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Abstract

Genetic algorithms, and other evolutionary mathematical algorithms, are important tools

for finding approximate solutions to complex problems. These are in the category of NP-Hard

problems, which can not be solved by direct searches. In this dissertation genetic algorithms

are used to find (optimal, perhaps) solutions in different areas of science. These problems

are explained in the introduction and in the subsequent chapters. Detailed use of the genetic

algorithms is presented in several chapters, from real-time system scheduling analysis in

sensitivity analysis, to nuclear magnetic spectral assignment, to a classic NP-Hard problem,

the maximally spanning backbone k-tree problem.

The use of genetic algorithms is demonstrated to produce better results than earlier works

in these fields. For example, in real-time systems the processor utilization is higher, in NMR

an automated assignment package is presented in both large and in small proteins, and in

the last project, to the maximally spanning k-tree problem, more and better solutions are

found.

The presentation in this dissertation doesn’t cover all of the work completed during the

course of Ph.D. completion. However, additional work is described in an appendix.
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Chapter 1

Introduction

Genetic algorithms are used in three areas of science and their utility in solving NP-hard

problems in these areas is demonstrated. The problems are real-time systems to find schedule

changes, computational chemistry in NMR in spectral assignment of experimental measure-

ments, and in bio-informatics to find better RNA structures.

Genetic algorithms use a population of chromosomes and evolve them iteratively using a

chromosome crossover and mutation at each iteration, an objective function, and a constraint

function. The model is based on the evolution of life. As the population improves it produces

good individuals which achieve their ideal objective. The flow of a genetic algorithm is

described in 1.1. Mathematically, this model will produce ideal solutions to difficult problems

through their objective function, with few iterations. Exhaustive searches for these problems

are impossible due to the number of calculations. This objective function models is used in a

minimization or maximization procedure of the individual’s fitness. The constraint function is

used for limiting the different possible solutions to the ideal ones. Violations of the constraint

function are however important in the search of the entire space of possible solutions, which

could be disconnected. These genetic algorithms have found very good results in many NP-

Hard problems. In these three types of genetic algorithm problems the search spaces are

quite large, being on the order of 1014 to 10400.

1.1 Genetic sensitivity analysis of real-time systems

The first problem, sensitivity analysis and mode transitions, which are analyzed with genetic

algorithms, is in Chapter 2. The goal of sensitivity analysis is to make an unschedulable task
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start Calculate individual 
fitnessesof population

Are 
stopping 
criteria 
met?

finish

yes

no

selection process
Crossover/mutation, generate 

new population

output solution

Figure 1.1: This shows the flow of a generic genetic algorithm.

set schedulable, or a mode transition task set schedulable. This is accomplished by changing

task set parameters. The definitions of the task model and mode transitions are in Chapter

2. As explained and shown in this dissertation chapter, using a genetic algorithm has the

advantage over earlier works in that the task set is treated as whole, by changing parameters

in a global fashion and not task by task.

This problem is perhaps the most non-linear of the three problems in that it has to solve

the time demand analysis equations in its objective function. This is both a non-linear and

discontinuous function.

1.2 Sparse labeling of proteins

In NMR, one of the primary goals is structural determination, finding populations of confor-

mations, ligand binding site determination, and determining the ligand epitope. Additionally,
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more information can be found from the simulation of the NMR experimental information

produced from a molecular model either using a crystal structure or a molecular dynamics

trajectory study.

Software packages are presented and demonstrated in NMR sparse labeling in Chapter

3. Sparse labeling and sparse assignment means that a smaller set of tagged residues is used

instead of a full set of residues in the protein. This is useful as it is less expensive for the

construction of the experiment and has less computations in identifying the experimentally

measured spectral intensities in the protein model and related proteins. Assignment, i.e.

identifying which intensity is from which residue, is important in extracting useful informa-

tion about the protein. An assignment, or partial assignment with reliability, can be used

with different experiments to find the physical features of the protein mentioned in the pre-

vious paragraph. The disadvantage of an initial attempt, the AssignSLP package, is that a

1/r6 approximation is used to find the predicted noe’s; this approximation is very bad for

large proteins. However, as demonstrations of the genetic algorithm software AssignSLP, we

present the assignment of five small proteins and a larger protein HtpG. An improvement to

the AssignSLP software is presented, which uses an Amber molecular dynamics trajectory

to make better predictions from the molecular model including conformational sampling; the

advantage of using a trajectory in AssignSLPMD (molecular dynamics) is that the genetic

algorithm can make a reliable (partial assignment of most of the residues) assignment in

much larger proteins, and for smaller proteins the assignment should be more trustworthy

with this software. This software is used and demonstrated in providing a reliable assignment

of a larger protein rST6Gal1.

NOE measurements, RDC measurements, and chemical shifts of the protons of dif-

ferent residue types are used; this is explained in the chapter. Software has been made

and used in calculating spectral intensities (i.e strips) from Amber trajectories. This package

MD2NOEProtein is not presented in this dissertation, as it does not use a genetic algorithm.

The package AssignSLPMD uses a genetic algorithm with the inputs of predicted NOE’s,

3



rdc’s, and chemical shifts from the MD2NOEProtein package. There is also a statistical part

in AssignSLPMD to give the reliability of the individual assignments of the measurements

in the experimental spectrum.

The software has evolved to the point that all predicted observables use Amber trajec-

tories, and molecular modeling. This is also a lengthy calculation in the context of the well

known molecular dynamics Amber software. It can be used to simulate the motion of proteins

over a microsecond range. The use of trajectory information from the modeling is important

for an proper assignment on application of the genetic algorithm in AssignSLPMD to larger

proteins.

The MD2NOEProtein and earlier MD2NOE packages do not use a genetic algorithm;

these packages are referenced in the list of additional software in Appendix 6.

The characteristics of the objective function and constraints are different in these assign-

ment genetic algorithms. The genetic algorithm is similar to the traveling salesman problem

in that same permutation and crossover functions are used, but the NOE and RDC part of

the objective function is very non-linear.

1.3 Maximally Spanning k-tree problem and RNA structurs

The third problem approximates the maximally spanning k-tree backbone problem. This is

described in Chapter 4. The genetic algorithm is used to generalize and improve known results

of approximate solutions from earlier studies using dynamic programming. The solutions are

useful in a variety of contexts, including RNA structure determination and in a variety of

other applications. An advantage in using the genetic algorithm presented in this chapter is

that the genetic algorithm provides more optimal solutions than the unique solution from a

dynamic program.

This problem uses a genetic algorithm which has an objective function that does not

evolve the population infinitesimally small steps but rather in large discrete jumps. This is

4



unusual for a genetic algorithm, but the nature of the problem requires it as the chromosomes

evolve in a global sense, and not gene by gene. This difference is due to the structure of the

individual chromosomes in the population and how the k-trees are calculated.

1.4 Summary

These chapters demonstrate how genetic algorithms can be used in improving the approxi-

mate solutions of NP-hard problems in these three areas of science.

Interestingly, the different problems have different features. These search spaces can be

quite large, depending on the inputs to the problem in the genetic sensitivity problem, which

can be of the order of 10400 to 101000. The second problem in the sparse labeling is also non-

linear. In the third problem, maximally spanning k-tree, the evolution of the population is

jumps and not by infinitesimal steps. This is unusual for a genetic algorithm. The unifying

theme of these three works is the use of different genetic algorithms.
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Chapter 2

Genetic Algorithms in Real-Time Systems: Sensitivity Analysis and Mode

Transitions

Key words: real-time scheduling, sensitivity analysis, mode transitions, fixed priority

scheduling, genetic algorithms.1

2.1 Introduction to Sensitivity Analysis

In real-time systems, temporal correctness is as important as logical correctness. In such

systems, jobs have designated deadlines – if a job does not complete execution at or before

its deadline, it is considered a system failure. These systems are used in applications where

violating timing constraints could lead to catastrophic outcomes, such as airplane autopilot

systems or anti-lock brake systems. In these systems, analysis must be performed before the

system is implemented to be sure that jobs will meet their deadlines. The question arises:

What should we do if the analysis finds that jobs will miss their deadlines? This is where

sensitivity analysis is applied.

In sensitivity analysis, we examine how to change the parameters of a system that will

miss deadlines to create a new system that will meet all deadlines. Ideally, we would like to

change the parameters a little as possible, so that the final system has parameters as close

to the original system as possible while meeting all deadlines.

In real-time systems, jobs are commonly executed repeatedly at periodic intervals. These

repeated jobs, called tasks, are typically how we describe a real-time system. Utilization

1The work in this chapter is largely based on the papers, G. Chalmers, S.H. Funk, Genetic
Algorithms in Real-Time Systems, submitted to Genetic Programming and Evolvable Machines,
2019; and G. Chalmers, S.H. Funk, Adjusting Real-Time Mode Transitions via Genetic Algorithms,
2017 16th IEEE International Conference on Machine Learning and Applications.
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is defined as the resource usage over extended periods. One common scheduling paradigm,

called fixed-priority scheduling, assigns priorities to tasks – all jobs generated by a task are

executed at that task’s priority level. This work applies genetic algorithms to the problem of

sensitivity analysis of fixed-priority task sets executing on a single processor. Unlike previous

results on sensitivity analysis, which determine schedulability by changing task set parame-

ters, such as execution times and periods, one at a time [3,4,10,11,13,28,59,70,88,90–92,92,

93], this work considers the parameters of all tasks as a whole by considering all the tasks in

the task set simultaneously in a genetic algorithm. Earlier studies were not concerned with

minimizing the changes in parameters while performing sensitivity analysis. As a result, the

modified tasks can be significantly different than the original ones. We believe that creating

new task sets with parameters similar to their original values could be important for a less

flexible real-time system.

The earliest studies of sensitivity analysis changed the execution times to achieve schedu-

lability, e.g. [13,90]. Our work changes the task periods. Changing task deadlines is the same

as changing execution times for real-valued periods=deadlines [13]. Genetic algorithms have

been used in real-time scheduling problems in the past [1, 5, 44, 56, 61, 65, 71, 72, 94]. We

compare our genetic algorithm work with these following types of sensitivity analysis.

- Scaling SA [88] scales all the periods or execution times by the same factor, until the

task set is schedulable. Execution times are real-valued and periods equal deadlines. As the

periods increase, the utilization decreases. This approach has a very quick runtime, especially

if the scale changes are scanned with a larger graining, i.e. step.

- TbTSA [90] (task-by-task sensitivity analysis) examines the tasks from the highest

priority to the lowest and increases the tasks’ periods one at a time until schedulability is

achieved. This increases the periods of lower priority tasks disproportionately. This approach

runs more slowly than scale SA.

- Bini SA [13] uses modified TDA equations and the idea of the “feasibility region” to find

an efficient algorithm to schedule task sets that are not schedulable. This work also changes

7



task periods task by task. The algorithm uses a set of slack modified TDA equations and

these equations are solved task-by-task. These equations are tested at “feasibility points” in

order to find the task set changes. The number of these points is pseudo-polynomial in the

task set parameters, but the TDA equations are more complicated.2

Although these approaches are different, none have had the emphasis of minimizing the

aggregate changes of task set parameters and by considering the entire task set as a whole

during sensitivity analysis. In general, our approach will take longer to revise task set param-

eters, but the revised task set will be much closer to the original one.

Furthermore, our approach is more flexible than the other approaches. We will demon-

strate that the genetic algorithm approach to sensitivity analysis can be used to adjust

periods or execution times with small changes to the task set. We can also adjust either

additively by increasing or by scaling multiplicatively, as we will discuss in Section 2.4. An

example of an important parameter which is used is the task period.

Section 2.2 describes the model and definitions. Section 2.3 gives a an example of the

different sensitivity algorithms. Section 2.4 gives a discussion of genetic algorithms and

its use in sensitivity analysis. Section 2.5 defines the genetic algorithm for both standard

systems and multi-mode systems. Experiments are given and used to compare with earlier

works in Section 2.6 for both the sensitivity of scheduling and for mode transitions. Finally,

Section 2.7 concludes the sensitivity analysis and explores avenues of additional research.

2.2 Model and definitions

We first present the model of standard real-time task sets in Section 2.2.1. We show how

to extend this to multi-mode systems in Section 2.2.2. Finally, we discuss changes in the

system, such as different task models.

2Note: The Bini algorithm works only if the unschedulable task set has a utilization strictly less
than 1.0.
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2.2.1 Standard periodic tasks

We consider a task set τ = {τ1, τ2, . . . , τN} comprised of N periodic, independent, pre-

emptible tasks. The parameters of each task τi is:

• Ti: period of task τi

• ei: execution time of task τi

The priorities of tasks are set in order of increasing periods [13]. These tasks are char-

acterized by execution times ei and periods Ti. These are ordered pairs {ei, Ti}. The task τi

releases a sequence of jobs τi,0, τi,1, ..., with τi,k having release time kTi and deadline (k+1)Ti.

Each job τi,j must be allowed to execute for ei time units between its release time and dead-

line.

Tasks are assumed to be independent and scheduled using the rate monotonic (RM)

fixed priority scheduling algorithm [54]. A task τi’s worst-case response time (Ri) is the

maximum amount of time between the release time of a job τi,k and its completion time. By

the critical instant theorem [54], the worst-case response time occurs when all the tasks are

simultaneously activated.

Each task τi has an associated utilization ui, which measures the fraction of time τi

executes over long intervals and is the ratio of the execution time to the period.

ui = ei/Ti. (2.1)

The task set τ ’s utilization is the total utilization of all the tasks in τ

U =
N∑
i=1

ui. (2.2)

Offsets are a delay of the release of the jobs. The inclusion of offsets and also deadlines

less than periods is a minor modification of the genetic algorithm.
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Figure 2.1: Example of a 6 task system with 3 modes.

2.2.2 Mode transition model

The mode transition problem requires more detail in the description of the model. There

are different modes, denoted by {M1,M2, ...,Mmax}. There are a total set of tasks and each

mode M uses a subset of the total set of tasks. This is for the model we use in which the

incoming tasks release their jobs at the mode change request instant. Not all tasks are in

the different modes; those in all the modes are mode independent.

During the mode transition there are two sets of modes sharing the resource. The

incoming mode has the incoming tasks and the outgoing mode has the outgoing tasks.
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Figure 2.2: Schedule of an example task with mixed priorities of incoming and outgoing
tasks.

If there are mixed priorities, then the mode transition time depends on the periods of the

incoming tasks; this time can be lessened by increasing the periods of the incoming tasks,

which in turn reduces the interference with the outgoing tasks. Figure 2.1 illustrates a simple

mode transition and how the interference of the incoming tasks has an effect on the mode

transition time. By increasing the periods of the incoming tasks, the mode transition time

is decreased.

Figure 2.2 shows the effect of changing the periods of the incoming tasks on the mode

transition time. If the incoming tasks periods are increased then there is less interference

with the outgoing tasks and the mode transition time will decrease.

There are different types of mode transitions. The first is defined by outgoing tasks

executing once after the mode change request. After the outgoing tasks completely execute
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the mode transition is over. The second type of mode transition is if the outgoing tasks can

execute a finite set of times.

2.3 A motivating example

Consider a system of four tasks τ1, τ2, τ3, and τ4 with periods (Ti) and execution times (ei)

shown in the first columns of Table 2.1. The utilization of the example task set is 2.26, which

is clearly infeasible.

Table 2.1: Example task set and comparison.

Period Execution time T ′
i δi

Ti ei scaleSA TbTSA GA scaleSA TbTSA GA
τ1 4 1 11 4 10 7 0 6
τ2 10 6 28 10 29 18 0 19
τ3 11 10 31 70 29 20 59 18
τ4 20 10 56 1400 29 36 1380 9

U ′=100 80 100 ∆=81 1439 52

The remaining columns of Table 2.1 show the revised periods (T ′
i ) and the increase of

periods (δi = Ti−T ′
i ) derived using scaleSA, TbTSA, and the genetic algorithm. The revised

utilization values of the task set found by scaleSA is 80%. Both TbTSA and the genetic

algorithm have final utilizations of 100%. On the other hand, TbTSA increases the task

periods by 1439, whereas the genetic algorithm only increases the periods by 52. This is a

factor of approximately 30. We observe that scaleSA makes smaller changes to the periods

than TbTSA, but it also creates tasks with smaller utilization values. The genetic algorithm

finds a solution with smaller parameter changes than the other approaches and is also able

to create a task set with a high utilization value.

Based on these periods, we can examine tasks’ worst case response times. Table 2.2

illustrates the response times of the tasks created by the 3 sensitivity analysis approaches.

We see, that scaleSA and the genetic algorithm have the same response times and that

TbTSA has large response times for the lower priority tasks. This is because the task-by-task
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approach tends to allocate most of the processing time to the high priority tasks, resulting

in large response times for the low priority tasks. In fact, the TbTSA type of sensitivity

analysis can even fail. If the workload at some priority level is 100% then there is no time

available for the lower priority tasks to execute, regardless of how much the tasks’ periods

are increased. This is more likely to occur for large task sets.

Table 2.2: Worst case response times of example task set.

WCRT scaleSA TbTSA GA
R1 1 1 1
R2 7 8 7
R3 18 70 18
R4 29 1400 29

The genetic algorithm searches for a global minimum of period increases. Therefore, it

will always be able to find a modified task set that will meet all deadlines. ScaleSA will also

be able to find feasible task sets, but it applies the same scaling factor to all tasks. As we

have seen in the example above, this can result in unnecessarily low utilization values. The

genetic algorithm has the advantage of considering all tasks at once, but applying different

increases to different tasks. This is more flexible than either of the other two approaches. It

contains the advantages of both approaches without having the disadvantages. As we will

see in Section 2.6.1, this advantage comes at a cost – the runtime of the genetic algorithm

tends to be longer than that of the other approaches, but not unduly so.

2.4 Related work

The genetic algorithm starts with a population of possible solutions and repeatedly improves

the population until finding a solution to the problem. The GA is formulated as an objective

function along with some constraints. The optimal solution is a result that satisfies the

constraints and minimizes the objective function.

