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ABSTRACT 

 Timely harvesting of quality cotton fiber is among the most pressing challenges in the 

cotton production industry. The current practice of mechanical harvesting after defoliation has 

increased acreage and production, but reduced efficiency of harvest. Farmers pick the cotton 

after at least 60% to 75% of the cotton bolls are open, at which point many of the earlier opening 

bolls have been exposed to weather more than 40 days waiting to be picked. Boll quality is 

compromised, and some bolls have already fallen to the ground, unharvestable. An additional 

problem is the availability and expense of a skilled labor force. The average age of a farmer in 

the U.S. is 60 years old, and that age has been increasing for decades. Thus, it is paramount to 

utilize the current nascent technologies in automation and robotics to develop revolutionary 

solutions to address these issues. This dissertation focuses on the development of the cotton 

harvesting robot to increase efficiency, save labor, and improve farming management. 

A center-articulated and hydrostatic rover with an attached cartesian manipulator was 

designed and implemented. The robot integrated advanced sensing systems using encoders, a 

low-cost RTK-GNSS, a potentiometer, RGB stereo cameras, and IMUs to control navigation and 

picking manipulators. The robot also integrated three controllers to do advanced object detection, 

and control to harvest the bolls. Robot Operating System (ROS) was used to integrate and 



 

 

control the robotic system for cotton boll tracking, cotton boll location estimation, cotton rows 

detection, navigation, and harvesting. The sensor fusion algorithm Extended Kalman Filter 

(EKF) was utilized to perform autonomous localization and navigation of the robot. Cotton 

harvesting was achieved by using a ROS-independent finite state machine (SMACH), modified 

pure pursuit algorithm, and proportional–integral–derivative controller. The performance of the 

robot was evaluated and reported. Experimental results showed that the developed robot could 

precisely and efficiently navigate over the cotton rows and harvest the cotton bolls. Furthermore, 

the robotic design has shown that traditional vacuum harvesting can well be adopted in robotic 

systems to harvest the cotton bolls. The designed robot sets preliminary development success to 

improve cotton harvesting management. 
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CHAPTER 1  

INTRODUCTION 

1.1  Background and Significance of This Study 

Cotton, as a commercial crop, holds an essential position worldwide. The cotton industry, 

worth $25 billion, employs more than 200,000 people in the U.S. (USDA/NASS, 2018). The U.S 

is third in the production of cotton in the world behind India and China. As a large industry, 

however, it has faced multiple challenges in its operations. Among the biggest challenge is the 

timely harvest of the quality cotton fiber. Specific cotton harvesting challenges are; 

• Open cotton bolls can sit up to 50 days until picked when at least 60% to 75% of 

the cotton bolls are opened (UGA, 2019).  This waiting time exposes the open 

bolls to harsh conditions that degrade their quality. 

• It is not possible now to harvest low or high micronaire cotton separately and 

hence, increases the cost of separation later on. 

• Contamination of the cotton bolls (mulches, sticky cotton, or plastics) during 

harvesting increases the cost of ginning and may reduce bale prices. 

• The mechanical combines are huge and expensive. The new 2019 picker costs 

around $725,000, and it is stored (under the shed) for more than nine months a 

year without being used. 

• Cotton combines weigh more than 33 tons, causing soil compaction, which 

reduces land productivity.  
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• The maintenance of combines is expensive and complicated due to the size and 

weight of the machine. 

• Breakdowns in the field can take days, reducing operating efficiency and 

exposing bolls to further weather-related quality degradation.  

• Most of the machines use proprietary software and hardware that prevents farmers 

from repairing their machines and hence, deny the right-to-repair tools that they 

own (Waldman & Mulvany, 2020).  

• The labor shortage in agriculture is getting worse while the cost of available labor 

is skyrocketing (Zahniser et al., 2018). It is due to youth movement to urban areas 

leaving behind an aging farming society. 

The rise of nascent robotics and Artificial Intelligence (AI) in agriculture, especially in 

specialty crops, creates an opportunity to adopt robotics in row crops such as cotton, which have 

received little attention until recently (Bergerman et al., 2016; Comba et al., 2010; Fue et al., 

2020b; Ramin Shamshiri et al., 2018). Furthermore, robotics systems are small and can be 

designed to accomplish multiple farming tasks in addition to harvesting. To the best of our 

knowledge, there are no commercial cotton harvesting robots yet (Fue et al., 2020b).  

Hence, it is essential to aggressively develop a robotic harvester that provides an 

opportunity to have multifunctional equipment that can be used in multiple farm operations. A 

robot will be able to serve farming society by;  

• Harvesting early cotton bolls without waiting. That could serve farmers in case 

disasters like hurricanes happen and help improve quality of cotton harvested. 

• Separating low or high micronaire bolls. 

• Removing the use of human drivers in daily operations. 
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• Harvesting clean cotton bolls which are free from contamination. 

• Reducing the cost of maintenance and breakdown costs. 

• Reducing the cost of ginning since the robot picks the cotton bolls directly 

without mixing it with other plant debris. 

• Reducing the costs of owning cotton harvesting machines by providing equipment 

that costs a fraction of the current cost of the combines. 

• Removing the use of the chemical defoliants and hence, serve the environment 

and reduce cost. 

• Reducing fatal or severe injuries while working in dangerous environments. 

• Reducing soil compactions and improve soil productivity. 

• Allowing quicker return of the equipment to farming after a rain event since the 

robots are light and can navigate muddy conditions. 

• Providing a chance for farmers and other technicians to repair the open-source 

robots. 

1.2  Objectives 

 The overall goal of this dissertation was to develop a cotton harvesting robot and test its 

performance in real field and direct sunlight conditions. 

Specific objectives were to: 

1. Conduct an extensive review of current trends in cotton robotic harvesting systems. 

2. Develop cotton bolls and rows detection algorithms using RGB stereo cameras 

3. Develop cotton boll tracking algorithms using a moving RGB stereo camera 
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4. Develop robust systems to localize and control navigation of a center-articulated and 

hydrostatic transmission rover using a low-cost RTK-GNSS, IMUs, and encoders 

5. Develop cotton harvesting robot and robust algorithms using task-level architecture 

techniques 

1.3  Research Contribution and Dissemination 

 The algorithms and system hardware developed in this study are open-source systems and 

open-robotics. They can be adopted by the industry and other pioneers to accomplish the dream 

of developing cheap, dynamic, robust, and reliable robotic systems for cotton harvesting. The 

project codes are shared freely in our GitHub accounts; https://github.com/kadefue and 

https://github.com/UGA-AgRobotics  

The study has contributed to the cotton industry development. It stands as one of the early 

efforts to make a cotton harvesting robot in the U.S. The outputs (15 articles) have been either 

submitted or published in journals and presented in conferences and workshops. The leading 

publications that are presented in this dissertation are as follows: 

[1]. Fue, K., Barnes, E., Porter, W., Li, C., and Rains, G., (2020). Center-articulated 

Hydrostatic Cotton Harvesting Robot using Visual-servoing Control and a Finite State 

Machine. Sensors (Submitted) 

[2]. Fue, K., Barnes, E., Porter, W., Li, C., and Rains, G., (2020). An Autonomous 

Navigation of a Center-articulated and Hydrostatic Transmission Rover using a Modified 

Pure Pursuit Algorithm in a Cotton Field. Electronics (Submitted) 

[3]. Fue, K., Barnes, E., Porter, W., Li, C., and Rains, G., (2020). Evaluation of a Stereo 

Vision System Effectiveness in Row Detection and Boll Location Estimation on a Cotton 

Harvesting Rover in a Direct Sunlight. Agronomy (Submitted) 

https://github.com/kadefue
https://github.com/UGA-AgRobotics
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[4]. Fue, K., Barnes, E., Porter, W., and Rains, G., (2020). Ensemble Method of Deep 

Learning, Color Segmentation, and Image Transformation to Track and Count Bolls 

using a Moving Camera in Real-time. Transactions of ASABE. St Joseph, MI: ASABE. 

(Submitted) 

[5]. Fue, K., Barnes, E., Porter, W., and Rains, G., (2020). An Extensive Review of Mobile 

Agricultural Robotics for Field Operations: Focus on Cotton Harvesting. 

AgriEngineering., 2(1):150-174 

1.4  Overview of the Dissertation Chapters 

 This dissertation consists of seven chapters. Chapter 1 discusses the significance of this 

study, objectives, research contribution, and overview of the dissertation chapters. Chapter 2 

provides an extensive review of cotton harvesting robotics studies and discusses the current 

status of agricultural robotics around the world. 

 Chapter 3 studies the use of color stereo cameras to detect cotton bolls and rows. 

Accurate cotton bolls detection and 3D location estimation are essential for robotic use. 

Calibration of the camera is particularly essential for the precise detection of the cotton bolls 

location. Cotton rows detection in a heavily occluded farm is primarily vital if the navigating 

rover loses GNSS fix while working and hence, could provide assistance to the robotic system to 

continue working and navigating. The algorithm was able to detect rows and estimate the 

positions of the cotton bolls. 

 Chapter 4 reports the development of the tracking algorithms for cotton bolls. The robot 

needs to remember the positions of the bolls while working on the farm since detection is not 

reliable. The best technique is once detected, never forget the position until the boll is harvested. 
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The algorithm explicitly took advantage of the appearance of the cotton bolls to track them. The 

developed algorithm was compared with the other six open-source industry-standard algorithms. 

 Chapter 5 introduces the use of the fusion algorithm Extended Kalman Filter (EKF) to 

help autonomous robots localize and navigate along the cotton rows. The designed algorithm was 

able to use several sensors such as a low-cost RTK-GNSS, IMUs, encoders, and potentiometer to 

guide the rover along the cotton rows accurately. The rover was a center-articulated and 

hydrostatic transmission rover. The developed rover and algorithms can be adopted in any other 

center-articulated rover. 

 Chapter 6 reports the center-articulated and hydrostatic robot that uses a ROS-

independent finite state machine method to harvest the bolls autonomously. The robot used 

YOLOv3 to detect the bolls. It used the 2D Cartesian manipulator to pick the bolls. The robot 

was programmed to be controlled using PID control to autonomously position itself close to 

cotton bolls for the manipulator to pick. 

 Chapter 7 provides research conclusions, limitations of this dissertation, and future 

research studies. 
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CHAPTER 2  

AN EXTENSIVE REVIEW OF MOBILE AGRICULTURAL ROBOTICS FOR FIELD 

OPERATIONS: FOCUS ON COTTON HARVESTING1 

  

 
1 Fue, K., Barnes, E., Porter, W., and Rains, G., (2020). AgriEngineering., 2(1):150-174. 

Reprinted here with permission of publisher. 
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2.1  Abstract 

In this review, we examine opportunities and challenges for 21st-century robotic 

agricultural cotton harvesting research and commercial development. The paper reviews 

opportunities present in the agricultural robotics industry, and a detailed analysis is conducted for 

the cotton harvesting robot industry. The review is divided into four sections: (1) general 

agricultural robotic operations, where we check the current robotic technologies in agriculture; 

(2) opportunities and advances in related robotic harvesting fields, which is focused on 

investigating robotic harvesting technologies; (3) status and progress in cotton harvesting robot 

research, which concentrates on the current research and technology development in cotton 

harvesting robots; and (4) challenges in commercial deployment of agricultural robots, where 

challenges to commercializing and using these robots are reviewed. Conclusions are drawn about 

cotton harvesting robot research and the potential of multipurpose robotic operations in general. 

The development of multipurpose robots that can do multiple operations on different crops to 

increase the value of the robots is discussed. In each of the sections except the conclusion, the 

analysis is divided into four robotic system categories; mobility and steering, sensing and 

localization, path planning, and robotic manipulation. 

2.2  Introduction 

The cotton industry holds an important position as a commercial crop worldwide, 

especially in the U.S, China, India, and Brazil, who are the leading producers of cotton 

(USDA/NASS, 2018). However, the cotton industry has several challenges, particularly in cotton 

harvesting. Timely harvesting of the quality cotton fiber is among the most pressing challenges 

in the cotton production industry. The current practice of mechanical harvesting after defoliation 

has led to huge losses in the industry since its inception in the 1950s (Fue et al., 2018b). The 
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open bolls can sit 40 days waiting to be picked, since it is advised to pick the cotton after at least 

60% to 75% of the cotton bolls are opened (UGA, 2019). Also, the cotton picker needs 

defoliated plants to harvest, which adds expense to the farmer (UGA, 2019). The defoliants are 

applied to the plants, and the farmers need to wait 10 to 14 days before harvesting the crop. 

Defoliant activity can also be compromised by rainfall. Also, cotton is harvested at or below 12 

percent moisture because wet cotton brings clogging problems in the picker and the ginning 

process, which can add more waiting time during harvesting (UGA, 2019). This waiting time 

exposes the open bolls to harsh conditions that degrade their quality. Any solution that would 

reduce cotton losses and improve quality would be welcomed by the industry. In most cases, the 

mechanical combine machines are very big and expensive (the current six-row cotton picker 

costs around $725,000). Unfortunately, expensive cotton pickers are stored under the shed for 

more than nine months a year, waiting to harvest for only three months. Also, the machines 

weigh more than 33 tons, causing soil compaction, which reduces land productivity (Antille et 

al., 2016). The maintenance of such machines is also expensive and complicated. Breakdowns in 

the field can take days to repair, reducing operating efficiency, and exposing bolls to further 

weather-related quality degradation (Fue et al., 2018b). 

Most cotton harvesting technologies are either “stripper” or “spindle” pickers (UGA, 

2019). The “stripper” grabs the lint from the plant and some amount of plant matter (UGA, 

2019). Later, the lint is separated from the plant matter by dropping the heavy plant matter while 

leaving the lint behind, which is directed to the basket at the back of the machine. The “spindle” 

grabs the seed-cotton from the plant by using barbed spindles that rotate at a high velocity. Then, 

a counter-rotating doffer is used to strip the seed-cotton from the spindles (UGA, 2019). So, for 

each row, one “stripper” or “spindle” picking tool is used. It means six-row picking technology 
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has six picking tools for each row. The current six-row picking technology navigates at 5.5 mph 

in the field and covers around 8 to 10 acres per hour. Boman (2012) and Prostko et al. (2018) 

estimated that 40-inch row spacing has 23.2 bolls per row-ft for two bales per acre yield while 

30-inch row spacing has 17.4 bolls per row-ft for a two bales per acre yield. A 40-inch row has 

13,081 linear feet per acre, while a 30-inch row has 17,424 linear feet per acre. It means that an 

acre has an estimated 303,479 bolls per acre for a 40-inch row and 303,178 bolls per acre for 30-

inch row spacing (Table 2.1). Small robotic rovers that collect at least 12,140 bolls per trip every 

day 25 times per harvest cycle will cover around 303,500 fresh open bolls that have been 

exposed to minimum degradation. A small rover moving at 3 mph and picking one boll every 3 

seconds and working 10 hours per day would finish harvesting one acre of 40-inch rows within 

50 days (Table 1). Hence, the development of a robot that costs around $7000 will equate to 104 

robots to compare with one large machine that costs more than $725,000 (Table 2.1).  

Table 2.1. Comparison of the conventional machine and robot for cotton harvesting. 

Parameters Conventional Machine One 

Manipulator 

Robot 

Number of bolls per acre 303,178 303,178 

Times to harvest per acre (pass) 1 25 

Time to harvest an acre(hours) 0.1 250 

Unit Cost $725,000 $7000 

 

One potential advantage of robotics is using a single rover platform for multiple tasks by using 

interchangeable attachments. By changing attachments and selecting the appropriate software 
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application, robots can perform tasks like planting, weeding, spraying, and harvesting. Also, 

these machines can be reprogrammed to cover different tasks on a different crop, which can be a 

huge cost-saving measure for both small and large farmers.  

The deployment of autonomous machines can improve the quality of the fiber since only 

a boll is picked. Autonomous means no human intervention, which reduces labor costs. Also, the 

need to serve the environment by stopping the use of undegradable defoliants is very important, 

as the robots may pick the mature bolls as they appear without defoliation. The use of 

lightweight machines dramatically reduces soil compaction (Fue et al., 2019b). The cost of 

operations can also be reduced since autonomous robots may need less supervision and hence 

low labor costs. Also, electrical energy sources like solar energy can be introduced to reduce fuel 

costs because robotic machines are light, electric and can survive with limited energy 

consumption. 

The unstructured environment, like the agricultural field, requires more advanced 

methods of machine learning (C Wouter Bac et al., 2014). The unstructured approach is required 

for agriculture rather than a structured approach (Roldán et al., 2018). However, advancements 

of machine vision, machine learning (especially deep learning), sensing, and end effector 

manipulation have fueled the application of robots in an unstructured agricultural environment. 

However, most of these machines have been deployed in horticultural crops only (Lowenberg-

DeBoer et al., 2019). 

The development of a cotton harvesting robot is feasible because there is an opportunity 

to use the current advancements in machine vision, actuators, motors, and agricultural robotics to 

develop an autonomous platform to harvest cotton bolls and be adaptable to other cotton 

operations like planting, spraying, weeding and scouting. To the best of our knowledge, there is 
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no commercial cotton harvesting robot available yet. Hence, we propose to review current cotton 

harvesting robot research and opportunities and challenges for future development. 

2.3  Methodology  

We discuss the most important issues concerning agricultural robots, harvesting robots, 

and finally, cotton harvesting robots. We start our discussion with general agricultural robots and 

then harvesting robots because we believe multipurpose agricultural robots have more value 

compared to single-purpose agricultural machines. So, it is feasible to adopt some of the 

commercially available machines to develop cotton harvesting robots at a lower cost. To achieve 

this, the literature was identified using the following keywords; “robot,” “agricultural robot,” 

“cotton harvesting robot,” “crop imaging,” “cotton harvesting,” “cotton robot,” “picking robot,” 

“robots in agriculture” and “harvesting robots.” Several relevant papers with the keywords from 

the leading databases and indexing, such as Web of Science, Google Scholar, Science direct, 

UGA libs, ProQuest, IEEE Xplore, and Scopus, were retrieved and identified. Also, Google and 

Bing search engines were used to retrieve any commercial or non-academic material related to 

the mentioned keywords, as most of the commercial companies prefer to advertise products 

instead of writing scientific papers. Since the cotton harvesting robot is a new idea, there were 

very few materials covering the topic. Other sources of information like YouTube were also 

investigated to uncover any commercial or related works presented by companies or hobbyists. 

Approximately 74 peer-reviewed articles, 4 chapters, 3 books, 6 scientific reports, 24 refereed 

conference proceedings, and other sources from websites of commercial agricultural robotic 

companies were selected and included in this review. 
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Figure 2.1. Framework organization of this paper. 

Each of the articles retrieved was analyzed according to the robot components in Figure 

2.1. Robots usually consist of 4 components (Figure 2.1): sensing and localization (Sensing), 

path planning (Planning), mobility and steering (Mobility), and end effector manipulation 

(Manipulation) (Bechar & Vigneault, 2016). The adoption and performance of agricultural 

robots rely solely on those four components (Bechar & Vigneault, 2017). It is difficult for a robot 

to succeed when some of the components do not meet expectations. Mobility and steering mainly 

focuses on providing the movement ability of the robot to reach the target and accomplish the 

mission. This can consist of legs, wheels, tires, plane wings, undulation abilities, propellers, etc. 

Sensing and localization is the perception of the environment and its occupying objects that may 

allow or hinder the operation of the robot. The robot needs to reason which environmental 

characteristics are conducive or not for it to operate. This is done by detecting a clear path, 

obstacles, detecting targets, and remembering current and past positions. Path planning is the 

optimized decision made by the robot to reach the targets. Robots need to be designed to identify 

the target position and then plan their movement according to their capability and the sensed 

information. This allows the robot to decide the most optimized path that can lead to a quick 
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achievement of the mission. When the robot reaches the target, then end effector and 

manipulators (manipulation) are executed to accomplish the mission. In the case of agriculture, 

this can be picking fruit, spraying chemicals, measuring the size of the target, killing weeds, 

picking soil or leaf samples, planting seeds, plowing land, or plant irrigation. 

Therefore, the robot’s operation is summarized as sense, reason, plan, and act. In each of 

these procedures, the robot may succeed or fail and take some time to succeed or fail. Therefore, 

it is possible to measure success rates and execution times of each operation. Bechar and 

Vigneault (2017) proposed a very good method and parameters to measure robot performance in 

the field (Table 2.2). 
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Table 2.2. Methods and parameters to measure the performance of the robot in the field (adapted from Bechar and Vigneault (2017)). 

Measure Description 

CT: Cycle Time (s) The average time required to finish a specific action in a task. (e.g., harvesting a cotton boll, 

spraying herbicides, scouting with camera) 

OT: Operation Time 

under real-time conditions 

(s) 

The average time required to finish an intended task under real-time in an agricultural field. This can 

be time taken from the start of robot planning, navigation, sensing, and manipulation. 

OV: Operation Velocity 

under real-time conditions 

(inch s-1) 

Average velocity taken by the robot to finish a mission (navigation can be very complex or simple 

depending on-farm management task) 

PR: Production Rate (lbs 

h-1, ac h-1, number of 

actions h-1 , etc.) 

Amount of successful actions or task (e.g., number of cotton bolls picked) treated per time unit 

CORT: Capability to 

Operate under Real-Time 

The ability of a robot to accomplish tasks under real-time conditions presented in binary form: either 

can operate under real-time conditions, CORT+, or cannot operate under real-time conditions, 

CORT-. This can be achieved if navigation, sensing, and manipulation are well designed. 
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Measure Description 

conditions (CORT+ or 

CORT-) 

DC: Detection Capability 

(DC+ or DC-) 

The ability of robot sensors to detect objects to accomplish a specific mission and it is presented in 

binary form; either a robot can detect an object, DC+; or cannot detect an object, DC- 

DP: Detection 

Performance (%) 

Performance of the robot in detecting objects for its mission. Detection results can be True Positives 

(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). DP is the sum of the 

True positives and True Negatives over all the elements that were presented for detection. Other 

parameters like accuracy, recall, precision, and F1 score can be calculated (Powers, 2011).  

ASR: Action Success Ratio 

(%) 

The ratio of successful actions performed by the robot without destroying the plant over the total 

number of actions 

ADM: Appropriate 

Decision-Making (%) 

The ratio of the number of correct decisions made over all the decisions done by the robot while 

accomplishing an agricultural task 

PEa: Position Error 

Average and PEsd: 

The standard deviation and average of positioning error made by a robot from true locations where it 

is located to reported location sensed by the robot’s sensors. 
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Measure Description 

Position Error Standard 

Deviation (inch, etc.) 

Safety It the parameter that describes robot behavior on the farm that cannot threaten other objects around 

the farm. It is the safe actions of the robot while operating in an agricultural field. 

Wholeness The ability of the robot to execute tasks as required or as designed to full completion using its 

autonomous coordination of actions to accomplish all the tasks. 
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Finally, we discuss four main topics regarding cotton harvesting robots consisting of 

the four main operations in Figure 2.1. In the first topic, we discuss general agricultural 

robotic advances and opportunities that can be inherited in specified field operations. In the 

second topic, we discuss the main harvesting robots available and similarity to other farm 

operations. In the third topic, we discuss cotton harvesting robotics status and compare it with 

other harvesting robots. Lastly, we conclude and frame the future work required for cotton 

harvesting robots. 

2.4  Agricultural Robotics 

General operations in agricultural robots are equivalent to each other for similar crops 

and differ slightly in other types of crops. It is important to discuss the agricultural robot 

framework that can be adapted to other crops. In agriculture, various jobs such as plant 

phenotyping, sorting and packing, scouting, mowing, pruning, thinning, planting, spraying, 

weeding, harvesting and picking could be automated using robots. This can be achieved by 

the same robot with changes in attachments and selecting a different computer program for 

robotic perception and a different end-effector for the new task. This kind of robot is called a 

multi-functional intelligent agricultural robot (MIAR). 

2.4.1 Agricultural Robot Mobility and Steering 

Most agricultural robots reported use wheels or legs (Table 2.3). Legs are 

advantageous for flexible movement in the agricultural field with high occlusion of stems and 

branches, but wheels provide faster and more convenient navigation in the field. Some 

emerging technologies involve the use of drones for agricultural operations, such as spraying 
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and scouting, but are excluded from other operations such as crop harvesting and pruning. A 

more leveraged approach for operations like scouting is to combine the drone large area 

sensing with a ground robotic system that is partially directed by analysis of drone data 

(Burud et al., 2017). The combined system achieves timely and efficient operations in the 

agricultural field (Burud et al., 2017). Legged robots may be limited in speed, but are 

advantageous for multiple obstacle avoidance, irregular terrains, and crevices (Iida et al., 

2008). Over time, the deployment of wheeled robots has become more prevalent (Iida et al., 

2008). Comparing the two, the execution time is good with the wheeled robot, but legged 

robots achieve a good success rate, and have the flexibility to maneuver over diverse terrains 

(Iida et al., 2008). 

There are several types of mobility in agricultural robots according to the condition of 

the agricultural field or robotic operation that would be cost-effective and fast. For high-

speed navigation, robots over rails are useful, especially in phenotyping studies (Figure 2.2b). 

Legged robots like AgAnt (Figure 2.2a) and the Tarzan robot, which swings over the crops 

on a wire (Figure 2.2c), are both preferred in wetlands and close inspection of crops and 

animals. The rack-like (Reiser et al., 2019) weeding robot (Figure 2.2d) and Fuji Agricultural 

robot (Figure 2.2f) are preferred in slippery grounds to reduce skidding. Dogtooth 

(www.dogtooth.tech), which is a strawberry harvesting robot, uses a track in a nominal 

strawberry growing system because it is a convenient method of navigation in greenhouses. 

Swinging robots like the Tarzan robot discussed above can be very good for high throughput 

phenotyping tasks as they can maneuver close to the plants or animals compared to drones. 
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However, the mobility needed also depends on the flexibility required on the farm. Four-

wheel steered robots like SwagBot (Figure 2.2i), Thorvald II (Figure 2.2e), or Agribot 

(Figure 2g) are required for conditions where the wheel traction is difficult, such as a feedlot, 

or any muddy environment. However, in most cases, for normal operation, a two-wheel 

turning robot is enough for farming operations. 

 Auat Cheein et al. (2011), Ouadah et al. (2008), and Cheein et al. (2010) presented a 

simple model for a mobile robot that can explicitly demonstrate how mobility is modeled 

with a car-like unmanned mobile robot. 

 Xue et al. (2012) reported a skid-steer robot that controlled the wheels on either side 

of the mobile robot by linking them.  

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

Figure 2.2 Some of the agricultural robots with a different arrangement of components; (a) 

AgAnt (source: cleantechnica.com), (b) Fraunhofer Institute for Production Systems and 

Design Technology IPK dual-arm robot (source: agromarketing.mx), (c) Tarzan swing robot 

(Davies et al., 2018; Farzan et al., 2018) (d) Weeding Robot (Reiser et al., 2019) (e) Thorvald 

II Agricultural Robotic System Modules (Grimstad & From, 2017) (f) Fuji industry Robot 

(source: fuji.co.uk) (g) RAL Space Agribot with robot arm weeding raspberries (source: 

autonomous.systems.stfc.ac.uk) (h) SwagBot, omnidirectional electric ground vehicle 

(source: confluence.acfr.usyd.edu.au). 
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The navigation of a robot (Figure 2.3) in row-crop production should be easy to track 

and retrieve while working to allow self-navigation when some of the sensors (GPS or IMUs 

or cameras) fail. 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 2.3. Tracking the robot using wheel odometry of the camera Inertial Measurement 

Units (IMU) (the autonomous rover can be tracked while working on the farm by using visual 

SLAM and GPS); (a) Rover is starting to navigate, (b) Rover is about to finish the farm (c) 

Rover can generate the returning path by using history navigation (d) Blue is the predicted 

path going back while red is the path taken by the rover. 

2.4.2 Agricultural Robot Sensing 

Sensing is done to update the system on the environment so that it can navigate or 

pick fruits (Bechar & Vigneault, 2016; Fue et al., 2018b), discover disease, insects, or weeds, 

control spraying height above the canopy, and other tasks. Robust sensing systems are 
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required for the robot to work well in dynamic environments with changing weather 

conditions, vegetation variation, topographical changes, and unexpected obstacles. Most 

agricultural robots, so far, use image sensing systems and Global Navigation Satellite 

Systems (GNSS) to achieve the localization of the robot (Figure 2.3). The advancement of 

imaging technologies has provided a great opportunity to sense and create 2D, 3D, and 4D 

(spatial + temporal) images of plants (Rahaman et al., 2015). Technologies to obtain 2D, 3D 

and 4D perception of the environment has been achieved using the following sensors in 

agricultural fields; visible light, near-infrared, thermal, fluorescence, spectroscopy, structural 

topography imaging, fluorescence, digital imaging (RGB), multispectral,color infrared, 

hyperspectral, thermal, spectroradiometer, spectrometer, 3D cameras, moisture, pH, light-

reflective, light detection and ranging (LIDAR), sound navigation and ranging (SONAR), 

ground-penetrating radar and electrical resistance tomography (Cubero et al., 2011; Deery et 

al., 2014; Dong et al., 2017; Rahaman et al., 2015; Safren et al., 2007; Sankaran et al., 2015; 

Sun et al., 2017). 

