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Abstract

Many multivariate statistical methods rely on matrix decompositions. An archetypal ex-

ample is canonical correlation analysis (CCA). In the traditional large sample setting, CCA

admits an analytical solution: the best rank-k approximation of the sample version of a ma-

trix. In high dimension, low sample size settings, it is not possible to calculate the analytical

solution because it requires the inverse of a matrix for which the sample version is singular.

In that situation, additional assumptions or regularization are necessary. Matrix decompo-

sitions can also be utilized in statistical methods that do not inherently rely on them. For a

generalized linear model (GLM) with an image as the covariate, the corresponding parame-

ter is a matrix or higher-order array called a tensor. In that case, we may exploit low rank

matrix or tensor decompositions as a means to reduce the massive number of parameters

to estimate to a feasible level. In this dissertation, we study two regularization techniques

for statistical methods utilizing matrix/tensor decompositions, with emphasis on their ap-

plications in high dimensional CCA and GLMs with matrix- or tensor-valued parameters.

One technique is sparse regularization that results in variable selection. In high dimensional

problems, variable selection can substantially improve the interpretability of the solution.



The other technique is a penalty on the nuclear norm, which amounts to soft thresholding

(i.e., shrinking) the singular values. For low rank approximation problems, shrinking the

singular values can be an effective alternative to finding a fixed rank-k approximation. For

GLMs with matrix- or tensor-valued parameters, we develop both fixed-rank and shrinkage

versions of an orthogonal tensor regression model, which we intend for analyzing medical

imaging data such as fMRI. For high dimensional CCA, we develop a sparse CCA method

that achieves variable selection by penalizing the elements of the canonical vectors. We

study the variable selection accuracy under different choices of the penalty function. We also

develop a more general method of finding a sparse, low rank matrix approximation based on

shrinkage, which we show aims to select the same variables as certain sparse CCA methods

under some assumptions.

Index words: Low rank approximation, Nuclear norm, Sparsity, High dimension low
sample size, Imaging data, Multimodal data.
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Chapter 1

Overview

1.1 Low Dimensional Structure in Large-Scale Multi-

variate Problems

Modern research often involves collecting information from large numbers of variables, some-

times many more variables than observational units. An archetypal example is “omics” data

in biological research. In genomics, researchers may collect information about gene expression

for thousands of genes. In epigenomics, one may collect information about the methylation

of DNA at thousands of CpG sites. In transcriptomics, one may measure the levels of one

or several of the various types of RNAs produced by a cell. In proteomics, one may measure

the production of many types of proteins. In every example, the genes, RNAs, proteins, etc.

are the variables measured, which typically number in the thousands, while the number of

tissue samples, subjects, or other examples of observational units typically number on the

order of tens or hundreds. Moreover, many experiments involve collecting information from

multiple omics sources at once. Thus, much of modern research is characterized by obtaining

high dimensional, multivariate data from a relatively small number of samples.

Often the goal of research involving large numbers of variables is to describe the multi-
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variate relationships among the variables, or between the variables and some response. For

example, if one collects gene expressions from a set of tumor samples representing several

different types of cancers, one may ask: Is a large proportion of the total variability in the

gene expressions related to the fact that the samples come from different cancer tissues? An-

swering such a question involves describing the relationships among gene expressions across

all of the genes. If a large proportion of the variability in the gene expressions is not due

to there being different cancer types, it could still be the case that some combination of

gene expressions could be useful for discriminating among tissues from different cancers. In

another example, suppose one collects information about gene expression and DNA methyla-

tion from the same set of samples. One could ask: Is the level of DNA methylation related to

the level of expression of certain genes? That question involves describing the relationships

among variables between two different sets, rather than either set alone.

Describing the multivariate relationships among many variables can be framed as an

exploratory analysis that tries to find and characterize lower dimensional structure in the

relationships. To determine whether a large proportion of the total variability in gene expres-

sions is related to the type of cancer from which the tissue was collected, we find the dominant

modes of variation in the gene expression (e.g., the goal of principal components analysis),

then examine whether the dominant modes of variation are associated with cancer type. To

determine whether some combination of gene expressions could be useful for discriminating

among tissues from different cancers, we try to find a low dimensional representation of the

variables that best separate the cancer types (e.g., the goal of linear discriminant analysis).