Improving the population usually requires two operations, crossover and mutation. The

genetic algorithm finds new solutions until a specified stopping criterion is met. The flow of a

13



genetic algorithm is described in Chapter 1. First the initial population is created. Particular

initializations of the population are useful to improve the performance of the search. Then

the algorithm iterates until the stopping criteria is met. In this way, the desired solution is

found within a given threshold of accuracy. The specific behavior of the genetic algorithm

is also affected by adjusting various parameters such as initialization of the population, and

the crossover and mutation rates, as mentioned above.

Genetic algorithms have influenced many areas of science which involve NP-hard problems

including real-time systems. With regards to sensitivity analysis, the use of genetic algorithms

have indirectly influenced this area of research through different types of scheduling, such as

task mapping on network-on-chips (NoCs) or multiprocessors [65,71], job shop scheduling [18,

19], and project management [17]. These works are concerned with job allocation, i.e. which

job goes to which resource, which is computationally difficult. The TDA equations are used

as a constraint in finding the global minimum of the task set parameter changing. This makes

our work different from, for example, task mapping of a task to a resource in a multi-processor

system, which use static job allocations to resources.

2.5 ScaleGA algorithm

The tools of evolutionary programming, genetic programming (GA), etc., are applicable to

scheduling problems, and the approach using the solution to the TDA equations in as a

constraint enables the GA to find solutions of task parameter changes of unschedulable task

sets. These changes are more optimal than earlier sensitivity analysis’, in the sense of less

task changes of task set parameters to make an unschedulable task set schedulable. Previous

approaches used task-by-task modifications within the sensitivity analysis algorithm, and

the genetic algorithm approach uses a global search of task parameter change values for a

minimal task set change. This approach does not gaurantee a minimal set of task parameter

changes, due to the fact that the genetic algorithm could give local minima solutions. How-

ever, it is better at total change in task parameter changes than prior sensitivity analysis
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techniques if the goal is to minimize task set parameter changes, as experiments show. In

general this problem of finding task set parameter changes to make an unschedulable task

set schedulable is more complex than the scheduling problem (pseudo-polynomial) because

task set parameter changes hhave to be examined, especially if the changes of task periods

are taken into account, each independently. This makes the genetic algorithm approach well-

suited for finding a minimum of task set parameters, without this complexity.

Each individual of the population is a set of period increases and worst case response

times. Each of these parameters are genes of the individual; for a task set with N tasks,

there are 2N genes – namely, the revised periods T ′
i and the worst-case response times Ri,

for 1 ≤ i ≤ N . There is a fitness given to each of the individuals which involves both the

objective function and the constraints.

The population is improved until the sum of the period increases is minimized. The user

must specify when the algorithm will stop by providing a desired accuracy of the solution.

The comparison is done between the different known algorithms, at different utilizations, and

with different types of task sets (general and psuedo-harmonic). Also, periods are increased

by adding or by scaling. Genetic algorithms are a well-known method for optimizing complex

problems using evolutionary computation.

The additive genetic algorithm uses an objective function of the sum of additive increases

to the periods of the task set. Because our model assumes all of the variables are integers

δi ∈ (1 ≤ i ≤ N). The additive genetic algorithm increases the periods Ti by an increment

δi is T ′
i = Ti + δi, and δi ≥ 0, for 1 ≤ i ≤ N . Finally, the additive genetic algorithm

minimizes the sum of the period increases, i.e. minimize
∑N
i=1 δi. We call this function the

fitness function, which is defined in the model section.

The multiplicative genetic algorithm is similar to the additive genetic algorithm. Instead

of incrementing the periods, though, we scale the periods up by a factor λi, which can be a

real-value no smaller than 1. T ′
i = λi · Ti, and λi ≥ 1, for 1 ≤ i ≤ N . In this case the fitness
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function is the sum of the scaling factors, i.e., minimize
∑N
i=1 λi. We examined several fitness

functions, such as a product of scaling factors. The sum of scale factors was the best form.

2.5.1 Sensitivity analysis of unschedulable task sets

We use 2 approaches for sensitivity analysis – additive and multiplicative. For each task τi,

the genetic algorithms for these approaches use the parameters δi and λi, respectively.

• δi: additive GA: increase of period Ti (δi = Ti − T ′
i)

• λi: scale GA: scale factor of period (λi = T ′
i/Ti)

Our approach to modifying unschedulable task sets to make them schedulable is based

on time demand analysis (TDA) [52], which provides the level-i time-demand function wi(t):

wi(t) = ei +
∑
j<i

⌈
t

Tj

⌉
ej. (2.3)

Task τi’s worst-case response time is the minimum value t such that t = wi(t). In this section,

we show how to use a genetic algorithm to find new periods T ′
1, T

′
2, . . . , T

′
n and worst-case

response times R1, R2, . . . , Rn, which are the smallest values of the level k time demand

function wki such wki = wk+1
i . so that for each task τi, we have a solution to the fixed-point

equation,

Ri = ei +
∑
j<i

⌈
Ri

T ′
j

⌉
ej (2.4)

and the tasks’ periods are changed as little as possible.

Because Equation 2.4 is a discontinuous non-linear equation over the variables T ′
i and Ri

(1 ≤ i ≤ N), we must use complex optimization strategies, such as a genetic algorithm to

find an optimal (or close to optimal solution).

We now present our genetic algorithm for finding period increases of unschedulable task

sets. The first constraint of our genetic algorithm involves the level-i demand. Specifically,

we need to be sure that for each task τi, the level-i demand over an interval of length wi
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cannot be longer than the interval length:

Ri ≤ ei +
∑
j<i

⌈
Ri

T ′
j

⌉
ej. (2.5)

The next constraint is used to ensure that all tasks will meet their deadlines. Specifically,

the worst case response time Ri cannot be larger than the period,

Ri ≤ T ′
i . (2.6)

for all i.

Finally, we ensure that worst-case response times are monotonically increasing. Thus, we

add the constraint for 1 ≤ i < N

Ri+1 ≥ Ri , for 1 ≤ i < N. (2.7)

Technically, this constraint is not necessary, as lower priority tasks always have larger worst-

case response times than higher priority tasks. We add this constraint because it reduces the

size of the genetic algorithm’s search space, which has the effect of allowing the algorithm

to find better solutions more quickly.

2.5.2 Mode transitions and genetic algorithms

In this work, the first type of mode transition is examined in which the outgoing tasks

execute once; it is straightforward to generalize the formalism to the second type.

In the case of different modes, the genetic algorithm sensitivity formulation has to have

the added detail of outgoing and incoming tasks. The constraints and objective function are

slightly different. Define the outgoing tasks by O and the incoming tasks by I. {Ii} is the

set of incoming tasks with higher priority than task τi, and Oi is the set of outgoing tasks

with higher priority.

The priorities of the incoming and outgoing tasks are, in general, different. This is impor-

tant, as interferences from the incoming tasks could delay the outgoing tasks’ worst-case

response times and thus increase the mode transition time. The mode transition time is the
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worst case response time Rl of the lowest priority outgoing task τl, which defines the outgoing

task set O completion. By the TDA equation, Rl is the smallest value w
(k)
l such that,

w
(k+1)
l =

∑
τj∈Oi

ej +
∑
τi∈Il

w
(k)
l

Ti

 ei , (2.8)

where all the outgoing task execution times are included for the two modes m and n, and Ii

is the set of incoming tasks with priority higher than τi.

This equation finds the worst case response time of the lowest priority outgoing task. If

all the incoming tasks have lower priorities than the outgoing tasks, then the mode transition

time is truly minimal since there is no interference from the incoming tasks. In this case the

mode transition completion is just the sum of the execution times of the outgoing tasks.

The genetic algorithm tries to find the minimal change in the task parameters such that

the mode transition is over before a specified mode transition deadline. The periods of the

incoming tasks are scaled. The algorithm is compared with earlier approaches.

2.5.3 Other Considerations

We note that this genetic algorithm approach is very flexible – changing assumptions in the

model can be easily reflected by simple changes in the constraints or the fitness functions

presented above. Below we present several modifications.

Blocking groups of tasks

The scaling genetic algorithm could scale task periods in blocks of tasks. In this approach,

the scaling factor is the same for each block of tasks. For example, a set of 128 tasks could

be divided into 16 blocks. In this way, each set of 8 tasks uses the same scaling factor, in a

fixed priority manner. In this modification, the search space can be reduced by an amount

due to the reduction in the number of genes in the chromosomes.
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Fitness function and constraint modification

We might want to limit the changes on some of the task parameter changes. We could set

hard limits on these changes by setting bounds on δi or λi (depending on which approach

we are considering). For example, if τ1’s period cannot be increased by more than 20%, we

could add the following constraint:

T ′
1 ≤ 1.2 · T1 (2.9)

Alternatively, we could discourage increasing certain periods without setting hard bounds

on them by altering the fitness function. For example, if we want to force the genetic algo-

rithm to try to increase all tasks other than τ1, the additive fitness function might be restated

as

100δ1 +
N∑
i=2

δi. (2.10)

In this manner, T1 would only be increased if not increasing T1 would cause other periods

to be increased by more than 100.

Alternate chromosomes

We also could reduce execution times rather than increasing periods. In this case, the periods

would remain constant, but the execution times ei would be revised to e′i. The addition or

scaling equations would then be replaced with e′i = ei − δi or e′i = ei/λi, respectively, in the

genetic algorithm, and the chromosome would contain the execution time scalings. Reducing

execution and increasing periods are equivalent in the equation, U =
∑

tasks ei/Ti, but not in

the implementation of the TDA equations. In practice, execution time would be reduced by

simplifying and optimizing the code.
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Deadline limitations

Deadlines less than periods and offsets could also be included. The generalized TDA is more

complex than the usual TDA with the use of deadlines greater than periods, but for deadlines

less than periods the change in the TDA analysis is very minor. Positive offsets have been

examined but not included in the experiments section.

Search space

The genetic algorithm’s search space could be quite large. For example, if period increases

range from 0 to 100 and there are N tasks, then the search space is 1002N = 104N if the period

increases are integer. This search space is even larger if the period increases is non-integer.

This follows from the fact that there are 2N genes. Each of the periods Ti and worst-case

response times Ri could have values from 0 to 100; if the worst case response times are larger

than 100 then the search space increases. For problems of this size, the genetic algorithm

could be slow, though tuning the parameters carefully can have a dramatic impact on the

runtime. Initializing the population near a possible solution also increases the efficiency of

the genetic algorithm.

From the discussion above, we see that the genetic algorithm approach is very flexible.

Changes in the model under consideration can be easily accommodated by changes in the

genetic algorithm and would not increase its complexity.

2.6 Experiments

The experiments in this section will illustrate the use and effectiveness of the genetic algo-

rithm as compared to other types of sensitivity analysis.
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(a) Fitness, i.e. sum of period increases, after
using the additive GA and TbTSA.
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(c) Time of additive GA and TbTSA.

Figure 2.3: Comparison of additive GA and TbTSA.

2.6.1 Schedule Sensitivity

Three types of experiments are done to evaluate the genetic algorithm approach. These

experiments tested the different types of sensitivity analysis for task sets with utilization

near 100 percent and greater than 100 percent.

For most experiments, we generated 1000 task sets for each of the different task set sizes

(N). Due to time constraints, we were unable to perform 1000 simulations for a simulation
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of 128 tasks with the additive genetic algorithm. For that scenario, we simulated 200 task

sets.

In all the experiments, the scaleGA outperformed previous approaches in the minimiza-

tion of the period/deadline changes. The genetic algorithm can also offer different solutions

to the change in the task set, whereas the previous solutions can not. There is a population of

solutions with a single most fit individual. Thus, the GA improves upon previous techniques

in two important ways: modified task sets conform move closely to original task sets; and

multiple possible solutions are provided giving designers options in selecting the final task

sets. The downside of the genetic algorithm is that it can take significantly more time to find

all of these solutions. The trade-off is clear: minimal parameter change versus time to find

the solution.

The number N of tasks used in all of these experiments was

N ∈ {2, 4, 8, 16, 32, 64, 128} (2.11)

and the task utilizations were randomly generated using UUnifast [12].

First set of experiments

The first set of experiments used unschedulable task sets with utilization below or near 100

percent and compares the genetic algorithm with the approaches of scaleSA and BiniSA. In

these experiments, pseudo-harmonic task sets were used. Pseudo-harmonic task sets are those

in which all the periods are “almost” multiples of each other. The period increases of these

different types of schedule changes that make unschedulable task sets into schedulable task

sets are calculated for these different types of sensitivity analysis. The time of calculation

is also reported for the scaleSA and BiniSA algorithms; the calculation time of the genetic

algorithm is much larger.

In the first set of experiments the periods were chosen following the third experiment

of [13]. Task periods were chosen to make an almost harmonic task set, i.e. periods of
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5,10,100,200,500,1000 and the task utilizations were randomly chosen with the UUnifast

algorithm such that the utilization was close and less than 100 percent and unschedulable.

The results of the first experiments using psuedo-harmonic task sets are shown in Figure

2.4. Note that the total period increases are smaller with the genetic algorithm, and ScaleSA

does well also. Also, there are discontinuities as the number of tasks increases; this is not

explained but the algorithm is nonlinear and recursive, and fixed points are common in these

types of recursive equations. The genetic algorithm scaleGA has difficulty with 128 tasks or

more. This could be addressed by reducing the number of scale factors in the algorithm, i.e.

by blocking tasks with a single scale factor each group of tasks.

The time of calculation of scaleSA and BiniSA is compared and shown in Figure 2.5.

The time it takes to create a schedulable task set using scaleSA depends upon the search;

this search used a scale factor in increments of .05, (i.e. a scale factor 1, 1.05, ...). At each

stage of scaling the task periods and the TDA equations were checked until a schedulable

set of scaled task deadlines was found. ScaleSA seems to be faster with this graining then

scaleBini. The time it takes to find the period increase of the scaleGA is large due to the

stopping criteria used, which is 1000 iterations.

Second set of experiments

The second set of experiments uses task sets with utilization greater than 100 percent. The

task sets are general and non-pseudo-harmonic. The scaleSA, tbtsSA, and both types of

genetic algorithm (scaled and additivie) are used. The BiniSA can not be compared due

to the fact that the BiniSA algorithm can not be used with utilization greater than 100

percent. In these experiments, both the deadlines and execution times are integer valued

and the utilization of the initial task sets are between 100 and 200 percent.

The second set of experiments used randomly selected periods in the range [1, N ∗ 10],

where N is the number of tasks.
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Two types of GA simulations were performed in the second set of experiments, which

use unschedable task sets. The first experiments use the additive increase of the periods

(additiveGA) and the second type of experiments in this set used the scaling of the periods

by real numbers with the genetic algorithm (scaleGA). The scaling of periods in scaleGA

performed better. This choice was used to compare the genetic algorithm of the additive

deadline increases of TbTSA and scaled deadline increases of scaleSA. This means that the

population was randomly generated “close” to the output of the scaleSA algorithm, plus or

minus 10 percent in the period increases from the output of scaleSA; the time to find the

output of scaleSA is minimal compared to the time of scaleGA. Nevertheless, the initialization

is important for the performance of the scaleGA. The initialization of the population of

chromosomes can be important, as is typical in genetic algorithms. The parameters used

in the genetic algorithm are shown in Table 2.3. In addition to the scaleGA approach, the

periods of the tasks in the scaleGA experiments each had their own scaling factor.

The second set of experiments use high utilizations of unschedulable tasks. Unschedulable

task sets with high utilization are important for sensitivity analysis of generally over-loaded

task sets and also mode-transitions, in which processor utilization can easily go beyond

100 percent. In order to compare with the known sensitivity analyses for general task sets

with utilization greater than 100 percent, we did simulations using scaleGA, additiveGA,

scaleSA and TbTSA. Unfortunately, BiniSA can not be used with unschedulable task sets

of utilization greater than 100 percent, which is the reason for not including it in the second

set of experiments.

The two additive approaches of TbTSA and additiveGA are compared, and the results are

in the next three figures. Figure 2.3a presents the average change in periods using the additive

algorithms and TbTSA. Figure 2.3b presents the final utilization. Figure 2.3c presents the

time of calculation of these two methods. We observe that the additive GA changes task

periods less than the TbTSA. While TbTSA always creates task sets with utilization near
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100%, scale GA utilizations are lower – particularly for larger task sets. This is perhaps due

to the type of changes which are being made to the initial task set.

Next, we present the comparison between the scaling approaches, the scaleGA and

scaleSA for general task sets with utilizations greater than 100 percent. The average period

increases are shown in Figure 2.6a. These experiments use an unschedulable task set with

utilization greater than 100 percent and change the periods to make these schedulable. The

average final utilizations are shown in Figure 2.6b. The time of sensitivity calculations are

shown in Figure 2.6c. The average period increases of the scaling GA is typically at least 50

% less and can be almost 90% of the scaleSA period increases. The utilization is high for

both scale algorithms, even for 128 tasks, but is particularly high for scale GA.

In general, the scale genetic algorithm is able to find task sets whose periods are closer

to the original task periods. We see that the scale GA approach finds the best solutions to

the sensitivity analysis problem. This approach was able to find high-utilization task sets

whose parameters were closer to the original parameters than any of the other approaches.

The runtime of the scaleGA, while longer than scaleSA, is still quite reasonable.

Third set of experiments

The third type of experiments used arbitrary task sets of utilization close to 100 percent,

with utilization at most 100 percent. For these experiments we use a variation of BiniSA,

which only considers a subset of all possible feasibility points.

Table 2.3: Parameters of the additive and scaling genetic algorithm.

Parameter Value

Population size 100 100
Crossover fraction .9 .9

Mutation Gaussian, .9 .9
Stall parameter 500 50

Tolerance constraint .01 .01
Tolerance objective 1e-6 1e-6

Elite fraction .2 .1
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Figure 2.4: The period increases of several methods are shown, each pseudo-harmonic task
set has utilization near 100 percent.

In the last set of experiments, the third set, we use general task sets of utilization close

to 100 percent and general task sets. This is to show how the algorithms, including the GA

approach, compare with the known approaches for general task sets of utilizationts near 100

percent, without psuedo-harmonicity. The task sets were chosen with periods of [1, N ∗ 10],

where N is the number of tasks. The task utilizations were computed using the UUnifast

algorithm [12]. The integer task deadline times are scaled to make the initial utilization as

close to 100 percent as possible. The point of these experiments is to show the difference of the

sensitivity analysis of these different techniques at 100 percent for general task sets, which are

not psuedo-harmonic. In these experiments, scaleSA, scaleBini, and scaleGA are compared.