Other sensors, such as potentiometers, inertial, mechanical, ultrasonic, optical 

encoder, RF receiver, piezoelectric rate, Near Infrared (NIR), laser range finder (LRF), 

Geomagnetic Direction Sensor (GDS), Fiber Optic Gyroscope (FOG), piezoelectric yaw, 

pitch and roll rate, acoustic and Inertial Measurement Units (IMUs) have been used to 

provide direction of the robot and navigation feedback (Bak & Jakobsen, 2004; Mousazadeh, 

2013). 
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The choice of imaging sensor somewhat depends on the distinct characteristics of the 

target from the rest of the obstacle-dense environment. The normal digital camera may be 

used if the target on the field can be visually identified. For example, to identify green citrus 

or green bell pepper in a population of green plants may require using an alternative sensor, 

or the method of detection may be complicated by involving advanced methods of machine 

learning (Choi et al., 2017; Moghimi et al., 2015; Qureshi et al., 2017; Sengupta & Lee, 

2014; C. Wang et al., 2018). Images may suffer from illumination changes, motion change, 

cluttering, temperature swings, camera motion, wind-induced movements, deformation, and 

scene complexity. Hence, some image refinement algorithms may be required to enhance the 

images (Choi et al., 2017; C. Wang et al., 2018). Then, object recognition or feature 

extraction using pattern recognition and other machine vision algorithms can be performed. 

There are several methods of image rectification and enhancement that have been reported; 

image smoothing and segmentation (Hannan et al., 2007; Moghimi et al., 2015), 

morphological operations and filters (Choi et al., 2017; Sengupta & Lee, 2014), a fast 

bilateral filtering based Retinex (C. Wang et al., 2018), illumination normalization (C. Wang 

et al., 2018), image color space-changing (Tao et al., 1995), and normalized co-occurrence 

matrix and gray level co-occurrence matrix (Chang et al., 2012). Feature extraction can be 

achieved using classical image processing techniques or advanced techniques in machine 

learning, such as color filtering and masking (Fue et al., 2018b). 

After sensing the surrounding environment, the robot sensors need to recognize and 

establish a position within the environment so that the robot can make navigation decisions to 
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reach its target. The use of machine vision and GPS has been used in agriculture to recognize 

the position and even help the robot to move in-between or over the rows of crops and turn at 

the end of the row (Bergerman et al., 2016). The robot needs a quick decision for localization 

so it can decide to move. In so doing, the simultaneous localization and mapping (SLAM) 

algorithms are required to achieve the mission (Bergerman et al., 2016). 

In a compact robot, it could be useful to use wireless sensors and utilize the Robotic 

Operating System (ROS) to transmit data between controllers and sensors. However, the 

wireless transmission may be affected by several features like the radio transmission standard 

used, data rate, nodes allowed per master controller, slave enumeration latency, the data type 

to be transmitted, the range of transmission, extendibility, sensor battery life, costs and 

complexity (N. Wang et al., 2006). 

2.4.3 Agricultural Robot Path Planning 

Path planning in agricultural fields means the decisions made by the robot to navigate 

in an agricultural field safely without destroying the plants (Figure 2.3). Path planning also 

involves a technique to plan for the movement of the manipulators to the target. In other 

words, path planning is the technique used to utilize the information provided by the sensing 

unit of the robot to decide on steering and manipulation to accomplish the mission. 

There are several path planning algorithms developed for robotics systems, such as 

grid-based search algorithms (assumes every point/object is covered in a grid configuration 

(Jaulin & Godon, 1999; Jensen et al., 2012)), interval-based search algorithms (generates 

paving to cover an entire configuration space instead of grid (Jaulin & Godon, 1999)), 
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geometric algorithms (find safe path from the start to goal initially (Grötschel et al., 2012)), 

reward-based algorithms (a robot tries to take a path, and it is rewarded positively if 

successful and negatively if otherwise (Zeng et al., 2019)), artificial potential fields 

algorithms (robot is modeled to be attracted to positive path and repelled by obstacles (Qixin 

et al., 2006)), and sampling-based algorithms (path is found from the roadmap spaces of the 

configuration space). Each of the algorithms has potential use, and some are just classic 

methods like grid-based algorithms (Shvalb et al., 2013). However, the most advanced 

methods are sampling-based algorithms, as they attain considerably better performance in 

high-dimensional spaces using a large degree of freedom. Since many robots in agriculture 

will work in swarms to accomplish tasks comparable to the big machines currently used, real-

time path and motion planning are required to control and restrict swarm agents' motion 

(Shvalb et al., 2013). 

For plants like cotton, overlapping leaves prevent the robot from seeing clear rows to 

navigate and move the manipulator (Fue et al., 2019b). This was not the case for large plants 

like citrus, in which the rows were clear for the robot to move in between and pick the fruit 

on both or one side of the row (Subramanian et al., 2006). The robot also needs to plan how it 

is going to move between the row without repeating the same rows using simultaneous 

localization and mapping (SLAM) and how the arm is going to move without destroying 

branches (ASABE, 2019). 
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2.4.4 Agricultural Robot Manipulation 

Manipulators and end effectors are tools designed for the smooth operation of the 

robot on objects and the environment. End effectors consist of the gripper or a certain tool to 

be impactive (physically grasping objects, like the citrus robot reported by Hannan et al. 

(2007)), ingressive (physically penetrate the surface of the object, like the soil sampling robot 

reported by Cao et al. (2003)), astrictive or attractive (suction objects by using external 

forces, like the tomato gripper reported by Monta et al. (1998)) or contigutive (direct 

adhesion to the object) (Cho et al., 2002; Naoshi Kondo & Ting*, 1998; Monkman, 1995; 

Paul, 1981; Rodríguez et al., 2013; Tai et al., 2016). Some robots may use a combination of 

two or more end effector techniques; for example, Monta et al. (1998) used both astrictive 

and impactive grippers to improve success rates in tomato picking. 

 

Figure 2.4. Possible movements for robot manipulators (sensing.honeywell.com). 

Table 2.3 discusses other agricultural robots designed to work on non-harvesting tasks. N/A 

means the authors did not report any information related to that category. Most of the robots 

use GPS, camera, and four-wheel platforms. 
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Table 2.3. Other agricultural robots for weeding, soil sampling, scouting/phenotyping, pruning, spraying, and sowing. 

Activity Reference Mobility  Sensing Path Planning Manipulation 

Weeding (Bakker et 

al., 2010; 

Bakker et 

al., 2006) 

Four-wheel 

vehicle 

Camera, GPS, and 

angle sensors 

Hough transform method for detection of 

rows 

N/A 

 (Bak & 

Jakobsen, 

2004) 

Four-wheel 

vehicle 

Camera, GPS, 

gyroscope, 

magnetometer 

Strategic planning (based on previous 

knowledge of weed population), adaptive 

planning (for the unexpected occurrence 

of weeds) and path tracking control 

N/A 

 (Kim et al., 

2012) 

Continuous 

track vehicle 

IMU and LRF Path Tracking methods The inter-row 

spacing weeder was 

made of three spiral-

type cutters (three 

arms and three 
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Activity Reference Mobility  Sensing Path Planning Manipulation 

weeder plows) 

[2DOF] 

Pruning (Haruhisa 

et al., 

2008) 

Four active 

wheels are set 

at regular 

intervals 

around the 

tree 

N/A Climbing method (implementing rotation 

of wheels along the vertical direction and 

diameter of the trunk).  

2DOF (with cutting 

blade) 

 

 (Devang et 

al., 2010) 

Two active 

wheels 

N/A Climbing method (implementing rotation 

of wheels along the vertical direction and 

diameter of the trunk). Arm trajectory 

motion planning with a search 

mechanism 

9DOF (with cutting 

blade) 
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Activity Reference Mobility  Sensing Path Planning Manipulation 

 (Botterill 

et al., 

2017) 

Four-wheel 

vehicle 

3D cameras The randomized path planner [random 

tree (RRT)‐based planner, RRT‐Connect] 

6DOF (cutting tool 

consists of a router 

mill‐end attached to 

a high‐speed motor) 

 (Ueki et 

al., 2011) 

Four active 

wheels 

3D position 

measurement device 

and 3D orientation 

sensor  

Innovative climbing strategy [grid based] 2DOF 

Soil 

Sampling 

(Cao et al., 

2003) 

Two-wheel 

robot 

GPS, encoder GPS path tracking [Adaptive grid-based 

Navigation] 

2DOF  

(Linear actuator and 

Cone penetrometer) 

 (Fentanes 

et al., 

2018) 

Four-wheel 

vehicle 

(Thorvald) 

RTK-GPS, force 

sensor, measurement 

device, soil moisture 

sensor 

GPS tracking method [grid-based] 2 DOF 

(penetrometer ) 
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Activity Reference Mobility  Sensing Path Planning Manipulation 

 (Scholz et 

al., 2014) 

Four-wheel 

vehicle 

(BoniRob) 

RTK-GPS, and soil 

moisture sensor 

GPS tracking method [grid-based] 2 DOF 

(penetrometer ) 

Scouting or 

phenotyping 

(Kicherer 

et al., 

2015)  

Four-wheel 

vehicle 

RTK-GPS, NIR 

camera, and RGB 

Multicamera system 

GPS Auto steering methods N/A 

 (Salas 

Fernandez 

et al., 

2017) 

Four-wheel 

tractor 

RGB Stereo camera, 

RTK-GPS 

GPS Auto steering method N/A 

 (Obregón 

et al., 

2019)  

Four-wheel 

tractor 

GPS, RGB camera, 

inertial sensors, 3D 

LIDAR, 2D security 

lasers,IMU 

Simultaneous Localization And 

Mapping 

N/A 



 

32 

 

Activity Reference Mobility  Sensing Path Planning Manipulation 

 (Young et 

al., 2018)  

Continuous 

track 

RGB Stereo cameras, 

single-chip ToF 

sensor, IR sensor, 

RTK-GPS gyroscope, 

and optical encoders 

Extended Kalman filter (EKF) and 

nonlinear model predictive control 

N/A 

Spraying (Sammons 

et al., 

2005)  

Sliding on 

rails vehicles 

Induction sensors, IR 

sensors, bump sensors 

N/A since it was following the rails N/A 

 (Sharma & 

Borse, 

2016)  

Four-wheel 

vehicle 

Camera, temperature, 

humidity, soil moisture 

sensors, GSM modem 

N/A N/A 

 (Nakao et 

al., 2017)  

Four-wheel 

vehicle 

LRF sensor, GPS and 

magnetic sensor 

Path tracking method and self-

positioning method 

N/A 

 (Cantelli et 

al., 2019)  

Four-wheel 

vehicle 

LRF sensor, ultrasonic, 

laser scanner, stereo 

Path tracking using planned trajectory N/A 
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Activity Reference Mobility  Sensing Path Planning Manipulation 

camera, encoders and 

GPS 

Sowing (Haibo et 

al., 2015)  

Four-wheel 

vehicle 

Encoder, angle sensor, 

pressure sensor, IR 

sensor 

Path tracking methods 2DOF (sowing 

device) 

 (Srinivasan 

et al., 

2016) 

Continuous 

track 

[caterpillar 

treads ] 

Magnetometer, the 

ultrasonic sensor 

Navigation by using sensor data to follow 

rows 

2DOF (sowing 

device) 
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Manipulators can be identified by their freedom of movement in space. This is known as 

degree of freedom (DOF) (Figure 2.4) which means the body can freely change the position as 

up/down (known as heave), left/right (known as sway), forward/backward (known as surge) and 

it can do orientation through rotation by yawing (around normal axis), pitching (around lateral 

axis), or rolling (around longitudinal axis) (Paul, 1981). In agriculture, robots have been 

designed to accommodate various levels of DOF from three DOF (strawberry robot designed by 

Cho et al. (2002)) to seven DOF (tomato robot designed by Monta et al. (1998)). As DOF 

increases, flexibility increases, but it may become heavier and slow in response (C Wouter Bac 

et al., 2014; Naoshi Kondo & Ting*, 1998). In agriculture, high power-weight ratio actuators are 

more suitable and effectively used (Bergerman et al., 2016).  

2.5  Agricultural Harvesting Robotics 

We identified several harvesting robots that have been developed and reported that could 

potentially be used as a template for a robotic system in cotton.  

2.5.1 Agricultural Harvesting Robot Mobility and Steering 

Most of the reported robots in agriculture above for harvesting were wheeled robots 

(Table 2.4). Also, these robots have an arm mounted on top of the vehicle moving in-between or 

over the rows (Table 2.4). Most of the four-wheeled robots reported turn using front tires 

(Ackerman steering model) (Table 2.4). Some that are deployed in greenhouses use rails, since 

greenhouses are semi-structured farms (C. Wouter Bac et al., 2017; Qingchun Feng et al., 2018). 
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Fraunhofer Institute for Production Systems and Design Technology IPK 

(www.ipk.fraunhofer.de) developed a prototype of a dual-arm robot that navigated by using rails 

for cucumber harvesting (Figure 2.2b) that was semi-autonomous. 

2.5.2 Agricultural Harvesting Robot Sensing 

Cotton bolls appear like flowers; hence, any potential flower harvesting robot could be 

adaptable. The 3D positions of flowers can be obtained using stereotypic cameras (Kohan et al., 

2011). Also, Kohan et al. (2011) reported that in stereotypic cameras, increasing the distance 

between lenses reduces errors, while increasing the distance between the lens and the object 

(flower) increases error. In harvesting, it becomes more complicated due to the occlusion of the 

bolls. Ripe fruit may be located inside the canopy, where access can be limited. 

2.5.3 Agricultural Harvesting Robot Path Planning 

In harvesting, path planning is dependent on the manipulators, end effectors, and the 

agricultural produce to be harvested. In any case, if the fruit to be gripped is very delicate, then 

path planning becomes more complicated for impactive end effectors compared to sucking end 

effectors to avoid collisions that may damage the fruit (Hohimer et al., 2019). Also, the fruit to 

be sold to consumers is expensively harvested as the robot needs to match human picking action 

compared to fruits harvested for juice or industrial processing. Most of the heavy mechanical 

robotic machines may be used to harvest fruits for industrial use since the machines may be fast 

enough compared to a robot.  
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If the plant branches are weak or the fruit is very delicate, path planning becomes 

expensive to preserve the plant that needs to be left undestroyed. Path planning is also expensive 

when many degrees of freedom (DOF) arm is used. However, most methods for path planning 

are more effective and successful when the number of DOF is optimized to be small enough to 

achieve the purpose (Faverjon & Tournassoud, 1987). Also, in multiple arm robots, some 

machines use a prescription map to harvest many fruits at high speeds (Zion et al., 2014). 

Hohimer et al. (2019) concluded that by increasing the degrees of freedom, the apple fruit 

picking robot was performing well but at the slowest speed. This was caused by the path 

prediction algorithms, and the time the actuators took to reach the target. They advised 

attempting to use a lower degree of freedom to achieve the speed required to attend large fields 

like cotton farms. 

Most of the robots reported path tracking algorithms to navigate on the farm using GPS 

and cameras (Table 2.4). Most of the robots used for greenhouse harvesting use rails; hence they 

do not need navigation algorithms but rather position control algorithms (Table 2.4). Also, most 

of the studies except Lili et al. (2017) reported motion planning, which is done using arm 

trajectory motion without including search mechanism algorithms for path planning or obstacle 

avoidance. However, Noguchi and Terao (1997) introduced path planning in agriculture using 

advanced methods in neural networks (NN) and a genetic algorithm (GA) in 1997. Also, Zuo et 

al. (2010) developed a robot path planning system with limited end-of-row space using a Depth-

First Search (DFS) algorithm. 
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2.5.4 Agricultural Harvesting Robot Manipulation 

For manipulators, various degrees of freedom (DOF) have been studied, including a 

three-DOF rectangular coordinate manipulator to the nine-DOF manipulator (Table 2.4). For 

end-effectors, it mainly depends on the type of farm product to grip and the degree of abrasion 

that can be tolerated. Impactive, attractive, and contigutive end effectors are the most common, 

with most of the end-effectors being attractive, impactive, or both. This was because fruits that 

require robotic harvesting need expensive handling to avoid abrasions (Hayashi et al., 2014). 

Hence, ingressive end effectors are not common in agricultural harvesting of fruits as most must 

be pristine for the fresh market.  

Manipulators are evaluated using success rates (Bechar & Vigneault, 2017). Cotton boll 

harvesting needs less than 3 seconds for each boll to be effective (Fue et al., 2019a). Xiong et al. 

(2019) reported a strawberry robot success rate of 53.9% while Yaguchi et al. (2016) got a 

success rate of 62.2% on picking tomatoes. Silwal et al. (2017) got a success rate of 84% for 

apple picking. All the researchers (Table 2.4) that reported the execution time have achieved an 

execution time of more than 20 secs per fruit. Hence, cotton harvesting cannot adopt the 

manipulation methods reported, at least without some modification to increase success.
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Table 2.4. Recent robotic systems developed for harvesting agricultural produce. 

Reference/crop Mobility  Sensing Path Planning Manipulation 

(C. Wouter Bac et 

al., 2017) for 

Sweet pepper 

The railed vehicle 

robot platform 

A ToF camera, RGB 

cameras 

Robot over the rails. 

Manipulator used Arm 

trajectory motion planning 

with a search mechanism 

9DOF, Fin Ray end effector 

(scissors and fingers) and 

Lip‐type end effector (knife 

and vacuum sensor). 

(Lili et al., 2017) 

for Tomato 

Four-wheel vehicle binocular stereo vision PID control for Ackerman 

steering geometry. The 

manipulator used C-space and 

the A* search algorithm 

5DOF harvesting 

manipulator 

(Xiong et al., 

2019) for 

strawberry 

Four-wheel vehicle 

[Thorvald II] 

RGB-D camera, IR sensor Vehicle controlled manually 

by a joystick, but manipulator 

used motion sequence 

planning algorithm 

5DOF arm with a cable-

driven gripper  
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Reference/crop Mobility  Sensing Path Planning Manipulation 

(Qingchun Feng et 

al., 2018) for 

cherry-tomato 

The railed vehicle 

robot platform 

RGB Stereo camera, Laser 

sensor 

Arm trajectory motion 

planning for the manipulator 

6DOF with double cutter 

end-effector 

(Mu et al., 2017) 

for Kiwi-fruit 

Four-wheel vehicle 

robot 

Laser sensors, Hall 

position sensor, Pressure 

sensor, Optical fiber sensor 

Arm trajectory motion 

planning without search 

mechanism 

2DOF with 3D printed 

bionic fingers end-effector 

(Zion et al., 2014) 

for Mellon 

The 2-m wide 

rectangular frame 

which spans the 

melon bed robot 

with four wheels 

RTK-GPS, encoders, RBB 

stereo cameras 

Arm trajectory motion 

planning without search 

mechanism 

3DOF Multiple Cartesian 

manipulators  

(Q. Feng et al., 

2015) for 

Tomatoes 

The railed vehicle 

robot platform 

RGB Cameras, wheel 

encoders, a gyroscope and 

an ultra-wideband (UWB) 

indoor positioning system 

Arm trajectory motion 

planning without search 

mechanism 

6DOF manipulator with a 

3D printed gripper 
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Reference/crop Mobility  Sensing Path Planning Manipulation 

(Chen et al., 2019) 

for Apples 

Four-wheel vehicle RGB cameras, wheel 

Encoders  

A visual servo algorithm based 

on fuzzy neural network 

adaptive sliding mode control 

for vehicle and manipulator 

5DOF manipulator  

(Yuanshen et al., 

2016) for 

Tomatoes 

The railed vehicle 

robot platform 

RGB stereo camera Inverse kinematics for 

manipulator and no navigation 

algorithm for vehicle and Arm 

trajectory motion planning 

Two 3-DOF Cartesian type 

robot manipulators with saw 

cutting type end-effector  
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2.6  Cotton Harvesting Robot 

Cotton bolls, as seen in Figure 2.5, do not require soft robotics like other fruit crops, 

which may require very careful design of the end effector and manipulation to avoid fruit 

damage. The plants are close to each other because the cotton plant tends to fill out spaces as it 

grows (Ritchie et al., 2007). Most of the bolls begin opening from the bottom of the canopy 

(Ritchie et al., 2007). 

 

 

Figure 2.5. The undefoliated cotton field at UGA farms. 

2.6.1 Cotton Harvesting Robot Mobility and Steering 

Most of the cotton harvesting robots reported use four-wheel vehicles (Figure 2.6, Figure 

2.7 and Figure 2.8). Figure 2.7 is a prototype developed in India by a startup owned by 

Sambandam company. The prototype involves a four-wheel vehicle that is used in small farms in 

India. However, this prototype was designed to be controlled by human operators for navigation. 

The same approach (Figures Figure 2.6 and Figure 2.8) of using a four-wheel rover but with 

center-articulation was proposed in our group as well (Fue et al., 2019a, 2019b; Fue et al., 
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2018b; Rains et al., 2014). Currently, no other type of mobility or steering and navigation 

algorithm or method for cotton harvesting has been reported. 

 

Figure 2.6. The cotton robotic system proposed by our team (Fue et al., 2019a; Rains et al., 

2014). 

 

Figure 2.7. Cotton picker robot prototype (source: www.kas32.com). 
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The use of robots in harvesting cotton faces a complex environment for robot mobility 

(Figure 2.5). Since plants are very close to each other and leave a thin path, the adoption of 

accurate autonomous navigation that uses the fusion of sensors like IMUs, GPS, and machine 

vision becomes a vital requirement. Accurate path following without breaking branches will 

increase the precision and other metrics of the robotic system. Due to this complexity, Bechar 

and Vigneault (2016) proposed the use of humans in operating semi-autonomous robots just to 

increase the productivity and quality of the operation rather than leaving the machines alone. The 

technology for semi-autonomous or autosteering navigation is also currently available; hence, it 

can be more easily accepted and adopted. However, autonomous commercial tractors are highly 

desirable in precision farming because they are cost-effective, can reduce labor requirements, 

and are safe to humans if designed well. (Fue et al., 2019b) proposed a navigation algorithm for 

navigating the cotton field by detecting the rows from above. Depth maps are acquired, 

transformed into binary depth maps, and then rows detected using a sliding window algorithm, 

which compares the depth of the pixel to differentiate between canopy and land. 
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Figure 2.8. Cotton picking robot prototype proposed by Clemson University (source: 

www.agweb.com). 

2.6.2 Cotton Harvest Robot Sensing 

Cotton is an indeterminate crop and continues to open bolls for a period of approximately 

50 days (Ritchie et al., 2007). Hence, there is a need to harvest bolls as they open. Sensing 

capability should be able to distinguish fully opened bolls from others, and it should be able to 

detect open bolls located at the bottom of the plant canopy. However, lowering the camera into 

the canopy could readily destroy the lenses due to plant branches’ impact. 

Fortunately, the cotton’s whitish color gives it a distinguishing feature to be easily 

detected by a color camera. Also, the cotton recognition algorithm should be able to work well 

under direct sunlight. There are several cotton recognition algorithms reported using machine 

vision techniques like color segmentation (Fue et al., 2018b), optimized segmentation algorithm 

based on chromatic aberration , color subtraction and dynamic Freeman chain coding , region-

based segmentation , deep learning methods  and ensemble methods (Fue et al., 2018a; Y. Li et 

al., 2016; Li et al., 2017; Mulan et al., 2008; Y. Wang et al., 2008). All the methods described in 

these studies can be adopted to improve the current cotton harvesting prototypes. However, it 

was a challenge to detect separately occluded bolls using color segmentation (Fue et al., 2018b; 

Y. Wang et al., 2008).  

Our group designed a cotton detection algorithm using a stereo camera that was able to 

precisely locate and track cotton bolls using deep learning (Fue et al., 2018a). A stereo camera 

(ZED) was used to estimate boll positions and found the mean error standard deviation increased 

as the speed of the rover and installed camera increased to 0.64 km/h (Fue et al., 2018b). The 

robot was performing well with 9 mm RMSE and an average R2 value of 99% when stationary, 
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but when the vehicle started moving to approximately 0.64 km/h, the R2 dropped to 95%, and 

RMSE increased to 34 mm (Fue et al., 2018b). It was the only study that has demonstrated the 

detection and estimation of the location of cotton bolls in field conditions in real-time using an 

embedded system. 

2.6.3 Cotton Harvest Robot Path Planning 

With high cotton boll occlusion, path planning for navigation and manipulators becomes 

a very crucial requirement for the successful deployment of a commercial agricultural robot 

(Ramin Shamshiri et al., 2018). There was no research seen that describes path planning for a 

cotton harvesting robot rather than navigation planning of the robot along the rows (Fue et al., 

2019b). However, it seems the current researchers do not see the necessity to develop a 

commercial product in a non-specialty crop that demands good path planning. Most of the 

designed path planning algorithms in agricultural robots use IMU, camera, and RTK-GPS (Table 

2.3 and Table 2.4). Hence, cotton harvesting systems may adopt this approach too. If small 

robots are adopted in cotton harvesting, navigation between the rows using Lidar has been shown 

to be successful (Higuti et al., 2019). 

The cotton field environment is highly unpredictable due to varying plant canopy growth 

patterns. Cotton crop canopy grows to fully cover the space between the rows, and it can grow 

very tall (Ritchie et al., 2007). Planting practices, especially plant spacing, requires special 

recommendations for robotic harvesting. This could be done in cotton by modifying farm 

management practices or by manipulating the genes of the crops to allow easy access to the bolls 

for robotic manipulators. This is common for specialty crops like apples, strawberries, and 

grapes, which were bred to provide effective access to fruits. 
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2.6.4 Cotton Harvest Robot Manipulation 

Current approaches to grippers are not effective for cotton plants because the cotton boll 

fibers stick on the end effector. So, grippers need to be strong enough to grab the boll effectively 

without destroying the plant. With harvesting as bolls open comes a challenge to design 

manipulators which start harvesting bolls at the bottom of the plants, and that are highly 

occluded by the canopy. The reported cotton harvesting manipulators and end effectors picked 

the cotton boll, but they also broke the plant branches, removed leaves, or knocked down 

unharvested bolls to the ground (Fue et al., 2019a). Therefore, a well-designed astrictive or 

attractive method is desirable for cotton harvesting. Figure 2.6 shows a prototype of a cotton 

harvesting robot with the two-DOF cartesian manipulator that holds a vacuum suction end 

effector (Fue et al., 2019a). Figure 2.11 shows a Clemson-developed cotton harvesting prototype 

robot that uses a two-DOF cartesian manipulator. Figure 2.9 and Figure 2.10 present a 

gRoboMac prototype robot that uses a three-DOF manipulator and four-DOF manipulator, 

respectively. All the reported manipulators in cotton harvesting use astrictive or attractive 

grippers since cotton lint does not require careful handling like other fruits (Fue et al., 2019a). 

In 2019, a team in India designed a rigid vacuum cleaner machine as the best alternative 

for a cotton harvesting end effector (Figures 2.9 and 2.10). The gRoboMac team did not report 

execution time, which was a very important parameter for effective cotton harvesting. Fue et al. 

(2019a) obtained a preliminary execution time of 17 seconds per boll. Both groups (Fue et al. 

(2019a) and gRoboMac) reported manipulators that used two-DOF and four-DOF manipulators, 

respectively. Simple manipulators have a high execution time (Hohimer et al., 2019). For 

example, Hohimer et al. (2019) reported that the eight-DOF apple harvesting robot was 10,000 

times slower compared to the five-DOF manipulator robot. However, the eight-DOF robot was 
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flexible to reach most of the fruits hence provided high success rates. A Clemson University 

team (Figure 2.11) also proposed a similar approach but using a small rover riding in between 

the rows. Fue et al. (2019a) reported the use of a vacuum end effector with rotating tines to 

remove bolls (Figure 2.6), which has been widely used by humans to pick cotton in China and 

other developing countries. Fue et al. (2019a)  modified the system to be used in robotic systems. 

 

Figure 2.9. Green Robot Machinery (gRoboMac) manipulator trying to get the cotton boll 

(source: www.grobomac.com). 
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Figure 2.10. Old design of Green Robot Machinery (gRoboMac) manipulator trying to get the 

cotton boll (source: thetechpanda.com). 

