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ABSTRACT 

 

The advent of high throughput sequencing technologies makes it possible to address biological 

questions at the genome-wide scale. Analysis of these data creates unprecedented opportunities 

to explore the functions and dynamics of the genomes of large numbers of prokaryotes and non-

model eukaryotic species. Herein I combine a new approach for allele-based subtyping and study 

of the genome of the pathogenic bacteria Listeria monocytogenes, and the analysis of the genome 

of the North American song sparrow (Melospiza melodia), selected for its behavioral, ecological, 

and biomedical importance. 

I developed an open-source software (Haplo-ST) to provide whole-genome multi locus 

sequence typing (wgMLST) of Listeria monocytogenes from Illumina whole-genome sequencing 

data, while improving standardization and data exchangeability worldwide. Along with allelic 

profiles, this tool also generates allele sequences and identifies paralogous genes present in each 

isolate, which is extremely useful for evaluating phylogenetic relationships between closely 

related strains. More broadly, Haplo-ST is flexible and can be adapted to characterize the 

genome of any haploid organism simply by installing an organism-specific gene database. This 

tool was used to characterize and differentiate between two groups of L. monocytogenes isolates 



obtained from the natural environment and poultry processing plants. This tool was also used to 

study the patterns of genetic diversity and linkage disequilibrium in a large and diverse collection 

of L. monocytogenes isolates. We expect that Haplo-ST will serve as a valuable resource for 

accurately subtyping and evaluating relationships among bacterial isolates for routine 

surveillance, outbreak investigations and source tracking. 

We used genome assembly and annotation of the North American song sparrow 

(Melospiza melodia) to identify genomic coordinates of protein-coding genes, microsatellites, 

repeat elements, transposable elements and several categories of non-coding RNA. The protein-

coding genes were assigned with functional annotations and the genome assembly of the song 

sparrow was compared to that of several closely related birds. The genomic resources developed 

during this study will serve as valuable resources for facilitating studies contributing to 

biomedical research and in population genomic and comparative genomic studies of closely 

related species. 

 

INDEX WORDS: Listeria monocytogenes, wgMLST, linkage disequilibrium, phylogeny, 

genetic variation, Melospiza melodia, reference genome, protein-coding 

genes, microsatellites, ncRNA, transposable elements, Haplo-ST, natural 

environment, poultry processing plants 

  



 

 

GENOME ANALYSIS OF LISTERIA MONOCYTOGENES AND MELOSPIZA MELODIA 

 

by 

 

SWARNALI LOUHA 

B. Sc., Bangalore University, India, 2007 

M. Sc., Bangalore University, India, 2009 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

 

 

ATHENS, GEORGIA 

2020  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2020 

SWARNALI LOUHA 
 

All Rights Reserved 
  



 

 

GENOME ANALYSIS OF LISTERIA MONOCYTOGENES AND MELOSPIZA MELODIA 

 

by 

 

SWARNALI LOUHA 

 

 

 

 

                                       Major Professor:      Travis C. Glenn 

 

                                                                            Committee:              Richard J. Meinersmann  
                                                                               Zaid Abdo  

                                                                                                             James H. Leebens-Mack 
 

 

 

 

Electronic Version Approved: 

Ron Walcott 
Dean of the Graduate School 
The University of Georgia 
December 2020  



 

 

DEDICATION 

I dedicate this dissertation to my parents and my husband for their love, support, and inspiration 

to achieve my goals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv  



 

 

ACKNOWLEDGEMENTS 

First of all, I am grateful to my advisor, Dr. Travis Glenn, for his consistent support and 

guidance to pursue the research described in this dissertation. From the very first day I rotated in 

his lab, he mentored and helped me develop a deep understanding of genomic technologies. 

Travis has always been there to help me and provided the best resources to explore areas away 

from his field of expertise. I am particularly indebted to him for exposing me to a variety of 

projects and providing me with the freedom to work on a wide range of ideas. I am also deeply 

indebted to Dr. Rick Meinersmann at USDA, Athens, for financially supporting me for the first 

few years at UGA and guiding me to learn the fundamentals of microbial population genetics. I 

would also like to thank Dr. Zaid and Dr. Leebens-Mack for providing valuable insights and 

comments and serving on my dissertation committee. 

I also want to take this opportunity to thank Elizabeth, Hongye, Tito, Ruth, other IOB 

graduate students and members of the BadDNA lab with whom I interacted at both personal and 

professional fronts. We discussed many research ideas, participated in retreats, tried out different 

cuisines and did other fun stuff. 

Finally, I would like to thank my family for their love and encouragement. My parents, 

who taught me the importance of education and gave me strength during difficult times, and my 

husband for the support and sacrifices he made to help me succeed in my endeavors. I am also 

thankful to my sister, who encouraged me and my two nephews for bringing joy in my life. 

 

v  



 

 

TABLE OF CONTENTS 

                                                            Page 

ACKNOWLEDGEMENTS………………………………………………………………………v 

CHAPTER 

1    INTRODUCTION AND LITERATURE REVIEW……………………………….....1 

1.1 Section 1: Genome characterization of Listeria monocytogenes….……..…....1 

1.2 Section 2: Genome analysis of Melospiza melodia………………………….17 

2    AN OPEN-SOURCE PROGRAM (HAPLO-ST) FOR WHOLE-GENOME 

      SEQUENCE TYPING SHOWS EXTENSIVE DIVERSITY AMONG LISTERIA 

      MONOCYTOGENES ISOLATES IN OUTDOOR ENVIRONMENTS AND 

      POULTRY PROCESSING PLANTS……………………………………………….34 

 2.1 Abstract………………………………………………………………………35 

 2.2 Importance…………………………………………………………………...36 

 2.3 Introduction…………………………………………………………………..36 

 2.4 Results………………………………………………………………………..41 

 2.5 Discussion……………………………………………………………………46 

 2.6 Materials and Methods……………………………………………………….52 

 2.7 Acknowledgements…………………………………………………………..59 

 2.8 References……………………………………………………………………59 

 2.9 Supplemental material……………………………………………………….74 

vi 



3    WHOLE GENOME GENETIC VARIATION AND LINKAGE 

                  DISEQUILIBRIUM IN A DIVERSE COLLECTION OF LISTERIA 

                  MONOCYTOGENES ISOLATES…………………………………………………...75 

 3.1 Abstract………………………………………………………………………76 

 3.2 Introduction…………………………………………………………………..76 

 3.3 Materials and Methods……………………………………………………….79 

 3.4 Results………………………………………………………………………..81 

 3.5 Discussion……………………………………………………………………83 

 3.6 Acknowledgements…………………………………………………………..86 

 3.7 References……………………………………………………………………87 

 3.8 Supplemental material…………………………………………………….....96 

4    A HIGH-QUALITY GENOME ASSEMBLY OF THE NORTH AMERICAN SONG 

      SPARROW, MELOSPIZA MELODIA………………………………………………97 

 4.1 Abstract………………………………………………………………………98 

 4.2 Introduction…………………………………………………………………..98 

 4.3 Materials and Methods……………………………………………………...101 

 4.4 Data Availability……………………………………………………………106 

 4.5 Results and Discussion……………………………………………………..108 

 4.6 Conclusion………………………………………………………………….111 

 4.7 Acknowledgements…………………………………………………………112 

 4.8 References…………………………………………………………………..113 

 4.9 Supplemental Material……………………………………………………...125 

vii 



5    CONCLUSION AND FUTURE WORK…………………………………………..126 

 5.1 Genome characterization of Listeria monocytogenes………………………126 

 5.2 Genome analysis of Melospiza melodia……………………………………128 

 5.3 References…………………………………………………………………..129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii



 1 

 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 GENOME CHARACTERIZATION OF LISTERIA MONOCYTOGENES 

1.1.1 The foodborne pathogen, Listeria monocytogenes: 

Listeria monocytogenes is a gram positive facultatively intracellular foodborne pathogen 

associated with significant morbidity and mortality worldwide, with an estimated 1600 cases of 

illnesses in the United States annually, resulting in more than 200 deaths. Listeria 

monocytogenes was first described by E. G. Murray and colleagues in 1926 (Murray et al. 1926). 

Although infection caused by L. monocytogenes was clinically described by the 1920s, it was not 

until 1952 that this organism was significantly associated with neonatal infection, sepsis and 

meningitis (Potel 1952). This pathogen was first identified to be a cause of foodborne illness in 

1981 (Schlech et al. 1983), and later associated with infection in adults with compromised 

immune systems (Schlech 2000). 

In humans, L. monocytogenes primarily causes a serious infection called listeriosis, which 

predominantly sickens people with weakened immune systems like pregnant woman, newborns, 

adults aged 65 and older, and those suffering from cancer, leukemia or transplant patients. Other 

than listeriosis, this pathogen also causes septicemia, encephalitis and meningitis in both children 

and adults with weak immune systems. Infection in healthy individuals has also been observed, 

although this is extremely rare (Vijila et al. 2007). In the United States, L. monocytogenes ranks 

third in fatality rates among foodborne bacterial pathogens, with 20-30% of deaths in high-risk 
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individuals. In the European Union, listeriosis accounts for the highest proportion of hospitalized 

cases and deaths, making it one of the most serious foodborne diseases. 

Listeria monocytogenes is well adapted as a saprophyte and ubiquitously present in the 

natural environment such as water, soil, and vegetation. Hence, it is easily contracted and 

transmitted by herd animals. Transmission may also arise from sources such as raw fruits and 

vegetables contaminated by environmental sources, direct or indirect contact with treated and 

untreated sewage, effluents from poultry and meat processing plants, decaying cereals like corn 

and soybeans and improperly fermented silage (Schuchat et al. 1992, Lorber & Bennett 2000, 

Henri et al. 2016). Further, Listeria is strongly adaptable to cold, acid, alkaline and osmotic 

stress, which enables it to grow in diverse environments (Raengpradub et al. 2008, Sue et al. 

2004). Because of its ability to thrive at temperatures used for refrigeration (below 4°C), L. 

monocytogenes may also be transmitted by ready-to-eat foods such as unpasteurized milk, meat, 

poultry, seafood, fish and dairy products that are contaminated during manufacture, post-

processing or storage in food facilities. Nearly all sporadic and epidemic human listeriosis cases 

have been linked to contaminated food or feed (Hyden et al. 2016). Listeria can also live in the 

intestines of birds, animals and humans for long periods of time without causing infection and 

has been found to be part of the normal gut microbiome of ~2-4% of healthy asymptomatic 

adults, most likely caused by the widespread agricultural carriage of this pathogen (Esteben et al. 

2009, Gahan & Hill 2014). Within the host organism, quorum sensing and availability of nutrient 

resources help Listeria up-regulate the expression of virulence genes and acquire enhanced 

pathogenicity to cause severe infection (Garnet et al. 2006, Haber et al. 2017). 
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1.1.2 Genetic structure of Listeria monocytogenes 

Listeria monocytogenes is generally considered to have a clonal genetic structure (Rasmussen et 

al. 1995, Wiedmann et al. 1997). Genome sequencing studies have shown that L. monocytogenes 

genomes are highly syntenic in nature (Kuenne et al. 2013) with a high degree of linkage 

disequilibrium existing between them (Call et al. 2003, Salcedo et al. 2003). Although the 

species pan-genome is highly stable, it is open to limited integration of foreign DNA, and 

evolutionary changes caused by mutation, duplication and recombination (Kuenne et al. 2013). 

Recombination observed between isolates belonging to different lineages of L. monocytogenes 

confirms that this species is not strictly clonal (den Bakker et al. 2008, Dunn et al. 2009, Ragon 

et al. 2008). Genetic diversity in this species is more likely to be driven by mutation than 

recombination (Ragon et al. 2008). Homologous recombination, which is rare, mostly occurs via 

conjugation and generalized transduction (Flamm et al. 1984, Lebrun et al. 1992, Hodgson 

2000). Further, homologous recombination does not occur uniformly throughout the genome, but 

is more frequent in the accessory genome (Nelson et al. 2004, Hain et al. 2007, den Bakker et al. 

2010). 

On the basis of somatic (O) and flagellar (H) antigens, a total of 13 serotypes has been 

described in L. monocytogenes, with the majority of food-borne strains belonging to 1/2a, 1/2b, 

1/2c and 4b, and serotypes 1a, 1b and 4b accounting for more than 90% of clinical isolates 

(Vijila et al. 2007, Henri et al. 2016). This species has also been divided into four distinct 

lineages: I, II, III and IV, each of which have distinct evolutionary histories, ecology, genomic 

content, recombination rates and pathogenic potential (Orsi et al. 2011, Haase et al. 2014). Each 

lineage is comprised of multiple serotypes; with lineage I containing serotypes 1/2b, 3b, 4b, 4d, 

4e and 7; lineage II, serotypes 1/2a, 1/2c, 3a, 3c; lineage III: serotypes 1/2a, 4a, 4b and 4c; and 
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lineage IV: 4a and 4c. About 96% of all human listeriosis cases are caused by Lineage I and II; 

serotypes 1/2a, 1/2b and 4b (7). Lineage I is more frequently associated with human listeriosis 

whereas lineage II strains are more commonly associated with food contamination and the 

environment and overrepresented in animal cases. Lineage III and IV strains occur less 

frequently among humans and have been linked to animal listeriosis (Dreyer et al. 2016). 

 

1.1.3 Molecular subtyping of bacteria 

The term ‘subtype’ is typically used to define groups below the level of bacterial species. A 

bacterial subtype is a group of organisms with the same attributes within a larger type. Subtyping 

methods identify common attributes which assign isolates to a larger type and different attributes 

that distinguish them from other subtypes (Bauer et al. 2013). Bacterial epidemiological typing 

aims to generate isolate-specific genotypic or phenotypic attributes that can be used to trace the 

sources and routes of bacterial dissemination. The scope of typing studies may vary from purely 

‘clinical’ (transmission of infection from infected individuals or other sources to uninfected 

individuals) to ‘environmental’ (spread of microbes in inanimate surroundings) or ‘industrial’ 

(identification of microbes that are either valuable or a menace to the bio-industry) (van Belkum 

et al. 2007). 

Molecular subtyping methods serve as valuable tools for the study of infectious disease 

pathogenesis, epidemiological surveillance and outbreak investigations conducted by public 

health agencies, and for tracking sources of microbial contaminants in the food processing 

industry. Typing may also be used for identifying emerging pathogenic strains, including 

potential agents of bioterrorism, or as evidence in forensic biology. In addition, molecular 
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subtyping can also reveal markers of diversity contributing to bacterial population genetics, 

population structures and ecology. 

 

1.1.4 Evolution of bacterial subtyping methods 

In the history of classical and molecular microbiology, multiple procedures have been used for 

subtyping bacteria. Conventional typing methods such as bacteriophage typing, biochemical 

procedures, separation methods (SDS-PAGE, multi locus enzyme electrophoresis (MLEE), mass 

spectrometry) and serotyping have contributed towards understanding the natural history and 

epidemiology of infections caused by several clinically relevant bacterial pathogens (Wentworth 

1963, Audurier and Martin 1989, Wolf 1997, Uzzau et al. 2000). In the field of clinical 

microbiology, antibiogram typing (antimicrobial susceptibility testing) has been used as a 

primary method for identification of bacterial cross-transmission in healthcare settings for a long 

time (van Belkum et al. 2007). 

While bacterial phenotyping methods are helpful for elucidating healthcare associated 

outbreaks, they are limited in determining definitive relationships between isolates obtained from 

similar environments. Further, the development, application and quality control of some methods 

like phage typing and serotyping is costly, labor-intensive and require skills and methodologies 

that are difficult to maintain standards of today’s accreditation bodies for microbiology 

laboratories. Additionally, because a given phenotype does not always accurately reflect the 

genotype of a microbe, phenotypic markers are unsuitable as stable epidemiological markers for 

critical endeavors like infection control and surveillance. Because of these limitations, 

phenotyping has largely been replaced by genotyping or ‘molecular’ typing over the last few 
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decades. Over time, these methods have evolved from methods with poor standardization and 

reproducibility to highly standardized and reproducible methods with high discriminatory power. 

Molecular subtyping methods can be differentiated into two broad categories; fragment-

based and sequence-based methods. Here, I will present a brief overview of the molecular typing 

methods used for subtyping L. monocytogenes together with their advantages, limitations and 

unresolved issues of the methods currently used. 

 

1.1.4.1 Fragment-based molecular subtyping methods 

There are several types of fragment-based subtyping methods. Some methods depend on the 

separation of PCR-amplified DNA fragments based on molecular size such as amplified 

fragment length polymorphism (AFLP), multi-locus variable number tandem repeat analysis 

(MLVA), PCR-restriction fragment length polymorphism (PCR-RFLP) and random 

amplification of polymorphic DNA (RAPD) (Bauer et al. 2013, van Belkum et al. 2007). Other 

more commonly used methods rely on enzymatic digestion of bacterial DNA fragments such as 

ribotyping and pulsed field gel electrophoresis (PFGE) (Wiedmann 2002). PFGE has been 

considered as a gold standard for a long time and has been used by the Centers for Disease 

Control and Prevention (CDC) and state health departments in a national network (PulseNet) to 

exchange DNA subtypes for isolates of L. monocytogenes. Though this technique yields a high 

amount of pattern diversity that provides good discriminatory power, the relatedness of patterns 

is not a true measure of relatedness between isolates and is often used only as a guide. Further, 

PFGE is cumbersome, labor-intensive, subjective and becomes difficult as more profiles are 

entered into PFGE databases (Bauer et al. 2013). 
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1.1.4.2 Sequence-based molecular subtyping methods 

Sequence-based subtyping methods are based on characterizing differences in short DNA 

sequences (several genes, SNPs), or entire genomes. A major advantage of these approaches is 

that sequence data is considerably less ambiguous and easier to interpret than banding pattern-

based data obtained from fragment-based approaches. Further, sequence data does not require 

pure cultured isolates because sequences can be directly obtained by PCR amplification from 

clinical samples. More importantly, sequence data allows reconstruction of ancestral 

relationships among isolates, thus providing insights into bacterial evolution, ecology and 

epidemiology (Moorman et al. 2010). 

Multi locus sequence typing (MLST), the genotypic descendent of MLEE, is a widely 

accepted approach that sequences DNA of several genes (usually 5-10) to identify bacterial 

subtypes and determines genetic relatedness between bacterial isolates (van Belkum et al. 2007). 

In this method, every isolate is defined by a sequence type (ST), which usually consists of a 

combination of seven allelic profiles, each distinct for that particular isolate. Groups of STs 

sharing a minimum of six identical alleles along with an ST acting as the ‘central genotype’ 

forms clonal complexes (CCs), which are geographically and temporally widespread (Henri et al. 

2016). Although MLST generally characterizes differences in housekeeping genes, it may also 

be used for typing differences in virulence genes. Further, the development of online typing 

databases (Institut Pateur MLST database available at https://bigsdb.pasteur.fr/ ) that store allelic 

profiles of bacterial isolates facilitates standardized subtyping and allows large-scale surveillance 

studies. However, due to the use of a few slowly evolving housekeeping genes, conventional 

MLST lacks the resolution necessary to differentiate between closely related isolates that have 

diverged over short timeframes. 
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With the easy and cheap availability of next generation sequencing datasets, whole 

genome sequencing (WGS) of bacterial isolates have become readily available, leading to the 

development of high-throughput genome-wide SNP-based genotyping. This technique involves 

mapping sequencing reads from bacterial isolates to a reference genome and subtyping them 

based on the presence of SNPs at defined nucleotide positions known to be variable within a 

population. Several high quality SNP pipelines currently used are specifically designed to assess 

differences among closely related isolates (Jagadeesan et al. 2019). These include pipelines 

developed by the CDC (Lyve-SET, Katz et al. 2017), US FDA (CFSAN, Davis et al. 2015) and 

Applied Maths (BioNumerics). Because SNP-based approaches require the use of a closely 

related reference genome to prevent misalignment of reads against the reference genome and 

misidentification of SNPs, multiple CC-specific genomes are generally used as references to 

perform SNP calling within ST or CC groups. As the choice of multiple closely related reference 

genomes lack a global consensus, standardization of SNP-based approaches among different 

laboratories becomes difficult (Henri et al. 2017, Pearce et al. 2018). 

The advent of next generation sequencing has also led to the extension of the 

conventional 7-gene MLST to multiple loci across the whole genome, thus providing high-

throughput and high-resolution genotyping. These gene-by-gene approaches either use loci 

present in the core genome and shared by most isolates in a given population (termed as 

cgMLST, Moura et al. 2016), or all loci present in the pan-genome of a species (termed as 

wgMLST, Jagadeesan et al. 2019). Several open-source allele calling algorithms have been 

developed for cgMLST of L. monocytogenes (Pightling et al. 2015, Chen et al. 2016, Moura et 

al. 2016). Open-source algorithms that can perform wgMLST of bacterial isolates are also 

available and include Genome profiler (Zhang et al. 2015) and chewBBACA (Silva et al. 2018). 
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Genome profiler performs ad hoc wgMLST analysis of a set of bacterial genomes, whereas 

chewBBACA can be used to create and validate core and whole-genome MLST schemas using 

an algorithm based on BLAST score ratios. However, both these tools do not use any centralized 

nomenclature for assigning allele types, and hence are difficult to standardize across laboratories. 

Both core-genome and whole-genome MLST analysis have been implemented in commercial 

software as well, particularly BioNumerics (Applied Maths) and RidomSeqSphere+ (Ridom 

GmbH). Both platforms offer standardized allele-calling based on validated allelic profiles 

available in public databases, as well as the possibility to develop specific customized schemas. 

The US CDC has also created a wgMLST schema for L. monocytogenes inside PulseNet (using 

BioNumerics v7.5) making it feasible for federal, state and local public health laboratories to 

identify closely related isolates (Jackson et al. 2016). Although cgMLST/wgMLST based 

approaches are limited in that they are gene-centric and do not characterize differences in 

intergenic regions, their greatest advantage is that they are easy to standardize by using a unified 

allelic nomenclature. 

