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Abstract

Phenotyping robots are being investigated to automate the tasks associated with high-throughput
phenotyping (HTP) that can aid the development of high yield crops. The aim of this work is to develop
an autonomous mobile �eld robot that can perform both HTP and soil sensing with the onboard Li-
DAR sensor and a manipulator. In the �rst part of the thesis, a simulation of the robot in a high-�delity
environment utilizing Robotic Operating System is presented to validate the use of an actuated LiDAR
con�guration that allows for simultaneous phenotyping and autonomous navigation. The use of this
LiDAR con�guration was shown to estimate plant height and volume with comparable accuracy to other
LiDAR con�gurations while also navigating through crop rows with 0.2 % error. In the second part of
the thesis, a di�erential drive robot was designed and implemented that can autonomously navigate in the
�eld based on Global Navigation Satellite Systems. This autonomous mobile robot system validates the
simulation study by implementing an actuated 2D LiDAR for both phenotyping and navigation. Addi-
tionally, a three degree of freedom articulated robotic manipulator was designed to be re-con�gurable and
expected to perform a variety of tasks such as soil sampling and sensing. The robotic system developed in
this thesis will bene�t high throughput phenotyping and precision agriculture.

Index words: [Robotics, Agriculture, ROS , Simulation , High Throughput Phenotyping,
LiDAR, Soil Sensing]
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Chapter 1

Introduction and Related Works

1.1 Motivation
Climate change, population growth, and labor shortages pose immediate threats to the sustainability of
global agriculture (Campbell et al., 2018) . To ensure global food and �ber security, crop yield must increase
and be made more robust. This can be achieved through breeding programs which selectively cultivate
crop genotypes with favorable phenotypic traits, such as higher yield and stress tolerance (Jannink et al.,
2010) . Crop phenotyping is done primarily by hand and, thus, does not allow for e�cient, large-scale
selective breeding (Fiorani & Schurr, 2013). In-�eld, high-throughput phenotyping (HTP) technologies
are being developed to address this challenge, but repeatedly gathering phenotypic data on a large scale
still presents a considerable bottleneck (Furbank & Tester, 2011).

To address this phenotyping bottleneck, autonomous robots equipped with advanced sensor payloads
have been developed in recent years to gather phenotypic data consistently and with a high throughput.
Autonomous robots are particularly useful in phenotyping applications since they reduce the human
labor needed to gather large amounts of crop data. Robots can work continuously for long periods of
time and at lower cost than humans, thereby allowing for a higher throughput of data collection.

In the �rst section of this work, a simulation of the mobile robot and LiDAR con�guration is pre-
sented to validate the use of LiDAR for simulataenous navigation between crop rows and phenotyping
as well as a proposed navigation algorithm. The simulated LiDAR was used to create 3D point cloud
data and was tested in a high-�delity simulation environment that mimics a cotton �eld with occluding
e�ects of cotton plants and the uneven terrain of a �eld. This work presents a design of an autonomous
agricultural robot that can navigate through crop rows and collect phenotypic data through the use of an
actuated LiDAR in a “nodding” con�guration (Harchowdhury et al., 2018a).

In the second section of this work, a real-world validation and design is presented of MARIA, Multi-
purpose Agricultural Robot for Intelligent Agriculture. The autonomous mobile platform can perform
various HTP tasks as well as navigate both indoors and outdoors using the actuated LiDAR con�guration
tested in simulation. An integrated robotic operating system (ROS) is also presented that handles sensor
data, localization, and navigation as well as a web based GUI to allow setting waypoints.
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MARIA additionally has a three degree of freedom (DoF) robotic manipulator that can perform
geo-located tasks such as measure root zone temperature and humidity and collect soil samples. The
onboard manipulator also has an interchangeable end e�ector allowing for di�erent functionalities which
is demonstrated with a soil sampling end e�ector design. MARIA is unique in that the platform is re-
con�gurable to work with other autonomous systems extrusion based design and use of o�-the-shelf
components and 3D prints. As such, it has the potential to be more widely available for use for HTP work
as the designs are able to be replicated/modi�ed.

1.2 Related Work

1.2.1 LiDAR-Based Phenotyping
Light detecting and ranging (LiDAR) sensors are one of the most widely used sensor systems in robotic
platforms because of their ability to give accurate distance measurements without contact. LiDAR is
increasingly being used in the �eld to generate 3D point clouds of crops for phenotypic analysis (Wang
et al., 2017a) as well as low-cost crop navigation (Pabuayon et al., 2019a). A 2D LiDAR can generate point
cloud data to determine important phenotypic traits of plants, such as canopy height and plant volume
(Sun et al., 2017).Various methodologies have been used to calculate canopy volume from LiDAR Data.
One study used a trapezoidal based algorithm where the pro�le of the LiDAR point cloud was used to
calculate volume (Sun et al., 2018a). Another study calculated volume by voxelizing a point cloud and
then extracting the volume (Jin et al., 2019). Previous studies have shown that plant height and volume
are important parameters for geometric characterization and are highly correlated with �nal crop yield
and as such are valuable measurements for selective breeding programs (Jiang et al., 2016; Zhang & Grift,
2012; Zotz et al., 2001).

A static 2D LiDAR measures distances between objects on an xy plane. These 2D scans can be com-
bined to create a 3D point cloud by moving the 2D LiDAR and applying the transformation of the sensor’s
movement to the 2D scans in an inertial frame. The advantage of actuating a 2D LiDAR is that it can
be used to generate a 3D point cloud at a lower cost than that of a typical 3D LiDAR sensor (Wang et al.,
2017a). There exist several di�erent 2D LiDAR con�gurations used to generate 3D point clouds; these
are discussed in the related works section.

1.2.2 LiDAR Con�gurations
Most in-�eld applications of 2D LiDAR for high throughput phenotyping involve statically mounting
the 2D LiDAR on a mobile platform and moving it directly overhead or to the side of the ground plant
(Jimenez-Berni, Deery, Rozas-Larraondo, Condon, et al., 2018; Llop et al., 2016a; Sun et al., 2017; Wang
et al., 2017a; White et al., 2012a). Agricultural mobile robots with side-mounted LiDAR units have been
used to monitor health of crops (Bietresato et al., 2016; Vidoni et al., 2017). Two recent studies on cotton
plant phenotyping using 2D LiDAR have used systems with a 2D LiDAR in an overhead con�guration

2



in which the 2D LiDAR is perpendicular to the ground plane (French et al., 2016; Sun et al., 2017).
It is important that additional 2D LiDAR con�gurations are evaluated to determine their e�cacy in
measuring plant phenotypic traits. On a mobile robot, however, the most common strategy for using
2D LiDAR is in a “pushbroom” con�guration. With this con�guration, the LiDAR sensor is angled
obliquely to the plant, and when the mobile base moves, the LiDAR scan is “pushed” and a 3D point
cloud is generated. This pushbroom con�guration has been used by mobile robots to navigate between
crop rows (Mueller-Sim et al., n.d.; Reiser et al., 2018). Another class of 2D LiDAR con�guration for
3D point cloud generation involves actuating the LiDAR sensor while it is mounted on a mobile base;
this allows the 2D LiDAR to capture additional angles for distance measurement. 2D LiDAR has also
been con�gured with a “nodding” con�guration, such that the LiDAR is on a servo and “nods” back
and forth to generate a 3D point cloud (Harchowdhury et al., 2018a). In a similar but slightly di�erent
con�guration, Zebeedee is spring-mounted 2D LiDAR that has been used extensively for 3D mapping
commercially (Bosse et al., 2012).

1.2.3 Mobile Robots for Phenotyping
With an autonomous robot, plant traits can be measured throughout the entire growing season allowing
for greater data collection and more e�ective plant breeding and analysis. Novel autonomous mobile
platforms have been developed such as “The Robotanist,” a ground-based robot able to autonomously
navigate sorghum and corn crop rows as well as deploy a wide range of phenotyping sensors such as LiDAR
and cameras to gather sub-canopy data Mueller-Sim et al., 2017. Another robot architecture for plant
phenotyping was also presented with the “Vinobot and Vinoculer” in which a mobile ground platform
(Vinobot) for individual plant inspection was paired with a mobile observation tower (Vinoculer) for
overseeing an entire �eld Sha�ekhani et al., 2017. .A low cost, 3-D printed rover, the “TerraSentia,” has
also been developed as an ultracompact, lightweight solution for autonomous phenotypingKayacan et al.,
2018.

Large scale robots have been developed for high throughput phenotyping such as BoniRob a four
wheel steering robot Ruckelshausen et al., 2009 . Thorvald where modular drive components could be
recon�gured to form di�erent drive systems Grimstad and From, 2017. An open source tracked robotic
system was proposed using using o� the shelf components to perform sub canopy plant phenotyping
Stager et al., 2019

1.2.4 Robot Navigation
Navigation of an autonomous robot is a challenge especially in agricultural �elds where the environment
is semi-unstructured with uneven ground surfaces, changes daily with dust and fog a�ecting sensor ob-
servations, and lacks unique localization features (Mousazadeh, 2013). E�cient navigation strategies are
critical to an autonomous agricultural robot in the �eld due to battery constraints which limit operation
time. Additionally the navigation strategy must output valid velocities that are within the kinematic
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constraints of the robot. GPS and range sensor-based navigation strategies are the most commonly used
methods.