To determine whether DNA methylation levels are related to gene expression, we can attempt

to characterize the dominant modes of co-variation between the two sets of variables; that

is, we find a low dimensional representation of the DNA methylations and a low dimensional

representation of the gene expressions that are strongly associated (e.g., the goal of canonical

correlation analysis).
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Problems that involve finding and characterizing low dimensional structure in multivari-

ate data often have as their solutions a low rank approximation of some matrix. Principal

components analysis, linear discriminant analysis, and canonical correlation analysis are just

three examples of multivariate analyses that fall into the class of low rank matrix approx-

imation problems. In Section 1.2, we describe why those analyses involve low rank matrix

approximations, and also describe some other statistical methods that fall into the same class

of problems.

1.2 Statistical Methods Based on Low Rank Approxi-

mations

Many multivariate statistical methods rely on matrix decompositions. Some methods explic-

itly assume a model in which a matrix decomposes as a product of two or more lower rank

matrices, plus a residual. For example, in factor analysis, we assume the random variables

X1, . . . , Xp are actually composed of linear combinations of k < p latent factors. If we obtain

n observations of the variables and collect them in the matrix Xn×p, then the factor analysis

model assumes

X = FL+ E, where

Fn×k : factor matrix with columns representing the latent factors

Lk×p : loading matrix with rows giving the coefficients of linear combinations of the factors

En×p : residual matrix.

Because the number of latent factors k is usually assumed to be small relative to the number

of original variables p, we typically have k = rank(FL) < rank(X). Thus, the decomposition

FL is a low rank approximation of the data matrix X.
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Similar models to the factor analysis model have been proposed when the data have

certain properties, or we wish to restrict the decomposition to have certain properties, or

both. For example, if all of the elements of X are non-negative, then we may wish all of

the elements of F and L to be non-negative as well. The non-negative matrix factorization

model assumes X = FL+E such that F ≥ 0 and L ≥ 0, where E is again a residual matrix.

As in factor analysis, the number of columns of F and rows of L are typically assumed to

be small relative to p, so that the matrix FL is a low rank approximation of X.

If we think of factor analysis and non-negative matrix factorization as explicitly assuming

models based on matrix decompositions, then we may think of other methods as implicitly

relying on matrix decompositions. In principal components analysis (PCA), the objective

is to construct linear combinations of the original variables X1, . . . , Xp such that the new

variables

u1,1X1 + · · ·+ u1,pXp

...

up,1X1 + · · ·+ up,pXp

have the largest variances possible while being uncorrelated. The coefficients of the linear

combinations u1, . . . ,up are called principal components (PCs) and the new variables are

called PC variables. Let Σ denote the variance of X := (X1, . . . , Xp)
T . To find the first PC,

we solve

u1 = arg max
u

uTΣu s.t. uTu = 1,

since V ar(u1,1X1 + · · ·+ u1,pXp) = V ar(uT1X) = uT1 Σu1.

At first glance, PCA does not seem to involve a matrix decomposition or a low rank

approximation. However, it can be shown that the solution to PCA (not only the first PC, but

all others as well) is the spectral decomposition of the matrix Σ. That is, the PCs u1, . . . ,up

are the eigenvectors of Σ and the variances of the PC variables V ar(uT1X), . . . , V ar(uTpX)

are the eigenvalues λ1, . . . , λp. Because the solution to PCA is obtained from the spectral
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decomposition, it is equivalent to find the first PC by solving

u1 = arg min
u

‖Σ− λuuT‖F s.t. λ > 0, uTu = 1.

As formulated above, it is clear that PCA involves finding a low rank approximation of the

matrix Σ. In fact, the matrix λ1u1u
T
1 is the best rank-1 approximation of Σ in the sense of the

Frobenius norm ‖M‖F =
√∑

j,km
2
jk. More generally, if we collect the first k eigenvectors

(i.e., the first k PCs) into the matrix Uk and the corresponding eigenvalues into the diagonal

matrix Λk, then the matrix UkΛkU
T
k is the best rank-k approximation of Σ.

Fisher’s linear discriminant analysis (LDA) can also be viewed as a statistical method

implicitly relying on matrix decompositions. Fisher’s LDA maximizes the between-to-within

variance for data from k classes. Let {xi, Yi}, i = 1, . . . , n, denote pairs of observed covariates

and class labels, where xi ∈ Rp and Yi ∈ {1, . . . , k}. Let µ̂j, j = 1, . . . , k, denote the mean

covariate vector for each class. Define the within and between covariance matrices as

Σw =
1

n− k

k∑
j=1

nj∑
i=1

(xi − µ̂j)(xi − µ̂j)T

Σb =
k∑
j=1

nj
n
µ̂jµ̂

T
j .

