(n = 185) 

age -0.04 0.05 -0.84 0.402 

sex(male) 0.31 0.16 2.01 0.044 

BCS -0.57 0.18 -3.09 0.002 

season(winter) 0.22 0.30 0.72 0.471 

maxTemp -0.02 0.02 -0.93 0.352 

hours -0.07 0.08 -0.85 0.396 

Nightly number 

of foraging sites 

(n = 185) 

age -0.06 0.03 -2.07 0.038 

sex(male) 0.11 0.09 1.19 0.233 

BCS -0.38 0.11 -3.34 0.001 

season(winter) -0.08 0.18 -0.46 0.647 

maxTemp -0.01 0.01 -0.46 0.647 

hours 0.03 0.07 0.37 0.710 

Foraging area  

(n = 27) 

age 0.01 0.16 0.04 0.972 

sex(male) 0.93 0.51 1.84 0.081 

WFR -1.98 0.66 -2.98 0.007 

season(winter) -0.31 0.49 -0.63 0.532 

nights 0.17 0.11 1.50 0.149 

Core area 

(n = 27) 

age 0.01 0.17 0.08 0.938 

sex(male) 0.74 0.53 1.40 0.177 

WFR -1.15 0.70 -1.65 0.114 

season(winter) 0.17 0.52 0.33 0.742 

nights 0.03 0.12 0.25 0.803 



 

54 

 

Table 3.2. Relationships between body condition and foraging metrics (distance, range) in bats in the Pteropodidae family. Only 

studies published within the last ten years are included. Negative relationships between body condition and foraging metrics are 

shaded. Image credits: P. dasymallus by Koolah, A. jubatus by de Jong et al. 2013, and P. lylei by Malene Thyssen licensed under CC 

BY-SA 3.0 E. helvum by Kayt Jonsson and P. rufus by Bernard Dupont licensed under CC BY 2.0. P. alecto by Andrew Mercer 

licensed under CC BY-SA 4.0. P. poliocephalus by Michelle Power used with permission. a linear model performed using data from 

the paper. b t-test performed using data from the paper. c 50% utilization distribution, kernel method. d 95% utilization distribution, 

kernel method. e 100% minimum convex polygon. f 80% cluster core area 

Species and sample size Condition 

measure 

Foraging metric (unit) Direction of 

condition – foraging 

metric relationship 

P  Source 

 

Orii’s flying fox  

(Pteropus dasymallus 

inopinatus); n = 19 

WFR Mean daily home range (ha) Positive 0.76a [154] 

 

Giant golden-crowned 

flying fox (Acerodon 

jubatus); n = 6 

BCS 

 

Mean nightly distance (km) Negative 0.73b [125] 

Maximum nightly distance (km) Positive 0.45b 

Mean distance to foraging areas (km) Positive 0.80b 

Mean number of foraging areas per night Negative 0.41b 

WFR Mean nightly distance (km) Positive 0.73a 

Maximum nightly distance (km) Positive 0.93a 

Mean distance to foraging areas (km) Negative 0.20a 

Mean number of foraging areas per night Negative 0.65a 

 

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Species and sample size Condition 

measure 

Foraging metric (unit) Direction of 

condition – 

foraging metric 

relationship 

P  Source 

 

Straw-coloured fruit 

bat (Eidolon helvum); 

n = 16 

WFR Mean nightly distance (km) Positive 0.041a [133] 

Maximum distance to foraging sites (km) Positive 0.078a 

Core areac (ha) Positive 0.066a 

Foraging aread (ha) Positive 0.056a 

 

Madagascan flying fox  

(Pteropus rufus);  

n = 15 

WFR Home rangee (ha) Negative 0.82a [148] 

Foraging areaf (ha) Negative 0.71a 

 

Black flying fox  

(Pteropus alecto); 

 n = 11 

BCS Mean nightly distance (km) Negative 0.047 [115] 

Mean distance to foraging areas (km) Negative 0.064b 

Mean number of foraging areas per night Negative 0.26b 

Weight Mean nightly distance (km) Positive 0.70b 

Mean distance to foraging areas (km) Negative 0.55 

Mean number of foraging areas per night Positive 0.63 

 

Lyle’s flying fox  

(Pteropus lylei);  

n = 13 

WFR Maximum nightly distance (km) Negative 0.026b [153] 

Core areac (sq. km) Negative 0.25b 

Foraging aread (sq. km) Negative 0.22b 

 

Grey-headed flying 

fox (Pteropus 

poliocephalus); n = 32 

BCS Nightly round-trip distance Negative 0.04 This 

study Nightly number of foraging sites Negative 0.0008 

WFR Foraging area Negative 0.007 
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Figure 3.1. Population estimates of the Adelaide grey-headed flying fox camp. Points 

indicate observer counts of flying foxes. Arrows indicate GPS data collection periods of 

the current study. The inset shows a partial map of Australia, with the typical range of the 

grey-headed flying fox shaded in red, and the approximate location of Adelaide indicated 

by a star.  
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Figure 3.2. GPS tracks of P. poliocephalus during A) winter 2016 (5 bats, yellow paths) 

and winter 2017 (7 bats, orange paths) and B) summer 2017 (9 bats, yellow paths) and 

summer 2018 (11 bats, orange paths). The location of the roost is indicated by a red 

triangle.  
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Figure 3.3. Predicted relationships between body condition measures and A) nightly 

round-trip distance (shown for both sexes), B) nightly number of foraging sites, and C) 

foraging area (95% MCP). Shaded areas represent 95% confidence intervals. Predictions 

are generated from GLMMs (distance, foraging sites) and a GLM (foraging area). 

Discrete predictors are held constant at their proportions. 
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CHAPTER 4 

LAND USE, SEASON, AND PARASITISM PREDICT METAL CONCENTRATIONS 

IN AUSTRALIAN FLYING FOX FUR3 
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ABSTRACT 

Urban-living wildlife can be exposed to metal contaminants dispersed into the 

environment through industrial, domestic, and technological applications. Metal exposure 

carries lethal and sublethal consequences, depending on dose and frequency of exposure, 

and the age and condition of animals. In particular, heavy metals such as arsenic, lead, 

and mercury can damage organs and act as carcinogens. Many species of bats reside and 

forage in human-modified habitats, and could be exposed to contaminants in air, water 

and food. Here we quantified 13 metals in fur samples from three flying fox species 

captured at eight sites across Australia. For a subset of bats, we assessed ectoparasites, 

blood parasites, and viral infection. We examined relationships between metal 

concentrations and environmental (land use surrounding capture site, season) and 

individual predictors (species, sex, age, body condition, parasitism). As expected, bats 

captured at sites with greater human impact had higher metal loads. At one site, bats had 

lower metal concentrations in summer than in winter, possibly owing to changes in food 

availability and foraging. Relationships between ectoparasites and metals were mixed, 

suggesting multiple causal mechanisms. Because some bats harbor pathogens that can 

transmit to humans and other species, future research exploring interactions between 

metal exposure, immunity, and infection is needed to assess consequences for pathogen 

transmission and bat health.  
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INTRODUCTION 

Wildlife in urban areas face exposure to environmental toxicants (e.g., heavy metals, 

pesticides, persistent organic pollutants) through contaminated food, water, and air [28]. 

Landscape maintenance of urban green spaces such as parks and lawns can introduce 

fertilizers and pesticides into soil and waterways, facilitated by high impervious surface 

cover [160]. Water can also be contaminated with point source toxicants such as 

industrial wastewater and oil or chemical spills [161, 162]. Pesticides used to poison 

nuisance wildlife can reach non-target species via bioaccumulation (i.e., persistence in 

tissues and organs) and biomagnification (i.e., passing up through the food chain) [163-

165]. North American bald eagles provide a striking example of biomagnification: 

dichlorodiphenyltrichloroethane (DDT) used to control insects during the 1940s-60s 

subsequently accumulated in fish and eagles, causing thinning of eagle eggshells and 

reproductive failure [166-168]. Transportation and industrial activities can degrade air 

quality, sometimes across large distances, such as observed for atmospheric deposition of 

polychlorinated biphenyls [18, 169, 170]. Even after contaminant-generating sources are 

removed from an environment, toxicants themselves can persist for months to years, and 

continue to harm wildlife [171]. One recent meta-analysis found that urban wildlife had 

significantly higher toxicant loads than non-urban conspecifics across diverse animal taxa 

[172]. 

 Heavy metals such as mercury and lead, and metalloids such as arsenic, are 

naturally occurring trace elements that can reach toxicity at relatively low levels of 

exposure from anthropogenic activities. Some metals such as cobalt, copper, iron, and 

zinc can serve as micronutrients essential to biochemical and physiological functions, yet 
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become toxic at higher levels of exposure through their interactions with enzymes 

involved in metabolism, detoxification, and damage repair. Other metals such as 

cadmium, lead, and mercury have no known biological function, and represent systemic 

toxicants that can damage organs and disrupt DNA even at low levels of exposure. 

Consequences of metal exposure for humans and vertebrate animals include altered 

foraging and other behaviors resulting from neurological damage, reduced body 

condition, physical deformities, reduced fecundity, and mortality [173-176]. Some 

animals exposed to toxicants show lower immune function or reduced behavioral 

defenses such as grooming [177, 178]. For example, female tree swallows breeding at 

mercury-contaminated sites had higher mercury concentrations in blood and weaker 

immune response than birds at non-contaminated sites [76]. Additionally, negative effects 

of metal exposure can be exacerbated by other stressors (e.g., competition, predation, 

food limitation, habitat alteration) [179, 180]. Laboratory rats experimentally exposed to 

both concentrated air pollutants and chronic social stress exhibited elevated levels of 

inflammation biomarkers [181].  

Bats as a group are well-suited to study biological and environmental predictors 

of metal exposure [182]. Their long lifespans (up to 40 years [183]) permit metal 

accumulation in organs and tissues over time, and their high mobility and dietary breadth 

allow them to forage in natural and human-modified habitats. Most studies of exposure to 

metals and other toxicants in bats have focused on insectivorous species [184-186], likely 

because there is a clearer exposure route (i.e., uptake through insect prey). Fruit bats (that 

feed on nectar, pollen, and fruits) are increasingly settling in urban and agricultural areas, 

where they consume introduced and cultivated plant species [35, 187], which could 
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expose bats to food resources laden with pesticides or metals [188-190], or polluted 

waterways [191]. Experimental dosing has suggested fruit bats absorb more lead than do 

other mammals [192], which might make species in this group especially vulnerable to 

negative toxicant effects. If toxicants impair immune function in bats, this could increase 

their exposure to (or slow their recovery from) pathogens. Because some bats host viruses 

and other pathogens that can be transmitted to domesticated animals and humans, 

impaired immune function owing to metal exposure could pose public health risks [193]. 

Some studies have reported high concentrations of toxicants in bats infected with fungal 

or viral pathogens, but failed to demonstrate a causal association [194, 195]. 

In this study, we examined the metal exposure of three Pteropus fruit bat species 

(flying foxes) captured at eight sites across Australia between 2015 and 2018. 

Specifically, we measured the concentrations of 13 metals in fur samples, including 

mercury, lead, and cadmium, for which low levels of exposure are known to cause 

toxicity for vertebrates. We tested for relationships between metal concentrations and 

environmental (land use surrounding bat capture site, season) and individual-level 

predictors (species, sex, age, body condition). We predicted that metal concentrations 

would be higher for bats captured in areas with greater human modification (e.g., 

urbanization, industrialization, agriculture), and in older bats and those with poorer body 

condition. We also assessed ectoparasite burden, haemosporidian parasite infection 

status, and viral infection status in a subset of bats, as additional indicators of health. 

High metal concentrations might predict positive infection status, although the direction 

of this relationship could vary among parasites. For example, some metals might weaken 

bat immune defenses or reduce grooming behavior, leading to a positive relationship 
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between metal concentrations and parasitism. Alternatively, if metals are toxic to 

parasites, such as might occur if enzymatic pathways in the parasites themselves are 

disrupted, then exposure could reduce infection for some parasite groups [196]. 

 

METHODS 

Animal capture and sampling 

Three species of pteropodid flying foxes (black flying fox, BFF, Pteropus alecto; 

spectacled flying fox, SFF, P. conspicillatus; grey-headed flying fox, GHFF, P. 

poliocephalus) were captured between June 2015 and September 2018 at eight sites 

across three Australian states (Queensland, New South Wales, and South Australia) 

(Figure 4.1, Table 4.1). Flying foxes were captured between pre-dawn using mist nets as 

they returned from nightly foraging, and anesthetized under veterinary supervision with 

inhalant isoflurane [123]. We recorded each bat’s species, sex, weight (nearest g), and 

forearm length (nearest mm). Body condition was calculated as the ratio of weight to 

forearm length (WFR). Age in years was estimated for South Australia bats (n = 207); all 

other bats were assigned to an age class (adult, subadult, or juvenile) based on secondary 

sexual characteristics [119]. The number of ectoparasitic bat flies (family Nycteribiidae) 

was recorded if present. A fur clipping (~20-80 mg) was taken from the chest or back of 

bats. In total, we obtained fur samples from 721 flying foxes at four sites in Queensland 

(Goldsborough, Hervey Bay, Redcliffe, Tolga, Toowoomba), two sites in New South 

Wales (Tamworth, Woolgoolga) and one site in South Australia (Adelaide; Figure 4.1, 

Table 4.1). After all samples were collected, flying foxes were allowed to recover from 

anesthesia and released at the capture site. 



 

65 

 

Urine was collected from bats captured from four of the eight sites (n = 39; Figure 

4.1). We palpated bats’ abdomens gently to express urine and collected samples in 1.5 

mL screw-cap tubes (Axygen, Union City, CA). Samples were placed on cooler packs in 

the field and later stored at ~ -20°C. Blood smears were prepared for bats captured from 

three sites (n = 82; Figure 4.1). Using a 25-gauge needle, blood was drawn from the 

cephalic vein and a drop was used to make a thin blood smear in the field.  

Fieldwork in Queensland was authorized under section 173P of the Nature 

Conservation Act 1992. Fieldwork in New South Wales was authorized under section 

132c of the National Parks & Wildlife Act, 1974 (SL101396). Fieldwork in South 

Australia was authorized by the Government of South Australia Department of 

Environment, Water and Natural Resources (M26371-4). Ethical approval was granted by 

the CSIRO Ecosystem Sciences Animal Ethics Committee (13-02), the University of 

Adelaide Animal Ethics Committee (S-2015-028), the University of Georgia Animal 

Ethics Committee (A2015 03-028-R3), and the Griffith University Animal Ethics 

Committee (ENV/10/16/AEC). 

 

Analyses of biological samples 

Fur samples were analyzed at Baylor University for ten metals: cadmium, chromium, 

cobalt, copper, lead, nickel, selenium; strontium; tin, vanadium, and two metalloids: 

antimony and arsenic, following previously published methods [197] (see Supplementary 

Material for details). Briefly, fur samples were individually weighed (~0.05 g) and placed 

in borosilicate glass tubes (VWR International, Radnor, PA). Batches of 25-30 samples 

were digested with nitric acid and hydrogen peroxide in a series of heating and cooling 
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steps, then filtered into acid-rinsed Erlenmeyer flasks (VWR International) and diluted in 

ultrapure water. Blanks were included for each batch. Human hair standard (Sigma-

Aldrich, St. Louis, MO) was used as a standard reference material, with one reference 

sample included for each bat capture site. Samples were analyzed by inductively coupled 

plasma mass spectrometry (ICP-MS) using a 7900 ICP-MS (Agilent Technologies, Santa 

Clara, CA). Metal concentrations are reported in ng/g.  

Following metal analyses, remaining fur samples were sent to Texas Christian 

University and analyzed for total mercury (methylmercury + inorganic mercury; 

hereafter, mercury) using direct mercury analysis (DMA-80 Direct Mercury Analyzer, 

Milestone, Shelton, CT), which uses thermal decomposition, gold amalgamation, and 

atomic absorption spectroscopy [198]. Quality assurance included reference (National 

Research Council of Canada Institute for National Measurement Standards) and duplicate 

samples. Reference samples (DORM-4) were analyzed every 10 samples, and the mean 

recovery percentage for DORM-4 was 103 ± 4.31% (n = 81). Duplicate samples were 

analyzed every 20 samples, and the mean relative difference percentage was 6.83 ± 

7.05% (n = 44). Limited amounts of hair available for analysis and low concentrations 

resulted in some samples (n = 55) falling below the mercury detection limit (0.1 ng, 

approximately 0.6 ng/g); these values were subsequently estimated as half of the 

detection limit (i.e., 0.05 ng) divided by the sample weight. Mercury concentrations are 

reported in ng/g.  