 

1.1.5 Applications of molecular subtyping approaches to L. monocytogenes 

Various molecular subtyping approaches have significantly improved our understanding of the 

biology, ecology and epidemiology of L. monocytogenes and other bacterial pathogens. In 

principle, the goal of molecular subtyping methods is to compare the genetic material of two or 

more bacterial isolates to determine whether they share a recent common ancestor. This has led 

to their application in surveillance programs which help in the rapid detection of foodborne 

disease outbreaks. Analysis of molecular subtyping data from human patients not only help in 

detecting widespread clusters of human foodborne disease cases, but also help in identifying and 
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eliminating the outbreak source. Surveillance of human listeriosis cases is more challenging 

when compared to other foodborne pathogens (like Salmonella or E. coli) because L. 

monocytogenes has a long incubation period (7-60 days) and clinical disease develop in only 

specific sections of the population (newborn, elderly, pregnant, immunocompromised). Thus, 

effective surveillance and control of L. monocytogenes not only require sensitive subtyping 

approaches, but should also be accompanied with epidemiological data and a thorough 

understanding of bacterial genetics, population structure and physiology (Wiedman 2002). 

Subtyping methods are also valuable in tracking the source of contamination in the food 

chain. Listeria monocytogenes has specifically been used as a model system for evaluating the 

efficiency of subtyping techniques in tracking in-plant Listeria contamination patterns (Wiedman 

2002). This is because in contrast to other foodborne pathogens, L. monocytogenes can thrive in 

adverse conditions like cold, acid or alkaline environments within food processing facilities and 

form biofilms in food contact surfaces (Hyden et al. 2016). This gives rise to highly persistent 

strains that are difficult to remove with regular sanitization shifts and capable of re-

contaminating the food processing environments multiple times. Thus, molecular subtyping 

methods help in controlling the spread of bacterial contamination and spoilage in the food 

industry. 

Molecular subtyping approaches also provide an opportunity to explore the population 

genetics and evolution of L. monocytogenes. Subtyping methods help in defining L. 

monocytogenes isolates into subtypes and clonal groups, and associating them with phenotypic 

characteristics and pathogenic potential (Wiedman 2002). This can help recognize markers of 

pathogenicity in L. monocytogenes and estimate the virulence potential of strains isolated from 

infected individuals and contaminated food. 
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1.1.6 My objectives: 

This dissertation applies development of an open-source bioinformatic approach for 

characterization of isolates of L. monocytogenes, and understanding patterns of linkage 

disequilibrium in L. monocytogenes. 

In the initial work (chapter 2), computational approaches were used to develop a freely 

available and portable tool, Haplo-ST, that can perform wgMLST-based characterization of 

isolates of L. monocytogenes from short-read sequencing data, while allowing for data 

standardization and exchangeability worldwide. This tool was subsequently used for subtyping 

two groups of L. monocytogenes strains collected from different ecological niches (natural 

environment and poultry processing plants) and phylogenetic relationships were evaluated within 

members of each group. The phylogenetic analysis revealed clear delineation of isolates into 

lineages within each group and lineage-specificity was not observed with isolate origins or 

phenotypes. Further, genetic differentiation analysis was conducted within both groups of 

isolates and this revealed 21 highly differentiated loci in L. monocytogenes that were potentially 

enriched for adaptation and persistence of L. monocytogenes within poultry processing plants. 

Haplo-ST was further used to characterize a diverse collection of 180 L. monocytogenes 

isolates from different geographical and temporal origins (chapter 3). This subtyping data was 

used for evaluating genetic variation and patterns of linkage disequilibrium in the pan-genome of 

L. monocytogenes. This analysis showed presence of strong linkage disequilibrium within the 

majority of genes in the genome of this bacteria. A set of 27 genes were found to have low levels 

of association with other genes and considered as potential hot spots for recombination events. 
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1.2 SECTION II: GENOME ANALYSIS OF MELOSPIZA MELODIA 

1.2.1 Genome analysis 

A genome is an organism’s complete set of DNA, including all of its genes and inter-genic 

regions, which contains all the information needed to build and maintain the organism. 

Identifying and quantifying all of an organism’s genes and their interactions with each other as 

well as the environment can unravel their functions and consequent effects on the organism. 

Therefore, analysis of genomes is essential for understanding the genetic information written in 

the DNA of an organism. Genome analysis also includes DNA sequencing, assembly of DNA to 

represent original chromosomes and analysis of the resulting assembly for structure and function 

(Pevsner 2009). Thus, a genome provides valuable shortcuts, helping researchers find genes and 

other non-genic feature of interest easily and quickly. Further, the study of genomes also 

involves the study of intragenomic processes such as epistasis, heterosis and pleiotropy. Genome 

analysis has been a key area of biological investigation for decades. Research in this field has 

progressed from Sanger sequencing using radiolabeled primers to early shotgun sequencing with 

bacterial vectors to high-throughput sequencing using second and third generation sequencing 

technologies (Giani et al. 2020). Here, I will present a brief history of the rise and evolution of 

genome research and its applications, and then provide the objectives for analyzing the genome 

of the North American song sparrow (Melospiza melodia), which has been considered as a model 

vertebrate species in field studies of birds. 

 

1.2.2 First generation sequencing 

DNA was first identified in 1869 by Friedrich Miescher. However, it took over a century to 

improve understanding of the nature of DNA, including the nucleotide bases that compose it and 
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the theory of chromosomal inheritance. It was during this period that Johannsen introduced the 

concept of ‘gene’ and Hans Winkler first proposed the term ‘genome’ to designate the complete 

genetic makeup of an organism (Weissenbach 2016). The double helical structure of DNA and 

the “codon for life” that guides the production of specific proteins were also discovered during 

this period. Technology continued to progress and RNA sequencing became feasible in the late 

1960s with transfer and ribosomal RNAs to be the first RNA molecules to be decoded (Holley et 

al 1965, Brownlee et al. 1968). The real progression in DNA sequencing was set into motion in 

1975 when the ‘plus and minus’ method was developed and used to sequence two short regions 

in the genome of phage jX174 (Sanger and Coulson 1975). Two years later, the same approach 

was used by Fred Sanger to sequence the first DNA genome of phage jX174 (Sanger et al. 

1977a). In the same year, Sanger developed a new method that could decipher DNA fragments 

of approximately 400 bases in a day. This classical method, known as ‘Sanger sequencing’ is 

based on selective incorporation of chain-terminating dideoxynucleotides by DNA polymerase 

during in vitro DNA replication. This involves four sets of polymerization reactions using 

tritium-radiolabeled primers, where each reaction is supplied with small amounts of one chain-

terminating 2,3-dideoxynucleoside triphosphate (ddNTP) to produce fragments of different 

lengths (Sanger et al. 1977b). When DNA polymerase incorporates a ddNTP at the 3' end of the 

growing DNA strand, chain elongation is terminated due to a missing 3' hydroxyl group 

(Atkinson et al. 1969). The products of the four reactions are loaded on polyacrylamide gels and 

the sequence is deduced by comparing the size of the fragments. This method was widely used 

for approximately 30 years, after which it was replaced by high-throughput sequencing 

platforms. 
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1.2.3 Shotgun sequencing 

In an attempt to accelerate DNA sequencing, Staden proposed “Shotgun sequencing” in 1979, in 

which bacterial vectors are used to clone random fragments of a long DNA molecule, which are 

sequenced in parallel and assembled using read overlaps (Staden 1979). This approach was used 

by Messing to develop the first shotgun sequencing protocol (Messing et al. 1981) and later 

adopted by Sanger to assemble the 48,502 bp long genome of phage l (Sanger et al. 1982). In 

the next two decades, many genome sequencing projects were launched and completed, leading 

to a large increase of data available in public repositories such as GenBank. Sequencing of entire 

genomes of a multitude of unicellular microorganisms (Epstein-Barr virus, Vaccinia virus, 

Human cytomegalovirus, H. influenza, E. coli) were undertaken followed by sequencing projects 

of more complex eukaryotes (C. elegans, Arabidopsis). During this time, advances in 

technological developments and industrial processes increased throughput and decreased 

sequencing errors. Major milestones included the synthesis of fluorescent DNA primers and their 

use in automating Sanger sequencing (Smith et al. 1986), introduction of dye terminator 

sequencing (Prober et al. 1987), and the release of the first commercial florescence automated 

DNA sequencer (ABI 370A) by Applied Biosystems. The introduction of highly optimized DNA 

polymerases further increased the speed and efficiency of sequencing (Tabor et al. 1987, Murray 

et al. 1989). These technological breakthroughs were followed by the introduction of ‘bodipy’ 

dyes that were more effective than conventional dyes (Metzker et al. 1996), magnetic bead-based 

DNA purification methods (DeAngelis et al. 1995), and capillary electrophoresis (Zhang et al. 

1995). These initiatives were further accelerated by the Human Genome Project, which aimed to 

assemble the complete set of human chromosomes (Lander et al. 2001), and its competition with 

Celera, a private company that also tried to achieve the same goals independently (Venter et al. 
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2001). The race to assemble the human genome made commercial enterprises realize the 

potential of a profitable business in sequencing and prompted the development of a diverse range 

of sequencing technologies, collectively known as Next-Generation Sequencing (NGS). 

 

1.2.4 Next-Generation Sequencing 

In the 2000s, the enthusiasm generated by the Human Genome Project gave birth to many private 

companies offering a variety of sequencing technologies at higher throughput and lower costs. 

These included 454, Solexa, Agencourt, Illumina, Complete Genomics and Applied Biosystems 

(Giani et al. 2020). The first NGS sequencer, GS20, was based on pyrosequencing and 

commercialized by 454 Life Sciences. This technology starts with single molecule template 

synthesis of small bead-bound DNA fragments, which are amplified in a water-in-oil emulsion 

clonal PCR (Tawfik and Griffiths 1998). The beads are then loaded into picotitre plates and 

sequenced in parallel by flowing pyrosequencing reagents across the plate (Glenn 2011). This 

system could produce 400-500 bp reads, had a 99% accuracy and could sequence a maximum of 

25 million bp in a 4 hr period at one-sixth the costs of conventional methods (Giani et al. 2020). 

454 was later acquired by Roche but is still known by the name 454. 

In the next few years, Solexa added several newer technologies (Kawashima et al. 1998, 

Mitra et al. 2003, Ruparel et al. 2005, Seo et al. 2005, Ost 2006) which further increased 

sequencing throughput and produced stronger optical signals. Solexa was acquired by Illumina 

and has established itself as one of the most popular sequencing platforms today. Illumina uses a 

glass flow cell for capturing and amplifying DNA fragments into clusters of identical molecules 

with a technique known as bridge amplification (Kawashima et al. 1998). The amplified clusters 

are sequenced with an approach similar to Sanger sequencing, except that dye labelled 
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terminators are used to detect every single nucleotide added to the end of the growing DNA 

chain. The greatest advantage of Illumina at that time was it represented paired-end reads i.e., 

both strands in a DNA molecule could be sequenced (one, then the other), which allowed to 

gauze the gap size between distant sites on a DNA fragment. 

In 2007, SOLiD, the 3rd commercial NGS technology, was introduced by Applied 

Biosystems. SOLiD uses the specificity of DNA ligases to determine sequences (Brenner et al. 

2000), but this method was found to have issues with sequencing palindromic sequences and 

consequently abandoned. Around the same time, Helicos developed the first commercial single 

molecule sequencer (Braslavsky et al. 2003, Harris et al. 2008). However, the short read-lengths 

together with high costs of sequencing limited usage of this platform. Ion Torrent developed a 

sequencing technology in 2011 which measured the pH variations induced by the release of 

protons during DNA synthesis. The hydrogen ions released during nucleotide additions were 

detected using a semiconductor sensor (Rothberg et al. 2011). Although this technology is still in 

use, it suffers from inaccuracies in the measurement of homopolymers (Loman et al. 2012). The 

limitations of these platforms led the way to the commercial success of Illumina which appeared 

to have a near monopoly over the DNA sequencing market by 2014. The release of the HiSeq 

and NovaSeq instruments by Illumina has drastically increased the throughput and reduced 

sequencing costs in the last decade. 

The Second-Generation Sequencing technologies mentioned above has allowed cost-

effective and rapid resequencing of genomes together with novel applications such as RNAseq, 

ChIP-seq, whole exome sequencing, genotyping with SNPs and epigenetic landscape 

determination (Thorisson et al. 2005, Johnson et al. 2007, Lister et al. 2008, Nagalakshmi et al. 

2008, Ng et al. 2009). However, difficulty in detecting overlaps between short-reads produced by 
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these platforms led to partially complete draft genomes, with problems in attaining complete 

sequences of repeats and low complexity regions (Bailey et al. 2002, Alkan et al. 2011). Newer 

technologies offered by PacBio and Oxford Nanopore have attempted to fill this gap by opening 

up the era of Third-Generation Sequencing in the last decade. In contrast to the Second-

Generation Sequencing, single DNA molecules are sequenced in nearly real-time and produce 

much longer reads spanning one to several hundred kilobases. The availability of ultralong reads 

greatly improves the quality of genome assemblies, as it enables generation of long continuous 

consensus sequences (Rhoades et al. 2015, Giordano et al. 2017). Although, in the past, the 

individual base-calling accuracy of these platforms were far less than Illumina reads, it has 

gradually increased over the years culminating in the release of a new method by PacBio in 2019 

called ‘HiFi’ (High Fidelity), which can generate 10-20 kbp long reads that are as accurate as 

Illumina short reads (Wenger et al. 2019). The subsequent release of Sequel II by PacBio has 

further increased the throughput of sequencing to 160 Gb per SMRT Cell, with a concomitant 

drop of up to 8-fold in sequencing costs (Giani et al. 2020). On the other hand, reads produced 

by Nanopore (Huang et al. 2010, Cherf et al. 2012, Manrao et al. 2012) have been recorded to be 

longer than PacBio (Payne et al. 2019) and found to sequence through repeats where even 

PacBio reads may fail (Giani et al. 2020). Another advantage with Nanopore is that this platform 

provides devices as small as a USB stick, allowing easy portability in remote field sites (Quick et 

al. 2016). However, the Nanopore technology is also known to produce sequencing biases that 

are difficult to correct (Istace et al. 2017). 

Other than providing improved genome assemblies with high structural accuracy, the 

Third-Generation Sequencing technologies allow generation of long phased blocks of 

haplotypes, where the paternal and maternal contributions to a homologous region of the 
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chromosome are reported separately (Kuleshov et al. 2014). This facilitates accurate mapping of 

reads for structural variant detection, including length variations in repeat motifs, indels, 

duplications, inversions and translocations (Merker et al. 2018, Chaisson et al. 2019). Further, a 

variety of epigenetic markers can also be characterized along with DNA sequencing in both 

PacBio and Nanopore Sequencing technologies (Schadt et al. 2013, Rand et al. 2017). 

 

1.2.5 Supporting technologies 

Several supporting technologies are also used to improve the contiguity of existing genome 

assemblies. These include optical mapping platforms (e.g., Bio-Nano), linked-read technologies 

(e.g., 10X Genomics Chromium system), or the genome-folding approach of Hi-C from Dovetail 

Genomics. These technologies help in orienting contigs in their putative order on chromosomes, 

by a process known as scaffolding. 

The current optical mapping technique used by BioNano focusses on labelling DNA 

molecules with specific restriction enzymes and imaging them with a high-resolution camera. 

Information from individual DNA molecules are combined to form consensus optical maps, 

which provide the linkage information needed to improve the process of de novo genome 

assembly (Teague et al. 2010, Lam et al. 2012), as well as identify and rectify misassemblies 

(Tang et al. 2015, Howe et al. 2015). Improved contiguity of hybrid genome assemblies also 

allows the detection of structural variants by comparing to a reference (Mak et al. 2016) and 

helps in identifying genome-wide methylation patterns through methylation-sensitive restriction 

enzymes (Ananiev et al. 2008). The linked read technology offered by 10X Genomics leverages 

microfluidics to partition and barcode high molecular weight DNA to generate linked reads, 
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which provide long-range information from short-read sequencing data. However, this 

technology has been discontinued in 2020. 

Another scaffolding technique called Hi-C uses chromatin proximity information for all 

regions of the genome to arrange contigs and scaffolds in a linear sequences of chromosomes 

(Lieberman-Aiden et al. 2009, Burton et al. 2013, Kaplan et al. 2013). In this technique, cells are 

embedded in a matrix and treated to remove all layers except the chromosome folding 

information. The DNA is then cleaved with restriction enzymes and re-ligated to form covalent 

bonds with new, spatially close molecules. The resulting library is sequenced with Illumina short 

reads and the DNA interactions obtained from the ligation step is used to order contigs into 

chromosomes (Dudchenko et al. 2017, Teh et al. 2017). While Hi-C has the potential to scaffold 

large genomes, it also produces misassembly errors such as artificial inversions, scaffold 

misplacement within the same chromosome, or scaffold misassignment to different 

chromosomes (Burton et al. 2013). To correct these errors, a combination of different scaffolding 

techniques have been adopted by many sequencing projects (Bickhart et al. 2017, Wallberg et al. 

2019). 

Ultimately, the choice of a specific sequencing technology depends on several factors 

such as the research goals, availability of a particular technology, amount of DNA available for 

sequencing, and associated costs. Often, a combination of both long and short read technologies 

is adopted, as shorter reads have a different error profile and can be used to correct longer ones 

(Koren et al. 2012). 
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1.2.6 Applications of genome analysis 

Information obtained from genome analysis can be applied to a variety of fields including 

medicine, biotechnology, agriculture and social sciences. Here, I will briefly list a few major 

applications of genome research. 

 

1.2.6.1 Annotation of biologically significant elements: 

A raw genome sequence is not of much value unless it has been annotated for biologically 

meaningful information. This involves analyzing the sequence structure and composition, as well 

as using information from closely related reference species to determine a variety of biologically 

significant elements in the genome. While genomes are annotated for repetitive elements, 

microsatellites, non-coding RNAs etc., genome annotation projects mainly focus on correctly 

identifying the location, structure and function of protein-coding genes. Gene prediction has been 

aided with the development of many algorithms in the past decade. These approaches can be 

classified as ‘intrinsic’, ‘extrinsic’ and ‘combiner’ approaches (Del Angel et al. 2018). Intrinsic 

approaches consist of ab-initio gene prediction, where a training set of statistical models is used 

to extract information from the genomic sequence itself such as coding potential, splice site 

prediction etc. On the other hand, extrinsic approaches use sequences available in public 

repositories like transcripts, ESTs, RNA-seq for gene prediction. Both of these approaches have 

their own advantages and disadvantages, and ‘combiner’ approaches integrate the best of both 

techniques. Combiners like ‘Eugene’ and ‘Maker’ predict genes using an integrated approach in 

which intrinsic prediction is modified by a given extrinsic dataset. Thus, the quality of final 

results not only depend on the choice of algorithm, but also on the selection of the dataset 

provided to the algorithm. Finally, the most important step in gene prediction is to provide 
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functional annotations to the predicted polypeptides by comparing their similarity to other 

sequences present in public repositories. Downstream analysis of the functional annotation 

process allows further understanding of specific genome properties such as metabolic pathways, 

similarity to closely related species etc. Genome sequencing and annotation also favors 

comparative genomics of closely related organisms and detection of selection. 

 

1.2.6.2 Identification of variants: 

A prominent application of genome sequencing is to identify variants from sequenced genomes 

for studying genetic association with diseases, detecting mutations in cancer, or characterizing 

heterogenous cell populations (Liu et al. 2013). These variants include single nucleotide 

polymorphisms (SNPs), single nucleotide variants (SNVs), copy number variations (CNVs) and 

structural variants (SVs), which can be used as genetic markers for screening diseases. Detection 

of SNVs and indels are essential for understanding the genetics of diseases and help in clinical 

diagnosis and treatment of patients (Altmann et al. 2012). CNVs play a role in human diversity 

and their impact on disease susceptibility has been well recorded (Pirooznia et al. 2015). With 

the increase in whole genome sequencing, there has been a dramatic increase in the number of 

variants and their complexity. This has prompted prediction of the functional impacts of variants 

and their implications in diseases. Variant calling is also used to study the amount of variation 

within and between populations in population genetic studies (Wright et al. 2019). In plant 

genetics, variants such as microsatellite repeats, simple sequence repeats and SNPs are used as 

genetic markers (Chaitanya 2019). 

  



 27 

1.2.6.3 Detection of epigenetic markers: 

Genome sequencing and analysis allows for the study of the epigenome of an organism along 

with post-translational modification of histones and methylation maps, both of which are 

regarded as epigenetic markers. DNA methylation is essential for normal development of an 

organism and plays a crucial role in many vital processes (Chaitanya 2019). However, 

hypomethylation and hypermethylation of CpG islands in specific regions of the genome leads to 

cancer. DNA methylation can be studied by methylated DNA immunoprecipitation (meDIP) 

(Thu et al. 2009). Modification of histone proteins can also affect DNA indirectly by altering 

regulation of gene expression. Post translational modifications of histones at the genome level 

can be identified with ChIP-Seq technology (Veluchamy et al. 2015). 