Navigation is another common application of 2D LiDAR as a way to allow mobile ground robots
to map crop rows and therefore navigate reliably Malavazi et al., 2018a. GPS guided navigation is also
typically used for �eld robots and allows for waypoint following in agriculture settings, but does not
conduct active obstacle avoidance

A global positioning system with real time kinematic (RTK) di�erential correction can provide highly
accurate global positioning to a centimeter level when it has an unblocked view of the satellites from the
Global Navigation Satellite System (GNSS). Field robots have been developed by researchers to utilize
GPS guided navigation for waypoint navigation in a world frame without any active obstacle avoidance
(Bakker et al., 2010; Blackmore et al., 2004; Bonadies & Gadsden, 2019; Nagasaka et al., 2009; YANG
& NOGUCHI, 2014). These waypoints are chosen to allow the rover to follow a path based on the
assumption that no additional obstacles will be introduced to the rover’s path. For example, "pure pursuit"
is a popular path tracking algorithm that has been used extensively for autonomous navigation due to its
simplicity and computational e�ciency (Ollero & Heredia, 1995; Samuel et al., 2016). This navigation
algorithm is a geometric method which outputs an angular/linear velocity that will move the robot in an
arc to get to the desired robot position. An additional advantage of the pure pursuit algorithm is its output
of a smooth path that is feasible for a di�erential drive robot and easily tunable with parameters such as
look ahead distance. Robotanist is an agricultural robot that uses RTK GPS and "pure pursuit" as its
navigation algorithm to go from point to point (Mueller-Sim et al., n.d.). PID control has also been used
as a path tracking navigation system due to its robustness and simplicity in implementation (Luo et al.,
2009; Normey-Rico et al., 2001). The disadvantages of GPS-based navigation strategies include that �eld
robots may fail if the environment changes signi�cantly or anything blocks the path of the rover (Reina
et al., 2016). Additionally RTK GPS is prone to inconsistent localization due to occlusion, attenuation
and multipath errors and thus it requires redundancy and continuous fail-safe checking (Rovira-Más et al.,
2015). Another disadvantage for RTK GPS is that it is costly and is cost-prohibitive in multiple-robot
implementations (Pedersen et al., 2006) . For inter-crop row navigation, GPS navigation is sometimes
insu�cient for the small heading and position corrections that are needed to successfully move between
crop rows. In these cases, sensors such as cameras and range sensors (e.g., LiDAR and ultrasonic sensors)
have been used extensively to perform local crop row navigation which involves determining the relative
positioning (heading and distance) of the robot between crop rows (Bonadies & Gadsden, 2019). The
main goal of this localization strategy is to maintain proper distance from the left and right crop rows to
avoid collision (Higuti et al., 2019; Malavazi et al., 2018b; Velasquez et al., 2019). In one study, probabilistic
techniques such as a Kalman Filter and Particle Filter were used alongside a 2D LiDAR for localization
in-between crop rows to perform appropriate control actions (Blok2019Navigation). One signi�cant
hurdle using 2D LiDAR for navigation is the occlusion resulting from plant leaves and branches, which
can negatively a�ect the characterization of the crop rows and cause navigation to fail (Higuti et al., 2019).
Another important drawback of the range sensor-based navigation strategy is that it does not localize a
robot in a global frame for complete autonomous control.
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1.2.5 Soil Sensing and Robotics
Another important aspect of sustainable agriculture and phenotyping is characterization of soil properties
such as moisture content and temperature. Phenotyping of root traits for drought resilient genotypes
Passioura, 2012 is an area of particular interest due to climate change. Measuring changes in moisture
content in soil gives important information on plant water-uptake rates, as well as estimating parameters
such as rooting depth Bitella et al., 2014. Soil temperature is also an important quantitative measure as
temperature a�ects root growth and architectural traits Nakamoto, 1995. Root zone temperature has an
impact on stressors such as salinity He et al., 2014 and pathogen infection rates Watt et al., 2006. Soil
hydraulic properties have spatial correlation ranging between 10 to 20 meters, with such variability a high
number of sensing nodes in an agricultural �eld would be needed.

One solution to the cost of having a large amount of instrumentation is to use robots to perform these
soil sensing tasks at target locations, such as a six-wheeled robot with an “e-nose” that consists of an array
of six gas sensors for the detection of organic volatile compounds Pobkrut and Kerdcharoen, 2014.

Additional uses of mobile robotics have been found in the scope of soil sampling which is tradition-
ally done manually. Bonirob, a commercial four wheel steering agriculture robot was �tted with a soil
penetrometer for measurement of soil compaction Scholz et al., 2014. An additional six-wheel platform
was developed to be able to take soil measurements Łukowska et al., 2019 inspired by space rovers.

1.2.6 Mobile Robotic Manipulators
In the agriculture environment, manipulators are commonly added to mobile robots to automate tra-
ditionally manual tasks. This greatly increases agricultural e�ciency as mobile robots are able to work
continuously and at low costs. Weeding is one common manipulator task done by mobile robots Van Der
Weide et al., 2008. In one example, a manipulator mechanically uproots a weed Åstrand and Baerveldt,
2002. In other examples, actuators spray herbicide at a target location Gonzalez-de-Santos et al., 2017
such as Ladybird, a solar powered mobile robot that has a robot arm with a herbicide spray end e�ector
Bogue, 2016. Servo-based actuators have also been developed and added to a mobile robot to perform
seeding in the �eld Hassan et al., 2016. A mobile robot was developed with a two DoF parallel robot
arm manipulator for handling paper pot seedlings Rahul et al., 2019. Robots have also been developed to
mechanically evaluate crop �elds using manipulators such as “Robotanist” that deployed a manipulator
on a mobile robot to measure stalk strength Mueller-Sim et al., 2017 or BoniRob a four wheel steering
robot to measure soil compaction Scholz et al., 2014. A prototype mobile manipulator for agriculture was
proposed for general purpose use in an agricultural environment Bascetta et al., 2017.

1.2.7 Robot Simulation for Agriculture
Development of robotic platforms is time/cost intensive and complex, and, therefore, simulation is being
used increasingly to test and validate robotic platforms as well as their sensors for their ability to perform
agriculture sensing as well as navigation (Fountas et al., 2020; Shamshiri, Hameed, Karkee, et al., 2018).
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Simulation allows for low-cost and quick robotics testing and validation, which results in a large initial
focus on broad strategies. In agricultural robotic simulations, the testing environment can be recreated
to match speci�c agricultural use cases and robotic sensor platforms, and algorithms can be tested for
e�cacy and e�ciency (Habibie et al., n.d.; Le et al., n.d.; Malavazi et al., 2018b). Full control strategies
can be tested and developed with simulated sensors completing a feedback loop. Many agricultural robot
drive systems and navigation techniques have been developed and tested in simulation prior to successful
implementation (Grimstad & From, 2018; Shari� et al., 2016; Weiss & Biber, 2011) . A variety of simulation
tools, such as V-REP, Gazebo, ArGOS and Webots, have been used and compared for robotics simulation
in agriculture (Shamshiri, Hameed, Karkee, et al., 2018).
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Chapter 2

Simulation of an Autonomous
Mobile Robot for LiDAR-Based

In-Field Phenotyping and
Navigation 1

2.1 Introduction
The agriculture industry is in need of substantially increasing crop yield to meet growing global demand.
Selective breeding programs can accelerate crop improvement but collecting phenotyping data is time- and
labor-intensive because of the size of the research �elds and the frequency of the work required. Automa-
tion could be a promising tool to address this phenotyping bottleneck. This paper presents a Robotic
Operating System (ROS)-based mobile �eld robot that simultaneously navigates through occluded crop
rows and performs various phenotyping tasks, such as measuring plant volume and canopy height using
a 2D LiDAR in a nodding con�guration. The e�cacy of the proposed 2D LiDAR con�guration for
phenotyping is assessed in a high-�delity simulated agricultural environment in the Gazebo simulator
with an ROS-based control framework and compared with standard LiDAR con�gurations used in agri-
culture. Using the proposed nodding LiDAR con�guration, a strategy for navigation through occluded
crop rows is presented. The proposed LiDAR con�guration achieved an estimation error of 6.6% and 4%
for plot volume and canopy height, respectively, which was comparable to the commonly used LiDAR
con�gurations. The hybrid strategy with GPS waypoint following and LiDAR-based navigation was used
to navigate the robot through an agricultural crop �eld successfully with an root mean squared error of
0.0778 m which was 0.2% of the total traveled distance. The presented robot simulation framework in
ROS and optimized LiDAR con�guration helped to expedite the development of the agricultural robots,
which ultimately will aid in overcoming the phenotyping bottleneck.

1Published: Iqbal, J., Xu, R., Sun, S., Li, C. (2020). Simulation of an Autonomous Mobile Robot for LiDAR-Based
In-Field Phenotyping and Navigation. Robotics, 9(2), 46.
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This paper proposes a simulated mobile robot con�guration that can collect phenotypic and crop
row data and autonomously navigate between crop rows using GPS waypoints and 2D LiDAR. Using a
“nodding” LiDAR con�guration (Harchowdhury et al., 2018a), 3D point cloud data were generated and
used for phenotyping as well as for navigation between crop rows. This actuated LiDAR con�guration
was tested in a high-�delity simulation environment that simulated a cotton �eld with the occluding
e�ects of cotton plants as well as the slippery, uneven terrain of a crop �eld that may a�ect LiDAR-based
inferences and navigation.

2.2 Materials and Methods

2.2.1 ROS Mobile System Overview
The system modeled in this paper is an unmanned ground vehicle (UGV) called the Phenotron. The
Phenotron is a 4-wheel rover that utilizes a skid steer drive system. The sensors on board the Phenotron
include a Hokuyo UTM-30LX 2D LiDAR, VectorNav Inertial Measurement Unit (IMU), and a Novatel
RTK Global Positioning System. A CAD model for the drive system was based on a commercially available
MMP30 model (The Machine Lab, Fort Collins, CO, USA).

The Robot Operating System (ROS), an open source meta operating system, was used for the develop-
ment of the Phenotron. ROS provides a standardized communication platform and system for code reuse
for applications like autonomous navigation and mapping. Gazebo, an open source physics simulator,
was used to simulate the cotton �elds and the Phenotron. Gazebo was chosen for use in this simulation
study because of its better integration with ROS and its completely open-source nature, which allows for
a more extensible and widely-usable simulation. ROS was also used as the underlying communication
network between the simulated sensors, the environment, and the ROS packages and open source code
used for robotics development.

To import the 3D model into the Gazebo simulator, a universal robot description format (URDF)
�le was created where its structural and locomotion elements were de�ned. The SolidWorks CAD model
was exported into a URDF �le using the solidworks_to_URDF_exporter add-in within SolidWorks. The
exporter allows the user to export a CAD assembly and its kinematic tree to a properly linked URDF �le
alongside its corresponding CAD �les (Figure 2.1). Within the URDF, every part of the robot is de�ned
by links and joints, with each link and joint de�ning various properties of the robot. The wheels are
de�ned as links that contact the ground as the locomotion elements of the rover and have a “continuous”
joint that allows for continuous rotation about one axis relative to the chassis. This continuous joint is
linked from the ROS to the Gazebo simulator by de�ning a transmission tag that speci�es a velocity joint
hardware interface, which enables each wheel to send velocity commands.

8



Figure 2.1: (A) Simulated rover Phenotron in Gazebo and (B) Robot kinematics VL = average velocity of
left wheels, VR = average velocity of right wheels, θ = angle relative to X axis.