Then Fisher’s LDA solves

max
uj

uTj Σbuj

uTj Σwuj
j = 1, . . . , k − 1

⇐⇒ max
uj

uTj Σbuj s.t. uTj Σwuj′ = I(j = j′), j = 1, . . . , k − 1,

where I(·) denotes the indicator function.
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Using the change of variables ũ = Σ
1/2
w u, we can write the problem as

max
ũj

ũTj Σ−1/2
w ΣbΣ

−1/2
w ũj s.t. ũTj ũj′ = I(j = j′), j = 1, . . . , k − 1.

Then the problem of LDA appears nearly identical to the problem of PCA. That is, instead

of finding the spectral decomposition of Σ, we can obtain the solution to LDA by finding the

spectral decomposition of Σ
−1/2
w ΣbΣ

−1/2
w . As in PCA, the elements of the eigenvectors are

the coefficients of linear combinations of the covariates, but in the case of LDA we call the

eigenvectors the discriminant vectors or directions. Because the solution to LDA is based on

the spectral decomposition, we could equivalently solve

min
Uk−1,Λk−1

‖Σ−1/2
w ΣbΣ

−1/2
w − Uk−1Λk−1U

T
k−1‖F s.t. λj > 0 ∀j and UT

k−1Uk−1 = Ik−1.

In that form, it is clear that the objective is to find a low rank approximation of Σ
−1/2
w ΣbΣ

−1/2
w .

Another method closely related to PCA is canonical correlation analysis (CCA). Whereas

PCA finds linear combinations of variables in one dataset that maximize the variance, CCA

finds linear combinations of variables in two datasets that maximize the correlation between

them. Suppose a dataset X consists of p variables and a dataset Y consists of q variables.

Then, formally, CCA finds a linear combination u := (u1, . . . , up)
T and a linear combination

v := (v1, . . . , vq)
T such that the correlation ρ := Cor(Xu, Y v) is maximized. The vectors

u and v are called the canonical vectors and ρ is called the canonical correlation.
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Let ΣXX denote the variance of X, ΣY Y the variance of Y , and ΣXY the covariance

between X and Y . Then using the definition of correlation, CCA solves

u1,v1 = arg max
u,v

Cov(Xu, Y v)√
V ar(Xu)

√
V ar(Y v)

= arg max
u,v

uTΣXY v√
uTΣXXu

√
vTΣY Y v

= arg max
u,v

uTΣXY v s.t. uTΣXXu = vTΣY Y v = 1,

where the constraint in the last line is imposed because the problem in the penultimate line is

invariant to scaling. CCA can be used to find up to min(p, q) nonzero canonical correlations,

but the focus of Chapters 3 and 4 is on finding the largest canonical correlation, so we limit

the discussion to that problem.

As with PCA, it is not immediately apparent that CCA involves a low rank matrix

approximation. Using the change of variables ũ = Σ
1/2
XX and ṽ = Σ

1/2
Y Y , the CCA problem

can be rewriten as

arg max
ũ,ṽ

ũTΣ
−1/2
XX ΣXY Σ

−1/2
Y Y ṽ s.t. ũT ũ = ṽT ṽ = 1.

It can be shown that the solution to the transformed problem can be found from the singular

value decomposition (SVD) of the matrix Σ
−1/2
XX ΣXY Σ

−1/2
Y Y . The canonical correlation ρ is

the largest singular value and the canonical vectors can be found from the corresponding

singular vectors. Because the solution to CCA is obtained from the SVD, the problem can

be written equivalently as

arg min
u,v

‖Σ−1/2
XX ΣXY Σ

−1/2
Y Y − ρuv

T‖F s.t. ρ > 0, uTu = vTv = 1.

Under its alternative formulation, it is clear that CCA involves finding a low rank approxi-
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mation of the matrix Σ
−1/2
XX ΣXY Σ

−1/2
Y Y . The matrix ρ1u1v

T
1 is the best rank-1 approximation

of Σ
−1/2
XX ΣXY Σ

−1/2
Y Y in the sense of the Frobenius norm.