 

1.2.7 My objectives: 

I analyzed the genome of the North American song sparrow, Melospiza melodia (chapter 4), 

which has been widely studied for its behavioral and ecological characteristics, and is a favorable 

candidate in several areas of biomedical research. The primary objective of sequencing and 

analyzing the genome of M. melodia was to provide a reference genome assembly and its 

associated annotations for this species. To achieve these goals, a Chicago library of the genome 

of M. melodia was sequenced and assembled with the HiRise scaffolding software pipeline at 

Dovetail Genomics. The resulting genome assembly was annotated for protein coding genes and 

other non-genic features of interest such as transposable elements, microsatellites and non-

coding RNAs. This study yielded in a high-quality and highly complete de-novo genome 

assembly of M. melodia which will serve as a reference for a variety of genetic, ecological, 

functional and comparative genomic studies in songbirds and other related taxa. 
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2.1 ABSTRACT 

A reliable and standardized classification of Listeria monocytogenes is important for accurate 

strain identification during outbreak investigations. Current whole-genome sequencing (WGS)-

based approaches for strain characterization are either difficult to standardize, rendering them 

less suitable for data exchange, or are not freely available. Thus, we developed a portable and 

open-source tool, Haplo-ST, to improve standardization and provide maximum discriminatory 

potential to WGS data tied to a multi-locus sequence typing (MLST) framework. Haplo-ST 

performs whole-genome MLST (wgMLST) for L. monocytogenes while allowing for data 

exchangeability worldwide. This tool takes in (i) raw WGS reads as input, (ii) cleans the raw 

data according to user specified parameters, (iii) assembles genes across loci by mapping to 

genes from reference strains, and (iv) assigns allelic profiles to assembled genes and provides a 

wgMLST subtyping for each isolate. Data exchangeability relies on the tool assigning allelic 

profiles based on a centralized nomenclature defined by the widely-used BIGSdb-Lm database. 

Tests of Haplo-ST’s performance with simulated reads from L. monocytogenes reference strains 

demonstrated high sensitivity (97.5%), and coverage depths ≥ 20× were found to be sufficient for 

wgMLST profiling. We then used Haplo-ST to characterize and differentiate between two 

groups of L. monocytogenes isolates derived from the natural environment and poultry 

processing plants. Phylogenetic reconstruction identified lineages within each group, and no 

lineage-specificity was observed with isolate phenotypes (transient vs. persistent) or origins. 

Genetic differentiation analyses between isolate groups identified 21 significantly differentiated 

loci, potentially enriched for adaptation and persistence of L. monocytogenes within poultry 

processing plants. 
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2.2 IMPORTANCE 

We have developed an open-source tool (https://github.com/swarnalilouha/Haplo-ST) that 

provides allele-based subtyping of L. monocytogenes isolates at the whole genome level. Along 

with allelic profiles, this tool also generates allele sequences and identifies paralogs, which is 

useful for phylogenetic tree reconstruction and deciphering relationships between closely related 

isolates. More broadly, Haplo-ST is flexible and can be adapted to characterize the genome of 

any haploid organism simply by installing an organism-specific gene database. Haplo-ST also 

allows for scalable subtyping of isolates; fewer reference genes can be used for low resolution 

typing, whereas higher resolution can be achieved by increasing the number of genes used in the 

analysis. Our tool enabled clustering of L. monocytogenes isolates into lineages and detection of 

potential loci for adaptation and persistence in food processing environments. Findings from 

these analyses highlight the effectiveness of Haplo-ST in subtyping and evaluating relationships 

among isolates in studies of bacterial population genetics. 

 

2.3 INTRODUCTION 

Listeria monocytogenes is an opportunistic foodborne pathogen associated with significant 

public health concern worldwide, with an estimated 1600 illnesses and 260 deaths occurring 

annually (Bennion et al. 2008, Scallan et al. 2011) and an estimated annual economic burden of 

$2.8 billion in the United States (USDA ERS 2014). L. monocytogenes primarily causes the food 

borne illness listeriosis but may also cause septicemia, encephalitis, and meningitis in the 

immunocompromised, newborn, and elderly and severe complications in pregnancies leading to 

stillbirths and miscarriages (Den Bakker et al. 2008). 



 37 

Listeriosis mainly occurs through the consumption of food such as meat, fish, and dairy 

products which become contaminated in food processing facilities during manufacturing, post-

processing, or storage for extended periods of time before consumption (Painset et al. 2019). 

Within food processing facilities, L. monocytogenes can adapt to survive conditions used for 

food preservation and safety; it can replicate at low temperatures and under high-salt conditions 

and can withstand disinfectants and nitrate preservation methods. These, together with the ability 

to form biofilms on food contact surfaces, can facilitate prolonged persistence of L. 

monocytogenes in food facilities (Orsi et al. 2008, Carpentier and Cerf 2011, Hyden et al. 2016). 

Persistence may also arise from the survival of the bacteria in nooks not reached by regular 

cleaning and sanitation procedures. Often, this results in cross-contamination of the final product 

multiple times, which increases the risk of an outbreak. On the other hand, frequent introduction 

of L. monocytogenes from external sources may result in a high prevalence of transient strains 

within food facilities (Jagadeesan et al. 2019). Contaminating strains of L. monocytogenes are 

later released from food facilities into the natural environment via effluents (Berrang et al. 2005, 

Kuhn and Goebel 2007). Hence, food regulatory authorities frequently implement effective 

surveillance and control measures to discriminate between transient and persistent strains, 

decrease harborage, and prevent dissemination of L. monocytogenes (Jackson et al. 2016). 

Additionally, it is important to investigate the relatedness of strains of L. monocytogenes 

involved in a single contamination event for accurate source tracking. Such investigations can 

help optimize effective control measures to prevent recurrence of contamination in food 

processing facilities (Jagadeesan et al. 2019). 

Molecular subtyping techniques have been traditionally used for strain discrimination and 

identification of degrees of genetic relatedness among isolates (Moorman et al. 2010). While 
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many other subtyping methods (ribotyping, repetitive extragenic palindromic PCR [REP-PCR], 

and multilocus enzyme electrophoresis [MLEE]) have been used in the past, pulsed-field gel 

electrophoresis (PFGE) has been the “gold standard” subtyping tool for L. monocytogenes for 

many years (Swaminathan et al. 2001). Although PFGE has been extremely useful in outbreak 

investigations and source tracking of L. monocytogenes at food settings (Jagadeesan et al. 2019), 

it is time-consuming, labor-intensive, expensive, and difficult to standardize (Ruppitsch et al. 

2015, Henri et al. 2016). Moreover, it provides little information on the genetic variation within 

or phylogenetic relationships among strains, limiting our overall understanding of evolutionarily 

important traits such as virulence. In contrast, sequence-based approaches are promising tools for 

strain typing and phylogeny assessment (Ragon et al. 2008). Multi-locus sequence typing 

(MLST) differentiates strains by detecting variation within the nucleotide sequences of seven 

housekeeping genes. Every isolate is defined by a sequence type (ST), which consists of a 

combination of seven allelic profiles. Groups of STs sharing a minimum of six identical alleles 

along with an ST acting as the ‘central genotype’ forms clonal complexes (CCs), which can be 

geographically and temporally widespread (Ragon et al. 2008). Conventional MLST has been 

used to describe the population structure of L. monocytogenes, and has shown that L. 

monocytogenes forms a structured population consisting of four divergent lineages (I-IV) (Ragon 

et al. 2008, Orsi et al. 2011). Lineage I strains are known to be highly clonal, indicating strong 

selection of genetic traits of fitness within the host, whereas Lineage II strains show higher rates 

of recombination than Lineage I, and this increased genome plasticity may help in adapting to 

diverse ecological niches (Meinersmann et al. 2004, Pirone-Davies et al. 2018). This is supported 

by the fact that Lineage I strains are predominantly linked to human clinical infection and animal 

listeriosis, whereas Lineage II strains are more commonly associated with food contamination 
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and the environment. Lineage III and IV strains occur less frequently among humans and have 

been linked to animals (Dreyer et al. 2016). 

The advent of next generation sequencing technologies has facilitated whole genome 

sequencing (WGS)-based subtyping at low costs and speeds exceeding that of traditional MLST. 

WGS enables easy availability of total bacterial genomes that allow strain discrimination at very 

high resolution. WGS also provides the ability to infer phylogenetic relationships among isolates, 

along with access to additional information, such as virulence and resistance markers (Painset et 

al. 2019). WGS-based subtyping has been used for the strain detection and surveillance of L. 

monocytogenes in different countries around the world (Jackson et al. 2016, Kvistholm Jensen et 

al. 2016, Kwong et al. 2016, Moura et al. 2017, Halbedel et al. 2018). WGS-based subtyping 

approaches are either based on single nucleotide polymorphisms (SNPs) (Jackson et al. 2016, 

Katz et al. 2017), or on gene-by-gene allelic profiling of a defined set of genes in the genome 

(Jagadeesan et al. 2019, Moura et al. 2017). Studies have shown that both SNP-based subtyping 

and whole-genome-based allelic profiling show similar discriminatory power and clustering 

among isolates (Jagadeesan et al. 2019, Henri et al. 2017). However, SNP-based approaches are 

dependent on the choice of the assembly pipeline and multiple closely related reference genomes 

which lack a global consensus, thus making standardization of SNP-based approaches among 

different laboratories difficult (Henri et al. 2017, Pearce et al. 2018). These limitations are 

overcome by gene-by-gene approaches (see Table S1 in the supplemental material), which are 

based on allelic variation of a predefined set of genes from either the core genome (core genome 

MLST [cgMLST]) or on a set of genes from both core and accessory genome (whole-genome 

MLST [wgMLST]). Several cgMLST schemes have been developed for subtyping L. 

monocytogenes (Ruppitsch et al. 2015, Pightling et al. 2015, Chen et al. 2016, Moura et al. 
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2016). These cgMLST schemes are different from each other with respect to the method 

employed, the diversity and number of isolates used in scheme development, and the number of 

loci used in each scheme. These differences between cgMLST schemes can impact 

communication on cluster detection between different laboratories, as knowledge on the type of 

core genome scheme, assembler, assembler version, and sequencing technology used for cluster 

detection becomes crucial (Pietzka et al. 2019). Furthermore, cgMLST finds differences only 

within the core genome of L. monocytogenes, which represents ~58% of the genome in terms of 

number of genes and ~54% in terms of the length of the genome (Jagadeesan et al. 2019). 

Though this level of differentiation may be sufficient for discriminating outbreak strains from 

epidemiologically unrelated strains, investigating persistence and source tracking of root-cause 

analysis requires increased discriminatory power beyond cgMLST (Jagadeesan et al. 2019). 

These problems can be addressed with a standardized wgMLST-based subtyping, which can 

profile allelic differences among L. monocytogenes strains on a genome-wide scale. 

In this study, we present the Haploid Sequence-Typer (Haplo-ST), a tool that can perform 

wgMLST for L. monocytogenes while allowing for data exchangeability worldwide (Fig. 2.1 and 

Table 2.1). After developing Haplo-ST, we used it to characterize and differentiate between two 

groups of L. monocytogenes isolates: the first group was obtained from the natural environment, 

and the second group was obtained from poultry processing plants. Isolates obtained from the 

poultry processing plants contained both transient and persistent strains of L. monocytogenes. 

Previous research has shown that persistent strains have increased adhesion and biofilm 

formation capacity (Wang et al. 2015) and are genetically distinct from transient strains (Autio et 

al. 2003). However, larger-scale studies of the extent of genetic variation existing between 

persistent and transient strains are still needed. 
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This study aims (i) to develop Haplo-ST for performing wgMLST of L. monocytogenes 

isolates, (ii) to establish phylogenetic relationships within the two group of L. monocytogenes 

isolates obtained from the outdoor environment and poultry processing plants, (iii) to examine if 

there exists any lineage-specific association of isolates obtained from (a) different sites in the 

natural environment and (b) transient and persistent strains, and (iv) to analyze the extent of 

genetic variation between (a) isolates obtained from the natural environment and poultry 

processing plants and (b) transient and persistent strains of L. monocytogenes. We describe 

below how we achieved these aims. 

 

2.4 RESULTS 

2.4.1 Sensitivity of Haplo-ST 

Allelic profiles derived from Haplo-ST for L. monocytogenes strains EGD-e and 4b F2365 were 

compared to allele profiles of 1826 loci in EGD-e and 1825 loci in 4b F2365 respectively. On 

average, 4.4% of genes had uncalled alleles; this may be due to the inability of short reads to 

assemble these genes completely. Amongst the loci that were assigned allele designations, 

reproducibility of allele calls with Haplo-ST was significant, yielding an average sensitivity of 

97.5% over eight simulated datasets for coverage depths of ~ 80× (Phred quality score ≥ 20 for ≥ 

90% bases in the retained reads). 

 

2.4.2 Dependency of Haplo-ST on sequencing depth 

The number of genes correctly profiled by Haplo-ST increased rapidly from a sequencing depth 

of 5× to 10×, then increased modestly from 10× to 20× and did not increase further beyond a 

depth of 20× (Fig. 2.2A). The number of genes assigned an erroneous allele ID (i.e., 
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misassigned) and the number of genes missing an allele ID assignment (i.e., missing or uncalled 

alleles) decreased significantly up to a depth of 20×, improved slightly at 30×, and then remained 

stable at higher sequencing depths (Fig. 2.2B). The average number of genes partially assembled 

by YASRA and thus giving rise to uncalled alleles by BIGSdb-Lm remained similar over all 

sequencing depths. From these results, we conclude that sequencing depths ≥ 20× will perform 

well in Haplo-ST for wgMLST profiling of L. monocytogenes isolates. 

 

2.4.3 wgMLST profiling of L. monocytogenes isolates 

Haplo-ST generated a wgMLST profile of each L. monocytogenes isolate from WGS reads (see 

Data Set S4 in the supplemental material). A list of assembled gene sequences identified in each 

isolate were also provided by Haplo-ST (available at https://bit.ly/3e9KM6g). 

 

2.4.4 Identification of paralogs 

We used two different approaches to identify paralogous genes in our dataset. With our first 

approach, Haplo-ST generated a list of paralogous genes for each L. monocytogenes isolate while 

profiling isolates. Our second approach identified 133 paralogous genes (see Data Set S1 in the 

supplemental material) in BIGSdb-Lm. Comparison of the two approaches for paralog detection 

showed that BIGSdb-Lm correctly identifies all paralogous genes. However, in a few instances 

BIGSdb-Lm incorrectly identifies genes which are not paralogous to each other as ‘exact 

matches’ to each other (see Fig. S1 in the supplemental material). On further examination, we 

found that in such cases, two allele sequences partially matched across their lengths with a 100% 

identity (see examples in Fig. S1). 
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2.4.5 Population structure and phylogenetic relationships among L. monocytogenes isolates 

Of the 171 L. monocytogenes isolates obtained from the Broad river watershed, 23 different CCs 

and 25 singleton STs (unassigned CCs) were identified (Data Set S4). Thirty-one novel STs were 

also identified in this group, revealing significant amount of diversity of L. monocytogenes 

strains. The distribution of the 23 different CCs in river water flowing through different land use 

areas is shown in Fig 2.3A. Of the 23 different CCs, 5 CCs (CC945, CC14, CC901, CC912, and 

CC910) were found to be the most abundant in this group. Across the population, some CCs 

were significantly enriched in water flowing through forests (CC14 and CC945), and others were 

more associated with pastures (CC901). The 171 isolates formed three distinct clusters in the 

phylogenetic tree (Fig. 2.4A), with each cluster containing a specific lineage (I, II and III) of L. 

monocytogenes strains. A majority of the isolates belonged to lineage II (68%), followed by 

isolates from lineage III (17%), and then lineage I (5%), and 15 isolates (9%) that could not be 

genotyped into lineages with lineage-specific probes clearly clustered in lineage II. A few 

isolates were distantly related to these clusters, and an assembly of the 16s rRNA sequence of 

these isolates showed that they belonged to non-pathogenic Listeria species, L. seeligeri (n=2) 

and L. welshimeri (n=1). Lineage I contained isolates from CC1, CC4, and three singletons 

(CC388, ST898 and a new ST), whereas most isolates in lineage III had novel STs, except for 

two isolates belonging to ST978. Lineage II was subdivided into seven clades that correspond 

mainly as follows: (1) CC940, CC950, CC912, ST941, ST936, and six singletons (ST914, 

ST949, ST985, ST990, ST913, and ST947); (2) CC945, CC935, ST956, ST951 and six 

singletons (ST944, CC838, ST948, ST939, ST909, and ST955); (3) CC926, CC920, and a 

singleton, CC831; (4) CC7, CC11, CC931, and seven singletons (CC177, CC918, CC14, CC906, 

ST934, ST789, and ST916); (5) ST390 and ST899; (6) CC14, CC901, CC570, and a singleton, 
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ST954; and (7) CC321, CC910, and a singleton, ST929. Isolates from the three L. 

monocytogenes lineages were found to be randomly distributed across the four sampling 

locations (Fig. 2.4B). This was confirmed with Fisher’s exact test (a = 0.05), which failed to 

show any lineage-specific association of isolates with sampling sites (P = 0.067). Because 

lineage III strains are mostly associated with animals (Dreyer et al. 2016), we hypothesized that 

the majority of lineage III strains would be obtained from agricultural/pastoral sites. However, in 

our data, most lineage III strains (62%) were obtained from forested areas. 

The 162 isolates obtained from poultry processing plants contained 16 CCs and 1 

singleton ST, ST1006 (Data Set S4). Nine isolates could not be assigned to any ST or CC, either 

due to new alleles identified in these isolates or due to incomplete MLST profiles. Six CCs 

(CC321, CC5, CC155, CC6, CC7, and CC9) accounted for 84% of the L. monocytogenes isolates 

(Fig 2.3B). Four CCs were abundant in the persistent strains: CC5, CC6, CC155, and CC321. 

The phylogenetic tree constructed from isolates obtained from poultry processing plants had two 

major clusters (Fig. 2.5A): one containing isolates belonging to lineage I (35%) and the other 

containing lineage II (59%) isolates. Twelve isolates could not be classified into lineages by 

genotyping with lineage-specific probes; of these twelve, 3 isolates clustered in lineage I and 4 

isolates clustered in lineage II. The remaining 5 isolates were distantly related from the two 

major lineages in the tree and were identified as non-pathogenic species of Listeria, L. innocua 

(n=4) and L. welshimeri (n=1). Lineage I had two clades corresponding to (1) CC6 and three 

singletons (CC1, CC2, and CC4) and (2) CC5 and two singletons (CC288 and CC224). Lineage 

II was subdivided into four main clades corresponding to (1) CC321, (2) CC155, (3) CC9 and 

CC8, and (4) CC7 and two singletons (CC199 and ST1006). Persistent strains were more 

abundant (65%) than transient strains (35%), and correlation of L. monocytogenes lineages with 
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transient versus persistent phenotypes was not significant (Fishers exact test, P = 0.86) (Fig. 

2.5B). 

 

2.4.6 Analysis of molecular variance 

The wgMLST profiles were filtered for paralogous genes and assigned custom allele ID’s for 

new alleles (see Data Set S5 in the supplemental material). The results from AMOVA showed 

that most genetic variation was contained within isolates obtained from the natural environment 

and poultry processing plants (91%), with only 9% attributed to variation between the two 

groups (Table 2.2). To detect loci with significant genetic variation between the two groups, we 

calculated population specific FST values for each locus separately with locus-by-locus AMOVA. 

We chose 111 loci (top 5% of FST distribution; FST ≥ 0.149), with the highest FST values as loci 

having considerable genetic variation between isolates obtained from the natural environment 

and poultry processing plants (Fig. 2.6A; see Data Set S2 in the supplemental material). 

Additionally, results from AMOVA considering only isolates from the poultry processing plants 

suggested that majority of the genetic variance was within isolates (96.18%) and the remaining 

variation (3.18%) was between the transient and persistent groups of strains (Table 2.2). In this 

case, 102 loci (upper 5%; FST ≥ 0.782) were identified as having the most divergence between 

the transient and persistent strains (Fig. 2.6B; see Data Set S3 in the supplemental material). A 

set of 21 loci were common among the loci with highest FST values in both levels of AMOVA 

(i.e., 111 loci in natural environment versus poultry processing plants and 102 loci in transient 

versus persistent groups) and might play a role in the adaptation and persistence of L. 

monocytogenes in poultry processing environments (Table 2.3). 
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2.5 DISCUSSION 

Molecular characterization of Listeria monocytogenes is important for outbreak detection, 

surveillance, and epidemiological studies and in the development of effective control strategies 

for listeriosis. We have developed a freely available and portable tool, Haplo-ST, that can be 

used for wgMLST profiling of L. monocytogenes from WGS data (Fig 2.1). In contrast to the 

commercial genome-wide MLST developed by BioNumerics® (Applied Maths NV, Belgium) 

and being used by the US CDC and PulseNet International, Haplo-ST is open-source (Table 2.1). 

Our tool uses the centralized nomenclature of L. monocytogenes genotypes publicly accessible in 

the BIGSdb-Lm database and the BIGSdb software for calling alleles, which facilitates sharing 

and comparing data between public health laboratories worldwide. We have shown that the 

reproducibility of allele calls by Haplo-ST has high sensitivity (error rate ~ 2.5%), and 

sequencing depths of ~20× are sufficient for assembling alleles (Fig 2.2). Because our 

genotyping technique assembles alleles directly from WGS data by mapping to corresponding 

reference genes before allele typing, it is computationally faster and less error-prone than other 

subtyping techniques that require de novo assembly of genomes prior to allele identification and 

subtyping (Ruppitsch et al. 2015, Moura et al. 2016). This property also allows for the scalable 

characterization of isolates based on the needs of the researcher, as some questions require more 

discrimination among isolates than others. For example, lower resolution is required for 

assignment of isolates to a specific lineage or clonal complex, whereas higher levels of 

discrimination are needed for outbreak detection and investigation of within-patient variations 

(Maiden et al. 2013). In this regard, Haplo-ST is flexible because it can be used with custom sets 

of fewer reference genes for low resolution typing, whereas higher resolution can be achieved by 

increasing the number of reference genes used in the analysis. The time required for low 
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resolution typing is low and increases with the increase in typing resolution. For example, on a 

system with a quad-core processor running at 3.6 GHz and 50 GB of RAM, the time taken for 

subtyping 100, 500 and 1000 loci were 1.4, 6.2, and 12.8 h, respectively. 