The di�erential drive motion of the Phenotron was controlled using the open source ROS package
di�_drive_controller. The di�_drive_controller package was con�gured by referencing the transmis-
sion/joints de�ned in the URDF �le and the dimensions of the rover. The di�_drive_controller accepts
a geometry/twist message type that de�nes the linear and angular velocities along the XYZ axis. The right
and left wheel velocities (Figure 2.1) required to meet the commanded goal velocity for the rover were
computed and the velocity commands were sent to the rover. The di�_drive_controller package also
computes the odometry of the Phenotron-simulated rover based on the velocities of the right and left
wheels. Based on the odometry equations of a standard di�erential drive system (Equations (2.1)–(2.3)), θ̇
describes the angular velocity of the rover based on the linear velocities of the right and left wheels VR, VL
in addition to the distance between the right and left wheels of the rover (L). υ is the linear velocity of the
rover. With the linear and angular velocities and the heading θ of the robot, the linear velocities ẋ and ẏ
in the world frame can be found.

θ̇ =
VR − VL

L
(2.1)

υ =
VR + VL

2
(2.2)

ẋẏ
θ̇

 =

cos θ 0

sin θ 0

0 1

[υ
θ̇

]
(2.3)
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Localization sensors on the Phenotron were simulated in Gazebo through open source plugins that cre-
ate a sensor interface between the simulator and the ROS. Sensor simulator Gazebo plugins for the Global
Positioning System and Inertial Measurement Unit were sourced from the hector_gazebo_plugin by Team
HECToR (Heterogenous Cooperating Team of Robotics) of Technische Universitat Darmstadt (“hec-
tor_gazebo_plugins - ROS Wiki”, n.d.). The desired sensors/plugins are referenced in the URDF �le. The
sensor data were published automatically in the ROS topics list and are available for further use. For the 2D
LiDAR scanner, a Hokuyo LiDAR was used with the Gazebo plugin “gazebo_ros_head_hokuyo_controller”.
To match real speci�cations of the Hokuyo LiDAR, noise was included in a parameter for the plugin such
that the noise followed a Gaussian distribution with a standard deviation of 0.01 m. Thus, 99.7% of sam-
ples are within 0.03 m of the true reading, which achieves a +/- 30 mm accuracy at ranges less than 10 m
(MasayasuIwase, n.d.).The simulated LiDAR has an update rate of 40 Hz. For GPS simulation, a real
time kinematic (RTK) GPS was simulated including additive Gaussian noise with a standard deviation
of 2 cm. With this noise factor, 70% of the time the accuracy of the GPS measurements were within 2 cm,
thereby mimicking the accuracy of an RTK GPS that can achieve up to a 1 cm level positioning accuracy.
The simulated GPS and IMU had an update frequency of 40 Hz. The "robot_localization" package is
used to output a state estimate by using an extended Kalman �lter and fusing the simulated RTK GPS
with the inertial measurement unit and wheel encoder odometry. The robot localization package has an
update rate of 30 Hz. For the simulated Hokuyo LiDAR, the scan frequency was 40 Hz.

2.2.2 Simulation World
A high-�delity cotton plant model was designed within SketchupTM and imported into Gazebo as a 3D
graphic �le. Once a model of a single plant was created, the plants were then rotated randomly and grouped
together within SketchupTM to create plots. The plant heights are modeled to be 1.2 m in height and 1.15 m
in width and length (Figure 2.2). The plots themselves were made to be 3 m in length. The plot rows were
spaced 1 m apart to mimic an experimental cotton �eld. The size and spacing of the plots were based on a
study where multiple cotton plant cultivars were analyzed in terms of growth (Sun et al., 2018a). There
were �ve plants within each plot with a 0.6-m distance from each other to have around 50% overlap to
simulate plant occlusion and density.
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Figure 2.2: (A) Dimensions of the cotton plot and (B) a section of ground �oor.

The ground was constructed in SketchupTM using the sandbox tool. Bumps were simulated by cre-
ating pyramid-shaped protrusions in the plane’s mesh with the height of the bumps being 2 cm. This
height was decided based on a reference (Kragh et al., n.d.) in which agricultural terrain was classi�ed.
Four 1× 1 m squares with arbitrarily chosen “bumps” were put together randomly to make a 2× 2 m
(Figure 2.2). In this con�guration, there was a 100% chance that the rover would encounter some type of
bump disruption per two meters of travel. Then these 2× 2 squares were multiplied to create a 60 m by
60 m �eld. A testing �eld of 4 rows was created in which each row consisted of 3 plots and in which each
row was spaced 1 m from each other (Figure 2.3).

Figure 2.3: Test �eld for LiDAR-based phenotyping.

2.2.3 Experiment/Analysis Phenotypic Analysis

LiDAR Con�gurations

Multiple LiDAR con�gurations that have been used in HTP were con�gured and tested on a simulated
cotton �eld. Their ability to correctly identify the height and volume of the plants using a 2D LiDAR was
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evaluated. The proposed actuated LiDAR con�guration, also known as “nodding,” was tested against
3 common static LiDAR con�gurations used in agricultural robots for phenotyping: Tilted, Side and
Overhead. The Tilted con�guration was angled 45 degrees down from horizontal, aimed obliquely at
crops at a height of 1.5 m (Figure 2.4A) . The Side con�guration was angled perpendicular to the ground,
facing directly to the side of the crops at a height of 0.75 m (Figure 2.4B) . And �nally, the Overhead
con�guration was pointed towards the ground and facing the crops directly overhead (Figure 2.4C). The
proposed LiDAR con�guration actuates the 2D LiDAR in a nodding motion, similar to the Tilted
con�guration. However, the LiDAR angle is relative to horizontal changes over time (Figure 2.4D). This
strategy is proposed to address leaf occlusion because some features are lost as the LiDAR needs a clear
path to detect the pro�le of the plant canopy accurately, and, as such, multiple angles of detection would
assist in this characterization (Pabuayon et al., 2019a). For the nodding con�guration, the LiDAR is
rotated while the mobile base is static and the angled LiDAR scans from 0 radians (parallel to the ground)
to 0.4 radians (22.9 degrees) towards the ground. The LiDAR is actuated at a step increment of 0.005
radians (0.286 degree) at 10 Hz which results in a rotational velocity of 0.05 radians a second (2.86 degrees)
and a complete nod cycle time of 8 s.

Figure 2.4: LiDAR con�gurations: (A) Tilted , (B) Side , (C) Overhead, and (D) Nodding.

Since only a 2D LiDAR was used, each scan of the LiDAR needed to be stitched together to generate a
3D point cloud for analysis. The laser assembler ROS package was used to initiate a server service that could
be called upon to begin assembling scans together at speci�c time intervals. The frame in which these laser
scans were assembled was set with the laser assemble ROS package and in the global “map” frame (Figure
2.5) . This transform frame is generated by the "robot_localization" package. The “laser_assembler” service
call responds with a point cloud that is then published to an ROS topic. This assembled laser point cloud
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is then downloaded as a PCD �le using the pcl_ros package, which listens to a topic and then saves it to a
directory.

Figure 2.5: Assembled LiDAR on uneven terrain data visualized within RVIZ using the Tilted con�gura-
tion.

The ability of the LiDAR con�gurations to obtain the two main phenotypic traits of cotton plants,
height and volume, was tested (Figure 2.6). For each of the 4 LiDAR con�gurations, the simulated
autonomous robot was given a velocity command to go forward and continuously collect LiDAR data
for a single row containing 3 plots (Figure 2.5). Each con�guration collected point cloud data (PCD) from
a single side of the plot for phenotyping estimation. After data collection, the resulting PCD was post
processed in MATLAB. A region of interest (ROI) was manually selected for each plot for processing, then
the ground �oor was determined by using the random sampling consensus algorithm (RANSAC). Once
determined, the ground �oor was also removed, although the height of the ground plane was recorded as
the baseline for height prediction.

To obtain plant height, the LiDAR data were projected on the XZ plane such that height measure-
ments were calculated along the axis that the mobile rover base traveled. Then, peaks were �ltered from
the height data such that each peak was higher than the peaks around it at a certain distance threshold
(Jiang et al., 2016).

To obtain the ground truth for plant volume, the CAD model for the cotton plot was voxelized with
cubic centimeter voxels which are cubic volumetric shapes representing regularly sampled spaces that are
non-homogeneously �lled. The voxelization of a CAD model allows for the computation of volume
taken up by the CAD model with a predetermined sized cubic shape. The voxelized plant model was
put into a CAD program called Blender where the 3D print tool was used to determine the volume of a
single voxelized cotton plot. The volume of a single plot was experimentally determined from the point
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cloud data using the MATLAB boundary function with its default shrink factor of 0.5. Shrink factor is a
scalar value ranging from 0 to 1 where 0 results in the convex hull of the points while 1 corresponds to the
tightest single-region boundary around the points. As such when the shrink factor was 1, due to making
the tightest boundary around the point cloud, the volume estimate is much lower than when the shrink
factor was 0 where only the outer most points are used for the generated hull. The default value for shrink
factor of 0.5 was kept as it was a neutral parameter for volume estimation.

Figure 2.6: LiDAR phenotyping pipeline to extract phenotypic traits. (A) A point cloud generated from
the Nodding LiDAR con�guration, (B) The PCD is split into the ground plane and segmented point
cloud of a single plot , (C) The isolated ground plane is used as a datum for calculating height of segmented
point cloud and convex hull is used just on the segmented point cloud for volume estimation.