 Blood smears (n = 82) were examined at the University of Georgia for blood 

parasites (order Haemosporida). Smears were stained with Modified Wright’s stain and 

the monolayer of each blood smear was scanned at both 500X and 1000X magnifications 
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by a board-certified veterinary clinical pathologist (M. Camus). Samples for which one or 

more infected erythrocyte were detected were scored as positive for blood parasites. 

 Urine samples (n = 39) were shipped on cooler packs to the Australian Animal 

Health Laboratory (Geelong, Victoria). Samples were condensed into eight pools and 

screened for 11 paramyxoviruses (Cedar virus, Geelong paramyxovirus, Grove virus, 

Hendra virus, Hervey virus, Menangle virus, Nipah virus, Teviot virus, Tioman virus, 

Yarra Bend paramyxovirus, Yeppoon virus) using a multiplex bead X-Tag assay for 

nucleic acid detection [199].  

 

Statistical analyses 

All statistical analyses were performed in the R computing environment v 3.6.1 [127]. In 

initial data exploration, six fur samples were found to have extremely low concentrations 

of all metals except mercury. Because these samples were processed consecutively in the 

laboratory, we considered it likely that a technical error had occurred and excluded those 

values from analyses described below. Due to the extreme range in values, metal 

concentrations were log-transformed for further analyses.  

We calculated summary values for metal concentrations for the three flying fox 

species. We used generalized linear mixed models (GLMMs) to first compare species 

differences in metal concentrations while controlling for site. For each metal, we used the 

lmerTest package [200] to run a GLMM (gamma distribution, log link) with species as a 

fixed effect and site as a random effect. Pairwise comparisons of species means were 

made with the multcomp package [201] with a Holm adjustment for multiple 

comparisons.  
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To determine whether bats captured at sites with greater human impact had higher 

metal concentrations, we calculated the average Human Footprint (HFP) score within a 

20 km buffer (typical foraging range for flying foxes [202, 203]) around each site. HFP 

ranges from 0-50, and is a composite measure of human impacts including population 

density, and the proportion of land area assigned to agriculture, built environments, and 

transportation. We used the most recent human footprint dataset available (2009) from 

Venter and colleagues [66] to calculate this score. We next used a principal component 

analysis (PCA) on all metal concentrations in fur to create a composite index of metal 

exposure. Metal concentrations were log-transformed, then centered and scaled to have 

unit variance. Horn’s parallel analysis supported retention of the first three principal 

components [204]. We then used three LMMs [200] (gaussian distribution, identity link) 

to test whether site HFP explained variation in PC1, PC2, or PC3. We included species 

and sex as fixed effects, and site as a random effect in each model (n = 402).  

For bats captured in Adelaide (n = 202 GHFF), we examined the effect of season, 

sex, body condition, and age on metal concentrations in fur. We focused on Adelaide 

because 1) it was the only site at which bats were captured multiple times in separate 

seasons (two summer and two winter sampling periods), and 2) it allowed us to avoid 

possible confounding effects of species or site on relationships between metal 

concentrations and sex, body condition, and age. We used a separate linear model 

(gaussian distribution, identity link) for each metal, with season, sex, WFR, and 

estimated age (in years) as predictor variables.  

To examine associations between ectoparasites and metal concentrations, we only 

considered data from flying foxes caught in Queensland (five sites), as <1% (2/254) of 
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flying foxes from New South Wales and South Australia had ectoparasites. We used the 

glmmTMB package [134] to run a GLMM (Poisson distribution, log link) to model 

ectoparasite burden (number of ectoparasites per bat) as a function of each metal (n = 

157). We included species, sex, WFR, and age class (adults versus non-adults) as 

additional fixed effects and site as a random effect. We checked for multicollinearity in 

the ectoparasite models using the performance package [205]; if any variance inflation 

factors (VIFs) were > 10, we sequentially removed predictor variables with the highest 

VIF until all remaining VIFs were < 10 [206]. 

Lastly, we examined the probability of blood parasite infection in GHFF and SFF 

captured at three sites (blood smears were not made for one of the four sites where blood 

was collected). We used a GLM (binomial distribution, logit link) to model infection 

status as a function of each metal concentration in fur, species, sex, WFR, and age class 

(n = 79). Site was not included to avoid perfect separation of data. We checked for 

multicollinearity in the blood parasite models as described above. 

 

RESULTS 

Most fur samples used for metal analysis were from BFF (n = 339; 47.0%) and GHFF (n 

= 336; 46.6%); the remainder were from SFF (n = 46; 6.4%). GHFF had the largest 

spatial distribution, with samples from across nearly ten degrees of latitude and six of 

eight sites (Figure 4.1; Table 4.1). Slightly more than half of samples were from females 

(n = 395, 54.8%). We prepared blood smears for 82 of the 721 flying foxes (Table 4.1; 

SFF in Tolga; GHFF in Tamworth and Woolgoolga). Microscopic examination of blood 

smears revealed that nearly 60% (48/82) of smears contained intraerythrocytic 
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haemosporidian gametocytes [207]. Pooled urine samples (n = 39; SFF in Goldsborough 

and Tolga; GHFF in Tamworth and Woolgoolga) were negative for all 11 viruses for 

which we screened. 

 

Metal concentrations in relation to species and human footprint  

Minimum, median, and maximum values for concentrations of 13 metals measured in fur 

are presented in Appendix C Table S4.1. Among fur samples, copper, tin, and strontium 

consistently had the highest median concentrations across species, while mercury, 

cadmium, and antimony had the lowest median concentrations (Figure 4.2). Controlling 

for site, we found significant differences between species in mean concentrations of six 

metals (Appendix C Figure S4.1). SFF had significantly higher concentrations of 

cadmium and cobalt than BFF and GHFF, and significantly higher concentrations of 

selenium than GHFF. BFF had significantly higher concentrations of chromium and 

strontium than GHFF, and significantly higher concentrations of vanadium than SFF. 

There were no significant pairwise differences among bat species for concentrations of 

antimony, arsenic, copper, lead, mercury, nickel, and tin.  

Principal component analysis showed support for three principal components for 

which adjusted eigenvalues were greater than 1. Specifically, PC1, PC2, and PC3 

respectively explained 37.1%, 14.2%, and 11.2% of the variation in metal concentrations 

in fur. PCA loadings are provided in Table 4.2; we considered loadings with an absolute 

value >0.258 as significant [208]. PC1 was loaded positively by all metals, with eight 

metals above this cutoff; we therefore considered PC1 to represent overall metal load. 

PC2 had significant positive loadings of arsenic and significant negative loadings of 
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cobalt, strontium, and vanadium. PC3 had significant negative loadings of cadmium, 

cobalt, mercury, and selenium.  

Calculation of human footprint values across sampling locations showed that 

Adelaide and Redcliffe had the highest human footprint scores (28.0 and 26.9 

respectively); Tamworth, Toowoomba, and Hervey Bay had moderate scores (11.7, 11.1, 

and 10.9 respectively); and Woolgoolga, Tolga, and Goldsborough had the lowest scores 

(9.3, 5.9, and 5.7 respectively). Analysis of associations between metal composite values 

(PC1, 2, and 3) and human footprint (LMM analyses) showed a significant positive 

relationship between metal PC1 score (overall metal load) and human footprint score (β = 

0.12, SE = 0.020, p = 0.011; Figure 4.3). A post-hoc comparison of species means 

showed that SFF had significantly higher metal PC1 scores than GHFF (estimated mean 

difference = 1.76, SE = 0.50, p = 0.001). There were no significant predictors of metal 

PC2 score. With respect to metal PC3 score, male bats had significantly higher values 

than females (β = 0.22, SE = 0.081, p = 0.006), and there were significant differences in 

PC3 scores between species (BFF-GHFF = 0.97, SE = 0.34, p = 0.005; BFF-SFF = 3.04, 

SE = 0.72, p = 6.7 e-5; GHFF-SFF = 2.07, SE = 0.68, p = 0.005; Figure 4.3), but not 

among sites with different human footprint values. 

 

Seasonal and individual predictors of metal concentrations 

Linear models demonstrated consistent seasonal differences in metal concentrations from 

GHFF captured in Adelaide (Table 4.3). Nine metal concentrations in fur (antimony, 

arsenic, cadmium, chromium, cobalt, copper, lead, strontium, and tin) were significantly 

lower in summer than in winter; concentrations of mercury and nickel were significantly 
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higher in summer. There was limited evidence of sex, body condition, and age-associated 

differences in metal concentrations. Male bats had significantly lower concentrations of 

cadmium, mercury, and strontium than females. Better body condition (higher WFR) was 

significantly associated with higher concentrations of mercury and lower concentrations 

of tin and vanadium. Age was significantly correlated with higher concentrations of 

mercury and tin. We found no significant predictors of selenium concentrations in fur. 

 

Relationships between metals and parasites 

We found significant relationships between ectoparasite burden and four of the 13 metals. 

In a GLMM, ectoparasite burden was positively correlated with nickel and selenium 

concentrations and negatively correlated with cobalt and mercury concentrations (Figure 

4.4; Appendix C Table S4.2). There was a positive association (p = 0.051) between 

chromium and ectoparasite burden. There were no effects of other metal concentrations 

(antimony, arsenic, cadmium, copper, lead, strontium, tin, vanadium), species, sex, WFR, 

and age class on ectoparasite burden. We found no significant relationships between 

blood parasite infection status and any of the 13 metals, but bats in worse body condition 

had a greater probability of blood parasite infection (Appendix C Table S4.3). Infection 

status did not vary by species, sex, or age class.  

 

DISCUSSION 

Our analysis of metal concentrations in 721 fur samples from three species of flying 

foxes captured at eight sites across Australia aligns well with a limited number of prior 

studies showing low levels of metal exposure among frugivorous bats [185, 209]. In one 
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phylogenetic comparative study of 29 bat species, frugivores generally had the lowest 

total mercury concentrations in fur, typically ranging from 10-100 ng/g, compared with 

concentrations of 1000-34000 ng/g for most insectivores [210]. Similarly, median total 

mercury concentrations reported here were 18.9, 25.1, and 36.8 ng/g for BFF, GHFF, and 

SFF respectively. Low mercury concentrations for frugivorous mammals in general has 

been attributed to low diet connection to aquatic ecosystems, where mercury 

contamination can reach biologically significant levels. Another study reported mean 

concentrations of lead in fur for three groups of Australian flying foxes: 1) urban with 

liver/kidney concentrations of lead higher than toxic cutoffs in domestic animals (20750 

ng/g), 2) urban with liver/kidney concentrations below these cutoffs (5820 ng/g), and 3) 

non-urban (850 ng/g) [211]. Median lead concentrations in our study were 1260, 1640, 

and 2260 ng/g for BFF, GHFF, and SFF respectively, which are consistent with the two 

groups of bats that did not have toxic concentrations of lead in their livers or kidneys. 

Importantly, our study provides a substantial dataset for future comparisons of metal 

concentrations in flying foxes that are currently experiencing a rapidly changing 

landscape in Australia.  

Controlling for site, we observed significant species-level differences in 

concentrations of several metals. SFF and BFF typically had higher metal concentrations 

in fur than GHFF. These differences might be due to dietary differences between flying 

fox species [38, 203], or might reflect differences in species distribution. In particular, 

SFF have a limited geographic range (far North Queensland [38]). The tropical rainforest 

habitat of the SFF might have naturally higher levels of some metals than the sclerophyll 

(e.g. eucalypts) habitat of the GHFF and BFF captured in this study; alternatively, the 
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two sites at which we caught SFF could be near an unknown anthropogenic toxicant 

source. 

In support of the idea that human mediated landscape-level changes, including 

urbanization and industrial activities, affect fruit bat toxicant exposure, we found a 

significant, positive association between metal PC1 score (i.e., overall metal load) and 

human footprint values surrounding capture sites. This is consistent with a previous 

report of higher Pb concentrations in fur, bones, and tissues of Australian flying foxes 

from urban areas, in which urban bats could have been exposed to greater atmospheric 

deposition from car and industrial emissions [211]. We also found generally lower 

concentrations of metals in GHFF captured in Adelaide in summer (February) compared 

to those captured in winter (August). Although the timing of fur moult might influence 

metal concentrations [212-214], we found the opposite effect than would be expected 

(i.e., lower concentrations after moulting), given that moult has been reported to occur in 

June for GHFF [215]. Instead, these seasonal differences in metal levels might also be 

linked to land use; specifically, seasonal differences in food availability could drive 

changes in foraging movements. Blossoming of flowering species can be scarcer during 

winter [118], leading bats to forage more on reliable urban resources [111], which could 

expose them to more pollution. While our findings suggest that land use surrounding bat 

roosts can influence metal concentrations, flying foxes are highly mobile and can move 

long distances between roosts [110]. Therefore, although we know the sites at which bats 

were captured, we cannot determine how long a bat has stayed at that site or whether bats 

from urban roosts are foraging within the urban environment. 
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In contrast to previous work [211, 214], we collected biological samples from 

live, outwardly healthy bats, suggesting that the metal concentrations we detected were 

not sufficient to cause acute toxicity. However, exposure to metals can have sub-lethal 

effects. Indeed, we found that higher concentrations of chromium and nickel in fur were 

associated with greater ectoparasite burden. In experimental studies, chromium and 

nickel have been demonstrated to have immunosuppressive effects in small mammals, 

sometimes causing increased susceptibility to infection and mortality [216, 217]; it seems 

plausible that these metals might reduce flying foxes’ immune defenses against 

ectoparasites. Another explanation might be that higher metal concentrations cause 

lethargy in flying foxes, resulting in lower grooming rates and higher ectoparasite loads. 

Finally, instead of a direct link between metal concentrations and ectoparasites, particular 

bat roosts could independently have both higher metal concentrations and ectoparasites.  

In contrast, higher concentrations of cobalt and mercury were significantly 

associated with lower ectoparasite burden. One possible explanation is that these metals 

could be toxic to the parasites themselves. A study of mallard ducks found that birds with 

higher lead concentrations had both lower intensity and richness of helminths, which was 

attributed to direct toxic effects of lead on helminths or upregulation of duck immune 

function by lead [218]. Alternatively, higher concentrations of cobalt or mercury could 

stimulate bat activity. For instance, common loon chicks with higher mercury 

concentrations in blood spent less time riding on their parents’ backs and more time 

preening [219]. A third explanation is that ectoparasites could be acting as sinks for 

metals; however, this phenomenon is more typically observed with helminths [220]. 

Future work testing metal concentrations in bat ectoparasites would be valuable. 
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 Bats as a group face many stressors, including toxicant exposure, habitat loss, 

climate change and extreme weather events, disease, and hunting by humans [25, 182]. 

Our work shows that even frugivorous bats, which are expected to have fewer dietary ties 

to toxicants, still face exposure to many metals, and that at least some of these metals 

carry a physiological cost in the form of greater parasitism. Looking forward, there is a 

crucial need for research on immune effects of toxicants in bats. For example, a study of 

vampire bats in Belize linked higher concentrations of total mercury in fur to higher 

neutrophil counts and weaker bacterial killing ability [221]. In Australia, flying foxes (in 

particular BFF and SFF) can transmit deadly Hendra virus to horses and then to humans; 

transmission events typically occur in peri-urban areas, where bats are drawn due to 

planted food resources [222]. If these urban areas are also where flying foxes face the 

most toxicant exposure, this could contribute to bat susceptibility to infection and viral 

shedding, which might increase the potential for spillover infections. 
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Table 4.1. Capture site, date captured, species, sex, and age class of flying foxes from which fur samples were analyzed for metal 

concentrations. BFF: black flying fox, GHFF: grey-headed flying fox, SFF: spectacled flying fox. 