Due to the lack of known feasibility points, the BiniSA algorithm is approximated by using

only periods as feasibility points. The total period increase is shown for these methods in

Figure 2.7. Note that the scaleGA outperforms the previous techniques in minimizing the

sum of the period increases. Task-by-task algorithms, such as scaleSA, TbTSA, and BiniSA

are not as optimal in minimizing the task set parameter changes, such as periods.
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Figure 2.5: The time of calculation of scaleSA versus BiniSA. Each psuedo-harmonic task
set utilization near 100 percent.

2.6.2 Mode Transitions

In this section, 1000 experiments are done for different numbers of tasks to show the effec-

tiveness of the genetic algorithm in treating the mode transition. Each experiment uses a

different set of task periods and execution times for the incoming and outgoing modes. These

experiments are performed using 2 modes and a total set of tasks of

N = {2, 4, 8, 16, 32, 64, 128}, (2.12)

for each N . Task set utilizations are created using the UUniFast algorithm [12], and task

periods randomly chosen from zero to 10∗N . Fixed priority scheduling is used in that higher

priority is given to smaller periods.

For the mode switching experiments, each initial set of N tasks is divided into two

modes with the same number of tasks, e.g. 32 tasks is two modes of 16 task sets in each

mode. These two modes define the incoming and outgoing task sets. The periods of the

incoming tasks can increase, reducing the interference with the outgoing tasks, thus making

the system schedulable. The outgoing task parameters do not change. The “mode time
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(b) Utilization after using the scaleGA and
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(c) Time of scaleGA and scaleSA.

Figure 2.6: Comparison of scale GA and scaleSA.

multiplier” equation is used as a constraint in the genetic algorithm. This constraint forces

outgoing tasks to complete their last jobs before the mode time deadline. In these experiments

the mode time multiplier, defined in the model section, is 2.

Two sets of mode switching experiments were completed. In combining the total utiliza-

tion of incoming and outgoing tasks is 100 percent and tested the scaleSA, scaleGA, BiniSA,

and TbTSA at this utilization. The second set used a combined utilization of 150 percent.
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Figure 2.7: The period increases of several methods are shown, each general task set has
utilization near 100 percent.

Table 2.4: Parameters of the genetic algorithm in the mode transition problem.

Population 1000
Crossover rate .95
Generations 2000

TolFun .02
TolCon .02

EliteFraction .20
StallGenLim 100

Due to the utilization values, these task sets would not be schedulable unless changes are

made to the schedule.

The parameters of the genetic algorithm shown in Table 4.6.

The population in the genetic algorithm was initialized close to the output of the scaleSA

algorithm; “close” means that the initial scale factors are between 1 and 10, i.e. if scaleSA

gives a factor of λ, each task in the system has its scaling gene initialized to a value between

λ and 10λ. The initial worst case response times are plus or minus 30 percent from scaleSA,
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Figure 2.8: Box plots of fitness from scaleSA, scaleGA, and BiniSA in experiments 1. Uti-
lization is 1.0 . Most are the first quartile, and there are many outliers due to the variation
in the periods. There are outliers due to the large number of parameters and population of
1000.

i.e. between .7R and 1.3R. The scaleSA algorithm seems to be the next best algorithm

for minimizing task set parameter changes. Using its output to initizalize the population

improved the performance of scaleGA. This initialization of the population improves the

fitness performance of the GA. The runtime of scaleGA wasn’t affected, however, the total

change in the periods was less than what is found from a random population.

Comparisons and contrasts of scaleGA are made with earlier sensitivity analysis’ in the

mode transition problem - scaleSA, scaleBini, and scaleTbTSA. Two sets of experiments

are done. In the first set of experiments, the utilization is fixed to 100 percent and the

task parameters are non-integer. This is due to the utilization constraint in scaleBini of less

than 100 percent. In the second set of experiments, the utilization is greater than 100, i.e.

utilization of 150 is presented. The task set parameters are integer; in general the integer or

non-integer nature makes little difference in the comparison with the different algorithms.
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Figure 2.9: Box plots of fitness from scaleSA and scaleGA in experiments set 2. Utilization
is 1.5 .

Box plots of the distribution of the total fitness of the different task sets is shown in

Figure 2.8. These box plots are for utilization of 100 percent of the combined two modes

before the parameter changes, and for N = 32 and N = 64. The minimum total fitness is

the sum of the scaling factors of half of these tasks since there are half in each mode, and

outgoing task’s parameters don’t change.

The GA generally gives a lower total fitness than scaleSA or BiniSA, although sometimes

performs worse than scaleSA, which appears to be the case with 32 tasks. BiniSA has a

larger spread of the total fitnesses in the distribution; this is due to increasing task periods

from high priority to low priority. At 100 percent utilization the total fitness is close to the

minimum, due to the fact that half utilization is 50. In the experiments, the incoming mode

was unschedulable. TbTSA was not included due to the large general increase in task periods;

this algorithm, unlike the task-by-task BiniSA algorithm does not use a set of modified TDA

equations to find minimal task set changes. The mean and medians for these experiments

are in Table 2.5.
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Figure 2.10: Histograms of fitnesses from scaleSA and scaleGA in experiments set 2.

In the first set of experiments the scaleGA and scaleSA gave similar results. The incoming

mode task parameters don’t have to change too much to achieve schedulability of the mode

transition. If the tolerances of the constraints and objective function were decreased, the GA

could possibly improve at the cost of additional computation.

Box plots are also shown for the second set of experiments, Figure 2.9. In these experi-

ments, the total initial utilization was approximately 150%, and the cases of N = 16, 32, 64

are shown. The GA had lower fitnesses on average for the 1000 task sets. ScaleSA is the second

best algorithm for minimizing total task set changes. BiniSA was not included because the

utilization was greater than 100%. The TbTSA algorithm produces large task changes and

the results are instead included in the tables 2.6. Also, TbTSA in about 10 percent of the task

sets does not produce a solution; this is because there could be an intermediate utilization of

100 percent of the partial task set, forcing the lower priority task period increases to infinity.

The GA fitnesses were less than the TbTSa fitnesses by 10 to 30 percent generally. The

mean, median, and the inter-quartile ranges are shown in the box plots. Outliers are present
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Table 2.5: Utilization 100. Mean and Median of scaleSA, scaleGA, BiniSA, and TbTSA.
About 10 percent of TbTSA results are not included due to no solution of period increases.

scaleSA scaleGA BiniSA
Mean (N = 32) 17.56 16.97 36.58

Median (N = 32) 17.28 16.68 18.95

Mean (N = 64) 36.46 34.24 70.84
Median (N = 64) 35.2 34.13 33.79

due to the large number of parameters and population of 1000; there is more variation than

with utilization 1.0 due to a larger range in the variation of the task periods.

It is interesting to note that the median of the scaleGA distribution always seems to be

greater than the 75 percent quartile of scaleSA, which is the closest algorithm in effectiveness

of task set changes to scaleGA. This shows that statistically the scaleGA algorithm performs

better on average than scaleSA. BiniSA does in fact produce much worse total fitnesses than

scaleSA or scaleGA by at least on average a factor of 4.

Histograms are presented for the second set of experiments in Figure 2.10. Note the

distributions of the different algorithms. ScaleSA does not have a minimization goal of task

set changes in the scaling of the task periods.3

Two tables, 2.5 and 2.6, have the basic statistical information (mean and median) of the

histograms.

Mode independent tasks were also used in the set of incoming task parameter changes in

a set of different runs. The mode independent task periods are not changed. These tasks are

recurring during the mode change and the results are not changed using the incoming tasks

and the total parameter change. The total utilization, however, has increased with these

tasks.

3The histograms for TbTSA are quite skew and in a large fraction of the task sets there is no
solution to schedulability. Its’ histograms are not included.
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Table 2.6: Utilization 150. Mean and Median of scaleSA, scaleGA.

scaleSA scaleGA
Mean (N = 16) 11.4 9.88

Median (N = 16) 11.36 9.08

Mean (N = 32) 24.18 20.55
Median (N = 32) 23.68 19.66

Mean (N = 64) 50.8 54.31
Median (N = 64) 49.28 48.49

2.7 Conclusion and Future Work

This work formulated the problem of scheduling fixed-priority real-time systems in terms of

optimization problems. Genetic algorithms were used to examine the sensitivity of scheduling

task sets by scaling periods for both scheduling of unschedulable task sets and also mode

transitions. Earlier sensitivity analysis approaches were compared with these genetic algo-

rithms. From this work we see that genetic algorithms are an effective technique for turning

unschedulable task sets into schedulable task sets with as little change as possible. Experi-

ments demonsgrated that the GA can produce schedulable task sets with smaller parameter

changes than existing techniques.

There are several avenues of additional research that be explored based on this work.

Different optimization schemes could be used, such as particle swarm. The sensitivity analysis

problem can also be formulated as a convex quadratic scheduling problem, which has special

techniques to find the global minimum of task set parameters.

34



Chapter 3

Genetic Algorithms used in NMR

Key Words: mammalian cell culture, molecular dynamics, ligand docking, genetic algo-

rithm, sialyltransferase, resonance assignments, assignment program, sparse labeling,

perdeuteration, heat-shock protein, Hsp90, HtpG, protein structure, 1H-13C methyl RDCs.1

3.1 Assign SLP MD

A genetic algorithm has been created to assign protein NMR resonance. This means that the

crosspeaks of an HSQC (heteronuclear single quantum coherence) spectrum can be attached

to particular residues of the protein. There are many ingredients involved. The measurements

are potentially rdc’s, measured chemical shifts of the 15N-1H or 13C-1H pairs in the residues

of interest. Sparsely labeling is used in this line of research; only a set of residues such as

all phenylalanines are used in the measurements and the experiment is done with a labeled

protein in which these residues are 13C or 15N enriched. In addition to these measurements,

predictions of the same measurements using molecular dynamics (MD simulations are used).

Amber is a well known tool that creates a molecular trajectory and from this the predicted

spectral parameters are calculated. The predicted chemical shifts are found using ShiftX2

1The work in this chapter is based on the papers, G. Chalmers, A. Eletsky, L. Morris, J. Yang,
F. Tian, R.J. Woods, K.W. Moremenm, J.H. Prestegard, NMR Resonance Assignment Strategy:
Characterizing Large Sparsely Labeled Glycoproteins, Journal of Molecular Biology. v. 431, pp.
2369-2382, issue 12; K. Pederson, G. Chalmers, Q. Gao, D. Elnatan, T.A. Ramelot, L. Ma, G.T.
Montelione, M.A. Kennedy, D.A. Agard, J.H. Prestegard, NMR characterization of HtpG, the E.
coli Hsp90, using sparse labeling with 13C-methyl alanine, Journal of Biomolecular NMR, vol 68,
issue 3, pp. 225-236, July 2017; Q. Gao, G.R. Chalmers, K.W. Moremen, J.H. Prestegard, NMR
assignments of sparsely labeled proteins using a genetic algorithm, Journal of Biomolecular NMR
(2017) 67:283–294; G. Chalmers, J.N. Glushka, B.L. Foley, R.J. Woods, J.H. Prestegard. Direct
NOE simulation from long MD trajectories. Journal of Magnetic Resonance. 2016;265:1-9.
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or ppm1 software and the trajectory. The rdc’s can be found using the average coordinates

of the N-H’s or C-H’s and order parameters describing any fast internal reorientation. As

mentioned in the introduction, another software package, MD2NOEProtein, that we created,

calculates these. This is not in the dissertation due to the fact that it does not use a genetic

algorithm; it is referenced.

AssignSLPMD started with AssignSLP. The latter also requires the input of predictions

from its associated MD2NOE software; but a single frame was used for the coordinates of

the N-H or C-H bond and in the chemical shift predictions. This single frame does limit

the use of AssignSLP. AssignSLP and MD2NOE and are not appropriate for molecules with

substantial internal motion. Larger proteins often have substantial internal motion and longer

MD trajectories are required in order to sample these motions. Conformational changes in

motion of the protein can give misleading predictions unless these changes are included in

the MD trajectory. The AssignSLP genetic algorithm package was successfully used in the

assignment of 5 small proteins (small meaning < 10 kiloDaltons) and a larger 3-domain

dimer [33] [66].

AssignSLP and MD2NOE, were generalized to AssignSLPMD and MD2NOEProtein.

A ‘sphere’ approximation was included in the MD2NOEProtein software, which effectively

extends the MD trajectory by adding in an artificial tumbling of the protein. These pre-

dicted spectral data are then used in AssignSLPMD. AssignSLPMD is very different from

AssignSLP due to the fact that every set of predictions to measurements uses the full tra-

jectory. The chemical shifts of the N-H’s and C-H’s are found by averaging the chemical

shift predictions at every frame of the trajectory (every 2 picoseconds of 1000 nanoseconds).

The rdc’s include a order parameter correction due to the motional wobbling of the bond of

the N-H’s or C-H’s. These order parameters are calculated in M2NOEProtein. The inclusion

of the sphere approximation, and the full trajectory extend the use of the AssignSLPMD

genetic algorithm software to large proteins. The software was tested in the assignment of

rST6Gal1, a protein of 36 kD [15].
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This chapter discusses the AssignSLPMD genetic algorithm software in detail, and not

the AssignSLP software. AssignSLPMD supersedes AssignSLP and can calculate everything

that AssignSLP can. Both packages have statistics programs that give the likelihood of

correctness of each spectral intensity to residue. The results of AssignSLP and the 6 proteins

are also given in this chapter in the supplement to demonstrate its use [33,66]; these results

can also be found from AssignSLPMD and in the latter principle would be more accurate

due to the use of an MD trajectory. The description of AssignSLPMD and its use and text in

glycoproteins such as ST6Gal1 is largely taken from the work in our recent publication [15].

3.2 Introduction

NMR structural studies of uniformly 13C/15N labeled proteins larger than 40-60 kDa are

challenging even when perdeuteration is used to enhance resolution and sensitivity [66]. For

glycosylated proteins, which are often expressed in mammalian cell culture to produce native-

like glycosylation, perdeuteration is not possible; even structural studies of 20-30 kDa pro-

teins are then challenging. Moreover, uniform isotopic labeling in mammalian cells with 13C

and 15N can be costly as a mix of isotopically labeled amino acids, as opposed to isotopically

labeled metabolic substrates, such as glucose and ammonium chloride, must be supplied. An

economically viable alternative exists, namely sparse labeling using a single or small subset

of isotopically labeled amino acids [62]. Sparse labels can provide long range structural con-

straints through paramagnetic perturbations of resonance positions and intensities, as well

as orientational constraints from residual dipolar couplings (RDCs) [45], [69], [64]. These

constraints, along with chemical shift perturbation on interaction with other entities, can

often be used to position ligands in binding sites and assemble proteins in multi-protein com-

plexes [38] [8]. However, resonances must still be assigned to specific sites in proteins, and

this must now be done without the aid of the triple resonance experiments usually applied

to uniformly labeled proteins [32].
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We recently introduced a strategy for resonance assignment of sparsely-labeled proteins

that relies on acquisition of nuclear Overhauser effects (NOEs), RDCs and chemical shifts; all

parameters measured directly from, or through modulation of, crosspeaks seen in basic two-

dimensional heteronuclear single quantum coherence (HSQC) or multiple quantum coherence

(HMQC) spectra. The strategy was implemented in a program package, ASSIGN SLP, that

employed a genetic algorithm to optimize pairing of specific spectral crosspeaks with specific

protein sites using scores that compare experimental measurements of these parameters to

predictions based on prior structural information, primarily from a single X-ray structure.

The package was tested on a set of four small non-glycosylated proteins having known struc-

tures and crosspeak assignments, as well as a small glycoprotein [34]. It was subsequently

applied to a larger non-glycosylated and perdeuterated protein, for which only the structure

of isolated domains was known [67]. While the general approach showed success with smaller

systems, it became clear that for larger systems, factors in addition to the technical aspects of

associating predictions with experimental measurement would have to be considered. These

include degeneracies in data that increase with the number of labeled sites, the greater prob-

ability of internal motion affecting observables and the more extensive spin-spin interactions

that occur in larger proteins. Here, we introduce an approach that predicts parameters from

molecular dynamics (MD) trajectories, as opposed to single structural snapshots from X-ray

structures, to better account for effects of internal motion and spin-spin interactions on pre-

dicted parameters. It also uses an improved procedure for identification of high-confidence

assignments in the presence of data degeneracy. This approach, now embodied in a soft-

ware package entitled ASSIGN SLP MD, proves useful in providing key assignments for a

challenging 36 kDa glycoprotein, the luminal domain of rST6Gal1 (hereafter just rST6Gal1).

ST6Gal1 is a sialyltransferase that adds a sialic acid to the terminal galactose of N-linked

glycans of many glycoproteins, and is therefore of importance in mammalian physiology [86].

The bond it forms is from the 2-carbon of sialic acid to the 6-oxygen of galactose, as opposed

to the 3-oxygen of galactose. The specificity of the hemagglutinin of the avian influenza
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virus for the 2-3 linkage, found on glycans in the human gut, but seldom in the upper

respiratory tract, is what restricts the transmission of bird flu to humans [75], [43]. Levels of

2-6 linked sialic acid also rise in certain types of cancer and there is significant effort devoted

to understanding the possible role of sialylation in this disease [20], [9]. A decade ago we

began an NMR-based structural study of rST6Gal1 [55]. At the time there were no crystal

structures of ST6Gal1, or any of a close structural homolog. Using a sparse labeling approach

in which all phenylalanines were labeled with 15N we demonstrated adequate resolution

and sensitivity to detect HSQC crosspeaks from all 16 phenylalanine amide protons in the

construct. Using a paramagnetic analog of the sialic acid donor (CMP-sialic acid), in which

carboxy-TEMPO replaced the carboxyl-carrying sialic acid, we also showed that four of the

16 crosspeaks lost significant intensity. Based on an expected 1/r6 distance dependence of

intensity loss, this number was deemed consistent with the number of phenylalanines in

peptide segments believed to form the active site. However, in the absence of assignments

we were unable to use the paramagnetic constraints to dock the donor analog in the active

site of a homology model. In 2013 two X-ray structures appeared [50], [58], one of the rat

enzyme on which our NMR work had been done [58]. With this structure in hand, along with

previously collected RDC data, newly collected 1H-1H NOE data, and our new sparse label

assignment strategy, we have proceeded with assignments of a new construct of rST6Gal1,

isotopically labeled with 15N in all phenylalanines. A subset of the assignments are validated

using a limited set of mutants in which single phenylalanines are changed to tyrosines, and

then the assignments are used to place a sugar donor analog in the active site of rST6Gal1

in a manner consistent with paramagnetic perturbation data.