2.2.4 Experiment/Analysis Nodding LiDAR Con�guration for Navigation Through
Cotton Crops

As the rover moved through the crop row, the 2D LiDAR was actuated in a certain “nod” window. In this
nod window, 2D laser scans were stitched together to generate a 3D point cloud at a certain look ahead
distance. Since the rover is in the middle of the two rows, the �eld of view of the 2D LiDAR is large
enough to capture both the left and right crop row simultaneously at each nod. While the LiDAR unit
is actuating, the laser assembler node is continuously listening to the LiDAR topic and the transform of
the LiDAR unit to assemble the individual scans and generate a point cloud every 8 s which is the time
needed to complete a single nod. The Hokuyo LiDAR is continuously being actuated to make sure that
the crop rows are being characterized even while moving. The LiDAR scans are still being transformed
and assembled relative to the movement of the rover itself as it is moving by using the state estimate and
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transform provided by the "robot_localization" package. The output of the "robot_localization" state
estimation is at the same frequency as the simulated Hokuyo LiDAR, as such the pose of the robot is
accurately considered even while moving. At the end of each “nod” action, the generated point cloud
was sent to a Python service node in the sensor_msgs/PointCloud2 message format. This Python service,
which is detailed later, returned the angles of the left and right crop row as well as their distance away
from the rover. Based on this service response, the navigation module performs a control action which
would include angular and linear velocity for 0.25 s. Then the rover waits for the next control update as
the nodding LiDAR gets actuated and the point cloud data gets processed. The main goal of the LiDAR
based navigation strategy was to stay parallel and equidistant with the left and right crop rows. Each point
cloud generated for every iteration of the looped navigation control were combined based on the distance
traveled by the rover as calculated by the "robot_localization" package.

LiDAR Processing Strategy

Using the same laser assembler package discussed above, the nodding LiDAR scans were assembled within
a speci�c tilt window. The tilt window was de�ned as the angle range at which the nodding actuation oc-
curs and the corresponding 2D laser scans assembled into the point cloud. A row_characterization service
server was created that accepts a point cloud from the assembled point cloud topic. The row_characterization
server utilizes the open 3D point cloud library, a library for point cloud data processing. The point cloud
data were downsampled and voxelized and then split into the left and right rows (Figure 2.7). Each of
these rows were then �ltered using a radius outlier �lter and then a RANSAC algorithm was used to �t a
line through the left and right rows. The row_characterization server returned the average angle of the
left and right crop rows as well as the distance of left and right rows from the robot itself.

Figure 2.7: LiDAR crop row characterization strategy: (A) generated point cloud from actuated LiDAR,
(B) downsampled and voxelized point cloud, (C) left and right split crop rows with radius outlier �lter,
(D) left and right crop row characterization using RANSAC.
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2.2.5 ROS Node Structure
A complete ROS topic and node structure was developed to mimic the topic and information structure of
the real rover (Figure 2.8). The data from the inertial measurement unit, wheel odometry, and GPS topics
were combined using an extended Kalman �lter using the robot localization package to get an accurate pose
estimate. The robot localization package also handled creating the various transforms needed to convert
GPS waypoints into goals in the rover’s frame. The GPS topic was converted to UTM coordinates by the
gps_common package for Euclidean-based navigation. A navigation module was developed to handle all
control actions of the rover and the implementation of the algorithm described above. An ROS service
was created that takes a point cloud input in the sensor_msgs/PointCloud2 ROS message format. The
service call processed the point cloud and characterized the crop row point cloud to give the angles of the
left and right crop rows and the distance between them. The navigation module then processes the crop
row information and performs the appropriate control action. ROS-control and Gazebo are simulation-
based processes that implement commands to actuators and simulate all sensor and physical interactions
with the rover.

Figure 2.8: ROS node diagram.

Control Loop for Crop Row Navigation

A feedback system with two error signals was created to correct the rover to ensure it is traveling safely
between the crop rows. One error signal includes an angle of the rover relative to the left and right crop
rows. Ideally, the robot should be completely parallel to the left and right rows. If the crop rows are
angled from the rover’s perspective, the angles of the left and right crop rows are averaged and then this is
output as an error for row heading. The average of the left and right rows was used as the error signal. The
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second error signal was the di�erence in distance between the robot and the right and left rows. Ideally,
the di�erence between the two rows would be zero, which would mean that the right and left rows are
equidistant from the robot, which is the desired position of the robot. If the position was closer to the
right row than the left row, this would be output as an error. For the heading error and the distance error
there were threshold values for registering errors to make sure that the control action was not enacted for
trivial error values in heading and distance. The error values for heading and distance are multiplied by
corresponding weights C1 and C2 to control the amount of impact each error signal has on the control
action (Figure 2.9). Then both error signals are summed and input into the PID controller. The PID
controller was tuned through trail and error to output the appropriate angular velocity for 0.25 s to correct
the heading and the centering of the rover relative to the crop rows. For each control step, there was always
a linear velocity in the x-axis frame to ensure the robot keeps on moving forward. The control loop iterated
based on the subsequent error signals generated by the actuated LiDAR until the stop condition is met
as described by the complete navigation algorithm detailed below.

Figure 2.9: Control loop for crop row navigation.

Complete Navigation Algorithm

A simple navigation algorithm was implemented for use with the LiDAR based navigation strategy (Algo-
rithm 1). The LiDAR based navigation strategy was designed to be able to move within crop rows despite
occlusion and misaligned crop rows without any global positioning. However, for use in a crop �eld with
multiple rows, additional intelligence is needed. An algorithm is proposed that switches between the
LiDAR based navigation, which is robust in navigation between crop rows, and a GPS-based navigation
strategy, which ensures that the robot is going to the correct user-de�ned crop row. The GPS guided
navigation algorithm used is called the Pure Pursuit, which �nds the linear and angular velocity needed
to go to a speci�c point in space (Mueller-Sim et al., n.d.).
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Algorithm 1: Complete Navigation Algorithm
Result: Complete navigation of crop rows
dcr = distance between crop rows;
dwp = distance to next waypoint;
while Not at last GPS waypoint do

if dwp > dcr then
Perform LiDAR based navigation;
Update dwp;

end
if dwp < dcr then

Perform Pure Pursuit navigation to next waypoint;
Once waypoint is reached, next waypoint is updated;

end
end

The proposed algorithm creates a robust navigation strategy that is extensible and re-con�gurable for
di�erent navigation plans for the rover. The main parameter in this algorithm is the distance between crop
rows (dcr) (Figure 2.10). Initially, the rover starts using the LiDAR-based navigation strategy when it goes
straight while facing the next GPS waypoint. However, when the rover is within (dcr) distance of a GPS
waypoint, it switches to the Pure Pursuit algorithm. The Pure Pursuit algorithm guides the rover to the
waypoint (A GPS coordinate as well as heading), which faces the next waypoint on the list of waypoints
given by the user (these are points between one crop row plot and the next to de�ne the path the rover
will take). When the rover gets to the waypoint at a su�cient tolerance and faces the next waypoint, the
navigation algorithm now switches back to the LiDAR-based navigation strategy. The rover goes straight
while performing an appropriate control action to stay centered between crop rows until it gets within
dcr of the next waypoint and the algorithm repeats until the last waypoint. In the case where it reaches
the end of the crop row and must go to the next crop row, it checks the (dcr) parameter and automatically
switches to Pure Pursuit to get into position to implement the nodding LiDAR-based navigation. This
process will continue until the last waypoint is reached. With the switching dual strategy, fewer waypoints
are needed to be given to the rover, and by being given only the waypoints at the end of each row, the
LiDAR-based navigation strategy can maintain distance between crop rows successfully.
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Figure 2.10: (A) Robot heading de�nition, dr and dl : Distance from left and right crop row respectively,
ac andar : angle of the crop rows and angle of the robot respectively; (B) navigation strategy, dcr = distance
between crop rows.

The navigation strategy was tested in a simulated crop �eld under two scenarios. In the �rst scenario,
the crop rows were parallel with each other and waypoints were provided for each plot totalling 12 way-
points. In the second and more challenging scenario, the crop rows were not parallel, which allowed for
the testing of the robustness of the navigation strategy to make corrections for non-parallel crop rows.
Additionally, the test waypoints were given only at the end of the crop rows totalling 6 waypoints, so the
LiDAR-based navigation strategy had to navigate through the entire crop row by itself. The ideal path
was determined as being equidistant and parallel to the crop rows.

2.3 Results and Discussion

2.3.1 Phenotyping and Navigation Results
The nodding, tilt and side con�gurations had comparable volume results with an average percent error of
6%. Of the 3 con�gurations, the nodding con�guration had the highest volume error of 6.6%± 4.8%. The
tilt and side LiDAR con�gurations had average errors of 5.7%± 3.4% and 6.6%± 2.8%, respectively (Figure
2.11). The tilt and nodding con�gurations had the most similar results, however the nodding con�guration
performed slightly worse due to the LiDAR actuating while moving over the uneven ground. The side
con�guration performed slightly better than the tilt and nodding con�gurations due to having the best
side pro�le of the plot as well as being the best suited for the convex hull method of volume estimation.
The side con�guration was able to get the ends of the plots which due to getting a hull wrapped around it,
compensated for not having a view of the width of the plot. The overhead con�guration had the highest
average percent error for volume at 15.2%± 5.7%. While all the volume estimations were underestimates
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compared to the ground truth, the overhead volume estimate was much lower. This underestimation
from the overhead con�guration was due to the LiDAR only being able to view the canopy of the plot
and missing the side pro�le for volume estimation.

Figure 2.11: Mean percentage error of height and volume phenotyping estimation from four LiDAR
con�gurations. The errors bars indicate the standard deviation.

For plant height prediction, all con�gurations were able to perform within a low percentage error with
an average percentage error of 2.7%. The overhead con�guration performed the best with a 1.3%± 0.87%
average error. This is because a direct overhead angle that obtains a perpendicular-to-the-ground cross
section collects more z-axis data from the plot. With this overhead view angle, the LiDAR was better able
to characterize the height of the plant relative to the ground because each scan captured the entire top
of the crop of interest as well as the ground to the side of the plot. The overhead con�guration is more
robust in calculating errors for height estimation compared to the tilt (4.2%± 0.69%) and nodding (4%±
0.14% which are pointed downward obliquely into the crops and does not have a unobstructed view of the
ground. In the presence of external error factors such as an uneven ground, the overhead con�guration is
better able to compensate for height disturbances by more e�ectively mapping of the ground which was
used as the height baseline by the RANSAC algorithm. Height detection using con�gurations such as
side (2.8% is sensitive to bumps and noises, as they have a more limited angle on the z axis cross sections
onto the plots. For height estimation all the LiDAR con�gurations underestimated the height of the
cotton plant because the height estimation was an average of the top pro�le of the attained point cloud
data. Additionally the uneven ground has only protruding bumps which elevated the rover and LiDAR,
making plant measurements smaller.

Overall this phenotyping study determined that the proposed nodding LiDAR con�guration achieves
comparable accuracy in volume and height estimation when compared to commonly used con�gurations

20



such as side and tilt. The nodding con�guration performed height and volume analysis with relatively low
error, similar to that of tilt and side. The overhead con�guration heavily underestimated volume although
it performed height analysis with the lowest error. The main advantage of using the proposed nodding
con�guration is that while it can be used to phenotype and perform competitively with other commonly
used LiDAR con�gurations, it can also be used for navigation while the other con�gurations cannot.