 

 

 

 

 

 

 

 

 

 

*Urine samples collected at this site 

†Blood smears collected at this site

State Site Capture 

date 

Species Sex Age class Total 

BFF GHFF SFF Female Male Adult Subad. Juv 

New South 

Wales 

Tamworth*† July 2015 0 24 0 8 16 10 10 4 24 

Woolgoolga*† July 2015 1 22 0 9 14 19 4 0 23 

Queensland Goldsborough* June 2015 0 0 11 3 8 11 0 0 11 

Hervey Bay July 2018 15 45 0 28 32 39 12 9 60 

Redcliffe May 2018 53 6 0 30 29 38 7 14 

190 July 2018 45 26 0 43 28 18 10 43 

Sept. 2018 60 0 0 27 33 43 7 10 

Tolga*† June 2015 0 0 35 19 16 31 1 3 35 

Toowoomba June 2018 46 2 0 28 20 25 5 18 

171 July 2018 63 3 0 37 29 35 16 11 

Sept. 2018 56 1 0 26 31 26 7 24 

South 

Australia 

Adelaide Aug. 2016 0 49 0 28 21 Not assessed 

207 
Feb. 2017 0 57 0 40 17 

Aug. 2017 0 48 0 33 15 

Feb. 2018 0 53 0 36 17 

Total 339 336 46 395 326 295 79 136 721 
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Table 4.2. Loadings of 13 metals measured in flying fox fur onto three principal 

components retained after parallel analysis. 

Metal PC1 PC2 PC3 

antimony 0.35 0.10 0.21 

arsenic 0.28 0.34 0.11 

cadmium 0.21 -0.074 -0.57 

chromium 0.35 -0.00088 0.15 

cobalt 0.13 -0.55 -0.35 

copper 0.38 0.12 0.15 

lead 0.33 0.15 -0.25 

mercury 0.019 0.20 -0.42 

nickel 0.16 -0.23 -0.073 

selenium 0.27 0.17 -0.33 

strontium 0.21 -0.51 0.17 

tin 0.37 0.15 0.11 

vanadium 0.28 -0.35 0.23 
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Table 4.3. Output for linear models to examine the effect of season, sex, age and body 

condition (WFR: weight to forearm length ratio) on metal concentrations in fur of grey-

headed flying foxes in Adelaide, South Australia. n = 202 for all metals except selenium 

(n = 200) and mercury (n = 195). 

 

 

Metal Term Estimate SE t p 

antimony season(summer) -0.38 0.070 -5.45 1.5 e-7 

sex(male) 0.086 0.065 1.33 0.19 

WFR -0.090 0.054 -1.66 0.10 

age 0.016 0.021 0.78 0.44 

arsenic season(summer) -0.40 0.089 -4.51 1.1 e-5 

sex(male) -0.052 0.083 -0.63 0.53 

WFR 0.088 0.070 1.26 0.21 

age 0.035 0.027 1.32 0.19 

cadmium season(summer) -0.68 0.079 -8.55 3.5 e-15 

sex(male) -0.17 0.074 -2.27 0.02 

WFR 0.062 0.062 1.01 0.31 

age 0.032 0.024 1.33 0.19 

chromium season(summer) -0.30 0.083 -3.62 3.8 e-4 

sex(male) 0.11 0.077 1.45 0.15 

WFR -0.049 0.065 -0.76 0.45 

age 0.023 0.025 0.91 0.36 

cobalt season(summer) -0.29 0.084 -3.38 8.7 e-4 

sex(male) -0.089 0.078 -1.14 0.26 

WFR -0.059 0.066 -0.89 0.37 

age 0.040 0.025 1.56 0.12 

copper season(summer) -0.33 0.045 -7.19 1.3 e-11 

sex(male) -0.017 0.042 -0.41 0.69 

WFR -0.045 0.035 -1.28 0.20 

age -0.0079 0.014 -0.58 0.56 

lead season(summer) -0.87 0.081 -10.68 <2 e-16 

sex(male) -0.12 0.075 -1.55 0.12 

WFR -0.049 0.063 -0.77 0.44 

age 0.0068 0.024 0.28 0.78 

mercury season(summer) 0.32 0.077 4.18 4.5 e-5 

sex(male) -0.30 0.071 -4.30 2.8 e-5 

WFR 0.42 0.060 6.99 4.5 e-11 

age 0.062 0.023 2.66 0.01 
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nickel season(summer) 0.38 0.18 2.14 0.03 

sex(male) -0.22 0.17 -1.31 0.19 

WFR 0.19 0.14 1.36 0.18 

age -0.088 0.054 -1.63 0.10 

selenium season(summer) 0.0051 0.078 0.066 0.95 

sex(male) -0.024 0.071 -0.35 0.73 

WFR 0.071 0.061 1.15 0.25 

age 0.028 0.023 1.21 0.23 

strontium season(summer) -0.45 0.092 -4.86 2.3 e-6 

sex(male) -0.18 0.085 -2.13 0.04 

WFR 0.041 0.072 0.57 0.57 

age 0.029 0.028 1.05 0.29 

tin season(summer) -0.21 0.043 -4.96 1.5 e-6 

sex(male) -0.035 0.040 -0.89 0.38 

WFR -0.089 0.033 -2.66 0.01 

age 0.032 0.013 2.46 0.02 

vanadium season(summer) -0.11 0.086 -1.26 0.21 

sex(male) -0.0026 0.080 -0.033 0.97 

WFR -0.14 0.067 -2.09 0.04 

age 0.040 0.026 1.56 0.12 
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Figure 4.1. Map of eastern Australia showing the eight sites where flying foxes were 

captured. The area of each bubble corresponds to the number of flying foxes sampled 

from that site, with further details provided in Table 4.1. Fur samples were collected from 

flying foxes captured at all sites. Urine and blood smears were collected for sites in 

orange. Urine was collected for sites in yellow. 
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Figure 4.2. Boxplots showing log-transformed concentrations of 13 metals measured in 

flying fox fur. Sample sizes for each species–metal combination can be found in 

Appendix C Table S4.1. In each boxplot, the middle line represents the median value, 

box represents the interquartile range, the whiskers extend to 1.5 times the interquartile 

range, and any points beyond this range are plotted separately. BFF: black flying fox, 

GHFF: grey-headed flying fox, SFF: spectacled flying fox  
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Figure 4.3. Biplot of PC1 versus PC3 with loadings of 13 metals measured in 402 flying 

fox fur samples. The shape of each point represents species (BFF: black flying fox, 

GHFF: grey-headed flying fox, SFF: spectacled flying fox). Each point is colored 

according to the Human Footprint (HFP) score of the capture site. Scores were condensed 

into three categories: high (Adelaide and Redcliffe), medium (Tamworth, Toowoomba, 

and Hervey Bay), and low (Woolgoolga, Tolga, and Goldsborough). 
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Figure 4.4. Predicted counts of ectoparasites as a function of cobalt, total mercury, 

nickel, and selenium concentrations in flying fox fur from each respective GLMM. Raw 

data are overlaid as points. All metal concentrations are log-transformed and in units of 

ng/g. BFF: black flying fox, GHFF: grey-headed flying fox, SFF: spectacled flying fox. 
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CHAPTER 5 

LANDSCAPE-LEVEL TOXICANT EXPOSURE MEDIATES INFECTION IMPACTS 

ON WILDLIFE POPULATIONS4 

 

  

 
4 Sánchez CA, Altizer S, Hall RJ. To be submitted to Biology Letters. 
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ABSTRACT 

Anthropogenic landscape modification such as agricultural intensification and 

urbanization can expose wildlife populations to toxicants that have profound effects on 

their health and behavior. In particular, toxicants can have complex interactions with 

infection dynamics and animal movement. We developed a mechanistic model to 

understand the interactive consequences of pathogens and toxicants on a wildlife 

population, by exploring toxicant effects on host movement, survival, and pathogen 

transmission in a toxicant-contaminated landscape. We found that the proportion of the 

landscape contaminated by toxicants was a crucial determinant of pathogen impacts. 

When a small fraction of the landscape was contaminated, costs to movement and 

survival from toxicant exposure trapped infected animals in contaminated habitats and 

reduced landscape-level transmission, especially if toxicant exposure reduced infection 

success. However, these effects were reversed when the majority of the landscape was 

contaminated. Intermediate levels of landscape contamination minimized infection 

prevalence and maximized the density of infected hosts in contaminated habitat, a proxy 

for the risk of pathogen spillover to humans. These results highlight how sublethal effects 

of toxicants can be crucial determinants of pathogen impacts on wildlife populations that 

may not manifest until landscape contamination is widespread.  
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INTRODUCTION 

Anthropogenic toxicants such as persistent organic pollutants, heavy metals, and 

pharmaceutical products are widespread [223-225] and have profound effects on wildlife 

health and behavior [178, 226-228]. Urban wildlife populations tend to have higher 

toxicant loads than nonurban populations [172] and may be especially at risk of negative 

health effects. Toxicant exposure has been linked to increased infection susceptibility due 

to immune suppression [229], notably in marine mammals [230, 231] but also birds 

[232], amphibians [233], and fish [234]. For instance, green frog (Rana clamitans) 

tadpoles exposed to pesticides experienced greater encystment by trematode cercariae 

[235], which was attributed to immunosuppressive effects of the pesticides. Toxicants 

might also increase infection in a population by inducing greater production of infectious 

stages, as observed in snails that shed more cercariae when exposed to the herbicide 

glyphosate [236].  

However, toxicants could also reduce infection in a wildlife population, such as 

by killing or depressing the production of free-living parasite stages (e.g. pesticide effects 

on the amphibian fungus Batrachochytrium dendrobatidis [237]). Toxicants can also 

reduce aggression [238], decreasing the likelihood of infectious contacts between 

individuals. Heavy metals can upregulate immune function in some species (e.g. lead in 

mallards [218], copper in blow flies [239], which could reduce susceptibility to parasites. 

A mechanism that could reduce transmission of density-dependent pathogens is toxicant-

driven declines in host density [240, 241]. 

Sometimes toxicants and infection act in concert to produce unexpected effects 

[242]. Their combination may be detrimental to a host, as observed with juvenile 
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roundhead galaxias (Galaxias anomalus) that exhibited no changes in survival when 

exposed to a trematode parasite or glyphosate singly, but reduced survival when exposed 

to both [236]. In other cases, toxicants and infection together may benefit a host. For 

instance, zebrafish (Danio rerio) infected with a bacterial pathogen and exposed to a high 

dose of phenanthrene (a polycyclic aromatic hydrocarbon) had higher survival than 

uninfected fish exposed to the same phenanthrene dose [243], while bumblebees (Bombus 

terrestris) inoculated with a microsporidian parasite and exposed to a pesticide exhibited 

improved learning [244]. These studies underscore the importance of considering the 

effects of toxicants and infection on wildlife together, rather than in isolation. 

In addition to altering infection outcomes, toxicants have been shown to affect 

animal movement, both in the laboratory (e.g. decreased and increased activity in fish 

exposed to heavy metals [245]) and the wild (e.g. lower flight height and movement rate 

in golden eagles (Aquila chrysaetos) exposed to lead [246]). Toxicants can reduce 

movement directly by causing physical deformities [90, 174] or indirectly (e.g. impaired 

memory and collision avoidance in insects exposed to neonicotinoid pesticides [247, 

248]). If habitats contaminated by toxicants attract wildlife (e.g. agricultural crops treated 

with pesticides [249]; artificial wetlands constructed to treat wastewater [250]), but then 

impair subsequent movement, these habitats could act as ecological traps. For example, 

migrating white-crowned sparrows (Zonotrichia leucophrys) experimentally dosed with a 

neonicotinoid insecticide at a stopover site exhibited reduced feeding, rapidly lost body 

fat, and needed extra time before they were ready to continue migrating [173]. 

Although previous work has explored how toxicants can interact with infection at 

a local scale [240, 242, 251], it is currently unknown how the ubiquity of toxicant-
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contaminated habitats across landscapes used by wildlife influence population viability 

and infection dynamics at larger scales, especially when toxicants have sublethal effects 

on infection susceptibility and animal movement. Here, we develop a compartmental 

model of host-parasite dynamics to study joint effects of toxicants and infection for a 

wildlife species whose range includes toxicant-contaminated habitat. We further place 

our model in the context of urbanizing landscapes, where we expect more humans and 

higher toxicant levels (e.g. due to industrial pollution, transportation emissions, pesticide 

application). Specifically, we explore how population and infection dynamics respond to 

varying 1) the amount of toxicant-contaminated landscape and 2) the effects of toxicants 

on infection, movement, and survival. We examine three outcomes of interest: population 

size, infection prevalence, and the density of infected animals in toxic habitat as a proxy 

for the risk of pathogen spillover from animals to humans. 

 

METHODS 

Model development and parameters 

We categorize animals according to their infection status and location as susceptible (S) 

or infected (I), with the subscripts T and P denoting occupancy of “toxic” habitat 

(contaminated by toxicants) or “pristine” habitat (free from toxicants). The parameter f 

represents the fraction of the overall landscape that is contaminated; thus 1 – f represents 

the fraction of the landscape that is pristine. Animals in toxic habitat potentially incur 

costs to fecundity, survival, and movement, and increased or decreased transmission risk. 

A schematic of the model is provided in Figure 5.1. 
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Demography: Animals are born into the susceptible class at a density-dependent 

rate. In both habitat types the maximum per capita birth rate is b0 and the density-

dependent term in each type reflects the relative amount of pristine and toxic habitat (b1 / 

(1 – f ) and b1
 / f respectively). In pristine habitat, susceptible animals experience 

mortality at rate m. In toxic habitat, susceptible animals experience mortality at rate m / 

(1 – cm), where cm represents the mortality cost imposed by negative effects of toxicants. 

Infection: Density-dependent pathogen transmission occurs in pristine and toxic 

habitat at respective rates βP and βT. In pristine habitat, infected animals experience 

mortality at rate m + μ, where μ is the additional disease-induced mortality. In toxic 

habitat, infected animals experience mortality at rate (m + μ) / (1 – αcm), where α controls 

the net effect of being infected while in toxic habitat on survival. If α is < 1, being in 

toxic habitat offsets the negative consequences of infection (e.g. toxicants stimulate 

immune defense), while if α is > 1, being in toxic habitat amplifies disease-induced 

mortality (i.e. greater than additive effects of toxicants and disease on survival). In both 

habitat types, animals recover from infection at rate γ. 

Movement: Animals disperse at per capita rate σ in pristine habitat and σ (1 – cσ) 

in toxic habitat, where cσ is the cost of toxicants on dispersal. The probability that 

animals switch habitats during dispersal depends on the relative frequencies of each 

habitat type. If an animal moves between habitats, it maintains its infection status. 

However, when an animal disperses out of toxic habitat, for simplicity we assume it 

immediately “recovers” from all ill effects of toxicants. The differential equations 

describing the model are provided below, and a summary of model parameters and their 

default values appears in Table 5.1. 
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𝑑𝑆𝑃

𝑑𝑡
= (𝑏0 −

𝑏1(𝑆𝑃+𝐼𝑃)

1−𝑓
)(𝑆𝑃 + 𝐼𝑃) − 𝑚𝑆𝑃 − 𝛽𝑃𝑆𝑃𝐼𝑃 + 𝛾𝐼𝑃 − 𝜎𝑓𝑆𝑃 + 𝜎(1 − 𝑐𝜎)(1 − 𝑓)𝑆𝑇         Eq. 1 

𝑑𝐼𝑃

𝑑𝑡
= 𝛽𝑃𝑆𝑃𝐼𝑃 − (𝑚 + 𝜇)𝐼𝑃 − 𝛾𝐼𝑃 − 𝜎𝑓𝐼𝑃 + 𝜎(1 − 𝑐𝜎)(1 − 𝑓)𝐼𝑇            Eq. 2 

𝑑𝑆𝑇

𝑑𝑡
= (𝑏0 −

𝑏1(𝑆𝑇+𝐼𝑇)

𝑓
)(𝑆𝑇 + 𝐼𝑇) −

𝑚

1−𝑐𝑚
𝑆𝑇 −  𝛽𝑇𝑆𝑇𝐼𝑇 + 𝛾𝐼𝑇 + 𝜎𝑓𝑆𝑃  − 𝜎(1 − 𝑐𝜎)(1 − 𝑓)𝑆𝑇  Eq. 3 

𝑑𝐼𝑇

𝑑𝑡
= 𝛽𝑇𝑆𝑇𝐼𝑇 −

(𝑚+𝜇)

1−𝛼𝑐𝑚
𝐼𝑇 − 𝛾𝐼𝑇 + 𝜎𝑓𝐼𝑃 − 𝜎(1 − 𝑐𝜎)(1 − 𝑓)𝐼𝑇            Eq. 4 

 

Model parameterization and analysis 

Our model was motivated by a hypothetical flying fox (fruit bat) host species infected 

with a virus. These animals feed on fruiting and flowering plant species in natural, urban, 

and agricultural landscapes [35, 110], where they face exposure to toxicants including 

pesticides and heavy metals [184, 185]. In natural forested landscapes, flying foxes roost 

communally in camps and periodically relocate as food sources are depleted [109, 252]. 