The motivation to develop Haplo-ST was to design a platform that can harness the full power 

of Illumina sequencing for characterizing L. monocytogenes isolates, thereby subtyping them at 

the highest possible level of resolution, which can be used for discriminating between closely 

related isolates that have diversified over a short timeframe. This is highly relevant during 

outbreak investigations and for tracking the origin of contamination, precise assessment of 

divergence dates, and forming hypotheses on the mechanisms of segregation of isolates. This 

discriminatory power of wgMLST is not achieved with cgMLST because it only assesses 

differences in the core genome and has been shown to provide fewer allelic differences in 

comparison to wgMLST (Jagadeesan et al. 2019). Furthermore, cgMLST schemes are mostly 

composed of slowly evolving genes. Previous studies on L. monocytogenes genomes have 

estimated the evolution rate of cgMLST types to be around 0.2 alleles per year, indicating that 

cgMLST-based typing is insufficient for discriminating isolates which have diverged over short 

timeframes (Moura et al. 2016). However, use of a well-defined set of species-wide conserved 

genes makes cgMLST more stable and suitable for robust comparisons of distantly related 

isolates. Typically, cgMLST is sufficient for routine epidemiological surveillance, such as 

identification of clonal groups and discrimination of outbreak strains from epidemiologically 

unrelated strains. Haplo-ST can perform both core-genome and whole-genome MLST because 

its database incorporates genes in the core-genome (the L. monocytogenes cgMLST scheme 

developed by Institut Pasteur) together with accessory genes in the pan-genome of L. 

monocytogenes. Additionally, it can be used for inferring biological properties, such as virulence, 
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antibiotic-resistance, and stress tolerance, and phenotypic predictions like serotypes by profiling 

genes linked to these properties. The wgMLST currently provided with Haplo-ST can also be 

expanded to include genotypic variation in future L. monocytogenes isolates by updating the 

locally installed BIGSdb-Lm database housed within this platform. This can include multi-copy 

and accessory genes, which may arise through recombination and whose detection may become 

important for pathogen surveillance. 

Unlike SNP-based genotyping which uses individual SNPs as units of comparison, cg- or 

wgMLST counts different types of variants within one coding region as a single allelic change. 

This concept covers the conflicting signals of horizontal and vertical transfer of genetic material 

as a single evolutionary event and classifies WGS data as a set of allele identifiers, thereby 

enabling easy storage of a stable nomenclature within a database and making comparisons of 

wgMLST profiles faster. Nonetheless, this also leads to a loss of resolution as it obscures the 

extent of dissimilarity between non-identical alleles. Thus, the technical performance of 

wgMLST, along with its amenability to standardization, is accompanied by a loss in specificity, 

as minimum spanning trees constructed using sequence types are fully connected, failing to 

effectively split isolate populations into clonal complexes (Feil et al. 2004). This becomes 

problematic as allele-based subtyping alone does not provide sufficient information for 

delineating outbreaks; it is therefore critical to complement it with whole-genome-based 

phylogenetic clustering for accessing relationships between isolates (Chen et al. 2017). Recent 

studies have shown that although wgMLST-based dendrograms are comparable to SNP-based 

phylogenies in identifying clades of closely related isolates with a recent common ancestor, they 

differ from each other with respect to the placement of isolates within clonal groups where 

branches in SNP-based phylogenies are not supported by greater than 90% bootstrap support 
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(Jagadeesan et al. 2019). This emphasizes the importance of constructing phylogenies with 

confidence measures such as bootstrap support, which is unfortunately not feasible with 

wgMLST-based dendrograms. Haplo-ST has the advantage of not only providing wgMLST 

profiles, but also provides corresponding allele sequences assembled for each isolate. While 

allelic profiles can be used for constructing dendrograms from allelic similarity-type matrices, 

allele sequences can be concatenated and used for constructing cg- or wgMLST-based 

phylogenies using a variety of models of molecular evolution and obtaining bootstrap support 

values. Moreover, our tool can detect paralogous genes, which when ignored can lead to the 

construction of biased phylogenies. Thus, analysis provided by Haplo-ST, when combined with 

detailed epidemiological evidence, isolate metadata, and appropriate interpretation, allows for 

routine surveillance of L. monocytogenes, accurate source-tracking of contaminating strains, and 

elucidation of transmission pathways and ultimately helps in devising better intervention 

strategies in food safety monitoring programs. 

Our approach was evaluated for its usability in characterizing and determining relatedness 

within two groups of L. monocytogenes isolates: one group representing isolates present in the 

natural environment and the other from poultry further processing facilities. This enabled us to 

decipher the phylogenetic relatedness of L. monocytogenes isolates, which shows clear 

delineation between lineages in both isolate groups (Fig 2.4 and 2.5). A majority of isolates in 

the natural environment and food facilities belonged to lineage II, which is consistent with 

previous studies (Dreyer et al. 2016). Furthermore, the lineage of 11% isolates could not be 

identified with lineage-specific probes (Data Set S4).  All of these were identified using our 

methods, including 2% that belonged to other species (Fig 2.4 and 2.5). Moreover, we did not 

find significant differences in the distribution of isolates belonging to different lineages in terms 



 50 

of their phenotypes (persistent/transient) and origin (sampling sites). However, it is curious that 

no lineage III isolates were found in the processing plant samples, although they made up 17% of 

isolates obtained from the natural environment. Distribution of CCs and STs between the  groups 

of isolates showed that 5 CCs (CC1, CC4, CC7, CC11, and CC321) were common across both 

isolate groups (Fig 2.3). 

Listeria monocytogenes is a foodborne pathogen that is ubiquitous in the natural 

environment. Its ability to colonize and persist in food processing environments increases the 

risk of contaminating ready-to-eat (RTE) food, often leading to outbreaks of listeriosis. Hence, 

understanding the genetic determinants associated with its adaptation and persistence in food 

processing plants can indicate specific traits selected in the processing plant environment and the 

genetic and physiological factors responsible for the persistent phenotype. This is of paramount 

importance for developing targeted intervention strategies in the food industry, and the typing of 

L. monocytogenes plays a crucial role in such investigations. 

We used Haplo-ST to type and identify loci with significant genetic variation between 

isolates obtained from the natural environment and poultry processing facilities. Our analysis 

revealed 111 significantly differentiated loci (Fig 2.6A; Data Set S2) which may be involved in 

helping L. monocytogenes to adapt to high stress conditions within food processing 

environments, thereby increasing its risk of contaminating food. Unlike transient strains, which 

are frequently introduced into food facilities from the natural environment and easily removed 

with regular sanitation shifts, persistent strains have been reported to have enhanced capacity to 

adapt and survive in food production chains and are difficult to eradicate. Thus, we also used our 

tool to characterize and detect loci with high genomic differentiation between transient and 

persistent strains. We obtained 102 highly differentiated loci potentially enriched for the 
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‘persistent’ phenotype (Fig 2.6B; Data Set S3). Of these, 21 loci were common with the 111 loci 

we previously identified as potentially contributing towards adaptation in food processing 

facilities (Table 2.3). These loci were related to metabolism (lmo0875, lmo2650, lmo1336, 

lmo1817, lmo1464, and lmo2640), transport (lmo0875, lmo2650, lmo1210, lmo2383, lmo1960, 

and lmo1205), tRNA and ribosome biogenesis (lmo1949, lmo2078, and lmo1294), biosynthesis 

of secondary metabolites (lmo1294 and lmo2640), translation (lmo2548 and lmo2073), and 

oxidative stress (lmo0964). We also found that out of the 102 loci differentiated for persistence, 

three genes (lmo1699, lmo0692, and lmo2020) were found to be associated with chemotaxis, a 

process that plays a role in niche localization (Casey et al. 2014). Several studies have shown the 

presence of a five-gene stress survival islet, SSI-1, to contribute to the growth of L. 

monocytogenes under suboptimal conditions, like low pH and high salt concentrations (Ryan et 

al. 2010, Gómez et al. 2014). Our analyses found SSI-1 in a higher fraction of isolates (93%) 

from processing plants compared to the natural environment (17%). Other studies report 

resistance to quaternary ammonium compounds, like benzalkonium chloride (BC), in persistent 

strains (Cherifi et al. 2018). BC is commonly used as an agri-food sanitizer, and resistance to it is 

provided by the gene cassette bcrABC, in which bcrAB codes for the small multidrug resistance 

protein family transportera and bcrC codes for a transcriptional factor. Our subtyping results are 

in agreement with this; bcrABC was present in 72% of the isolates obtained from the effluents, 

but absent in isolates obtained from the natural environment. Among isolates collected from 

effluents, bcrABC was associated with a higher proportion of persistent strains (54%) when 

compared to transient strains (18%). 

Our approach does, however, have a few limitations. Although the locally installed database 

within our platform is expandable to accommodate future genetic diversity in L. monocytogenes, 
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it requires frequent manual upgrades as new alleles and genes become available. With the recent 

accessibility of BIGSdb-Lm at Pasteur Institut through RESTful API, this drawback can be 

resolved by making minor modifications to our pipeline which will allow the tool to interrogate 

the server at Pasteur Institut directly instead of calling alleles locally. Secondly, our approach is 

gene-centric and characterizes differences only in protein-coding genes; therefore, genetic 

variation in other genomic regions like pseudogenes and intergenic regions are not accounted for. 

Additionally, the use of short reads may produce faulty assemblies of accessory genes and repeat 

regions. With the decreasing costs and increased popularity of third-generation sequencing 

instruments, these limitations can be overcome with development of appropriate sequence 

assembly algorithms. Thus, the power of fully assembled genomes remain yet to be exploited. 

Nevertheless, the current wgMLST approach will be stable over time as new genes are added and 

maintain backwards compatibility with classical seven-gene MLST schemes. 

The greatest advantage of Haplo-ST is that this platform is flexible and not limited to 

profiling of Listeria monocytogenes alone. It can be adapted to provide molecular 

characterization for any haploid organism, with the installation of an organism-specific gene 

database with associated allelic nomenclature, along with minor changes to the script that 

automates the pipeline. Furthermore, users are not limited to using publicly available gene 

databases because BIGSdb can accommodate any custom user-provided database. 

 

2.6 MATERIALS AND METHODS 

2.6.1 Development of Haplo-ST for wgMLST profiling of L. monocytogenes strains 

We developed Haplo-ST to analyze wgMLST for L. monocytogenes (Fig. 2.1). This tool takes in 

raw WGS reads for each L. monocytogenes isolate and uses the FASTX-Toolkit v0.0.14 (Hannon 
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2010) to clean them according to user-specified parameters. It then uses YASRA v2.33, 

(available at https://github.com/aakrosh/YASRA) to assemble genes across loci by mapping to 

reference genes. We selected YASRA for assembling genes because YASRA is a comparative 

assembler which uses a template to guide the assembly of a closely related target sequence and 

can accommodate high rates of polymorphism between the template and target (Ratan 2009). 

Hence, this assembler can be used to assemble an allelic variant of a gene by mapping to a 

reference sequence, even when the target allele has diverged considerably from the reference 

gene sequence. Next, a local installation of the BIGSdb-Lm database (available at 

http://bigsdb.pasteur.fr/listeria, Jolley and Maiden 2010) is used by Haplo-ST to assign allelic 

profiles to the genes assembled with YASRA, thus generating a wgMLST profile for each 

isolate. The BIGSdb-Lm database contains allelic profiles of 2554 L. monocytogenes genes 

obtained from BIGSdb-Lm as of 2 June 2017. This pipeline has been automated with a Perl script 

and made portable by installation of all software dependencies along with a local installation of 

the BIGSdb-Lm database within a Linux Virtual Machine (VM). In addition to generating 

wgMLST profiles, Haplo-ST also outputs the list of gene sequences assembled for each isolate. 

Because BIGSdb-Lm can identify all paralogs associated with a query gene sequence as ‘exact 

matches’, our tool has also been automated to output a list of paralogs identified for each isolate. 

 

2.6.2 Sensitivity of Haplo-ST 

ART v2.5.8 (Huang et al. 2012) was used to simulate WGS reads for two reference genomes of 

L. monocytogenes, EGD-e (NCBI accession number NC_003210.1) and strain 4b F2365 (NCBI 

accession number NC_002973.6). The simulated WGS reads were of two different lengths (150 

bp and 250 bp), and different qualities (one set of reads with high quality throughout the read 
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length and the other with degrading quality over the length of the read). In total, 8 sets of 

simulated WGS reads were processed through Haplo-ST to generate 8 wgMLST profiles. Four of 

these wgMLST profiles were obtained from simulated reads generated from the L. 

monocytogenes EGD-e reference genome. Each of these 4 profiles were compared to the allelic 

profiles of annotated genes in EGD-e. The other four wgMLST profiles were obtained from 

reads derived from the strain 4b F2365 reference genome. These were compared to the allelic 

profiles of annotated genes in F2365. For each comparison, we calculated the percentage of 

genes correctly typed by Haplo-ST. Finally, we calculated the average sensitivity over eight 

comparisons. 

 

2.6.3 Dependency of Haplo-ST on sequencing depth 

To determine the levels of genome sequence coverage necessary for efficient whole-genome 

sequence typing, synthetic reads were simulated from the L. monocytogenes EGD-e reference 

genome with ART v2.5.8 for different sequencing depths ranging from 5× - 120× and typed with 

Haplo-ST (performed in triplicate). For each sequencing depth, the allelic profiles typed by our 

tool were compared to allelic profiles of annotated genes from the L. monocytogenes EGD-e 

reference genome. Finally, for each comparison, we calculated: (i) the number of genes correctly 

typed, (ii) the number of genes assigned an erroneous allele ID, (iii) the number of genes 

partially assembled, and (iv) the number of genes missing an allele ID assignment by Haplo-ST. 
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2.6.4 Analysis of L. monocytogenes strains collected from the natural environment and 

poultry processing plants 

2.6.4.1 Listeria monocytogenes Isolate collection, DNA extraction and sequencing 

L. monocytogenes isolates obtained from the natural environment were cultured from water and 

sediment samples collected at 16 locations in the South Fork Broad River watershed, located in 

Northeast Georgia (Bradshaw et al. 2016). Sampling locations were selected based on 

predominant land use by the National Land Cover Database and on-the-ground surveys. Samples 

were collected from 6 sites designated as agricultural/pastoral, 7 sites as forested, 2 sites as 

impacted by water pollution control plants (WPCP), and 1 site classified as mixed-use. L. 

monocytogenes isolates obtained from poultry processing plants were sampled from different 

locations within the poultry processing plants at different time periods (Berrang et al. 2005, 

Berrang et al. 2010). Some of these isolates were repeatedly isolated from multiple sites in the 

plants over an extended period of time and were designated as ‘persistent’ types (based on actA-

sequence subtyping); other isolates sporadically isolated from the food processing facilities were 

classified as ‘transient’ strains. Each colony of L. monocytogenes isolate cultured from the 

samples was inoculated into 5ml of tryptic soy broth and grown overnight at 35 °C. DNA was 

extracted using the UltraClean® Microbial DNeasy Kit (Qiagen, Venlo, The Netherlands) 

according to manufacturer’s instructions. Sequencing libraries were prepared using the Nextera 

XT DNA Library Preparation Kit (Illumina, San Diego, USA). Genomic DNA of each isolate 

was sequenced using the Illumina MiSeq platform to obtain paired-end 150- or 250-bp reads. 

This effort yielded WGS data for a total of 171 L. monocytogenes isolates obtained from the 

natural environment (NCBI BioProject Accession: PRJNA605751) and 162 isolates obtained 

from poultry processing plants (NCBI BioProject Accession: PRJNA606479). Of the 162 
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isolates obtained from poultry processing plants, 57 isolates were transient and 105 isolates were 

persistent types (Data Set S4). These were then processed using Haplo-ST. 

 

2.6.4.2 wgMLST profiling of L. monocytogenes isolates with Haplo-ST 

WGS data for L. monocytogenes isolates was first checked for quality with FastQC v0.11.4 

(Andrews 2010). The raw data was then cleaned with the FASTX-Toolkit v0.0.14 incorporated 

within Haplo-ST. User-specified parameters were used to perform three successive cleaning 

steps with FASTA/Q Trimmer, FASTQ Quality Trimmer, and FASTQ Quality Filter tools of the 

FASTX-Toolkit. Reads were trimmed to remove all bases with a Phred quality score of < 20 

from both ends and filtered such that 90% of bases in the clean reads had a quality of at least 20. 

After trimming and filtering, all remaining reads with lengths of < 50 bp were filtered out. Next, 

the cleaned reads were assembled into gene sequences by mapping to reference genes with 

YASRA. While assembling genes across loci, all assemblies having a length of less than 89% of 

the length of the corresponding reference gene were removed. This is because our examination 

of the lengths of all 2554 genes and their respective alleles in the BIGSdb-Lm database revealed 

that alleles of a gene can have different lengths, which ranges from 0.89 - 1.09 times the length 

of the reference gene. This ‘length criteria’ for filtering assembled genes has been provided as a 

user-specified parameter in the Perl script that automates Haplo-ST. The value for this parameter 

can be adjusted if the BIGSdb-Lm database is updated to include more genes or alleles, or if only 

a subset of genes is used for allelic profiling. Finally, assembled genes were assigned allele ID’s 

with BIGSdb-Lm, and wgMLST profiles were generated for each isolate. Each isolate was 

assigned an MLST sequence type (ST) and clonal complex (CC) in accordance with BIGSdb-

Lm. 
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2.6.4.3 Identification of paralogous genes 

We identified paralogous genes in our dataset using two approaches. In the first approach, 

Haplo-ST uses BIGSdb-Lm’s ability to identify paralogs and outputs a list of paralogs for each 

isolate. To verify that all paralogs were correctly identified with BIGSdb-Lm, we used a second 

approach to detect paralogs present within the BIGSdb-Lm database. First a local BLAST 

database was created with all 2554 genes and their corresponding alleles present in the BIGSdb-

Lm database using BLAST+ v2.2.29. Next, BLAST searches of all genes and their respective 

alleles were made against the local BLAST database. Custom Perl scripts were used to identify 

genes having an exact sequence match to another gene in the database, and all such matches 

were listed as paralogs. 

 

2.6.4.4 Construction of phylogenetic trees and evaluation of lineage-specific association 

The list of genes assembled for each isolate with Haplo-ST were filtered to remove paralogous 

genes. The final filtered assemblies for each group of isolates (the first group obtained from the 

natural environment and the second group obtained from poultry processing plants) were used to 

create concatenated multiple sequence alignments (MSA) with Phyluce v1.5.0 (Faircloth 2016). 

Several scripts were used to create MSA’s for each isolate group. First, a custom Perl script was 

used to convert the assembled gene sequences into a format suitable for use with Phyluce. 

Second, the ‘phyluce_align_seqcap_align’ script was used to align genes across loci for all 

isolates within a group and the alignment was trimmed for ragged edges. The summary statistics 

of alignments for both isolate groups were checked with the script 

‘phyluce_align_get_align_summary_data’ and cleaned for locus names with 

‘phyluce_align_remove_locus_name_from_nexus_lines’. The dataset for each isolate group was 
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then culled to reach a 95% level of completeness with 

‘phyluce_align_get_only_loci_with_min_taxa’. The 95% complete data matrix was converted 

into phylip files with ‘phyluce_align_format_nexus_files_for_raxml’ and phylogenetic trees 

were constructed with FastME v2.1.5 (Lefort et al. 2015). The substitution model used by 

FastME was ‘p-distance’, and the BioNJ algorithm was used to compute a tree from the distance 

matrix. A total of 500 bootstrap replicates were computed to provide support to the internal 

branches of each of the phylogenies. 

Listeria monocytogenes isolates were classified into lineages (I to IV) based on a targeted 

multilocus genotyping approach (TMLGT) in which six genomic regions were coamplified in a 

multiplexed PCR and used as templates for allele-specific primer extension using lineage-

specific probes (Ward et al. 2010). Lineage-specific correlation between groups of isolates was 

tested with Fisher’s exact test at P = 0.05. 

Phylogenetic trees were visualized and annotated with iTOL v3 (Letunic and Bork 2016). For 

better visualization, all phylogenetic trees were converted to circular format and lineage 

classification for isolates was displayed by coloring internal branches. The annotations for the 

source and type of isolates were displayed in outer external rings. 

 

2.6.4.5 Analysis of genetic variation 

To obtain measures of genetic differentiation, we used the wgMLST profiles from Haplo-ST and 

performed Analysis of Molecular Variance (AMOVA) in Arlequin v3.5.2 (Excoffier and Lischer 

2010). First, paralogous loci were removed from the raw wgMLST profiles. Next, new alleles 

not defined in the BIGSdb-Lm database and reported as ‘closest matches’ to existing alleles in 

the wgMLST profiles were assigned custom allele ID’s with in-house Python scripts. Finally, 
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AMOVA was separately performed at two levels: (i) among groups of isolates obtained from the 

natural environment and poultry processing plants and (ii) among groups of transient and 

persistent strains obtained from the poultry processing plants. For each level of analysis, loci 

with < 10% missing data in the wgMLST profiles were used. Fifty thousand permutations were 

used to determine significance of variance components. In addition to the standard AMOVA, 

which calculates the global FST for all loci within a group of isolates, we also performed a locus-

by-locus AMOVA, which computes FST indices for each locus separately, for both levels of 

analysis. The upper 5% of the distribution of FST values was chosen as the threshold for loci with 

significant genetic diversity. 

 

2.7 ACKNOWLEDGEMENTS 

This research was supported by funding from USDA Agricultural Research Service Project 

Number 6040-32000-009-00-D. We thank USDA and FSIS for providing us with Listeria 

monocytogenes whole-genome sequencing samples for our work. We also thank Yecheng Huang 

for assistance with a local installation of the BIGSdb database. The high-performance computing 

cluster at Georgia Advanced Computing Resource Center (GACRC) at the University of Georgia 

provided computational infrastructure and technical support throughout the work. 

 

2.8 REFERENCES 

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. 
Repository http://www.bioinformatics.babraham.ac.uk/projects/fastqc 

Autio T, Keto-Timonen R, Lundén J, Björkroth J, Korkeala H. 2003. Characterization of 
persistent and sporadic Listeria monocytogenes strains by pulsed-field electrophoresis 
(PFGE) and amplified fragment length polymorphism (ALFP). Syst Appl Microbiol 26:539-
45. 



 60 

Bennion JR, Sorvillo F, Wise ME, Krishna S, Mascola L. 2008. Decreasing listeriosis 
mortality in the United States, 1990-2005. Clin Infect Dis 47:867-74. 