Results showed that the navigation strategy performs well in both testing scenarios. In the �rst scenario
where all crop rows were parallel and waypoints were given between each crop plot (As shown by the red
circles) (Figure 2.12A) the root mean squared error was 0.0225 m with 32.5 m of travel across three rows,
indicating the navigation strategy performed with 0.06% drift from the ideal path. A video of this �rst
navigation test is provided in the supplementary materials. In the second and more challenging scenario,
the LiDAR based control algorithm would have to navigate correctly from one plot to the next (Figure
2.12B). In this scenario the root mean squared error was 0.0778 m with 38.8 m of travel resulting in 0.2%
drift. Although the performance in the second scenario was less desirable, the navigation strategy overall
performed well in both scenarios, achieving well below 1% drift from an ideal path.

Using this navigation strategy, a point cloud of the simulated cotton �eld was also created (Figure 2.13).
This cotton �eld point cloud could be further analyzed as the phenotyping section of this paper proposed
to determine height and volume of each plot. While there could be point cloud errors that were generated
due to wheel slippage at way points that required turning, the volume and height estimations were not sig-
ni�cantly a�ected by the navigation course because the "robot_localization" package e�ectively estimated
the pose change from the various localization sensor inputs from the rover and published the appropriate
transform to the laser assembler package for combining the LiDAR scans.

Figure 2.12: Navigation strategy results: (A) straight crop rows and (B) angled crop rows.
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Figure 2.13: (A) Generated point cloud of four crop rows and (B) the simulation �eld for navigation tests.

2.3.2 Discussion and Future Work
It was shown through high-�delity simulation that a nodding LiDAR con�guration can be used for
simultaneous phenotyping and navigation of cotton crop �elds. A simulation approach was used to
validate the robot con�guration as well as the data analysis procedures.

The use of the nodding LiDAR con�guration was validated within simulation by comparing its per-
formance in measuring plant height and volume with other commonly used con�gurations. The nodding
con�guration was shown to have low error in estimating the height and volume, similar to that of both tilt
and side con�gurations. This low error is likely due to the nodding LiDAR’s ability to “see” the cotton
plot from multiple angles while some of the other con�gurations could not. With the particular volume
method used where a hull was formed around the point cloud, having a view of the side pro�le of the
plant greatly increased volume accuracy. Although the overhead con�guration performed volume analysis
with the most error, it was the most accurate height method because the ground plane was always in view
of the LiDAR and was therefore mapped best by this con�guration which allowed for better �ltering of
uneven terrain. However, in total the nodding LiDAR height estimate was only about 2.6% less accurate
than the overhead, and with the additional functionality of the nodding LiDAR for navigation, this can
be deemed an acceptable trade-o�.

The position of the LiDAR unit can heavily in�uence phenotypic results due to occlusion. For the
nodding, tilt and overhead con�gurations, the LiDAR unit must be above the plot with a certain factor
of safety to avoid any branches hitting the LiDAR unit. The side LiDAR con�guration is even more
sensitive to height placement because if it is too high the underside of the plot will be occluded and if it
is too low the topside of the plot will be occluded, consequently a�ecting the �nal phenotypic results.
Additionally it should be noted that to use the side and overhead LiDAR con�guration on a mobile base,
two LiDAR units would need to be purchased to perform phenotyping on the left and right crop row.

22



However with the tilting and nodding con�guration, only one LiDAR is needed due to the �eld of view
being large enough to see the left and right crop rows reducing the cost of phenotyping by 100%. This
highlights cost e�ectiveness of the actuated LiDAR because the LiDAR can be used for both left and
right crop row phenotyping and navigation.

The errors obtained from this simulation experiment di�er from those obtained from a real experi-
ment where plant volume and height was estimated using an overhead LiDAR con�guration (Shamshiri,
Hameed, Pitonakova, et al., 2018). The RMSE obtained for LiDAR based volume and height estimation
was 0.011 m3 and 0.03 m, respectively in the real-life experiment. Comparatively the best volume and
height estimation from the various con�gurations tested in simulation was 0.0238 m3 and 0.0071 m. The
discrepancy in volume estimation can be attributed to the di�erence in determining ground truth and
di�erent methodology for determining volume. For the real-life experiment, the manual phenotyping
measurements were done by measuring the radius of the plant at speci�c height segments and then com-
bining the volumes of the resulting cylinders whereas due to having the CAD model the ground truth
was determined absolutely from the model itself. As such the manual estimation of ground truth using
cylinders would be more prone to error and is more of an estimation in comparison to using a CAD
model and �nding volume directly.

For determining volume in MATLAB, the shrink factor for the convex hull function has a large e�ect
on the volume results of the various LiDAR con�gurations. For example, the overhead con�guration
does not capture the underside of the plot and therefore underestimate the volume of the plot. If the
shrink factor is decreased, however, the accuracy of the overhead con�guration increases. On the contrary,
the nodding con�guration can capture plant canopy at di�erent levels and its volume estimation accuracy
decreases if a lower shrink factor were used.

The simpli�ed cotton plant CAD model has some limitations that may have a�ected results. The cot-
ton plant model canopy may not have been dense enough to completely block LiDAR scanning from
all angles. Typically, cotton plants are dense at late stages of growth, and self-occlusion e�ects are very
prominent. Another aspect that could have a�ected results was the shape of the cotton plants. The cotton
plants modeled had an oval shaped cross section, and plants with di�erent shapes could have resulted in
di�erent volume calculations. For example, a pyramidal shaped cross section would have achieved better
results from an overhead LiDAR con�guration, while a top-heavy plant would yield worse results. This
phenotyping study could be advanced further by including plants of di�erent shapes and sizes as well as
including plant models of young cotton plants.

A complete navigation strategy that uses both LiDAR for crop row detection and GPS for waypoint
following was also developed for the robot that allowed for successful navigation between simulated crop
rows with 0.2% error. The navigation strategy however does assume that at each nod both the left and
right crop rows are visible to make a valid control action. If both rows are not visible, then the navigation
control algorithm fails. Additionally, the LiDAR navigation algorithm may fail if it is not positioned
correctly and due to occlusion cannot have a good “view” on the crop rows. The proposed actuated 2D
LiDAR-based strategy allowed for the generation of a dense point cloud that made it easier to �lter out
erroneous LiDAR data, such as hits from branches, by obtaining multiple angular views of the area in
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front of the rover and thus a more consistent characterization of the left and right crop rows. This makes
the technique less susceptible to occluding factors compared to static 2D LiDAR units, which only view
from one angle. By adding multiple levels of functionality to one sensor, the cost of phenotyping and
navigation was reduced and the barrier for implementing HTP platforms was lowered. In the future,
additional LiDAR-based navigation strategies could be tested with di�erent types of actuation, such as a
vertical scanning.

Because of the favorable results of this simulation, the next steps would be to implement this LiDAR-
based phenotyping and navigation strategy on real crops to test and compare e�cacy with the simulated
results. With the ROS implementation of the rover already completed in terms of rover navigation, sensor
fusion, as well as LiDAR processing pipeline, the real-life implementation will be quicker due to having
prototyped and validated in simulation. However, there are a number of di�erences between the real
life implementation and simulation that will need to be addressed. Localization may have much greater
uncertainty in real-life due to many external conditions. GPS may have much greater error or variance
due to conditions such as cloudy days, plant occlusion or signal loss. Wheel odometry might show greater
slippage or various obstructions such as rocks may cause the rover to move in unpredictable ways. These
localization errors will manifest in the LiDAR point cloud generated by the actuated LiDAR, as such
additional LiDAR registration techniques may be needed. Additionally in the simulation there was no
error associated with the rotation of the LiDAR unit itself, however in real-life there is always some amount
of error for actuator positioning which will cause some error with the transform of the actuated LiDAR.
An additional source of error is from specular re�ectance, when the LiDAR beam is re�ected of a surface
and result in false positives.

2.4 Conclusions
This paper presents a simulation of a customized mobile platform for autonomous phenotyping that can
simultaneously phenotype and navigate through occluded crop rows with the use of a nodding LiDAR. A
complete ROS con�guration was implemented to represent an agriculture robot for HTP. A high-�delity
simulated cotton crop environment was created as a test bed for phenotyping and navigation strategies.
A hybrid navigation strategy that utilizes both a LiDAR-based control algorithm and GPS waypoint
navigation was determined to be successful. The simulation methodology presented in this paper will
bene�t robot development in high throughput phenotyping and precision agriculture.
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Chapter 3

Validation of a Multi-Purpose
Autonomous Field Robot for
Plant Phenotyping and Soil

Sensing

3.1 Introduction
The global food supply is threatened by climate change and population growth, but the development
of new robust crops can help o�set this threat. The development of these crops arise from selective
breeding programs where experimental crops are phenotyped and the best variants are selected. Manual
phenotyping requires a large labor force and is highly ine�cient, which presents an issue known as the
phenotyping bottleneck. This bottleneck can be alleviated through the use of agricultural robotics that
can perform high-throughput phenotyping (HTP).

Currently, plant breeders cannot measure traits throughout the growing season due to the labor cost
of phenotyping. Oftentimes, they measure traits at the end of the season. This limits the amount of data
gathered and contributes to the bottleneck, but agriculture robots can autonomously work to gather data
throughout the season.

This paper presents a validation of Multipurpose Agricultural Robot for Intelligent Agriculture
(MARIA), an autonomous mobile platform that can perform various HTP tasks. MARIA is able to
autonomously navigate in both outdoor and indoor settings. An integrated robotic operating system
(ROS) is also presented that handles sensor data, localization, and navigation as well as a web based GUI
to allow for setting waypoints. Onboard MARIA is an actuated 2D LiDAR that is able to generate point
clouds to perform phenotyping analysis such as volume and height estimation. MARIA additionally has
a three degree of freedom (DoF) robotic manipulator that can perform geo-located tasks such as mea-
sure root zone temperature and humidity and collect soil samples. The onboard manipulator also has
an interchangeable end e�ector allowing for di�erent functionalities which is demonstrated with a soil
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sampling end e�ector design. MARIA is unique in that the platform is re-con�gurable to work with
other autonomous systems extrusion based design and use of o�-the-shelf components and 3D prints. As
such, it has the potential to be more widely available for use for HTP work as the designs are able to be
replicated/modi�ed.