In human-altered habitats where food availability is more stable (and where toxicant 

exposure is more likely), camps persist longer through time [36]. Additionally, flying 

foxes are reservoirs of pathogens that can be transmitted to domestic animals and 

humans, notably Hendra and Nipah viruses [253]. In order for our model to apply more 

generally to other wildlife species, and given uncertainty on how viruses circulate in bats 

[254], we model transmission as a simple density-dependent process with no lasting 

immunity from infection. Further details of model parameterization are provided in 

Appendix D, describing demographic, dispersal, and infection parameters relevant to 

flying foxes and their viruses. To explore the generality of our findings to other systems, 
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extensive sensitivity analyses were performed by co-varying multiple model parameters 

using Latin Hypercube Sampling [255]. 

We examined three outcomes of interest in our analyses. The landscape-level 

effects of toxicants and infection on population viability were quantified by the 

equilibrium population size, N* = SP + IP + SP + IT. The net effect of contaminated habitat 

on landscape-level infection processes was quantified by the equilibrium infection 

prevalence, P* = (IP + IT) / N*. We defined “spillover risk” as the density of infected 

animals in toxic habitat, since we assumed this is where humans and wildlife are most 

likely to co-occur. Spillover risk was quantified as the total number of infected animals in 

toxic habitat divided by the habitat’s relative frequency,  = IT* / f, and thus represents 

the total number of infected animals if 100% of the landscape was contaminated.  

For each landscape contamination scenario, we initiated the model with 50,000 

hosts, 100 of which were infected with a virus; hosts were distributed between toxic and 

pristine habitats according to the relative proportion of those habitats in the landscape. 

We imposed a low cost of toxicants on survival, and a moderate synergistic effect of 

infection and toxicants on survival. We explored six cases in which we co-varied the 

pathogen transmission rate in toxic habitat relative to pristine habitat, and the cost of 

toxicants on dispersal. The three scenarios for transmission were: the pathogen is less 

transmissible in toxic habitat (βT < βP); no difference in transmission between habitat 

types (βT = βP); and the pathogen is more transmissible in toxic habitat (βT > βP). For 

these three scenarios the cost of toxicants for host dispersal was either low (cσ = 0.2) or 

high (cσ = 0.8). All other model parameters were held constant across simulations (Table 

5.1). 



 

94 

 

To explore how wildlife population and infection dynamics are affected by 

increasing contamination on the landscape, we varied the fraction of the landscape that is 

contaminated, f, from 1% to 99%, representing the transition from a totally pristine 

landscape to a totally contaminated one. For each value of f, we recorded the population 

size, infection prevalence, and spillover risk after 50 years (simulations revealed that 50 

years was sufficient for populations and infection to reach an equilibrium). All model 

analyses were performed in R version 3.6.1 [127], and we used the deSolve package 

[256] to solve the system of differential equations. 

We also explored the sensitivity of infection prevalence to parameter variation 

using Latin hypercube sampling. We varied five parameters related to toxicants, 

infection, and movement: transmission in toxic habitat (βT), infection-induced mortality 

(μ), the cost of toxicants to movement (cσ), the cost of toxicants to survival (cm), and the 

net effect of being infected while in toxic habitat on survival (α); parameter ranges are 

provided in Appendix D Table S5.1. Using the lhs package [257], we generated 5000 

samples from a Latin hypercube design in which parameters were distributed uniformly 

and retained samples for which α < 1/cm. To derive partial rank correlation coefficients 

(PRCCs) between parameters and equilibrium infection prevalence we used the 

sensitivity package [258]. We performed sensitivity analyses for three values of f 

representing low, intermediate, and high levels of toxic habitat in the landscape. 
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RESULTS 

Scenario 1: Toxicants have a small movement cost 

We visualized population size, infection prevalence, and spillover risk as a function of f, 

the fraction of the landscape contaminated by toxicants (Figures 5.2 and 5.3). In the 

absence of infection, host population size declines monotonically with the extent of 

landscape contamination (Figure 5.3A). However, the magnitude of the decline is low, 

even at high values of f, indicating largely sub-lethal effects of toxicant exposure in the 

absence of infection. In the presence of infection, population size initially increases with f 

at low levels of landscape contamination, then decreases (Figure 5.2). The initial increase 

is driven mainly by an increase in susceptible hosts in toxic habitat, reflecting reduced 

transmission at low host density and higher mortality of infected individuals there. 

Further, since toxicant exposure reduces dispersal rates, infected hosts are less likely to 

return to pristine habitat to transmit infection. As f increases and pristine habitat shrinks, 

density-dependent transmission and host population size in pristine habitat declines. In 

toxic habitat, reduced host dispersal capacity causes overcrowding, which reduces 

reproduction through density-dependent effects, and increases both transmission and 

mortality from combined effects of toxicants and infection. Together these result in 

overall population declines. When transmission risk is lower in toxic than pristine habitat, 

toxic habitat acts as a sink for the pathogen (Figure 5.3A, dotted line); host population 

size increases with f even when more than 50% of the landscape is contaminated, and 

relatively small population declines occur only when almost all of the landscape is 

contaminated. Conversely, when transmission is enhanced in toxic habitat (Figure 5.3A, 
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dashed line), the combined effects of toxicants and infection drive more severe 

population declines in an increasingly contaminated landscape. 

Increasing the proportion of toxic habitat also has non-linear effects on infection 

prevalence (Figure 5.3B), with overall prevalence decreasing with f until more than half 

of the landscape is contaminated, and then increasing. This reflects the relatively large 

reduction in transmission in pristine habitat as the landscape becomes contaminated, 

which is outpaced by an increase in transmission in toxic habitat once it is the commonest 

habitat type. Prevalence drops further, and over a larger range of f, when transmission is 

lower in toxic habitat, while prevalence remains relatively high when habitat 

contamination increases transmission. 

 Spillover risk (i.e. the density of infected individuals in toxic habitat) has a hump-

shaped relationship with landscape contamination (Figure 5.3C). When transmission is 

the same in each habitat type, spillover risk is highest when approximately 50% of the 

landscape is contaminated. Spillover risk is much lower, and maximized when most 

habitat is contaminated, when toxicants reduce transmission. Conversely, when toxicants 

increase transmission, peak spillover risk is higher and occurs at a lower value of f (i.e. 

before most of the landscape is contaminated). Across all scenarios, as an increasing 

fraction of the landscape becomes contaminated, population size is maximized first (i.e. 

at a lower value of f), followed by the peak in spillover risk, followed by the minimum in 

overall infection prevalence. 
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Scenario 2: Toxicants have a large movement cost 

Increasing the cost of contamination on dispersal results in more severe impacts on 

population size across all transmission scenarios (Figure 5.3D). When transmission in 

toxic habitat is greater than or equal to transmission in pristine habitat, the population 

size decreases monotonically with increasing landscape contamination (Figure 5.3D). 

When transmission is lower in toxic habitat, population size initially decreases at very 

low f, but then increases with increasing f. However, infection still strongly regulates the 

population to less than 60% of the disease-free population size. Compared to when the 

cost to dispersal is low, infection prevalence drops more rapidly to a lower minimum 

(Figure 5.3E), and spillover risk increases more rapidly to a higher maximum (Figure 

5.3F); minimum prevalence and maximum spillover risk both increase with the 

transmission rate in toxic habitat. 

  

Sensitivity analyses 

Increases in disease-induced mortality, costs of toxicants on survival, and combined 

effects of toxicants and infection on mortality had a strong negative effect on infection 

prevalence for all three levels of landscape contamination (f = 0.1, f = 0.5, and f = 0.9; 

Appendix D Figure S5.1). In contrast, increasing pathogen transmission in toxic habitat 

had a positive effect on prevalence. Increasing the cost of toxicants on movement had a 

negative effect on prevalence at low and intermediate levels of landscape contamination 

and no effect on prevalence at a high level of landscape contamination. Upper observed 

prevalence values from Latin Hypercube Sampling were ~0.8. 
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DISCUSSION 

Many wild species are found in increasingly human-modified landscapes, potentially 

influencing their exposure to toxicants. We developed a mechanistic model to understand 

the consequences of toxicant exposure on host-pathogen dynamics, through sub-lethal 

effects of toxicants on host movement and behavioral or immunological effects on 

transmission risk, as well as synergistic lethal effects of infection and toxicant exposure. 

While toxicants had little negative effect on host population size in the absence of 

infection, we found that the extent of contaminated habitat across the landscape could 

enhance or reduce impacts of infection on host populations. Contaminated habitat can 

potentially act as a sink for pathogens when most habitat is pristine, but typically 

exacerbated pathogen-related declines once the majority of the landscape was 

contaminated. In landscapes that became increasingly contaminated over time, we 

consistently found that population declines preceded the maximum spillover risk. The 

largest population impacts of the pathogen were seen when infection prevalence was 

lower in more contaminated landscapes, indicating high mortality from the combined 

effects of infection and toxicants. 

 Unexpectedly, we found cases in which toxicants can benefit a wildlife 

population. Population size can increase when the landscape changes from being totally 

pristine to having a small fraction of toxic habitat. When rare, toxic habitat may reduce 

transmission of density-dependent pathogens, prevent infected animals from returning to 

pristine habitat if toxicants reduce movement, and purge infected individuals from the 

population through elevated mortality. Further, if toxicants lower transmission of a 

virulent pathogen, then increasing landscape contamination can lead to higher maximum 



 

99 

 

population size and a net increase in population compared to a pristine landscape. 

Moderate toxicant-induced movement costs conveyed some benefits to host populations 

by trapping infected individuals in contaminated habitats; however, when movement 

costs were too high, the net effect on population size tended to be negative, since 

contaminated habitats become overcrowded, reducing density-dependent fecundity and 

increasing toxicant-induced mortality of uninfected and infected individuals. 

Our results suggest that animal species whose movement is severely impaired by 

toxicants could be most negatively affected by landscape contamination. For example, 

amphibians closer to agricultural areas or lawns have been shown to have higher risk of 

limb malformations, likely due to pesticide exposure [259]. In one study, deformity rates 

of newly-metamorphosed toads reached nearly 50% at some sites, though it was unclear 

whether deformity was due to pesticides, heavy metals, parasite infection, or a 

combination of factors [90]. Future work could examine the impact of malformations on 

dispersal ability in amphibians, and investigate the degree to which other vertebrate 

species experience toxicant-induced deformities [260] or other impairments to 

movement.  

A previous model that explored effects of environmental stressors (e.g. 

eutrophication, heavy metals) on host disease dynamics found that negative, positive, and 

non-linear relationships between stress and disease were possible, but that increasing 

stress generally reduced disease due to stress-mediated declines in host density [240]. 

This model assumed that contamination affected the entire environment, and that stress 

increased susceptibility to infection [240]. By incorporating toxic and pristine habitats in 

our model, and creating scenarios in which transmission could be lower in toxic habitat, 
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we found that host population size could increase while infection prevalence still 

decreased.  

 Our model made several simplifying assumptions that may not hold in other 

systems. For example, we assumed that an animal immediately recovers from all ill 

effects of toxicants if it moves out of toxic habitat. However, some toxicants can 

accumulate in the body (e.g. heavy metals like chromium and nickel [261]), which could 

potentially reduce or negate any beneficial effects of reduced pathogen exposure. Model 

extensions could allow toxicant concentrations to accumulate in hosts as they stay longer 

in toxic habitat, and for toxicants to decrease gradually when hosts leave. Adding 

different host age and sex classes could also allow inclusion of maternal transfer of 

toxicants (e.g. through placental transfer or lactation [262]). Additional work could also 

consider how movement could act as a stressor, revealing negative effects of toxicants. 

For instance, severe energy expenditure can mobilize toxicants stored in body fat, as 

observed in Mexican free-tailed bats (Tadarida brasiliensis) that experienced pesticide 

poisoning after being subjected to simulated migratory flight [263]. 

Our work suggests that increasing urbanization, if accompanied by greater levels 

of toxicants, could cause drastic declines in wildlife populations facing other stressors 

such as infectious disease. Only very low landscape contamination was beneficial for 

population size, as toxic habitat offered a refuge from infection. When considering 

population viability, wildlife managers should seek to assess multiple health metrics in a 

focal species, including toxicant exposure and infection prevalence, and also consider the 

degree of contamination in the surrounding landscape.  
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Table 5.1. Model parameters with definitions, units, and values used to produce figures. 

 

Process Parameter Definition Units Value 

Demography m Natural death rate 1/year 0.1 

 b0 Maximum per capita birth rate 1/host/year 0.4 

 b1 Density-dependent per capita birth 

rate 

1/host/year (b0-m)/50000 

 cm Cost of toxicants to survival  0.2 

Infection  βP Transmission rate in pristine habitat  0.006 

 βT Transmission rate in toxic habitat  0.0015, 0.006, 0.0105 

 γ Recovery rate 1/year 36.5 

 μ Disease-induced mortality 1/year 0.25 

 α Effect of infection and toxicants on 

survival 

 2 

Movement f Fraction of the overall landscape 

that is contaminated 

 0.01-0.99 

 σ Per capita dispersal rate 1/movement/year -log(0.1) 

 cσ Cost of toxicants to dispersal  0.2, 0.8 
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Figure 5.1. Schematic of the toxicant-infection model. A. Boxes represent the number of 

Susceptible (S) or infected (I) individuals in pristine (P) or toxic (T) habitat. The 

parameter f represents the fraction of the overall landscape that is contaminated by 

toxicants; thus 1 – f represents the fraction of the landscape that is pristine. Horizontal 

arrows represent movement between pristine and toxic habitats, vertical arrows represent 

transitions between the susceptible and infected classes (i.e. infection and recovery), and 
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diagonal arrows represent demographic processes (i.e. births and deaths). Dotted lines 

represent processes that could be affected by toxicants (movement out of toxic habitat, 

pathogen transmission in toxic habitat, and deaths in toxic habitat). B. Figure showing 

differential mortality based on infection status (susceptible or infected) and habitat type 

(pristine or toxic). In pristine habitat, susceptible animals experience only natural 

mortality, while infected animals experience natural and disease-induced mortality. In 

toxic habitat, susceptible animals experience natural mortality and mortality imposed by 

toxicants. Infected animals experience natural mortality, disease-induced mortality, and 

toxicant-induced mortality. Being infected while in toxic habitat can also produce greater 

than additive effects on mortality.  
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Figure 5.2. Equilibrium population sizes as a function of the proportion of toxic habitat 

in a population infected by a virulent pathogen. The overall population size across the 

landscape is denoted by the thick black line. Susceptible and infected host population 

sizes are denoted by solid and dashed lines, respectively, with the line color indicating the 

population size in pristine (blue) and toxic (red) habitats. Here, the transmission rate is 

assumed equal across habitat types (βT = βP = 0.006) and the cost to dispersal from toxic 

habitat is relatively low (cσ = 0.2); other parameter values are provided in Table 5.1. 
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Figure 5.3. Population size, infection prevalence, and spillover risk (the density of 

infected animals in toxic habitat) plotted as a function of the proportion of toxic habitat in 

the landscape. Rows indicate scenarios where the cost to dispersal from toxic habitat is 
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(A-C) low (cσ = 0.2) or (D-F) high (cσ = 0.8). Pathogen transmission in pristine habitat is 

constant (βP = 0.006). Line style indicates the three scenarios for transmission rate in 

toxic habitat: less than, equal to, or greater than βP (βT = 0.0015, 0.006, and 0.0105; 

dotted, solid, and dashed lines, respectively). Population size in the absence of infection 

is also shown for comparison in panels A and D (dashed-dotted line). Other parameter 

values are provided in Table 5.1.  
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CHAPTER 6 

CONCLUSIONS 

The overarching aim of this dissertation was to examine how urban landscape features, 

including altered resources and exposure to toxicants, affect wildlife behavior, health, and 

infectious disease. I first used meta-analytic techniques to quantify the impacts of 

urbanization on four wildlife health metrics (Chapter 2). I next tracked the foraging 

movements of urban flying foxes in Adelaide, South Australia and identified key 

predictors of their movement (Chapter 3). I then quantified metal concentrations in fur of 

flying foxes captured at eight locations across Australia and assessed relationships 

between metals and human land use, as well as flying fox parasitism (Chapter 4). Finally, 

I built a mechanistic model to explore interactive effects of toxicants and infectious 

disease on population size and disease dynamics of wildlife in an increasingly 

contaminated landscape (Chapter 5). 