Berrang ME, Meinermann RJ, Frank JF, Ladely SR. 2010. Colonization of a newly 
constructed commercial chicken further processing plant with Listeria monocytogenes. J 
Food Prot 73:286-291. 

Berrang ME, Meinersmann RJ, Frank JF, Smith DP, Genzlinger LL. 2005. Distribution of 
Listeria monocytogenes subtypes within a poultry further processing plant. J Food Prot 
68:980-985. 

Bradshaw JK, Snyder BJ, Oladeinde A, Spidle D, Berrang ME, Meinersmann RJ, Oakley B, 
Sidle RC, Sullivan K, Molina M. 2016. Characterizing relationships among fecal indicator 
bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence 
in stream water and sediments in a mixed land use watershed. Water Res 101:498-509. 

Carpentier B, Cerf O. 2011. Review–persistence of Listeria monocytogenes in food industry 
equipment and premises. Int J Food Microbiol 145:1-8. 

Casey A, Fox EM, Schmitz-Esser S, Coffey A, McAuliffe O, Jordan K. 2014. Transcriptome 
analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response 
involving cell wall synthesis, sugar uptake, and motility. Front Microbiol 5:68. 

Chen Y, Gonzalez-Escalona N, Hammack TS, Allard MW, Strain EA, Brown EW. 2016. 
Core Genome Multilocus Sequence Typing for Identification of Globally Distributed Clonal 
Groups and Differentiation of Outbreak Strains of Listeria monocytogenes. Appl Environ 
Microbiol 82:6258-6272. 

Chen Y, Luo Y, Carleton H, Timme R, Melka D, Muruvanda T, Wang C, Kastanis G, Katz 
LS, Turner L, Fritzinger A, Moore T, Stones R, Blankenship J, Salter M, Parish M, 
Hammack TS, Evans PS, Tarr CL, Allard MW, Strain EA, Brown EW. 2017. Whole 
Genome and Core Genome Multilocus Sequence Typing and Single Nucleotide 
Polymorphism Analyses of Listeria monocytogenes Isolates Associated with an Outbreak 
Linked to Cheese, United States, 2013. Appl Environ Microbiol 83:e00633-17. 

Cherifi T, Carrillo C, Lambert D, Miniaï I, Quessy S, Larivière-Gauthier G, Blais B, Fravalo 
P. 2018. Genomic Characterization of Listeria Monocytogenes Isolates Reveals That Their 
Persistence in a Pig Slaughterhouse Is Linked to the Presence of Benzalkonium Chloride 
Resistance Genes. BMC Microbiol 18:220. 

Den Bakker HC, Didelot X, Fortes ED, Nightingale KK, Wiedmann M. 2008. Lineage 
specific recombination rates and microevolution in Listeria monocytogenes. BMC Evol Biol 
8:277. 

Dreyer M, Aguilar-Bultet L, Rupp S, Guldimann C, Stephan R, Schock A, Otter A, 
Schüpbach G, Brisse S, Lecuit M, Frey J, Oevermann A. 2016. Listeria monocytogenes 
sequence type 1 is predominant in ruminant rhombencephalitis. Sci Rep 6:36419. 



 61 

Excoffier L, Lischer  HEL. 2010. Arlequin suite ver 3.5: A new series of programs to 
perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564-
567. 

Faircloth BC. 2016. PHYLUCE is a software package for the analysis of conserved genomic 
loci. Bioinformatics 32:786-8. 

Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. 2004. eBURST: inferring patterns of 
evolutionary descent among clusters of related bacterial genotypes from multilocus sequence 
typing data. J Bacteriol 186:1518-30. 

Gómez D, Azón E, Marco N, Carramiñana JJ, Rota C, Ariño A, Yangüela J. 2014. 
Antimicrobial Resistance of Listeria Monocytogenes and Listeria Innocua from Meat 
Products and Meat-Processing Environment. Food Microbiol 42:61-5. 

Halbedel S, Prager R, Fuchs S, Trost E, Werner G, Flieger A. Whole-Genome Sequencing of 
Recent Listeria monocytogenes Isolates from Germany Reveals Population Structure and 
Disease Clusters. 2018. J Clin Microbiol 56:e00119-18. 

Hannon GJ. 2010. FASTX-Toolkit, FASTQ/A short-reads pre-processing tools. Repository 
http://hannonlab.cshl.edu/fastx_toolkit 

Henri C, Félix B, Guillier L, Leekitcharoenphon P, Michelon D, Mariet JF, Aarestrup FM, 
Mistou MY, Hendriksen RS, Roussel S. 2016. Population Genetic Structure of Listeria 
monocytogenes Strains as Determined by Pulsed-Field GelElectrophoresis and Multilocus 
Sequence Typing. Appl Environ Microbiol. 82:5720-8. 

Henri C, Leekitcharoenphon P, Carleton HA, Radomski N, Kaas RS, Mariet JF, Felten A, 
Aarestrup FM, Gerner Smidt P, Roussel S, Guillier L, Mistou MY, Hendriksen RS. 2017. An 
Assessment of Different Genomic Approaches for Inferring Phylogeny of Listeria 
monocytogenes. Front Microbiol 8:2351. 

Huang W, Li L, Myers JR, Marth GT. 2012. ART: A Next-Generation Sequencing Read 
Simulator. Bioinformatics 28:593-4. 

Hyden P, Pietzka A, Lennkh A, Murer A, Springer B, Blaschitz M, Indra A, Huhulescu S, 
Allerberger F, Ruppitsch W, Sensen CW. 2016. Whole genome sequence-based serogrouping 
of Listeria monocytogenes isolates. J Biotechnol 235:181-6. 

Jackson BR, Tarr C, Strain E, Jackson KA, Conrad A, Carleton H, Katz LS, Stroika S, Gould 
LH, Mody RK, Silk BJ, Beal J, Chen Y, Timme R, Doyle M, Fields A, Wise M, Tillman G, 
Defibaugh-Chavez S, Kucerova Z, Sabol A, Roache K, Trees E, Simmons M, Wasilenko J, 
Kubota K, Pouseele H, Klimke W, Besser J, Brown E, Allard M, Gerner-Smidt P. 2016. 
Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis 
Outbreak Detection and Investigation. Clin Infect Dis 63:380-386. 



 62 

Jagadeesan B, Baert L, Wiedmann M, Orsi RH. 2019. Comparative Analysis of Tools and 
Approaches for Source Tracking Listeria monocytogenes in a Food Facility Using Whole-
Genome Sequence Data. Front Microbiol 10:947. 

Jolley KA, and Maiden MC. 2010. BIGSdb:scalable analysis of bacterial genome variation at 
the population level. BMC Bioinform 11:595. 

Katz LS, Griswold T, Williams-Newkirk AJ, Wagner D, Petkau A, Sieffert C, Domselaar 
GV, Deng X, Carleton HA. 2017. A comparative analysis of the Lyve-SET phylogenomics 
pipeline for genomic epidemiology of foodborne pathogens. Front Microbiol 8:375. 

Kuhn M, Goebel W. 2007. Molecular virulence determinants of Listeria monocytogenes, p 
111-155. In Ryser ET, Marth EH (ed), Listeria, listeriosis and food safety, 3rd ed, CRC Press 
Taylor and Francis Group, Boca Raton, FL. 

Kvistholm Jensen A, Nielsen EM, Björkman JT, Jensen T, Müller L, Persson S, Bjerager G, 
Perge A, Krause TG, Kiil K, Sørensen G, Andersen JK, Mølbak K, Ethelberg S. 2016. 
Whole-genome Sequencing Used to Investigate a Nationwide Outbreak of Listeriosis Caused 
by Ready-to-eat Delicatessen Meat, Denmark, 2014. Clin Infect Dis 63:64-70. 

Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY, Bulach DM, Stinear TP, Seemann T, 
Howden BP. 2016. Prospective Whole-Genome Sequencing Enhances National Surveillance 
of Listeria monocytogenes. J Clin Microbiol 54:333-342. 

Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: A Comprehensive, Accurate, and Fast 
Distance-Based Phylogeny Inference Program. Mol Biol Evol 32:2798-800. 

Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and 
annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242-5. 

Maiden MC, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy 
ND. 2013. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev 
Microbiol 11:728-36. 

Meinersmann RJ, Phillips RW, Wiedmann M, Berrang ME. 2004. Multilocus Sequence 
Typing of Listeria Monocytogenes by Use of Hypervariable Genes Reveals Clonal and 
Recombination Histories of Three Lineages. Appl Environ Microbiol 70:2193-203. 

Moorman M, Pruett P, Weidman M. 2010. Value and Methods for Molecular Subtyping of 
Bacteria, p 157-175. In Kornacki JL (ed), Principles of Microbiological Troubleshooting in 
the Industrial Food Processing Environment, 1st ed, Springer Science Business Media, New 
York, NY. 

Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, Björkman JT, Dallman 
T, Reimer A, Enouf V, Larsonneur E, Carleton H, Bracq-Dieye H, Katz LS, Jones L, 
Touchon M, Tourdjman M, Walker M, Stroika S, Cantinelli T, Chenal-Francisque V, 
Kucerova Z, Rocha EPC, Nadon C, Grant K, Nielsen EM, Pot B, Gerner-Smidt P, Lecuit M, 



 63 

Brisse S. 2016. Whole genome-based population biology and epidemiological surveillance of 
Listeria monocytogenes. Nat Microbiol 2:16185. 

Moura A, Tourdjman M, Leclercq A, Hamelin E, Laurent E, Fredriksen N, Van Cauteren D, 
Bracq-Dieye H, Thouvenot P, Vales G, Tessaud-Rita N, Maury MM, Alexandru A, Criscuolo 
A, Quevillon E, Donguy MP, Enouf V, de Valk H, Brisse S, Lecuit M. 2017. Real-Time 
Whole-Genome Sequencing for Surveillance of Listeria monocytogenes, France. Emerg 
Infect Dis 23:1462-1470. 

Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C, Galagan JE, Birren BW, Ivy RA, 
Sun Q, Graves LM, Swaminathan B, Wiedmann M. 2008. Short-term genome evolution of 
Listeria monocytogenes in a non-controlled environment. BMC Genom 9:539. 

Orsi RH, den Bakker HC, Wiedmann M. 2011. Listeria monocytogenes lineages: genomics, 
evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301:79-96. 

Painset A, Björkman JT, Kiil K, Guillier L, Mariet JF, Félix B, Amar C, Rotariu O, Roussel 
S, Perez-Reche F, Brisse S, Moura A, Lecuit M, Forbes K, Strachan N, Grant K, Møller-
Nielsen E, Dallman TJ. 2019. LiSEQ - whole-genome sequencing of a cross-sectional survey 
of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb 
Genom 5: e000257. 

Pearce ME, Alikhan NF, Dallman TJ, Zhou Z, Grant K, Maiden MCJ. 2018. Comparative 
analysis of core genome MLST and SNP typing within a European Salmonella serovar 
Enteritidis outbreak. Int J Food Microbiol 274:1-11. 

Pietzka A, Allerberger F, Murer A, Lennkh A, Stöger A, Cabal Rosel A, Huhulescu S, 
Maritschnik S, Springer B, Lepuschitz S, Ruppitsch W, Schmid D. 2019. Whole Genome 
Sequencing Based Surveillance of L. monocytogenes for Early Detection and Investigations 
of Listeriosis Outbreaks. Front Public Health 7:139. 

Pightling AW, Petronella N, Pagotto F. 2015. The Listeria monocytogenes core -genome 
sequence typer (LmCGST): a bioinformatics pipeline for molecular characterization with 
next generation sequence data. BMC Microbiol 15:224. 

Pirone-Davies C, Chen, Y, Pightling A, Ryan G, Wang Y, Yao K, Hoffmann M, Allard MW. 
2018. Genes significantly associated with lineage II food isolates of Listeria monocytogenes. 
BMC Genomics 19:708. 

Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Monnier Le A, Brisse S. A new 
perspective on Listeria Monocytogenes evolution. 2008. PLoS Pathog 4:e1000146. 

Ratan A. 2009. Assembly algorithms for next generation sequence data. Ph.D. dissertation, 
The Pennsylvania State University. 

Ruppitsch W, Pietzka A, Prior K, Bletz S, Fernandez HL, Allerberger F, Harmsen D, 
Mellmann A. 2015. Defining and evaluating a core genome MLST scheme for whole 
genome sequence-based typing of Listeria monocytogenes. J Clin Microbiol 53:2869-76. 



 64 

Ryan S, Begley M, Hill C, Gahan CGM. 2010. A Five-Gene Stress Survival Islet (SSI-1) 
That Contributes to the Growth of Listeria Monocytogenes in Suboptimal Conditions. J Appl 
Microbiol 109:984-95. 

Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin 
PM. 2011. Foodborne illness acquired in the United States--major pathogens. Emerg Infect 
Dis 17:7-15. 

Swaminathan B, Barrett T, Hunter SB, Tauxe RV, CDC PulseNet Task Force. 2001. 
PulseNet: The molecular subtyping network for foodborne bacterial disease surveillance, 
United States. Emerg Infect Dis 7:382-389. 

USDA ERS. 2014. Cost estimates of foodborne illnesses. Economic Re- search Service, US 
Department of Agriculture, Washington, DC. Available at: https://www.ers.usda.gov/data-
products/cost-estimates-of-foodborne-illnesses.aspx. 

Wang J, Ray AJ, Hammons SR, Oliver HF. 2015. Persistent and transient Listeria 
monocytogenes strains from retail deli environments vary in their ability to adhere and form 
biofilms and rarely have inlA premature stop codons. Foodborne Pathog Dis 12:151-8. 

Ward TJ, Usgaard T, Evans P. 2010. A targeted multilocus genotyping assay for lineage, 
serogroup, and epidemic clone typing of Listeria monocytogenes. Appl Environ Microbiol 
76:6680-4. 

  



 65 

Tables: 
 
Table 2.1: Comparison of features present in Haplo-ST and other currently available commercial 

tools for wgMLST of Listeria monocytogenes. 

  Current wgMLST-based approaches for 
strain typing 

 
 

Haplo-ST BioNumerics Ridom 
SeqSphere+ 

Free availability û û ü 

Database used for allelic 
nomenclature 

BIGSdb-Lm cgMLST.org BIGSdb-Lm 

Creates genomes assemblies of 
isolates before allele calling 

Uses both assembly-
based and assembly-

free approaches 

ü û  (assembles genes 
instead of 
genomes) 

Expandable wgMLST schema û û ü 

Number of loci used for wgMLST 4804, fixed 1701 (cgMLST) + 
1158 (accessory 
genome), fixed 

currently 2554, 
expandable 

Output wgMLST profiles, 
minimum spanning 

tree (MST) 

wgMLST 
profiles, MST 

wgMLST profiles, 
allele sequences for 
wgMLST profiles, 
paralogous genes 

Cluster analysis features included 
with software 

ü ü û 

Types of cluster analysis possible  MST MST, 
phylogenetic tree 
(software only 
provides 
concatenated 
allele sequences) 

Dendrograms and 
phylogenetic trees 
can be constructed 
with third-party 
software 

Can be used for strain typing of 
species other than Listeria 

monocytogenes 

ü ü ü 

Automated curation tools (for 
assigning allele ID’s) provided for 

new alleles  

ü ü û 
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Table 2.2: Global AMOVA results weighted over all variable loci in the two groups of Listeria 

monocytogenes isolates. 

Groups of isolates  
Source of 
variation 

Variance 
components 

Variation 
(%) Fixation index 

Natural Environment 
vs. Poultry Processing 
plants 

Among groups 86.61 9.00 

FST =  0.09002 Within groups 875.51 91.00 
Persistent vs. 

Transient  
Among groups 32.64 3.82 

FST =  0.03821 Within groups 821.66 96.18 
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Table 2.3: Genes showing significant genetic differentiation between groups of Listeria 

monocytogenes isolates collected from the natural environment vs. poultry processing plants and 

transient vs. persistent strains, and may be enriched for adaptation and persistence of Listeria 

monocytogenes in poultry processing environments. 

Gene 
name 

Gene product (obtained from 
RefSeq) Biological Function (obtained from KEGG) 

 lmo0875 
PTS beta-glucoside transporter 

subunit IIB 
Carbohydrate metabolism, Membrane 

transport 
lmo1949 hypothetical protein Ribosome biogenesis 

lmo2650 MFS transporter 
Carbohydrate metabolism, Membrane 

transport 
lmo1210 hypothetical protein Electrochemical potential-driven transporters 
lmo0687 hypothetical protein  Peptidase 
lmo0694 hypothetical protein Unknown function 

lmo0964 
hypothetical protein 

(thioredoxin) Oxidative stress, Signaling  
lmo2078 hypothetical protein Transfer RNA biogenesis 

lmo2383 
monovalent cation/H+ 

antiporter subunit F Electrochemical potential-driven transporters 
lmo2548 50S ribosomal protein L31 Translation 
lmo1776 hypothetical protein Unknown function 

lmo1960 
ferrichrome ABC transporter 

ATP-binding protein Iron complex transporter 

lmo1336 
5-formyltetrahydrofolate cyclo-

ligase Metabolism of cofactors and vitamins 
lmo2689a hypothetical protein Uncharacterized 

lmo1294 

tRNA delta(2)-
isopentenylpyrophosphate 

transferase 
Transfer RNA biogenesis, Biosynthesis of 

secondary metabolites 

lmo2640 hypothetical protein 
Metabolism of terpenoids and polyketides, 

Biosynthesis of secondary metabolites 

lmo0360 
DeoR family transcriptional 

regulator Unknown function 
lmo1817 hypothetical protein Metabolism of cofactors and vitamins 

lmo2073 
ABC transporter ATP-binding 

protein Translation factor 

lmo1205 
cobalamin biosynthesis protein 

CbiN Membrane transport 
lmo1464 diacylglycerol kinase Glycan biosynthesis and metabolism 
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Figures: 

Figure 2.1: Haplo-ST, a tool for wgMLST profiling of Listeria monocytogenes from WGS reads. 
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Figure 2.2: Dependency of Haplo-ST on sequencing depth. (A) Simulation of the number of 

genes correctly profiled by Haplo-ST across sequencing depths ranging from 5× - 120× (B) The 

number of genes missing an allele ID assignment, the number of genes misassigned an erroneous 

allele ID and the number of genes partially assembled with Haplo-ST across different sequencing 

depths. 

A) 

 

B) 
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Figure 2.3: Distribution of CCs in (A) river water flowing through different land use areas (B) L. 

monocytogenes strains isolated from poultry processing plants. 

A) 

 

B) 
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Figure 2.4: Phylogenetic relationships between isolates collected from the natural environment. 

(A) Listeria monocytogenes isolates belonging to lineages I (orange), II (red) and III (blue) form 

separate clusters in the phylogenetic tree. (B) Random distribution of three lineages of Listeria 

monocytogenes found at different sampling sites. 

A) 

 

B) 
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Figure 2.5: Phylogenetic relationships between isolates collected from poultry processing plants. 

(A) Listeria monocytogenes lineages I (blue) and II (red) form two separate groups in the 

phylogenetic tree, with the majority of isolates belonging to lineage II. (B) Persistent strains were 

more abundant than transient strains, but there was no lineage-specific association of 

persistent/transient strains. 

A) 

 

B) 
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Figure 2.6: Manhattan plots of genome-wide FST values between (A) Listeria monocytogenes 

isolates obtained from the natural environment and poultry processing plants (B) groups of 

transient and persistent strains. FST values are shown on the y axis. The loci are arranged in two 

groups on the x axis; the first group consisting of loci present in the core genome and the other 

group consisting of loci in the accessory genome as specified in BIGSdb-Lm. The significant 

thresholds (blue line) are set at the top 5% of the FST distribution. 

A) 
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2.9 SUPPLEMENTAL MATERIAL 

Supplemental material is available at: 

https://www.dropbox.com/sh/vfau4ysqppe5z3k/AABjYq4i6wO28xJiaCFTANF_a?dl=0 

File S1: List of 133 paralogous genes identified in our dataset. 

File S2: List of 111 loci with the highest FST values (top 5% of FST distribution) having 

considerable genetic variation between isolates obtained from the natural environment and 

poultry processing plants. 

File S3: List of 102 loci (upper 5% of FST distribution) having the most genetic divergence 

between the transient and persistent strains. 

File S4: Whole-genome MLST profiles of L. monocytogenes isolates generated by Haplo-ST. 

File S5: Whole-genome MLST profiles of L. monocytogenes isolates with new alleles assigned 

custom allele-IDs. 

File S6: Contains: 

Figure S1: Inaccurate characterization by BIGSdb-Lm when it recognizes genes that are 

not paralogous to each other as ‘exact matches’. 

Table S1: Comparison between SNP-based and wgMLST-based approaches for 

subtyping bacterial strains. 
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CHAPTER 3 

WHOLE GENOME GENETIC VARIATION AND LINKAGE DISEQUILIBRIUM IN A 

DIVERSE COLLECTION OF LISTERIA MONOCYTOGENES ISOLATES2 

  

                                                
2 Swarnali Louha, Richard J. Meinersmann, and Travis C. Glenn, Submitted to PLoS One. 
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3.1 ABSTRACT 

We performed whole-genome multi-locus sequence typing for 2554 genes in a large and 

heterogenous panel of 180 Listeria monocytogenes strains having diverse geographical and 

temporal origins. The subtyping data was used for characterizing genetic variation and 

evaluating patterns of linkage disequilibrium in the pan-genome of L. monocytogenes. Our 

analysis revealed the presence of strong linkage disequilibrium in L. monocytogenes, with ~99% 

of genes showing significant non-random associations with a large majority of other genes in the 

genome. Twenty-seven loci having lower levels of association with other genes were considered 

to be potential “hot spots” for horizontal gene transfer (i.e., recombination via conjugation, 

transduction, and/or transformation). The patterns of linkage disequilibrium in L. monocytogenes 

suggest limited exchange of foreign genetic material in the genome and can be used as a tool for 

identifying new recombinant strains. This can help understand processes contributing to the 

diversification and evolution of this pathogenic bacteria, thereby facilitating development of 

effective control measures. 