3.3 Results

The ASSIGN SLP MD package is a collection of programs, primarily MATLAB scripts, that

accepts as input a user-supplied MD trajectory, one or more files with experimental NOE

peak lists (or NOE vectors derived from NOE strip plots), a file with 1H chemical shifts for
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labeled sites, a file with 15N or 13C chemical shifts for labeled sites and one or more files

with RDC lists. Each of the files ends with a list of error estimates modified by weights

for the specific data type. As success is very dependent on having adequate amounts of

experimental data, it is recommended that at least one NOE file or one RDC file, in addition

to chemical shifts, be present. Predicted data are appended to experimental files by scripts

that call other programs to make these predictions. PPMONE [53] or SHIFTX2 [42] are used

to predict chemical shifts averaged over frames of the trajectory. In the case of NOEs, a new

version of our MD2NOE program, MD2NOE Protein, is called; it uses the trajectory directly

to make NOE predictions, taking into account the effects of internal motion and the extended

interactions among multiple proton spins [16], [76]. In the case of RDCs, trajectories are used

to calculate order parameters, which measure the amplitude of rapid variations in 1H-15N

or 1H-13C bond orientations relative to the molecular frame, and produce coordinates for an

average bond orientation; these in turn are used to adjust motionally-averaged experimental

RDCs to a rigid equivalent and back-calculate predicted RDCs for each trial assignment

using an algorithm similar to that in the REDCAT program [85]. A master script then calls

a genetic algorithm that begins with a randomly generated set of assignments (each “gene”

being a list of 16 crosspeaks assigned to 16 different sites in our case). It calculates scores

for each list based on an objective function that compares predicted and measured data,

and it uses a series of runs with different crossover and mutation rates to mix assignments

among the best scoring lists (genes) in an attempt to find an optimal assignment. Solutions

with scores below a user-specified maximum are saved and latter analyzed by scripts that

order output in terms of increasing scores and generate a heatmap showing the frequency of

assignment of each crosspeak to each residue.

At the heart of the program is the objective function used in the genetic algorithm

search for an optimal assignment. Initially this was defined as the sum of root-mean-square

deviations (RMSDs) between measured and predicted values, divided by estimated errors

(predicted plus observed standard deviations), for all data types except NOEs. The RMSDs
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minimize as agreement between measurements and predictions improves, as required for a

well-behaved objective function. NOEs were treated differently because they are not rep-

resented by a single number, but by a series of intensities at the chemical shifts of NOE

donating protons (actually a vector representation of a strip-plot from a 3D-NOESY spec-

trum). A Pearson correlation coefficient (R-value), which is a common way of assessing the

similarity of two vectors was used to compare predicted and measured NOE vectors. The

total NOE score, considering NOE vectors emanating from all crosspeaks, was then given as

(1-R)2, as opposed to R2, divided by an estimated error, since R would go from 1 for perfect

correlation to -1 for complete anti-correlation.

3.3.1 New additions

The primary improvement in ASSIGN SLP MD comes from using, not just a single snap-

shot of a protein structure as typically exists in a crystal structure, but from using long MD

simulations to capture some of the effects of conformational averaging. This is not new in

principle; MD simulations have been used previously to improve chemical shift prediction [53]

and to provide order parameters which aid in interpretation of spin relaxation data [40], but

they have not been used routinely. Until a few years ago a 1 s MD run on a fully solvated

protein, the size of rST6Gal1 would have been considered impractical. However, advances in

computational hardware are now putting this timescale within reach of many laboratories.

Our simulation of ST6Gal1 began with a crystal structure of the rat enzyme under conditions

where neither donor nor acceptor was present (PDB ID 4MPS) [58]; these conditions match

the conditions under which experimental data were collected. Unfortunately, this structure

is missing a loop from 354-362 that contains two of the 16 phenylalanines. This loop was

added directly from a structure of the homologous human protein in which the nucleoside

portion of the donor was present (PDB ID 4JS1) [50]. The run required about two weeks on

two GPUs running the PMEMD module of AMBER 14 [14]. Additional details are included

in Materials and Methods.
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The effect of using an MD simulation to improve prediction of RDCs is substantial.

RDCs provide information on bond vector orientations (1H-15N bonds in our case) relative

to a molecular alignment frame, but in the presence of internal motions that rapidly reorient

these vectors, measured RDCs are reduced from their rigid limit (scaling by 1.0) to values

scaled by the same order parameters that affect spin relaxation measurements. Dividing

experimental RDCs by MD-derived order parameters scales values up to rigid equivalents

that can easily be compared to predictions made during the genetic algorithm search. Order

parameters for two of the residues within rST6Gal1, F132 and F356, are particularly small

with values of 0.51 and 0.59 respectively.

While the use of the MD trajectory to better approximate RDC data proves valuable, the

potential impact of using MD-based predictions is most dramatic in the case of NOEs. Our

initial application to small proteins used an assumed 1/r6 distance dependence and distances

extracted from crystal structures to predict NOE intensity contributions from each potential

donating proton for each crosspeak. Chemicals shifts of donating protons were predicted by

the software PPMONE [53] or SHIFTX2 [42] and predicted intensities were centered on these

shifts, but spread over a region reflecting the uncertainty in prediction, to generate predicted

NOE vectors [34]. For larger proteins and proteins having more internal motion, the 1/r6

assumption breaks down for two reasons. First, for internal motions that are fast compared

to molecular tumbling, motional averaging depends on 1/r3 (plus an angular term), not

1/r6. Second, spin-diffusion effects, which are particularly prevalent in large proteins, make

long-distance transfers by indirect mechanisms important. Direct calculation of correlation

functions from an MD trajectory takes care of the former problem [41]. Use of a “complete”

relaxation matrix takes care of the latter problem [63]. As a case in point, assuming a 1/r6

dependence, the ratio of NOEs for the amide proton of F208 in rST6Gal1 on inversion of

neighboring proton HD1 on its phenyl ring and inversion of neighboring proton HB3 on its

β-carbon would be 4.7. Using the program MD2NOE Protein [16], that incorporates both

correlation function calculations and a “complete” relaxation matrix approach, one obtains a
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ratio of NOEs at a 40 ms mixing time of 0.9. We use this program to generate predicted NOE

vectors in our new assignment strategy. For consistency with other terms in our objective

function, NOEs are now scored as the RMSD of (1-R).

Weighting of various data types in our objective function have also changed. In our

initial application various data types were simply weighted by the inverse of an estimated

error. Dividing by estimated errors makes contributions of individual terms approach 1 when

deviations approach estimated error. With standard estimates of error, a total score equal

to the number of data types then provides a cutoff below which any total assignment should

be considered acceptable. Because we are usually more interested in the confidence that can

be placed in the assignment of a particular site to a crosspeak of interest (one perturbed on

ligand binding, for example) than the assignment of all crosspeaks, we had suggested use of

a confidence score based on the frequency of assignment of a crosspeak to one particular site

within the set of all complete assignments deemed acceptable. We plan to keep this means

of confidence assessment. However, there are factors, other than precision of measurements

and predictions, that should be included in the weights used in the course of our genetic

algorithm search. Factors that are not well represented in estimates of error include what

we call “information content”. For example, degeneracies in RDC data may arise in certain

proteins (an alpha-helical bundle) because the vectors connecting spin pairs (15N-1H amides)

may be nearly parallel. This would reduce information content of the RDCs. Also, missing

data allows interchange of assignments regardless of the precision of measurement. In this

new version we have introduced an option that allows weighting by information content in

addition to the inverse of an error estimate. In practice we define this as the variance in

score relative to the square of the range of scores for each data type and provide MATLAB

scripts that calculate weights for each data type. In addition, scaling by the ratio of the

number of independent data points (measured values in most cases, but measured -5 in the

case of RDCs where 5 order tensor elements must be determined from the measured values)

to the number of sites to be assigned is included automatically as a part of the inverse of
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error estimates. This decreases the importance of data types when experimental data for

particular sites are missing.

Figure 3.1: Heatmap showing ST6Gal1 phenylalanine assignments using simulated data.
The numbers in each element are the fraction of times a crosspeak is assigned to a particular
residue. Higher numbers are color-coded a darker blue and are taken to indicate a more
confident assignment. All correct assignments should be on the diagonal in this case since
the crosspeak order is was chosen to order with the residue order.

Establishing a confidence cutoff. In using any assignment program, it is impor-

tant to attach a level of confidence to the assignments made. This can be done by first

testing the program on simulated experimental data that has been generated by adding

random errors of a known magnitude to a predicted set. This procedure is documented

in ’Weighting Assignment Score’ as part of the documentation in the download at http :

//tesla.ccrc.uga.edu/software/AssignSLPMD/; the documentation also explains the confi-

dence cutoff. A predicted set appropriate for our eventual application to rST6Gal1 was gen-

erated using chemical shifts from a combination of PPM and SHIFTX2 calculations averaged

over rST6Gal1 trajectory frames, using two RDC sets from application of the REDCAT pro-

gram to a single frame from the trajectory, and using NOEs from the MD2NOE Protein

program as described above. A simulated experimental set was then generated by adding

44



random errors to chemical shifts and RDCs, within limits that proved applicable to the actual

experimental data (see section on application to experimental data below). For RDCs, 2 and

4 pieces of data, respectively, were also deleted from the two sets to mimic missing data in

the actual experiments. NOE intensities were randomly varied within a 25% limit and peak

positions were varied within errors for shifts. Application of the program ASSIGN SLP MD

gave a best solution with an unweighted best score of 4.1. Using an unweighted score cutoff

of 5.0 (an average contribution of 1.0 for each of the 5 data types), the heatmap presented

in Fig. 1 was produced. The numbers displayed in the heatmap are the fraction of time an

assignment of a crosspeak to the same residue is made in a set of total assignments having

scores between 4.1 and 5.0. The residues and calculated data were not scrambled, so the

correct solutions occur on the diagonal. Note that most of the high fractions (darker blue)

occur along the diagonal. If we choose a cutoff level of 0.50, we would identify 9 assignments

as highly confident and there would be only one false positive. Hence, this cutoff can be

associated with approximately a 90% confidence level. Using a less conservative approach in

which errors are scaled down by 2/3, all 16 peaks have highly confident assignments and all

16 are assigned correctly.

This confidence level of 90% can be found by taking a simulated set of experimental data

in which all peaks are sequentially assigned in the diagonal, adding 20% random noise and

checking the assignment from re-running the algorithm. The confidence level is found by

counting the number of correct assignments to the predicted level. .5 gives 9 assignments as

correct. This procedure gives an estimated level of confidence in the fractions of the heatmap.

Until a more rigorous statistical interpretation of the fraction of assigning is developed, this

gives a rough interpretation of these fractions.

3.4 Application with rST6Gal1

Experimental data on ST6Gal1 consisted of chemical shifts from an 800 MHz 1H-15N HSQC

spectrum, NOEs from an 800 MHz NOESY-HSQC spectrum and two sets of 900 MHz RDC
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Figure 3.2: Heatmap showing ST6Gal1 phenylalanine assignments using experimental data.
The 6 most confident assignments (fraction ≥ 0.5) are shown in darker shades of blue. These
are now scattered throughout since we don’t know apriori how to order the crosspeaks.

data, one using bacteriophage, and one using alkyl-ethylene-glycol (C12E5, PEG) bicelles

to orient the protein. Errors for the chemical shifts are dominated by errors in predictions;

these were initially set to two times the errors suggested by the authors of SHIFTX2. Errors

in NOEs were taken from the noise level in experimental spectra and errors in RDCs were

estimated based on line widths of spectra. Both the data and error estimates are detailed

in Materials and Methods. Using these errors, the initial run of ASSIGN SLP MD failed to

give any solutions with a score below the expected error-derived limit of 5.0. This is likely

due to error contributions to data or simulations that are difficult to predict (for example,

truncation of NOEs by exchange phenomena or failure to sample all conformers in the 1

s trajectory). We therefore raised all errors by 50% and repeated the run. The minimum

solution then had a raw score of 4.4. A heatmap generated using all solutions below 5.0 is
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shown in Fig. 2. If we use the confidence cutoff of 0.50 suggested by our simulated data, we

would confidently assign 6 of the 16 crosspeaks.

Figure 3.3: 800 MHz 2D [15N, 1H] HSQC spectra of WT rST6Gal1 and single-point mutants
F208Y, F356Y and F357Y. One crosspeak disappears in each of the mutant spectra (red
circles) identifying the crosspeak belonging to the mutated site.

Data not included in the objective function can in general be used to assess accuracy.

Our prior work on rST6Gal1 had shown that addition of an analog of rST6Gal1’s nucleotide

sugar donor that carries a paramagnetic TEMPO group causes paramagnetic relaxation

enhancement (PRE) and intensity loss for four crosspeaks (6,7,10 and14) [55]. Manually

docking this donor analog into the active site of the 4MPS crystal structure and having the

missing residues 356 and 357 modeled in from the 4JS1 structure results in a position for the

TEMPO nitroxide group with the four closest phenylalanine amide protons (those of F208,

F240, F356 and F357) at distances of 12, 16, 11 and 10 Å. Of this group, one assignment

is at the edge of our confidence limit, F356 to crosspeak 14; this is in agreement with PRE

data. While below our confidence limit, both F208 and F357 have their highest fraction of

assignments to crosspeaks 10 and 7 respectively. This too is in agreement with PRE data.

47



Based on frequency of assignment, peak 6 would be incorrectly assigned to F274, a residue

far removed from the active site.

In addition to this work, we also made an additional trajectory CYYH by changing a

residue to a histidine. This trajectory is not in our published work but gave a slightly more

reliable assignment. There was different conformational structure and the assignment gave

a better fit.

3.5 Validation

A more robust validation can be carried out by mutating phenylalanine residues to tyrosines,

resulting in elimination of crosspeaks for the mutated residues. This was done for the three

phenylalanines closest to the TEMPO group in the ST6Gal1 model, F208, F356, and F357.

HSQC spectra for the 3 mutated proteins are shown in Fig. 3. Along with the HSQC spectrum

of the wild type (WT) protein. In each of the spectra for mutated proteins one crosspeak

is missing (red circles). This clearly assigns crosspeak 10 to F208 crosspeak 14 to F356 and

crosspeak 7 to F357. The assignment made by ASSIGN SLP MD is therefore correct for

our near-confident assignment (F356) as well as the highest fraction assignments of F357

and F208. While the mutational validation does not strictly overlap with our confident

assignments (only the assignment of crosspeak 7 to F357 is close with a fraction of 0.49

as opposed to 0.50), the correlation of mutational assignments with the highest scoring

assignment in each case adds confidence to our procedure.

Mutational assignments can, of course be regarded as additional experimental data. These

are easily incorporated into our assignment strategy through a penalty matrix (residue by

crosspeak) that adds a zero score to our objective function for any assignment known to be

correct and a high score (˜10) for all other assignments. The results of applying this procedure

using the 3 mutational assignments are shown in Fig. 4. There are now 9 assignments that

we would regard as confident. There has been one notable removal of an assignment from

the confident assignment list, that of crosspeak 6 to F274. Since crosspeak 6 is one of the
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Figure 3.4: Heatmap showing rST6Gal1 phenylalanine assignments using mutational con-
straints (F208 to 10, F356 to 14 and F357 to 7).

crosspeaks showing intensity loss in the presence of a paramagnetically tagged donor analog,

and F274 is not among the list of nearby residues, removal from this list is reassuring.

3.6 Comparison of MD versus single frame

A remaining question is whether the use of an MD trajectory to simulate NMR data has

made a significant difference in the quality of crosspeak assignments. To examine this, we

used a single frame version of the ASSIGN SLP MD program which assumes a 1/r6 distance

dependence to derive relative NOE intensities. Two single frames having the smallest RMSDs

of backbone atom positions from the crystal structure (1.11 and 1.16 Å) were chosen from

500 samplings of the trajectory (the crystal structure could not be used directly because of

the absence of the 354-362 loop). The procedures and errors used were identical to those used
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with the MD version of the program. The raw scores for the best solutions in the two frames

were 4.3 and 4.2 respectively, not very different from those using the MD derived predictions.

However, the fractions assigned to any particular pairing are generally lower and the number

of high confidence scores are lower (4 and 6 in the 1.11Å and 1.16Å frames respectively). A

heatmap for the 1.11Å frame produced using assignments with scores below 5.0 is presented

in Fig. 5. There is some similarity to the MD-based assignment in Figs. 2 and 4. For example,

crosspeak 1 is confidently assigned to F171, crosspeak 5 has its highest fraction of assignments

to F240 and crosspeak 15 has its highest fraction of assignments to F390. However, neither

of the single frame runs makes a highest fraction assignment consistent with any of the three

mutationally validated assignments. Clearly, there is a substantial advantage in using MD

simulations to improve predictions.

Figure 3.5: Heatmap showing ST6Gal1 phenylalanine assignments using a single frame with
a 1.10 Å RMSD of backbone atoms from those of the crystal structure, 4MPS.
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3.7 Discussion

The data presented on the assignment of 1H-15N crosspeaks in HSQC spectra of the sparsely-

labeled glycoprotein, rST6Gal1, suggests that similar assignments will be possible on a host

of biomedically relevant proteins that are best expressed in mammalian, or other eukaryotic

cells. Validation of assignments has confirmed an ability to set reasonable confidence limits on

assignment so that, even when total assignments are not possible, a subset can be identified

as trusted assignments. In many cases, some of these crosspeaks will be perturbed by ligand

binding, leading to identification of residues involved in active sites of enzymes or binding

pockets of receptors. For ST6Gal1, the peak at the edge of our confidence limit, (peak 14

assigned to F356) is perturbed by addition of a reaction product, cytidine monophosphate

(CMP) that is known to inhibit sialylation activity [55]. In other cases, a sufficient number

of trusted peaks may be perturbed by paramagnetic moieties, to allow use as constraints in

ligand docking or refinement of protein structure.