A main result of Chapter 2 was that comparisons of toxicant loads between urban 

and non-urban wildlife populations were heavily dominated by negative health 

relationships (i.e. greater toxicant concentrations in urban wildlife). However, our dataset 

had geographic and species biases, demonstrating gaps for future research. For instance, 

we identified few studies conducted outside of North America and Europe, and no health 

comparisons of urban and non-urban bat populations, even though bats make up 

approximately 20% of all mammal species [264]. In Chapter 4, I assessed metal 

concentrations in flying foxes captured at sites ranging in human impact, as measured by 
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human footprint scores. The results of this work supported the pattern found in Chapter 2, 

as flying foxes captured in sites surrounded by higher human impact had greater overall 

metal loads.  

Fur samples were collected from live, outwardly healthy flying foxes, suggesting 

that the metal concentrations we measured were not sufficient to cause acute poisoning in 

the animals. Yet results of Chapter 5 show that in the presence of an infectious pathogen, 

sublethal effects of toxicants on movement and survival can cause a substantial decrease 

in wildlife population numbers. This is especially relevant to Australian flying foxes, as 

these animals host a variety of pathogens, among them Hendra virus and other 

paramyxoviruses [265]. I found that spectacled and black flying foxes typically had 

higher metal concentrations in fur than grey-headed flying foxes (Chapter 4); spectacled 

and black flying foxes are also considered primary reservoirs for Hendra virus [266, 267] 

suggesting that these species may be especially at risk of interactive toxicant—infection 

effects.  

Metal exposure might also increase susceptibility of flying foxes to other stressors 

such as extreme heat events [268], cyclones [269], or food shortages [252]. Future work 

could compare metal concentrations, for example, in fur of flying foxes that survive or 

die during a heat stress event to test whether metals are a risk factor. Food shortages 

might be even more likely to reveal negative effects of metals or other toxicants on 

survival, as toxicants could be mobilized from storage in the body as resources are 

depleted. Determining the clinical effects of toxicants on flying fox health is an important 

topic for future research. 
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Though Chapter 2 demonstrated an overall negative effect of urbanization on 

wildlife health, it also provided ample support for health benefits, with nearly 40% 

(190/516) of records in the dataset reporting a positive urbanization–health relationship. 

Results from this work hinted that urban mammals may have better body condition than 

their non-urban counterparts. My finding that Adelaide flying foxes that foraged closer to 

the roost and at fewer sites were in better body condition (Chapter 3) suggests that one 

way urban areas improve wildlife body condition is by providing reliable food resources 

nearby, thereby decreasing energy expenditure. Though there has been some research 

comparing nutritional values of agricultural versus native fruits [42], future work to 

assess nutritional content of urban resources used by flying foxes would be valuable, as 

would more nuanced measures of body condition for flying foxes. Extending to other 

species, body condition was the least studied health metric in the meta-analysis dataset 

(12% of records; Chapter 2), revealing a need for more research on how body condition is 

affected by urbanization. Improved methods to assess body condition for wildlife would 

be an important first step to understand how condition varies in urban and non-urban 

populations [63]. 

In Chapter 5, we assumed that toxicant exposure and pathogen transmission occur 

within the same habitat; for example, animals drawn to a constructed wetland used to 

treat wastewater could be exposed to heavy metals and be infected by conspecifics. 

However, for central-place foragers such as flying foxes, which roost at one site during 

the day but forage at several sites during the night, toxicant exposure could occur 

separately from infection (e.g. exposure to pesticides at feeding sites, but infection at the 

roost where bats are aggregated). Future work could explore modeling frameworks that 
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explicitly compare infection dynamics for species that roost communally and disperse to 

forage across contaminated and uncontaminated habitats. In general, it would be useful to 

investigate the routes by which different species uptake different toxicants.  

In the meta-analysis of Chapter 2, urban populations of birds and mammals 

exhibited a (statistically non-significant) pattern of having less parasitism than non-urban 

populations. Similarly, results of Chapter 5 showed that increasing landscape 

contamination caused a decline in infection prevalence over low to intermediate levels of 

contamination. However, at high landscape contamination, infection prevalence began to 

rise again. The studies included in our meta-analysis dataset ranged in urbanization, as 

measured by human footprint scores (0.7 to 24.9), but did not represent the upper limits 

of urbanization (maximum human footprint value of 50). Future work comparing 

parasitism measures of urban and non-urban wildlife might reveal non-linear or positive 

relationships between urbanization and infection if wildlife are captured at sites 

encompassing a larger urbanization gradient. 

As more wildlife are acclimating to urban areas, it is essential to understand how 

their foraging resources, behavior, and health are changing. Seeing urban wildlife can 

excite and inspire humans, but can also cause conflict. Depending on the species, we may 

want to attract some animals to urban areas by providing resources that can sustain 

healthy populations, yet exclude others by making urban habitat less attractive or 

providing resources in natural areas. Flying foxes are one example of a group that may 

increasingly require new management strategies to keep populations healthy while 

reducing public health risk; this dissertation provides new data that could help guide 

management decisions.   
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Supplemental methods 

Systematic search details 

We identified published studies on urban wildlife health through Web of Science and 

CAB Abstracts using the following search strings: (*urban* OR city OR cities OR town) 

AND (health OR disease OR pathogen OR infect* OR *parasite OR bacteria* OR virus 

OR fung* OR ecto* OR helminth* OR condition OR survival OR stress OR tox*) AND 

(wild*), with restrictions on research area. The Web of Science search was restricted by 

language (ENGLISH), citation index (SCI-EXPANDED), and research area (ECOLOGY 

OR EVOLUTIONARY BIOLOGY OR ENVIRONMENTAL SCIENCES OR 

VETERINARY SCIENCES OR BIODIVERSITY CONSERVATION OR ZOOLOGY 

OR PARASITOLOGY OR PUBLIC ENVIRONMENTAL OCCUPATIONAL HEALTH 

OR INFECTIOUS DISEASES OR MICROBIOLOGY OR TOXICOLOGY OR 

PATHOLOGY OR MYCOLOGY OR IMMUNOLOGY OR HEMATOLOGY OR 

ENVIRONMENTAL STUDIES OR ENTOMOLOGY OR BIOTECHNOLOGY 

APPLIED MICROBIOLOGY OR GASTROENTEROLOGY HEPATOLOGY OR 

VIROLOGY OR ONCOLOGY OR BIOLOGY OR ORNITHOLOGY OR 

ENDOCRINOLOGY METABOLISM OR URBAN STUDIES). The CAB Abstracts 

search was restricted by language (English), publication type (academic journals), and 

research domain (ecology and environmental sciences).  

 

Statistical analysis 

To assess differences in research effort over time, we tabulated the number of records per 

year and by taxonomic group and health metric. We fit two generalized linear models 
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with Poisson errors, one with the interaction between year and taxonomic group and 

another with the interaction between year and health metric. 

 To examine relationships between urbanization and wildlife health, we used a 

hierarchical phylogenetic meta-analysis framework with study and species as random 

effects [270]. We nested observation within study to account for pseudoreplication, as 

72% of studies had multiple effect sizes. To account for phylogenetic dependence, the 

covariance structure of the species random effect used the correlation matrix of an animal 

phylogeny obtained from the Open Tree of Life with the rotl and ape packages [271-

273]. All models had the same random effects fit with rma.mv in the metafor package 

[62]. 

 We first used a random effects model (REM) to estimate the overall relationship 

between urbanization and wildlife health (ie the mean effect size) across our full dataset 

(n = 516). To then identify the primary predictors of effect size, we fit a set of mixed-

effect models (MEMs) that considered animal taxonomic group, health metric, life 

history (aquatic versus terrestrial), and their two-way interactions. We excluded the 

MEM with an interaction between life history and taxonomic group because we lacked 

complete data for all combinations of the levels of these variables). From each model, we 

derived a pseudo R2 using the variance components [274]. We used maximum likelihood 

(ML) to compare models with AICc [137], and refit MEMs with REML to derive R2. We 

considered MEMs with ∆AICc ≤ 2 to be competitive, and visualized top MEMs by back-

transforming Zr into r. For the REM, we used the REML-estimated variance components 

to quantify I2 as a measure of heterogeneity.  
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 Given the results of this analysis (health metric had more explanatory power than 

animal taxonomic group), we stratified our data by each health metric dataset to test 

support for animal, parasite, and environmental traits as mechanisms that underlie 

relationships between urbanization and wildlife health. That is, we fit four sets of MEMs, 

with a separate model set for each health metric dataset. Six predictor variables were 

common to the global MEM for each dataset: animal taxonomic group, life history, mean 

country human footprint (average global human footprint score of the country in which a 

study was located), country gross domestic product (GDP; log-transformed), the 

interaction between mean country human footprint and life history, and the interaction 

between country GDP and life history. In addition to these six variables, each global 

MEM for the four datasets included dataset-specific predictor variables. The global MEM 

for the body condition dataset (n = 60) included how condition was quantified (raw 

measure of mass or size, mass adjusted for length, or qualitative scores) as a predictor 

variable. The global MEM for the parasitism dataset (n = 194) included the following 

predictor variables: parasite type (microparasite, macroparasite), parasite measure 

(whether infection status was measured as a binary variable, infection intensity, or 

parasite richness), if the parasite is transmitted via close contact, non-close contact, 

vectors, or an intermediate stage (four separate binary variables), if the parasite is 

transmitted by one versus multiple transmission routes (binary), the interaction between 

parasite type and mean country human footprint, the interaction between parasite type 

and country GDP, the interactions between parasite type and the five transmission route 

variables, and all two-way interactions among the transmission route variables. The 

global MEM for the toxicant dataset (n = 189) included toxicant type (whether toxicants 
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were metals or non-metals (eg pesticides)), the interaction between toxicant type and life 

history, the interaction between toxicant type and mean country human footprint, and the 

interaction between toxicant type and country GDP as predictor variables. The global 

MEM for the stress dataset (n = 73) included stress measure (whether stress metrics were 

based on glucocorticoid levels (eg hair cortisol), leukocyte profiles (eg HL ratios), or 

other measures (eg oxidative damage, blood glucose)), the interaction between stress 

measure and life history, the interaction between stress measure and mean country human 

footprint, and the interaction between stress measure and country GDP as predictor 

variables. We excluded any MEMs containing an interaction between two predictor 

variables if we lacked data for any combination of the levels of these variables). We 

generated candidate sets of all possible MEMs per dataset with the MuMIn package 

[138], limiting each candidate MEM to four predictors to ensure that the number of 

models considered did not exceed the sample size for each dataset [137]. We again used 

AICc to compare candidate models within each dataset.  

 To understand the influence of urban development, we examined the subset of 

data for which site location was provided (n = 302), allowing us to calculate the average 

GHF score across the most and least urban sites within a study (the mean urbanization), 

the quantitative difference in GHF scores between the most and least urban sites in a 

study (the difference in urbanization), and the change in study site GHF scores from 1993 

and 2009 (the change in urbanization). We compared a set of MEMs that included either 

the mean urbanization, the difference in urbanization, the change in urbanization (each 

calculated at 1-km and 10-km buffers; six models), or the distance between the most and 
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least urban sites. We also considered each of these seven urbanization metrics in an 

interaction with health metric and with animal taxonomic group. 
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Table S2.1. ANOVA table from generalized linear models (Poisson errors) assessing 

research effort over time and according to health metric and taxonomic group 

  
χ2 p 

Counts ~ year*health 

Year 353.55 < 0.001 

Health 127.71 < 0.001 

Year:health 21.46 < 0.001 

Counts ~ year*taxonomy 

Year 353.55 < 0.001 

Taxonomy 216.79 < 0.001 

Year:taxonomy 24.98 < 0.001 
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Table S2.2. Ranking of mixed-effects models (MEMs) predicting effect size for the relationship between urbanization and wildlife 

health for the full dataset, for each health metric dataset, and for studies where we obtained quantitative data on urbanization between 

extreme sites; models are ranked by ∆AICc with the number of parameters (k), pseudo R2 and Akaike weights (wi) 

MEMs fit to full dataset (n = 516)  k R2 ∆AICc wi 

~  health metric + taxonomic group + health metric:taxonomic group + 1 17 0.29 0 1 

~  life history + health metric + 1 5 0.14 12.73 0 

~  health metric + 1 4 0.12 14.94 0 

~  health metric + taxonomic group + 1 8 0.15 15.51 0 

~  life history + health metric + life history:health metric + 1 8 0.11 15.67 0 

~  life history + 1 2 0.05 20.66 0 

~ 1 1 0 25.31 0 

~  taxonomic group + 1 5 0.04 26 0 

MEMs fit to toxicant dataset (n = 189) k R2 ∆AICc wi 

~  taxonomic group + 1 5 0.21 0 0.68 

~  life history + 1 2 0.1 5.07 0.05 

~ 1 1 0 6.2 0.03 

~  life history + GDP + 1 3 0.08 7.12 0.02 

~  life history + toxicant type + 1 3 0.07 7.17 0.02 

~  life history + Country human footprint + 1 3 0.08 7.18 0.02 

~  GDP + toxicant type + GDP:toxicant type + 1 4 0.05 7.49 0.02 

~  life history + toxicant type + life history:toxicant type + 1 4 0.09 7.57 0.02 

~  Country human footprint + GDP + toxicant type + GDP:toxicant type + 1 5 0.13 7.76 0.01 

~  life history + GDP + life history:GDP + 1 4 0.08 7.93 0.01 

~  life history + GDP + toxicant type + GDP:toxicant type + 1 5 0.1 8.04 0.01 

~  toxicant type + 1 2 0 8.1 0.01 

~  GDP + 1 2 0 8.15 0.01 

~  Country human footprint + 1 2 0 8.31 0.01 

~  life history + Country human footprint + GDP + 1 4 0.03 9.11 0.01 
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~  life history + GDP + toxicant type + 1 4 0.05 9.16 0.01 

~  life history + Country human footprint + toxicant type + 1 4 0.07 9.32 0.01 

~  life history + Country human footprint + life history:Country human footprint + 1 4 0.06 9.33 0.01 

~  life history + GDP + toxicant type + life history:GDP + 1 5 0.05 9.34 0.01 

~  life history + GDP + toxicant type + life history:toxicant type + 1 5 0.06 9.7 0.01 

~  life history + Country human footprint + toxicant type + life history:toxicant type + 1 5 0.07 9.71 0.01 

~  GDP + toxicant type + 1 3 0 9.85 0 

~  life history + Country human footprint + GDP + life history:GDP + 1 5 0.04 10 0 

~  Country human footprint + toxicant type + 1 3 0 10.12 0 

~  Country human footprint + GDP + 1 3 0 10.22 0 

~  life history + Country human footprint + GDP + toxicant type + 1 5 0.03 11.26 0 

~  life history + Country human footprint + GDP + life history:Country human footprint + 1 5 0.02 11.29 0 

~  life history + Country human footprint + toxicant type + Country human footprint:toxicant type + 1 5 0.07 11.39 0 

~  life history + Country human footprint + toxicant type + life history:Country human footprint + 1 5 0.07 11.49 0 

~  Country human footprint + GDP + toxicant type + 1 4 0 12 0 

~  Country human footprint + toxicant type + Country human footprint:toxicant type + 1 4 0 12.27 0 

~  Country human footprint + GDP + toxicant type + Country human footprint:toxicant type + 1 5 0 14.17 0 