3.1.1 Related Work

Mobile Robots for Phenotyping

With an autonomous robot, plant traits can be measured throughout the entire growing season allowing
for greater data collection and more e�ective plant breeding and analysis. Novel autonomous mobile
platforms have been developed such as “The Robotanist,” a ground-based robot able to autonomously
navigate sorghum and corn crop rows as well as deploy a wide range of phenotyping sensors such as LiDAR
and cameras to gather sub-canopy data (Mueller-Sim et al., 2017). Another robot architecture for plant
phenotyping was also presented with the “Vinobot and Vinoculer” in which a mobile ground platform
(Vinobot) for individual plant inspection was paired with a mobile observation tower (Vinoculer) for
overseeing an entire �eld (Sha�ekhani et al., 2017). A low cost, 3-D printed rover, the “TerraSentia,” has
also been developed as an ultracompact, lightweight solution for autonomous phenotyping(Kayacan et al.,
2018).

Large scale robots have been developed for high throughput phenotyping such as BoniRob, a four
wheel steering robot (Ruckelshausen et al., 2009), and Thorvald where modular drive components could
be recon�gured to form di�erent drive systems (Grimstad & From, 2017). An open source tracked robotic
system was proposed using using o� the shelf components to perform sub canopy plant phenotyping
(Stager et al., 2019).

LiDAR Phenotyping

Light Detecting and Ranging (LiDAR) sensors are one of the most widely used sensor systems in robotic
platforms because of their ability to give accurate distance measurements without contact. LiDAR is
increasingly being used in the �eld to generate 3D point clouds of crops for phenotypic analysis (Wang
et al., 2017b) as well as low-cost crop navigation (Pabuayon et al., 2019b). With a 2D LiDAR, point clouds
are able to be generated to determine important phenotypic traits of plants, such as canopy height and
plant volume (Sun et al., 2018b).

LiDAR has been used extensively on robotic mobile platforms for high-throughput phenotyping by
statically mounting the 2D LiDAR on a mobile platform and moving it directly overhead or to the side
of the ground plant (Jimenez-Berni, Deery, Rozas-Larraondo, Condon, et al., 2018; Llop et al., 2016b;
Sun et al., 2018b; Wang et al., 2017b; White et al., 2012b). A low cost method of generating a 3D point
cloud with a 2D LiDAR is to mount the LiDAR on a servo motor such that it “nods” back and forth to
generate a 3D point cloud (Harchowdhury et al., 2018b).

Navigation is another common application of 2D LiDAR as a way to allow mobile ground robots
to map crop rows and therefore navigate reliably (Malavazi et al., 2018a). GPS guided navigation is also
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typically used for �eld robots and allows for waypoint following in agriculture settings, but does not
conduct active obstacle avoidance .

Soil Sensing and Robotics

Another important aspect of sustainable agriculture and phenotyping is characterization of soil properties
such as moisture content and temperature. Phenotyping of root traits for drought resilient genotypes
(Passioura, 2012) is an area of particular interest due to climate change. Measuring changes in moisture
content in soil gives important information on plant water-uptake rates, as well as estimating parameters
such as rooting depth (Bitella et al., 2014). Soil temperature is also an important quantitative measure as
temperature a�ects root growth and architectural traits (Nakamoto, 1995). Root zone temperature has
an impact on stressors such as salinity (He et al., 2014) and pathogen infection rates (Watt et al., 2006).
Soil hydraulic properties have spatial correlation ranging between 10 to 20 meters, with such variability a
high number of sensing nodes in an agricultural �eld would be needed.

One solution to the cost of having a large amount of instrumentation is to use robots to perform these
soil sensing tasks at target locations, such as a six-wheeled robot with an “e-nose” that consists of an array
of six gas sensors for the detection of organic volatile compounds (Pobkrut & Kerdcharoen, 2014).

Additional uses of mobile robotics have been found in the scope of soil sampling which is tradition-
ally done manually. Bonirob, a commercial four wheel steering agriculture robot was �tted with a soil
penetrometer for measurement of soil compaction (Scholz et al., 2014). An additional six-wheel platform
was developed to be able to take soil measurements (Łukowska et al., 2019) inspired by space rovers.

Mobile Robotic Manipulators

In the agriculture environment, manipulators are commonly added to mobile robots to automate tra-
ditionally manual tasks. This greatly increases agricultural e�ciency as mobile robots are able to work
continuously and at low costs. Weeding is one common manipulator task done by mobile robots (Van
Der Weide et al., 2008). In one example, a manipulator mechanically uproots a weed (Åstrand & Baerveldt,
2002). In other examples, actuators spray herbicide at a target location (Gonzalez-de-Santos et al., 2017)
such as Ladybird, a solar powered mobile robot that has a robot arm with a herbicide spray end e�ector
(Bogue, 2016). Servo-based actuators have also been developed and added to a mobile robot to perform
seeding in the �eld (Hassan et al., 2016). A mobile robot was developed with a two DoF parallel robot
arm manipulator for handling paper pot seedlings (Rahul et al., 2019). Robots have also been developed
to mechanically evaluate crop �elds using manipulators such as Robotanist that deployed a manipulator
on a mobile robot to measure stalk strength (Mueller-Sim et al., 2017) or BoniRob a four wheel steering
robot to measure soil compaction (Scholz et al., 2014). A prototype mobile manipulator for agriculture
was proposed for general purpose use in an agricultural environment (Bascetta et al., 2017).
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Gap/Motivation

There has been extensive research on the development of autonomous, HTP robots, but there still ex-
ist several gaps in the current work. Most designs require custom fabrication and are not available for
commercial purchase, which limits their use in the �eld, but this work presents a system that can easily
be replicated and modi�ed through use of o�-the-shelf or 3D printed components. Additionally, many
of the HTP systems do not allow for both phenotyping with LiDAR and soil sensing as this work does.
This work also allows for the mobile actuator to be recon�gured to �t speci�c needs through the use of
Dynamixel servos and a new open source library.

3.2 System development
MARIA is an autonomous di�erential drive rover with various phenotyping sensors and a three DoF
manipulator (Figure 3.1). The main computational system on board the MARIA rover is a Jetson Nano
(Jetson Nano, Nvidia, California, United States of America) running Ubuntu 18.01 with Robot Operating
System (ROS Melodic).
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Figure 3.1: (A): CAD model of MARIA (B): Picture of MARIA

3.2.1 Autonomous Drive System

Drive System

The MARIA base consists of the chassis and drive system and is sourced from The Machine Lab (MMP30,
The Machine Lab, Fort Collins, Colorado). The MARIA has an extrusion based framing on top of the
base which allows for an easily con�gurable and modular system for installing a variety of sensors and
other components. The platform is equipped with two 25V NiCad battery packs in parallel, with a
total run time of approximately one hour at peak use. Each motor controller controls two, 24 V DC
servo Gearmotors with a stall torque of 860 Oz-in. Each motor is �tted with an optical encoder (HEDS
9100, Broadcom, California, USA) that has a resolution of 500 counts per revolution (CPR). With a
total gear reduction of 46:1 the total encoder measurement accuracy for rotation is .0156 degrees. The
motor control system consists of two, 2x12 sabertooth motor controllers which are connected to a motor
driver (Kangaroo, Dimension Engineering, Ohio,USA). The Kangaroo motor driver has a built in PID
(proportional, integral, derivative) controller which can tune itself based on encoder information. The
Kangaroo motor driver in turn communicates directly to the onboard single board computer (SBC)

29



through a USB-TTL converter. The Kangaroo motor driver is communicated through packetized serial
and the arduino libraries provided by Dimension Engineering.

Figure 3.2: Block Diagram for MARIA

Localization

Multiple sensors were used for localization of the rover in an inertial frame. Wheel odometry was calculated
using the wheel encoder feedback of the left and right DC motors. An inertial measurement unit (IMU)
(VN-100,Vectornav,Texas,USA) was used for measuring acceleration as well as heading. For global posi-
tioning two di�erent sensor units were utilized. For localization in an outdoors environment a real time
kinematic (RTK) Global Navigation Satellite system was used (SMART6-L,Novatel,Calgary,Canada) .
For an indoors environment a relative global positioning system was implemented (Marvelmind Indoor
GPS,Marvelmind,Tallinn,Estonia) . Marvelmind indoor GPS uses a set of stationary and mobile bea-
cons that use ultrasonic signals to localization relative to each other using trilateration. These various
localization signals were then input into an extended kalman �lter which allows for sensor fusion and
output an accurate pose in a global environment. The extended kalman �lter was implemented through
the robot_localization package (“robot_localization”, n.d.) . The robot_localization package allows for
arbitrary input of various localization sources into a kalman �lter as well as publish various transforms to
the ROS tf library. The ROS transform library creates a transform tree from the map frame down to the
robots base frame.

A calibration step is required for fusion of heading of the IMU and the heading using a global position
system such as GPS or the Marvelmind beacons. This is due to the IMU measuring heading by detecting
magnetic north which can be distorted by various surrounding magnetic sources while the global posi-
tioning system is not as sensitive. As such there is an o�set needed to align the heading of the IMU and
the heading of the global positioning system. This is done by calculating heading in the global system by
measuring two points to calculate a line and angle. The di�erence between the global positioning heading
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angle and the IMU is then applied to the IMU. The global position heading calculation using Global
Navigation Satellite systems requires using UTM coordinates which is de�ned by dividing the earth into
respective square zones. Within these zones, Euclidean geometry is valid by assuming �atness.

GPS based navigation was implemented for the MARIA using the gps_common package and nav-
igation stack. Firstly the correct transforms had to be implemented to convert GPS goals in longitude/
latitude into the MARIAs’s frame of reference as latitude/ longitude coordinates are de�ned in non-
Euclidean space making it di�cult for use in autonomous navigation. For this purpose, the GPS_common
node takes in latitude/ longitude and outputs UTM coordinates. UTM coordinates are de�ned by divid-
ing the Earth into respective square “zones”. Within these zones, Euclidean geometry is valid by assuming
�atness. One necessary step for autonomous navigation using GPS based waypoint navigation is the rec-
onciliation of the UTM heading and the IMU heading. These two headings need to be aligned otherwise
these two localization components will con�ict with each other and give incorrect heading results when
Kalman Filter sensor fusion is performed. This discrepancy between the UTM heading and the IMU
heading is caused by distortion of the surrounding magnetic �eld. This distortion causes the IMU heading
to have a yaw o�set. To compensate for this, a “yaw o�set” is applied by measuring the angle between two
UTM points and then the yaw value from the IMU. Then the di�erence between the UTM angle and
the IMU yaw is applied resulting in the necessary o�set needed to align the UTM frame and the IMU
frame. A calibration procedure was programmed to use the mmp30’s frame at two di�erent UTM points
(converted from GPS points using gps_common ROS package) to �nd the di�erence between the angle
from the easting axis and the yaw from the IMU sensor. This yaw o�set was applied to all the IMU angle
readings before being published to the /imu/data topic.