 

Figure 2.11. Cotton robot testing at Clemson University (source: agweb.com). 

2.7  Challenges in Commercial Deployment of Agricultural Robots 

The initial investment in row crop robotics systems may become very big for an average 

farmer (Lowenberg-DeBoer et al., 2019). As much as USD 319,864 for an 850 ha farm is 

required for investment in intelligent machines to achieve maximum break-even point (Shockley 

& Dillon, 2018). Fortunately, Shockley and Dillon (2018) and Pedersen et al. (2008) concluded 
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that farming robots would bring profitable business to farmers because robots can reduce 20% of 

the scouting costs for cereals, 12% for sugar beet weeding, and 24% for inter-row weeding. 

Robots can work like a swarm of small robots to accomplish farm operation at a very 

competitive cost compared to current machines (Gaus et al., 2017). Non-horticultural crops like 

maize, soybean, barley, potato, wheat, and cotton have not been given priority in economic 

studies on robotic systems after evaluating several studies in databases such as GreenFILE, 

Business Source Complete, AgEcon Search, Food Science Source, Emerald, CAB Abstract, and 

ScienceDirect (Shockley & Dillon, 2018). Fortunately, the same challenges in agricultural 

robotics cut across different farming operations and crops. 

There are five commercial parameters, and at least one of them should be unlocked for 

agricultural robotics to succeed (Bechar & Vigneault, 2016). Firstly, the cost of the new robot 

should be lower than the current methods used. Secondly, the introduction of robots should 

increase the capability, productivity, quality, and profitability of production. Thirdly, the 

introduction of robots should increase uniformity and quality in farm production and decrease 

variability and uncertainty. Fourthly, the use of robots may increase and fasten farm management 

decisions that are not able to be achieved by the current methods. Lastly, the use of robotics 

should remove human beings from operating on environmental risky tasks, particularly the use of 

heavy machines and chemicals, hence reducing labor and insurance payment for labor. Also, 

there are other factors that can be indirectly important for farmers, such as the ease of use and 

maintenance of the robot compared to current methods and reduction in soil compaction (Bechar 

& Vigneault, 2016).  

The design of the manipulators may also be a great challenge in the agricultural field. 

Single-arm robot design also may not be effective for large farms. However, the challenge of 
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agricultural robotics with more than three DOF has been “sensing and moving” at rapid 

harvesting rates (Ramin Shamshiri et al., 2018). It has been a challenge for on-the-go field 

harvesting due to the robotic arm moving the branches of the target; hence, camera feedback was 

necessary to determine the latest position of the target before harvesting by the manipulator 

(Ramin Shamshiri et al., 2018). So, it was concluded that research and development of 

commercial harvesting systems should concentrate on increasing the speed and accuracy of 

robots in a harsh and varying environment. 

The current research in the cotton harvesting robot our team is developing provides a 

MIAR prototype for cotton production. To our knowledge, no research has been conducted to 

develop robotic systems for other cotton operations, as seen in Table 2.3. An MIAR that would 

work on multiple farming tasks like sowing, spraying, weeding, scouting, and soil sampling 

would be useful. Cotton Inc has committed itself to funding robotic systems research in cotton 

and emphasizes the adoption of open-source robotics. Open-source systems have the advantage 

of open collaboration, multiple partners, and continuous updating. The Robotic Operating 

System (ROS) is a good example of open-source adoption and continuous improvements and 

additions through the community of open-source users (Koubâa, 2017). Thus, open-source 

creates a harmonized environment for researchers that is cost-effective and can speed up 

development efforts. It also encourages reuse of the core libraries in the development of robots, 

hence reducing costs and enabling more cost-effective commercialization of robotic platforms 

(Koubâa, 2017). The robotics industry is a profitable industry to engage in now. In 2019, the 

IDTechEx research company analyzed the robotic market and technology development growth 

and predicted the agricultural robotics industry would be worth $12 billion worldwide by 2027 

(Ghaffarzadeh, 2019). There is an advantage of using robots as the economics models show that 
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the net returns can increase by up to 22% compared to the current practice of using conventional 

machines in row crop production (Shockley & Dillon, 2018). 

2.8  Conclusion and Future Work 

In this paper, we performed a literature review on robotics in agriculture. We have looked 

at the relationship and similarities of the robotics systems in agriculture that can accelerate the 

development of cotton harvesting robots. We also examined aspects of mobility, sensing, path 

planning, and manipulator design. Our aim in this study was to highlight the recent opportunities 

and challenges of agricultural systems and the promising future of cotton harvesting robotic 

systems.  

Sensor development for machine vision is advancing quickly, and commercial products 

that support sensing have also been realized. Despite modern technological advancement, the 

algorithm to allow a smooth interpretation of visual sensing is still a challenge in agricultural 

fields (Kamilaris & Prenafeta-Boldú, 2018). The sensitivity, aperture, and resolution are 

improving, and the present technologies in deep learning have surpassed human eye accuracy in 

object classification and identification (Szegedy et al., 2015). Machine learning, especially deep 

learning algorithms, has brought high accuracy in the identification of weeds, plant cultivars, 

fruit counting and estimation, land cover classification, and crop and fruit type classification 

(Kamilaris & Prenafeta-Boldú, 2018; Liakos et al., 2018; Szegedy et al., 2015). Most of the 

navigation and motion planning algorithms to navigate in row crops do not provide fully 

autonomous capability compared to tree crops (Kamilaris & Prenafeta-Boldú, 2018; Liakos et 

al., 2018). Cotton needs color sensors to differentiate open bolls from semi-open bolls and 

flowers during harvesting. 
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Mobility in a cotton field may use four-wheel-drive systems to increase the speed of 

harvesting as reported by some researchers because cotton fields are big and require speedy and 

long navigation. Trained robots cannot be used since cotton is produced on outdoor farms. 

However, it has shown good adoption in greenhouses. Path planning is needed in four-wheel-

drive systems because the robot needs to pass over the rows carefully so as to not break branches 

or knock cotton bolls onto the ground. 

Manipulators have shown good performance when fewer degrees of freedom are used. 

However, for the careful handling of fruits, more degrees of freedom are required. This is not the 

case for cotton plants, for which the fruit is the lint. The grippers may just use astrictive or 

attractive grippers without destroying the lint. This is the main reason most of the research in 

cotton harvesting has focussed on two-DOF, three-DOF, and four-DOF manipulators.  

Future designs of cotton harvesting robots need effective manipulators and sensing that can 

locate and pick cotton bolls located at the bottom of the canopy. Designs that involve multiple 

manipulators will provide fast harvesting that can match current harvesting machines. 

Manipulators that use fewer degrees of freedom will provide fast picking of cotton, which is 

critical to get to one boll every 3 seconds. Future design and development research should also 

include alternative energy sources to decrease energy costs. Studies to determine power 

requirements, footprint, and cost are necessary for robots to be developed for multipurpose 

functions and work in collaborative “swarms.”  
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CHAPTER 3  

ENSEMBLE METHOD OF DEEP LEARNING, COLOR SEGMENTATION, AND IMAGE 

TRANSFORMATION TO TRACK, LOCALIZE, AND COUNT COTTON BOLLS USING A 

MOVING CAMERA IN REAL-TIME2 

  

 
2 Fue, K., Barnes, E., Porter, W., and Rains, G., Submitted to Transactions of ASABE, September 

13, 2018. 
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3.1  Abstract 

In robotic applications, good perception may be computationally costly and create 

undesirable latency before a control decision is initiated. Most of the object detection deep 

learning methods available are either fast with low accuracy or slow with high accuracy. Fast and 

accurate methods are both necessary to track and localize objects like cotton bolls that may be 

visible or occluded by each other or not well illuminated to be detected. In this study, an 

ensemble of a deep learning method and other image processing techniques were used to detect 

cotton bolls infield on defoliated plants. In each image, a trained deep learning method, the 

YOLOv2 model was used to detect open cotton bolls, and color segmentation was applied to 

confirm if the bolls detected by the YOLOv2 model were actually white to avoid false positives. 

Boll tracking was performed by following the spatial movement of the good features on the 

edges of the bolls using the Lucas-Kanade algorithm. An image transformation algorithm was 

applied to the next image in case the boll previously detected was lost to retrieve the information 

of the missing boll.  Each boll tracked and localized was stored and counted to give the total 

number of bolls detected. In this study, detection accuracy was sacrificed for image processing 

speed by using the YOLOv2 deep learning model. Detection accuracy was improved by using an 

ensemble method that combined image color segmentation, optical flow, and an image 

transformation technique. This method was compared to eight other open-source methods 

implemented in OpenCV. The ensemble method detected and counted the bolls at a speed of 7.6 

fps with an accuracy of 94.4% using the Jetson TX2 embedded system to process 1K resolution 

images, outperforming the other OpenCV methods in various measurements. 
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3.2  Introduction 

Cotton is a significant crop in the United States that utilizes large and expensive 

machines to harvest in a once-through system at a time when many of the bolls have been 

harvestable for several weeks. Consequently, farmers suffer losses in quantity and quality 

because of the indeterminate ripening of the cotton fruit (boll) (UGA, 2018). Current 

technologies that are heavy, expensive, and difficult to maintain can be unprofitable as the 

current cotton picker alone can cost over $750k (Fue et al., 2018b). For cotton production to 

remain competitive, it is imperative to adopt new modern technologies that are more cost-

efficient for farmers. Machines for harvest are required to be relatively inexpensive, scalable to 

the size of the farm operation and developed to harvest as the bolls open to reduce losses and 

preserve cotton quality (Fue et al., 2018b; UGA, 2018). Smaller machines do not increase 

compaction, destroy plant branches carrying bolls that open later, and should discriminate bolls 

ready to pick from the cotton canopy early in the season. A possible approach is to develop 

small, but useful, robots that can be deployed as an "army of bots" to harvest open bolls 

continuously. These robots could be developed such that they are also able to harvest a diverse 

number of crops and remain active for longer periods of the year. The need to selectively collect 

cotton bolls in space with a robotic system requires very effective research on machine vision 

algorithms that will guide the end effector of the robotic arm (Bloch et al., 2017). 

The current 6-row picking technology navigates at a speed of 8.9 km/h in the field and 

covers around  3.2 to 4.0- Ha (8 to 10 acres) per hour. 101.6-cm (40-inch) and 76-cm (30-inch) 

row spacing yield approximately 75 bolls per meter square of cotton (Boman, 2012; Prostko et 

al., 2018).  Assuming with small machines that collect at least 12,140 bolls per trip for 25 times 

per harvest cycle will cover 303,500 fresh open bolls. For a small machine moving while picking 
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one boll every 3 seconds at 100% field capacity, it could work for 10 hours in 101.6-cm rows to 

finish harvesting 4046-square meter in 50 days. Estimating a harvesting field efficiency of 60% 

(refueling, cotton unloading, turning at row ends, maintenance, actual picking, and other 

downtimes), it is estimated that  a robotic harvesting machine with one robotic arm would be 

capable of harvesting 7284 bolls per day for 10 hours. This achievement depends on real-time 

detection and tracking of the bolls, optimized power solution, development of cotton unloading 

travel speed of the robotic harvesting machine, and the design of the manipulator/end-effector. In 

order to increase the speed of robotic harvesting to match the 25 harvest dates, it is currently 

assumed that two robotic arms per harvester would be necessary. 

This study addresses the real-time detection, localization, and tracking of cotton bolls 

from a moving camera. The robotic cotton harvester must perceive the horizontal and vertical 

distances from the camera and manipulator to the cotton bolls in real-time. This characteristic is 

fundamentally vital for machine vision systems to locate the bolls and store locations while 

directing a robotic manipulator for picking. Previously, color segmentation and other image 

processing approaches were used to determine the boll locations in real-time (Fue et al., 2018b). 

Localization of the cotton bolls by tracking their position provides the robotic system with prior 

information and improves detection and tracking speed.  

Color segmentation is challenging in field conditions with profoundly changing 

illumination and dense occlusion while using a moving camera. Segmentation makes the color 

selection an arduous task (Cheng et al., 2001; Gauch & Hsia, 1992; Li et al., 2017). In 

agriculture, color segmentation techniques can improve image detection and classification. Still, 

they are limited in discriminative power and cannot differentiate bolls whenever the color 

appears similar or occluded by each other, a common field occurrence (Choi et al., 2015; Choi et 
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al., 2016; Fue et al., 2018b). So, it is imperative to investigate alternative methods for detection, 

such as deep neural networks, which have proved to be very useful, even in challenging lighting 

conditions (Kamilaris & Prenafeta-Boldú, 2018; Redmon et al., 2015; Redmon & Farhadi, 2016). 

In this research, supervised convolutional deep learning neural network architecture was 

employed to detect and recognize the cotton bolls using the state of the art detector, YOLOv2 

model  (Redmon, 2016; Redmon et al., 2015; Redmon & Farhadi, 2016). A similar investigation 

using deep learning technologies to detect cotton bolls was done before and proved to 

outperform most of the existing methods of cotton boll classification (Li et al., 2017). However, 

the approach used a slower technique called the deep, fully convolutional neural network to do 

semantic segmentation. For robotic harvesting, robust real-time detection of bolls is required to 

reduce latency between detection and sending a control signal to the cotton-picking manipulator. 

Therefore, the primary objective of this study was to detect, track and count cotton bolls using an 

ensemble of deep learning and image processing methods to achieve acceptable accuracy and 

speed of processing in an embedded system.  

This study primarily contributes to cotton boll tracking by introducing an alternative 

tracking method using the Lucas-Kanade algorithm and image transformation. Also, a technique 

to select good features to track that is near the image transformation prediction is implemented to 

improve the accuracy of tracking when the boll is not detected in time of occlusion or false 

negatives. This method is dubbed as CottoTrack. CottoTrack was compared with other tracking 

methods present in OpenCV to validate its performance. This study does not address leaf 

detection, but only bolls in defoliated cotton. Future studies will address additional field 

conditions such as leaf cover and lighting.  Hence, the specific objectives were: 

1. Develop a model to detect cotton bolls in real-time using an embedded computing system 
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2. Track, localize and count the cotton bolls from a mobile camera using the model 

developed in objective 1. 

3. Compare the method with the tracking methods implemented in OpenCV. 

3.3  Materials and Methods 

3.3.1 Experimental Set-up (Training Dataset) 

An experiment was conducted at the University of Georgia (UGA) Tifton campus 

grounds (N Entomology Dr, Tifton, GA, 31793) at (31° 28'N 83° 31'W). The chosen location was 

open to direct sunlight to simulate field conditions (Figure 3.1). Twenty-four defoliated cotton 

plants were cut from a nearby farm and put in 25 cm dia. pots. Twelve plants were placed in 2 

columns of 6 rows, 91.4 cm between the center of the stalk, and each stalk 61 cm from the next 

(Figure 3.1). 

This experiment simulates the field's condition of the farm with a row spacing of 91.4 cm 

(36-inch), which is a common practice in Georgia cotton production. Plants were placed 61 cm 

Figure 3.1. The context and view of the experimental setup at the UGA Tifton grounds. The 

camera platform was mounted on the rover, and the camera was pointing downward. 
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apart in the row. This setting is to validate the algorithm before deploying the robotic system to 

harvest.  

A moving camera (<4kph) Samsung Galaxy S6 Edge Plus (Samsung Electronics, Seoul, 

South Korea) took 720p images of the plants while facing downward at the rate of 30 fps (Figure 

3.2) at least 1.5m above the ground. Samsung camera has an f/1.9 aperture and a 16 Megapixel 

lens. Other training images were taken using a ZED camera (Stereo labs Inc, San Francisco, CA, 

USA) that was attached to an embedded system (NVIDIA Jetson TX2 development kit, Nvidia 

Corp., Santa Clara, CA, USA) and mounted on a research rover moving 1-3 kph (Figures Figure 

3.1 and Figure 3.2) (Rains et al., 2015). The ZED camera will be used by the rover to detect the 

bolls and pick cotton with a robotic arm. The ZED camera provides stereo services to locate the 

position of the bolls and robotic arm in 3-D space. It was used so that the deep learning 

algorithms would be trained using images from the camera that will be deployed to the robotic 

system in the future study. The ZED camera was at least 1.5m above the ground taking 720p 

images as the rate of 15 fps. The camera was tilted (facing downward) at an angle of 900 and 

then, 810 (Figures Figure 3.1 and Figure 3.3) to collect training images respectively in two 

passes. Obtaining variable angles with the Samsung camera and a mixture of images from 

different cameras was used to enhance the robustness and detection capability of the developed 

algorithm. Also, the image resolutions (360p, 720p, and 1080p) were set by changing camera 

settings. All the images were used to train the deep learning algorithm.  
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Figure 3.2. The context diagram is demonstrating all the imaging platforms for training and 

testing the data set 

 

 

Figure 3.3. Cotton view using the vertical image and a horizontal image. The vertical image was 

used to view the cotton bolls for tracking and estimation of the boll position while front view or 

horizontal view shows the cotton bolls vertical dimensions 
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Figure 3.4. Robotic Cartesian Manipulator Context Diagram showing the rover arm, end effector 

and cotton boll position for the envisioned robotic system design 

3.3.2 Image Processing System and Extraction 

The Samsung Galaxy cell phone videos were transferred to a desktop Lenovo Legion 

Y520 (NVIDIA GeForce GTX-1050 Ti graphics running an Intel i5 7th generation CPU) with 

Ubuntu 16.04 installed (Figure 3.2). The images obtained using the ZED camera were also 

transferred to the Lenovo desktop that had TensorFlow 1.9 (tensorflow.org) framework installed. 

Training data and testing data were both loaded to the Lenovo. Later, videos were loaded onto 

the Ubuntu operated Jetson TX2 embedded system. 

3.3.3 The procedure of Data Training and Testing  

Twelve plants were used for training, and another group of twelve plants was used for 

testing. Four hundred eighty-six images with a total of 7498 bolls were annotated for training. 

The training images were of different resolutions from 360p (31 images), 720p (404 images), to 



 

62 

 

1080p (51 images). Images of varying quality provide the convolutional neural network (CNN) 

model with data to learn different image size challenges. Also, to improve the model detector, 

the images were taken at different times of the day. Images were taken during the morning (212 

images), afternoon (121 images), and evening (97 images) at 9:00 AM, 3:00 PM, and 6:00 PM, 

respectively. Noon was avoided to remove images that had strong glare due to light reflection on 

white cotton bolls. Some images taken during morning and afternoon were occluded to create 

shadow and varying illumination over the bolls. Most of the images were taken from defoliated 

plants. A few images from varied Internet sources (56 images) were also included in the training 

dataset. The YOLOv2 detection algorithm used the following configurations; The batch size 

(number of samples processed before the model is updated) was 32, subdivisions (mini-batches) 

4, 30 filters (the learned weights of the convolutions), and 2000 epochs (cycles through the full 

training dataset) were enough for training (Redmon & Farhadi, 2016). The training procedure 

was clearly described online in the darkflow page(Trieu, 2018). The model reached an accuracy 

of 75.3% after 2000 epochs (Table 3.7). 

Later, the images were transferred to a desktop computer with TensorFlow installed, 

which was used to train the network deployed in this study. The computer was installed with 

Darknet, which is a neural network framework implemented in C and CUDA, developed 

explicitly for YOLOv2 (Redmon, 2016). DarkFlow framework, which translates the pretrained 

weights from the Darknet to TensorFlow, was also installed. DarkFlow enables Darknet to work 

with YOLOv2 in TensorFlow. It is not resource-effective to install another Deep Learning 

framework in an embedded system, so, Tensorflow was used instead of the Darknet framework. 

YOLOv2 classification is based on modified Darknet-19, which has 19 convolutional layers and 

five max-pooling layers while a smaller version, tiny YOLOv2, has 9 convolutional layers and 
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six max-pooling layers. (Redmon & Farhadi, 2016). The images were manually annotated using 

the Labeling tool called LabelImg and trained using tiny YOLOv2 weights, as explained online 

in the darkflow webpage (Trieu, 2018). The model was trained to detect only the cotton bolls.  

The model was then frozen and transferred to the Jetson TX2 for detection and tracking 

experiments. Freezing a  model is a process to identify and save all of the required components 

of a model like a network graph and weights into a single file that can be easily exported to other 

systems for inference (Redmon, 2016; Trieu, 2018). The model used tiny YOLOv2, which is too 

shallow and thin to apply quantization without heavily affecting its accuracy. So, the frozen 

model was shipped without quantization. 

3.3.4 Detection of The Cotton Bolls 

A program that utilized the frozen model to detect and predict the location of the cotton 

bolls was developed. The YOLOv2 predicted the probability of 0 to 100% for every detection of 

a cotton boll. So, the algorithm was set to consider any detection with more than 50% to be 

cotton boll. It was also set to use only 40% of the memory. The 40% slot memory ensures the 

system cannot crash due to full memory problems, but also has enough memory to speed up its 

predictions while it does other operations.  

After model prediction, the software confirmed if the detected bolls were white by 

differentiating the bolls color from the background using the color segmentation algorithm. The 

color segmentation task involved four steps (Fue et al., 2018b; Gong & Sakauchi, 1995): 

• Collect an image frame, 

• Using the RGB color threshold, separate each RGB channel of the image. For cotton 

bolls, the white components of the image were masked (All color threshold red, green, 

and blue channels were set above 170 except red, which is 150). The chosen threshold 
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was sufficient because it was rigorously chosen after testing multiple images using 

different thresholds. 

• Mask or remove the image background from an original image. 

• Get all the regions where the contours cover the white parts of the objects detected. 

Table 3.1. Algorithm describing the detection of false positives and removal 

Algorithm 1: Remove the false positive detections 

Input: current video frame, prediction results of the YOLOv2 model [Oj] 

Output: Current, correct matches of the bounding boxes [Ci] 

1: lower <- [170, 170, 150] 

2: upper <- [255, 255, 255] 

3: mask <- compute the range between upper and lower bounds from the current frame 

4: FOR EACH Oj in [Oj] 

5: boll <- get the bounding box mask[Oj] 

6: nzCount <- get non zero points that correspond to boll 

7: w <- calculate width from Oj  

8: h <- calculate height from Oj 

9: area <- calculate area from Oj 

10: per_nz <- calculate the percentage of non-zero nZcount over the area 

11: IF per_nz is more than 25%   

12: Assign a new match Ci 

13: END IF 

14: END FOR 

15: Return all the matches [Ci] 
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In Table 3.1, the pseudocode describes the detection of the white parts of the frame and 

compares them with the YOLOv2 predictions to make sure that the boll detected fills at least 

25% of the bounding box. This algorithm is run every five frames to detect new bolls that 

entered the camera scene. It can be run with lower or higher frequencies, but the performance 

and speed of the algorithm can be affected. After detection of the bolls, the system gets good 

corner features of the boll to track it. 

3.3.5 Detection of Good Features to Track 

The pseudocode in Table 3.2 shows the steps to detect the "good features to track" using 

the OpenCV "goodFeaturesToTrack" method. The method tries to get the corner points (Tables 

Table 3.5 and Table 3.6) of the boll so that it can track the boll accurately (Figure 3.5). It gets the 

boll and its mask to make sure the system can only see the boll and its adjacent edges to obtain 

good features to track (Shi & Tomasi, 1994). These features were used by the tracker to obtain 

the next position of the boll in the image. 

Table 3.2. Good Features to track that are within the boll 

Algorithm 2: Good Features to track within the boll 

1: Input: matches {Ci}, masked frame with bolls (mask), and areas close to it. 

2: Output:  Objects identities of [ Bk ] 

3: p <- Compute the good features to track from 500 maximum corners with the quality of at 

least 30% and a minimum of minimum Distance 7pixels and block size 7 pixels from the 

masked frame with points on  the boll 

4: IF p is not NULL: 
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5: FOR EACH Ci in [Ci] 

6: for x, y in p  

7: xi,yi,xj,yj <- Ci 

8: area <- compute area by (xj-xi)*(yj-yi) 

9: IF ( xi<= x AND yi <= y AND xj >=x AND yj >= y): 

10: Register objects to track Bk <- ((x,y,xi,yi,xj,yj,area)) 

11: break 

12: ENDIF 

13: ENDFOR 

14: ENDFOR 

15: ENDIF 

16: Return all the object identities [ Bk ] 

 

  

 

Figure 3.5. The boll that has been detected by YOLOv2 will be color segmented to get the edges 

of the boll (red) and then use the Shi-Tomasi method to get corner features that are located 

within the boll. At least one feature is specifically targeted and tracked by the model developed 
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3.3.6 Tracking of the Boll and its Features 

The tracking points (features) were calculated using Lukas-Kanade (LK) Optical flow 

algorithm (Table 3.3) that was implemented in OpenCV. Only the points that were successful in 

being tracked were used to make the next trajectories (tracklets) of the object's path. Any of the 

points that were not calculated were passed to be calculated using homography transformation. 

Table 3.3. Tracking of the cotton bolls using the optical flow algorithm 

Algorithm 3: Tracking of the cotton boll using optical flow algorithm  

1: Input: Previous frame, current frame, objects to track [ 𝐵k ]  

2: Output: Objects with added track [Bk] 

3: [𝑝k] <- get only first two values from [Bk] 

4: [𝑝k], [status], [errors] <- compute the Lukas Kanade Optical flow of points [𝑝k] from 

current image and previous image. 

5: FOR EACH Bk, 𝑝k , status in [ Bk ], [𝑝k ], [status] 

6: cx,cy,xi,yi,xj,yj,area <-  get the contents of 1st element of Bk  

7: x, y <- get the contents of 𝑝k 

8: xi <- xi + (x - cx) 

9: yi <- yi + (y - cy) 

10: xj <- xj + (x - cx) 

11: yj <- yj + (y - cy) 

12: area <- compute area of the bounding box (xj-xi) * (yj-yi) 

13: b <- assign the object with values of the new bounding boxes (x,y,xi,yi,xj,yj,area) 

14: IF status is true that is the point was well tracked by LK method 

15: Assign the new value of the Bk with the b 
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16: IF the length of the object that tracks the boll is very long (more than 50) 

17: Delete the tail of the tracking object 

18: ENDIF 

19: ENDIF 

20: ENDFOR 

21: Return all the identities of the objects [ 𝐵k] 

 

 

The transformation was achieved by finding a 3 by 3 matrix of the image perspective 

transformation using the "findHomography" OpenCV method. The points that had good status in 

the LK method were used to calculate the homography matrix. Using the previous frame and 

current frame and RANSAC method, the transformation matrix (H) was obtained (Table 3.4). 

The matrix was used to transform the bounding boxes and features to track. The bolls that 

occlude each other were tracked by the transformation matrix as the good features to track may 

have disappeared for occluded bolls. Hence, the system will force the bounding box to appear 

while it was not sure if the boll was present. This box was the temporary tracking of the boll. It 

should be discarded if the boll was not found for five consecutive frames (Algorithm 4). The 

consecutive frames may be increased but can make the model slow to process as the occlusion 

was very common in this camera view from above. Figure 3.6 shows the bolls tracked together 

with the tracklets, which demonstrate the first detection of the boll and consecutive appearances 

in the coming frames. Figure 3.8 shows two bolls in which the bottom boll was occluded by the 

top boll. The red bounding box tracked the bottom boll while the blue was the upper one. The 
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upper bounding box appeared to cross over the lower boll but later, the bounding box tracked 

and localized it. Actually, the bolls were directly over each other. 

 

Figure 3.6. Tracking of the cotton bolls. The lines indicate tracklets, which is the path the bolls 

were detected across different frames. The green line is the line which the boll which was 

tracked from at least previous 4 frames will be counted 
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Figure 3.7. Demonstration of occlusion between two bolls that appear to be over each other 

across consecutive frames from frame 1 to 6. The tracking algorithm tries to maintain tracking of 

the occluded boll. The algorithm needs to have detected the occluded bolls before tracking. The 

red boll is at the bottom while blue is at the top. 

 

Table 3.4. Homography transformation of the consecutive images to restore bolls that were lost 

due to missing good features 

Algorithm 4: Homography transformation of the frames to track the lost good features 

Input: Previous points (Sokolova et al.),, current points [𝑝k], Objects to be tracked [ 𝐵k ] 

Output: Objects [ 𝐵k ] with new values added 

1: FOR EACH status in [status] 

2: IF status is a good tracked feature 

3: Pk <- Assign corresponding element from (Sokolova et al.) 