MEMs fit to body condition dataset (n = 60) k R2 ∆AICc wi 

~ 1 1 0 0 0.27 

~  life history + 1 2 0 1.81 0.11 

~  Country human footprint + 1 2 0 1.84 0.11 

~  life history + GDP + life history:GDP + 1 4 0 2.04 0.1 

~  GDP + 1 2 0 2.37 0.08 

~  condition + 1 3 0.05 2.9 0.06 

~  life history + Country human footprint + 1 3 0 3.32 0.05 

~  taxonomic group + 1 4 0.03 4.09 0.03 

~  life history + GDP + 1 3 0 4.28 0.03 

~  Country human footprint + GDP + 1 3 0 4.37 0.03 

~  life history + Country human footprint + GDP + life history:GDP + 1 5 0 4.46 0.03 

~  life history + Country human footprint + life history:Country human footprint + 1 4 0 4.64 0.03 

~  condition + Country human footprint + 1 4 0.03 5.2 0.02 

~  condition + GDP + 1 4 0.01 5.29 0.02 
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~  life history + Country human footprint + GDP + 1 4 0 5.97 0.01 

~  life history + Country human footprint + GDP + life history:Country human footprint + 1 5 0 7.16 0.01 

~  condition + Country human footprint + GDP + 1 5 0 7.8 0.01 

MEMs fit to parasite dataset (n = 194) k R2 ∆AICc wi 

~  close + Country human footprint + 1 3 0.25 0 0.16 

~  close + 1 2 0.25 0.8 0.11 

~  close + Country human footprint + nonclose + 1 4 0.25 2.11 0.05 

~  close + Country human footprint + GDP + 1 4 0.23 2.22 0.05 

~  life history + close + Country human footprint + 1 4 0.22 2.23 0.05 

~  life history + close + Country human footprint + life history:Country human footprint + 1 4 0.22 2.23 0.05 

~  close + Country human footprint + nonclose + close:nonclose + 1 5 0.23 2.71 0.04 

~  close + GDP + 1 3 0.23 2.91 0.04 

~  life history + close + 1 3 0.22 2.94 0.04 

~  close + nonclose + 1 3 0.24 3 0.03 

~  close + Country human footprint + parasite measure + 1 5 0.22 3.51 0.03 

~  close + parasite measure + 1 4 0.21 4.25 0.02 

~  close + nonclose + close:nonclose + 1 4 0.21 4.32 0.02 

~  close + Country human footprint + GDP + nonclose + 1 5 0.23 4.37 0.02 

~  life history + close + Country human footprint + GDP + 1 5 0.2 4.49 0.02 

~  life history + close + GDP + 1 4 0.19 5.12 0.01 

~  life history + close + GDP + life history:GDP + 1 4 0.19 5.12 0.01 

~  close + GDP + nonclose + 1 4 0.22 5.14 0.01 

~  Country human footprint + parasite type + Country human footprint:parasite type + 1 4 0.13 5.2 0.01 

~  Country human footprint + parasite type + 1 3 0.15 5.29 0.01 

~  close + Country human footprint + nonclose + parasite measure + 1 6 0.21 5.78 0.01 

~  life history + close + Country human footprint + parasite measure + 1 6 0.19 5.8 0.01 

~  Country human footprint + vector + 1 3 0.01 5.8 0.01 

~  close + Country human footprint + GDP + parasite measure + 1 6 0.19 5.81 0.01 

~  Country human footprint + 1 2 0.06 5.82 0.01 

~  Country human footprint + GDP + parasite type + GDP:parasite type + 1 5 0.07 6.3 0.01 

~  life history + close + parasite measure + 1 5 0.18 6.42 0.01 

~  close + GDP + nonclose + close:nonclose + 1 5 0.19 6.43 0.01 
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~  close + GDP + parasite measure + 1 5 0.19 6.44 0.01 

~  close + nonclose + parasite measure + 1 5 0.2 6.5 0.01 

~  vector + 1 2 0 6.52 0.01 

~  parasite type + 1 2 0.09 7.18 0 

~  Country human footprint + nonclose + parasite type + Country human footprint:parasite type + 1 5 0.11 7.18 0 

~  Country human footprint + mroute + parasite type + Country human footprint:parasite type + 1 5 0.13 7.19 0 

~  Country human footprint + mroute + 1 3 0.08 7.23 0 

~ 1 1 0 7.24 0 

~  Country human footprint + GDP + parasite type + Country human footprint:parasite type + 1 5 0.1 7.3 0 

~  Country human footprint + mroute + parasite type + 1 4 0.15 7.36 0 

~  Country human footprint + nonclose + parasite type + 1 4 0.14 7.45 0 

~  Country human footprint + GDP + parasite type + 1 4 0.13 7.47 0 

~  GDP + parasite type + GDP:parasite type + 1 4 0.01 7.6 0 

~  Country human footprint + parasite type + parasite measure + Country human footprint:parasite type + 1 6 0.12 7.63 0 

~  Country human footprint + nonclose + 1 3 0.05 7.72 0 

~  Country human footprint + parasite type + parasite measure + 1 5 0.14 7.86 0 

~  close + nonclose + parasite measure + close:nonclose + 1 6 0.17 7.98 0 

~  Country human footprint + GDP + 1 3 0.03 7.98 0 

~  Country human footprint + GDP + vector + 1 4 0 7.99 0 

~  mroute + 1 2 0.06 8 0 

~  life history + Country human footprint + 1 3 0.02 8.01 0 

~  life history + Country human footprint + life history:Country human footprint + 1 3 0.02 8.01 0 

~  Country human footprint + intermediate + 1 3 0.05 8.01 0 

~  Country human footprint + parasite measure + 1 4 0.05 8.13 0 

~  Country human footprint + parasite measure + vector + 1 5 0 8.4 0 

~  nonclose + 1 2 0 8.66 0 

~  life history + close + GDP + parasite measure + 1 6 0.15 8.69 0 

~  GDP + vector + 1 3 0 8.7 0 

~  mroute + parasite type + 1 3 0.12 8.71 0 

~  close + GDP + nonclose + parasite measure + 1 6 0.17 8.73 0 

~  GDP + nonclose + parasite type + GDP:parasite type + 1 5 0 8.8 0 

~  nonclose + parasite type + 1 3 0.09 8.94 0 



 

158 

 

~  GDP + mroute + parasite type + GDP:parasite type + 1 5 0.03 8.99 0 

~  parasite measure + vector + 1 4 0 9.07 0 

~  GDP + parasite type + 1 3 0.06 9.34 0 

~  life history + 1 2 0 9.36 0 

~  Country human footprint + mroute + parasite type + mroute:parasite type + 1 5 0.16 9.37 0 

~  GDP + 1 2 0 9.38 0 

~  intermediate + 1 2 0 9.38 0 

~  Country human footprint + GDP + mroute + 1 4 0.05 9.43 0 

~  parasite measure + 1 3 0 9.5 0 

~  Country human footprint + GDP + mroute + parasite type + 1 5 0.12 9.58 0 

~  Country human footprint + mroute + parasite measure + 1 5 0.07 9.58 0 

~  Country human footprint + GDP + nonclose + parasite type + 1 5 0.11 9.67 0 

~  parasite type + parasite measure + 1 4 0.07 9.67 0 

~  GDP + parasite type + parasite measure + GDP:parasite type + 1 6 0 9.68 0 

~  Country human footprint + nonclose + parasite type + nonclose:parasite type + 1 5 0.12 9.71 0 

~  Country human footprint + nonclose + parasite measure + 1 5 0.04 9.88 0 

~  Country human footprint + intermediate + nonclose + 1 4 0.03 9.91 0 

~  Country human footprint + GDP + nonclose + 1 4 0.02 9.92 0 

~  Country human footprint + nonclose + parasite type + parasite measure + 1 6 0.13 9.96 0 

~  Country human footprint + mroute + parasite type + parasite measure + 1 6 0.14 9.98 0 

~  Country human footprint + GDP + parasite type + parasite measure + 1 6 0.11 10.07 0 

~  GDP + mroute + 1 3 0.03 10.17 0 

~  life history + Country human footprint + GDP + 1 4 0 10.2 0 

~  life history + Country human footprint + GDP + life history:Country human footprint + 1 4 0 10.2 0 

~  life history + Country human footprint + GDP + life history:GDP + 1 4 0 10.2 0 

~  Country human footprint + intermediate + GDP + 1 4 0.02 10.2 0 

~  mroute + parasite measure + 1 4 0.05 10.3 0 

~  Country human footprint + GDP + parasite measure + 1 5 0.02 10.32 0 

~  life history + Country human footprint + parasite measure + 1 5 0.02 10.37 0 

~  life history + Country human footprint + parasite measure + life history:Country human footprint + 1 5 0.02 10.37 0 

~  Country human footprint + intermediate + parasite measure + 1 5 0.04 10.39 0 

~  mroute + parasite type + mroute:parasite type + 1 4 0.13 10.51 0 
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~  intermediate + nonclose + 1 3 0 10.63 0 

~  Country human footprint + GDP + parasite measure + vector + 1 6 0 10.63 0 

~  nonclose + parasite measure + 1 4 0 10.66 0 

~  GDP + nonclose + 1 3 0 10.83 0 

~  GDP + mroute + parasite type + 1 4 0.08 10.92 0 

~  nonclose + parasite type + nonclose:parasite type + 1 4 0.09 11.09 0 

~  GDP + nonclose + parasite type + 1 4 0.06 11.14 0 

~  mroute + parasite type + parasite measure + 1 5 0.1 11.24 0 

~  nonclose + parasite type + parasite measure + 1 5 0.07 11.26 0 

~  GDP + parasite measure + vector + 1 5 0 11.33 0 

~  life history + GDP + 1 3 0 11.54 0 

~  life history + GDP + life history:GDP + 1 3 0 11.54 0 

~  intermediate + GDP + 1 3 0 11.55 0 

~  life history + parasite measure + 1 4 0 11.61 0 

~  intermediate + parasite measure + 1 4 0 11.7 0 

~  GDP + parasite measure + 1 4 0 11.72 0 

~  Country human footprint + intermediate + nonclose + intermediate:nonclose + 1 5 0.04 11.73 0 

~  Country human footprint + GDP + mroute + parasite measure + 1 6 0.05 11.82 0 

~  GDP + parasite type + parasite measure + 1 5 0.04 11.92 0 

~  Country human footprint + intermediate + nonclose + parasite measure + 1 6 0.02 12.09 0 

~  Country human footprint + GDP + nonclose + parasite measure + 1 6 0.01 12.11 0 

~  Country human footprint + intermediate + GDP + nonclose + 1 5 0 12.14 0 

~  GDP + mroute + parasite measure + 1 5 0.02 12.56 0 

~  life history + Country human footprint + GDP + parasite measure + 1 6 0 12.56 0 

~  intermediate + nonclose + intermediate:nonclose + 1 4 0 12.58 0 

~  intermediate + nonclose + parasite measure + 1 5 0 12.61 0 

~  Country human footprint + intermediate + GDP + parasite measure + 1 6 0.01 12.62 0 

~  GDP + mroute + parasite type + mroute:parasite type + 1 5 0.1 12.74 0 

~  intermediate + GDP + nonclose + 1 4 0 12.85 0 

~  GDP + nonclose + parasite measure + 1 5 0 12.92 0 

~  mroute + parasite type + parasite measure + mroute:parasite type + 1 6 0.11 13.2 0 

~  taxonomic group + 1 4 0 13.2 0 
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~  GDP + nonclose + parasite type + nonclose:parasite type + 1 5 0.05 13.33 0 

~  GDP + mroute + parasite type + parasite measure + 1 6 0.06 13.54 0 

~  nonclose + parasite type + parasite measure + nonclose:parasite type + 1 6 0.06 13.54 0 

~  GDP + nonclose + parasite type + parasite measure + 1 6 0.04 13.55 0 

~  life history + GDP + parasite measure + 1 5 0 13.87 0 

~  life history + GDP + parasite measure + life history:GDP + 1 5 0 13.87 0 

~  intermediate + GDP + parasite measure + 1 5 0 13.96 0 

~  intermediate + nonclose + parasite measure + intermediate:nonclose + 1 6 0 14.77 0 

~  intermediate + GDP + nonclose + intermediate:nonclose + 1 5 0 14.83 0 

~  intermediate + GDP + nonclose + parasite measure + 1 6 0 14.91 0 

~  taxonomic group + parasite measure + 1 6 0 15.45 0 

MEMs fit to stress dataset (n = 73) k R2 ∆AICc wi 

~  taxonomic group + 1 4 0.55 0 0.78 

~  life history + GDP + 1 3 0.05 5.67 0.05 

~  GDP + 1 2 0.14 6.99 0.02 

~  life history + 1 2 0 7.3 0.02 

~  life history + Country human footprint + GDP + life history:Country human footprint + 1 5 0.07 7.38 0.02 

~  life history + Country human footprint + GDP + 1 4 0.06 7.48 0.02 

~  life history + GDP + life history:GDP + 1 4 0 7.94 0.01 

~ 1 1 0 8.12 0.01 

~  GDP + stress measure + 1 3 0.16 8.71 0.01 

~  Country human footprint + GDP + 1 3 0.16 8.84 0.01 

~  life history + Country human footprint + life history:Country human footprint + 1 4 0 9.42 0.01 

~  life history + Country human footprint + 1 3 0 9.67 0.01 

~  life history + Country human footprint + GDP + life history:GDP + 1 5 0 9.86 0.01 

~  stress measure + 1 2 0 10.38 0 

~  Country human footprint + 1 2 0 10.41 0 

~  Country human footprint + GDP + stress measure + 1 4 0.17 10.69 0 

~  GDP + stress measure + GDP:stress measure + 1 4 0.18 10.77 0 

~  Country human footprint + GDP + stress measure + Country human footprint:stress measure + 1 5 0.15 10.97 0 

~  Country human footprint + stress measure + 1 3 0 12.76 0 

~  Country human footprint + GDP + stress measure + GDP:stress measure + 1 5 0.17 13.09 0 
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~  Country human footprint + stress measure + Country human footprint:stress measure + 1 4 0 15.18 0 

Quantitative urban (n = 302) k R2 ∆AICc wi 

~  mean urbanization_1000*health metric 8 0.37 0 0.62 

~  mean urbanization_10000*health metric 8 0.35 1.51 0.29 

~  inter-site distance*health metric 8 0.29 4.05 0.08 

~  mean urbanization_1000 2 0.09 10.63 0 

~  difference in urbanization_10000*health metric 8 0.2 11.62 0 

~  change in urbanization_10000*health metric 8 0.2 11.99 0 

~  change in urbanization_1000*health metric 8 0.21 12.18 0 

~  difference in urbanization_1000*health metric 8 0.19 12.29 0 

~  mean urbanization_10000 2 0.07 12.46 0 

~  1 1 0 15.51 0 

~  mean urbanization_1000*taxonomic group 10 0.15 16.11 0 

~  difference in urbanization_1000*taxonomic group 10 0.14 17.29 0 

~  difference in urbanization_10000 2 0 17.33 0 

~  change in urbanization_10000 2 0 17.51 0 

~  difference in urbanization_1000 2 0 17.53 0 

~  inter-site distance 2 0 17.57 0 

~  change in urbanization_1000 2 0 17.58 0 

~  inter-site distance*taxonomic group 10 0.12 18.2 0 

~  mean urbanization_10000*taxonomic group 10 0.11 18.68 0 

~  difference in urbanization_10000*taxonomic group 10 0.1 19.52 0 

~  change in urbanization_10000*taxonomic group 10 0.03 22.9 0 

~  change in urbanization_1000*taxonomic group 10 0 24.67 0 

 

Notes: Explanation of predictor variables: 

Health metric methodology  

Health metric: aspect of health (body condition, parasitism, stress, or toxicants) that was compared between urban and non-urban 

wildlife populations.  

Condition: whether an animal’s body condition was measured using a qualitative (eg fat score), raw quantitative (eg body length), or 

adjusted quantitative (eg mass/length) metric.  
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Parasite measure: infection status as a binary variable, infection intensity, or parasite richness.  

Stress measure: whether animal stress was measured based on glucocorticoid levels (eg hair cortisol), leukocyte profiles (eg HL 

ratios), or other measures (eg oxidative damage, blood glucose).  