The MARIA is also compatible with the MarvelMind indoor GPS system for time of �ight (ToF)
based localization, which is useful for indoor applications such as greenhouses. This indoor navigation
with absolute positioning is based o� of absolute global positions from ultrasonic beacons using the Mar-
velMind Indoor GPS. The indoor GPS beacons are able to get their relative positions from other beacons
using ToF calculations of ultrasonic clicks. With these relative positions, a map is created. A mobile
beacon (also called “hedgehog”) sits on the rover and has a mobile position with the origin designated
at one of the stationary beacons. Marvelmind has a ROS package that enables the position of the mo-
bile beacon to be published as a ROS topic. However for this global pose estimate to be fused with the
robot_localization package, a publisher/subscriber node has to be created to adapt the raw position value
into the nav_msgs/Odometry message.

Path Planning

Pure pursuits was implemented as the planner of choice for the MARIA due to its simplicity and robust
performance. Pure pursuits is a tracking algorithm developed in the 1980’s for calculating a curvature
needed to get to a speci�c point. (Figure 3.3) illustrates the Pure Pursuits geometry. Pure pursuits geo-
metrically calculates curvature needed to get to a speci�c point that is determined from a “look ahead”
coordinate. The look ahead coordinate (x,y) is a point on the desired path that is a “look ahead” distance
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away from the rover. A vector L is de�ned from origin to the look ahead coordinate. Using trigonometry
these following equations can be de�ned:

From these equations 3.1 the curvature that the robot has to follow to reach the look ahead coordinate
can be determined. As the robot moves, the curvature is continuously recalculated as the look ahead point
is continuously updated at a distance L. The robot is essentially continuously pursuing this point by
following some curvature.

Figure 3.3: Geometric Relationships for Pure Pursuits

x2 + y2 = L2 (3.1)

x+ d = r (3.2)

(r − d)2 + y2 = L2 (3.3)

r2 − 2rx+ x2 + y2 = r2 (3.4)

2rx = L2 (3.5)
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L2

3x
(3.6)

3.2.2 ROS Framework / Simulation
Robot Operating System (ROS) was used as the central framework for data communication between all
of MARIA’s subprocesses. One of the major sub processes is the autonomous driving capability. First
this starts with localization where for each sensor a node is started to publish to the appropriate topic
(Figure 3.4). This is used as input to the robot localization ROS node that uses an extended kalman
�lter to output a state estimate. The next major subprocess in the drive node. This takes feedback from
the Kangaroo motor controllers on the rotation of the left and right wheels and then outputs them
into the Di�-Drive node. The Di�-Drive node is used to calculate and publish odometry as well as
accept velocity commands, translated from an overall velocity of the robot to the velocities of the left
and right wheels. UART is used through the U2D2 to control the Dynamixel servos (Dynamixel Smart
Servos,Robotis,Seoul,South Korea) which are used in both the onboard three DoF manipulators as well
as for actuating a LiDAR unit. For managing autonomous navigation a move_base node was created.
Move_base node is an implementation of the ROS navigation stack which allows a standardized interface
to control the robot as well as have feedback with a path planner of choice. The move_base node then
outputs command velocity topics to reach its goal based on its current location/status. The move_base
node outputs a velocity command directly to the Di�-Drive node which in turn sends right and left wheel
velocities to go the desired trajectory.
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Figure 3.4: Simpli�ed ROS Node Diagram

For high level control a Graphic User Interface (GUI) was added which provides a 3D rviz-like window
to visualize the URDF, odometry heading, and present location of the robot in its TF ‘world_frame’.The
GUI utilizes ROS, the HTML/CSS/JavaScript web stack, roslib.js, ros3d.js and the Apache web server
(Appendix III) to provide an intuitive interface to send position commands for robots in the �eld. The
window is accompanied by a small amount of additional telemetry (odometry) as well as some interactive
elements to control various parts of the client. Upon accessing the web page, the user can enter the IP
address of the robot they wish to connect to, and select the odometry topic they wish to use for visualization
from the drop down menu. Once the robot is connected, they can use the ‘Capture Position’, ‘Clear
Markers’, and ‘Move to Markers’ buttons to capture and display an odometry waypoint, clear existing
odometry waypoints, or move the robot to existing odometry waypoints in the order they were captured.
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Figure 3.5: GUI Interface for MARIA

For prototyping and testing of the ROS system a simulation twin was created of MARIA using Gazebo
(Figure 3.6 A ), a physics simulator, and ROS as the data communication interface. This simulation adds to
the author’s previous work with the addition of a three DoF manipulator. A Universal Robot Description
File (URDF) was generated from solidworks using the solidworks to URDF plugin. And then revolute
joints were added for the wheels and the manipulator joints. Using the URDF of the manipulator a
ROS package called MoveIT was used to generate a moveit package that allows for interfacing with the
manipulator as well as visualizing manipulator movement (Figure 3.6 B ).
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Figure 3.6: Gazebo Simulation (A) , Moveit! RVIZ Visualizer (B)

3.2.3 Mobile Manipulator
A three DoF actuator was developed using 3D printed joint connecters and the links being made of
extrusion (Figure 3.7). The joints are designed to allow for di�erent length extrusions to be connected,
allowing for customization of the workspace of the onboard manipulator
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Figure 3.7: CAD model of manipulator

Multi-Purpose ToolHead

A toolhead was created for the Dynamixel end e�ector to allow the changing of di�erent end e�ectors.
The toolhead changer was inspired by the same mechanism as an electric screwdriver chuck where it is
necessary to hold di�erent tools and provide rotational force. The chuck functions through use of a
rotational motion from the shaft that pushes the jaws forward and around di�erent bits (Figure 3.8). For
the jaws of the chuck to move around or out of a bit, the outside of the chuck has to be stationary, as such
the outer case was made into an hexagonal shape. When the chuck is put into a hexagonal shaped tool
changer, the outer case locks and allows the jaws to be positioned and grab onto the bit of the desired end
e�ector

Various tool heads were designed and 3D printed to validate the tool head changing capability of
the robotic manipulator. One end e�ector was a drill to penetrate soil and allow for the insertion of a
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temperature and humidity probe that is later detailed in this paper. A prototype soil sampling cartridge
was also designed with the ability to be picked up with the end tool head changer and then be rotated
into the soil. At the end of the cartridge there are angled jaws that scrape the soil and then through the
downward pressure of the cartridge exerted by the robotic manipulator the loosened soil pushes into the
cartridge as it rotates. Once rotated down to a su�cient degree, the soil is compacted into the opening
enough to keep the soil well lodged in the cartridge, a video of this process is provided . Additionally the
soil cartridge has a screw top opening allowing for easy opening to access gathered soil as well as for wash
and reuse.

Figure 3.8: Multipurpose Tool Head (A) Tool head with jaws retracted (B) Tool head with jaws extended,
(C) Tool Head with a soil drill bit , (D) Tool head with soil sampler)

Hardware

The Dynamixel servos by Robotis was used for actuation of the joints. Dynamixels are a series of smart
motors used extensively in this study’s robot system for actuation of both the onboard robotic manipulator
and the Hokuyo LiDAR. They provide an ability to daisy-chain motors into a serial connection for
convenient wiring of complex systems without requiring complex electrical harnesses to utilize many
motors in robotic systems. Dynamixel motors use a UART serial data connection to send values to an
internal control table allowing for velocity and position control as well as feedback from internal sensors
such as current. However when using multiple Dynamixel motors of di�erent models, some of the older
models use di�erent protocols for sending commands to the servo’s control table. The control-table
addresses the need to be speci�cally managed for each type of motor, causing di�culty implementing a
hybrid system. For the purposes of solving this issue, a library was written alongside the overall system
to implement an object-oriented method of communicating with many Dynamixel motors of any model
rather than interfacing with the raw data values. Each individual motor is treated as an object of a generic
motor, which has details of the motor populated as internal variables and functions depending on the
motor requested. Each detail of the motor is stored as a JSON con�guration for each possible motor
using a Dynamixel protocol. By storing each address with its corresponding variable name as a string,
similarities between the motors can be used to set motor parameters according to the name of the value
desired to be viewed or modi�ed rather than interfacing with an platform-dependant address value. For
the most common motor usages, this library provides added functionality of speci�c functions for setting
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and reading values to achieve a desired goal rather than even setting based on name, which is useful in
situations of upgrading a motor between generations where the Dynamixel family began to use new
naming conventions. Other di�erences exist between the two generations which needed to be accounted
for. The most prominent being that the Protocol 1.0 motors, the older generation, use 1’s complement
encoding of negative numbers while Protocol 2.0 and most computers use 2’s complement.

Kinematics

The analytical solution for the inverse kinematic equations for a 3 DoF articulated manipulator is presented
(Figure 3.9 ). A general equation is proved due to the lengths of the robot arm being made of extrusion, it
is possible to have various length con�gurations for the links L_1 and L_2.

Figure 3.9: Geometric Relationships for Inverse Kinematics
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3.2.4 Phenotyping

Non-Contact Sensors

One of the phenotyping sensors on MARIA is an actuated Hokuyo UST-10 LiDAR. This 2D LiDAR
is actuated in a 50 degree range around its y-axis as seen from (Figure 3.10). While the LiDAR unit is
actuated the feedback from the Dynamixel servo is used to apply a transform using the ROS transform
library. This transform allows a 3D point cloud of the environment to be generated .

An additional non-contact sensor onboard MARIA is an Orbbec stereo camera. Which through
stereo vision allows for generating depth clouds. These depth clouds could be used for volume estimation
of crops. The Orbbec stereo camera is also able to take RGB images of target areas.