4: 𝑃k <- Assign the corresponding element from [𝑝k] 

5: ENDIF 

6: ENDFOR 

7: H <- compute homoghraphy (Pk, 𝑃k, RANSAC) 

8: FOR EACH 𝐵k, status in [ 𝐵k ], [status] 
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9: IF 𝐵k  has more than one element, and status is not good (zero) 

10: x, y,xi,yi,xj,yj,area <- get the head element contents 𝐵k   

11: IF the boll is position is more than 300 pixels away from above  

12: D1 <- assign the vector (x0,y0,1) 

13: D2 <- assign the vector (xi,yi,1) 

14: D3 <- assign the vector (xj,yj,1)  

15: S1 <- Multiply the homography matrix H with vector D1 

16: S2 <- Multiply the homography matrix H with vector D2 

17: S3 <- Multiply the homography matrix H with vector D3 

18: x, y,xi,yi,xj,yj,area <- compute the vectors by dividing each of the first and 

second element with the third element in each of the S1,S2,S3 

19: Get the shortest distance from the closest white pixels so that the point doesn't 

lie on empty bounding box without a boll in it 

20: b <- assign the element with the values (x, y,xi,yi,xj,yj,area) 

21: IF the length of the object 𝐵k   is greater than 80 

22: Delete the tail of the tracking object 𝐵k    

23: ENDIF 

24: IF no boll found in the bounding box 

25: Mark the boll as temporarily disappeared boll 

26: ENDIF 

27: IF temporary disappeared for more than 5 consecutive frames 

28: Mark the temporary for deletion 
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29: ENDIF 

30: Assign the new value of the object 𝐵k    with the b 

31: ENDIF 

32: ENDIF 

33: ENDFOR 

34: Return all the identities of the objects [ 𝐵k] 

 

3.3.7 Counting the Bolls and Cleaning Loosely Tracked Bounding Boxes 

It was assumed that the end-effector on the robotic arm will be near the bottom of the 

image, harvesting the bolls. For a boll to be counted, it needs to have tracked at least for the past 

4 frames. Otherwise, the tracking object of the boll will be deleted and not counted.  

Table 3.5. Counting of the bolls and data cleaning before going back to grab the next frame 

Algorithm 5: Counting of the bolls and data cleaning 

Input: Objects with elements [ 𝐵k ], Current frame, counter 

Output: Updated identities of the objects [𝐵k ] 

1: FOR EACH 𝐵k in [ 𝐵k ] 

2: cx,cy,xi,yi,xj,yj,area <- get the head element of the 𝐵k 

3: lower bound <- [170, 170, 150] 

4: upper bound <- [255, 255, 255] 

5: mask <- compute the range between upper and lower bounds from the current frame 

6: boll <- mask out the bounding box { xi,yi,xj,yj } 

7: nzCount <- get non zero points that corresponds to boll 
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8: w <- calculate width from boll 

9: h <- calculate height from boll 

10: area <- calculate area from boll 

11: per_nz <- calculate the percentage of non-zero over the area 

12: IF per_nz is less than 1% do  

13: Mark the element 𝐵k  for deletion 

14: ELSE 

15: xc1, yc1,xa1,ya1,xb1,yb1,area1 <- get the head element of the 𝐵k 

16: xc2, yc2,xa2,ya2,xb2,yb2,area2 <- get the runner’s head element of the 𝐵k 

17: IF (yc2 <= divider AND yc1 > divider AND length of the 𝐵k is greater than 4) 

18: counter <- Count the boll 

19: ENDIF 

20: ENDIF 

21: IF (ya1 > divider): 

22: Mark the element 𝐵k for deletion 

23: ENDIF 

24: ENDFOR 

25: [ 𝐵k ] <- Delete the marked 𝐵k  elements from [ 𝐵k ] 

26: Return the remaining identities of the objects [𝐵k ] and number of bolls (counter) 

 

 

The boll was only counted after its centroid has passed a divider, which was a line across the 

650th row-pixel of the image height close to the bottom of the image (Figure 3.6, green line). 
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650th row-pixel of the image was the position that we assumed the Cartesian robotic arm could 

be placed to pick the cotton boll. However, it could be put anywhere. The system checks if the 

cotton boll passed the line and counts. Then the system will check if the tracked boll has finished 

passing the line and delete it. 

3.3.8 Benchmark Experiment Design and Evaluation 

The state-of-the-art tracking algorithms implemented in the OpenCV 3.4 were used and 

evaluated against CottoTrack. The algorithms evaluated were discriminative correlation filter 

tracker with channel and spatial reliability (CSRT), Kernelized Correlation Filters (KCF), 

GOTURN, TLD (Tracking, Learning, and Detection), MedianFLow, Multiple Instance Learning 

(MIL), Minimum Output Sum of Squared Error (MOSSE) and Boosting (Babenko et al., 2009; 

Bolme et al., 2010; Grabner et al., 2006; Held et al., 2016; Henriques et al., 2012; Kalal et al., 

2010, 2011; Lukezic et al., 2017). Each of the algorithms can track one boll. OpenCV provides a 

Multitracker algorithm that accepts multiple object tracking by providing a tracker for each boll 

(Table 3.6). 

Table 3.6. Model evaluation of the tracking algorithms using Multitracker method implemented 

in OpenCV 

Algorithm 6: Evaluation of models 

Input: current video frame, prediction results of the YOLOv2 model [Oj], Multiple trackers 

object [Ci], the current value of the counter, counter 

Output: Current, correct trackers of the multiple trackers [Ci], next value of the counter 

1: lower <- [170, 170, 150] 

2: upper <- [255, 255, 255] 

3: mask <- compute the range between upper and lower bounds from the current frame 
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4: IF frame is multiple of five 

5: for each Oj in [Oj]: 

6: boll [ xi,yi,xj,yj] <- get the bounding box mask[Oj] 

7: nzCount <- get non zero points that corresponds to (Fischler & Bolles) 

8: w <- calculate width from Oj  

9: h <- calculate height from Oj 

10: area <- calculate area from Oj 

11: per_nz <- calculate the percentage of non-zero nZcount over the area 

12: IF per_nz is more than 25% do  

13: Assign a new tracker to the {Ci} 

14: END IF 

15: END FOR 

16: ELSE 

17: [Ti] <- assign the trackers [Ci] to the corresponding tracklet 

18:  FOR Ti in [Ti] 

19: IF current value Ti position is greater than the divider 

20: counter <- Count the boll 

21: END IF 

22: END FOR 

23: END IF 

24: Return all the identities of the Multiple tracker's object [Ci] and number of bolls (counter) 
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3.3.9 Experimental Setup  

After training, the 12 defoliated cotton plants (as seen in Figure 3.1) were replaced with 

new plants that had a total of 131 bolls. For 91-cm (36-inch) row spacing, the cotton field would 

have 5.2, 10.4, and 15.6 bolls per linear feet for 0.5, 1.0, and 1.5 cotton bales per acre, 

respectively (Prostko et al., 2018). This would be more than the number of bolls harvested in a 

continuous harvest system (every 2-days) and was deemed representative in number. 

Three trial videos were taken using a moving Samsung camera. In each of the test videos 

taken, the 12 plants were randomized and rearranged so that we could evaluate the counting 

algorithms under different orientations. Each trial video was extracted to get individual images. 

Hence for each video, more than 600 images were extracted. For the six algorithms and ground 

truth, more than 12,600 images were required to be used in this study. Since we were interested 

in investigating the tracking algorithms, it was decided to sample 24 images out of each trial 

video in the interval for detailed analysis from the 104th to the 584th frame at 20-frame intervals. 

So, a total of 504 out of 12600 images were selected for the investigation to find the tracklets.  

Set intervals were used instead of random sampling to remove the potential for biased data. 

Intervals provided data from the start to the end of the row to be equally represented in a dataset. 

Tracklets were visually checked to determine if they were accurately tracking the boll; otherwise, 

it was labeled as false positive or if missed, then false negative. The images obtained from the 

video had 1280 by 720-pixel resolution.  Eight parameters from each method were calculated to 

test model performance. The speed of processing frames (frame per second (fps)) with the 

embedded system was measured. The reported number of bolls counted was also collected. Also, 

the total number of frames processed by each model was evaluated. Using manual methods, data 

to measure true positives (TP), false positives (FP), and false negatives (FN) were collected 

(1) 
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(Sokolova et al., 2006) . For each video frame in the sample, the total number of TP, FP, and FN 

were added and evaluated. After that, the sensitivity or recall, accuracy, F1 score, and precision 

of the algorithms (Equation. 1) were determined as follows (Sokolova et al., 2006) : 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 or 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

where  

           TP = True Positives, 

           FP = False Positives, and 

           FN = False Negatives. 

3.4  Results and Discussion 

3.4.1 Detection of the Cotton Bolls using YOLOv2 

First, we investigated the YOLOv2 accuracy by running the trained model to find the 

prediction for each trial. Table 3.7 shows the performance of the YOLOv2 for each trial and the 

average frame per second. The average accuracy of YOLOv2 was 75.3±0.5%, and the processing 

speed was 5.7±0.1 fps. YOLOv2 produced an average precision of 99.6±0.3%, which indicated 

the model was well trained to identify bolls; however, it was missing many cotton bolls with 

sensitivity at 75.6±0.7%. 

(1) 
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Table 3.7. YOLOv2 predictions for each trial 

Trial TP FP FN 

Sensitivit

y (%) 

Accurac

y (%) 

Precisio

n (%) 

F1 

Score 

Speed(fps

) 

First 286 0 96 74.9 74.9 100.0 0.86 5.6 

Second 410 3 126 76.5 76.1 99.3 0.86 5.8 

Third 385 2 126 75.3 75.0 99.5 0.86 5.8 

Mean 75.6 75.3 99.6 0.9 5.7 

Standard Deviation 0.7 0.5 0.3 0.0 0.1 

 

3.4.2 Tracking, Localization, and Counting of the Cotton Bolls 

Tracking and localization of each of the detected bolls were expected to improve the 

detection only model. The target was to increase the accuracy from 75.6% and processing speed 

from 5.7 fps. This was achieved by only detecting at specified intervals and track for subsequent 

frames. In Tables Table 3.8, Table 3.9, and Table 3.10, several parameters (sensitivity, accuracy, 

precision, and F1 score) were determined from all the tracking methods.  The tables represent the 

results of each trial. The first trial had 605 frames, the second trial 727 frames, and the third trial 

672. Boosting, Goturn, and TLD were not able to process the images due to a memory full issue.  

All of them (Boosting, Goturn, and TLD) were very slow and did not pass the 200th frame before 

failing. The tables report the total number of TP, FP, and FN of the 24 images analyzed for each 

algorithm.  The parameters (sensitivity, accuracy, precision, and F1 score) were calculated 

corresponding to the value of TP, FP, and FN.  

Table 3.8. First trial experiment results 
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Algorithm TP FP FN Sensitivity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1 

Score 

Speed(fps) Count 

(%) 

CSRT 352 0 30 92.1 92.1 100.0 0.96 0.7 100.0 

KCF 333 16 49 87.2 83.7 95.4 0.91 2.2 53.4 

MedianFlow 346 10 36 90.6 88.3 97.2 0.94 3.6 98.5 

MIL 347 8 35 90.8 89.0 97.7 0.94 0.2 84.7 

MOSSE 334 16 48 87.4 83.9 95.4 0.91 8.1 57.3 

CottoTrack 359 0 23 94.0 94.0 100.0 0.97 7.5 95.4 

 

Table 3.8 shows the first trial video performance that was taken while moving the camera 

faster than the second and third trials. The first, second, and third trials took 21, 25, and 23 

seconds respectively to cover 304.8 cm. The slowest camera movement was the second trial. 

This made samples in the second trial to have more bolls detected between the 104th to 584th 

frames compared to the first and third trials. In the first trial (Table 3.8), with a relatively higher 

speed, CottoTrack performed very well compared to the other methods with the second highest 

speed. In Table 3.8, CottoTrack was slightly outperformed by CSRT when comparing cotton boll 

counts (100 to 95.4 bolls). However, the CottoTrack's boll counts in the second trial (Table 3.9) 

with relatively high speed (7.8 fps compared to 0.6 fps) outperformed CSRT in counts but not in 

sensitivity and accuracy. It was because the algorithm uses a pure Lukas-Kanade algorithm, 

which requires slow-moving objects to estimate accurately. The sensitivity and accuracy are still 

very close to CSRT (Table 3.9). MOSSE was very fast (8.1 fps) in the first video because 

CottoTrack used more transformation to predict position since the change in position tended to 

be significant in the faster-moving camera.  

Table 3.9. Second trial experiment results 
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Algorithm TP FP FN Sensitivity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1 

Score 

Speed(fps) Count 

(%) 

CSRT 518 2 18 96.6 96.3 99.6 0.98 0.6 99.2 

KCF 495 24 41 92.4 88.4 95.4 0.94 1.9 74.8 

MedianFlow 490 3 46 91.4 90.9 99.4 0.95 3.1 96.2 

MIL 510 2 26 95.1 94.8 99.6 0.97 0.2 94.7 

MOSSE 485 24 51 90.5 86.6 95.3 0.93 7.7 73.3 

CottoTrack 505 0 31 94.2 94.2 100.0 0.97 7.8 100.8 

 

Table 3.10. Third trial experiment results 

Algorithm TP FP FN Sensitivity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1 

Score 

Speed(fps) Count 

(%) 

CSRT 491 3 20 96.1 95.5 99.4 0.98 0.6 104.6 

KCF 465 14 46 91.0 88.6 97.1 0.94 1.8 65.6 

MedianFlow 487 14 24 95.3 92.8 97.2 0.96  3.1 104.6 

MIL 484 11 27 94.7 92.7 97.8 0.96 0.2 87.0 

MOSSE 426 12 85 83.4 81.5 97.3 0.90 7.5 71.0 

CottoTrack 486 0 25 95.1 95.1 100.0 0.97 7.6 96.2 

 

While MOSSE had the overall highest average speed(7.8±0.3 fps), CottoTrack had the 

second-highest frame rate (7.6±0.1 fps), and it was not affected by the number of frames to 

process compared to MOSSE, which was slower when the number of frames increased (Table 

3.11). The low precision in KCF, MIL, and MOSSE (Table 3.11) in tracking algorithms was 

generally introduced by wrong tracking estimates since YOLOv2 precision was 99.6%. A good 
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tracker should increase precision like how CottoTrack (100.0±0.0%) and CSRT (99.7±0.3%) 

achieved. Due to the morphological nature of the cotton bolls, the detection of the bolls may 

appear as two or more bolls. Hence, counting number that exceeds more than 100% like in CSRT 

(101.3±2.4%) is desirable (Table 3.11). 

Table 3.11. Average and standard deviations (in parentheses) of the three trial experiments 

Algorithm Sensitivity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1 Score Speed(fps) Count (%) 

CSRT 95.0(2.0) 94.7(1.8) 99.7(0.3) 1.0(0.0) 0.6(0.0) 101.3(2.4) 

KCF 90.2(2.2) 86.9(2.3) 96.0(0.8) 0.9(0.0) 2.0(0.2) 64.6(8.8) 

MedianFlow 92.4(2.1) 90.6(1.8) 97.9(1.0) 1.0(0.0) 3.2(0.2) 99.7(3.5) 

MIL 88.2(1.9) 85.7(2.4) 96.8(0.9) 0.9(0.0) 5.1(0.0) 76.3(4.2) 

MOSSE 87.1(2.9) 84.0(2.1) 96.0(0.9) 0.9(0.0) 7.8(0.3) 67.2(7.1) 

CottoTrack 94.4(0.5) 94.4(0.5) 100.0(0.0) 1.0(0.0) 7.6(0.1) 97.5(2.4) 

 

3.5  Summary and Conclusion 

In this study, an ensemble vision system method that detected, tracked, localized, and 

counted cotton bolls in real-time was developed. The CottoTrack combined deep learning, color 

segmentation, and image transformation to locate and track the cotton bolls. The CottoTrack 

method monitored and counted cotton bolls fast and accurate at 94.4±0.5% accuracy and 

processing speed of 7.6±0.1 fps. It is an improved performance from YOLOv2 detections, which 

was 75.3±0.5% accuracy, and the processing speed was 5.7±0.1 fps. The CSRT and MedianFlow 

performed comparatively higher in boll counting with 101.3±2.4% and 99.7±3.5% accuracy 

respectively, with much slower speed (0.6±0.0 fps and 3.2±0.2 fps respectively) compared to the 
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CottoTrack method. MOSSE was as fast as the CottoTrack method but with an average counting 

of only 67.2±7.1% accuracy. In summary, while MOSSE and CSRT each excelled at separate 

measures and were poor in others, CottoTrack was consistently the best or within 3% of the best 

method for all the evaluation metrics and had or shared the lowest standard deviation for five of 

the six metrics.  

The model used two unified techniques (deep learning methods and color segmentation) 

to detect cotton bolls and used two other techniques (Lucas-Kanade algorithms and homography 

transformations) to track the bolls. Generally, the speed of image processing in the NVIDIA 

Jetson TX2 embedded system was slow due to its processor and RAM issue (i.e., if more than 

40% of RAM was used, the system would crash). Currently, an improved NVIDIA embedded 

system  (Jetson Xavier) is available, and we are going to test the model using it in future studies.   

Future work will also include improving the algorithm to track in undefoliated cotton plants with 

open cotton bolls, cracked bolls, and immature bolls.  Also, we expect to add another camera 

closer to the bottom of the canopy to increase boll tracking with cotton leaves on the plants. 

  



 

83 

 

 

 

CHAPTER 4  

EVALUATION OF A STEREO VISION SYSTEM EFFECTIVENESS IN ROW DETECTION 

AND BOLL LOCATION ESTIMATION ON A COTTON HARVESTING ROVER IN 

DIRECT SUNLIGHT3 

  

 
3 Fue, K., Barnes, E., Porter, W., Li, C., and Rains, G., Submitted to Agronomy, July 1, 2020. 
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4.1  Abstract 

Cotton harvesting is performed by expensive combine harvesters that make it difficult for 

small to medium-size cotton farmers to grow cotton economically. Advances in robotics provide 

an opportunity to harvest cotton using small and robust autonomous rovers that can be deployed 

in the field as a "swarm" of harvesters, with each harvester responsible for a small hectarage. 

However, rovers need high-performance navigation to obtain the necessary precision for 

harvesting. Current precision harvesting systems depend heavily on RTK-GNSS to navigate 

rows of crops. However, GNSS cannot be the only method used to navigate the farm for robots 

to work as a coordinated multi-agent unit on the same farm because the robots will also require 

visual systems to navigate, avoid collisions, and accommodate plant growth and canopy changes. 

Hence, the optical system remains a complementary method for increasing the efficiency of the 

GNSS. In this study, visual detection of cotton rows and bolls was developed, demonstrated, and 

evaluated.  A pixel-based algorithm was used to calculate and determine the upper and lower part 

of the canopy of the cotton rows by assuming the normal distribution of the high and low depth 

pixels. The left and right rows were detected by using perspective transformation and pixel-based 

sliding window algorithms. Then, the system determined the Bayesian score of the detection and 

calculated the center of the rows for the smooth navigation of the rover. This visual system 

achieved an accuracy of 92.3% and an F1 score of 0.951 in the detection of cotton rows. 

Furthermore, the same stereo vision system was used to detect the location of the cotton 

bolls. By comparing the cotton boll distance above the ground with manual measurements, the 

system achieved an average R2 value of 99% with RMSE of 9 mm when stationary and 95% 

with RMSE of 34 mm when moving at approximately 0.64 km/h. The rover might have needed 

to stop several times to improve its detection accuracy or move more slowly. Therefore, the 
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accuracy obtained in row detection and boll location estimation is favorable for use in a cotton 

harvesting robotic system. Future research will involve testing of the models in a large farm with 

undefoliated plants. 

4.2  Introduction 

Cotton harvesting is heavily dependent on large machinery with human operators. These 

massive machines are costly to maintain and expensive to own. The emergence of modern 

technologies in robotics provides an opportunity to explore alternative harvesting methods (Fue 

et al., 2020a; Hayes, 2017; Kise et al., 2005; Romeo et al., 2012; Winterhalter et al., 2018). The 

introduction of small, intelligent, multi-agent machines in farming will be an asset to farmers. 

Swarms can be scalable to the size of the farm, and each machine can be low-cost, multi-

purpose, and re-programmable for the task at hand. Smaller machines can also reduce the risk of 

severe injuries and fatalities sometimes experienced with large field equipment (Fue et al., 

2020a; Rains et al., 2015). With modular attachments and selectable programming, these small 

intelligent machines can be used for multiple tasks, such as precision weeding, chemical 

application, planting, harvesting, and scouting (Rains et al., 2014).  

Recently, several harvesting robots have been developed and reported as research tools or 

for production agriculture, such as harvesting robots for cucumbers (Van Henten et al., 2003), 

grapes (N  Kondo, 1991; Luo et al., 2016), apples (J. Li et al., 2016), tomatoes (Zhao et al., 

2016), strawberries (Hayashi et al., 2014), and sweet peppers (C. Wouter Bac et al., 2017). Most 

of these robots are slow to pick fruit because of the technology and technique used to identify, 

locate, and pick the product. The faster robotic machines use a prescription map and multiple 

robotic arms to harvest many fruits at once (Zion et al., 2014). It is in part due to the difficulty 

that arises from trying to control the complex farming environment that has variable lighting, 
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dusty conditions, and machine vibrations, all of which produce "noise" to the imaging system (C. 

Wouter Bac et al., 2017). These impending conditions pose challenges even to current machine 

vision technologies.  

Plant rows are discernable when cotton plants are seedlings, and the canopy overlaps 

around 8-10 weeks after planting. Kise et al. (2005) conducted a study to detect rows in young 

crops using a stereo system and provided an excellent baseline for visual detection of the canopy,  

an advancement in machine vision research for row crop detection compared to color-based 

detection algorithms proposed in other studies (García-Santillán et al., 2018; Rovira-Más et al., 

2005; Zhai et al., 2016). Winterhalter et al. (2018) proposed the use of  LiDAR sensors and RGB 

cameras to detect small row crops.  

The cotton harvesting rover is expected to be deployed in non-defoliated plants as soon as 

the cotton bolls begin to open. Careful navigation in a fully-grown canopy is required so that the 

bolls are not knocked to the ground and also are easily located and tracked for picking by the 

robotic harvester arm. Most cotton in the U.S are planted with row spacing ranges from 30- to 

40-inch (76- to 101.6-cm) (UGA, 2019). Therefore, the harvesting machine must make sure that 

the tires are close to the center of the row spacing. For human-driven tractors, RTK-GNSS is 

very accurate and can be used to continue following the same course with centimeter accuracy 

(Higuti et al., 2019; Kise et al., 2005). However, for self-navigation, the visual perception will 

also be needed to avoid field obstructions. As such, it is important to use visual perception to 

give the rover an alternative to RTK-GNSS in case it fails and to provide a complementary view 

of the environment.  

RTK-GNSS navigation is challenged by the signal loss during operation resulting from 

attenuation around buildings, tree cover, and other obstructions (Higuti et al., 2019).  This 
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requires farmers to use an expensive RTK-GNSS system. Additionally, deployment of a swarm 

of robots that coordinate their work may require preprogramming to ensure that obstacles and 

machines avoid collisions. Therefore, the use of a camera and simple RTK-GNSS must be 

sufficient to achieve safe, real-time navigation for farm vehicles traveling over the plants by 

detecting the canopy and a clear path. There are other sensors like LiDAR that can be used in 

this operation, but as we expect the machine to work in daylight and over plants, RGB cameras 

may be sufficient. However, LiDAR, which is an expensive tool compared to RGB cameras, has 

shown success when small robots navigate at night between large plants (Higuti et al., 2019). 

However, Bulanon et al. (2004) evaluated the performance of the algorithm using an RGB 

camera with artificial lighting conditions and found that their algorithm performed very well in 

the detection of apples when artificial lighting conditions are used.   

Some machine vision techniques using LiDAR have been developed to determine the 

height of cotton plants, but not "on the go," which is a real-time harvesting requirement (Jiang et 

al., 2016). Machine vision systems for cotton harvesting are not yet available, but some 

preliminary research has been conducted by Y. Wang et al. (2008) and Mulan et al. (2008). Y. 

Wang et al. (2008) were able to develop an imaging system for cotton recognition using color 

segmentation methods and detected cotton bolls at an accuracy of 85%.  Furthermore, some work 

for the visual navigation of a cotton harvesting rover has been done using the Otsu method and 

noise filtering vision techniques (Xu et al., 2015). Research in India attempted to design an 

automatic cotton harvesting rover that used image processing techniques to acquire features and 

perform modeling and matching, but a commercial product was not developed (Rao, 2013). To 

date, no research has been reported to determine the absolute location of the cotton bolls or 

cotton rows for robotic purposes.  
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The location of a cotton boll is the vertical and horizontal distance of the boll from the 

center of the camera carrying platform. This location is vital for the control of the position of a 

harvesting manipulator designed to pick individual cotton bolls. However, to achieve this 

harvesting action, the machines require high performing computing and imaging resources. 

Present computing technologies can provide a quick solution for cotton boll localization and 

mapping used to position the robot's end-effector for harvesting. An x-y Cartesian robotic arm 

can move in two axes: up/down and left/right (Lumelsky, 1986; Zefran, 1996). However, an 

imaging system is required to predetermine the cotton boll position and send that information to 

the machine; then, the robot manipulator can plan and move to pick the cotton boll (Lumelsky, 

1986; Zefran, 1996). 

The main objective of this study was to develop and evaluate a model to detect the rows 

and cotton bolls in a cotton field and test the performance of the model. A model using a stereo 

camera to guide a cotton harvesting robot in rows and detect cotton bolls is proposed. The same 

camera was used to locate bolls and detect cotton rows. The specific objectives of this study 

were to: 

• Develop and evaluate a model to measure the location of the cotton bolls using the stereo 

camera in direct sunlight 

• Develop and evaluate a model to detect cotton rows using a stereo camera in direct 

sunlight 

4.3  Materials and Methods 

4.3.1 Materials 

The red custom-built articulated rover (West Texas Lee Corp.,) with modifications to 

meet the field conditions, navigation, and obstacle avoidance requirements of an unstructured 
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(such as open field, end of the row) and a structured field was used to detect cotton bolls and 

rows (Fue et al., 2020a; Rains et al., 2015). The rover was 340 cm long and with front and back 

parts being 145 cm and 195 cm long, respectively. The rover's height and width could be 

adjusted to a maximum of 122cm and 234 cm, respectively. The rover tires were 91 cm from the 

center of the vehicle. The rover was 212 cm wide, with a tire width of 30 cm. The four tires had a 

radius of 30.48cm and a circumference of 191.51cm. The rover had a ground clearance of 91 cm. 

The rover was mounted with the stereo camera (ZED, Stereo labs Inc, San Francisco, CA, USA) 

and the rugged development kit, NVIDIA Jetson TX2 (NVIDIA Jetson TX2 development kit, 

Nvidia Corp., Santa Clara, CA, USA). The NVIDIA Jetson had the following features; NVIDIA 

Pascal 256 CUDA cores, Quad ARM and HMP Dual Denver CPU, 8GB 128-bit LPDDR4 RAM, 

and 32GB eMMC SATA drive. A ZED camera was mounted, pointing downward at 81.9° below 

the horizontal and took images and depth maps at the rate of  5 frames per second at the 

resolution of 1080p (Figure 4.1). The SDK (standard development kit) was installed with the 

Ubuntu operating system, NVIDIA CUDA for GPU acceleration, OpenCV (open-source 

computer vision software), and ROS (Robot Operating System) software. Camera drivers were 

connected using a ZED camera wrapper that was connected to ROS and collected images from 

the ZED camera SDK. ZED camera was initiated from the start using ZED SDK, which 

calculated and rectified the images and disparity maps using stereo camera techniques. 
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Figure 4.1. Machine vision components of the research 

4.3.2 Cotton Row Detection 

ZED camera software, the camera was calibrated to achieve the best estimation of the 

image- and real-world coordinates. Calibration of the camera was important since the model 

would accurately estimate the center of the rover and real-world position of the wheels along the 

crop rows. The camera parameters cx, cy, fx, fy, k1, and k2 were found. The symbols fx and fy 

were the focal lengths, and cx and cy were the optical center coordinates, both in pixels. k1 and 

k2 were distortion parameters used to rectify the images. The ZED SDK performed rectification 

in the background, and the rectified images were supplied when requested using the ZED 

application programming interface (API). 

cx = 674.221 

cy = 374.301 

fx = 697.929  

fy = 697.929 
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k1 = -0.173398 

k2 = 0.0287331 

 

 

     

 

 

The image coordinates can be transformed accurately into real-world coordinates by using the 

calibrated parameters and equation (4.1) above. The images obtained from the left lens of the 

camera were rectified by balancing and removing distortion. Then using the right and left lens 

image as Figure 4.2, the disparity was calculated by the law of registration of the distance 

between the two lenses and the location of the point targeted (Lucas & Kanade, 1981). 