Figure 3.6: Model of rST6Gal1 with the donor analog, carboxy-TEMPO-CMP docked into
the active site. Distances shown are those between the nitroxide oxygen of the TEMPO group
and the amide protons of F240 (14.4), F357 (12.9), F208 (11.4) and F356 (12.2), respectively.
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We can illustrate this latter case by using our previously published perturbations of cross-

peaks by an analog of rST6Gal1’s sugar donor, sialylated cytidine monophosphate (NeuAc-

CMP) [55]. The analog replaces the sialic acid with a carboxy-TEMPO group that retains

the carboxyl group of sialic acid but replaces the six-membered ring of sialic acid with that

of TEMPO. The TEMPO group carries a nitroxide oxygen with an unpaired electron distal

from the phosphate ester connection to CMP. This oxygen is taken as the origin of param-

agnetic perturbations. Prior estimates of distances between the oxygen and amide protons

at sites associated with crosspeaks 6, 7, 10 and 14 were 14.3-15Å, 12.6-14.4Å, 10.6-12.9Å,

and <17.0Å. The latter number is only an upper limit due to the low intensity of crosspeak

14 which is broadened significantly in the presence of CMP-TEMPO as well as CMP itself.

To generate a model consistent with these distances, a structure taken from frame 100,000

of a rST6Gal1 trajectory (a stable point about 200 ns into the 1 s simulation) was super-

imposed with the structure of hST6Gal1 determined with the reaction product (CMP) in

place (4SJ2). Then the CMP moiety of our donor analog was superimposed with the CMP

of 4SJ2, and the torsions of the two phosphate ester bonds plus the phosphate oxygen to

TEMPO bond were adjusted to place the nitroxide oxygen within the above distance limits

without introducing van der Waals clashes. The resulting structure is shown in Figure 6.

The distances between nitroxide oxygen and the amide protons of F240 assigned to peak 6,

F357 assigned to peak 7, F208 assigned to peak 10, and F356 assigned to peak 14 are 14.4Å,

12.9Å, 11.4Å and 12.2Å, respectively. The structure is chemically reasonable and places the

carboxylated carbon of the analog in a position where SN2 attack by the O6 oxygen of a

galactose-containing acceptor can approach.

The use of an MD trajectory to improve prediction of NMR data has proven particularly

useful. rST6Gal1 may not be representative of all proteins in the extent of improvement. It

has a loop containing two of the labeled phenylalanines that is not visible in the rat crystal

structure. This loop is near the active site and clearly undergoes motion as evidenced by

motional broadening of the phenylalanine resonances in the presence of CMP [55]. However,
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many enzymes share a tendency to have flexible regions as a part of their active site. Hence,

the advantages shown for ST6Gal1 may apply to certain subsets of proteins having high

internal mobilities.

As for future applications, increasing the faction of confident assignments is clearly

important. More precise experimental measurements and longer MD simulations will likely

help. However, addition of other data types may be more important. We have already

illustrated the impact of adding constraints from mutational studies. Other data types can

also be added. Pseudo contact shifts (PCSs) share a functional form with RDCs [64] [36],

as do PREs with NOEs, making addition straightforward. Applications to larger proteins

are also of interest. Resolution of 1H-15N crosspeaks in the HSQC spectra shown here is

certainly adequate to target proteins twice the size of rST6Gal1. However, sensitivity can be

an issue. This will drop steeply for fully protonated glycoproteins of larger size. One encour-

aging prospect is the possibility of labeling with 13C methyl groups. Labeling all methyls in

isoleucine, leucine and valine (ILV labeling) has provided a route to NMR characterization of

large perdeuterated proteins expressed in bacterial cell cultures [39]. Assignment of methyl

resonances in these instances presents challenges that parallel those for sparsely labeled

glycoproteins. Alternative assignment strategies, similar in some respects to that described

here, have been introduced recently [47], [74], [60]. Reliance on NOE data is one common

aspect, but reduction in numbers of protonated sites by deuteration has allowed interpre-

tation in terms of constraints on a very qualitative level. ASSIGN SLP MD is certainly

applicable to data on ILV-labeled and perdeuterated proteins, and its use of MD trajectories

to make interpretation of NOE data more quantitative may be particularly useful. A current

limitation is the availability of appropriate crystal structures. This could be relaxed if an

appropriate homology model could be selected. The minimum scores reached in making an

assignment with ASSIGN SLP MD in many ways reflects the quality of the structural model

used, and it may be possible to simultaneously obtain an assignment and select the best

among several homology models. Comparison between predicted and measured chemical
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shifts from 13C-13C correlation spectra acquired by solids NMR have already been used to

screen homology models [21], and with addition of more data types this may be possible

with sparsely labeled samples as well.

3.8 Materials and Methods

3.8.1 Protein Expression, Matagenesis, and Purification

Protein sample preparations used in collection of RDC data and PRE data were analo-

gous to those described in a previous publication [55]. New samples were prepared for the

collection of NOE data and validation by mutagenesis using modified methods for expres-

sion, labeling, and purification as described in the literature [35], [57]. Briefly, expression

constructs encoding the luminal domain of rat ST6Gal1 (UniProt P13721, residues 103 to

403) in the pGEn2 vector were transiently transfected into HEK293S (GnTI−) cells [57]

and metabolic labeling with [15N]-Phe was initiated 16 h after transfection by exchange of

the culture medium for custom FreeStyle 293 expression medium (Thermo Fisher Scientific)

depleted in Phe and supplemented with 150 mg/L [15N]-Phe 98% (Cambridge Isotope Lab-

oratories, Andover, MA) and 2.2 mM valproic acid. The recombinant protein was harvested

from the culture supernatant after 6 days of growth, purified by Ni2+-NTA chromatography,

and concentrated to ∼1 mg/mL. The resulting protein preparation was digested with recom-

binant TEV protease to cleave between ST6Gal1 and GFP, and recombinant endoglycosidase

F1 (EndoF1) was used to cleave the glycans to single GlcNAc residues [57]. The preparation

was then subjected to Ni2+-NTA chromatography a second time to remove the GFP fusion

tag, TEV protease, and EndoF1, each of which contain a His tag [57]. The samples were fur-

ther purified by Superdex 75 chromatography (GE Healthcare Life Sciences) using a 20mM

HEPES, pH 7.5, 250mM NaCl, and 60mM imidazole buffer. Peak fractions of ST6Gal1 were

collected and concentrated to 20 mg/ml using an ultrafiltration pressure cell membrane.

Exchange to NMR buffers (20mM Sodium Phosphate, pH 6.5, and 100mM NaCl for NOE
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and mutational studies) was accomplished using Centricon centrifugal filtration units with

a 10kDa cutoff. Site directed mutations of ST6Gal1 (F208Y, F357Y, and F357Y) were per-

formed using the Q5 site-directed mutagenesis kit (New England Biolabs, Ipswich, MA) in

the pGEn2-rST6Gal expression vector.

3.8.2 NMR Data

One bond 15N-1H RDCs were measured using the interleaved fHSQC and fHSQC-TROSY

experiments collected at 25 C on a Varian Inova 900 MHz spectrometer equipped with a

cryogenic triple resonance probe. Data were collected over a 24 h period with acquisition

times of 30 and 80 ms for t1 and t2, respectively, and a 1.5 s recycle delay. NMR data

were processed and analyzed using FELIX software. The rST6Gal1samples were in 10 mM

phosphate, 200 mM NaCl, pH 6.8, with 10% 2H2O; partial alignment was obtained using PEG

(3% C12E5) and pf1 phage (10mg/mL) media as previously described [69], giving deuterium

splittings of the water resonance of 13 and 21 Hz respectively. Protein concentrations were

at 350 and 400 M for phage and PEG media respectively.

A 3D 15N-edited [1H, 1H] NOESY-HSQC spectrum of a 15N-Phe labeled WT rST6Gal1

sample was recorded on an 800 MHz Bruker AVANCE NEO spectrometer equipped with a

5mm cryogenic triple-resonance probe. The NMR sample contained 270 ul of 630 uM 15N-

Phe WT rST6Gal1, 4 uM DSS, 0.02% sodium azide and 10% 2H2O in a Shigemi tube. NOE

mixing time was set to 60 ms, and acquisition times t3,max(
1H), t2,max(

1H) and t3,max(
15N)

were set to 46 ms, 10ms and 10ms, respectively. Total acquisition time was 40 h, with a 1.1s

recycle delay. A 2D [15N, 1H] HSQC was also recorded in 20 m with 1.0 s recycle delay and

acquisition times t2,max(
1H) and t1,max(

15N) of 106 ms and 39 ms, respectively. Spectra were

processed with TopSpin v3.5 (Bruker BioSpin) and analyzed with CARA v1.9.1.7.

Experimental NOE vectors were produced by averaging spectral intensity over an ellipse

in the HSQC plane of NOE strip plots with dimensions 0.03 ppm (1H) and 0.65 ppm (15N).
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Diagonal peaks in all vectors, as well as the H2O resonance (4.79 ppm) in vectors 1 and 3,

were removed by setting intensity within 0.17 ppm of the corresponding signal to zero.

2D [15N, 1H] HSQC spectra of single-point rST6Gal1 tyrosine mutant samples were

recorded on the same 800 MHz Bruker AVANCE NEO spectrometer, but equipped with

a 1.7 mm cryogenic triple-resonance probe. Samples consisted of 40 ul solutions of 330 uM

F208Y, 580 uM F256Y, or 220 uM F357Y rST6Gal1 with 7.5 uM DSS and 0.09% sodium

azide in 10% 2H2O. Acquisition parameters were the same as for WT rST6Gal1, only the

number of transients was adjusted.

MD Simulation and Docking. The starting point for the MD simulation was the 4MPS

crystal structure; the missing 354-362 segment was modeled in using the corresfponding

segment from the 4JS1 structure and minimized. The simulation was then carried out using

the PMEMD module of the AMBER 14 package [14]. The ff14SB force field was used for

protein residues and the GLYCAM 06j-1 force field [48] was used for the two GlcNAc residues

attached to Asn residues at sites 146 and 158. A cubic box of TIP3 water extending a

minimum of 8Å from the protein surface was used to solvate the protein. The system was

first energy minimized by 50000 steps of minimization, then heated to 300 K in 2 fs steps

over 1 ns. The 1 s MD simulation was carried out using 2 NVIDIA GeForce GTX TITAN

Black GPUs on a 4 GPU laboratory computer and required about 2 weeks. For use in NOE

simulations, frames of the trajectory were aligned by minimizing deviations of backbone α-

carbons using tools in cpptraj, an AMBER 14 utility [73]. For chemical shift predictions by

PPM and SHIFTX2 every 200th frame was extracted and saved as a model in PDB format,

again using tools in cpptraj [73]. Graphic depictions of structures and docking of ligands was

preformed using tools in the Chimera package [68].

3.8.3 ASSIGN SLP MD Package.

The ASSIGN SLP MD package [15], as implemented in this study, contained several

modules that prepared input for the search module, executed the search and assembled
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output for presentation to the user. All are designed to operate under a LINUX operating

system and execution with different input files can be facilitated by using bash scripts.

Efforts are underway to integrate the separate modules of the program and develop a

user interface. Up-to-date versions, as well as additional documentation, are available at

http://tesla.ccrc.uga.edu/software/.

15N and 1H predicted chemical shifts for amide groups of the selected amino acid type were

extracted from output of PPM [53] and SHIFTX2 [42] run on the PDB format trajectory by a

MATLAB script called “Procedure for Spectra Generation”. The shifts were then appended

to lists of experimental shifts, and a list of estimated error, as modified by weights, was

added in separate input text files for 15N and 1H shifts.

NOE predicted peak lists for the 16 phenylalanine amide protons were prepared by a

new version of the program, MD2NOE [16], written in C++ and called MD2NOE Protein.

Both predicted and experimental peak lists were converted to 512 point vectors containing

gaussian lines of a user specified width (0.2 Hz in this study) at the predicted or experimental

chemical shift of donating protons and intensity as specified in the peak lists, again using the

MATLAB script, “Procedure for Spectra Generation”. Autopeaks were not included, but a

pseudo autopeak of intensity equal to the maximum NOE peak intensity averaged over all

16 vectors was added at the end of each vector. These were output as spreadsheets in csv

format. Experimental NOE columns from 3D-15N-edited NOESY-HSQC spectra can also be

converted to vectors with gaussian-broadened peaks with the same program. As in the case

of 15N and 1H shifts, weighted errors are added to the end of each vector.

A MATLAB script entitled “Order Parameters” was used to calculate order parameters

and average 1H-15N bond vectors for use in predicting RDCs for each trial assignment within

the search module. Output was in the form of a text file with a line for each residue con-

taining the six coordinate entries for the bonded pair and an order parameter. Experimental

RDCs were provided in separate text files for each medium with an ordered list of weighted

errors following the RDCs. Weights added to account for information content were calculated
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with separate MATLAB scripts for chemical shifts, RDCs, and NOEs; these generated dis-

tributions of scores by comparing each entry to every other entry and extracting a variance

for the distribution, divided by the range of scores.

The search module, called ASSIGN SLP MD, is based on a genetic algorithm function

call (ga) available as a part of the optimization toolbox of the MATLAB package. It reads

in output from the various preparation modules and functions as described in our previous

publication [34] except for the changes in score contributions to the objective function as

described in the main text of this manuscript. Searches are repeated with 16 different com-

binations of mutation and crossover rates (2, 4, 6, 8 For each) to maximize the adequacy of

the search. Every trial assignment with a score below a user specified level (raw score of 5

in the application presented) is saved in a text file along with the total score, and individual

contributions from the various data types. Each search ceases when no improvement in score

beyond the tolerance of 1e-4 is achieved or a maximum number of 500 iterations is reached.

The analysis module retrieves the output of the genetic algorithm search, orders the

output by total score and eliminates all duplicates. A distribution of randomly generated

scores is then calculated so that a mean and variance can be extracted, and Z-scores appended

to each assignment in the ordered list. Heatmaps are then generated by considering the

fraction of times the same crosspeak is assigned to the same residue within a set of all

assignments having a score below a user specified limit. In the example presented, the limit

selected to be an unweighted raw score equal to the number of experimental data types (5

in our example) or one unit above the minimum unweighted raw score when the this was

greater than the number of data types; this resulted in inclusion of 1000 to 10,000 solutions

in the sets discussed here.

3.8.4 Data Summary

Data used in the application to rST6Gal1 are summarized in the following tables.
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Table 3.1: Non-NOE data used in rST6Gal115N-phenylalanine assignments.

Data Crosspeaks
1 2 3 4 5 6 7 8 9

1H cs 9.7 9.3 8.7 8.8 8.0 8.1 8.5 8.4 8.2
error 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
15N cs 128 126 128 124 123 120 121 117 115
error 4 4 4 4 4 4 4 4 4
RDCpeg -16 7 -5 2 -13 999 2 29 -1
error 10 10 10 10 10 20 10 20
RDCpf1 0 -6 -18 -9 -6 -27 -4 21 -11
error 5 5 5 5 5 5 5 5 5

Table 3.2: Non-NOE data used in rST6Gal115N-phenylalanine assignments.

Data Crosspeaks Wta

10 11 12 13 14 15 16
1H cs 8.1 6.4 6.9 7.4 7.5 7.0 7.1 0.35
error 0.4 0.4 0.4 0.4 0.4 0.4 0.4
15N cs 114 124 121 121 117 114 114 0.55
error 4 4 4 4 4 4 4
RDCpeg 999 999 -23 -2 28 999 9 0.42
error 10 10 20 10
RDCpf1 999 30 -2 -9 18 -19 999 0.37
error 5 5 5 5 5
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a Weights (Wt) include an estimate of information content (variance/range2) and a

penalty for missing data (#data/#sites for chemical shifts and ((#data-5)/#sites for RDCs).

Errors for chemical shifts are 2x ShiftX2 estimates; RDC errors are approximately 20% of

line widths.

Table 3.3: NOE peak list data used in rST6Gal115N-phenylalanine assignments.a

Data Crosspeaks
1 2 3 4 5 6 7 8 9

1H cs 2.4 2.8 2.5 1.5 2.1 0.8 3.0 1.8 1.6
intensity 17 21 18 18 18 12 22 12 17
1H cs 2.8 3.1 2.9 1.7 2.3 2.7 4.7 2.4 3.0
intensity 13 16 42 50 12 14 25 24 16
1H cs 3.7 4.7 3.3 2.8 2.9 4.5 3.5 3.2
intensity 13 10 41 25 23 12 11 12
1H cs 6.1 3.6 3.3 3.0 7.7 4.2 3.6
intensity 28 10 18 14 12 39 14
1H cs 8.0 7.4 4.4 4.1 5.1 3.8
intensity 22 30 120 20 20 23
1H cs 4.4 4.3 7.3 4.6
intensity 120 12 22 35
1H cs 4.8 6.3 8.1 7.0
intensity 30 12 26 19
1H cs 7.1 7.8 9.4 8.4
intensity 19 11 40 24
1H cs 8.3 9.5
intensity 16 12

a NOE vectors used were a sum of gaussian peaks of width 0.4 ppm placed at chemical

shifts and having intensities taken from the vectors emanating from crosspeaks in NOESY-

HSQC spectra. Diagonal peaks and water peaks were removed and a peak of intensity equal

to the average of the maximum peak in each vector was added to the end of experimental and

predicted vectors to retain intensity sensitivity in R-factor calculations. Only points above

2 x noise = 5 are listed. Error was estimated comparing peak 10 to a vector having only an

autopeak: (1-R) = 0.14. The NOE weight was 0.5.
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Table 3.4: NOE peak list data used in rST6Gal115N-phenylalanine assignments.a

Data Crosspeaks
10 11 12 13 14 15 16

1H cs 9.4 1.1 2.1 4.0 1.6 4.0 3.2
intensity 4 12 10 23 16 13 11
1H cs 1.6 2.0 6.8 3.0 8.3 4.2
intensity 12 43 14 21 16 10
1H cs 3.4 3.2 3.2
intensity 10 30 15
1H cs 6.1 3.6 3.3 3.0 7.7
intensity 47 55 17
1H cs 6.1 4.6 4.3
intensity 10 20 22
1H cs 6.6 4.7
intensity 43 25
1H cs 7.0 7.7
intensity 19 17 18
1H cs 7.4
intensity 44
1H cs 8.9
intensity 32
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3.9 Assign SLP Supplement

In this supplement the assignment results from the genetic algorithm are shown for six

proteins. The first five proteins have already been reliably assigned and the assignments

can be found in the pdb downloads from the protein data bank. The genetic algorithm

assignment of these first five proteins agreed mostly with the previously known manual

assignments [33]. These assignments were used as a validity test of the progressing genetic

algorithm assignment software. In addition, this was the first work in which the algorithm

was used to assign proteins, and the output solutions of assignment were studied for better

interpretation of the output and improvements in the software. Better interpretation means

better understanding of how to find the most reliable assignment from a set of possible

assignments and statistical interpretation.