Figure 3.10: Actuated LiDAR Setup

Soil Sensing

For soil sensing, a drill with an end bit was designed and coupled with a temperature/humidity sensor
probe onboard the robot arm. The robotic arm �rst drills to a certain depth (Figure 3.16 A-B) and then
inserts a temperature and humidity probe into the soil (Figure 3.16 C-D). This allows for root zone
temperature and humidity measurements. The drill and probe are able to penetrate up to four inches
into the soil.

40



Figure 3.11: Soil Sensing Procedure (A) - (B): Drill Deploying and Drilling into Soil , (C)-(D) Soil Sensor
Entering the Soil to take Temperature and Humidity Measurement

3.3 Results

3.3.1 Navigation Results
Navigation was performed outdoors with two di�erent global localization sensors. For the �rst global
positioning system, the Marvelmind ultrasonic beacons were used and mounted on posts around the
robot (Figure 3.12 A)

The robot was given four global waypoints to navigate to. The RMSE for marvelmind beacon based
navigation was 0.1566 m (Figure 3.12 B). The second localization method used was using the SMART-6
Novatel RTK GPS. The RTK GPS based navigation resulted in a RMSE of 0.2692 m (Figure 3.12 C.

Figure 3.12: Navigation Results (A): Marvelmind based Navigation setup (B): Marvemind Beacon Navi-
gation (C): RTK Novatel GPS Navigation
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3.3.2 Non Contact Phenotyping Results
For validation of the phenotyping capability of the actuated LiDAR con�guration for MARIA, �ve plants
of various sizes were placed in a line while the rover drove parallel to the plants collecting point cloud data
3.13

Figure 3.13: LiDAR Testing Setup

The volume of a cylinder was calculated for each increment and aggregated to estimate the volume
of the plant. For the LiDAR validation experiment the actuated LiDAR rotated 50 degrees in 5 seconds
allowing for a full “nod” period of 10 seconds. MARIA was moved at a velocity of 0.1 m/s parallel to the
row of plants. The point cloud was generated from the laser scan using the laser_assembler ROS package
and then post processed in MATLAB 3.15 B). Within MATLAB the volume was ascertained using the
convex hull function with a shrink factor of 0. The resultant volume estimation was then scaled by a
factor of 4 due to the underestimation from limited view from the point cloud generated by LiDAR. The
ground truth for the volume of the plants was determined manually by measuring the width of the plants
at multiple increments along the height of the plant. The resulting volume estimation had R2̂ of 0.989, a
RMSE 0.0435 and an average percentage error of 1.76
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Another phenotypic ability that was analyzed was the ability to measure height. For height measure-
ment a RANSAC algorithm was used to measure the ground plane. Then the point cloud was analyzed to
�nd the highest point and its height relative to the ground plane. Using this height method, the proposed
strategy had an R2̂ of 0.984, a RMSE of 0.068 and an average percentage error of 3.2

Figure 3.14: LiDAR Phenotyping Results (A): Volume Estimation (B): Height Estimation

The ability of the onboard non-contact sensors were tested and show ability to gather data on di�erent
spectrums. Stereo camera is able to construct a depth image as well as take a RGB image, while the actuated
liDAR is able to generate a point cloud.

Figure 3.15: Non-Contact Sensing (A): RGB Image (B): Stereo Image (C): LiDAR Pointcloud

3.3.3 Soil Sensing
The soil sensing capability of the onboard robotic manipulator was tested in a controlled soil setting by
�rst shining a lamp on a soil pot for two hours and then having the robotic arm collect temperature and
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moisture data at �ve data points at approximately two inch increments along the pot plant (Figure 3.16 ).
The temperature and moisture probe was able to measure the positive temperature and negative moisture
change along the pot plant due to being exposed to a heat lamp. Based on a line �t R2̂ value 0.908, the
rate of change of the temperature was 0.515 degrees Fahrenheit per inch. For moisture change a line �t R2̂
value 0.905 was attained and an estimated moisture change of -3.6 % per inch.

Figure 3.16: Soil Sensing Setup (A): Soil Conditioning with Lamp , (B) Soil Measurements Locations (C)
Temperature Measurements, (D): Moisture Measurements

Lastly, a test was conducted to assess the ability of MARIA to combine global navigation and soil
sensing by commanding MARIA to move to a speci�c global waypoint and then use the mobile actuator
to drill and insert the temperature and humidity probe into a pot �lled with soil. Video of these tests
are available. The four soil pots were put into multiple con�gurations such as a square (Figure 3.17 A), a
straight line (Figure 3.17 B), and a random, unstructured con�guration (Figure 3.17 C). Waypoints were
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Table 3.1: Results of Navigation and Soil Sensing Test
Setup Number of Targets Average Time Taken per Pot (seconds) Manipulator Action Success Ratio
Square 4 62 1
Straight 4 45 1
Random 4 70 .75

determined by driving the rover to a speci�c position and recording its position and heading. Each pot
was six inches in diameter resulting in 28.3 in2 area for the manipulator to drill and insert probe. One
test was conducted for each of the con�gurations. MARIA was able to gather data with 100% success
for con�gurations (Figure 3.17 A and B ) however for con�guration (Figure 3.17 C )the manipulator was
unsuccessful in sensing one of the four potted plants resulting in an average success rate of 91.7% for all
tests.

Figure 3.17: Soil Navigation and Sensing Setup (A): Square Soil Pot Con�guration, (B) Straight Soil Pot
Con�guration (C) Random Soil Pot Con�guration

3.4 Discussion
A mechanical design as well as phenotyping and navigation systems were proposed for MARIA and val-
idated in a controlled setting. Navigation was tested using both indoor and outdoor global localization
systems and was able to perform with a low root mean square error. Additionally a soil sensing manipula-
tor was designed and implemented. Its ability to measure temperature and humidity was validated in a
conditioned soil pot. Finally, the navigation system and soil sensing system were combined and allowed
the rover to reach a speci�c global waypoint and perform a temperature and humidity sensing operation.
With an actuated LiDAR, MARIA was also able to perform non-contact phenotyping with low percent
error in plant height and volume estimation.
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In future work there are many improvements that can be implemented. The drive system for MARIA
is able to drive well in �at settings but is sensitive to bumps and uneven ground. As such the addition of a
suspension system to the rover would reduce disturbances.

The manipulator onboard MARIA could be improved with better actuators that are able to handle
larger loads. With higher torque the motors can handle harder soil. Additionally more degrees of freedom
can be added to manipulators to handle more complex manipulator tasks that could be tailored to the
speci�c needs of the crop of interest. The soil sampling end e�ector could also be further improved by
adding the ability to eject soil samples into an internal soil storage container or store and collect a new soil
sampling cartridge.

The tool changer at the end of the onboard manipulator could have additional end e�ectors designed.
One end e�ector could be created such as weed spraying end e�ector. The tool changer could additionally
have power contacts that can allow for power transfer. This could be used to connect to a charger and
charge an onboard battery unit. A relay system could be used further to let these contacts deliver power
to an end e�ector.

3.5 Conclusions and Limitations
In this paper a multipurpose agriculture robot design, named MARIA, is proposed using o�-the-shelf
components. An autonomous drive system is proposed using global localization systems for navigation
and waypoint following. The phenotyping capability for MARIA was validated using an actuated lidar for
measuring important phenotypic characteristics such as volume and height. A mobile three DoF actuator
was designed for MARIA with a multipurpose end e�ector. The multipurpose end e�ector is able to be
changed to various end e�ectors such as a drill or soil sampler. The mobile manipulator is additionally
able to measure root zone temperature and moisture. This system has been validated in an indoor as well
as a controlled outdoor setting. However there are multiple improvements needed to work robustly in
the outdoor setting.

This work contributes to the �eld by presenting a design capable of both LiDAR phenotyping and
soil sensing that could be easily replicated through use of o�-shelf and 3D printed components. MARIA’s
design may help to reduce the barrier preventing the adoption of these robotics systems in the �eld, as
most systems are not commercially available or require custom, di�cult-to-manufacture components.
Future work will be aimed at increasing the robustness and ease of use of this system in the �eld.
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Chapter 4

Conclusion

This work aims to add to the development of agricultural robotics to alleviate the phenotyping bottleneck
in which the high labor cost of manual phenotyping hinders the development of new, robust crops. Here,
an autonomous mobile robot for navigation and phenotyping in an agricultural setting is proposed.

In the �rst section of this work, a simulation of a novel, customized mobile platform for autonomous
phenotyping that can simultaneously phenotype and navigate through occluded crop rows is presented. A
complete ROS con�guration was implemented to represent an agriculture robot for HTP. A high �delity
simulated cotton crop environment was created as a testbed for phenotyping and navigation strategies.
We propose the use of an actuated LiDAR con�guration, which actively generates point cloud data simul-
taneously to be used for phenotyping as well as navigation. The e�cacy of the nodding lidar con�guration
for phenotyping was tested against three common 2D LiDAR based phenotyping strategies and it was
shown to be comparatively accurate as the current 2D LiDAR based strategy for determining volume and
height of cotton plants. For navigation, a strategy was presented that uses a hybrid approach of LiDAR
based control algorithm as well as GPS waypoint navigation. The proposed control algorithm uses the
LiDAR point cloud generated by the actuated LiDAR con�guration and ensures that the robot stays
centered between crop rows. The proposed navigation strategy was able to successfully navigate between
four cotton crop rows with .2% error.

In the next section, a multipurpose agriculture robot design, named MARIA, is proposed that uti-
lizes the actuated LiDAR con�guration tested previously in simulation for navigation and simulation.
An autonomous drive system is proposed using global localization systems for navigation and waypoint
following. The phenotyping capability of MARIA to measure plant height and volume was also tested.
Additionally, a mobile three DoF actuator was designed for MARIA with a multipurpose end e�ector
that is able to be changed to various e�ectors such as a drill or soil sampler. The mobile manipulator is
additionally able to measure root zone temperature and moisture.

This work contributes to the �eld by presenting an open source design that could be easily replicated
through use of o�-shelf and 3D printed components. MARIA’s design may help to reduce the barrier
preventing the adoption of these robotics systems in the �eld, as most systems are not commercially
available or require custom, di�cult-to-manufacture components. The actuated LiDAR con�guration
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which allows for simultaneous navigation and phenotyping lowers the cost of development as two separate
systems for navigation and phenotyping are not needed. This further lowers the barrier of entry into
agricultural robotics and high-throughput phenotyping.
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