 

Figure 4.2. Disparity calculation. Where x and x' are the distance between points in the image 

plane corresponding to the 3D scene point and their camera center. D is the distance between two 

lenses of the stereo camera, while f is the focal length of both lenses. Y is the location of the 

object, while Z is the distance of the object to the camera. 

[
𝐼𝑥
𝐼𝑦
1

]  =  [

𝑓𝑥 0 𝐶𝑥 0

0 𝑓𝑦 𝐶𝑦 0

0 0 1 0

] ∗  [

𝑊𝑥
𝑊𝑦
𝑊𝑧
1

]               (4.1) 

 

Ix and Iy are image coordinates while Wx, Wy, Wz are real world coordinates 
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In order to balance the view and determine the row width, it was best to transform the 

depth map. The transformation was performed by the birds' eye view model in which it was 

assumed that the neighboring pixels presented the rows as large while the back ones were small. 

Hence, the algorithm used the perspective transform to choose a region of interest and 

transformed it. The transformation was successfully performed on undistorted images. The 

source image points and destination points were determined as in Table 4.1. The transformation 

vertices were determined experimentally by testing several images and determining camera 

coverage of the rows. 

Table 4.1. The perspective transformation vertices for depth maps. Part of the source image 

vertices are chosen and then transformed into another image (destination) that can easily show 

the rows in straight patterns, which can easily let the model detect the shape of the rows. 

Source Image points (Vertices) Destination Image Points (Vertices) 

0.65*960, 0.65*540 960*0.75,0 

960,540 960*0.75, 540 

0,540 960*0.25, 540 

0.40*960, 0.40*540 960*0.25, 0 

 

Because the camera is looking downward, the higher the canopy, the lower the value of 

the depth. In Figure 4.3(1) It means the white pixels (which represent the upper part of the 

canopy) were pixels that are high 8-bit values compared to gray pixels, which represented the 

lower part of the canopy and while the soil is represented by black pixels which have very low 8-

bit values. So, in each row of the depth map, these values were determined. The sliding window 

method determined the depth for every 10x10 pixels by finding the average 8-bit pixel gray 

value. It meant the lower-values pixels represented objects further from the camera while white 
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pixels closer to the camera. In this essence, the sliding window grouped the highest pixels and 

predicted the path. The path was achieved by connecting all the pixels that were the highest pixel 

values, which were determined by choosing the 70th percentile of the pixel values. The 70th 

percentile of the pixels provided most of the highest pixels covered. 

Figure 4.3 shows the depth map that was manipulated at the center (particularly at 300th 

row out of 540 pixels available). The disparity map was 960 pixels wide. Each of the pixels 

taken was statistically manipulated to get the 70th percentile, which in this case (Figure 4.3), was 

116. Then, all the pixels with the value above 116 were set to white (canopy) and given a value 

of 255, while all others are reassigned a value of black (value 0). The binary image obtained was 

further manipulated to delineate crop and row spacing more easily (Figure 4.3(3)).  

1 

 

2 
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Figure 4.3. Depth map at the row pixel number 300 (each image has 540-row pixels) (1) the 

pixels are captured in the histogram (2) and then using the 70th percentile only pixels with a 

value above 116 are used to form a binary image histogram (3). 

Error! Reference source not found. presents a depth map that was changed to a binary 

image and then transformed to locate the rows; then, the sliding window was used to detect the 

rows. Error! Reference source not found.(2) presents a raw depth map. The binary map at the 

center was obtained by applying the 70th percentile of the row pixels (Error! Reference source 

not found.). Then, the sliding window was used to group the pixels and detected the left and 

right rows in blue segments. The bottom image in Error! Reference source not found. shows 

the sliding window in green and matching the red line for the left and right row detection.  The 

smooth red line indicates the detection was successful. The algorithm was set such that if the 

difference between 90th percentile and 10th percentile was less than 60, then the whole pixels of 

the row were converted to black (or zero) because it meant the difference was not significant to 

differentiate the top and lower part of the canopy.  
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Figure 4.4. Rows are detected by using depth map (1), transformed binary depth map at the 

center (2), while lower image (3) represents the sliding window detection of the rows. 

The detection was determined as the probability as it heavily depended on the appearance 

of the depth map. If the depth map is not uniform with many variations, it was difficult to get a 

70th percentile of the pixels that show uniform changes in the plant canopy. So, a ranking was 

done (Figure 4.5) to categorize the detection as good (green), moderate (grey), or no detection 

(red).  
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Figure 4.5. Ranking the detection of the rows (Upper image means detection was successful as it 

shows green and yellow stripes, center image detection with gray stripe was moderately 

successful, while the bottom with red stripe meant no rows were detected) 

The binary pixels were detected by placing a 100x50 pixel window along the left and 

right row. The points were then fitted using a polynomial function to detect the rows. The points 

were then interpolated to find the polynomial function of the second degree. The assumption is 

that the rows obey the second-degree polynomial function. Assume, (xi,yi) are the distinct points 

found after matching the pixel sliding window. For distinct points n+1, x0,x1,x2….xn-1 , xn and 
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corresponding points y0,y1,y2,y3 …. yn-1, and yn; there exists a quadratic equation to fit points 

[(x0,y0), (x1,y1), (x2,y2) …… (xn-1, yn-1), (xn, yn)]. Assume, function p interpolates pixel values 

that;  

p(xi) = yi for all the values of i from 0,1,2…. to n.                                   (4.2) 

For second degree polynomial; then 

𝑝(𝑥𝑖)  =  𝑎2 𝑥𝑖
2  +  𝑎1𝑥𝑖  +  𝑎0                      (4.3) 

Equating equation (4.2) and (4.3) and arrange them in matrix form leads to; 

[
 
 
 
𝑥0
2 𝑥0 1

𝑥0
2 𝑥0 1
⋮ ⋮ ⋮
𝑥0
2 𝑥0 1]

 
 
 
[

𝑎2
𝑎1
𝑎0
]  =  [

𝑦0
𝑦1
⋮
𝑦𝑛

]                               (4.4) 

The left matrix is called to vandermonde matrix (V), while a2, a1, and a0 are the coefficients (a̅) of 

the predicted polynomial equation that we were required to solve. The vandermonde matrix is 

nonsingular. 

  Va̅ = y̅ 

   a̅ = V / y̅                                                                             (4.5) 

The Manhattan distance between the center of the sliding window and the predicted 

polynomial fit was calculated to find out how close the sliding window is to the predicted 

polynomial fit. The points were generated using values of x for each polynomial fit, and then, 

manhattan distance calculated. The distance was expressed as the percentage from the middle of 

the sliding window to the polynomial fit. So, the polynomial fit should be inside 100% in the 

sliding window to be determined as the partial detection. If one of the polynomials was greater 

than 100% offset, it was concluded the row was not detected at all and marked as a red stripe 

(Figures Figure 4.5(3) and Figure 4.6(3)). When the polynomial fits were 60% or more away 

from the sliding window, it was concluded as moderate if there was a row and marked as a gray 
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stripe (Figures Figure 4.5(2) and Figure 4.6(2)). When the polynomial fits were 60% or less for 

both left and right rows from the sliding window, it was concluded as the rows were detected 

successfully and marked with stripes of yellow and green(Figures Figure 4.5(1) and Figure 

4.6(1)).  

1 

 

2 

 

3 

 

Figure 4.6. Sliding window comparison with polynomial fit using Manhattan distance. The upper 

image (1) is the successful detection; center image detection (2) was moderate detection 

confidence while the lower image (3) indicated no row detection 
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4.3.3 Boll Location Detection 

Each image frame was acquired using a ZED camera and analyzed using a 4-step 

machine vision algorithm (1. depth processing, 2. color segmentation, 3. feature extraction, and 

4. frame matching for position determination). These steps were handled by the graphic card 

optimized rugged development kit (NVIDIA Jetson TX2) to achieve improved matrices 

calculations using the NVIDIA CUDA cores. 

Depth processing was achieved by using the ZED stereo camera, which had two lenses 

with a separate 1/3" 4MP CMOS image sensor for each lens. This arrangement allowed the 

camera to have an ability to process 3D images that provided the depth measurement of a cotton 

boll to the camera. The proximity of the cotton boll was used to determine its distance from the 

ground as well as the horizontal distance and vertical distance from the center of the camera 

carrying platform.  

Varying light illumination altered image clarity and boll classification frame-to-frame. 

Also, bolls visible to the sensor in one frame became occluded in a subsequent frame of the boll 

from a different viewpoint of the camera. The boll detection algorithm must have built-in 

intelligence to remember the last position of the boll even when it appeared undetected in future 

image frames. Color segmentation was implemented by using machine vision algorithms 

deployed in the OpenCV library (Gong & Sakauchi, 1995). A machine vision algorithm was 

required to mask/subtract all background environment and leave cotton bolls in the frame. Since 

cotton bolls were white, the algorithms then needed to mask white objects from the environment. 

The cotton boll detection task involved four steps (Gong & Sakauchi, 1995): 

1. Grab an image  
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2. Using the RGB color threshold, separate each RGB component of the image. For 

cotton bolls, the white components of the image were masked. 

3. Subtract the image background from the original image. 

4. Remove all the regions where the contours are less than value M. Value M was 

determined by estimating the number of pixels defining the smallest boll. 

The first step was achieved by applying a threshold to separate the white bolls from the 

background. For white cotton bolls, the color range/threshold was set to 240-255 in the red, 

green, and blue channel (8-bit color depth map). It made every boll detectable that gets proper 

illumination in at least one image frame. It should be noted that this study is more interested in 

the depth measurement of the stereo vision system. The second step used feature matching and 

application of a Boolean "AND" operation between the mask image and the original image. The 

output image was then converted to greyscale. 

The last step is feature extraction that is performed by finding contours of consecutive 

points that have the same intensity and are clustered. Color masking of the grey image was 

performed, then boundary curves were applied to detect and distinguish all white pixels of the 

image. For each contour, the center (centroid) was calculated, and the number of pixels that were 

together was determined. The threshold for the number of pixels together that defined a boll was 

called M. In this study, two M values, 5 and 15 pixels were chosen and compared.   

4.3.4 Frame Feature Extraction, Matching, and Tracking 

Frame matching was required to track the position of bolls in respective image frames. In 

some instances, the algorithm missed the bolls due to illumination problems that impacted 

brightness, contrast, and sharpness of the image. Hence, the system was developed such that it 

detected and remembered the boll locations in respective image frames. Since the rover was 
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moving while the bolls were stationary, multiple frames detected bolls with varying depth 

measurements. Boll tracking was achieved by calculating the projective transformation 

(homograph) matrix (3x3) that matched the point corresponding to two consecutive image 

frames.  

Two consecutive image frames were loaded to the CPU, and the ORB feature extraction 

algorithm applied to get unique features for both frames to calculate the homograph matrix. ORB 

was a combination of the oriented FAST (Features from Accelerated Segment Test) and rotated 

BRIEF (Binary Robust Independent Elementary Features) libraries in OpenCV 3.3  (Calonder et 

al., 2010; Rosten & Drummond, 2006; Rublee et al., 2011). ORB (an open-source machine 

vision algorithm) was chosen because it was light and the fastest of all the feature extraction 

algorithms (Rublee et al., 2011). The OpenCV Brute force matcher, FLANN matcher, and 

findHomography modules were used to get the homograph transformation matrix (Muja & 

Lowe, 2014). These algorithms were too slow to achieve the required speed as they were taking 

more than 4 seconds to process two images. C++ bytecode that used 8 CUDA threads to utilize 

the NVIDIA GPU cores was written. The GPU had CUDA cores that deployed fast graphics 

computing by implementing parallel processing. The C++ bytecode program utilized only 8 of 

the 256 GPU cores because only two frames were loaded compared to other applications that 

deploy a large number of images and hence required more cores. A brute force matcher 

algorithm that used a random sample consensus (RANSAC) algorithm was then written and 

applied to the images to get the matching features between the images. The RANSAC algorithm 

interpreted data containing a lot of gross errors and hence was very useful for where several 

outliers are prevalent  (Fischler & Bolles, 1981). The algorithm used match scores to determine 

the best matches and left out the outliers (Fischler & Bolles, 1981). The inliers threshold was 
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determined if at least 5 pixels of the frames matched. Otherwise, it was discarded. By assuming 

only 20% of the features to match, the system used RANSAC to estimate the data set that 

contained outliers iteratively (Figure 4.7). RANSAC algorithm followed the following sequence 

of instruction: 

1. A random subset of data was selected, in this case, 20%, and then fit the model. 

2. The number of outliers was determined. The data was tested against the fitted model, and 

the points that fitted the model were considered inliers of the consensus set. 

3. The program iterated eight times to achieve the best homograph. The number of iterations 

was determined by the number of CUDA core blocks and threads. The program 

established eight threads per block of the CUDA cores. 

4. The homograph was then parsed to the main program for tracking and logging boll 

positions. 
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Figure 4.7. Two consecutive images collected from ZED and moving rover (left images) and 

matching features obtained using ORB and Homograph RANSAC (right image). 

The overall imaging software was written in Python, but the RANSAC CUDA code was 

optimized using C++. Then, the Python subprocess code was used to access the CUDA bytecode. 

With this CUDA optimized implementation, the system was able to process at least two images 

per second. 

Features between two consecutive frames can be projected and located using the 

homography transformation matrix,  as shown in Figure 4.7. Hence, the new boll position in the 

next image frame was obtained by multiplying the homography transformation matrix of the 

initial boll position. For missing bolls in a new image frame, the system used past stored 

centroids multiplied by the homograph to get the new position of the bolls. After the homograph 

matrix was obtained, matching boll centroids were determined by using the inverse of the 
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homograph of the current frame and compared to the previous image frame. The boll position for 

each boll was logged and stored as an array.  

The rectified image was used to get the z-coordinate (height) of the boll after identifying 

the bolls. The z-coordinate is the vertical distance of the boll from the ground (height from the 

ground). It is easy to verify this distance manually to evaluate the sensitivity of the camera. 

However, a hydraulic on/off directional control valve (DCV) was used to turn the rover, and this 

sudden change in hydraulic pressure caused a "jerk" in the rover when a turn was initiated, and a 

subsequent side vibration of the camera resulted, introducing errors and bad rectified image 

frames. The vision system obtained the rectified left camera images and the corresponding depth 

maps (disparity image) using an interactive API provided by the camera SDK. The depth map 

corresponded to a perpendicular distance from the left camera lens to the cotton bolls. Hence, a 

model was developed to get the vertical distance of the boll from the ground. This measurement 

was the only coordinate that was determined as it is permanent, while other readings were 

relative measurements and changed as the rover moved over the plants. The camera mounted on 

the rover was inclined at 81.9° from horizontal and obtained 1280 x 720-pixel frames. The field 

of view was covered at an angle of 54° (ɸ) vertically and 96° horizontally.  

The system calculated the moving average of cotton boll locations as it grabbed images. 

The average was used to determine the position of the boll relative to the future cotton-picking 

end effector. Considering Figure 4.8, , the configuration setup of the rover, camera, and cotton 

plants is illustrated. Corresponding measurements are:  

m is the vertical distance from the camera to the cotton bolls,  

n is the height distance of the boll from the ground,  

θ is the vertical angle of the object (cotton boll) from the bottom of the image to the boll,  
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ɸ is the vertical field view of the image, and  

µ is the vertical angle on the image from the bottom of the image to the boll.  

The system was developed to measure the distance of the boll from the ground (n). By 

considering the middle boll (brown arrow), the depth of the boll and distance from the ground 

was determined. Depth reported by the camera is equal to the one given by the formula 

m*atan(µ). By using ZED SDK API, the depth of each pixel with a 16-bit resolution was 

obtained.  
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Figure 4.8. Context diagram that shows cotton boll position measurements 

𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑚 ∗ atan (µ) 

 

Since the camera was inclined at angle µ° from horizontal, the equivalent angle (θ) in 

radians of the object is given by 
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𝑎𝑛𝑔𝑙𝑒(𝜃) =
𝜋

180
∗ 𝑎𝑏𝑠(((

720−𝑦

720
) ∗ 𝜙) − (90 −  µ − ɸ/2))   (4.6) 

 

Now, distance from the ground is given by  

𝑛 = 𝑙 − 𝑚 ∗ atan (µ) ∗ cos(𝜃)                                                         (4.7) 

Since, depth of an object is provided by ZED SDK then, 

𝑛 = 𝑙 − 𝑑𝑒𝑝𝑡ℎ ∗ cos(𝜃)                                                                            (4.8) 

The system generated images that show how the bolls were tracked, and z-coordinate was 

determined (Equation 4.7). The system published images using ROS, and hence clients could get 

live video of the frames. This video was slower as the system only calculated an average of two 

frames per second. Graphs were produced to show results. 
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Figure 4.9. Left image show processed boll position and tracking of the boll while the right 

images show a series of 3 image frames acquired from the moving camera. 

4.3.5 Data Collection 

Field data for row detection were collected at the UGA Lang farm (31.521501, -

83.545712) along Carpenter Road, Tifton, GA USA. The images were collected using the ZED 

camera at an average frame rate of 5 and a rover speed of 4.8 kph near midday on 28th August 

2017. The images and depth maps were stored in the internal memory of the development kit. 

381 of the collected images (images like Figure 4.10) ) that cover four rows passing the first two, 

and then the next two rows when coming back were used for analysis and validation of the row 

detection model. 
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Left lens image Corresponding Depth Map 

Figure 4.10. Collected RGB image and corresponding depth map for cotton row detection (0-

255, 8-bit greyscale image). 

In December 2017, an experiment to evaluate the cotton boll tracking model was 

conducted at UGA campus grounds (N Entomology Dr, Tifton, GA, 31793) at (31° 28'N 83° 

31'W). The location was open to direct sunlight. Twelve defoliated cotton plants were taken from 

a nearby farm and put in soil-filled pots. The plants were placed in 2 rows of 6 plants. The plants 

were 91.4 cm between the center of the stalk (row spacing) and each stalk 61 cm from the next 

(plant spacing). The distances of all bolls were measured manually, and the rover driven over the 

bolls collecting RGB and depth information from the ZED camera. A static test was first 

conducted on 1st December 2017 with the rover set over the bolls, and two consecutive frames 

were taken.  

On 4th December 2017, the second test was done. The plants were randomized, and data 

collected in three rover speed treatments, 1.04 km/h, 0.80 km/h, and 0.64 km/h. The relative 

positions of the bolls were determined by measuring boll distance from the ground. The data 

were collected by changing the M parameter (from 15 to 5) to detect white contours (cotton 

bolls). A comparison of the camera and manual measurement of boll locations was conducted. 
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Comparative statistics were used to measure standard error, root mean square error, and mean 

error. 

4.4  Results and Discussion 

4.4.1 Row Detection 

The 381 images collected were each evaluated to assess the detection of the rows (Table 

4.2). Results were based on the ranking of the software, as previously described, to determine if 

row detection was successful. Images were manually categorized as difficult or easy. The easy 

detection categorization meant the software detection was correct since the canopies are 

explicitly separated, and rows can easily be seen, and hence, all the rows aligned with a sliding 

window. Difficult categorization meant the image had plant canopies heavily overlapping to each 

other, which makes it difficult to differentiate the two rows, and hence, some of the row pixels 

were out of the sliding window, but the detection was still successful. The true positive 

categorization meant the row detection was successful.  False Positive categorization meant row 

detection was found in a place where there were no visible rows. False positives occurred when 

plants other than cotton appeared between rows, or the depth image obtained was blurred. True 

negative meant rows were not detected, and the software successfully assigned no rows to that 

situation. The easy category meant the system was 100% sure there were no rows because there 

were no differences between upper pixels and lowers pixels confirming the absence of a plant 

canopy. False Negatives were situations where the software did not detect a row when a row was 

there. It was most commonly caused by skips in the rows where cotton was not growing.  
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Table 4.2. Results of the manual inspection of the images. 

 Easy Difficult Total 

True Positive 207 76 283 

False Positive 00 01 01 

True Negative 54 15 69 

False Negative 05 23 28 

Total 266 115 381 

 

precision =  TP/(TP + FP) =  283/284 =  0.996 

recall =  TP/(TP +  FN)  =  283/(283 + 28)  =  0.909 

F1 Score = 2 ∗ 
Precision ∗ recall

precision +  recall 
 =  0.951 

Accuracy =  (TP + TN)/(TP + FP + FN + TN)  =  (283 + 69)/381 =  0.923 

The model was evaluated from the data collected (Table 4.2). The vision system was 

found to perform at 92.3% accuracy with an F1-score of 0.951. The algorithm was accurate, but 

it had many difficulties in predicting the rows that had plants that were shorter or taller than the 

average cotton plant. Some rows were occluded by plants from both sides of the row that had a 

big canopy that fully occupied the row. These situations led to the row detection algorithm to 

predict 28 false negatives cases.  

4.4.2 Cotton Boll Detection 

A static test was conducted to assess the ability of the camera to classify and locate bolls 

without the dynamics of a moving camera. The red rover was set stationary but running, and two 

consecutive frames were collected and analyzed (Figure 4.11). Using Excel, manual 
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measurement of sixteen boll locations was compared to camera image measurements. The 

camera accuracy from the first image frame showed a regression relationship to the manual 

measurements of R2 equal to 99% and root mean square error (RMSE) of 11 mm. The second 

frame gave R2 equal to 98%, and RMSE of 17 mm. The mean error was -6 mm and 9.9 mm for 

first and second frames, respectively. The standard deviation was 9.8 mm and 14.8 mm for the 

first and second frames, respectively (Figure 4.11). Results show the camera system was able to 

classify and locate bolls under direct sunlight with low cotton boll density. 

 1st frame 2nd Frame 
Regression 

relationshi

p 

  
Mean Error 

Distributio

n 

  
Figure 4.11. Comparison of the image frames when the rover was stationary. The y-axis is the 

camera measurements, while the x-axis is the manual measurements—the first and second 

frames were taken consecutively to compare the depth estimation. 

The software detected the bolls and recorded multiple depths for the same boll as the 

vehicle moved over the row during the test. The 15-pixel boll contour (M=15) was only able to 

detect 92.3% of all 65 bolls available, while when M=5 was introduced, the system was able to 

detect all the bolls. Figure 4.12 demonstrates the results of color segmentation detection and 

masking. The white spaces had to form a contour that passed the threshold M-value, 15 or 5 
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pixels. The color of the boll and obstruction may make one boll detectible in one frame but not 

the next. The same boll may also be detected in consecutive frames. By being detected more than 

once, the system was able to obtain more than one depth reading for individual bolls. Multiple 

values obtained were averaged to get an estimated depth value. Figure 4.13 shows the regression 

relationship of the experiment for all three different speed tests. Figure 4.14 shows the mean 

error distribution of the experiment. The boll detection algorithm had the worst R2 of 0.86 for the 

highest rover speed (1.04 kph) and M=15 contour, while R2 of 0.95 for the slowest rover speed 

(0.64 kph) M=5 contour. In Figure 4.14, results show that the M=15 data had a larger RMSE 

compared to M=5. These errors were mainly due to the "jerking" of the rover when adjusting the 

right and left turn and topography of the land to maintain a straight path for the rover.  

  
Figure 4.12. Segmentation results and masking of the images. 
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Figure 4.13. Comparison of 15 pixels contour and 5 pixels contour for 1.04 kph (fast speed), 0.80 

kph (slow speed),  and 0.64 kph (very slow speed) of cotton boll position measurements. 
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Figure 4.14. The Mean error distribution of the experiment (15 pixels contour and 5 pixels 

contour for 1.04 kph (fast speed), 0.80 kph (slow speed), and 0.64 mph (very slow speed) of 

cotton boll position measurements). 

4.5  Conclusion 

Imaging systems to determine 3D boll location and row detection were developed and 

evaluated in this study. The performance of the algorithm developed in this study to detect the 

rows showed promise as a method to assist with the RTK GNSS navigation of an intelligent 

rover for harvesting cotton bolls. Adding a visual system to the navigation provided an increased 

perception of the environment to aid in avoiding obstacles and seeing the actual row path for the 

vehicle. Furthermore, in case of failures of the RTK-GNSS, the camera system can help the rover 
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continue moving without pausing to regain localization, which can cost field operational time. 

The results suggest that the visual system can be deployed for rover navigation assistance and 

replacement during GNSS interruptions. But the visual system will only work looking downward 

when rows are not occluded with large plant canopies or in places with no plants. A camera 

closer to the ground positioned horizontally or slightly upward into the canopy could provide a 

better perspective of rows closer to the plant crown at the ground.  

For boll location, the system was able to acquire images and process two frames per 

second using the GPU resources of the system. When comparing the boll detection and 

localizing system to manual measurements, the performance was proportional to the speed of the 

rover and contour threshold (M) used to detect bolls with better performance. With M=5, the 

system may detect multiple contours for the same boll compared to M=15. As a result, the boll 

tracking system decreases time spent errantly tracking multiple contours as different bolls when 

there is only one boll present. It should help increase harvest speed when using a robotic arm 

with an end-effector to harvest cotton bolls identified by the boll tracking system. Results 

showed that the rover would have to stop in some locations to get the best measurement of boll 

locations in the field for cotton boll picking with a robotic arm. The accuracy achieved by 

tracking cotton bolls is favorable for proceeding to the development of a cotton harvesting robot. 

Future research should involve more field testing of the models developed in this study in 

realistic conditions.  
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CHAPTER 5  

AUTONOMOUS NAVIGATION OF A CENTER-ARTICULATED AND HYDROSTATIC 

TRANSMISSION ROVER USING A MODIFIED PURE PURSUIT ALGORITHM IN A 

COTTON FIELD4 

  

 
4 Fue, K., Barnes, E., Porter, W., Li, C., and Rains, G., Submitted to Sensors, July 1, 2020. 
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5.1  Abstract 

This study proposes an algorithm that controls an autonomous, multi-purpose, center-

articulated hydrostatic transmission rover to navigate along crop rows. Accurate navigation 

without damaging plants can promote the development of the spraying, scouting, and harvesting 

operations used in multiple crops. This multi-purpose rover is being developed to harvest 

undefoliated cotton to expand the harvest window to up to 50 days. The rover would harvest 

cotton in teams by performing several passes as the bolls become ready to harvest. We propose 

that teams of rovers with interchangeable attachments could make cotton production more 

profitable for farmers and more accessible to owners of smaller plots of land who cannot afford 

large tractors and harvesting equipment. The rover was localized with a low-cost RTK-GNSS, 

encoders, and IMUs for heading. ROS-based software was developed to harness the sensor 

information, localize the rover, and execute path following controls. To test the localization and 

modified pure-pursuit path-following controls, first, GNSS waypoints were obtained by 

manually steering the rover over the rows followed by the rover autonomously driving over the 

rows. The results showed that the robot achieved a mean absolute error (MAE) of 0.04m, 0.06m, 

and 0.09m for the first, second, and third passes of the experiment, respectively. The robot 

achieved an MAE of 0.06m. When turning at the end of the row, the mean absolute error (MAE) 

from the RTK-GNSS-generated path was 0.24m. The turning errors were acceptable for the open 

field at the end of the row. Errors while driving down the row did damage the plants by moving 

close to the plants’ stems, and these errors likely would not impede operations designed for the 

multi-purpose rover. The designed robot achieved optimum performance, and it will be 

acceptable for cotton harvesting operations. 
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5.2  Introduction 

Mechanical harvesting has helped improve crop production significantly since the mid-

1900s. Before these machines were developed, crops such as cotton were primarily hand-

harvested. The development of the cotton combine helped to reduce labor costs and increase 

production efficiency but comes with downsides. Harvesting is accomplished using expensive 

machines that are massive in size and weight, which can lead to soil compaction, and are also 

costly and time-consuming to repair. Breakdowns during the season may expose cotton to hostile 

environmental conditions that can diminish the quality of the harvest. Besides, Cotton harvesting 

takes place only after cotton fields have been defoliated with chemical defoliants. These 

chemicals can degrade the land and are an added expense to production costs. The defoliation is 

performed approximately 50 days from the opening of the first bolls. A consequence of waiting 

many weeks to harvest all the cotton simultaneously, lint quality is affected profoundly by 

external weather and other environmental elements from the time they open to the time they are 

picked (UGA, 2019; USDA/NASS, 2018). As a consequence of the current cotton management 

system, small acreage farmers can not afford to buy these machines or maintain them (Duckett et 

al., 2018). Furthermore, the fast aging farming community will experience a labor shortage since 

many of their children are moving to urban areas (Duckett et al., 2018).  

Furthermore, some row crops exceptionally need special procedures for harvesting. For 

example, cotton harvesting takes place only after cotton fields are defoliated using chemical 

defoliants. These chemicals can degrade the land and are an added expense to production costs. 

The defoliation is done around 50 days from the opening of the first bolls. Cotton lint quality is 

profoundly affected due to external weather and other environmental elements that may 
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contaminate and diminish the quality from the time they open to the time they are picked. (Fue et 

al., 2018b; Hayes, 2017).  