The solutions to PCA, LDA, and CCA involve low rank approximations of matrices, so

one may think of those methods as inherently relying on matrix decompositions. Matrix de-

compositions have also been used as tools in statistical methods that do not inherently rely

on them. The focus of Chapter 2 is using images as covariates in generalized linear models

(GLMs). The images we are concerned with are typically two- or three-dimensional arrays.

We refer to 2D arrays as matrices and 3D or higher dimensional arrays as tensors. When

we include a matrix- or tensor-valued covariate in a GLM, we must estimate a parameter

of the same size. That is, we must estimate either a matrix- or tensor-valued parameter.

Because the number of parameters increases multiplicatively with the number of dimensions,

it is necessary to make some assumptions that reduce the number of parameters to estimate.

We may assume the parameter matrix/tensor admits some particular matrix/tensor decom-

position, then estimate the parameter under a low rank assumption. Then the estimate

of the parameter matrix/tensor is a low rank approximation of the underlying population

parameter matrix/tensor.

Let µ denote the mean of the response, g(·) the link function of a GLM, 〈·〉 the inner

product between vectorized versions of two matrices/tensors, and “◦” the outer product of

two or more vectors. Then the models we consider in Chapter 2 are of the form

g(µ) = α + γTzi + 〈B, Xi〉 s.t. B =
k∑
r=1

β1r ◦ β2r ◦ · · · ◦ βDr,

where α is the scalar intercept, zi is vector of regular covariates with corresponding param-

eters γ, and Xi is a D-dimensional matrix- or tensor-valued covariate with corresponding

parameter B. The model assumes the parameter B can be represented as the sum of an outer

product of vectors that is at most rank-k. The rank is usually chosen to be small, so that the

8



estimated model parameter is a low rank approximation of B. The number of parameters

is additive, rather than multiplicative, in the number of dimensions, so substantially fewer

observations are needed to fit the model.

A low rank assumption for the parameter matrix/tensor can be a strong assumption, and

it may not be useful in many contexts. In Section 2.1, we describe the intuition behind why

such a model may be reasonable for the types of images and applications with which we are

concerned.

It is also not obvious which decomposition we may employ so that the parameter may

be represented as the sum of an outer product of vectors that is at most rank-k. In the case

of matrices, we may use the SVD. But for the model to generalize to higher order tensors,

we must first define a notion of tensor rank, then define a decomposition that captures

information about the rank. Neither the definition of matrix rank nor the matrix SVD

generalizes directly to tensors. In both cases, there are analogs for tensors that share some,

but not all, of the properties of the matrix rank and SVD. In Section 2.1.1, we give some

background on multilinear algebra that describes different notions of tensor rank and some of

the various tensor decompositions that have been proposed. We focus on the decompositions

that allow us to construct a model such as above.

1.3 Regularization Techniques

The statistical methods discussed in Section 1.2 involve finding a low rank approximation

to a matrix. In PCA, to find the first k PCs, one finds the best rank-k approximation of

Σ. In CCA, to find the largest canonical correlation and corresponding canonical vectors,

one finds the best rank-1 approximation of Σ
−1/2
XX ΣXY Σ

−1/2
Y Y . In regression with a matrix- or

tensor-valued parameter, one first assumes some rank k, then finds a rank-k estimate of the

population parameter.

9



A common thread in all of the examples is that one must choose a fixed value k for the

rank before finding a low rank approximation of the matrix or tensor. As an alternative, one

may find a low rank approximation through regularization. For methods based on the SVD,

such as CCA and regression with matrix-valued parameters, one can penalize the objective

function with a sparsity-inducing function of the singular values. Because the rank of a

matrix equals the number of nonzero singular values, that approach results in a low rank

approximation by shrinking some of the matrix’s singular values to exactly zero. Chapters

2 and 3 discuss that approach in the context of regression and CCA, respectively. Chapter

2 also discusses an extension of the approach for tensor-valued parameters. To extend the

approach to tensors, it is first necessary to define a tensor decomposition for which there is

analog of the singular value as in the matrix SVD.

A natural question is: What advantage would penalizing the singular values have over

assuming a fixed value of the rank? For regression with matrix- or tensor-valued parameters,

one purpose of the low rank assumption is to reduce the number of parameters to a feasible

level. One could find the largest value k such that the number of parameters is smaller than

the sample size. However, that strategy is ad hoc and could result in overfitting, since a

smaller rank model might also provide an adequate fit to the data. A method based on

penalizing the singular values allows one to find a low rank approximation through a data-

driven choice of the tuning parameter. It also makes it possible to obtain estimates that are

intermediate between rank k and k + 1 (see Section 2.3.3 for some examples). For CCA,

the issue of choosing the rank is not as relevant. If one is only concerned with the largest

canonical correlation, then the problem is by definition to find a rank-1 approximation.