A sixth protein, the large 3 domain 145 kD dimer, has not been previously assigned (for

reference, the previous four proteins are ≤ 10 kDa). The genetic algorithm software was used

to assign this [15]. The software is designed to be used with bad or missing measurements, and

one of the domains of HtpG has many missing. However, a partial assignment of the protein

was obtained. This assignment demonstrates what a reliable assignment of measurements can

be used for; it was used to find regions of structural change between the apo and AMPNP

forms of HtpG. Description of this assignment tests his been published [66] and much of the

text that follows is derived from those publications.

The description of the software package AssignSLP is not described in this supplement;

only the results for these six protein assignments are given.

Initial five proteins: 3C4S, 3CWI, 3LMO, 3FIA, ROBO1

Four test proteins were chosen from the 40 pairs of NMR-X-ray structures produced by

the Northeast Structural Genomics group, imposing the additional requirements that the

resolution of the X-ray structures are below 2 Å and that NOE peak lists with crosspeak
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intensities are available [31]. The NMR data for Robo1-Ig1-2 are from the work reporting

its interaction with heparan sulfate [37]. There are several X-ray structures for the Ig1-2

construct, but these show significant differences in inter-domain orientation. For the purpose

of this application domain motions were simulated in a long MD trajectory (1 microsecond)

[37] and an x-ray structure (PDB 2V9R) selected that closely approximated the domain

orientation in the most highly populated state of this trajectory.

Assignments for our four uniformly labeled test proteins and one glycoprotein have been

produced using the programs introduced above. The four uniformly labeled test proteins

range in size from 55 to 212 amino acids. Different mixes of secondary structures are rep-

resented, including those rich in alpha-helix, rich in beta-sheet and a combination of both.

There are instances of missing data and different levels of internal motion. For the two

domain construct from Robo1, an example of a sparsely labeled glycoprotein, 15N-1H HSQC

spectra for the lysine and phenylalanine labeled versions are shown in Supplementary Mate-

rials Figure S1 [37]. These spectra give examples of the resolution that can be expected for

a sparsely labeled, non-deuterated 23 kDa protein.

Working with the first four proteins, for which assignments are well documented by tradi-

tional methods, provides an opportunity to evaluate the degree to which each measurement

type contributes to the assignment process. Their contributions can be visualized in heatmaps

similar to those generated by one of the auxiliary analysis scripts. The examples shown in

Figure 2 use the X-ray structure, 2K5P, for prediction and the deposited information for

the NMR structure, 3CWI, for experimental data. Experimental assignments are listed on

the y axis and predicted assignments are listed on the x axis, both ordered with respect to

increasing residue numbers. Correct assignments fall on the diagonal. The contributions to

the total score from each data type have been generated using an in-house MATLAB script

(available at the ASSIGN SLP download site). The values are represented on the plots in

gray-scale, with black representing zero (best score) and white a normalized score of 1. The

amino acids represented are 7 alanines and 9 valines. Since we do not allow cross-assignments
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between the amino acid types, white regions exist for coordinates1-7, 8-16 and 8-16, 1-7. The

first 3 panels are heatmaps of the scores for individual data types; NOEs, chemical shifts,

and RDCs. From these heatmaps, it is clear that NOEs are the most informative since the

darkest spots for most possible assignments fall on the diagonal. However, it is also obvious

that there are cases with little distinction between pairs of possible assignments (scores for

peaks 1, 6, and 13), and an incorrect assignment would be indicated for peaks 9 and 12.

Data for RDCs and chemical shifts are typically less definitive, but still useful. Adding all

the scores together produces a plot in which the diagonal box is darkest for all but one

possible site. The heatmaps have already been used to extract an error estimate for NOEs,

but they could be used to evaluate the proper weighting for all data types. We will examine

this possibility in the future.

Figure 3.7: Heatmaps comparing predicted and experimental values of each type of measure-
ment (chemical shift, NOEs and RDCs) and total score contribution. Each number on both
X and Y axes represent one labeled residue. The amino acid type is assumed known for the
two sets of crosspeaks.

An example of the output of our assignment program for the 3CWI-2K5P protein is shown

in Table 2. The output contains not only all the possible assignments but also the solution

rank and the score contributions from each type of measurement. There is a comparison of
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experimental and predicted RDC data for each site. For chemical shifts the experimental

data are given for each site; the predicted data are given in the output header. For NOEs

individual score contributions in terms of (1-R)2 are given. In the example presented, the

first rank solution is a single-swap of two residue assignments (peak 3 should assigned to 48

and peak 4 should assigned to 32); peak 3 has no RDC data, making assignments for this

pair somewhat ambiguous.

Table 3.5: Top ranked solution for assignments of 3CWI-2K5P.

Solution
Rank 1

Peak number 2 5 1 3 4 7 6 12
Residue number 15 26 30 32 48 51 59 5

Exp.RDC 2.69 7.24 0.96 999 0.74 -9.87 3.33 -3.24
Calculated RDC 3.04 8.41 -0.14 0 0.42 -8.94 1.1 -1.92
Exp. shift (N) 121.2 126.1 131.1 120.2 119.9 119.5 121.1 226
Exp. shift (H) 7.36 8.71 8.54 8.01 8.03 7.54 8.33 108.56

NOE score 0.01 0.2 0 0.11 0.23 0.1 0.01 .05

Table 3.6: Next top ranked solution for assingments of 3CWI-2K5P.

Solution
Rank 1

Peak number 15 9 14 11 8 13 16 10
Residue number 12 20 29 35 37 43 54 60

Exp.RDC 999 3.2 9.5 999 -0.17 999 -1.28 999
Calculated RDC 0 3.5 9.6 0 0.15 0 0.11 0
Exp. shift (N) 225* 217.9* 219.2* 221.2* 227.6* 226.8* 226.2* 221.8*
Exp. shift (H) 108.56* 107.81* 107.58* 107.33* 109.62* 108.87* 109.22* 109.06*

NOE score 0.05 0.15 0.03 0.2 0 0.43 0 0
Data type RDC N H NOE Sum/Score
Total score 1.48 0.99 1.19 1.52 5.19

*100 is automatically added to the chemical shift for the second type of amino acid so that

different types of amino acid will not be cross-assigned. 999 is used to indicate data that are

not available. The incorrect assignment is colored in gray; 3 and 4 should be interchanged.

65



*100 is automatically added to the chemical shift for the second type of amino acid so that

different types of amino acid will not be cross-assigned. 999 is used to indicate data that are

not available. The incorrect assignment is colored in gray; 3 and 4 should be interchanged.

The results of application of our assignment program to all four uniformly labeled test

cases are summarized in Table 3. In all cases 1H and 15N chemical shifts, NOE peak lists for

HSQC crosspeaks, and a single set of RDCs were available. The top score solutions contain

at least 70% of correct assignments (case 3FIA) and can reach 100% of correct assignments

(case 3C4S). The correct solution is always found near the top of the list; the worst case is

number 11 out of 7493 solutions for 3FIA which has 6 missing RDCs.’

Table 3.7: Assignment summary of four test protein cases.

PDB 3C4S 3CWI 3LMO 3FIA
Labeled Sites and Number Ala 4, Val 8 Ala 7, Val 9 Ala 12, Lys

6
Ala 8, Lys 6

Number of Acceptable Solutions* 260 1376 14006 7493
Top Score Solution (correct/total) 12/12 14/16 16/18 10/14
Correct Solution Rank 1 4 2 11
Consistently Assigned Crosspeaks
(correct/total)

7/12 10/16 15/18 10/14

Missing Data 0 5 RDCs 1 RDC 6 RDCs

*If the lowest score for an application is below 4, all the solutions with a score under 5

are collected. If the lowest score is above four, all the solutions with a score more than the

lowest score plus 1.0 are collected.

The application to Robo1-Ig1-2 deserves a separate discussion. Robo1-Ig1-2 is both larger

than the other test proteins, (212 residues), it has the potential complication of internal

motion between domains, and it is a glycoprotein where sparse labeling with individual amino

acids is necessary. The top ranked assignment from an initial run (having a score of 4.09)

contains 10 correct assignments and the completely correct solution was solution number

366. However, the Robo1 protein is a good example of using some intelligence in changing

the weights of the contributions in the objective function to improve performance. The
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calculation using initial error estimates had high chemical shift contributions to the scores

and several of the RDC’s did not agree with the back calculation of individual contributions.

By increasing the errors of the chemical shift terms to lessen their importance in the objective

function, the correct solution moved from a rank of 366 to a rank of 18 in a list of 354

acceptable solutions with scores less than 5.09. The top ranked solution still had 10 correct

assignments.

For Robo1-Ig1-2 it is possible to see some of the reason for the four missed assignments

in the top ranked solution. The RDC degeneracy makes it hard to distinguish peak 4 from

9, peak 6 from 7 and peak 13 from 14. Therefore, swaps between assignments for these pairs

might have been expected. 10 correct out of 14 is in fact not a bad result. We might also

have expected the RDC data to be compromised in the Robo1-Ig1-2 case by the existence of

inter-domain motion. This could have led to different alignment tensors for the two domains

and completely incorrect RDC predictions when assuming a rigid structure and extracting

a single set of alignment parameters. The fact that RDCs fit reasonably well may mean

that motions are fairly restricted in the presence of the large attached glycan. The crystal

structures showing large variations in inter-domain geometry were all produced on non-

glycosylated material.

It may seem convenient to focus on top-ranked solutions, however, this is not particularly

valuable for a protein for which there is not prior knowledge of the correct assignment. If we

were to assume the top ranked solution in each case to be correct, we would have assigned

14 of the 74 sites in these five proteins incorrectly (19%), and we would not have known

which of the 74 assignments was incorrect. Identifying sites which are assigned with high

confidence is actually more important than obtaining a complete assignment. For example,

in applications to ligand binding by chemical shift perturbation, one only needs to know the

assignment of the perturbed peak, and for domain orientation using RDC measurements,

one only needs an adequate number of confident assignments to use RDCs.
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One approach to assessing the probability of a correct assignment is to look at the fre-

quency with which a crosspeak is assigned to the same site in solutions which fall within a

standard deviation or so of satisfying experimental data. Since we have tried to scale scores

relative to estimated error for each data type, the cut-off for solutions to examine should be

roughly equal to the number of data types used. Our test cases had 4 data types. We would

expect to see a significant number of solutions with scores below 4. Two of the test proteins

fall in this class, 3CWI had a best solution score of 3.66 and 3FIA had a best solution score

of 3.87. The other 3 had best scores of 4.45, 5.38, and 4.09. The higher scores could represent

an underestimate of error, a systematic deviation in some data due to internal motion, or

minor differences in structure between solution and crystal. To get an adequate sampling of

solutions we will examine solutions with scores less than 5.0 if the minimum score is less than

4 and one plus the minimum when the minimum score is larger or equal to 4. We consider

these to be acceptable assignments.

A visual way of presenting this analysis is in the form of a histogram. Figure 3 uses

protein 3CWI as an example. Other examples are contained in Supplemental Materials Figure

S2. Histograms show the number of times a crosspeak is assigned to each site. If we take

consistency to be assignment of the same residue to a given crosspeak in more than 50%

of the acceptable assignments, we find the following: of the 60 assignments which we can

compare to the results of traditional triple resonance assignments, we would assign with

confidence 35 peaks or about 60% of them. We find that among these 35 we would make

one mistake. This would correspond to being correct 97% of the time, something close to a

95% confidence limit. The Robo1 system is a little different because we have good reason

to believe that the structural model may be inadequate. Nevertheless, applying the same

criteria we find that we can assign 7 of the14 peaks with confidence and all of these agree

with our manual assignment.

HtpG
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Figure 3.8: Histogram showing the frequency with which each crosspeak (measurement) is
assigned to each site (residue) for the protein with NMR structure 3CWI.
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In this part of the supplement the results of using the genetic algorithm assignment

software is shown in the case of a large 3 domain protein, HtpG. In addition to explaining the

assignment, the use of a reliable assignment is shown in applications. This demonstrates that

the genetic algorithm assignment for a large protein, which would be hard to do manually,

is useful for finding applications.

Assignments of sparsely-labeled HtpG. The program ASSIGN SLP 1.1.2, which is

based on a genetic algorithm search for the assignments best matching measured to predicted

NMR data (chemical shifts, RDCs, NOEs), was modified to achieve assignments of full length

HtpG. This modified version is available at the website: http://tesla.ccrc.uga.edu/software/.

The numbers of observable NOEs are naturally reduced in a perdeuterated protein and few

NOEs between the well-dispersed 13C-1H-labeled alanine methyls were observed. Hence, only

RDCs and chemical shifts were used. The lack of NOEs, combined with the increased pro-

tein size, made it necessary to use data coming from partial assignments of crosspeaks from

individual domains. Normally one would expect to transfer assignments based on an exact

match of crosspeak positions in domain and full-length spectra, but because of changes in

chemical shifts that arise from domain-domain interactions and pH differences, overlap of

crosspeaks is not exact. Therefore, a list of possible matches was generated by considering

all assigned domain crosspeaks within a generous chemical shift radius of a full length cross-

peak (0.12 ppm 1H shift, 1.2 ppm 13C shift). These lists were transformed to a user input

constraint matrix in which a zero indicated an acceptable assignment and a one indicated

an unacceptable assignment. Penalties were assigned based on the occurrence of assignments

carrying a one or zero (˜10 for ones and 0 for zeros) and added to an overall assignment

score. As in the original description of the program [29], score contributions for agreement

of measured and predicted chemical shifts (calculated using the program PPM ONE) were

represented as root-mean-square-deviations (RMSDs), normalized to 1 for deviations equal

to estimated errors. Similarly, score contributions for RDCs came from RMSDs of measured

versus predicted values, normalized and adjusted for information content. The predicted
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RDCs, however, must be recalculated for each assignment. Therefore, procedures paralleling

those in the REDCAT program [78] are, incorporated directly in ASSIGN SLP 1.1.2. To

facilitate use of the program, raw RDC values were corrected for methyl rotation and use of

a Cα to Cβ vector as opposed to a C-H vector in the back-calculation.

Assignments were done domain by domain. Because there were typically multiple full

length crosspeaks associated with each domain crosspeak, it was possible to have more cross-

peaks than domain sites in an assignment task. Because crosspeaks are sometimes missing

due to motional broadening or overlap, it was also possible to have more alanine sites than

crosspeaks in certain assignment tasks. Our implementation of the genetic algorithm requires

an equal number of sites and crosspeaks. Therefore, data for extra sites or crosspeaks were

designated with 999, as well as in the case of missing data, and contributions to scores were

omitted whenever a 999 occurred.

ASSIGN SLP 1.1.2 outputs a list possible assignments that include those with a total

score less than a user-entered cut-off. It is recommended that this be set to approximately

1.5 times the number of data types (in our case there are four data types, two chemical shifts

(1H and 13C) and two types of RDCs). Because the normalized scores would be one at the

limit of estimated error for each data type, a score of 6 would correspond to solutions with

all observables deviating from predictions by approximately 1.5 times standard error. The

completely correct assignment is nearly always in this output, but it is not necessarily the one

with the top score. However, interest is really in which sites can be assigned to a particular

crosspeak with high confidence as opposed to identifying a completely correct of assignment.

Therefore, we have devised a criterion for selecting these high confidence sites [79]. Based on

test cases with known assignments, a site that is assigned to the same crosspeak more than

50% of the time in the list using an appropriate cut-off, is an assignment made with high

confidence (˜95% confidence limit). Additional sites, with a particular assignment simply

being the most frequent (usually 2 times the next most frequent), are considered to be ones

made with moderate confidence.
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Homology modeling of HtpG-AMPNP. A homology model for the HtpG dimer in

the presence of AMPNP was constructed using the UCSF Chimera program [80]. The zebra

fish mitochondrial Hsp90, Trap1, (PDB code 4IPE) was selected as a template [51]. The 36%

identical sequences were aligned using Clustal Omega [81] using default parameters as in the

Chimera interface. Modeling was done via the web version of MODELLER [82], again using

default parameters as provided in the Chimera interface.

Modeling of the solution apo-HtpG structure. Using RDC data from each domain,

the program REDCAT [83] was used to extract a set of principal order parameters and Euler

angles that relate the principal alignment frame to the original coordinate frame. In each

case, the highest resolution domain structure for the apo form was used (2IOQ, 2GQ0 and

1SF8 for the NTD, MD and CTD, respectively). The Euler angels were used to rotate each

domain into its principal alignment frame and the domains were assembled by translating

the domains (and their three 180 rotational equivalents) to find the best option for covalent

linkage.