 

3.2 INTRODUCTION 

The bacterial genome is a dynamic structure. Characterizing patterns of genomic variation in 

bacterial pathogens can provide insights into the forces shaping their biology and evolutionary 

history (Zwick et al 2011). Homologous recombination is an important driver of evolution and 

increases the adaptive potential of bacteria by allowing variation to be tested across multiple 

genomic backgrounds (Yahara et al. 2015). Recombination is mediated by three mechanisms; 

transformation, transduction, and conjugation, and the availability and efficacy of these 

mechanisms and their biological consequences play a major role in determining the frequency of 
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recombination in a bacterial population (Feil and Spratt 2001, Zwick et al 2011). Recombination 

is variably distributed in bacterial genomes, with some sites in the genome recombining at a 

higher or lower frequency than the genomic average, known as hot spots and cold spots 

respectively (Steiner and Smith 2005). Evidence for recombination and its effect on genomic 

variation can be obtained by detecting patterns of non-random association of genotypes at 

different loci within a given population, termed as linkage disequilibrium (Feil and Spratt 2001, 

Zwick et al 2011). Various methods for detecting linkage disequilibrium have been used to study 

the extent of genetic recombination shaping the population structures of several bacterial species 

(Smith et al. 1993, Zwick et al. 2011, Takuno et al. 2012, Vigué and Eyre-Walker 2019). 

Listeria monocytogenes, known for causing life-threatening infections in animals and 

human populations at risk, is one of the bacterial species having the lowest rate of homologous 

recombination. Genetic diversity in this species is mainly driven by the accumulation of 

mutations over time, with alleles five times more likely to change by mutation than by 

recombination (Ragon et al. 2008). L. monocytogenes is generally considered to have a clonal 

genetic structure (Piffaretti et al. 1989, Wiedmannn et al. 1997). The population structure of this 

bacteria consists of 4 evolutionary lineages (I, II, III and IV) and recombination has been 

observed between isolates of different lineages; suggesting that although recombination is rare in 

L. monocytogenes, this species is not completely clonal (den Bakker et al. 2008, Dunn et al. 

2009, Ragon et al. 2008). Interestingly, homologous recombination is not equally frequent 

among isolates of different lineages, with lineages II, III and IV showing higher rates of 

recombination and lower degree of sequence similarity than lineage I (Meinersmann et al. 2004, 

den Bakker et al. 2008, Orsi et al. 2008, Kuenne et al. 2013). 
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Whole-genome sequencing studies have shown that L. monocytogenes genomes are 

highly syntenic in their gene content and organization, with a majority of gene-scale differences 

occurring in the accessory genome and accumulated in a few hypervariable hotspots, prophages, 

transposons, scattered unique genes and genetic islands encoding proteins of unknown functions 

(Nelson et al. 2004, Hain et al. 2007, den Bakker et al. 2010, 2013, Kuenne et al. 2013). Several 

other studies have detected evidence of recombination using a few genes (den Bakker et al. 2008, 

Cantinelli et al. 2013, Ragon et al. 2008) and indicated the presence of significant linkage 

disequilibrium in L. monocytogenes (Call et al. 2003, Salcedo et al. 2003). However, these 

studies used a limited number of L. monocytogenes isolates and evaluated recombination present 

in a small fraction of the genome, mostly made up of house-keeping genes, which are assumed to 

be under negative selection and less subject to homologous recombination. 

Prior to the advent of next-generation sequencing technologies, multi locus enzyme 

electrophoresis (MLEE), was used for generating large data sets for the statistical analysis of 

bacterial populations. MLEE differentiates organisms by assessing the relative electrophoretic 

mobilities of intracellular enzymes and indexes allelic variation in multiple chromosomal genes 

(Mallik 2014). MLEE has been successfully used for studying the extent of linkage 

disequilibrium in a variety of bacterial species (Piffaretti et al. 1989, Maynard Smith et al. 1993, 

O'Rourke and Stevens 1993). With the easy and cheap availability of sequencing data in the last 

decade, MLEE has been replaced with an analogous technique called MLST (multi locus 

sequence typing) for subtyping bacterial genomes (Salcedo et al. 2003, Moura et al. 2017). We 

recently provided an approach that can generate whole-genome MLST (wgMLST) based 

characterization of L. monocytogenes isolates from whole-genome sequencing data (Louha et al. 

2020). In this study, we use this wgMLST-based approach for characterizing genomic variation 
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and assessing genome-wide patterns of linkage disequilibrium in a large collection of L. 

monocytogenes isolates obtained from diverse ecological niches. 

 

3.3 MATERIALS AND METHODS 

3.3.1 L. monocytogenes isolate selection 

We selected a large and diverse panel of 180 L. monocytogenes isolates collected from different 

ecological communities (File S1). This set included (i) 20 isolates each from food, food contact 

surfaces (FCS), manure, milk, clinical cases, soil, and ready-to-eat (RTE) products obtained from 

the NCBI Pathogen Detection database and, (ii) 20 isolates from water and sediment samples in 

the South Fork Broad River watershed located in Northeast Georgia and 20 isolates from 

effluents from poultry processing plants (EFPP), provided by the USDA and FSIS. 

 

3.3.2 Whole-genome multi-locus sequence typing (wgMLST) 

Whole-genome sequencing data for the 180 L. monocytogenes isolates were processed using 

Haplo-ST (Louha et al. 2020) for allelic profiling of 2554 genes per isolate. Illumina whole-

genome sequencing reads obtained as previously described (File S1) were trimmed to remove all 

bases with a Phred quality score of < 20 from both ends and filtered such that 90% of bases in 

the clean reads had a quality of at least 20. After trimming and filtering, all remaining reads with 

lengths of < 50 bp were filtered out. The cleaned reads were assembled into allele sequences 

with YASRA (Ratan 2009) by mapping to reference genes and provided wgMLST profiles with 

BIGSdb-Lm (available at http://bigsdb.pasteur.fr/listeria). 
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3.3.3 Analysis of Linkage Disequilibrium 

First, the raw wgMLST profiles were filtered to remove paralogous loci and genes were ordered 

according to their genomic position in the L. monocytogenes reference strain EGD-e (NCBI 

accession number NC_003210.1). Next, new alleles not defined in the BIGSdb-Lm database and 

reported as ‘closest matches’ to existing alleles in BIGSdb-Lm were assigned custom allele ID’s 

with in-house Python scripts. The wgMLST profiles were further filtered to retain loci with < 5% 

missing data. The remaining loci were used to evaluate linkage disequilibrium (LD) between all 

pairs of loci with Arlequin v3.5.2 (Excoffier and Lischer 2010). LD tests for the presence of 

significant statistical association between pairs of loci and is based on an exact test. The test 

procedure is analogous to Fisher’s exact test on a two-by-two contingency table but extended to 

a contingency table of arbitrary size (Slatkin 1994). For each pair of loci, first a contingency 

table is constructed. The k1 x k2 entries of this table are the observed haplotype frequencies, with 

k1 and k2 being the number of alleles at locus 1 and locus 2, respectively. The LD test consists in 

obtaining the probability of finding a table with the same marginal totals and which has a 

probability equal or less than that of the observed contingency table. Instead of enumerating all 

possible contingency tables, a Markov chain is used to explore the space of all possible tables. 

To start from a random initial position in the Markov chain, the chain is explored for a pre-

defined number of steps (the dememorization phase), such as to allow the Markov chain to forget 

its initial phase and make it independent from its starting point. The P-value of the test is then 

taken as the proportion of the visited tables having a probability smaller or equal to the observed 

contingency table. In our analysis, we used 100,000 steps of Markov chain to test the P-value of 

the LD test and 10,000 dememorization steps to reach a random initial position on the Markov 

chain. The significance level of the LD test was set at a P-value of 0.05. 
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3.3.4 Assessment of genetic diversity 

Genetic diversity between L. monocytogenes isolates collected from the different ecological 

niches listed as the isolate sources (File S1) was computed with pairwise FST’s in Arlequin. FST 

measures the proportion of the variance in allele frequencies attributable to variation between 

populations (Charlesworth and Charlesworth 2010) and has a history of being used as a measure 

of the level of differentiation between populations in population genetics. Fifty thousand 

permutations were used to test the significance of the genetic distances at a significance level of 

0.05. 

The AMOVA procedure in Arlequin was used to compute the pairwise differences in 

allelic content between isolate wgMLST profiles as a matrix of Euclidean squared distances. 

This distance matrix was used to compute a minimum spanning tree (MST) between all isolates. 

The MST was visualized and annotated with iTOL v3 (Letunic and Bork 2016). For better 

visualization, the MST was converted to circular format and annotations for the source of 

isolates were displayed in outer external rings. 

 

3.4 RESULTS 

We performed whole-genome multi locus sequence typing for 180 L. monocytogenes isolates 

obtained from 9 different source populations. For each isolate, allele sequences were assembled 

for 2554 genes and provided allele ID’s based on the unified nomenclature available in the 

BIGSdb-Lm database (File S2). This dataset was filtered to remove 133 paralogous loci 

identified by Haplo-ST and all loci with > 5% missing data (alleles not assigned ID’s by Haplo-

ST), and the remaining 2233 loci (File S3) were ordered according to their position in the L. 

monocytogenes reference genome EGD-e. Figure 1 shows the minimum spanning tree of the 180 
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isolates inferred from allelic differences in the wgMLST profiles. Two results are apparent. First, 

we see a long branch (red) containing a majority of isolates obtained from soil and manure 

clustered together, which suggests the origin of these strains from a common ancestor. 

Interestingly, 3 clinical strains are also found in this cluster. Secondly, a large number of food-

related isolates (~51%, obtained from food, FCS, RTE products and EFPP) clustered together in 

a single branch of the tree (blue) with short branch-lengths to the tips, suggesting that these 

strains are closely related to each other. Although this is expected, it is interesting to find a few 

strains obtained from clinical cases, river water and milk in this cluster. The presence of isolates 

from unrelated ecological communities could be due to the technique used for constructing the 

dendrogram, which groups isolates based on pairwise differences in allelic content between 

isolate wgMLST profiles rather than characterizing differences between all variants in nucleotide 

sequences. 

The genetic differentiation test that computes pairwise FST’s between isolates collected 

from different ecological communities (Table 3.1) shows that isolates obtained from soil and 

manure show considerable genetic differentiation from isolates belonging to other communities, 

with the exception of isolates obtained from clinical cases. Secondly, isolates from the EFPP-

RTE pairing has lower FST than EFPP pairing from all other locations. Thirdly, the clustering 

dendrogram (Fig 3.1) and FST test are supportive of each other in that isolates from RTE, FCS 

and food are not distinguished as separate populations. 

We investigated LD between pairs of genes in the genome using an exact test, which 

measures non-random associations between alleles at two loci based on the difference between 

observed and expected allele frequencies. As expected, most gene pairs (~97%) in the genome of 

L. monocytogenes show significant LD among pairs of alleles (Fig 3.2, File S4). A majority of 
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genes (2205 of 2233, ~99%) were found to be at LD with at least 90% of other genes in the 

genome (File S5). Of the remaining 27 genes (~1%) that were at LD with < 90% of genes (Table 

3.2), 10 genes were found to be at LD with < 50% of genes. A single locus, lmo0046, was at LD 

with only 19 other genes. 

 

3.5 DISCUSSION 

Our dataset reveals the presence of strong LD in the genome of L. monocytogenes. Among the 

2233 genes tested for LD, 2205 genes (approx. 99%) were found to have pairwise LD with a 

majority of other genes (90%) in the genome. High levels of LD can not only arise in highly 

clonal bacterial populations with low rates of recombination, but may also be temporarily present 

in bacteria with ‘epidemic’ population structures, in which high recombination rates randomize 

association between alleles, but adaptive clones emerge and diversify over the short-term (Smith 

et al. 1993, Feil and Spratt 2001). Because Listeria has a clonal genetic structure, it is difficult to 

see how this high level of LD can arise except as a consequence of low rates of recombination. 

This is consistent with studies which report recombination in chromosomal genes as an 

infrequent event in natural populations of L. monocytogenes (Piffaretti et al. 1989, Ragon et al. 

2008). Because the extent of genetic linkage is a useful index to the horizontal transfer occurring 

within a species and can be presented as direct evidence for recombination (Feil and Spratt 

2001), the remaining ~1% of genes (Table 3.2) that were at LD with < 90% of genes can be 

described as “hot spots” for the gain of horizontally acquired information. The extensive linkage 

disequilibrium that we describe in L. monocytogenes is in sharp contrast to other pathogenic 

bacteria that are naturally competent for transformation and recombine frequently to give rise to 
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either weakly clonal or panmictic population structures (Duncan et al. 1994, Suerbaum et al. 

1998, Al Suwayyid et al. 2018). 

The L. monocytogenes pan-genome is highly conserved but open to limited acquisition of 

foreign DNA or genetic variability through evolutionary forces such as mutation, duplication or 

recombination (Kuenne et al. 2013). Evidence for homologous recombination between closely 

related strains of L. monocytogenes has been detected by multiple studies, however, non-

homologous recombination seems to be rare (Orsi et al. 2008, Dunn et al. 2009, Nightingale et 

al. 2005). Although recombination via conjugation and generalized transduction has been 

reported in L. monocytogenes (Flamm et al. 1984, Lebrun et al. 1992, Hodgson et al. 2000), and 

most competence related genes are present in all Listeria genomes (Buchrieser 2007), natural 

competence or induced competence under laboratory conditions has not been observed in L. 

monocytogenes (Borezee et al. 2000, Glaser et al. 2001). This lack of competence may partially 

explain the low levels of gene acquisition from external gene pools. Limited gene acquisition 

may also be facilitated by defense systems for foreign DNA/mobile elements such as restriction-

modification and/or CRISPR systems, both of which have been shown to restrict horizontal gene 

transfer in other bacterial genera (den Bakker et al. 2010). 

The frequency of recombination in L. monocytogenes differs considerably in different 

regions of the genome and between isolates of different lineages (den Bakker et al. 2008, 2013). 

This may arise from differences in selective pressures in the environment and varying degrees of 

horizontal gene transfer. Several comparative genomic studies report a clustered distribution of 

accessory genes on the right replichore of the L. monocytogenes genome (approx. 500 Kb in the 

first 65°), indicating an area of high genome plasticity (Kuenne et al. 2013, den Bakker et al. 

2013). On the contrary, a study by Orsi et al. failed to find any evidence of spatial clustering in a 
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large number of genes which show evidence for recombination in L. monocytogenes (Orsi et al. 

2008). Further, a recent study described the presence of homologous recombination in nearly 

60% of loci in the core genome of L. monocytogenes, although most of this variation was also 

found to be affected by purifying selection and was thus neutral (Moura et al. 2016). This is 

consistent with results from our analysis which finds linkage equilibrium between only ~1% of 

gene pairs in the genome. Also, genes considered as potential recombination hot spots (Table 

3.2) in our dataset are found to be scattered in the genome. A large number (~41%) of these “hot 

spot” genes (lmo0046, lmo2624, lmo2856, lmo1469, lmo2616, lmo1816, lmo0248, lmo1335, 

lmo2047, lmo2628, lmo2614), encode ribosomal proteins and their related subunits. According to 

the complexity theory (Jain et al. 1999), informational genes involved in complex biosystems 

and maintenance of basal cellular functions are usually conserved, as they might be less likely to 

be compatible in the systems of other species. Thus, housekeeping genes such as ribosomal 

proteins are generally considered to be relatively restricted to horizontal gene transfer. However, 

several reports suggest horizontal gene transfer of ribosomal proteins in many prokaryotic 

genomes (Brochier et al. 2000, Makarova et al. 2001, Garcia-Vallve et al. 2002, Chen et al. 

2009). Two other “hot spot” genes (lmo0865, lmo2014) are involved in carbohydrate and amino 

acid metabolism and have shown evidence for recombination in a prior study (Orsi et al. 2008), 

indicating that the rapid diversification of these genes may enable L. monocytogenes to adapt to 

environments with varying nutrient availabilities. Some of the other genes encode a variety of 

internalin’s (lmo0263, lmo0514, lmo0264, lmo0434), transporters (lmo0756, lmo1839), 

transcriptional regulators (lmo0659), cell surface proteins (lmo2179), other invasion-associated 

proteins (lmo0582), and proteins involved in response to temperature fluctuations (lmo1364, 

lmo2206). Internalin’s are cell surface proteins with known and hypothesized roles in virulence 
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(den Bakker et al. 2010, Tsai et al. 2011). Evidence of recombination in internalin’s and these 

other genes suggests that L. monocytogenes is subjected to sustained selection pleasures in the 

environment, and it responds to these pressures by continuously regulating its transcriptional 

machinery and remodeling the cell surface, thereby facilitating adaptation within the host and as 

a saprophyte. 

In conclusion, we have identified the presence of strong linkage disequilibrium in the 

genome of L. monocytogenes. Parts of the genome showing strong non-random association 

between genes are highly conserved regions, and are most possibly affected by positive 

selection. The low levels of recombination within the L. monocytogenes genome suggests that 

the patterns of association observed between genes can be used to recognize newly emerging 

strains and help in understanding the processes involved in the diversification and evolution of L. 

monocytogenes. Such investigations can ultimately help to develop better control measures for 

this pathogenic microbe. 
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Tables: 

Table 3.1: Pairwise genetic distances (FST) between groups of L. monocytogenes strains isolated 

from nine different ecological niches. 

(*P < 0.05) 

  

 clinical food FCS manure milk RTE 
product soil River 

water 
clinical 0        

food 0.051* 0       

FCS 0.062* 0.015 0      

manure 0.067* 0.126* 0.137* 0     

milk 0.047* 0.047* 0.073* 0.124* 0    

RTE 
product 0.09* 0.004 0.007 0.159* 0.069* 0   

soil 0.064* 0.11* 0.124* 0.019* 0.104* 0.135* 0  

River 
water 0.094* 0.091* 0.107* 0.153* 0.069* 0.092* 0.113* 0 

EFPP 0.165* 0.157* 0.137* 0.221* 0.146* 0.076* 0.189* 0.13* 
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Table 3.2: Genes at LD with < 90% of genes in the genome of L. monocytogenes, thus showing 

significant evidence for horizontal genetic transfer. 

Gene 
name 

Number 
of 

genes 
at LD 

Percentage 
of genes at  

LD 

Location in the 
chromosome of 

EGD-e (bp) 

Location in 
core/accessory 

genome* 
Function 

lmo0046 19 0.85 50514..50753 core 
small subunit 

ribosomal 
protein S18 

lmo2624 185 8.289 2701254..2701445 core 
large subunit 

ribosomal 
protein L29 

lmo2856 215 9.63 2943569..2943703 accessory 
large subunit 

ribosomal 
protein L34 

lmo1364 239 10.71 1387014..1387214 accessory Cold shock 
protein 

lmo1469 454 20.34 1501881..1502054 core 
small subunit 

ribosomal 
protein S21 

lmo2616 458 20.52 2697988..2698347 accessory 
large subunit 

ribosomal 
protein L18 

lmo1816 484 21.69 1890951..1891139 core 
large subunit 

ribosomal 
protein L28 

lmo0248 576 25.81 265029..265454 accessory 
large subunit 

ribosomal 
protein L11 

lmo1335 880 39.43 1363826..1363975 core 
large subunit 

ribosomal 
protein L33 

inlH 
(lmo0263) 1006 45.07 284365..286011 accessory internalin H 

cwhA 
(lmo0582) 1223 54.79 618932..620380 accessory 

Invasion 
associated 
secreted 

endopeptidase 

lmo2047 1377 61.69 2130228..2130401 accessory 
large subunit 

ribosomal 
protein L32 
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lmo2628 1508 67.56 2702909..2703187 accessory 
small subunit 

ribosomal 
protein S19 

lmo2614 1580 70.79 2697267..2697446 core 
large subunit 

ribosomal 
protein L30 

lmo0758 1606 71.95 783901..784788 core Hypothetical 
protein 

lmo0514 1699 76.12 547520..549337 accessory Internalin 

lmo0305 1709 76.57 329923..330999 core L-allo-threonine 
aldolase 

lmo0659 1771 79.35 699410..700306 accessory Transcriptional 
regulator 

lmo2206 1791 80.24 2294555..2297155 accessory Heat shock 
proteins 

lmo0756 1797 80.51 781896..782801 core ABC 
Transporters 

lmo0865 1859 83.29 903837..905510 core 

Amino sugar 
and nucleotide 

sugar 
metabolism 

lmo2014 1888 84.59 2088797..2091454 accessory 
Glycan 

biosynthesis 
and metabolism 

lmo1611 1904 85.3 1654902..1655975 core Aminopeptidase 
inlE 

(lmo0264) 1913 85.71 286219..287718 accessory Internalin E 

lmo1839 1925 86.25 1916166..1917452 accessory 
Electrochemical 
potential-driven 

transporters 

lmo2179 1968 88.17 2264772..2268230 accessory Peptidoglycan 
binding protein 

inlB 
(lmo0434) 1981 88.75 457021..458913 accessory Internalin B 
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Figures: 

Figure 3.1: Patterns of genetic differentiation in the 180 L. monocytogenes isolates. 

Minimum spanning tree based on a distance matrix measuring pairwise differences in allelic 

content between isolate wgMLST profiles. The isolation source of each isolate is indicated with 

colors on the outer ring. Majority of the isolates sampled from soil and manure cluster together 

in a distant branch (red), suggesting their recent emergence from a common ancestor. A large 

number of food-related isolates cluster together in a single branch of the tree (blue), suggesting 

their close relatedness. 
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Figure 3.2: Heatmap of the extent of LD in the genome of L. monocytogenes. Genes are ordered 

according to their genomic positions in the L. monocytogenes reference strain EGD-e along the x 

and y axis (for gene names see File S4). A majority of genes show significant LD in the genome 

(indigo), while few genes are at linkage equilibrium (yellow). 
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3.8 SUPPLEMENTAL MATERIAL 

Supplemental material is available at: 

https://www.dropbox.com/sh/nupygyepmx3v586/AADkG4_yVZj8XoXKHiTkRsTma?dl=0 

File S1. Panel of 180 L. monocytogenes isolates collected from different ecological communities. 