Any solution that could increase the participation of small and family farmers would be 

well received. One alternative to current large-scale farm and machinery systems is to introduce 

small, multi-purpose, robotic rovers that can navigate and perform agricultural operations 

autonomously without the need for human-machine control. Fortunately, there is a booming 

industry in robotics and machine learning technologies, and robotics have been developed to 

solve many pertinent issues in agriculture (Duckett et al., 2018; Fue et al., 2020b; Fue et al., 

2018b; Hayes, 2017; Rains et al., 2014).  

However, for mobile robotic systems to be efficient, they need very effective methods to 

navigate fields autonomously. Autonomous navigation of robotic systems depends upon four 

modules: sensors, vehicle mobility, perception, and control algorithms (Figure 5.1). Sensors such 

as RTK-GNSS, RGB cameras, Stereo camera, Light Detection and Ranging (LiDAR), SOund 

NAvigation and Ranging (SONAR), Ultrasonic, Radio-frequency identification (RFID), Inertial 

Measurement Unit (IMU), Laser scanner, RAdio Detection And Ranging (RADAR), encoders, 

thermal imaging, hyperspectral and infrared have been used extensively to detect fruits and 

plants in agricultural fields (Figure 5.1). Additionally, many vehicle mobility systems have been 

developed primarily for agricultural use, such as continuous tracks, the Ackermann four-wheel 

drive, center-articulated drives, legged-robots, swinging robots, omnidirectional drives, and 

sliding-on-the-rail robots (Figure 5.1). The mobility is designed to accommodate different soil 

and topographic conditions, open or greenhouse farming, and maneuverability requirements. 

Perception is created using sensor output and machine vision algorithms, such as image 

segmentation, hough transformation, sensor fusion, or machine learning, to obtain environmental 
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features (Figure 5.1). After perceiving the environment, the mobile robot performs a movement 

action to the next location. There are multiple control system methods used: fuzzy logic, 

nonlinear, proportional-integral-derivative (PID), adaptive, model-based, rear-wheel feedback, 

linear-quadratic regulator, model predictive control (MPC), and machine learning, such as neural 

networks and reinforcement learning. After assimilating a control system, several techniques 

must be incorporated to develop autonomous navigation in an unstructured environment, such as 

localization, mapping, obstacle avoidance, simultaneous localization, and Mapping (SLAM), 

row-following in row crops and path planning to perform complex farm operation movements 

(Auat Cheein et al., 2011; Backman et al., 2012; Ball et al., 2016; Boubin et al.; Cheein et al., 

2010; Coulter, 1992; Duckett et al., 2018; Farzan et al., 2018; Fue et al., 2020b; Grimstad & 

From, 2017; Higuti et al., 2019; Kayacan et al., 2018; Liakos et al., 2018; Ouadah et al., 2008; 

Ramin Shamshiri et al., 2018; Reiser et al., 2019; Tu et al., 2019; H. Wang & Noguchi, 2018; 

Xiong et al., 2019; Xue et al., 2012).  

In this study, two IMUs, a high precision potentiometer, two encoders, a low-cost single-

frequency RTK-GNSS, and the sensor fusion algorithm Extended Kalman Filter (EKF), were 

utilized to perform autonomous localization and navigation of the robot. Proportional control and 

a modified pure pursuit algorithm were implemented to perform autonomous cotton row 

following for a multi-purpose rover. 
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Figure 5.1. Autonomous navigation modules. 

The development and performance of the autonomous navigation of a multi-purpose 

rover are presented in this paper. Autonomous means the rover can navigate itself along cotton 

rows without the intervention of human subjects and without destroying plants or cotton bolls. 

High precision is required to achieve acceptable navigation without causing an economic 

reduction in yield. Therefore, in this study, we present two objectives; 

1. Development of the navigation system of the autonomous center-articulated 

multi-purpose rover 

2. Evaluation of the field navigation of the autonomous center-articulated multi-

purpose rover 
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5.3  Materials and Methods 

5.3.1 Robot components and System Setup 

The rover (Figure 5.2) was a custom-built four-wheel center-articulated robot (West 

Texas Lee Corp., Lubbock, Texas). The rover was 340 cm long with front and back parts 

(divided by the center of articulation) being 145 cm and 195 cm long, respectively. The rover's 

height and width could be adjusted to a maximum of 122cm and 234 cm, respectively. The rover 

tires were 91 cm from the center of the vehicle. The rover was 212 cm wide, with a tire width of 

30 cm. The four tires had a radius of 30.48cm and a circumference of 191.51cm. The rover had a 

ground clearance of 91 cm. The rover used seven sensors; two IMUs, a high precision 

potentiometer, two rotary encoders, and RTK-GNSS. Each front tire was connected to a rotary 

encoder (Koyo incremental (quadrature) TRDA-20R1N1024VD, Automationdirect.com, Atlanta, 

GA, USA). The two IMUs (Phidget Spatial Precision 3/3/3 High-Resolution model 1044_1B, 

Calgary, Alberta, Canada) were placed in front of the rover. First, IMU was placed 95 cm above 

the ground and 31 cm from the front of the vehicle. The second IMU was 132 cm above the 

ground and 46 cm from the front of the vehicle. The low-cost RTK-GNSS (USD 800) single-

frequency receiver (EMLID Reach RS, Hong Kong, China) was placed 246 cm above the ground 

and 30 cm from the front of the vehicle. An embedded system (NVIDIA Jetson AGX Xavier 

development kit, Nvidia Corp., Santa Clara, CA, USA) was installed and used to control rover 

navigation and read sensor data.  
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Figure 5.2. The red research rover with manipulator and sensors attached in front of the rover 

implemented for this study 

All sensors except the rotary encoders and potentiometer were connected to the 

embedded system via a universal serial bus (USB). The encoders were connected to the rover 

navigation controller (Arduino Mega 2560, Arduino LLC) using four wires; signal A and B, 

power, and ground so they can register rotation of the tires by detecting the leading edge of rising 

square waves. A high precision potentiometer (Vishay Spectral Single Turn, Malvern, PA) was 

used to report the articulation angle of the vehicle by measuring the electric potential caused by 

the turn of the vehicle, which was correlated to the angle. The potentiometer was connected to 

the rover navigation controller. 

ROS (Robot Operating System), which is robotics middleware used for robot software 

development, was implemented to connect the embedded system (Jetson Xavier) with the rover 

navigation controller. The robot software was developed to communicate using ROS topics. ROS 

topics were named buses that the nodes (embedded system and navigation controller) used to 
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exchange messages (Koubâa, 2017). The sensors connected to the embedded system published 

the updates that were utilized by both the embedded system and navigation controller. The topics 

were set to communicate so that they did not know the other nodes they were communicating 

with(Koubâa, 2017; Quigley et al., 2009).  The rover navigation controller received a signal from 

the embedded computer to control the rover movement, articulation, and engine throttling. All 

four wheels of the rover were mounted to hydraulic motors (Parker 2090B 238 cc/rev) that had 

their rotation controlled using a linear servo to the swashplate lever of a 14.1 cc/rev axial-piston 

variable rate pump (OilGear, Milwaukee, WI, USA). The swashplate angle was controlled by the 

rover controller that determined the placement of the linear electric servo (Robotzone HDA4, 

Servocity, Winfield, KS) that had a maximum movement of approximately 10.16 cm. The 

left/right articulation was controlled through a 4-port 3-way open-center directional control valve 

(DCV) connected to 2 hydraulic cylinders and powered by a 0.45 cc/rev fixed displacement 

pump (Bucher Hydraulics, Italy) in tandem with the variable rate pump. The DCV provided 

hydraulic fluid to hydraulic cylinders that controlled the rover's articulation. The rover could turn 

a maximum of 45 degrees with a wheelbase of 190 cm.  The engine throttle was connected to an 

onboard Kohler Command 20HP engine (CH20S, Kohler Co, Wisconsin, USA) with a maximum 

of 2500 RPM and powered the tandem variable- and fixed-rate pumps. The front tires were 

connected to a rotary encoder to provide feedback on the movement of the rover along the crop 

rows.  Left/right articulation was controlled by using relays connected to the DCV. 

5.3.2 Real-Time Kinematic GNSS and Network Transport of Radio Technical Commission for 

Maritime Services (RTCM) via Internet Protocol (NTRIP) 

The RTK-GNSS receiver used to acquire the global position of the rover used an NTRIP 

provider (eGPS Solutions, Norcross, GA) to obtain differential correction through the internet 
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using a Verizon modem (Inseego Jetpack MiFi 8800L, Verizon Wireless, New York, NY) 

(Figure 5.3). The GNSS correction signal was obtained using the NTRIP signal with a mounting 

point within 3 kilometers of the test plot and downloaded to the RTK-GNSS through a Verizon 

Hotspot and wireless signal. NTRIP servers received the message from the base RTK-GNSS 

receivers connected to it. A data plan subscription was required to use the modem to acquire data 

through the internet from the eGPS base station network instead of using a local base station. 

The service to our NTRIP provider was registered, and a username, password, and I.P. address 

(mount point) to connect to the NTRIP provider via Internet Protocol were provided. Using 

NTRIP was advantageous because GNSS corrections were acquired without the need to set up a 

base station. 

 

Figure 5.3. Context diagram of the Network Transport of RTCM via Internet Protocol (NTRIP) 

5.3.3 Calibration of the Potentiometer, two IMUs, and two Encoders 

The potentiometer (at point H in Figure 5.4) measured the articulation angle. Figure 5.4 

shows the aerial view of the right turning center articulated rover.  When the rover was straight, 

P1 is parallel to P2, and the potentiometer digital signal read 493. The length of l1 and l2 was 
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0.91m each. To obtain the articulation angle γ, manual measurements were made and applied 

using the Cosine rule progression below(Equation 1); 

𝐿2  =  𝑙1
2  +  𝑙2

2  +  2 ∗ 𝑙2 ∗ 𝑙1 ∗ 𝑐𝑜𝑠 𝜃 

𝜃 =  𝑐𝑜𝑠−1 (
𝑙1
2  +  𝑙2

2  −  𝐿2

2 ∗ 𝑙1
2 ∗ 𝑙2

2 ) 

𝛾 = 𝜋 − 𝑐𝑜𝑠−1 (
𝑙1
2  +  𝑙2

2  −  𝐿2

2 ∗ 𝑙1
2 ∗ 𝑙2

2 ) 

𝛾 = 𝜋 − 𝑐𝑜𝑠−1 (
0.912 + 0.912 − 𝐿2

2∗0.912∗0.912
)       (5.1) 

 

 

 

Figure 5.4. Potentiometer Calibration. Potentiometer calibration involves measurements of the 

voltage reported by the potentiometer in relation to the changing angle θ of the rover when 

turning left or right. Assume all the points are in a cartesian coordinate system. 
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To calibrate the angle, the rover was turned left or right. The angle was measured by the 

potentiometer, which was digitized with a 10-bit ADC, and the signal values ranged from 0 to 

1023. The angle was recorded when turning left and right in 20 digital signal intervals from 493 

(Figure 5.5a and b). Assume 493 as the center position and going left is negative while going 

right is positive. The angle γ was plotted together with the potentiometer signal (Figure 5.5). The 

potentiometer signal decreased when turning left and increased when turning right. The equation 

obtained from the plots for the left was y = 0.190225x, and for the right was y = 0.1932075x 

(Figure 5.5). The equations were implemented in algorithm 1 (Table 5.1) at lines 15 to 19. The 

left/right equations were slightly different due to potentiometer errors, human errors, and slight 

misalignment of the vehicle. 

 
 

(a) (b) 

Figure 5.5. The calibration of the potentiometer and articulation angle. The left image (5a) 

presents the relationship of the left articulation angle versus the potentiometer signal. The left 

image (5b) shows the relationship of the right articulation angle versus the potentiometer signal. 

The potentiometer signal presented on the graph is the difference between the reported value and 

center value (493).  

Both IMUs were calibrated as advised by the manufacturer's users guide (Phidgets Inc., 

Calgary, CA). The magnetic error correction was done by the compass calibrator software 
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downloaded from the Phidgets website. The two IMUs were placed at two different locations on 

the vehicle, as described in the section "Robot components and System Setup." The IMU was 

calibrated by connecting the IMU to the embedded computer, which had the Phidget compass 

calibration program installed. The magnetic field estimated value for Tifton, Georgia, was 

0.47459 T obtained online from the NOAA website (http://www.ngdc.noaa.gov/geomag-

web/#igrfwmm). After entering the magnetic field value, the program was started, and the rover 

was driven in a circle behind the Engineering Annex fields (31.475340N, 83.528968W) in 

Tifton, Georgia, to generate the calibrated compass parameters. After the calibration, the IMUs 

were then used for localization and navigation experiments.  

Encoder calibration was conducted by finding the circumference of the rover wheels and 

then converting the signal of the encoder to distance for each encoder count. The rotary encoders 

used a 10-bit Analog-to-digital converter. To make sure that the encoders were accurately 

calibrated, the tires of the rover were rotated 360°, and the count of the encoders increased from 

0 to 1023. Since the circumference of the tire was 1915.1mm, the distance per count (resolution) 

was 1915.1/1024 = 1.87mm.  

5.3.4 Robot Navigation Systems 

The navigation system consisted of the embedded development kit and the rover 

navigation controller. The rover used two algorithms to control navigation: modified pure pursuit 

and Proportional control (Bergerman et al., 2016; Botterill et al., 2017; Coulter, 1992; Rains et 

al., 2014; Samuel et al., 2016). The system used a predefined path of the GNSS signal to pass 

over the rows. The path was obtained by recording the rover path as it was manually driven 

down cotton rows (Figure 5.6). The predefined path was then used by the rover to navigate 

autonomously. 

http://www.ngdc.noaa.gov/geomag-web/#igrfwmm
http://www.ngdc.noaa.gov/geomag-web/#igrfwmm
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Figure 5.6. The rover driving along the cotton rows. Blueline is the path recorded by the rover 

after finishing one lap 

Since the rover used six sensors (two IMUs, potentiometer, two encoders, and RTK-

GNSS) to navigate (Figure 5.7), the Extended Kalman Filter was implemented for simultaneous 

localization and navigation (Backman et al., 2012; Moore & Stouch, 2016; Post et al., 2017; Wan 

& Nelson, 2001). Sensor fusion was achieved by using the open-source ROS library "Robot 

localization," which provided sensor fusion and nonlinear state estimation for IMUs, encoders, 

and GNSS. The IMUs published two ROS topics (imu_link1/data and imu_link2/data), encoders 

published wheel odometry (/wheel_odom), and RTK-GNSS published /gps/fix signal (Moore & 

Stouch, 2016). The EKF localization (Figure 5.7) used the nav_sat_transform library to integrate 

fixed data from the RTK-GNSS (Post et al., 2017). Basically, "navsat_transform_node" required 

three sources of information: the robot's current pose estimate in its world frame, an earth-
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referenced heading, and a geographic coordinate expressed as a latitude/longitude pair (with 

optional altitude) (http://docs.ros.org/). 

 

Figure 5.7. Simultaneous localization and navigation of the rover using dual Extended Kalman 

Filter (dual EKF) 

EKF localization was implemented (Figure 5.8) as a dual EKF method that involved 

running two EKF's concurrently. The state and model could be estimated from the noisy 

observations of the IMU, wheel odometry, and GPS fix signal.  

𝑥𝑘+1 = 𝐹(𝑥𝑘, 𝑢𝑘 , 𝑤)  + 𝑣𝑘        (5.2) 

𝑦𝑘 = 𝐻(𝑥𝑘, 𝑤)  + 𝑛𝑘 

We considered the nonlinear problem in which system states (xk) and model parameters 

(w) were simultaneously estimated from the observed signal (yk ). The processed signal (uk) 

determined the dynamical system, while the exogenous input noises (nk and vk) were calculated 

(Equation 2). In Figure 5.8, using current model estimates wk, an EKF state filter calculated the 

new state in every step. Then, it calculated the fresh weights of the current state estimate xk. The 

model structure F and H are multilayer neural networks, while w are the weights (Wan & 

http://docs.ros.org/
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Nelson, 2001). In this case, the model used IMUs, and encoders to generate localization 

estimates and then added RTK-GNSS to make global localization estimates of the rover position. 

 

Figure 5.8. The dual extended Kalman filter. The method utilizes two concurrently running 

EKFs. State estimates are done by the top EKF using 𝑤̂𝑘−1 for the time update.While weight 

estimates are generated using the bottom EKF that does measurement updates using 𝑥̂𝑘−1 (Wan 

& Nelson, 2001). 

After getting the state estimates of the rover, a modified pure pursuit and PID were used 

to control the rover's navigation. 

5.3.5 Modified Pure Pursuit  

Pure pursuit (P.P.) is a technique that computes the current vehicle position relative to a 

goal and then determines the curvature that would bring the vehicle back to the predefined or 

designated path. P.P. chooses the goal that is some distance in front of the rover. It looks ahead 

and determines the articulation of the tires to get into the path. The look-ahead distance changes 

depending on the curvature of the path and speed of the vehicle. 
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The rover achieved pure pursuit tracking by following six steps; determine the current 

location of the rover, find the path point closest to the rover, find the goal location, transform the 

goal location to rover coordinates, calculate the curvature and request the rover to set the 

articulation to that curvature and then, update the vehicle's position (Coulter, 1992; Samuel et al., 

2016). 

Figure 5.9 illustrates the center-articulated rover with all the sensors at the front, 

including GNSS steering to pursue the red dot (goal point) at a distance L. The radius of turning 

is r. At the same time, s, which is equal to x, is the relative distance of the rover to the goal point.  

x+d = r 

x = s 

x2 + y2 = L2          (5.3) 

 

Figure 5.9. The geometry of the Pure Pursuit algorithm. Blueline is the designated path to pursue 

while point (x,y) is the goal. Black lines represent cartesian coordinates axis (y and x) while the 
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green lines show the geometry of turning. The notation; r is the turning radius, γ is the 

articulation angle, Pe is the Path error, (x,y) is the goal of the rover, L is the distance from the 

rover to goal, d is the horizontal distance of the goal from the center of the turning circle and s is 

the horizontal distance of the rover to the goal. 

Using the relationship of x, y, r, and L in Figure 5.9, the curvature C can be derived. If 

x+d = r, and  d2  +  y2  =  r2,  r can be found by computing its’  relationship  with x,  y  

coordinates, r = (x2 + y2) / (2x) (Rains et al., 2014). Then, the turning radius r becomes; 

𝑟 =  
𝐿2

2∗𝑥
          (5.4) 

 

Hence, the curvature C which is 1/r is given as; 

𝐶 =  
2∗𝑥

𝐿2
          (5.5) 
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Figure 5.10. The geometry of the center-articulated rover while turning. r1 is the distance from 

the origin of the turning circle O (Corke & Ridley, 2001). 

Consider Figure 5.10 that shows the geometry of the turning rover (Corke & Ridley, 

2001). At the point H, a + b + γ = 1800. So, b + d = 900 and a + c = 900. Therefore, by 

substituting constants makes  γ =  c +  d. γ is the articulation angle while θ is the heading 

angle. 

Now, consider the right-triangle ∆OP2A,  

l2  + 
l1

cos γ
 =  r2 tan γ 

(r1  +  l1 tan γ) sin γ =  l2 + 
l1

cosγ
      (5.6) 

Then, by simplifying Equation 5.6,  the turning radii, r1 and r2 can be found; 

r1  =  
l1 cos γ  + l2

sin γ
 

r2  =  
l2 cosγ + l1

sinγ
        (5.7) 

 

Since the rover was an approximately symmetric vehicle, the distance from the center 

(Lf) to back tires or front tires was 91 cm. hence, we can simplify the radii equation above,  

r =  r1  =   r2  =  
Lf cosγ + Lf

sinγ
       (5.8) 

 

Then, using trigonometry rules, sin 2a = 2sin a cos a  and cos 2a = = 2cos2a - 1 

r

Lf
 =  

cos γ  +  1

sin γ
=

2 cos2
γ
2

2 sin
γ
2 cos

γ
2
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Hence, by simplifying the trigonometry,  

tan γ  =  
Lf

r
         (5.9) 

insert equation (5.4) which makes; 

tan γ  =  2 ∗ Lf ∗ (
x

L
)
1

L
. 

tan γ  =  2 ∗ Lf ∗ (sin θ)
1

L
. 

 

γ =  2 ∗  tan−1 (
2∗Lf∗sinθ

L
)       (5.10) 

So, equation 5.10 shows the relationship of articulation angle γ  to look-ahead distance L, 

half-length of the rover Lf and heading angle θ. Consider the vehicle at state (xk,yk) is articulating 

to the next goal (xk+1, yk+1). Next heading angle 𝜃𝑘+1  in relation to the current heading angle 

𝜃𝑘  can be found by; 

𝜃𝑘+1  = 𝜃𝑘  − 𝑡𝑎𝑛
−1 𝑥𝑘+1 − 𝑥𝑘

𝑦𝑘+1 − 𝑦𝑘
       (5.11) 

Because the rover has a slow turning action when moving, the horizontal distance of the 

vehicle from the goal should be increased by a factor "K" (See Equation 5.12). The closest 

distance of the rover to the path is the path error. Pe is found by calculating the perpendicular 

distance of the vehicle to the designated path. The next position of the path was moved further 

from the position by the factor K multiplied by Pe. It was the modified Pure Pursuit of the center-

articulated rover (Equation 5.12). The value K is a rover-dependent number that should be 

obtained by testing and experimentation to achieve the best path tracking. 

xk+1  =  xk+1  +  K ∗ Pe        (5.12) 
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5.3.6 Proportional Control of the Articulation Angle 

The rover turned to the target articulation angle γ, as described in Equation (5.10) by 

using proportional control. The current angle γk and required target angle γk+1 was used to find 

the error that was used to control the angle. The gain Kp used was set to 1. The articulation angle 

was controlled by the hydraulic cylinder linear actuators. The actuators were connected to two 

relays. Proportional control was used since the actuators were only controlled by on/off relays, 

which limited the ability to control actuator speed. The two relays were connected to the 

navigation controller pin 7 for the left actuator and pin 8 for the right actuator. The relays used to 

control the linear actuator were Single Pole Double Throw (SPDT) relays. SPDT relays provided 

a capability to control the linear actuators by switching into three different connections; normally 

closed, normally open, and common (Oberhammer et al., 2006). So, if the rover turned left, the 

left actuator retracted while the right actuator extended until a desired left articulation angle was 

achieved. Also, if the rover turned right, the right actuator retracted while the left actuator 

extended until a desired right articulation angle was achieved. It means the circuit opened for the 

right actuator and closed for the left one. When the angle required was attained, it switched to 

common.  

 
 

(a) (b) 



 

138 

 

Figure 5.11. Proportional control of the articulation angle (a) The rover when turning left (b) the 

proportional control to achieve a targeted articulation angle 

Table 5.1. Algorithm describing the proportional control of the articulation angle. 

Algorithm 1: Proportional control of the articulation angle 

Input: Angle reported by the high precision potentiometer γk , target angle γk+1 and threshold 

Et 

Output: p which is equal to Kp*(γk+1 - γk) 

5: Gain Kp is equal to 1 

6: p <- Kp * (γk+1 – γk) 

7: WHILE p > Et  

12:   Declare and assign 0 to increment i  

13:   Declare and assign 0 to temp 

14:   WHILE i < 20 

15:        Delay for one microsecond 

16:        Read the analog signal from the high precision potentiometer  γk  

17:        temp add the γk  to temp  

18:        Increment i 

19:   } 

20:   Get the average temp 

21:   Assign temp to γk+1 

22:   IF temp > analog signal 493  

23:         γk+1 = (temp - 493) * 0.1932075; 

24:   ELSE 
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25:         γk+1 = (temp - 493)*0.190225; 

26:   END IF 

27:  p <- Kp * (γk+1 - γk) 

28:   IF p >  -Et 

29:          Set the left relay HIGH 

30:          Set the right relay LOW 

31:   ELSE IF -p < Et 

32:          Set the left relay LOW 

33:          Set the right relay HIGH 

34:   ELSE 

35:          Set the left relay LOW 

36:          Set the right relay LOW 

37:   END IF 

16: END WHILE 

17: Return all the error  

 

5.3.7 Proportional Control of the Speed of the Rover 

The speed of the rover was controlled by using the proportional controller. The controller 

had a gain of 22 and a target speed of 1.2 m/s. A PID controller was not implemented because 

we were not targeting precise speed control; hence proportional control was enough. The 

controller calculated error from the difference between target speed and the speed estimated by 

the EKF from encoders, IMU, and GNSS readings. The acceleration of the rover was controlled 

by extending and retracting the linear actuator, which sets the swashplate angle. By changing the 
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angle of the swashplate, hydraulic fluid flow rate to the hydraulic motors turning the wheels was 

changed and effectively changed the speed of the rover. The vehicle remained stationary when 

the angle was set at 900. When the angle of the swashplate changed from 900 to 600, the vehicle 

moved backward while increasing the speed to the minimum backward speed. Also, when the 

angle of the swashplate changed from 900 to 1200, the vehicle moved forward with the increase 

to the maximum forward speed. However, the change in actuator movement required the 

swashplate angle to be more than 1080 to move forward or less than 800 to move backward 

created by an inherent deadband in the pump performance. The deadband was caused by wear 

(leakage) in the hydraulic system and mechanical compliance of connectors. The neutral position 

was held until the actuator extended or retracted by more than 2.5 cm.  

 

 
 

(a) (b) 

Figure 5.12. (a) The arrow points to the red arm that controls the swashplate angle. Another 

arrow points to the grey linear actuator controlled by the navigation controller (b) The 

proportional control diagram of the speed of the rover. 

5.3.8 Waypoints Collection and Cubic Spline Interpolation of the Waypoints 

The rover was driven around to obtain the waypoints at the UGA grounds behind the 

engineering annex located at (31.475340N, 83.528968W) and the Entomology farm 
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(31.472985N, 83.531228W) near Bunny Run Rd. in Tifton Georgia. The rover recorded the 

waypoints using RTK-GNSS at the rate of 5Hz. Since the rate 5Hz provided very few data 

points, the algorithm to interpolate the points using a cubic spline interpolation method was 

developed. The points were changed to UTM data points. Both fields were located at Zone 17R.  

Cubic spline interpolation was done by assuming data points were connected by a line whose 

equation was a polynomial degree of three (McKinley & Levine, 1998). It was assumed the 

datapoints given were [xi, yi], and no two points xi were equal to each other, and the xi was in 

sequence such that x0 < x1 < x2 < …< xn. The Spline function S(xi) = yi . For each subinterval 

[𝑥𝑖−1  <  𝑥 < 𝑥𝑖], the cubic function is given as 𝐶𝑖  =  𝑎𝑖  + 𝑏𝑖𝑥 + 𝑐𝑖𝑥
2  +  𝑑𝑖𝑥

3. So, for every 

subinterval the Spline function S(x) can be assumed as; 

𝑆(𝑥)  =  

{
 
 

 
 
𝐶1(𝑥), 𝑥0  <  𝑥 < 𝑥1
𝐶2(𝑥),         𝑥1  <  𝑥 < 𝑥2

⋮
𝐶𝑖(𝑥),          𝑥𝑖−1  <  𝑥 < 𝑥𝑖

⋮
𝐶𝑛(𝑥),         𝑥𝑛−1  <  𝑥 < 𝑥𝑛

 

Table 5.2 is an algorithm to calculate the values of ai, bi, ci, and di for every interval of 

the dataset. More values make it easy to calculate the relative position of the rover to the target 

path perpendicularly. 

Table 5.2. Algorithm to estimate subinterval of UTM waypoints data intervals 

Algorithm 2: Cubic Spline Algorithm to estimate subinterval of UTM waypoints data 

intervals 

Input: x0, x1, x2, …, xn; a0 = f(x0), a1 = f(x1), a2 = f(x2), ….. an = f(xn) 

Output: ai, bi, ci, di for j = 0,1,2,…..,n-1 

1: Assign P0 = 0 
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2: Assign Q0 = 0 

3: Assign R0 = 0 

4: FOR j=0 TO n-1 

5:          Set the interval difference hi <- xi+1 - xi 

6:                Set α1 = (3/hj)*(aj+1 – aj) – (3*(aj – aj-1) /hj-1) 

7: END FOR 

8: FOR j = 1 TO n-1 

9:         Pj = 2*(xj+1 – xj-1) – hj-1Qj-1 

10:         Qj = hj / Lj 

11:         Rj = (αj – hj -1*Rj-1)/Pj 

12: END FOR 

13: Assign Pn =1 

14: Assign Rn = 0 

15: Assign cn = 0 

16: FOR i = n-1 TO 0 

17: //get the remaining values of the cubic spline b,c, and d 

18:        ci = Zi – Qi * ci+1 

19:        bi = (ai+1 – ai)/hi – hi*(ci+1 + 2*ci)/3 

20:        di = (ci+1 – ci) / 3*hi 

21: Return all the values of ai, bi, ci, di  
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5.3.9 Preliminary Experiment 

Preliminary experiments were conducted on 10th October 2019 at the UGA grounds to 

study the navigation behavior of the rover when parameters such as ROS update rates, look 

ahead, and path error were altered. These tests served to calibrate the system to perform well in 

the field. The preliminary experiment involved four tests; 

1. A fast ROS rate was set to 10Hz,  

2. A short look ahead was set at 1m,  

3. Path error was set to 0 which means 𝐾 ∗ 𝑃𝑒  =  0, and  

4. An optimal condition (long look-ahead is 3m, path error is 1.5 times path error and slow 

ROS rate at 1Hz). 