Toxicant type: whether a toxicant was a metal or non-metal (eg pesticide). 

 

Wildlife traits  

Taxonomic group: whether the wildlife species belonged to herpetofauna (amphibian or reptile), birds, fish, invertebrates, or 

mammals.  

Life history: whether most of a species’ life history is spent in an aquatic or terrestrial environment.  

 

Parasite traits 

Close: parasite transmitted through close contact as defined by the Global Mammal Parasite Database (GMPD; 0/1) 

Intermediate: parasite transmitted through trophic dynamics as defined by the GMPD (0/1);  

Nonclose: parasite transmitted through non-close contact as defined by the GMPD (0/1);  

Vector: parasite transmitted via a vector as defined by the GMPD (0/1);  

Mroute: parasite transmitted via a single GMPD transmission route or more than one route (0/1);  

Parasite type: microparasite (bacterium, fungus, protozoan, virus) or macroparasite (ectoparasite, helminth). 

 

Metrics of urbanization  

Country human footprint: average Global Human Footprint (GHF) score of the country in which a study was located.  

GDP: gross domestic product (GDP) of the country in which a study was located (log-transformed). 

Inter-site distance: the distance between the most and least urban sites in a study (quarter-root transformed). 

Change in urbanization: the difference in GHF scores between 1993 and 2009 within a study (with 1-km or 10-km buffer around 

each set of coordinates). 

Difference in urbanization: the difference in GHF scores between the most and least urban sites within a study (with 1-km or 10-km 

buffer around each set of coordinates). 

Mean urbanization: the average GHF score across the most and least urban sites within a study (with 1-km or 10-km buffer around 

each set of site coordinates). 
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Figure S2.1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) diagram showing the procedure for article exclusion from the meta-analysis 

based on titles, abstracts, and full text. Articles were included if they compared the body 

condition, stress, toxicant loads, or the prevalence, intensity of infection, or diversity of 

parasites or pathogens across urban and non-urban populations of the same wildlife 

species. 
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Figure S2.2. Change over time in the number of individual records for urban wildlife health by health metric (top row) and taxonomic 

group (bottom row, left to right: herpetofauna, birds, fish, invertebrates, and mammals).  
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Figure S2.3. Most competitive mixed-effect models for how the mean urbanization footprint per study and distance between the most 

rural and urban wildlife populations predict effect size. The filled polygons and colored lines show the means and 95% confidence 

interval for the interaction between health metric and inter-site distance. Circles show individual records scaled by their sample size, 

and the dashed line shows no relationship between health and urbanization. 



 

166 

 

 

Figure S2.4. Funnel plots illustrating the relationship between effect size and standard 

error (shaded circles) and the effect of correcting funnel plot asymmetry (white circles) 

with trim-and-fill analysis on the estimated true correlation between urbanization and 

health outcomes (solid line). The central dashed line shows where Zr = 0 (no effect), 

while the solid line shows the estimated mean effect size after adjusting for potential 

publication bias. pregtest is the P value for the association between effect size and standard 

error; pmissing is the P value for the null hypothesis that no records are missing due to 

publication bias. 
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Supplemental methods 

Calculation of scaled mass index (SMI) 

We calculated SMI [136] as one of three measures of flying fox body condition. SMI is 

calculated as 𝑀̂𝑖 = 𝑀𝑖 [
𝐿0

𝐿𝑖
]

𝑏𝑆𝑀𝐴

 where: 

𝑀̂𝑖 = scaled index for individual i,  

𝑀𝑖 = body mass of individual i  

𝐿𝑖 = linear body measurement of individual i (here, forearm length) 

𝐿0 = a chosen linear body measurement within the range of L 

𝑏𝑆𝑀𝐴 = a scaling exponent calculated from an SMA/RMA (standardized or reduced major 

axis) regression of mass on length measurements from the study population 

We used the median forearm length of all Adelaide flying foxes captured from 

2015-2018 as our value of 𝐿0 (n = 306; 4 of the 310 individuals captured during this time 

period were missing a forearm length measurement). This produced a 𝐿0 value of 161.05 

mm. 

Before calculating 𝑏𝑆𝑀𝐴, we first plotted body weight (g) by forearm length (mm) 

(again from all Adelaide flying foxes captured from 2015-2018) to identify potential 

outliers [136]. Three bats had noticeably shorter forearm lengths (<140 mm). In a boxplot 

of forearm length, these three points extended beyond the range of the lower whisker (Q1 

– 1.5 IQR). We therefore chose to exclude them when calculating 𝑏𝑆𝑀𝐴. We next 

conducted a likelihood ratio test using the sma function in the smatr package [275] to 

determine whether the slopes of an SMA regression of log-transformed body weight (g) 

on log-transformed forearm length (mm) were significantly different for males and 

females. We failed to reject the null hypothesis that the slopes were equal (likelihood 
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ratio statistic: 0.51, df = 1, P = 0.48), indicating that it was appropriate to use one 𝑏𝑆𝑀𝐴 

value for males and females. Bundling male and female measurements produced a 𝑏𝑆𝑀𝐴 

value of 4.65 (95% CI: 4.36 – 4.96).  

 

Calculation of foraging distance and area 

All movement and statistical analyses were performed in the R computing environment v 

3.4.3 [127]. The dataset was first trimmed so that only the first fix of each GPS burst was 

retained (bursts are useful for improving estimation of altitude, speed, and heading, 

which were not needed in this study). We calculated the number of hours each bat was 

tracked per night and subsequently excluded incomplete nights (< 8 hours of data). We 

calculated the nightly distance flown by each bat by summing the great circle distance 

between successive GPS points using the spDists function in the sp package [128]. 

Nightly roundtrip distance (from the roost to foraging sites and back) flown by each bat 

was calculated by summing the great circle distance If the first or last GPS point of a 

night’s track was >100m from the roost’s center (e.g. due to battery depletion or 

movement outside the GPS collection window), the distance between the roost and the 

starting or ending point was added to the roundtrip distance for that night. If both the last 

GPS point of one night and the first point of the next night were >100m from the roost, 

this was a potential indication that the bat did not return to the roost during the day. 

Following examination of the GPS tracks in Google Earth, we found that on four 

occasions, bats did not to return to the roost in the morning and instead spent the day 

elsewhere; after a second night, they returned to the roost. Three of these days away from 

the roost occurred on the same date, which was also the first day following logger 
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deployment on those bats. We therefore chose to exclude non–round-trip nights from 

further calculations because we believe this represented aberrant behavior. The maximum 

foraging distance was calculated as the straight-line distance from the roost to the 

furthest foraging site identified by our automated procedure [133]. Summary statistics 

(median roundtrip distance, maximum roundtrip distance) were calculated for each bat.  

 We estimated the area traversed by tracked GHFF using minimum convex 

polygons (MCPs). The foraging and core areas for each bat were calculated respectively 

as the areas of 95% and 50% MCPs constructed with the adehabitatHR package [129]. 

We restricted calculation of foraging and core areas to bats with at least three round-trips, 

conservatively assuming that small sample sizes would not accurately estimate area. We 

also constructed seasonal 95% MCPs (i.e. one winter MCP for all bats tracked in Aug. 

2016 and Aug. 2017, one summer MCP for all bats tracked in Feb. 2017 and Feb. 2018) 

for use in habitat selection analyses.
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Table S3.1. Summary of distance and area metrics calculated for each bat. Shaded rows indicate capture in winter (August) and white 

rows indicate capture in summer (February). Nights of data were counted when at least 8 hours of data were collected and the bat 

made a round-trip from the roost and back.  

 

Bat 

ID 

Capture 

date 

Sex Est. 

age 

(yr) 

Weight 

(g) 

Forearm 

length 

(mm) 

WFR BCS SMI Nights 

of data 

Median 

nightly 

roundtrip 

distance 

(km) 

Max. 

nightly 

roundtrip 

distance 

(km) 

Max. 

foraging 

distance 

(km) 

Avg. 

nightly 

number 

foraging 

sites 

50% 

MCP 

(km2) 

95% 

MCP 

(km2) 

106 8/8/2016 F <2 673 160 4.21 3 693.77 7 20.51 115.06 40.47 3.0 113.53 277.12 

110 8/8/2016 M <2 657 160 4.11 3.5 687.2 6 74.70 109.10 40.46 2.8 183.93 557.53 

115 8/9/2016 M 6 883 163 5.42 4 834.97 8 15.58 20.63 6.31 2.1 2.03 6.92 

121 8/9/2016 M 4-5 909 166 5.48 4 789.7 10 16.18 80.42 25.84 2.3 94.96 171.72 

132 8/9/2016 M 6-8 1008 173 5.83 4 720.83 10 27.12 29.04 9.76 1.9 5.82 17.64 

199 2/21/2017 F 4 716 161 4.45 2.5 727.47 5 47.00 55.33 15.78 4.2 12.12 33.89 

200 2/21/2017 F 3 688 169 4.07 3 557.6 10 13.35 108.38 21.38 4.7 37.14 501.98 

201 2/21/2017 M 3-4 768 164 4.68 3 705.87 9 48.77 60.52 15.77 3.9 78.73 244.51 

203 2/22/2017 M 4 808 167 4.84 3 680.74 7 23.33 42.49 10.14 4.7 3.56 24.20 

204 2/22/2017 M 3-4 744 164 4.53 2.5 678.03 6 30.92 40.05 10.30 5.2 18.49 41.60 

205 2/22/2017 F 4-5 761 168 4.53 2.5 618.46 6 54.11 87.34 30.66 4.0 74.94 229.87 

206* 2/22/2017 F 3-4 718 161 4.46 2.5 716.96 2 34.24 37.80 11.45 3.5 -- -- 

207 2/22/2017 F 6-7 743 170 4.37 2.5 585.84 9 17.17 87.59 34.75 3.1 41.53 238.49 

208 2/22/2017 F 3 690 172 4.01 2.5 515.18 6 30.75 143.30 17.15 4.5 85.38 770.30 

209 8/11/2017 F 3-4 701 158 4.44 3.5 777.51 3 52.68 83.26 35.85 4.3 53.16 131.20 

210 8/11/2017 M 3-4 670 158 4.24 3 732.26 6 50.48 66.43 26.10 4.0 41.80 135.71 

211* 8/11/2017 F 5-6 640 151 4.24 3 863.43 2 28.61 37.71 15.10 2.5 -- -- 

215 8/11/2017 F 4 668 162 4.12 3 649.99 3 18.29 59.39 16.77 6.3 13.38 102.91 

217 8/11/2017 M 3-4 666 159 4.19 3.5 698.65 3 21.50 89.42 34.65 6.0 107.77 176.62 

218 8/12/2017 M 3-4 718 161 4.46 3.5 729.51 4 70.93 89.63 32.28 4.5 35.50 210.54 

226 8/12/2017 M 6-8 696 157 4.43 3 783.45 6 67.47 102.81 21.98 5.2 158.52 428.76 
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264 2/11/2018 M 3-4 734 167 4.40 3.5 620.12 5 35.04 50.79 14.33 2.6 44.15 71.08 

265 2/11/2018 M 4 791 161 4.91 3 794.43 7 28.74 80.25 31.46 4.7 35.71 221.14 

269* 2/11/2018 F 5 732 160 4.58 3.5 761.2 0 -- -- -- -- -- -- 

277* 2/11/2018 M 6 793 161 4.93 4 796.44 2 19.61 29.35 7.33 4.0 -- -- 

287 2/11/2018 F 5 772 168 4.60 4 632.62 5 13.44 16.50 3.69 3.2 1.45 5.36 

289 2/11/2018 M 5 701 170 4.12 2.5 552.72 10 36.37 88.89 31.35 5.2 50.33 526.66 

291 2/11/2018 M 7 796 168 4.74 3.5 650.49 11 16.34 110.51 31.84 2.1 45.60 800.91 

298 2/13/2018 M 5 750 164 4.57 3.5 689.33 6 42.55 179.35 25.13 3.5 364.04 1596.60 

302 2/13/2018 M 5 762 168 4.54 3 626.16 7 39.58 76.25 17.49 4.3 39.51 361.65 

306 2/13/2018 F 8+ 700 163 4.29 3 661.92 4 58.06 59.90 23.00 3.3 64.85 90.38 

310* 2/21/2018 F NA 800 168 4.62 4 657.38 1 45.70 45.70 15.48 6.0 -- -- 

 

*Core area and foraging area were not calculated for bats with less than 3 nights of data. 
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Table S3.2. Summary of model outputs for nightly round-trip distance, nightly number of foraging sites, foraging area, and core area. 

Three candidate models (using separate measures of body condition) were created for each response variable and ranked by ΔAICc. P 

values ≤ 0.05 are in bold. BCS: body condition score; WFR: weight to forearm ratio; SMI: scaled mass index; maxTemp: maximum 

daily temperature; hours: nightly hours of tracking data collected; nights: number of nights that a bat was tracked 

 

Response 

variable  

Model ΔAICc Term Estimate SE t or z P 

Nightly 

roundtrip 

distance  

(n = 185) 

~ age + sex + BCS + 

season + maxTemp 

+ hours 

0 age -0.04 0.05 -0.84 0.40 

sex(male) 0.31 0.16 2.01 0.04 

BCS -0.57 0.18 -3.09 0.002 

season(winter) 0.22 0.30 0.72 0.47 

maxTemp -0.02 0.02 -0.93 0.32 

hours -0.07 0.08 -0.85 0.40 

~ age + sex + WFR 

+ season + 

maxTemp + hours 

2.91 age -0.001 0.06 -0.02 0.98 

sex(male) 0.35 0.17 2.02 0.04 

WFR -0.55 0.22 -2.47 0.01 

season(winter) 0.12 0.30 0.40 0.69 

maxTemp -0.01 0.02 -0.63 0.53 

hours -0.07 0.08 -0.77 0.44 

~ age + sex + SMI + 

season + maxTemp 

+ hours 

9.38 age -0.07 0.06 -1.19 0.23 

sex(male) 0.18 0.18 1.00 0.32 

SMI -0.0004 0.001 -0.29 0.77 

season(winter) 0.03 0.33 0.08 0.93 

maxTemp -0.01 0.02 -0.69 0.49 

hours -0.07 0.09 -0.78 0.43 
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Nightly 

number of 

foraging sites 

(n = 185) 

~ age + sex + BCS + 

season + maxTemp 

+ hours 

0 age -0.06 0.03 -2.07 0.04 

sex(male) 0.11 0.09 1.19 0.23 

BCS -0.38 0.11 -3.34 0.0008 

season(winter) -0.08 0.18 -0.46 0.65 

maxTemp -0.01 0.01 -0.46 0.65 

hours 0.03 0.07 0.37 0.71 

~ age + sex + WFR 

+ season + 

maxTemp + hours 

2.22 age -0.03 0.04 -0.95 0.34 

sex(male) 0.14 0.11 1.34 0.18 

WFR -0.40 0.14 -2.88 0.004 

season(winter) -0.18 0.18 -1.00 0.32 

maxTemp -0.004 0.01 -0.33 0.74 

hours 0.04 0.07 0.55 0.58 

~ age + sex + SMI + 

season + maxTemp 

+ hours 

11.07 age -0.08 0.04 -2.08 0.04 

sex(male) 0.03 0.12 0.23 0.82 

SMI -0.0004 0.0008 -0.46 0.65 

season(winter) -0.20 0.20 -0.97 0.33 

maxTemp -0.005 0.01 -0.39 0.70 

hours 0.02 0.07 0.28 0.78 

Foraging 

area  

(n = 27) 

~ age + sex + WFR 

+ season + nights 

0 age 0.01 0.16 0.04 0.97 

sex(male) 0.93 0.51 1.84 0.08 

WFR -1.98 0.66 -2.98 0.007 

season(winter) -0.31 0.49 -0.63 0.53 

nights 0.17 0.11 1.50 0.15 

~ age + sex + SMI + 

season + nights 

6.68 age -0.04 0.15 -0.26 0.80 

sex(male) 0.84 0.52 1.64 0.12 

SMI -0.006 0.004 -1.55 0.14 

season(winter) -0.05 0.56 -0.08 0.93 

nights 0.03 0.11 0.26 0.80 
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~ age + sex + BCS + 

season + nights 

8.52 age -0.12 0.15 -0.79 0.44 

sex(male) 0.68 0.50 1.35 0.19 

BCS -0.41 0.55 -0.75 0.46 

season(winter) -0.52 0.54 -0.97 0.35 

nights 0.07 0.11 0.62 0.54 

Core area 

(n = 27) 

~ age + sex + WFR 

+ season + nights 

0 age 0.01 0.17 0.08 0.94 

sex(male) 0.74 0.53 1.40 0.18 

WFR -1.15 0.70 -1.65 0.11 

season(winter) 0.17 0.52 0.33 0.74 

nights 0.03 0.12 0.25 0.80 

~ age + sex + SMI + 

season + nights 

2.99 age -0.04 0.15 -0.26 0.80 

sex(male) 0.58 0.52 1.13 0.27 

SMI -0.002 0.004 -0.42 0.68 

season(winter) 0.15 0.56 0.27 0.79 

nights -0.07 0.11 -0.63 0.53 

~ age + sex + BCS + 

season + nights 

3.07 age -0.06 0.15 -0.39 0.70 

sex(male) 0.57 0.50 1.15 0.26 

BCS -0.16 0.54 -0.29 0.77 

season(winter) 0.04 0.53 0.07 0.95 

nights -0.06 0.10 -0.60 0.56 
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Table S3.3. Results of two logistic regressions to model the probability of a site being 

used or available as a function of the land use at the site and bat age, sex, and body 

condition. Values are reported for β (beta) coefficient, SE (standard error), OR (odds 

ratio) and 95% CI (Wald confidence interval). 95% CIs that do not cross 1 are considered 

significant and marked in bold. 