Assignment of HtpG. Figure 3 shows a Methyl-TROSY spectrum of full length HtpG

13C-1H labeled in all alanine methyl groups. The sensitivity is quite high for a system of this

size (˜145 kDa as a dimer). The spectrum was acquired in approximately 1 hr on a 100 L

216 M sample. There are approximately 40 resolvable crosspeaks in the region where alanine

methyl crosspeaks fall. This is 85% of the possible 47 peaks expected based on the expression

construct. While it is possible to have alanine methyls scramble to valine and leucine [84],

under conditions of our expression protocol the level of scrambling appears to be small. The

appearance of crosspeaks from individual domains assigned to alanine methyls in similar

regions, and in similar numbers, supports this contention. RDCs were collected for each of

the resolved peaks. There were a few cases where the fit to a single modulated and decaying

exponential was unacceptable due to low signal to noise or possibly multiple modulations

in the case of overlapping peaks. In all, 30 and 37 RDCs were found acceptable for the

phage and peg alignments, respectively. These, along with errors estimated from fitting, are
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Figure 3.9: Methyl-TROSY spectrum of 13C-1H-alanine labeled perdeuterated HtpG. Super-
imposed on are blue circles representing chemical shifts of crosspeaks of the separately
expressed N-terminal domain. The dotted ellipse centered at the single-domain shifts of
A43 (radii 1.2 and 0.12 ppm) encloses 4 crosspeaks judged to be possible A43 crosspeaks in
full length HtpG.

included in Supplemental Table 1. The chemical shifts of crosspeaks and the 13C-1H methyl

RDCs were compared to predictions from PPM ONE [87] and REDCAT , respectively, using

the highest-resolution crystal structure available for each HtpG domain, i,e., 2IOR for NTD,

1SF8 for CTD and 2GQ0 for MD [30] [89].

We started the search for assignments using the domain with the highest number of triple

resonance assignments (NTD). Also shown in Figure 3 are symbols at the chemical shifts

of alanine methyls taken from HNCACB and 13C-HSQC spectra of the isolated NTD. An

ellipse is drawn around the point corresponding to A43 at a radii corresponding to estimated

uncertainties in position due to separation of domains and differences in pH (0.12 ppm in the

proton dimension and 1.2 ppm in the 15N dimension). This shows that four crosspeaks seen

in the full-length protein can potentially be assigned to the methyl resonance of residue A43.
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A similar analysis was done for each of the other Ala methyl resonances assigned in the NT

domain. In some cases the number of possible crosspeaks is reduced from the number found

in the ellipse due to unique assignments of a crosspeak to other domains. Table 1 shows the

final list of crosspeaks in the full-length protein that could possibly be assigned to each of

the residues in the NTD. It also shows the isolated domain chemical shifts, final assignments

and a confidence estimate. Initially, 5 residues were uniquely assigned to a crosspeak and

the others had degeneracies ranging from 2 to 7. The program ASSIGN SLP 1.1.2 was then

used to search for the best assignment of the 13 sites in the N terminus to the 22 crosspeaks

appearing in the various lists of degeneracies. Using the program twelve crosspeaks were

assigned with high confidence and one with moderate confidence.

Table 3.8: Crosspeak Assignments for the NTD of full-length apo-HtpG.

Possible crosspeaks Residue 13C shift 1H shift Assignment Confidence
14,15,20,21,24,28,29 39 18.7 1.45 20 moderate
16 42 18.9 1.74 16 high
9,11,19,22 43 19.1 1.63 19 high
26,35 50 18.4 0.86 26 high
12,13,18 98 19.2 1.36 13 high
14,15,20,21,24,27,28 114 18.9 1.43 24 high
26,35 130 18.9 0.93 35 high
4 134 23.0 0.95 4 high
5 143 20.3 1.21 5 high
6 144 19.9 1.37 6 high
9,11 157 19.5 1.60 11 high
2 165 23.8 1.38 2 high
12,13,15,18,21 205 19.2 1.40 12 high

We then attempted assignments for the next most highly assigned domain, the CTD.

Examining overlap of crosspeaks between the isolated domain and the full length protein in a

manner similar to that described above, only 2 sites could be uniquely assigned. The other 10

sites had numbers of possible cross peaks ranging from 2 to 7. Three of the crosspeaks in the

list of possible assignments were then eliminated based on their high confidence assignment
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to sites in the NT. Application of the program resulted in 6 additional high confidence

assignments of crosspeaks to sites in the CTD and four moderate confidence assignments.

The middle domain had only one definitive assignment, and the remaining cross-

peaks had lists of 1 to 7 crosspeaks associated with each of the remaining twelve sites.

ASSIGN SLP 1.1.2 yielded six high confidence assignments and four probable assignments.

The complete list of 13C-1H-methyl assignments for single domain and full-length proteins

is included in Supplemental Table 1. While the assignments are far from complete, they

allow identification of some residues undergoing shifts on conversion from apo to AMPPNP

forms of HtpG and a limited analysis of the changes in domain-domain orientations on this

conversion.

Figure 3.10: Crosspeak shifts on adding AMPPNP to apo-HtpG. Arrows show shifts, circles
show peaks disappearing.

Chemical shift perturbations on AMPPNP addition. Figure 4 shows a superposi-

tion of Methyl-TROSY spectra of apo and AMPPNP forms of HtpG. AMPPNP was added

at 5 mM concentration and heated at 37 C for 1 hour to assure complete conversion to the

nucleotide bound form [49]. Assigned peaks that shift or disappear are labeled with residue
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numbers. It is useful to look at these residues in the context of where they lie in the respective

structures. There is no structure of the AMPPNP form of HtpG. However, there is a crystal

structure of the AMPPNP form of the mitochondrial Hsp90, Trap1 [51], and SAXS data

suggest that the overall conformations of AMPPNP forms of Trap1 and HtpG are similar.

We have made a homology model of the AMPPNP form of HtpG using the Trap1 structure

as a template.

Figure 3.11: Superimposed ribbon structures of the N-terminal (A) and middle plus C-
terminal (B) domains of apo (green) and AMPNP (blue) forms of HtpG. 13C-1H-labeled
alanines with resonances that differ in chemical shift are shown in red.

Figure 5A shows ribbon diagrams for the superposition of the NTDs for the crystal struc-

ture of the apo form (2IOQ) and for the homology model. The perturbed alanine residues are

colored in red. There are significant structural differences throughout this domain, several

perturbed residues are close to the nucleotide binding site (residues A42, A130, A134). A232

and A254 are in the linker between the NTD and the MD, where major differences in the

modeled structure are seen.
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Figure 5B shows ribbon diagrams for a superposition of the MD and CTD with perturbed

alanines in red. A435, A439 and A543 are close to the junction between the MD and CTD

where substantial structural differences are predicted. A387 is in a region of less structural

difference, but this is near a predicted area of contact between monomers in the AMPNP

dimer structure. A580, in the CTD, is near the dimerization interface of both structures and

in a region that shows some structural variation, as predicted by our model. A403, in the

MD, is isolated from inter-domain contacts, but still shows some predicted structural varia-

tion. Hence, most perturbations of chemical shifts can be rationalized based on a structural

comparison of apo crystal structures and a homology model of the AMPNP structure. This

supports the validity of the assignments, and demonstrates the ability of chemical shift to

report on regions of structural change in proteins.

Inter-domain structure of apo-HtpG. Hsp90’s clearly sample a range of confor-

mations as evidenced by different crystal, SAXS and EM structures. Internal structures of

individual domains might be expected to be better preserved, and there is even some data

to suggest that certain inter-domain contacts may be preserved. In the pair of structures for

apo and ADP forms of HtpG CTD and MD, orientations are nearly identical [77]. Matching

Cα carbons in the MD plus CTD, (residues 233-624) the overall alignment is 2.2Å. They

align even closer in the GRP94 apo and AMPPNP structures [27]. RDCs provide one means

of assessing the conservation of domain-domain orientations. When sufficient data are avail-

able (>>5) for a rigid segment, a best set of order parameters can be determined and used

to back-calculate RDCs from a trial structure and compare those to measured RDCs for all

sites. A Q factor [7] gives a measure of how well the crystal structure compares to that in

solution. The amount of data we have for some of the domains is marginal, so we initially

tried fitting a 2 domain segment. Using 18 pieces of alanine methyl RDCs from the phage

alignment, spread over the MD and CTD of apo-HtpG, a Q factor of 0.81 was obtained.

This is not very good agreement. Some assessment of the level of agreement can be obtained

by comparing Q factors obtained for individual domains to that for combined domains, but
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this must be done using the same number of RDCs. Using 8 randomly picked alanine methyl

RDCs, 4 from each domain, we found an average Q factor of 0.4. This can be compared to

Q factors of the individual domains using similar numbers of RDCs (0.2 and 0.2). The larger

Q for the combined domains clearly suggests that even the MD - CTD orientations of the

apo form of HtpG seen in the crystal structure are not well maintained in solution.

In principle, the principal order parameters obtained for each domain, or their combina-

tion in a generalized degree of order (GDO), can be used as a direct indicator of internal

motion; if the structure was flexible, and ordering occurred principally through interactions

with one domain, GDOs would be smaller for non-interacting domains. The GDOs deter-

mined for phage alignment are 0.0018, 0.0020 and 0.0023 for the NT, middle, and CTD,

respectively, showing no significant indication of preferential alignment and allowing no

clear conclusion about internal domain motions. However, the GDOs for PEG alignment

are 0.0039, 0.0036 and 0.0007 indicating possible preferential alignment by the NTD in this

medium, and the existence of some internal motion reducing average alignment of the other

domains. [2] [6]

It is also possible to use RDC data on a domain by domain basis to determine an average

structure of the apo form in solution. Order parameters determined for each domain can

be converted to a set of principle order parameters and Euler angles that relate the orig-

inal coordinate frame to coordinates in a principal alignment frame. For a rigid molecule all

domains would share this alignment frame. Hence, once in the principal alignment frame,

multiple domains can be assembled by translation to a position where inter-domain connec-

tivities can be made. Because RDCs are insensitive to rotation about any of the principal

frame axes by 180, four possible orientations of each added domain need to be examined in

this assembly process, but usually only one of these will allow reasonable linkages between

domains. A similar procedure can be used when there is inter-domain motion, but domain

positions must then be viewed as a representation of an average structure. A structure of

the apo form assembled in this way from PEG data is shown in Figure 6A. For the NTD
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Figure 3.12: . Models of the apo-HtpG dimer. A) Domain orientations were obtained by RDC
analysis. B) A model based on SAXS data obtained in solution at high pH (Krukenberg et
al. 2008). NT, MD and CT domains are colored blue, cyan and green respectively.

to MD connection, only a 180 z rotation of the MD produces an acceptable linkage. For the

MD to CTD connections with both zero and 180 x rotations produce acceptable structures.

Because of the symmetry of the CTD dimer and its orientation in the principal alignment

frame, these rotations actually produce the pair of MDs as seen in the dimer structure. The

relative orientations for the domains are represented well in Figure 6A. However, their trans-

lational positions depend entirely on acceptable positions for covalent connection between

domains. This is not a serious problem for the NTD to MD connection because there are

no missing residues between the structures used to model this pair of domains. For the MD

to CTD connection >15 residues are missing and there is a significant lack of translational

definition.
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There is a SAXS model for apo-HtpG as it exists in solution at high pH [46]. It is depicted

in Figure 6B. To aid comparison we have oriented CTDs similarly and translated the NTD-

MD pair of the RDC model to match as best as possible the MD in the SAXS model.

It is apparent that the MD domains are oriented similarly in the two models, while the

orientation of the NTD differs and a more extended structure results. One must use caution

in interpreting these models. We do see evidence of inter-domain motion, so these represent

structures subject to averaging processes that are quite dependent on the source of data. Also,

RDC data available in this case are quite minimal (8 or 9 RDCs per domain), and therefore,

results are more prone to error than typical applications. However, the observation of a

structure that is more extended in solution than in crystal structures of apo and nucleotide-

bound forms is certainly well-supported by these data.
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Chapter 4

RNA Structure and Maximally Spanning k-trees

k trees are a particular type of a clique cover. This type of covering a graph is relevant

to RNA structure determination, neural networks, and other mathematical problems. The

k tree has a type of cover which has a well defined tree width [25]; this makes the cover

useful in modeling RNA structure. A backbone k-tree is one in which nodes are sequentially

connected; that is, node i is connected to node i+ 1. These types of trees are considered in

this work.

Previous works [24, 26] have used maximally spanning backbone constrained k-trees in

RNA structure calculations. Partly based on a detailed evaluation of many RNA examples, it

is fitting to use a weighted k-tree in the possible structural characterization. It was found that

most RNA molecules do have a bounded tree width, which means their structure are mostly

tree-like with bounded tree width, at least in some portions of the RNA, such as binding

of different residues. The weighting of the k-tree is used to constrain in the RNA model

nucleotide interactions. This aspect of the possible and likelihood of the binding of nucleotides

can be translated into a set of edge weights of the k-tree graph. The highest weighted k-tree

is used to find the highest probability of correct interactions between nucleotides using a set

of clique weights in the k-tree graph model.

It is of interest to find the best fit of the clique weights to that of a k-tree. The question

is: given a set of edge weights to model the nucleotide interactions, what is the highest

weighted k-tree for a given set of nodes. This is particularly important for k = 3 due to the

limited tree width structure of an RNA molecule, but it is also important for larger k. The

genetic algorithm is used to find best possible solutions for a weighted k-tree graph given
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the constraints of the edge weights and backbone; best means to maximize the sum of edge

weights in a graph construction. The backbone constraint is due to the fact that the RNA

is linearly constructed and the nodes are connected in the sense that node i is connected to

node i + 1 for all i. The advantage of using the genetic algorithm is that better solutions

in fitness are found. In contrast to earlier work [22–26], which used a dynamic program, the

genetic algorithm produces multiple solutions with high fitness.

It is noteworthy to point out that although the dynamic program described in [22–26] is

an exhaustive search technique, it won’t give the optimal solution for a given k-tree due to

an approximation in using 3-trees at the initial stage [22,25,26]. There is no guarantee that

the genetic algorithm will give an optimal solution. However, initializing the population with

a good solution from the dynamic program improves the result. It is always a very proper

step to initialize the population near a good solution. This reduces the complexity of finding

better solutions.1

As an example output of the dynamic program and genetic algorithm, 4-trees from a 100

node graph is shown for the first few cliques. The solutions are different; the first 10 cliques

are listed in Tables 4.1 and 4.2. There is a minor difference in the ninth clique, and there

forward. These differences are small, but the genetic algorithm does give a better k-tree in

total clique weight than the dynamic program, and for k = 3 to k = 20.

4.1 Example k-tree and chromosome representation

Before the genetic algorithm model is presented, an example k-tree is presented. This should

clarify the model and chromosome representation in the next section. An example maximally

spanning k-tree is given in Table 4.3. In this case N = 100 and k = 4. The order of the

nodes in the chromosome is in the fifth column. The 5-cliques of the 4-tree are the rows in

1The results of these calculations are available upon request, both from the dynamic program
and genetic algorithm from a particular set of edge weights.
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Table 4.1: First cliques of a 4-tree from the genetic algorithm. The first 4 columns are the
nodes in the 4-tree, and total clique weights are in the last column.

39 40 41 42 36 5.6603
36 39 40 42 68 2.6396
36 39 42 68 43 2.7885
36 39 43 68 35 2.4445
35 36 43 68 55 2.7784
35 43 55 68 33 3.1212
35 43 55 68 52 3.3013
43 52 55 68 51 2.2908
51 52 55 68 53 2.3108
51 53 55 68 54 2.8092

Table 4.2: First cliques of a 4-tree from the dynamic program. The nodes of the cliques are
in the first four columns. Total clique weights are in the last column.

39 40 41 42 36 5.6603
36 39 40 42 68 2.6396
36 39 42 68 43 2.7885
36 39 43 68 35 2.4445
35 36 43 68 55 2.7784
35 43 55 68 33 3.1212
35 43 55 68 52 3.3013
43 52 55 68 51 2.2908
51 52 55 68 54 2.0000
51 53 55 68 54 2.9585

the first 5 columns. The first 10 cliques are shown. The clique construction is first examined

and explained, and then the chromosome of this k-tree is shown and explained.

The order of the 100 nodes is 36, 68, 43, 35, 55, 33, 52, 51, 53, 54, . . . The base clique is

the first, i.e. (39, 40, 41, 42, 36). This chromosome is found with the dynamic program. To

illustrate the construction the next 2 cliques the construction are explained. The second

clique is going to insert the next node, which is node 68, into the tree. There is only one

previous clique to use, and that is clique 1. Node 68 has replaced node 41. Note that the
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first four entries are always ordered from smallest to largest node number; this is for easier

bookkeeping in the program.

The node 43 is the next node to be used in the k-tree. There are now 2 earlier cliques

that can be used in the creation of the 3rd clique. In this case the second clique is used.

Node 43 replaces node 40. It gets more complicated as there are more choices in the clique

construction for high clique number.

However, the question remains as to why these choices of clique construction of node

insertion were made. The construction is going to attempt to find the highest weight span-

ning k-tree. The genetic algorithm searches these possibilities with iteration, crossover, and

mutation. It isn’t correct to find the maximal weight clique at each clique number construc-

tion in a direct calculation. It can be done, but it leads to non-maximally weighted k-trees.

The chromosome is given in Table 4.4.

Table 4.3: First 10 cliques of a 4-tree. Weights are in the last column.

39 40 41 42 36 5.6603
36 39 40 42 68 2.6396
36 39 42 68 43 2.7885
36 39 43 68 35 2.4445
35 36 43 68 55 2.7784
35 43 55 68 33 3.1212
35 43 55 68 52 3.3013
43 52 55 68 51 2.2908
51 52 55 68 53 2.3108
51 53 55 68 54 2.8092

Table 4.4: Chromosome of example k-tree in Table 4.3

S first part 36 68 43 35 55 33 52 51 53 54 ...
second part 0 1 2 3 4 5 5 7 8 9 ...
third part 0 3 3 3 2 2 2 1 1 2 ...

The 3 parts of the chromosome are made from the information in Section 4.4, after

including all 100 nodes, only 10 cliques are described in Section 4.4. This formatting of the
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k-tree is used in the genetic algorithm. This is used in a (N − k + 1)× k matrix, described

in Section 4.2 which is then used to make the sequence of cliques in the k-tree.

4.2 Genetic Algorithm Model

The genetic algorithms is an example of an evolutionary algorithm which is efficient in finding

optimal or near-optimal solutions to complex NP-Hard problems. It uses a possible set of

solutions, defined as ‘chromosomes’ which evolve towards the best solution. Optimal means

that the overall best solution is the maximum or minimum of fitness of the solutions. Fitness,

as defined by the user, could mean the maximum or minimum; this could be, in the case of

the Traveling Salesperson problem, the minimum distance of someone visiting a set of cities.