File S2. Whole-genome MLST profiles of the 180 L. monocytogenes isolates. 

File S3. Whole-genome MLST profiles of 2233 loci retained for AMOVA after filtering out 

paralogous loci and loci with > 5% of missing data. 

File S4. Heatmap of LD in the genome of L. monocytogenes. 

File S5. Percentage of genes at LD with each gene in the genome of L. monocytogenes. 
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CHAPTER 4 

A HIGH-QUALITY GENOME ASSEMBLY OF THE NORTH AMERICAN SONG 

SPARROW, MELOSPIZA MELODIA3  

                                                
3 Swarnali Louha, David A. Ray, Kevin Winker, and Travis C. Glenn, 2020, G3 (Bethesda), 
10(4):1159-1166, DOI: 10.1534/g3.119.400929, Reprinted here with permission of publisher. 
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4.1 ABSTRACT 

The song sparrow, Melospiza melodia, is one of the most widely distributed species of songbirds 

found in North America. It has been used in a wide range of behavioral and ecological studies. 

This species’ pronounced morphological and behavioral diversity across populations makes it a 

favorable candidate in several areas of biomedical research. We have generated a high-quality de 

novo genome assembly of M. melodia using Illumina short read sequences from genomic and in 

vitro proximity-ligation libraries. The assembled genome is 978.3 Mb, with a physical coverage 

of 24.9×, N50 scaffold size of 5.6 Mb and N50 contig size of 31.7 Kb. Our genome assembly is 

highly complete, with 87.5% full-length genes present out of a set of 4,915 universal single-copy 

orthologs present in most avian genomes. We annotated our genome assembly and constructed 

15,086 gene models, a majority of which have high homology to related birds, Taeniopygia 

guttata and Junco hyemalis. In total, 83% of the annotated genes are assigned with putative 

functions. Furthermore, only ~7% of the genome is found to be repetitive; these regions and 

other non-coding functional regions are also identified. The high-quality M. melodia genome 

assembly and annotations we report will serve as a valuable resource for facilitating studies on 

genome structure and evolution that can contribute to biomedical research and serve as a 

reference in population genomic and comparative genomic studies of closely related species. 

 

4.2 INTRODUCTION 

The oscine passerines (Order Passeriformes) are songbirds having specialized vocal learning 

capabilities (Liu et al. 2013). Many species of songbirds have been widely used by 

neuroscientists to study the processes underlying memory and learning and social interactions 

(Doupe and Kuhl 1999, White 2010). The song sparrow (Melospiza melodia) is one of the most 
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morphologically diverse songbirds found in North America, with 26 recognized subspecies 

(Pruett et al. 2008). It has been recognized as a model vertebrate species for field studies of birds 

and has been the subject of extensive research integrating behavioral and ecological studies over 

the last 70 years (Arcese et al. 2002). The species is widespread across North America, 

occupying diverse ecosystems and exhibiting pronounced phenotypic variation in plumage color, 

seasonal migration and sedentariness, body size, and bill size (Arcese et al. 2002, Pruett & 

Winker 2010, Greenberg et al. 2012). 

Though several species of songbirds have been sequenced and studied (Warren et al. 

2010, Jarvis et al. 2014), few offer the plethora of biomedical research potential presented by the 

song sparrow. This species might serve as a model system in areas such as hepatic lipogenesis 

(through phenotypic variation in seasonal fat deposition for migration; Gosler 1996, Schubert et 

al. 2007), craniofacial development (through variation in bill size and shape; Brugmann et al. 

2010, Powder et al. 2012), and variations in body size (Sutter et al. 2007, Lango Allen et al. 

2010). The latter is a polygenic trait, and elucidation of the underlying gene network affecting 

different metabolic pathways can help clarify several biological phenomena, including human 

diseases. Other areas of interest are differences in neural growth and song-center brain 

development among different song sparrow populations and potential applications in brain 

neurogenesis (NIH 2001), and also the regeneration of “hair” cells in the song sparrow auditory 

system and potential therapies useful in hearing loss (Hawkins et al. 2003, Hawkins & Lovett 

2004). Given its significant biomedical potential and experimental tractability in the field and 

aviary, the song sparrow will continue to be used for answering research questions related to 

mechanisms causing variation in behavior, morphology, and demographics across populations 

(Arcese et al. 2002, Nietlisbach et al. 2015). 
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Prior work on song sparrows in Alaska has shown how the song sparrow population in 

the Aleutian Archipelago is thought to have colonized from the mainland since the last glacial 

maximum and undergone a series of population bottlenecks to give rise to a naturally inbred 

population with large body size (Pruett and Winker 2005). The lower genetic variability in this 

naturally inbred population makes song sparrows from the Aleutian islands a favorable resource 

for generating a reference genome assembly, because lower levels of polymorphism between 

both copies of a diploid genome can improve assembly quality. Previous work has also been 

done on the song sparrow transcriptome, developing genomic markers to screen at population 

levels (Srivastava et al. 2012). A high-quality genome assembly of M. melodia furthers the 

development of genomic markers to screen loci associated with phenotypic traits of interest. An 

ever-growing number of songbirds have sequenced genomes, but relatively few have been 

published so far, including the American crow (Corvus brachyrhynchos), golden-collared 

manakin (Manacus vitellinus; Jarvis et al. 2014), Zebra finch (Taeniopygia guttata; Warren et al. 

2010), medium ground finch (Geospiza fortis; Parker et al. 2012) and the dark-eyed junco (Junco 

hyemalis; Friis et al. 2018). In this study, we provide the genome assembly of Melospiza 

melodia, a member of the family Passerellidae. This genome assembly will serve as a reference 

genome for this species as well as facilitating genomic and phylogenetic comparisons among 

songbirds and other taxa. 

Our high-quality draft genome assembly of M. melodia was created by combining both 

traditional Illumina paired-end libraries and a de novo proximity-ligation Chicago library. The 

Chicago library method together with Dovetail Genomics’ HiRise software pipeline is designed 

to significantly reduce gaps in alignment arising from repetitive elements in the genome (Putnam 

et al. 2016) and increases assembly contiguity. The draft genome was annotated using 
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transcribed RNA and protein sequences from M. melodia and related songbird species, Junco 

hyemalis and Taeniopygia guttata. Genomic features of interest other than coding sequences, 

such as microsatellites, repeat elements, transposable elements, and non-coding RNA, were also 

annotated and the genome assembly was evaluated for quality by comparing it to related avian 

species. 

 

4.3 MATERIALS AND METHODS 

4.3.1 Library preparation and de novo shotgun assembly 

The de novo assembly of the song sparrow genome was constructed using Illumina paired end 

libraries. A blood sample from a single male song sparrow was obtained from the wild in the 

Aleutian Islands of Alaska (Coordinates: 52.8275 / 173.206) on 16 Sep 2003 and archived as a 

voucher specimen at the University of Alaska Museum 

(http://arctos.database.museum/guid/UAM:Bird:31500). We chose a male because females are 

the heterogametic sex in birds and sex chromosomes are known to have highly repetitive DNA 

content. This together with the selection of an individual from a population known to have lower 

genetic variation can improve the quality of our assembled genome, without changing the 

genome structurally. Whole blood was preserved during specimen preparation and shipped 

overnight in lysis buffer to UGA, where PCI extraction of DNA was performed. We sheared the 

genomic DNA using a Covaris S2 (Covaris, Woburn, MA, USA) targeting a 600bp average 

fragment size. The sheared DNA was end-repaired, adenylated, and ligated to TruSeq LT 

adapters using a TruSeq DNA PCR-Free Library Preparation Kit (Illumina, San Diego, CA, 

USA). We purified the ligation reaction using a Qiaquick Gel Extraction Kit (Qiagen, Venlo, 

The Netherlands) from a 2% agarose gel. We sequenced the library on an Illumina HiSeq 2500 at 
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the HudsonAlpha Institute for Biotechnology (Huntsville, AL, USA) to obtain paired-end (PE) 

∼100 bp reads. The sequence data consisted of 276 million read pairs sequenced from a total of 

41.3 Gbp of paired-end libraries (~49× sequencing coverage). Reads were trimmed for quality, 

sequencing adapters, and mate pair adapters using Trimmomatic (Bolger et al. 2014). The reads 

were assembled at Dovetail Genomics (Santa Cruz, CA, USA) using Meraculous 2.0.4 

(Chapman et al. 2011) with a k-mer size of 29. This yielded a 972.4 Mbp assembly with a contig 

N50 of 22.5 Kbp and a scaffold N50 of 33 Kbp. 

 

4.3.2 Chicago library preparation and scaffolding the draft genome 

To improve the de novo assembly, a Chicago library was prepared at Dovetail Genomics using 

previously described methods (Putnam et al. 2016). In brief, about 500 ng of high-molecular-

weight genomic DNA (mean fragment length = 50 kbp) was used for chromatin reconstitution in 

vitro and fixed with formaldehyde. Fixed chromatin was digested with DpnII, the 5’ overhangs 

filled in with biotinylated nucleotides, and free blunt ends were ligated together. After ligation, 

crosslinks were reversed and DNA was purified from protein. Purified DNA was treated to 

remove biotin that was not internal to ligated fragments. Next, DNA was sheared to ~350 bp 

mean fragment size and sequencing libraries were generated using NEBNext Ultra enzymes 

(New England Biolabs, Ipswich, MA, USA) and Illumina-compatible adapters. Biotin-containing 

fragments were isolated using streptavidin beads before PCR enrichment of the library. The 

Chicago library was sequenced on an Illumina HiSeq 2500 to produce 47 million 150 bp paired 

end reads (1-50 kb pairs). 

Dovetail Genomics’ HiRise scaffolding software pipeline (Putnam et al. 2016) was used 

to map the shotgun and Chicago library sequences to the draft de novo assembly using a 
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modified SNAP read mapper (http://snap.cs.berkeley.edu). The separations of Chicago read pairs 

mapped within draft scaffolds were analyzed by HiRise to produce a likelihood model for 

genomic distance between read pairs, and the model was used to identify and break putative 

misjoins, to score prospective joins, and make joins above a threshold. After scaffolding, shotgun 

sequences were used to close gaps between contigs. 

 

4.3.3 Identification of microsatellites and transposable elements 

Transposable elements (TEs) in the song sparrow genome were identified using a combination of 

de novo and homology-based TE identification methods, in addition to a manual curation step 

(Platt et al. 2016). First, we used RepeatModeler v1.0.11 (Smit and Hubley 2008-2015) with 

default parameters (File S1) to generate a custom repeat library consisting of 672 consensus 

repeat sequences. RepeatModeler uses two de novo repeat identification programs, RECON 

v1.08 (Bao and Eddy 2002) and RepeatScout v1.0.6 (Price et al. 2005), for identifying repetitive 

elements from sequence data. To ensure accurate and complete representation of putative TEs, 

the RepeatModeler derived consensus sequences were filtered for size (>100 bp), and then 

subjected to iterative homology-based searches against the genome, followed by manual curation 

(Platt et al. 2016). The final set of manually curated TEs was queried against CENSOR (Kohany 

et al. 2006) and TEclass (Abrusan et al. 2009) for classification. TEs not identifiable in CENSOR 

were also searched against the NCBI nucleotide and protein databases using BLASTN and 

BLASTX respectively. Finally, a custom repeat library consisting of 900 repeat elements (File 

S24) comprising song sparrow-specific TEs and existing repeats in other related avian species 

was used to screen for repeats in the song sparrow genome assembly with RepeatMasker v4.0.9. 
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Microsatellites in the song sparrow genome were identified and described with GMATA 

v2.01 (Wang et al. 2016) with sequence motifs ranging in length from 2-20 bp, and each motif 

repeated at least 5 times (File S2). 

 

4.3.4 De novo gene annotation and function prediction 

Genes were predicted in the song sparrow genome with the MAKER v2.31.9 genome annotation 

pipeline (Campbell et al. 2014). A custom repeat library of 900 repeat sequences (File S24) 

consisting of TEs identified in the song sparrow genome and other existing avian repeat elements 

was used to soft mask the genome. Transcriptome evidence sets for MAKER included the 

assembled song sparrow transcriptome (Srivastava et al. 2012) and Trinity (v2.4.0) mRNA-seq 

assemblies from multiple tissues of Junco hyemalis (Peterson et al. 2012, NCBI BioProject 

Accession: PRJNA256328). Protein evidence sets used by MAKER included annotated proteins 

for song sparrow, Junco hyemalis, and Taeniopygia guttata from the NCBI Protein database. The 

MAKER pipeline consisted of the following steps: 1) Transcriptomic and protein evidence sets 

were used to make initial evidence-based annotations with MAKER; 2) the initial annotations 

were used to train two ab initio gene predicters: Augustus (Stanke et al. 2006), which was trained 

once, and SNAP (Korf 2004), which was iteratively trained twice; and 3) the trained gene 

prediction tools SNAP and Augustus were used to generate the final set of gene annotations (File 

S3-S8). 

Functional annotations of the predicted genes were obtained by making homology-based 

searches with BLASTP against the Uniprot/Swiss-Prot protein database (Pundir et al. 2016, File 

S9). InterProScan v5.29 (Zdobnov and Apweiler 2001) was used to find protein domains 
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associated with the genes. The putative functions and protein domains were added to the gene 

annotations using scripts provided with MAKER (File S9). 

To quantitatively assess the completeness of the song sparrow genome assembly and 

annotated gene set, we ran BUSCO (Benchmarking Universal Single-Copy Orthologs) v3.0.2 

(Waterhouse et al. 2017) with 4,915 single-copy orthologous genes in the Aves lineage group 

(Aves_odb9; https://busco.ezlab.org/), using “chicken” as the Augustus reference species (File 

S10). The 4,915 orthologous genes are present in at least 90% of the 40 species included within 

the Aves lineage group, and thus are likely to be found in the genome of related species. 

Additionally, we used the JupiterPlot pipeline (https://github.com/JustinChu/JupiterPlot) to 

visually compare the zebra finch (T. guttata) genome assembly (Warren et al. 2010) to our 

assembly in a Circos plot, using the largest scaffolds making up 85% of our genome assembly, 

and all scaffolds greater than 100 kbp in the Zebra finch genome (File S11). We also used the 

JupiterPlot pipeline to compare our assembly to the genome assemblies of the collared flycatcher 

(Ficedulla albicollis), great tit (Parus major) and house sparrow (Passer domesticus). These 

birds were selected for comparison because they have highly complete genomes, and are often 

used for comparative genomic studies in birds. 

 

4.3.5 Non-coding RNA prediction 

Transfer RNAs (tRNAs) were predicted in the song sparrow genome with tRNAscan-SE v2.0 

(Lowe and Chan 2016, File S12). A training set comprising eukaryotic tRNAs was used to train 

the covariance models employed by tRNAscan-SE, and tRNAs were searched against the 

genome with Infernal v1.1.2 (Nawrocki 2014). tRNAscan-SE also provides functional 

classification of tRNAs based on a comparative analysis using a suite of isotype-specific tRNA 
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covariance models. A random sample of 10 predicted tRNAs were selected and searched against 

the tRNA databases GtRNAdb (Chan and Lowe 2016) and tRNAdb (Jühling et al.2009). 

Identification of miRNAs (microRNAs), snoRNAs (small nucleolar RNAs), snRNAs 

(small nuclear RNAs), rRNAs (ribosomal RNAs), and lncRNAs (long non-coding RNAs) was 

achieved by using a homology-based prediction method. Structural homologs to eukaryotic 

ncRNA covariance models from the Rfam database v14.1 (Gardner et al. 2009) were searched 

against the song sparrow genome using Infernal’s (v1.1.2) “cmscan” program (File S13). All 

low-scoring overlapping hits and hits with an E-value greater than 10-5 were discarded, and the 

remaining ncRNAs were grouped into different classes. 

Lastly, we compared the predicted classes of different ncRNAs in the song sparrow 

genome to those reported in the genomes of related birds, Taeniopygia guttata and Ficedula 

albicollis (collared flycatcher). 

 

4.4 DATA AVAILABILITY 

Raw reads have been deposited in the NCBI Sequence Read Archive (SRR10491484 and 

SRR10451714 for the Meraculous assembly, and SRR10424475 for the Chicago HiRise 

assembly). The M. melodia Chicago HiRise genome sequence (Mmel_1.0), and annotations are 

available in GenBank under the accession RZID00000000 (NCBI BioProject accession: 

PRJNA511035). Supplemental File S1 contains submission script for RepeatModeler. 

Supplemental File S2 contains primary configuration file used to run GMATA (default_cfg.txt). 

Supplemental File S3 contains submission script for MAKER. Supplemental File S4 contains 

MAKER executable file (maker_exe.ctl). Supplemental File S5 contains specifications for 

downstream filtering of BLAST and Exonerate alignments (maker_bopts.ctl). Supplemental File 
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S6 contains primary configuration of MAKER specific options (maker_opts.ctl). Supplemental 

File S7 contains scripts for training SNAP. Supplemental File S8 contains scripts for training 

Augustus. Supplemental File S9 contains scripts for running BLASTP and InterProScan for 

functional annotation of predicted genes; and scripts for adding the functional annotations to 

gene annotation files. Supplemental File S10 contains submission script for BUSCO. 

Supplemental File S11 contains submission scripts for JupiterPlot pipeline. Supplemental File 

S12 contains submission script for tRNAscan-SE. Supplemental File S13 contains submission 

script for Infernal. Supplemental File S14 contains classification of predicted transposable 

elements. Supplemental File S15 contains annotation of microsatellites with their genomic 

locations. Supplemental File S16 contains percentage of different microsatellites present in the 

genome. Supplemental File S17 contains frequency of occurrence of microsatellites in each 

scaffold of the genome. Supplemental File S18 contains the distribution of the length of 

microsatellites. Supplemental File S19 contains predicted function of annotated genes by 

BLASTP. Supplemental File S20 contains prediction of protein domains, GO annotations and 

pathway annotations of predicted genes by InterProScan. Supplemental File S21 contains 

sequence and structure of tRNAs identified in the song sparrow genome. Supplemental File S22 

contains classification of predicted tRNAs. Supplemental File S23 contains classification of 

different ncRNAs predicted in the genome with Infernal. Supplemental File S24 contains custom 

repeat library used to screen for repeats in the song sparrow genome. Supplemental Table S1 

contains genome sizes of birds related to M. melodia. Supplemental Figure S1 contains the 

distribution of the percentage of annotated genes with their corresponding AED scores. 

Supplemental Figure S2 contains the distribution of the top base-pair composition of 

microsatellite motifs in the M. melodia genome. Supplemental Figure S3 contains comparison of 
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the M. melodia genome assembly with genome assemblies of related birds. Supplemental 

material available at figshare: https://doi.org/10.25387/g3.11676441. 

 

4.5 RESULTS AND DISCUSSION 

4.5.1 Assembly 

We produced the de novo genome assembly of song sparrow, with a total length of 978.3 Mb, 

using a Chicago library and the HiRise assembly pipeline. The N50 scaffold size was 5.6 Mb and 

contig size was 31.7 Kb. This assembly showed significant improvement over the initial shotgun 

assembly, with a 169-fold increase in scaffold N50 and a 60-fold increase in scaffold N90 (Table 

4.1). These increases in scaffold size were also accompanied by an increase in assembly 

contiguity, with the total number of scaffolds decreasing from 74,832 to 13,785 (Fig 4.1, Table 

4.1). 

 

4.5.2 Microsatellites and Transposable Elements 

In total, 88 as yet unnamed TEs were identified in the song sparrow genome. Fifty-five of these 

did not have any significant matches in CENSOR (Kohany et al. 2006) and are considered novel 

(File S14). A TE was considered to have a significant match to a known element in CENSOR 

only when it had a length of at least 80 bp and 80% identity to the known element over 80% of 

its length, the 80-80-80 rule (Wicker et al. 2007). The predicted TEs were classified into DNA 

transposons and retrotransposons (i.e. LINEs, LTRs, and SINEs) using CENSOR and TEclass 

(File S14). Approximately 7.4% of the genome comprises repeats with the majority of that 

consisting of TEs (~ 48%). Among the different TEs, LTRs (~ 40%) and LINEs (~ 49%) were 

found to be most abundant (Table 4.2). The song sparrow genome assembly was found to be less 
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repetitive when compared to sequenced genomes of related songbirds, primarily due to the lower 

content of LTRs and LINEs than other songbirds (Fig 4.2). 

Overall, 112,419 microsatellites with motifs ranging in size from 2-20 bp were found in 

the song sparrow genome (File S15 contains all microsatellites with their genomic locations). 

The majority of the microsatellites were made up of 2-, 3-, 4-, and 5-mers, with 2-mers making 

up about 71% of all microsatellites identified (Fig 4.3, File S16). The distribution of the top 

base-pair composition of microsatellite motifs present in the genome is shown in Fig S2. The 

frequency of occurrence of microsatellites in every scaffold and a distribution of their lengths are 

provided in Files S17 and S18, respectively. 

 

4.5.3 Gene annotation and function prediction 

The MAKER genome annotation pipeline predicted 15,086 genes and 139 pseudogenes in the 

song sparrow genome, fewer than T. guttata, F. albicollis, and M. vitellinus, but higher than G. 

fortis (Table 4.3). The average gene length, exon length, intron length, and the total number of 

exons and introns predicted are also less compared to closely related species (Table 4.3). Of the 

15,086 predicted genes, 12,541 genes were assigned putative functions with BLASTP (File S19). 

InterProScan assigned functional domains to 11,298 (74.9%) predicted genes (File S20). A total 

of 7,010 genes obtained GO annotations. Pathway annotations were assigned to 2,716 genes. 