The experiment was conducted by setting the rover to follow the prescribed path. The 

predefined path was obtained by moving the rover manually and collecting the GNSS waypoints. 

Later, the rover was set to autonomous mode to follow the pre-planned path so that behavior and 

characteristics could be observed and tuned. 

5.3.10 Field Experiment 

The field experiment was conducted at the Horticulture hill farm (31.472985N, 

83.531228W) near Bunny Run Road in Tifton, Georgia, after establishing the calibrated 

parameters of the rover. The field (Figure 5.13) was planted on 19th June 2019 using a tractor 

(Massey-Fergurson MF2635 tractor, AGCO, Duluth, GA) and a 2-row planter (Monosem 

planter, Monosem Inc, Edwardsville, KS). The cotton seeds (Delta DP1851B3XF, Delta & Pine 

Land Company of Mississippi, Scott, MS) were planted every two-row and skipped two rows. 

The rows were 36-inch (91.44 cm) wide, and the seed spacing was 4-inch (10.16 cm). The cotton 

field was undefoliated, and most of the cotton bolls were open already at the time of the 
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experiment. Three tests were conducted for navigation on 18.5m rows on 21st October 2019. The 

path was obtained by driving the rover over one of the two rows of cotton plants and collect the 

waypoints (Figure 5.6). The experiments were conducted by setting the rover to follow the 

predefined path autonomously. 

 

 

Figure 5.13. The appearance of the cotton at the time of the field experiment. 

5.4  Results and Discussions 

5.4.1 Preliminary Experiment 

1 2 
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Figure 5.14. . Performance of the rover when the (1)ROS updates were high (10Hz), (2)Short 

look ahead distance (1m), (3) no path error correction was applied and (4)successful path 

tracking when look-ahead was 3m, K was 1.5,  and ROS updates at 1Hz. Blackline is the 

predefined waypoints, while colored lines represented the rover passes for each condition from 1 

to 4. 

The results of the preliminary experiments show that the rover navigation tracking was 

negatively affected when ROS update rates were increased, or no path error correction was 

applied, and when very short look-ahead was used (Figure 5.14). Pure pursuit algorithm has a 

goal to make sure that the rover regains the designated path by articulation when it loses and 

maintains when it was on the predefined waypoints. Fast ROS update rates affected system 

performance since the mechanical responses of the machine were slow compared to the update 

rate provided by the controller. This short time between the new input reading of the system 

meant that the reaction time of the vehicle to the control signal was slow, and the vehicle 
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reaction was always lagging behind the control decision, causing the rover to lose tracking 

control. The ROS rate update was a significant parameter if it was not set right. The performance 

was obtained with short look-ahead distances. With a short look ahead distance, the rover tried to 

move quickly to regain the path it has lost. However, this action caused the rover to overshoot 

the path and oscillate along the prescribed path. 

With no path error corrections (when K was Zero), the rover could never converge to the 

path over time. Figure 5.15(3) shows how the vehicle was not able to converge to the path, which 

means the error was consistently maintained. To avoid this behavior, modified pure pursuit 

increased the error of the system by 1.5 using Equation (5.12) to force the system to converge to 

the path. If the error was significant, the system amplified the error forcing the rover to act 

aggressively and quickly. When the error was small, the system acted slowly because the 

amplification of the error also became small (Refer to Equation 5.12). 

5.4.2 Field Experiments 

Figure 5.15 shows the navigation path traces as recorded by the GNSS for the three 

experiments. The rover performed well visually. The third pass can clearly show that the rover 

moves out of the path during the end-of-row turning. Contributing factors were wheel slipping as 

the rover attempted to turn compounded by control signal updates requiring turning too quick for 

the rover to respond a follow the designated path.  
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Figure 5.15. Path tracking of the prescribed path (black pass). The blue, orange, and gray passes 

are the GPS generated path of the rover when following the rows using the prescribed path 

(black). The blue, orange, and gray path traces are first, second, and third navigation pass 

experiments, respectively. 

The rover was able to follow the path and return to enter the next cotton row. The 

absolute error distribution was determined to characterize rover navigation behavior. The rover 

performed well, as Figure 5.16 shows most of the path errors were less than 15 cm (0.15 m). 
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Figure 5.16. The average of absolute errors (A.E.) in the first, second, and third non-turning 

passes (blue, orange, and gray boxes, respectively). The boxes present the first quartile to the 

third quartile of A.E. while the whiskers show maximum values and minimum values of each of 

the passes. The 'x' shows the mean absolute error (MAE) for each of the passes. 

 

Figure 5.17. The average of absolute errors (A.E.) when turning for the first, second, and third 

passes (blue, orange, and gray boxes, respectively). The rover had no significant difference in 

turning performance. The boxes present the first quartile to the third quartile of A.E. while the 
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whiskers show maximum values and minimum values of each of the passes. The 'x' shows the 

mean absolute error (MAE) for each of the passes. 

Table 5.3. The mean absolute error, and standard deviations of the three passes along the cotton 

rows.  

Mean ± Std. dev 

(m) 

1st pass 2nd pass 3rd pass Overall 

Performance 

1st Row 0.048 ± 0.036 0.048 ± 0.035 0.066 ± 0.0046 0.053 ± 0.041 

Turning 0.233 ± 0.198 0.227 ± 0.211 0.244 ± 0.211 0.235 ± 0.206 

2nd Row 0.036 ± 0.024 0.081 ± 0.028 0.115 ± 0.043 0.070 ± 0.046 

Overall (1st and 

2nd Rows) 

0.042 ± 0.032 0.062 ± 0.036 0.091 ± 0.053  0.061 ± 0.044 

 

Figure 5.16 and Table 5.3 shows that the rover performance was adequate as it was safely 

navigating along the rows without driving over the plants. Most of the errors were less than 10 

cm from the prescribed path. The rover was perfectly converging back to the predefined path 

except during the turning maneuver, which provided a significant challenge to the rover. The 

first and second tests were excellent, but the third one had trouble turning in the muddy end-row 

that caused the wheels to slide. The MAE of 0.042m, 0.062m, and 0.091m for first, second, and 

the third pass respectively show that the system performance was acceptable. However, the MAE 

was significant when turning as it ranged at 0.233m, 0.227m, and 0.244m for the first, second, 

and third pass, respectively (Figure 5.17). Slippage had effects only in the third pass when 

turning caused errors to increase to 0.115m in the second pass. Also, the results show a modified 
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simple pursuit algorithm was struggling to compensate for errors in the third pass. However, we 

were not as concerned about the errors when turning. 

5.5  Conclusion 

An autonomous navigation algorithm using a modified pure-pursuit algorithm for a 

multi-purpose rover was designed, developed, and tested in this study. Results showed that the 

rover could autonomously navigate safely along the rows of cotton, turn around and enter a 

second row. Results from the preliminary testing and field testing showed that an affordable 

single-frequency RTK-GPS could be used with other sensors and a sensor fusion technique to 

achieve acceptable navigation accuracy. There was an increase in errors when the rover turned 

that did not impede the rover's ability to enter the next row.  As a result, the multi-purpose rover 

can follow rows and operate autonomously to perform any number of tasks when a predefined 

path in GNSS coordinates is available or created. Small, intelligent, multi-purpose vehicles could 

be provided paths and prescriptions for spraying, planting, scouting, or harvesting. Small rovers 

would eventually need to operate in teams to cover larger acreages with rover-to-rover 

communication to create built-in task optimization. 
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CHAPTER 6  

AUTONOMOUS CENTER-ARTICULATED HYDROSTATIC COTTON HARVESTING 

ROVER USING VISUAL-SERVOING CONTROL AND A FINITE STATE MACHINE5 

  

 
5 Fue, K., Barnes, E., Porter, W., Li, C., and Rains, G., Submitted to Electronics, July 1, 2020. 
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6.1  Abstract 

Multiple small rovers can repeatedly pick cotton as bolls begin to open until the end of 

the season. Several of these rovers can move between rows of cotton, and when bolls are 

detected, use a manipulator to pick the bolls. To develop such a multi-agent cotton harvesting 

system, each cotton harvesting rover would need to accomplish three motions: the rover must 

move forward/backward, turn left/right, and the robotic manipulator must move to harvest cotton 

bolls. Controlling these actions can involve several complex states and transitions. However, 

using the ROS-independent finite state machine (SMACH), adaptive and optimal control can be 

achieved. SMACH provides task level capability for deploying multiple tasks to the rover and 

manipulator. In this study, a center-articulated hydrostatic cotton harvesting rover using a stereo 

camera to locate end-effector and pick cotton bolls was developed. The robot harvested the bolls 

using a 2D manipulator that moves linearly horizontally and vertically perpendicular to the 

direction of the rover’s movement. The boll’s 3-D position was determined by calculating stereo 

camera parameters, and the decision of the finite state machine guided the manipulator and the 

rover to the destination. PID was deployed to control the rover’s movement to the boll. We 

demonstrate preliminary results in an environment simulating direct sunlight as well as in an 

actual cotton field. The system achieved a picking performance of 17.3 seconds per boll and the 

average Action Success Ratio (ASR) of 88.9% in a simulated environment. In each mission, the 

system was able to detect all of the bolls but one.  Furthermore, it completed the task by 

navigating at a speed of 0.87 cm per second while collecting 0.06 bolls per second. In the field 

experiments, the rover picked cotton bolls at an average Action Success Ratio (ASR) of 78.5 

with 38 seconds per boll, which is twice that of the simulated environment, and the end-effector 

was able to reach 95% of the bolls.  In addition, it completed the task by navigating at a speed of 
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0.18 cm per second while collecting 0.03 bolls per second.  The designed robot demonstrates that 

it is possible to use a cartesian manipulator for robotic harvesting of cotton; however, to reach 

commercial viability, the speed of harvest and successful removal of bolls (ASR) must be 

improved. 

6.2  Introduction 

Cotton is an essential commercial crop worldwide. The cotton industry in the U.S has 

been growing and is now the 3rd largest agricultural industry in the U.S, employing more than 

200,000 people with a value of $25 billion per year (USDA/NASS, 2018). The U.S is third in the 

production of cotton in the world behind India and China. As a large industry, however, cotton 

production operations have faced multiple challenges, of which timely harvesting of quality 

cotton fiber is among the most pressing. Since its introduction in the 1950s, the practice of 

mechanical harvesting after defoliation has provided fast harvesting speed, but also substantial 

losses in quantity and quality of cotton (Burnard, 2017). Open cotton bolls can sit up to 50 days 

until picked when at least 60% to 75% of the cotton bolls are opened (UGA, 2019).  This waiting 

time exposes the open bolls to harsh conditions that degrade quality. Any change that would 

reduce cotton losses, improve quality, and increase return on investment would be welcomed by 

the industry. 

In most cases, the mechanical combine is huge and expensive (a 2019 picker costs around 

$725,000 and sits in storage more than nine months a year without being used). Cotton combines 

also weigh more than 33 tons, which can cause soil compaction that reduces land productivity. 

The maintenance of such machines is also expensive and complicated. Repairing breakdowns in 

the field can take days, which can reduce operating efficiency and expose bolls to further 

weather-related quality degradation. In addition, most of the machines use proprietary software 
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and hardware that prevents farmers from repairing their machines and, therefore, deny the use of 

the right-to-repair tools that they own (Waldman & Mulvany, 2020). Finally, cotton plants must 

be chemically defoliated to harvest, which can cause an additional expense to the farmer (UGA, 

2019). 

Furthermore, the labor shortage in agriculture is getting worse while the cost of available 

labor is skyrocketing (Zahniser et al., 2018). The emergence of robotics in agriculture, 

particularly in specialty crops, has created an opportunity in the domain of row crops such as 

cotton, which have received little attention until recently (Bergerman et al., 2016; Comba et al., 

2010; Fue et al., 2020b; Ramin Shamshiri et al., 2018). To the best of our knowledge, there have 

been no commercial cotton harvest robots developed (Fue et al., 2020b). Most robotic harvesting 

investigations are examining how fruit can be picked individually to mimick conventional hand-

harvesting (Bergerman et al., 2016; Fue et al., 2020b). 

Consequently, robotics may provide an efficient and cost-effective alternative for small 

farmers unable to buy and own large machines (Bergerman et al., 2016; Comba et al., 2010; 

Naoshi Kondo & Ting*, 1998; Lowenberg-DeBoer et al., 2019). To achieve a robust robotic 

harvesting system, the robot designs must consider four aspects carefully: sensing, mobility, 

planning, and manipulation (Fue et al., 2020b). A predefined navigation path and RTK-GNSS 

can provide absolute path following for row crops, but the design of the manipulators must be 

considered carefully to match the harvesting speed and efficiency of harvest requirements to be 

economically viable for farmers. There have been several approaches proposed by scientists 

using high degrees of freedom (DOF) manipulators. Nonetheless, the systems have proven to be 

slow because of the extensive matrix calculations required to determine joint manipulations that 

move the end-effector to the fruit for harvesting  (Hohimer et al., 2019). For row-crops with a 
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high number of fruits to harvest, the best option would be a capable manipulator that harvests 

while moving. A potential solution is to use multiple harvesting manipulators with low degrees 

of freedom. 

In this study, a four-wheel center-articulated hydrostatic rover with a 2DOF cartesian 

manipulator that moves linearly, vertically, and horizontally was developed. The kinematics of 

the manipulator were analyzed to calculate the arm trajectories for picking cotton bolls. Image-

based visual servoing was achieved using a stereo camera to detect and localize cotton bolls, 

determine the position of the end-effector, and decide the movement and position of the rover. 

Additionally, a PID control was developed to enhance the robot’s movement and control position 

along the cotton rows using feedback control after obtaining visual information. A PID was used 

to control the hydrostatic transmission, which rotated to the robot’s tires. The articulation angle 

was controlled by using a proportional controller to ensure that the vehicle maintained its path 

within the cotton rows. The robot used an extended Kalman filter to fuse the sensors to localize 

the the rover’s position while harvesting cotton bolls (Moore & Stouch, 2016). Therefore, the 

specific objectives of this study were to: 

1. Design and develop a cotton harvesting robot using a center-articulated hydrostatic 

rover and 2D Cartesian manipulator; and 

2. Perform preliminary and field experiments of the cotton harvesting rover 

6.3  Materials and Methods 

6.3.1 System Setup 

The rover (Figures Figure 6.1 and Figure 6.6) used in this study was a four-wheel 

hydrostatic vehicle (West Texas Lee Corp., Lubbock, Texas) that was customized to be 

controlled remotely using an embedded system to navigate autonomously in an unstructured 



 

157 

 

agricultural environment (Fue et al., 2018b; Rains et al., 2014). The rover was 340 cm long and 

with front and back parts being 145 cm and 195 cm long, respectively. The rover was 212 cm 

wide, with a tire width of 30 cm. Each of the four tires had a radius of 30.48 cm and a 

circumference of 191.51 cm. The rover’s front-axle and rear-axle were 91 cm from the center of 

the vehicle, and the ground clearance was 91 cm. To make turns, the rover articulated (bent) in 

the middle. A 2DOF manipulator was attached to the front of the rover. The manipulator 

consisted of two parts a horizontal axis, which was 70 cm, and a vertical axis, which was 195 

cm. The manipulator was placed in the front of the rover with a 27 cm ground clearance. The 

rover had three electronic controllers: a master controller, navigation controller, and 

manipulation controller. 

6.3.2 Master Controller System 

The master controller (Figure 6.2) was installed with the embedded system (NVIDIA 

Jetson AGX Xavier development kit, Nvidia Corp., Santa Clara, CA, USA) connected to four 

sensors: two IMUs, a stereo camera, and an RTK-GPS. The two IMUs (Phidget Spatial Precision 

3/3/3 High-Resolution model 1044_1B, Calgary, Alberta, Canada) were placed in front of the 

rover. The first IMU was placed 95 cm above the ground and 31 cm from the front of the vehicle 

(Figure 6.3). The second IMU was placed 132 cm above the ground and 46 cm from the front of 

the vehicle. The RTK-GNSS receiver (EMLID Reach R.S., Mountain View, California)  with an 

integrated antenna was placed 246 cm above the ground and 30 cm from the front of the vehicle. 

The RTK correction signal was obtained using NTRIP signal (eGPS Solutions, Norcross, GA) 

with a mounting point within 2 miles of the test plot and downloaded to the Emlid through a 

Verizon modem (Inseego Jetpack MiFi 8800L, Verizon Wireless, New York, NY) hotspot and 

802.11 wireless signals.  
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An RGB stereo camera (a ZED camera, Stereo labs Inc, San Francisco, CA, USA) was 

installed and used to acquire images. The ZED was 175 x 30 x 33 mm and had 4M pixel sensor 

per lens with large 2-micron pixels. The left and right sensors were 120 cm apart. The sensor was 

placed 220 cm above the ground in front of the vehicle facing down so it could image cotton 

bolls. The sensor took 720p resolution images at the rate of 60 frames per second. The ZED 

camera was chosen because of the need to work outdoors and provide depth data in real-time. 

The ZED camera provided a 3D rendering of the scene using the ZED software development kit 

(SDK), which was compatible with the robot operating system (ROS)and OpenCV library. 

ROS provided all the services required for robot development, such as device drivers, 

visualizers, message-passing, package design, and management and hardware abstraction 

(Quigley et al., 2009). ROS was initiated remotely by using a client machine, and images were 

acquired directly from the ZED SDK, which took images and processed the 3D point clouds.  

Images were then parsed to the processing unit and analyzed using OpenCV (version 3.3.0) 

machine vision algorithms. 
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Figure 6.1. Left: Cotton Harvesting Robot view from the front. Right: Image  from the ZED 

camera that shows cotton manipulator and potted cotton plant with bolls 

 

 

Figure 6.2. A contextual block diagram of the robotic system hardware 

 

Figure 6.3. The first IMU Phidget Spatial Precision 3/3/3 High-Resolution model 1044_1B 

attached using 3D printed box to attach to the rover. 
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6.3.3 Rover Navigation Controller using Extended Kalman Filter for Robot Localization 

The front two wheels of the rover were connected to rotary encoders (Koyo incremental 

(quadrature) TRDA-20R1N1024VD, Automationdirect.com, Atlanta, GA, USA). The encoders 

(Figure 6.4) were connected to the Rover navigation controller (Arduino Mega 2560, Arduino 

LLC) using four wires (signal A, signal B, power and ground) to register wheel rotation by 

detecting the rising edge of the generated square waves. A high precision potentiometer (Vishay 

Spectral Single Turn, Malvern, PA), reported the articulation angle of the vehicle by measuring 

the electric potential caused by the turn of the vehicle. The potentiometer was connected to the 

rover navigation controller. 

Rover navigation controller received a signal from the embedded computer to control the 

rover articulation, actuation, and throttling. The sensors [RTK-GNSS, IMU, and encoders] were 

fused by using a ROS software package “robot_localization” (Moore & Stouch, 2016). The 

package “robot_localization” provided continuous nonlinear state estimation of the mobile 

vehicle in a 3D space by using signals obtained from the RTK-GPS, two IMUs, and wheel 

encoders. The fusion of the data was done by using state estimation node 

“ekf_localization_node” and “navstat_transform_node” (Moore & Stouch, 2016).  The vehicle 

was configured using the procedure described in http://docs.ros.org. The IMUs published two 

ROS topics (imu_link1/data and imu_link2/data), the encoders published wheel odometry 

(/wheel_odom), and RTK-GNSS published /gps/fix signal. The topics were both sent to 

ekf_localization to get vehicle state estimation simultaneously (Moore & Stouch, 2016). The 

system used two IMUs, RTK-GNSS, and odometry of the encoders because Table 6.1 shows that 

this configuration provided excellent results  (Moore & Stouch, 2016). Unlike the GNSS 

configuration shown in Table 6.1, our GNSS was an RTK-GNSS system that provided 
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centimeter-level accuracy, so configuration (odometry + two IMUs + one GNNS) was a proper 

configuration to adopt. 

Table 6.1. Errors for five difference sensor configurations (Moore & Stouch, 2016) 

Sensor Set Loop Closure Error x, y (m) Estimate Std. Dev. x, y (m) 

Odometry (dead reckoning) 69.65, 160.33 593.09, 359.08 

Odometry + one IMU 10.23, 47.09 5.25, 5.25 

Odometry + two IMUs 12.90, 40.72 5.23, 5.24 

Odometry + two IMUs + 

one GNSS 

1.21, 0.26 0.64, 0.40 

Odometry + two IMUs + 

two GNSSs 

0.79, 0.58 0.54, 0.34 

 

The hydraulic motors mounted to the rover wheels were controlled using a servo to the 

engine throttle and a servo to the variable-displacement pump swashplate arm. Each front tire 

was connected to a rotary encoder to provide feedback on the movement of the rover along the 

crop rows. The throttle was connected to the onboard Kohler Command 20HP engine (CH20S, 

Kohler Co, Wisconsin, USA) with a maximum of 2500 RPM and driving an axial-piston variable 

rate pump (OilGear, Milwaukee, WI, USA) with a maximum displacement of 14.1 cc/rev. The 

OilGear pump displacement was controlled by a swashplate for directing the forward and 

rearward movement of the rover. The swashplate angle was controlled by the rover controller 

that determined the placement of the linear electric servo (Robotzone HDA4, Servocity, 

Winfield, KS). Left and right articulation were controlled by using linear hydraulic actuators 

connected to a 4-port 3-way open-center directional control valve (DCV) powered by a 0.45 
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cc/rev fixed displacement pump (Bucher Hydraulics, Klettgau-Griessen, Germany) in tandem 

with the Oilgear pump. The rover could turn a maximum of 45 degrees with a wheelbase of 190 

cm. 

 

Figure 6.4. Encoder installed on the front tire of the rover to provide input pulses which indicates 

how far the rover has moved from one point to another 

6.3.4 Manipulation Controller 

The robot manipulation controller received a 4-byte digital signal from the Jetson Xavier 

embedded computer. The signal provided the number of steps and direction of the manipulator 

(Up, Down, back and forth). Then, the controller sent the signal to the micro-stepping drive 

(Surestep STP-DRV-6575 micro-stepping drive, AutomationDirect, Cumming, Georgia), which 

in turn sent it to the appropriate stepper signal for action. Manipulator controller was connected 

to the Jetson using a USB 3.0 hub shared by the ZED camera.  

The robotic manipulator was designed to work within a two-dimensional cartesian 

coordinate system (Figure 6.5). Each arm of the manipulator was moved using two 2-phase 

stepper motors (MS048HT2 and MS200HT2, ISEL Germany AG, Eichenzell, Germany). The 

MS048HT2 model stepper motor was installed to drive the horizontal linear axis arm (60 cm 
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long), and the MS200HT2 to drive the vertical linear axis arm (190 cm long). The connecting 

plates and mounting brackets used a toothed belt that was driven by the stepper motor. Two 

micro-stepping drives (Surestep STP-DRV-6575 micro-stepping drive, Automation Direct, 

Cumming, Georgia) were installed to provide accurate position and speed control with a smooth 

motion. The micro-stepping drive DIP switch that controlled the motors was set to run a step 

pulse at 2MHz and 400 steps per revolution. This setting provided smooth motion for the 

manipulator. The step angle was 1.80. The arms of the manipulator were connected in a vertical 

crossbench Cartesian configuration (Figures Figure 6.5 and Figure 6.6). The sliding toothed belt 

drive (Lez 1, ISEL Germany AG, Eichenzell, Germany) was used to move the end effector. The 

toothed belt had 3 mm intervals and was 9 mm wide. The error of the toothed belt was  +/- 0.2 

mm per 3 mm interval. 

A wet/dry vacuum was installed on the rover to help pick and transport the picked cotton 

bolls—the vacuum connected to the end-effector via a flexible 90-cm flexible plastic hose. 

Cotton bolls were vacuumed into the hose, which was placed close to the cotton bolls (Figure 

6.7). The end-effector had a rotating brush roll that grabbed and pulled cotton bolls through a 

combination of vibration and sweeping. The brush roll was powered by a 12DC motor (Figure 

6.7). The cotton bolls were grabbed and passed through a flexible hose to a porous impeller 

mounted with the suction opening from the vacuum. The porous impeller was rotated using the 

12 VDC motor, and the cotton bolls were dropped into a bag.  
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Figure 6.5. Robotic cartesian arm contextual diagram 

 

Figure 6.6. The robotic arm, vacuum, and sensors mounted on the red  rover 
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Figure 6.7. The end-effector was moved to the cotton bolls using the Cartesian arm system, and 

then a rotating brush roll grabbed the bolls into the end-effector. An onboard vacuum transported 

the bolls to the rotating porous impeller where the bolls were dropped into a collection bag.  

6.3.5 Boll Detection Algorithm Improvements using Tiny YOLOv3 

Cotton boll images were used to train a tiny YOLOv3 deep neural network model 

(Redmon & Farhadi, 2018).  The tiny YOLOv3 is a simplified version of  YOLOv3, which has 

seven convolutional layers (Redmon & Farhadi, 2018). The tiny YOLOv3 is optimized for speed 

with reduced accuracy compared to YOLOv3 (Redmon & Farhadi, 2018). The images were 
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augmented 26 times using various techniques which are average blurring, bilateral blurring, 

blurring, cropping, dropout, elastic deformation, equalize histogram, flipping, gamma correction, 

Gaussian noise, Gaussian blurring, median blurring, raise blue channel, raise green channel, raise 

hue, raise red channel, raise saturation, raise value, resizing, rotating, salt and pepper, sharpen, 

shift channels, shearing, and translation. Augmentation was accomplished using the CLoDSA 

library. CLoDSA is an open-source image augmentation library for object classification, 

localization, detection, semantic segmentation, and instance segmentation 

(https://github.com/joheras/CLoDSA). We collected and labeled 2085 images from the Internet 

and camera images. The new augmented and labeled image dataset consisted of 56,295 images.  

The dataset was used to train the tiny YOLOv3 model using a Lambda Server (Intel Core 

i9-9960X (16 Cores, 3.10 GHz) with two GPUs RTX 2080 Ti Blowers with NVLink and 

Memory of 128 GB, Lambda Computers, San Francisco, CA 94107). The learning rate was set to 

0.001 and maximum iterations to 2000 (Redmon & Farhadi, 2018). The batch size was 32. The 

model was trained for 4 hours, and then, it was then frozen, a process of combining graph and 

trained weights, and transported to the rovers’ embedded system. 

The ZED Library, Zed-yolo in Github (https://github.com/stereolabs/zed-yolo), the free, 

open-source library package provided by the manufacturer of the ZED camera (Stereolabs Labs) 

was used to connect ZED camera images to tiny YOLOv3 model to perform object detection. 

The library used image bilinear interpolation to convert ZED SDK images to OpenCV images so 

that it could perform detection tasks. The bilinear interpolation was compared with the nearest-

neighbor and no interpolation to evaluate object detection. The results (Figure 6.8) show that the 

model performed well when no interpolation was applied (Figure 6.8). The images in Figure 6.8 

show that the bilinear interpolation detected only three bolls, the nearest-neighbor interpolation 

https://github.com/joheras/CLoDSA
https://github.com/stereolabs/zed-yolo
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detected five bolls, while with no interpolation, the system detected eight bolls. Therefore, the 

boll detection algorithm improved its accuracy when no interpolation was performed. The library 

code was modified to avoid image interpolation and implemented in this study. The algorithm 

was able to perform well with illuminated images of undefoliated cotton (Figure 6.9), where the 

right image in Figure 6.9 shows cotton boll detection in natural direct sunlight. 

   

(a) (b) (c) 

Figure 6.8. Detection of cotton bolls using bilinear transformation [8a] detected 3 bolls, Nearest-

neighbor interpolation 8b detected 5 bolls, and [8c] without interpolation detected 8 bolls. The 

pink boxes are bounding boxes of the detected bolls, while blue represents the nearest boll to be 

picked. 