 

Summer 

Variable  β SE OR 95% CI 

Land use Natural Reference -- -- -- 

Agricultural and 

plantation production 

0.44 0.87 1.56 0.28 – 8.58 

Non-residential 

intensive use 

3.05 0.73 21.12 5.10 – 87.52 

Residential and farm 

infrastructure 

2.78 0.72 16.13 3.92 – 66.39 

Water 1.29 1.01 3.62 0.50 – 26.23 

Age  -0.02 0.07 0.98 0.85 – 1.13 

Sex Female Reference -- -- -- 

Male -0.04 0.23 0.96 0.61 – 1.50 

WFR  0.23 0.41 1.25 0.56 – 2.82 

 

Winter 

Variable  β SE OR 95% CI 

Land use Natural Reference -- -- -- 

Agricultural and 

plantation production 

-0.04 0.92 0.97 0.16 – 5.89 

Non-residential 

intensive use 

2.51 0.75 12.29 2.83 – 53.39 

Residential and farm 

infrastructure 

1.98 0.74 7.22 1.70 – 30.61 

Water 1.73 1.03 5.64 0.75 – 42.68 

Age  -0.01 0.09 0.99 0.83 – 1.18 

Sex Female Reference -- -- -- 

Male 0.06 0.34 1.06 0.55 – 2.06 

WFR  -0.19 0.27 0.83 0.49 – 1.39 
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Table S3.4. Plant species identified by ground-truthing suspected grey-headed flying fox 

foraging sites in Adelaide, South Australia, 2016-2018. Only plants identified to species 

level are included. Gray shading indicates that a species is considered a significant food 

plant for grey-headed flying foxes [144]. 

 

Family Plant species Common name Native to 

Australia 

Native to 

South 

Australia 

Fabaceae Acacia pendula Weeping myall Yes Yes 

Loranthaceae Amyema miquelii Box mistletoe Yes Yes 

Myrtaceae 

Corymbia citriodora Lemon-scented gum Yes No 

C. maculata Spotted gum Yes No 

Eucalyptus aff. 

eremophila 

Sand mallee Yes No 

E. aff. robusta Swamp mahogany Yes No 

E. camaldulensis Red river gum Yes Yes 

E. fasciculosa Pink gum Yes Yes 

E. globulus Tasmanian bluegum Yes No 

E. leucoxylon Blue gum Yes Yes 

E. megacornuta Warty yate Yes No 

E. microcarpa Grey box Yes Yes 

E. occidentalis Flat topped yate Yes No 

E. sideroxylon Mugga ironbark Yes No 

E. stricklandii Strickland’s gum Yes No 

E. viminalis Ribbon gum Yes Yes 

Moraceae 

Ficus carica Common fig No No 

F. macrophylla Moreton Bay fig Yes No 

F. platypoda Small-leaved Moreton 

Bay fig 

Yes No 

Oleaceae Olea europaea Olive No No 

Arecaceae Phoenix canariensis Canary Island date 

palm 

No No 
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Table S3.5. Results of linear models to explore predictors of flying fox body condition. 

WFR was modeled with a gamma distribution (log link) and SMI was modeled with a 

normal distribution. Due to the limited range of values, BCS was binned into two groups 

(≤3 and >3) and modeled with a binary distribution. P values ≤ 0.05 are in bold. 

Model Term Estimate SE t P 

WFR ~ season + sex + age season(winter) -0.02 0.03 0.55 0.585 

sex(male) 0.07 0.03 2.45 0.02 

age 0.02 0.01 2.60 0.02 

BCS ~ season + sex + age season(winter) 1.11 0.83 1.34 0.18 

sex(male) 1.33 0.84 1.59 0.11 

age 0.18 0.28 0.66 0.51 

SMI ~ season + sex + age season(winter) 86.39 27.31 3.16 0.004 

sex(male) 21.08 26.84 0.79 0.44 

age 12.07 8.94 1.35 0.19 

WFR: weight to forearm ratio. BCS: body condition score. SMI: scaled mass index 
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Figure S3.1. Logger attachment process. A) Glue is applied to the back of the bat where 

fur has been clipped. B) Logger in place on the bat following attachment. 

 

  

A B 
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Figure S3.2. Boxplot showing the variation in nightly roundtrip distance (distance from 

the roost to all foraging sites and back in km) within and between bats. The median 

roundtrip distance was 31.93 km (1st quartile: 16.98; 3rd quartile: 52.78).  
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Figure S3.3. Path flown by bat 298 the night of 2/14/2018, traveling in a clockwise 

direction. The total distance was 179.35km. The location of the roost is marked with a red 

triangle. 
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Figure S3.4. Examples of repeated visits to foraging sites over several nights (Bat 132, 

10 nights, pink) and visits to core foraging sites with occasional long-distance excursions 

(Bat 302, 7 nights, yellow). The location of the roost is indicated by a red triangle. 
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APPENDIX C 

CHAPTER 4 SUPPLEMENTAL INFORMATION 
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Supplemental methods 

Fur sample digestion and analysis by ICP-MS 

At Baylor University, fur samples were analyzed for the presence of ten metals 

(cadmium, chromium, cobalt, copper, lead, nickel, selenium, strontium, tin, vanadium) 

and two metalloids (antimony and arsenic; hereafter referred to as metals). 

Fur digestions were performed in batches of 25 to 30 samples. Blanks were 

included for each batch. Human hair standard (Sigma-Aldrich, St. Louis, MO) was used 

as a standard reference material (SRM); one SRM sample was included for each bat 

capture site. To digest a fur sample, approximately 0.05g of fur was weighed to the 

nearest 0.001g and transferred to a borosilicate glass tube (VWR International, Radnor, 

PA). Next, 0.25 mL of genpure water and 2.5 mL of 1:1 HNO3 (Fisher Scientific, 

Waltham, MA) were added. Samples in a batch were heated for 15 minutes at 95°C ± 

5°C, then left to cool. Next, 1mL of concentrated HNO3 was added to each sample, and 

the samples were heated for 30 minutes at the same temperature. After cooling, 0.25mL 

of genpure water and 0.75mL of 30% H2O2 (Fisher Scientific) was added to each sample, 

and the samples was heated for 60 mins at the same temperature. Samples were then 

filtered into acid-rinsed Erlenmeyer flasks (VWR International). Before filtration, filters 

were dampened with genpure water. Samples weighing close to 0.05g were filtered into 

25mL flasks, samples below the desired weight were filtered into 10mL flasks, and 

blanks and SRMs were filtered into 20mL flasks. After pouring each sample, each tube 

was rinsed with genpure water and the contents were poured through the filter. After the 

filters drained, a small amount of genpure water was applied around the filter to filter any 
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sample left on the sides. Samples were then diluted. Samples in the 25mL flasks were 

diluted to 25mL and the samples in 10mL flasks were diluted to 10mL. 

Metal concentrations in fur were determined using an Agilent 7900 ICP-MS. 

Metal standards were ordered from Sigma-Aldrich. Standards were mixed and diluted to 

10ppm. The ICP-MS metal mix internal standard (10ppm standard, Agilent 

Technologies, Santa Clara, CA). A concentration curve was generated using calibration 

standards ranging in concentrations from 0.01ppb to 1000ppb. Calibrations were only 

accepted if all the desired metal responses had a linear distribution with an R2-value of 

greater than 0.995. Calibration blanks were included. The standard at the midpoint of the 

calibration curve was used as a Continuing Calibration Check (CCC) for quality control. 

The CCC was analyzed every 20 samples to ensure instrument stability. Internal 

standards were used to monitor percent recovery. If responses fell below 85% or rose 

above 120% recovery, standards and outlier samples were rerun. Fur weights were used 

in combination with the dilution volume to determine a dilution factor (dilution factor = 

dilution volume / weight) for each sample.  
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Table S4.1. Sample size and minimum, median, and maximum concentrations of metals measured in flying fox fur, separated by 

species. Concentrations are reported to a maximum of three significant figures. 

Sample Analyte Unit Black flying fox Grey-headed flying fox Spectacled flying fox 

n min median max n min median max n min median max 

Fur antimony ng/g 162 12.1 90.4 516 277 14.1 83.0 1290 45 19.3 49.3 189 

arsenic ng/g 162 20.7 190 1780 277 28.4 212 3460 45 32.1 93.7 596 

cadmium ng/g 162 5.27 38.6 321 277 3.10 31.2 510 45 15.4 84.0 3300 

chromium ng/g 162 269 1450 8320 277 261 1080 16700 45 530 885 8860 

cobalt ng/g 162 3.60 202 35300 277 7.84 74.3 1170 45 55.6 387 3420 

copper ng/g 162 2030 9000 46900 277 2620 9960 111000 45 2660 6130 22000 

lead ng/g 162 172 1260 9960 277 179 1640 28900 45 228 2260 32300 

(total) 

mercury 

ng/g 274 1.38 18.9 416 314 5.67 25.1 119 43 3.91 36.8 262 

nickel ng/g 162 120 718 19700 277 125 440 247000 45 421 658 1840 

selenium1 ng/g 162 46.5 450 1880 275 46.3 484 3380 45 94.5 610 1540 

strontium ng/g 162 2650 17900 118000 277 743 3510 103000 45 1250 3390 8960 

tin ng/g 162 1270 5170 27600 277 1150 5420 53900 45 2180 4020 12600 

vanadium ng/g 162 46.0 460 3860 277 16.9 154 1570 45 28.6 84.7 210 
1Two additional selenium concentrations were below detection level. 
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Table S4.2. Model results for GLMM (Poisson distribution, log link) of ectoparasite 

burden as a function of log-transformed concentrations of 13 metals measured in flying 

fox fur (n = 157; bats from Queensland sites only). Capture site was included as a random 

effect. WFR: weight to forearm ratio. Black flying fox is the reference level for species 

and adult is the reference level for age class. 

 

 

 

  

Model term Estimate SE z p 

antimony -0.12 0.20 -0.56 0.57 

arsenic 0.049 0.16 0.30 0.77 

cadmium -0.14 0.19 -0.77 0.44 

chromium 0.27 0.14 1.95 0.05 

cobalt -0.21 0.096 -2.15 0.03 

copper -0.38 0.27 -1.42 0.16 

lead 0.042 0.19 0.23 0.82 

(total) mercury -0.23 0.11 -2.19 0.03 

nickel 0.49 0.12 4.13 3.7e-5 

selenium 0.73 0.21 3.42 6.2e-4 

strontium -0.44 0.23 -1.91 0.06 

tin -0.077 0.30 -0.26 0.80 

vanadium 0.023 0.25 0.093 0.93 

sex(male) -0.11 0.21 -0.52 0.60 

WFR -0.21 0.22 -0.96 0.34 

species(GHFF) 0.32 0.67 0.48 0.63 

species(SFF) 1.06 0.77 1.38 0.17 

age class 

(juvenile/subadult) 

-0.13 0.38 -0.35 0.73 
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Table S4.3. Model results for GLM (binomial distribution, logit link) of blood parasite 

infection as a function of log-transformed concentrations of 13 metals measured in fur (n 

= 79 from Tolga, Tamworth, and Woolgoolga). Grey-headed flying fox is the reference 

level for species. 

 

 

 

 

Model term Estimate SE z p 

antimony 0.90 0.75 1.20 0.23 

arsenic -0.90 0.59 -1.52 0.13 

cadmium 0.29 0.61 0.47 0.64 

chromium 0.57 1.07 0.54 0.59 

cobalt -0.30 0.43 -0.69 0.49 

copper -1.28 1.18 -1.09 0.28 

lead -0.96 0.58 -1.64 0.10 

total mercury 0.53 0.52 1.03 0.30 

nickel -1.04 1.51 -0.69 0.49 

selenium 0.81 0.98 0.83 0.41 

strontium 2.47 1.32 1.87 0.06 

tin 0.97 2.07 0.47 0.64 

vanadium 0.53 1.03 0.51 0.61 

sex(male) 0.34 0.76 0.45 0.65 

WFR -2.92 1.21 -2.42 0.02 

species(SFF) -0.41 1.23 -0.34 0.74 

age class 

(juvenile/ 

subadult) 

-1.29 1.68 -0.77 0.44 
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Figure S4.1. Plots showing significant species differences in log-transformed concentrations of metals measured in fur. A GLMM 

(gamma distribution, log link) was used for each metal, with species as a fixed effect and site as a random effect. Predicted means and 

95% confidence intervals are depicted by an orange dot and black bars, while jittered raw data are plotted as gray points. Species 

pairwise comparisons were performed with a Holm adjustment for multiple comparisons. Plots are not displayed for those metals with 

no significant species differences (antimony, arsenic, copper, lead, mercury, nickel, tin).
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Supplemental methods 

Details of model parameterization 

Demography and movement: The density-independent birth rate, b0, was estimated by 

taking the maximum annual number of offspring raised by a flying fox [36], and equating 

this to the expected number of births in one year, 𝑒𝑏0∗(1 𝑦𝑒𝑎𝑟). The mortality rate, m, was 

obtained from [276], corresponding to a 10-year lifespan. The density-dependent 

component of the birth rate, b1, was fixed so that the disease-free carrying capacity in a 

toxicant-free landscape is 50,000, i.e. b1 = (b0 – m)/50000. Some flying foxes move 

between roosts frequently (every 1-2 weeks) while others can spend months at a site 

[110]; here, the baseline dispersal rate, σ, was set assuming that the probability of 

remaining in the same location for one year, 𝑒−𝜎∗(1 𝑦𝑒𝑎𝑟), = 0.1. The recovery rate, γ, was 

estimated as the reciprocal of an expected infection duration of 0.027 years (i.e. 10 days), 

based on a mid-range estimate of duration of viremia [254]. 
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Table S5.1. Ranges for parameters varied in the Latin hypercube sampling procedure 

Parameter Definition Range 

βT Transmission rate in toxic habitat  βP ± 0.75*βP 

μ Disease-induced mortality 0 – 1 

cσ Toxicant-imposed movement cost 0.05 – 0.95 

cm Toxicant-imposed survival cost 0.05 – 0.95 

α Net effect on mortality of being infected while 

in toxic habitat 

0 – 19.9 
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Figure S5.1. Results of sensitivity analyses. Left column: Predicted equilibrium (50 

years) infection prevalence with varying parameter values (see Table S5.1) using Latin 

Hypercube Sampling to sample the parameter space. Right column: Partial Rank 

Correlation Coefficient (PRCC) sensitivity analysis. PRCC values indicate the strength 

and direction of association between model parameters and infection prevalence. Results 

are provided for three values of landscape contamination (top row: f = 0.1, middle row: f 

= 0.5, bottom row: f = 0.9). 