Annotated genes were assigned annotation edit distance (AED) scores with values 

ranging from 0 to 1. AED is a distance metric score that signifies how closely gene models 

match transcript and protein evidence. Gene models with AED scores closer to 0 have better 

alignment with the evidence provided in the MAKER pipeline. A distribution of the percentage 
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of genes with their corresponding AED scores shows close similarity of the annotated genes with 

the transcript and protein evidence provided in the MAKER pipeline (Fig S1). 

The song sparrow genome assembly contained 4,318 complete universal single-copy 

orthologs (BUSCOs; 87.9%) from a total of 4,915 BUSCO groups searched. Among all complete 

BUSCOs, 99.4% were present as single-copy genes and 0.6% were duplicated. About 7.4% 

(356) of the orthologous gene models were partially recovered, and 4.9% (241) had no 

significant matches. The incomplete and missing gene models could either be partially present or 

missing, or could indicate genes that are too divergent or have very complex structures, making 

their prediction difficult. Incomplete and missing gene models could also suggest problems 

associated with the genome assembly and gene annotation. The results from the BUSCO analysis 

are in agreement with the Circos plot (Fig 4.4), in which few scaffolds in the T. guttata genome 

assembly are not represented in our assembly and very few inconsistent arrangements of 

scaffolds exist between the two genome assemblies. Comparison of our assembly to F. albicollis, 

P. major, and P. domesticus genome assemblies showed many more inconsistencies in the 

arrangements of scaffolds between the genomes of these birds and M. melodia (Fig S3) than 

between T. guttata and M. melodia. 

 

4.5.4 Non-coding RNA prediction and identification 

A total of 267 tRNAs were detected in the song sparrow genome by tRNAscan-SE (see File S21 

for sequence and structure of tRNAs), out of which 129 were found coding for the standard 

twenty amino acids. The predicted output from tRNAscan-SE (File S22) contained 114 tRNAs 

with low Infernal as well as Isotype scores; these were characterized as pseudogenes lacking 

tRNA-like secondary structures (Lowe and Chan 2016). Two tRNAs had undetermined isotypes 
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and 22 were chimeric, with mismatch isotypes. Chimeric tRNAs contain point mutations in their 

anticodon sequence, rendering different predicted isotypes than those predicted by structure-

specific tRNAscan-SE covariance models. Among all predicted tRNAs, 11 contained introns 

within their sequences. No suppressor tRNAs and tRNAs coding for selenocysteine were 

predicted. The subset of 10 randomly selected tRNAs was also predicted in many other species 

in both GtRNAdb and tRNAdb databases. 

Infernal searches predicted a total of 364 ncRNAs in the song sparrow genome, 

comprising 166 miRNAs, 8 rRNAs, 154 snoRNAs, 16 snRNAs, and 20 lncRNAs (File S23). 

Compared to the genomes of related avian species (T. guttata and F. albicollis), the song sparrow 

genome has the highest number of predicted tRNAs, but fewer other ncRNAs (Table 4.4). 

 

4.6 CONCLUSION 

The Chicago and shotgun sequencing libraries along with the HiRise assembly software enabled 

accurate and highly contiguous de novo assembly of the song sparrow genome. The genome 

assembly is 978.3 Mb, with 48 scaffolds (L50) making up half the genome size. A previous 

estimate of genome size of M. melodia from densitometry analysis provided a C-value of 1.43 pg 

(1,398.54 Mb) (Andrews et al. 2009). Our own k-mer based estimate of genome size from paired 

reads in the shotgun and Chicago libraries using Kmergenie v1.7044 (Chikhi and Medvedev 

2014) yielded an estimated size of 1,127.25 Mb. Both these genome size estimates and the 

genome sizes of related birds (Table S1) are slightly higher than our genome assembly (978.3 

Mb). Our small assembly size may be attributed to the compression of repetitive regions, which 

is generally observed in assemblies generated from short-read sequencing data. This is also 

consistent with the fact that our genome contains fewer repeats when compared to related 
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songbirds (Fig 4.2). Although short reads limit our ability to characterize the total number of 

repeats within long tandem arrays, we have been able to characterize vast majority of repeats, 

resolving them into LINEs, SINEs, LTRs, and DNA retrotransposons (Fig 4.2, Table 4.2). 

Our genome is highly complete, with 87.5% full-length genes present out of 4,915 

universal orthologous genes in avian species. A large set of genes (15,086) with known 

homology to related birds was annotated in our study. A majority of these genes (83%) were 

assigned with putative functions. The improved scaffold lengths and gene model annotations will 

facilitate studies to identify genes responsible for multiple phenotypic traits of interest. 

Additionally, longer scaffolds in the Chicago HiRise assembly will help detect regions under 

selection, including SNPs and structural variants such as insertions/deletions or copy number 

variations which are potentially responsible for the phenotypic diversity observed in this species. 

Though we report fewer miRNAs, snRNAs, snoRNAs, rRNAs, and lncRNAs in this 

genome than in related songbirds, we have high confidence in the predicted ncRNAs we report 

because we used conservative cutoffs to reduce false positives. Pending the availability of long-

read data, this genome assembly provides an excellent reference for a range of genetic, 

ecological, functional, and comparative genomic studies in song sparrows and other songbirds. 

 

4.7 ACKNOWLEDGMENTS 

This research was supported in part by an Institutional Development Award (IDeA) from the 

National Institute of General Medical Sciences of the NIH (P20GM103395). The content is 

solely the responsibility of the authors and does not necessarily reflect the official views of the 

NIH. We thank David Sonneborn and Jack Withrow for their roles in making a vouchered 

specimen available for our work. We also thank Troy Kieran for assistance with laboratory work 



 113 

and sequencing logistics, Roger Nilsen and the staff of Georgia Genomics and Bioinformatics 

Core for constructing the genomic library, and the staff of Dovetail Genomics for help in 

preparing and processing the Chicago library and HiRise assemblies. The high performance 

computing cluster at Georgia Advanced Computing Resource Center (GACRC) at the University 

of Georgia provided computational infrastructure and technical support throughout the work. 

 

4.8 REFERENCES 

Abrusan G, Grundmann N, DeMester L, Makalowski W. 2009. TEclass: a tool for automated 
classification of unknown eukaryotic transposable elements. Bioinformatics 25:1329-1330. 

Andrews CB, Mackenzie SA, Gregory TR. 2009. Genome size and wing parameters in 
passerine birds. Proc Biol Sci 276:55-61. 

Arcese P, Sogge MK, Marr AB, Patten MA. 2002. Song Sparrow (Melospiza melodia), 
version 2.0. In Poole AF, Gill FB (ed), The Birds of North America, Cornell Lab of 
Ornithology, Ithaca, NY, USA. 

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics 30:2114-2120. 

Brugmann SA, Powder KE, Young NM, Goodnough LH, Hahn SM, James AW, Helms JA, 
Lovett M. 2010. Comparative gene expression analysis of avian embryonic facial structures 
reveals new candidates for human craniofacial disorders. Hum Mol Genet 19:920-930. 

Campbell MS, Holt C, Moore B, Yandell M. 2014. Genome annotation and curation using 
MAKER and MAKER-P. Curr Protoc Bioinformatics 48:4.11.1-39. 

Chan PP, Lowe TM. 2016. GtRNAdb 2.0: An expanded database of transfer RNA genes 
identified in complete and draft genomes. Nucleic Acids Res 44:D184-D189. 

Chapman JA, Ho I, Sunkara S, Luo S, Schroth GP, Rokhsar DS. 2011. Meraculous: de novo 
genome assembly with short paired-end reads. PLoS One 6:e23501. 

Chikhi R, Medvedev P. 2014. Informed and automated k-mer size selection for genome 
assembly. Bioinformatics 30:31-37. 

Doupe AJ, Kuhl PK. 1999. Birdsong and Human Speech: Common Themes and 
Mechanisms. Annu Rev Neurosci 22:567-631. 



 114 

Friis G, Fandos G, Zellmer AJ, McCormack JE, Faircloth BC, Milá B. 2018. Genome-wide 
signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol Ecol 
27:5137-5153. 

Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, 
Kolbe DL, Eddy SR, Bateman A. 2011. Rfam: Wikipedia, clans and the ‘decimal’ release. 
Nucleic Acids Res 39:D141-D145. 

Gosler AG. 1996. Environmental and social determinants of winter fat storage in the Great 
Tit Parus major. J Anim Ecol 65:1-17. 

Greenberg R, Cadena V, Danner RM, Tattersall GJ. 2012. Heat Loss May Explain Bill Size 
Differences between Birds Occupying Different Habitats. PLoS ONE 7:e40933. 

Hawkins RD, Bashiardes S, Helms CA, Hu L, Saccone NL, Warchol ME, Lovett M. 2003. 
Gene expression differences in quiescent versus regenerating hair cells of avian sensory 
epithelia: implications for human hearing and balance disorders. Hum Mol Genet 12:1261-
1272. 

Hawkins RD, Lovett M. 2004. The developmental genetics of auditory hair cells. Hum Mol 
Genet 13:R289-R296. 

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, et al. 2014. Whole-genome analyses resolve 
early branches in the tree of life of modern birds. Science 346:1320-1331. 

Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. 2009. tRNAdb 2009: 
Compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37:D159-D162. 

Kohany O, Gentles AJ, Hankus L, Jurka J. 2006. Annotation, submission and screening of 
repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7:474. 

Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics 5:59. 

Lango AH, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. 2010. Hundreds of variants 
clustered in genomic loci and biological pathways affect human height. Nature 467:832-838. 

Liu WC, Wada K, Jarvis ED, Nottebohm F. 2013. Rudimentary substrates for vocal learning 
in a suboscine. Nat Commun 4:2082. 

Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: Search and Contextual Analysis of 
Transfer RNA Genes. Nucleic Acids Res 44:W54-W57. 

Nawrocki EP. 2014. Annotating functional RNAs in genomes using Infernal. Methods Mol 
Biol 1097:163-197. 

Nietlisbach P, Camenisch G, Bucher T, Slate J, Keller LF, Postma E. 2015. A microsatellite-
based linkage map for song sparrows (Melospiza melodia). Mol Ecol Resour 15:1486-1496. 



 115 

NIH. 2001. What we learned from songbirds: The adult brain can generate new nerve cells. 
NIH Publication No. 01-4602. 

Parker P, Li B, Li H, Wang J. 2012. The genome of Darwin’s Finch (Geospiza fortis). 
GigaScience. Available at http://dx.doi.org/10.5524/100040. 

Peterson MP, Whittaker DJ, Ambreth S, Sureshchandra S, Buechlein A, Podicheti R, Choi 
JH, Lai Z, Mockatis K, Colbourne J, Tang H, Ketterson ED. 2012. De novo transcriptome 
sequencing in a songbird, the dark-eyed junco (Junco hyemalis): genomic tools for an 
ecological model system. BMC Genomics 13:305. 

Platt RN 2nd, Blanco-Berdugo L, Ray DA. 2016. Accurate Transposable Element 
Annotation Is Vital When Analyzing New Genome Assemblies. Genome Biol Evol 8:403-
10. 

Powder KE, Ku YC, Brugmann SA, Veile RA, Renaud NA, Helms JA, Lovett M. 2012. A 
cross-species analysis of microRNAs in the developing avian face. PLoS One 7:e35111. 

Price AL, Jones NC, Pevzner PA. 2005. De novo identification of repeat families in large 
genomes. Bioinformatics 21 Suppl 1:i351-i358. 

Pruett CL, Arcese P, Chan YL, Wilson AG, Patten MA, Keller LF, Winker K. 2008. 
Concordant and discordant signals between genetic data and described subspecies of Pacific 
Coast Song Sparrows. The Condor 110:359-364. 

Pruett CL, Winker K. 2005. Northwestern Song Sparrow populations show genetic effects of 
sequential colonization. Mol Ecol 14:1421-1434. 

Pruett CL, Winker K. 2010. Alaska Song Sparrows (Melospiza melodia) demonstrate that 
genetic marker and method of analysis matter in subspecies assessments. Ornithological 
Monographs 67:162-171. 

Pundir S, Martin MJ, O'Donovan C, The UniProt Consortium. 2016. UniProt Tools. Curr 
Protoc Bioinformatics 53:1.29.1-1.29.15. 

Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, 
Hartley PD, Sugnet CW, Haussler D, Rokhsar DS, Green RE. 2016. Chromosome-scale 
shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342-350. 

Schubert KA, Mennill DJ, Ramsay SM, Otter KA, Boag PT, Ratcliffe LM. 2007. Variation 
in social rank acquisition influences lifetime reproductive success in black-capped 
chickadees. Biol J Linn Soc 90:85-95. 

Smit AFA, Hubley R. 2008-2015 RepeatModeler Open-1.0.11. Available at  
http://www.repeatmasker.org. 

Srivastava A, Winker K, Shaw TI, Jones KL, Glenn TC. 2012. Transcriptome analysis of a 
North American songbird, Melospiza melodia. DNA Res 19:325-333. 



 116 

Stanke M, Tzvetkova A, Morgenstern B. 2006. AUGUSTUS at EGASP: using EST, protein 
and genomic alignments for improved gene prediction in the human genome. Genome Biol 7 
Suppl 1:S11.1-8. 

Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, 
Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, 
Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA. 2007. A single 
IGF1 allele is a major determinant of small size in dogs. Science 316:112-115. 

Wang X, Wang L. 2016. GMATA: An Integrated Software Package for Genome-Scale SSR 
Mining, Marker Development and Viewing. Front Plant Sci 7:1350. 

Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, et al. 2010. The genome of a 
songbird. Nature 464:757-62. 

Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, 
Kriventseva EV, Zdobnov EM. 2017. BUSCO applications from quality assessments to gene 
prediction and phylogenomics. Mol Biol Evol 35:543-548. 

White SA. 2010. Genes and vocal learning. Brain Lang 115:21-28. 

Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, 
Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. 2007. A unified classification 
system for eukaryotic transposable elements. Nat Rev Genet 8:973-982. 

Bao Z, Eddy SR. 2002. Automated de Novo Identification of Repeat Sequence Families in 
Sequenced Genomes. Genome Res 12:1269-1276. 

Zdobnov EM, Apweiler R. 2001. InterProScan-an integration platform for the signature-
recognition methods in InterPro. Bioinformatics 17:847-848. 

Zhang G, Li C, Li Q, Li B, Larkin DM, et al. 2014. Comparative genomics reveals insights 
into avian genome evolution and adaptation. Science 346:1311-1320. 



 117 

Tables: 
 
Table 4.1: A comparison of assembly quality statistics from the initial shotgun sequencing 

assembled by Meraculous and the final HiRise assembly. 

 Meraculous Assembly Chicago HiRise Assembly 
Total length 972.4 Mb 978.3 Mb 
Scaffold N50 33 kb 5.58 Mb 
Scaffold N90 5 kb 303 kb 
Scaffold L50 7,552 scaffolds 48 scaffolds 
Scaffold L90 35,731 scaffolds 324 scaffolds 

Longest scaffold 366,149 26,942,064 
Number of scaffolds 74,832 13,785 

Number of scaffolds > 1kb 74,806 13,768 
Contig N50 22.5 kb 31.7 kb 

Number of gaps 53,577 95,490 
Percent of genome in gaps 1.427% 1.847% 
Number of N’s per 100 kbp 1427.15 1847.03 

GC content 41.07% 41.08% 
  



 118 

Table 4.2: Number and percentage of repeats in the M. melodia genome assembly. 
 
Classification Number of copies Percentage of assembly 
LINEs 104,032 3.01 
LTRs 85,276 2.83 
SINEs 6,695 0.08 
DNA Transposons 13,521 0.21 
Unclassified 4,884 0.12 
Total transposable elements 214,408 6.25 
Satellites 569 0.00 
Low complexity repeats 38,561 0.20 
Microsatellites 192,996 0.90 
Total 446,534 7.35 
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Table 4.3: Characteristics of genes predicted in the M. melodia genome compared to 

Taeniopygia guttata (zebra finch), Ficedulla albicollis (collared flycatcher), Manacus vitellinus 

(golden-collared manakin) and Geospiza fortis (medium ground finch). 

 M. melodia T. guttata1 F. albicollis2 M. vitellinus3 G. fortis4 
Number of genes 15,086 17,561 16,763 18,976 14,388 

Mean gene length (bp) 14,457 26,458 31,394 27,847 30,164 
Mean CDS length (bp) 1,325 1,677 1,942 1,929 1,766 
Number of exons 131,940 171,767 189,043 190,390 164,721 
Mean exon length (bp) 153 225 253 264 195 
Mean number of 
exons/gene 

8.67 10.25 12.22 11.51 11.41 

Number of introns 116,724 153,909 171,236 171,089 149,563 
Mean intron length (bp) 1,695 2,930 3,257 3,294 2,813 

 

1https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Taeniopygia_guttata/103/ 
2https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Ficedula_albicollis/101/ 
3https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Manacus_vitellinus/102/ 
4https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Geospiza_fortis/101/ 
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Table 4.4: Number of ncRNAs predicted in the Melospiza melodia genome compared to 

Taeniopygia guttata (zebra finch) and Ficedulla albicollis (collared flycatcher). 

 M. melodia T. guttata1,2 F. albicollis1,3 
tRNA 267 184 179 

miRNA 166 302 510 
snRNA 16 44 32 

snoRNA 154 241 199 
rRNA 8 100 22 

lncRNA 20 908 1473 
 

1http://useast.ensembl.org/info/data/ftp/index.html 
2https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Taeniopygia_guttata/103/ 
3https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Ficedula_albicollis/101/ 
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Figures: 

Figure 4.1: Comparison of assembly contiguity. 
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Figure 4.2: Comparison of percentages of transposable elements (TEs) among related songbird 

genome assemblies. * Data from: Zhang et al. 2014 Science. 346: 1311-1320. 
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Figure 4.3: Abundance of microsatellite repeat motif size classes in the M. melodia genome 

assembly (details are given in Supplemental File S16). 
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Figure 4.4: Jupiter plot correlating zebra finch and song sparrow genome assemblies, 

considering scaffolds greater than 100 kbp in the reference zebra finch genome and the largest 

scaffolds representing 85% of the song sparrow genome. 
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4.9 SUPPLEMENTAL MATERIAL 

Supplemental material is available at https://doi.org/10.25387/g3.11676441 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1 GENOME CHARACTERIZATION OF LISTERIA MONOCYTOGENES 

In chapter 2, I developed an open source tool, Haplo-ST, that can perform wgMLST-based 

characterization of isolates of Listeria monocytogenes from whole-genome sequencing datasets. 

This tool helped us classify two groups of L. monocytogenes isolates collected from different 

ecological sources (outdoor environment and poultry processing plants) into distinct sequence 

types and clonal complexes, and evaluate the phylogenetic relationships between members of 

each group. Additionally, genetic differentiation studies performed on the wgMLST profiles of 

isolates obtained from both groups provided insights into loci potentially contributing towards 

increased adaptability and persistence of L. monocytogenes in poultry processing facilities. 

Haplo-ST can not only be used for characterization of L. monocytogenes isolates, but can also be 

extended to classify and evaluate phylogenetic relationships between isolates of other haloid 

organisms, simply by installation of an organism-specific gene database and making minor 

modifications to the script that automates the pipeline. Further developments to this tool could 

involve enabling automated allele curation for new alleles not present in the gene database and 

construction of a module that can create minimum spanning trees from isolate subtype data. 

Further, because long read sequencing projects have become increasingly popular in recent 

years, future work could also involve development of applications that can assemble alleles from 

data generated by third-generation sequencers like PacBio and Oxford Nanopore. Use of long 
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read sequencing technologies for allele assembly can also enable assembly and characterization 

of differences in regions of the genome other than protein-coding genes. Thus, the power of fully 

assembled genomes can be exploited for bacterial classification. 

Secondly, our tool was used to assess patterns of linkage disequilibrium among protein-

coding genes in the genome of L. monocytogenes (chapter 3). Our analysis revealed presence of 

strong linkage disequilibrium among majority of genes in the genome of this species. This 

analysis also helped us detect genes which were less significantly associated to other genes in the 

genome and we considered these genes to be potential “hot spots” for horizontal gene transfer. 

Future extensions of this project can involve application of this approach to other bacterial 

species such as Salmonella enterica and Mycobacterium tuberculosis, both of which have a 

highly clonal genetic structures (Liu et al. 2006, Didelot et al. 2011, Yar et al. 2018). This will 

not only give us insights into whether the patterns of linkage disequilibrium obtained in L. 

monocytogenes are similar to other highly clonal bacteria or are unique to it, but also help reveal 

the processes contributing to the diversification and evolution of these microbes. 
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5.2 GENOME ANALYSIS OF MELOSPIZA MELODIA 

The primary objective of our genome analysis project (chapter 4) was to produce a high-quality 

genome assembly of the song sparrow, Melospiza melodia, and obtain annotations of protein-

coding genes, repeats and different classes of non-coding RNAs. We have achieved all these 

goals by using our genome analysis pipeline. We believe that the M. melodia genome assembly 

and associated annotations will serve as valuable resources for studying the genome structure 

and evolution in this species and also contribute towards population and comparative genomic 

studies in closely related avian species. 

The song sparrow is one of the most polytypic bird species found in North America, with 

26 recognized sub-species that exhibit great morphological variation across their range (Patten 

and Pruett 2009). The largest members of this species reside in the Aleutian archipelago and has 

almost three times the body size of the subspecies found in California. The reference genome 

produced in this project can be used for understanding the processes that affect the physiology of 

this species such that it attains weight, resulting in the gigantism phenotype. Our resources can 

also be used for comparing the genomes of different sub-species of song sparrows and examining 

the patterns of genomic change that result in their divergence and evolution. The molecular 

approach by which we plan to achieve these goals is to sequence a large number of individuals of 

this species using low coverage whole-genome sequencing techniques, RADseq (Davey and 

Blaxter 2010), sequence capture etc. and study the genetic variation responsible for producing 

the highly diverse phenotypic characteristics. Variation between different sub-species of song 

sparrows can also be studied using other molecular markers like microsatellites or SNPs 

observed from sequencing data. 
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