  

Figure 6.9. Boll detection using tiny YOLOv3 and ZED camera. Left image: cloudy day, Right 

image: sunny day. 
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6.3.6 End-effector Detection using Color Segmentation 

Each image frame was acquired and analyzed to detect the orange end-effector using a 4-

step process (1. depth processing, 2. color segmentation, 3. feature extraction, and 4. depth 

matching with features). These steps were handled by the graphics optimized rugged 

development kit (NVIDIA Jetson Xavier) to achieve improved performance as image 

calculations require massive graphics computing resources like NVIDIA CUDA cores. The ZED 

SDK acquired and processed the images to get depth disparity and rectified images for both 

lenses. In this case, the ZED SDK was provided with 60 fps of 720p quality images and 3D point 

clouds. 

The images acquired (Figure 6.10a) were first analyzed for arm movement. Since the arm 

was orange in color, the threshold color was determined so that the arm could be segmented from 

the rest of the image(Figure 6.10b). The cotton boll and end-effector segmentation task involved 

the following four steps(Gong & Sakauchi, 1995): 

1. Grab an image  

2. Using the RGB color threshold, separate each RGB component of the image. The 

end-effector, which is orange in color, can be masked. The threshold was (Red from 

200 to 255, Green from 0 to 255 and Blue from 0 to 60). 

3. Subtract the image background from the original image. 

4. Remove all the regions where the contours were less than value M. Value M was 

determined by estimating the number of pixels defining the smallest boll. 

Feature extraction was performed by finding contours of the consecutive points which 

have the same intensity and were clustered. The cotton boll was then detected using tiny 

YOLOv3 after segmenting the contour of the arm (Figure 6.10c and Figure 6.10d).  
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After obtaining the contours for the end-effector, the centroid of the contour was 

calculated. All the depths were calculated for bolls by matching YOLOv3 detected bolls and 

end-effector coordinates with 3D point clouds or depth disparity maps, as described in algorithm 

1 (Table 6.2). The cotton bolls coordinates (x,y,z) and robot manipulator coordinates (x0,y0,z0) 

were obtained and used by the robot for picking decisions. 

 
 

(a) (b) 

 

 
 

(c) (d) 

Figure 6.10. Color segmentation to localize the end-effector of the manipulator. (a) is the RGB 

image of the manipulator, (b) is the mask image of the end effector, (c) is the masking of all over 

image parts leaving only an area that can be reached by the end effector and hence it might 

contain bolls to pick. (d) is masking of the cotton bolls. 

6.3.7 Inverse Kinematics of the Robot 

The robot was designed to operate in 3D space and for a 2D cartesian manipulator to pick 

a cotton boll as the end-effector reached the bolls.  Figure 6.11 shows the inverse kinematics of 
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the robot. The red cube represents the front of the rover, while horizontal axis arm and vertical 

axis arm make up the rover’s manipulator. 

 

Figure 6.11. The inverse kinematics of the cotton harvesting robot 

The inverse kinematics (Figure 6.11 Figure 6.12) was obtained by getting the values of 

the point (x,y,z), which is boll position from the origin of the rover (x0,y0,z0). The robot could 

move distances d1, d2, and d3 to pick the cotton boll at the point (x,y,z). 

 

 

 

 

Top View 
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Side view 

Figure 6.12. The inverse kinematics of the rover in detail (It is given by the finding the distances 

d1, d2, and d3 of the rover using depth and coordinates of the boll (x,y,z) found by the ZED 

stereo camera) 

6.3.8 Depth and Coordinates of Cotton Bolls and Manipulator 

After matching the depths and contours of the Cartesian arm and cotton bolls, each 

reading of the arm and boll position were logged. Then, by using the tip of the end-effector 

(Figure 10c), the system obtained the image coordinates of the front part of the end-effector. 

Then, using the centroids of each boll, the system calculated the real-world coordinates (W) of 

the bolls from the image coordinates obtained (I) by using image geometry. The stereo camera 

was calibrated using the ZED Calibration tool of the ZED SDK to obtain the camera 

transformation matrix (Equation 6.2) parameters. The procedures to calibrate the ZED camera 

were learned from their website (https://www.stereolabs.com/zed/). The camera matrix consists 

of fx and fy (the focal length in pixels), Cx and Cy (the optical center coordinates in pixels), and 

k1 and k2 (distortion parameters). The real-world coordinates of a cotton boll, Wx and Wy 

(Equations 6.4 and 6.5) can be obtained if the algorithm was provided with the value of Ix and Iy 

which was the coordinate of the centroid of the front part of the end-effector. Alternatively, by 

finding the inverse of the camera matrix and multiplying the vector image (Ix and Iy), the world 

https://www.stereolabs.com/zed/
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coordinates (Wx and Wy) could be obtained. Cx, fx, Cy, and fy were found by calibrating the 

camera, while Wz was determined from the 3D point cloud provided by the ZED SDK. The 

parameter values of the calibrated camera used were: 

Cx = 685.286 

Cy = 361.248                                                                                                           

fx = 699.936          (6.1) 

fy = 699.936 

 

           (6.2) 

 

 

        (6.3) 

 

 

      (5.4) 

 

 (5.5) 

 

where 

fx, and fy = the focal length in pixels, 

Cx and Cy = the optical center coordinates in pixels,  

Wx and Wy = the real-world coordinates, and 

Ix and Iy = the coordinate of the centroid of the front part of the horizontal arm. 

𝐶 =  [

𝑓𝑥 0 𝐶𝑥 0

0 𝑓𝑦 𝐶𝑦 0

0 0 1 0

] 

𝑊𝑥  =  (𝐼𝑥  +  𝐶𝑥) ∗ (
𝑊𝑧
𝑓𝑥
)                                                                                                  

[
𝐼𝑥
𝐼𝑦
1

]  =  [

𝑓𝑥 0 𝐶𝑥 0

0 𝑓𝑦 𝐶𝑦 0

0 0 1 0

] ∗  [

𝑊𝑥
𝑊𝑦
𝑊𝑧
1

] 

 

𝑊𝑦  =  (𝐼𝑦  +  𝐶𝑦) ∗ (
𝑊𝑧
𝑓𝑦
)                                                                                                  
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Object depth in an image (Wz) was obtained from the 3D point clouds. For each boll and 

end-effector location, the distance points (dx, dy, dz) were provided by the ZED SDK. It was 

recommended to use the 3D point cloud instead of the depth map when measuring depth 

distance. The Euclidean distance (Equation 6.6) is the calculated distance of an object (end-

effector or bolls) relative to the left lens of the camera. 

𝑊𝑧  =  √ 𝑑𝑥 2 + 𝑑𝑦
2  +  𝑑𝑧

2
                                                                          (6.6) 

Depth distance (Wz) should be greater than zero and less than the distance of the camera 

to the lowest position of the end-effector to avoid the rover attempting to harvest unreachable 

bolls. Also, the horizontal distance (Wx) of the boll from the center of the camera should not 

exceed the length of the horizontal axis arm. After obtaining such measurements, the system 

executed other tasks like controlling the arm or moving the rover. For the machine to be able to 

execute each task independently and in coordination with the other tasks, the finite state machine 

was developed to manage task-based requests. 

6.3.9 Finite State Machine 

Robot tasks and actions were categorized as states, and state “transitions” were modeled 

in a task-level architecture to create the rover actions required to harvest cotton bolls. This 

approach provided a maintainable and modular code. Using an open-source ROS library known 

as SMACH (http://wiki.ros.org/smach), the tasks were smoothly implemented to build complex 

behavior (Figure 6.13). 

http://wiki.ros.org/smach
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Figure 6.13. Finite State Machine Diagram of the rover states and transitions. * means a return 

instruction to get a new image. 

 

Figure 6.14. Linear transformation of the Finite State Machine Diagram (Figure 6.13) of the 

rover states and transitions 
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The state machine had six necessary states and seven transitions (Figure 6.13 and Figure 

6.14). After every state, the system reverted to state 0 (get the image) and searched for cotton 

bolls. If a cotton boll was found, the system would calculate the distance of the boll from the 

manipulator in 3-dimensional space (X, Y, and Z) as described in the inverse kinematics section. 

If the boll was lined up horizontally, then the system would get the manipulator to move up or 

down relative to the position of the manipulator to the boll. If the boll was at the same level, then 

the system would harvest it. If the boll was in front or back, the system would send a signal for 

the rover to move forward or back using PID control. If the system failed to see any bolls, the 

rover proceeded to pass over the cotton rows. Table 6.2 describes the detection of the bolls and 

actions taken by the state machine algorithm to accommodate the rover transition of the tasks. 

Table 6.2. Algorithm describing the detection of cotton bolls 

Algorithm 1: Algorithm describing the detection of cotton bolls 

Input: current video frame,  

Output: Decision to move manipulator or rover [Ci] 

1. Get end-effector position Xm, Ym and Zm 

2. Get prediction results of the YOLO model 

3. Get the list of centroids for each boll detected [Oj] 

4. FOR EACH Oj in [Oj] 

a. Boll_depth <- calculate the closest distance of the centroid using left lens point 

cloud 

5. END FOR 

6. Get the closest boll position 

7. Calculate the position of the boll Xb, Yb, and Zb  



 

176 

 

8. Find the difference between (Xm and Xb), (Ym and Yb) and (Zm and Zb) 

9. IF (Yb > Ym) transition e (move forward) 

10. IF (Yb < Ym) transition e (move backward) 

11. IF (Yb = Ym and Zm > Zb) transition b (move the arm up) 

12. IF (Yb = Ym and Zm < Zb) transition c (move the arm down) 

13. IF (Yb = Ym and Zm = Zb and Xm – Xb < 37 cm) transition d (pick the boll) ##the 

manipulator can only cover bolls close from 0 to  37 cm from vertical arm 

14. Return the state decision [Ci] 

 

 

6.3.10Calibration of the Manipulator  

The manipulator was calibrated for its horizontal and vertical movements. The equation 

was obtained by first moving the arm to the furthest location away from the ZED camera. The 

distance of the arm from the camera was then recorded and was continually recorded as the arm 

was moved by each step of the stepper drive until it was closest to the camera (Figure 6.15). The 

equation obtained by fitting the points was: 

motor steps =  −410.7 ∗  (distance) +  483.29                                            (5.7) 
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Figure 6.15. Calibration of the distance against steps of the stepper motor 

6.3.11 Rover Movement Controller 

The rover movement controller ran an adaptive PID (Figure 6.13) to control the rover 

forward and rearward movement. The position of the rover and the target position were 

published from the master, and the Arduino clients subscribed to the topic accordingly. The 

throttle was set at a constant maximum RPM to maintain constant power to the hydraulic 

systems. A topic that subscribed to this message was developed in the rover microcontroller.  

Articulation was done after the rover controller received a topic that published the instruction for 

the rover to turn or go straight. For this study, the rover only moved straight. The master 

controller published an articulation message at the rate of 50Hz to the rover controller, which had 

subscribed to the topic. The rover movement controller published the gains of the adaptive PID 

controller together with the position of the rover relative to the encoder pulses. The master 

controller subscribed to the messages so as to provide an accurate position of the rover, which 

was used to pass the signal to the arm controller for boll picking. 
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Figure 6.16. The PID controller implemented in a rover controller to achieve accurate target 

position 

The control function (Equation 6) of the controller above is presented as; 

𝑢(𝑡)  =  𝑃 +  𝐼 +  𝐷 

𝑢(𝑡)  =  𝐾𝑝𝑒(𝑡)  + 𝐾𝑖  ∫ 𝑒(𝑡)𝑑𝑡  + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
            (6.8) 

where, 

constants Kp, Ki, and Kd, are given as proportional gain, integral gain, and differential gain 

respectively, 

r(t) is a set point which is the number of pulses required to reach a certain distance, and 

y(t) is the measured number of pulses read by the rotary encoder.  

The system minimized error e(t), which was given e(t) = r(t) – y(t). Kp, Ki, and Kd 

denoted the coefficients for the proportional, integral, and derivative gains, respectively. Tuning 

was done by first identifying the deadband of the hydraulic swashplate arm for the variable 

displacement pump. Up to a particular movement angle of the swashplate arm, there was 

insufficient fluid flow and pressure to move the rover. For operation, the rover movement 

controller sent a servo signal to the linear actuator (Figure 6.17), to proportionally increase fluid 

flow to the hydraulic wheel motors. The linear actuator pushed the swashplate to a certain angle 

and was directly controlled using a rover navigation controller. The linear actuator extends from 
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0 to 20 cm after receiving an analog servo signal. Retracting and extending the linear actuator 

changed the position of the swashplate arm, which in turn controlled the speed and direction of 

the hydraulic fluid, which provided the motion capability of the rover. The angle of the 

swashplate can be changed by sending a servo PWM signal that ranged from 65 to 120 using the 

Arduino servo library. When a 90 PWM signal was sent to the rover controller, the rover stops 

since the swashplate was positioned in its neutral position, and the fluid flow was zero. If the 

PWM signal was decreased slowly from 90 to 65, the rover moved in reverse motion, while if it 

was increased from 90 to 120, the rover moved forward. It meant the 65 PWM signal provided 

maximum speed in reverse motion, while 120 PWM signal provided maximum speed forward. 

The rotary encoder installed on the wheel of the rover sends back input pulses to the PID, which 

measures how far the rover has moved. However, the system had a large deadband from a PWM 

signal of 80 to 98, which means the angle change was not enough to make the rover move. The 

deadband (Figure 6.18) was the signal angle sent from the rover Arduino microcontroller to the 

linear actuator servo that cannot make the rover move either forward or reverse. Consequently, 

when the rover missed the target, it became challenging to get close to the target as the PID can 

either be a direct relationship or reverse relationship between output (actuator signal) and input 

(encoder pulses). 



 

180 

 

 

Figure 6.17. The linear actuator moving the swashplate arm to determine an angle for movement 

of the rover (forward when extending or rearward when retracting) 
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Figure 6.18. Preliminary  data shows deadband between 80 to 98 of the actuator PWM signal 

(actuator should move forward when the PWM signal to the linear actuator is increased from 90 

to 120 and move reverse if the PWM signal is decreased from 90 to 65) 

In order to remove the deadband, the system was redesigned such that it gave the output 

u(x) from -100 to 100 (Equation 6.9). Then, the signal was mapped to the correct settings of the 

rover. The actual servo signal was set to move (extend) from 98 to 108  by mapping positive 

output values (0 to 100) of u(x) while moving back (retract) from 70 to 80 for negatives output 

values (-100 to 0) while zero was set to be 90 signal. 

𝑢(𝑥)  =  {
10 ∗ (𝑥 −  98) 𝑖𝑓 98 ≤ 𝑥 ≤ 108 
10 ∗ (𝑥 −  80) 𝑖𝑓 70 ≤ 𝑥 ≤ 80

              (6.9) 

The manual tuning technique was used to tune the PID controller. It was done by 

increasing Kp until the rover oscillated with neutral stability while setting Ki and Kd values to 

zero. Then, Ki was increased until the rover oscillated around the setpoint. After that, Kd was 

increased until the system was settling at the given setpoint quickly. The PID gains were 

obtained; Kp = 0.5, Ki = 0.15 and Kd = 1. Later, the navigation controller was recalibrated to 

determine if the performance could be improved. The PID gains that create a small overshoot 

response but aggressively moved the rover forward were obtained; Kp = 0.7, Ki = 0.04, and Kd = 

5.0. The rqt_graph library (http://wiki.ros.org/rqt_graph), which is the ROS computation 

visualizing graph, was used to study the pulses. Each of the encoder pulses was equivalent to 1.8 

mm distance. In Figure 6.19, the master controller sent a servo signal to the rover controller to 

instruct the system to move from the 500th pulse position to the 2000th pulse position and then go 

back to the initial position. The rover movement settled after 1250 ms (Figure 6.19). The system 

performed the same way going forward or backward. The overshoot was approximately 18 cm.  

 

http://wiki.ros.org/rqt_graph
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Figure 6.19. The PID control graph of the rover. The signal was sent from the Master controller 

to the rover navigation controller to move the vehicle from point 500th position to 2000th position 

and then back to 500th position. Each encoder pulse is equivalent to 1.8mm. Each pulse time unit 

is equivalent to 50 ms. This graph is obtained using rqt_graph by subscribing to a published topic 

driver/pos, which provides position feedback from the encoder. The rqt_graph provides a GUI 

plugin for visualizing the ROS computation graph. 

6.3.12 Proportional control of the articulation angle 

The rover turned to the target articulation angle γ by using proportional control. The 

current articulation angle γk and required target angle γk+1 was used to find the error used to 

control the signal to turn the rover. The gain Kp was set to 1. The articulation angle was 

controlled by the hydraulic linear actuators, which were connected to two relays. The two relays 

were used to connect the left and right control signals from the navigation controller to a 12v 

power source to move the hydraulic directional control valve spool. Hydraulic cylinders in series 

were used to push and pull the front and rear halves of the rover to create a left or right turn. If 
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the rover turned left, the left actuator retracted while the right actuator expanded until a desired 

left articulation angle was achieved. If the rover turned right, the right actuator retracted while 

the left actuator expanded until a desired right articulation angle was achieved. The angle was 

reported by a calibrated high precision potentiometer.  

6.3.13 Preliminary Experimental Setup 

The navigation and manipulation of the system were tested as one unit of the robot. It is 

essential to determine the performance of the whole robot in navigating to cover 3D space and 

picking of the bolls. 

Five experiments were set up at the University of Georgia (UGA) Tifton campus grounds 

(N Entomology Dr, Tifton, GA, 31793). The experiments were undertaken on 29th and 30th May 

2019. Six cotton plants were placed 30 cm apart, three bolls per plant. The slope of the ground 

surface in the direction of the forwarding movement was 0.25130. The rover was driven over the 

plants, and the manipulator moved into a position to pick the bolls from the plants (Figure 6.21 

Figure 6.20). The camera was 220 m above the ground (l). The first boll detected by the system 

was distance “m” from the camera. The camera also checked the distance of the arm from the 

camera, and then, the manipulator controller sent a signal to move the arm to harvest the first 

boll. Subsequent boll picking was repeatedly accomplished by getting the distance of the current 

end-effector position to the next boll position in the camera images.  



 

184 

 

 

Figure 6.20. System testing was done by putting the six potted defoliated plants in front of the 

system to collect preliminary performance data.  

 

Figure 6.21. The experiment was set up at UGA grounds to test the robot on picking the bolls on 

a simulated environment consisting of six potted cotton plants. 

The results of the five experiments with six plants with three bolls in each were collected 

and analyzed using the robot performance metrics mentioned by (Bechar & Vigneault, 2017). 

6.3.14 Field Experiment 

The field experiment in undefoliated cotton was conducted at the Horticulture Hill Farm 

(31.472985N, 83.531228W) near Bunny Run Road in Tifton, Georgia, after establishing the 
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calibrated parameters of the rover. The field (Figure 6.13) was planted on 06/19/2019 using a 

tractor (Massey-Fergurson MF2635 tractor, AGCO, Duluth, GA) and a 2-row planter (Monosem 

planter, Monosem Inc, Edwardsville, KS). The cotton seeds (Delta DP1851B3XF, Delta & Pine 

Land Company of Mississippi, Scott, MS) were planted every two rows, and two rows skipped. 

The rows were 36-inch (91.44 cm) wide, and the seed spacing was 4-inch (10.16 cm). The field 

experiment was done after finishing the preliminary experiments. Two tests (5.3 m) for picking 

the cotton bolls were conducted on 22nd November 2019 and 2nd December 2019. The slope of 

the ground surface in the direction of the forwarding movement was 2.76680. It is steeper than 

preliminary experiment field.  

We measured Action Success Ratio (ASR) which is the ratio of the number of the picked 

bolls to a number of all cotton bolls present and Manipulator Reaching Ratio (MRR), which is 

the ratio of the bolls seen and attempted to be picked to the number of all bolls present. 

6.4  Results and Discussions 

6.4.1 Simulated Harvesting of Potted and Defoliated Cotton 

The results (Table 6.3) of the test with defoliated cotton in pots were obtained by 

counting the cotton bolls that the robot was able to pick and the time it took to collect the boll. 

Also, images taken by the camera were checked to determine if the system could detect cotton 

bolls using only color segmentation. OV is the average velocity measured during a mission under 

real-time. P.R. is the number of cotton bolls picked per time unit. C.T. is the average time 

required to complete one cotton-picking action. ASR is the ratio of success in the action of 

picking the bolls. D.P. is the ratio of the number of appropriate detections (True positives + True 

negatives) over the sum of all boll detection attempts made by the system. 
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Table 6.3. The collected data for the experiments done to validate the performance of the system 

in the simulated environment. The parameters determined are; Operation Velocity (OV) under 

real-time conditions (cm s-1), Production Rate (PR) (bolls s-1), Cycle Time (CT) (s), Action 

Success Ratio (ASR) (%) and Detection Performance (DP) (%).  . 

Cotton 

bolls 

Dete

cted 

Reached Picked Time 

(sec) 

OV 

(cm s-

1) 

PR 

(boll

s s-1) 

CT 

(sec) 

ASR 

(%) 

DP 

(%) 

MMR 

(%) 

18 17 16 15 214 1.12 0.07 14.27 83.33 94.44 88.89 

18 18 17 16 343 0.70 0.05 21.43 88.89 100.00 94.44 

18 18 17 15 219 1.10 0.07 14.60 83.33 100.00 94.44 

18 17 17 17 323 0.74 0.05 19.00 94.44 94.44 94.44 

18 18 18 17 285 0.84 0.06 16.76 94.44 100.00 100.00 

Average 17.4 17 16 276.8 0.87 0.06 17.3 88.88 96.67 94.44 

 

The system picked a boll at an average of 17.3 seconds at a total distance of 2.4 meters. 

The experiment showed that our rover design is a viable solution for cotton harvesting. However, 

the system was observed to attempt (MRR) twice or more to pick an average of 17 of the 18 

bolls. The manipulator missed an average of two bolls because of the overshoot by the PID 

controller that reduced the production rate. 

6.4.2 Field Picking of Cotton 

Two experiments (Table 6.4) to investigate the effectiveness of the rover to pick the bolls 

were successfully conducted in a field with undefoliated cotton. In the first test, the rover picked 

67 bolls and left behind 17 bolls for an Action Success Ratio (ASR) of 80%. The rover was able 

to reach (Manipulator Reaching ratio (MRR)) 94% of the bolls (79 bolls). The distance covered 

by the rover was 5.3 meters. For the second test, the robot picked 89 and left behind 26 bolls, for 

an ASR of 77%. The MRR was 96%, and the distance covered was 5.3 meters. The average ASR 

was 78.5%. The average MRR was 95%, while C.T. and D.P. were 38.35 seconds and 0.03 bolls 

per second, respectively. The CT for field testing was over twice the cycle time in the defoliated 

and potted cotton plant test, while D.P. was about half the performance in defoliated and potted 

cotton plants. MRR was comparable in both field and simulated testing (95.3% and 94.4%, 
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respectively). This performance indicated the system was having trouble picking bolls in the real 

field due to the unstructured topography of the field and the leaf and stem obstruction of the 

bolls. Also, in the simulated environment, the bolls were loosely attached to the plant; hence it 

was easier to remove from the branch in a single attempt. 

Table 6.4. The collected data for the experiments done to validate the performance of the system 

in the real field environment. The parameters determined are; Operation Velocity (OV) under 

real-time conditions (cm s-1), Production Rate (PR) (bolls s-1), Cycle Time (CT) (s), Action 

Success Ratio (ASR) (%), Manipulator Reaching ratio (MRR) and Detection Performance (DP) 

(%).   

Cotton 

bolls 

Detected Reached Picked Time 

(sec) 

OV PR CT ASR 

(%) 

DP 

(%) 

MRR 

(%) 

84 83 79 67 2700 0.20 0.02 40.30 79.76 98.81 94.05 

115 112 111 89 3240 0.16 0.03 36.40 77.39 97.39 96.52 

Average 97.5 95 78 2970 0.18 0.03 38.35 78.58 98.10 95.28 

 

6.5  Conclusion 

The preliminary design and performance of a prototype cotton harvesting rover were 

reported. The system was optimized to use visual-based controls to pick cotton bolls in 

undefoliated cotton. The system used SMACH, an ROS-independent finite state machine library 

that provides task-level capabilities, to design a robotic architecture to control the rover’s 

behavior. The cotton harvesting system consisted of a hydrostatic, center-articulated rover that 

provided mobility through the field and a 2-D manipulator with a vacuum and rotating 

mechanism for picking cotton bolls and transporting them to a collection bag. The system 

achieved a picking performance of 17.3 seconds per boll in simulated field conditions and 38 

seconds per boll in a real cotton field. The increased time to pick each boll resulted from the 

cotton plants’ overlapping leaves and branches obstructing the manipulator. Cotton boll 

detachment was much more difficult because the bolls were not placed artificially (as done in the 
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potted plants), and the level of uphill and downhill movement resulted in poor control of the 

hydraulic navigation system.    

The overall goal of the harvesting rover was to develop a system to harvest cotton that 

uses multiple, small harvesting units per field. These units would be deployed throughout the 

harvest season, beginning right after the opening of the first cotton bolls. If this team of 

harvesting rovers is to reach commercial viability, the speed of harvest (CT) and successful 

removal of bolls (ASR) must be improved. To address these shortcomings, a modified end-

effector and an extra upward-looking camera at the bottom of the manipulator in undefoliated 

cotton will be studied in future studies of the prototype. Furthermore, future research will be 

conducted to improve the rover’s overall navigation to improve the rover’s and manipulator’s 

alignment with pickable bolls. 
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CHAPTER 7  

CONCLUSIONS, LIMITATIONS AND FUTURE WORK 

7.1  Conclusions and Limitations 

In this dissertation, a cotton harvesting rover with robotic arm was successfully 

demonstrated. It is among the first autonomous cotton harvesting robots developed and tested in 

the field. The performance and accuracy of the robot were satisfactory, but it did not reach the 

target speed of 1 boll per 3 seconds. It is due to the hydrostatic engine platform that was used in 

this research. It was the platform that was available for the time we started our research, and 

hence, we had to develop algorithms to control it optimally.  

Furthermore, there are a few limitations for the systems and methodologies as follows: 

1. The hydrostatic transmission used is a difficult technology to obtain precise 

control of the robot’s position, especially in fields with sloping terrain. 

2. The stereo camera system from above the canopy alone was not satisfactory. The 

camera was not able to see all the bolls since they were occluded by crop 

branches and leaves. 

3. The Cartesian system is very efficient, but it had a tough time reaching cotton 

bolls behind the stems and branches. 

4. The stereo camera system was satisfactory to do 3D location estimation of the 

cotton bolls, but it was only accurate when the rover was moving slowly (0.64 

kph) or when stationary. 
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5. The robot platform was a very large vehicle, and it was challenging to control it 

precisely. Probably, a smaller platform will provide a sound system for cotton 

harvesting 

6. The robotic system developed was not able to harvest as it moves due to low 

image processing speed. Future harvesting system should be able to harvest while 

moving and with multiple robotic arms to harvest a large number of bolls. 

7.2  Future Work 

Experimental results in this dissertation demonstrated that the robotic harvesting of 

cotton bolls is a possible technology, and the time to develop such a system is now. The 

developed algorithms for cotton sensing, localization, navigation, and manipulation can be 

improved by applying emerging technologies such as advanced robotics and reinforcement 

learning algorithms. Due to time and scope limitations of this dissertation, future studies are 

expected to address several issues in modern cotton harvesting such as: 

1. More experiments to validate the developed robotic system in harvesting the 

cotton bolls in the field under direct sunlight should be done. 

2. More advanced algorithms to control the hydrostatic transmission rover should be 

developed. It will include using hydraulic brakes to help stop the rover at an 

appropriate position because swashplate angle control precision is challenging. 

3. The braking system of the hydrostatic system should be integrated to improve the 

PID control of the rover. 

4. The integration of the electric system to control the harvester movement should be 

developed. The electric system would provide the capability to control the 

position of the robot and increase the precision and speed of harvesting. 
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5. More sensors that can be integrated, such as more cameras, vibration sensors, 

encoders for rear tires, low-cost RTK-GPS, and others to increase the accuracy of 

boll mapping, should be studied. 

6. Multiple camera systems with multiple viewpoints to increase the detection of the 

cotton bolls and estimate 3D position in real-time should be developed. 

7. Multi-modal imaging system to improve the detection of the rows and cotton bolls 

will provide improved navigation and harvesting accuracy to the robotic system 

8. A multi-manipulator system to improve the picking of the cotton bolls should be 

developed to improve the speed of picking to 1 boll every 3 seconds.  

9. A cotton flower mapping system can be developed to provide a prior prescription 

map and position of the bolls for the robotic system to harvest. 
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