Of course, the evolution towards the near-optimal may lead to near optimal solutions. These

are usually local minima of the fitness function which is a measure of the accuracy of the

solution.

At each iteration of the evolution, crossover and mutation of these ‘chromosomes’ is

used to improve the possible solutions towards the best fitness. The flow of the genetic

algorithm is described in the introductory Chapter 1. There are various aspects that have

to be considered in using a genetic algorithm, and in this case, the initialization of the

population of chromosomes, or possible solutions to the problem, is important. Tuning of

the parameters is partially solved by scanning over a range of crossover and mutation rates.

This program uses a genetic algorithm to find the maximal spanning k-tree of a complete

graph. The graph is weighted and the maximum weight k-tree is searched for at a given k.

The input and output of the algorithm is :

Input : number of nodes N , size k of clique, weights w(m,n) where m and n are nodes,

initial population.

Output : an ordered list of all weighted backbone k-trees with total weight greater than

some value. The total weight of a k-tree is the sum of all the edge weights from the edges in

the k-tree.
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The chromosome of the genetic algorithm contains information which can be used to

construct the spanning k-tree; the spanning k-tree has N − k + 1-cliques. The chromosome

has the minimal information to reconstruct the set of (k + 1)− cliques. It has can be used

easily with mutation and crossover functions. There are 3 components to the chromosome.

The first part of the chromosome has genes representing an ordered set of the numbers from

1 to N with no repetition; this is the node order used in the construction of the spanning

k-tree. In the construction of the spanning k-tree each clique is made by taking an earlier

clique and changing one of the nodes. For example, the tenth clique could be made by taking

the fifth clique and replacing the third node in the clique with node ten. The second part of

the chromosome is a set of integers which say which earlier clique is to be used in making

the new clique. Each k+ 1-clique has k+ 1 nodes in its definition. These nodes are attached

to each other by edges, and the weight of the clique is the sum of the weights of these edges.

The third part of the chromosome is a collection of numbers that specify which node in the

chosen clique is to be replaced by the new node.

clique node insertion
node (1, . . . , N) (N + 1, . . . , N +N − k + 1) (1 + (N − k + 1) + 1, . . .)

Number of genes: N N − k + 1 N − k + 1

Values of genes: 1 to N 1, 1 to 2, 1 to 3, . . . 1 to k + 1, 1 to k + 1

Total N ! 1/2× (N − k + 1)2 (N − k + 1)× (k + 1)

Table 4.5: Values in the chromosome and complexity.

The objective function is the sum of all the weights of the edges of the spanning k-tree;

these edge weights are counted only once even if the edge is shared by two different cliques.

For N nodes there is a spanning k-tree with maximal weight. The solution of the maximal

spanning k-tree problem is the k-tree with maximal weight.

Next are the constraints used in the genetic algorithm. Each number in the first part of the

chromosome is unique and made from numbers 1 to N . There is also a penalty to the fitness

of the k-tree if it is not of backbone type. For every node that does not appear to be in a

backbone there is a penalty. Using a penalty instead of a constraint keeps these chromosomes
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in the population possibly. The inclusion of non-backbone spanning trees is necessary in the

evolution to find backbone trees; a non-backbone spanning tree may evolve into one that is

backbone type. The output file does include an ordered list of all k-trees, ordered with from

the maximal backbone, which in the case of 100 nodes is 99, total backbone.

Mutation of the population is done in 3 steps. First, two chromosomes are selected from

the population. Second, a random number is chosen from 0 to the total number of nodes;

this will limit the operation in the 1st segment of the chromosome. Then the 2 segments of

these chromosomes are interchanged between the 1st and 2nd genes of these chromosomes.

This permutation exchanges the node addition in the construction of the (k + 1)− clique,

without changing anything else in the chromosomes. Third, in one of the chromosomes the

node insertion point is randomly interchanged with an earlier node insertion; this is the 2nd

part of the chromosome. The mutation is essentially both a type of crossover and a typical

mutation.

The crossover function has 2 parts in it. The first part selects a segment in the region of

the chromosome as mutation and sorts it numerically. The second part selects a segment in

the same section of the chromosome and flips the order. These operations are done several

times. This is possibly done for all the chromosomes with probability of crossover.

The creation of the population uses the output of the dynamic algorithm. Initializing

the population can be very important for an effective genetic algorithm. The population is

created by taking the best k-tree from the dynamic program. If there are N chromosomes

in the genetic algorithm then N identical chromosomes, from this k-tree, are in the initial

population.

The program works as follows :

- as mentioned earlier ’clique’ is a 2-d array of dimension (N − k+ 1)× k, where N is the

total number of nodes. The clique size is k+1, since there are k+1 nodes in a (k+1)–clique)
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- input file of edge weights. This file has 3 columns. The first two numbers in each row

are the nodes of the edges. The third is the edge weight. The program will parse it and turn

it into a 2d array.

- The program is object oriented.

The translation of a chromosome to a k-tree and a calculation of the total weight is given

next in pseudo-code. This algorithm is used in the objective function.

1. begin – Take first k + 1 integers from array chromosome and store in clique(1,:). This

is the base clique.

2. Define the clique counter, totalclique = 1;

3. This loop constructs all cliques in the k-tree. While i ≤ N − k + 1, starting at 1,

4. Take the 3 parts corresponding to the (k + i + 1)-clique. These are chromosome (k +

1 + i) as the node number, chromosome (k + 1 + i+N) as the previous clique, chromosome

(k+1+ i+N+(N−k+1)) as the node insertion. The i’th clique is constructed as described

previously. Take chromosome (k + 1 + i+N + (N − k + 1)) constructed before and replace

at the node insertion the node chromosome (k + 1 +N + i).

6. Add new edge weights to totalweight.

7. totalclique++;

8. clique(totalclique,:)=newclique(:);

9. end

For each chromosome the program generates a spanning k-tree with its weight. Each

iteration has a population of chromosomes. At each iteration the entire population is stored

in a Matlab .dat cell array file. After the genetic algorithm stops, the post-processing program

eliminates duplicate chromosomes, sorts, and converts the information into a user friendly

text file. The user specifies the lowest fitness, and all unique spanning k-trees are given in

the output with total weight greater than this lowest fitness. We are interested in the highest

weight, which would be the first in the list.
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There are several parameters that go into the genetic algorithm. These parameters are

listed in Table 4.6. There are two parts to making a working genetic algorithm. The first

is the genetic algorithm. The second is the tuning of the parameters, i.e. finding correct

parameters with experimentation. There are general guidelines such as high crossover and

low mutation, and not too large a population.

Table 4.6: Parameters used.

population 500
crossover rate .2,.4,.6,.8
mutation rate .2,.4,.6,.8
max iterations 500

elite count .1
stopping criteria 500

All possible combinations of the crossover and mutation rates are used in the algorithm.

The chromosomes are described in this Section and an example of a chromosome is given in

the next section.

4.3 Results and Comparisons with earlier work

Results are presented next of the calculation of individuals in the genetic algorithm popula-

tion. The k-trees from k = 3 to k = 20 for k-trees having 100 nodes. The unique solutions

with fitness greater than the maximal fitness solution of the dynamic programming are stored

in files for each k. Unlike the dynamic program results, which is a single k-tree for each k,

the genetic algorithm gives thousands of solutions with better fitness.

Typically, the maximal fitness found from the genetic algorithm for each k is less than 1

better. However, the number of unique solutions is large. Table 4.8 gives the maximal fitness

from the dynamic program and the genetic algorithm for these k values. The table also gives

the number of solutions between the maximal fitness of the dynamic program and the genetic

algorithm. The time of the program is less than a second for each iteration; as the program

continues to run iterations more solutions are found.
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Table 4.7: Best individuals : dynamic program and genetic algorithm

k-tree 3 4 5 6 7 8 9 10 11
dynamic fitness 192.82 254.31 313.52 369.45 423.99 476.78 527.95 578.28 628.20
genetic fitness 193.74 255.48 315.36 359.01 425.87 478.22 530.39 580.72 630.73
no. of solutions 188 1353 4477 3052 4063 3076 9493 10194 10254

Table 4.8: Best individuals : dynamic program and genetic algorithm

k-tree 12 13 14 15 16 17 18 19 20
dynamic fitness 628.20 723.72 769.78 769.78 859.24 885.40 946.23 988.63 1030.00
genetic fitness 630.80 725.23 771.60 816.81 861.80 887.80 947.87 990.59 1033.04
no. of solutions 6044 6396 6564 7454 12721 12648 11386 8583 15106

4.4 Conclusions

A genetic algorithm has been used find thousands of solutions to the maximally spanning

backbone k-tree problem for any k. Results are compared with earlier work using a dynamic

program. These results are generally useful for many areas of science and are generalized to

partial backbone k-trees with any number of backbone edges.
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Chapter 5

Conclusions of Dissertation

This dissertation shows that the use of genetic algorithms is important in solving or approx-

imately solving complex problems. These problems are in the context of NP-Hard. The same

calculations in an exhaustive search would be infeasible. These problems are described in

the introductory Chapter 1.

Three types of problems are considered. The first is that of sensitivity analysis and mode

transition sensitivity to make schedules and computation feasible. The resource utilization,

i.e. processor(s), is higher if the genetic algorithm described in Chapter 2 is used to make

a schedule feasible. The second problem is about the NMR spectral assignment of HSQC

from sparsely labeled residues of large and small proteins. The third problem, in Chapter

4 is about the problem of finding maximally spanning k-trees. There are other contexts

of these solutions which are not discussed. The genetic algorithms are shown to generate

improved results in all problems over previous techniques. The results are shown in the

different Chapters.

The assignment genetic algorithm AssignSLPMD and MD2NOEProtein software will

be used in a larger context due to an R01 National Institute of Healths grant awarded to

several professors who worked on the development and use of the software. The use of these

software packages are currently being simplified and will be available in a GUI download.

These software packages, including the unsimplified versions, will be developed.

91



Chapter 6

Appendix : Additional Software

While this dissertation is about the use of genetic algorithms, there has been work in pro-

grams developing programs that use additional software that uses molecular dynamics tra-

jectories to simulate NMR observables, such as NOE build-up curves, relaxation rates, 3J

couplings, and more. Most NMR observables can be calculated with trajectory molecular

dynamics information. Comparing experimentally observed parameters to predicted calcu-

lations from molecular dynamics trajectories is important in improving molecular dynamics

modeling. After comparing the trajectory calculations with experimental information, the

force fields underlying the molecular dynamics modeling can be improved. The comparison

is important in molecular dynamics simulation.

There are several software packages that calculate NMR observables using the Amber

molecular dynamics software. These packages are available at the Professor Prestegard and

Professor Woods software sites,

http://tesla.ccrc.uga.edu/software/

http://glycam.org/docs/othertoolsservice/publication-related-materials/browse-publication-

related-materials/

or

https://dev.glycam.org/ .

- MD2NOEProtein is a software package that calculates an NOE peak list, NOE build-

up curves, and other relaxation parameters of large proteins from a molecular dynamics

Amber trajectory. This package is large, and the output is used in the genetic algorithm
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package AssignSLPMD. It is appropriate to use the MD2NOEProtein package in calculating

NOE build-up curves and other relaxation parameters of larger proteins from a known known

relaxation molecular dynamics structure and trajectory. The package can use an arbitrary set

of initial and final spin states of protons of large protons, which means that any type of NMR

spin relaxation; the experiment is simulated by an Amber trajectory with calculations of the

observed measurements. It’s default is sparse labeling. It is designed to model the sampling

of motion in larger proteins, for which isotope labeling of only a sparse set on amino acids is

practical. A simplified version is currently in development, and the output has only the NOE

peak list in Sparky format. A simplified version of the AssignSLPMD package described in

Chapter 4 is also in development. Both MD2NOEProtein and AssignSLPMD require a large

number of inputs, and the simplified versions are being utilized in a GUI (graphical user

interface), which is in development.

- MD2NOE is the earlier version of MD2NOEProtein. It was successfully used in calculating

NOE build-up curves and NOE’s of small molecules, including carbohydrates, using a trajec-

tory. The carbohydrate results are not in this dissertation. The use can be found in a paper

listed in Appendix 6.

- AssignSLP is a genetic algorithm software package that does not use a molecular dynamics

trajectory to find an assignment of proteins. AssignSLPMD generalized this software package

very much by using the trajectory in all aspects of the calculation. The latter package,

for example, uses the output of MD2NOEProtein, includes order parameters to improve

RDC calculations, and uses a trajectory for the calculation of average chemical shifts. This

difference is described in Chapter 4.

- 3J coupling distribution calculates 3J couplings from a molecular dynamics Amber tra-

jectory and generates histograms for phi-psi plots of the conformations of molecules. The

results could be used for structure calculations of carbohydrates.

- ParticularRelaxationRate calculates R1 and R2 relaxation rates of large and small

molecules. These trajectory calculations were used in the identification of the glycosola-
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tion site of a pentasacharide and its epitope, after comparing experiments with predictions

from several molecular dynamics trajectories, of the large skp1 protein. The paper and its

results are listed in Appendix 7.

- SingleFrameNMR calculates NMR observables: NOE’s, their build-up curves, spectral den-

sity functions, 3J-couplings, and saturation difference transfers. These calculations use a pdb

file or single frame of an MD trajectory. This package is being developed.
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Chapter 7

Appendix : papers to which I have contributed in the course of

dissertation research

G. Chalmers, S.H. Funk, Genetic Algorithms in Real-Time Systems, submitted to Genetic

Programming and Evolvable Machines, 2019.

G. Chalmers, A. Eletsky, L. Morris, J. Yang, F. Tian, R.J. Woods, K.W. Moremenm, J.H.

Prestegard, NMR Resonance Assignment Strategy: Characterizing Large Sparsely Labeled

Glycoproteins, Journal of Molecular Biology. 2019, v. 431: pp. 2369-2382, issue 12.

G. Chalmers, S.H. Funk, Adjusting Real-Time Mode Transitions via Genetic Algorithms,

2017, 16th IEEE International Conference on Machine Learning and Applications, Cancun,

paper ID 169.

M.O. Sheikh, D. Thieker, G.R. Chalmers, C.M. Schafer, M. Ishihara, P. Azadi, R.J. Woods,

J.N. Glushka, B. Bendiak, J.H. Prestegard, C.M. West, O2 sensing–associated glycosylation

exposes the F-box–combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases.

J. Biol. Chem. 2017, v. 292: pp. 18897-18915.

K. Pederson, G. Chalmers, Q. Gao, D. Elnatan, T.A. Ramelot, L. Ma, G.T. Montelione,

M.A. Kennedy, D.A. Agard, J.H. Prestegard, NMR characterization of HtpG, the E. coli

Hsp90, using sparse labeling with 13C-methyl alanine, Journal of Biomolecular NMR. July

2017, issue 3, v. 68: pp. 225-236.
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Q. Gao, G.R. Chalmers, K.W. Moremen, J.H. Prestegard, NMR assignments of sparsely

labeled proteins using a genetic algorithm, Journal of Biomolecular NMR. 2017, v. 67:pp.

283–294.

G. Chalmr ers, J.N. Glushka, B.L. Foley, R.J. Woods, J.H. Prestegard. Direct NOE simula-

tion from long MD trajectories. Journal of Magnetic Resonance. 2016, v. 265: pp. 1-9.

96



Bibliography

[1] M. Ababnehm, S. Hassan, and S. Bani-Ahmad. On static scheduling of tasks in real

time multiprocessor systems: an improved ga-based approach. The International Arab

Journal of Information Technology, 101(6), 2014.

[2] A. Bahrami, A. Assadi, J.L. Markley, and H. Eghbalnia. Probablilistic interaction

network of evidence algorithm and its application to complete labeling of peak lsts from

protein nmr spectrscopy. PLoS Computational Biology, 5, 2009.

[3] P. Balbastre, I. Ripoll, and A. Crespo. Minimum deadline calculation for periodic real-

time tasks in dynamic priority systems. Computers, IEEE Transactions, 57(1):96 – 109,

2008.

[4] P. Balbastre, I. Ripoll, and A. Crespo. Period sensitivity analysis and dp domain feasi-

bility region in dynamic priority systems. Journal of systems and software, 82(7):1098–

1111, 2009.

[5] M. Bartshi. A Genetic Algorithm for Resource-Constrained Scheduling. PhD thesis,

Department of Mechanical Engineering, Massachusetts Institute of Technology, 1996.

[6] J.L. Battiste and G. Wagner. Utilization of site-directed spin labeling and high reso-

lution heteronuclear nuclear magnetic resonance for global fold determination of large

proteins with limited nuclear overhauser effect data. Biochemistry, 39:5355–5365, 2000.

[7] A. Bax. Weak alignment offers new nmr opportunities to study protein structure and

dynamics. Protein Science, 12:1–16 doi:10.1110/ps.0233303, 2003.

97



[8] W. Becker, K.C. Bhattiprolu, N. Gubensak, and K. Zangger. Investigating

protein-ligand interactions by solution nuclear magnetic resonance spectroscopy.

Chemphyschem, 19:895–906, 2018.

[9] G.P. Bhide and K.J. Colley. Sialylation of n-glycans: mechanism, cellular compartmen-

talization and function. Histochemistry and Cell Biology, 147:149–74, 2017.

[10] E. Bini and G. Buttazzo. The space of edf feasible deadlines. In Real-Time Systems,

2007. ECRTS ’07. 19th Euromicro Conference, pages 19–28, July 2007.

[11] E. Bini and G. Buttazzo. The space of edf deadlines: the exact region and a convex

approximation. Real-Time Systems, 41(1):27–51, 2009.

[12] E. Bini and G.C. Buttazzo. Biasing effects in schedulability measures. In Proceedings of

the 16th Euromicro Conference on Real-Time Systems (ECRTS 2004), pages 196–203,

July 2004.

[13] E. Bini, M. Di Natale, and G. Buttazzo. Sensitivity analysis for fixed-priority real-time

systems. Real-Time Systems, 39(1):5–38, 2008.

[14] D.A. Case, J.T. Berryman, R.M. Betz, Q. Cai, D.S. Cerutti, T.E. Cheatham III, T.A.

Darden, H.G. Duke HG, A.W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus,
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