Another advantage of a shrinkage-based approach is computational tractability. PCA,

CCA, and regression with matrix- or tensor-valued covariates under a low (fixed) rank as-

sumption are all non-convex problems. For PCA and CCA in the traditional n > p setting,

the non-convexity of the problem doesn’t create any additional challenges because an ana-
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lytical solution exists (namely, the SVD). However, in high dimensional settings, additional

regularization is required for CCA (because the inverses of the sample versions of the matri-

ces involved don’t exist) and useful for PCA (e.g., to improve interpretation). Many popular

strategies for adding regularization to the problem, such as sparsity-inducing constraints or

penalties, require numerical solutions, in which case the non-convexity poses a challenge.

The low rank matrix/tensor regression problem always requires a numerical solution, so its

non-convexity is always a challenge. In contrast to the fixed-rank versions of the problems,

versions based on penalizing the singular values can be constructed to be convex, depending

on the choice of objective function and penalty function. Chapter 2 discusses the approach

in the context of regression, and Chapter 3 discusses the approach in the context of CCA.

It is also possible that versions of the problems based on shrinkage reduce the effective

number of parameters even further than the fixed-rank versions. For a normal linear model

with a matrix-valued parameter, the effective number of parameters of a model that penalizes

the `1 norm of the singular values is always dominated by the naive count of the number

of parameters (Zhou and Li, 2014). That is, the effective number of parameters for the

fixed-rank version of the problem is always larger than that of the shrinkage-based version

(assuming the tuning parameter is chosen such that the shrinkage-based estimate has the

same rank as the fixed-rank estimate). Whether that fact extends to other problems, such

as CCA and regression with tensor-valued parameters, is unclear.

Another type of regularization that is useful for some of the statistical methods discussed

is sparse regularization that results in variable selection. Variable selection is especially

useful for PCA and CCA in high dimensional settings. For PCA, we may wish to find a

linear combination of just a few variables that explain most of the variation in the data.

For CCA, we may wish to select a few variables from each dataset such that the correlation

between linear combinations of the subsets of variables is large. Variable selection is not

only useful from a computational perspective, but also for improving the interpretation of

11



the analysis. It is much easier to interpret the multivariate relationships among 10 variables

than among 1,000 variables.

When we employ sparse regularization for variable selection, we make the implicit as-

sumption that the underlying model is sparse; that is, the relationship among a small subset

of the variables dominates the overall relationship among all of the variables. In the context

of CCA, it means that the canonical correlation between a subset of variables from X and

a subset from Y is nearly as large as the canonical correlation between all of the variables

in X and Y . When we incorporate sparsity into a problem such as CCA, we hope to select

the correct subset of variables that has the highest correlation possible among all subsets of

that size. An exhaustive search is feasible only when the dimension is small, so we add a

sparsity-inducing penalty function to the objective function instead.

In CCA, the canonical vectors u and v are the coefficients of the linear combinations of

X and Y , respectively. If we wish to select a subset of variables from X and Y , then we

need to estimate some of the coefficients of the linear combinations as exactly zero. Thus,

one popular approach for sparse CCA is to penalize the objective function with a sparsity-

inducing function of u and v. With sparsity, we no longer have an analytical solution for

CCA, so we must use a numerical approach. As mentioned previously, CCA is a non-convex

problem, so sparse CCA is a challenging problem to solve even with the most sophisticated

numerical algorithms. In addition, the non-convexity of the problem creates other difficulties.

Unlike sparse regression problems based on the `1 norm [e.g., LASSO regression (Tibshirani,

1996)], the penalized and constrained versions of sparse CCA based on the `1 norms of u

and v are not equivalent (Gaynanova et al., 2017). Importantly, the version of sparse CCA

that constrains the `1 norms of u and v can achieve any level of sparsity, while the version

that penalizes the `1 norms of u and v cannot.
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1.4 Scope of Dissertation

The main goal of Chapter 2 is to develop a tensor regression model based on shrinking

the singular values of the tensor. The model can be viewed as an extension of Zhou and

Li’s (2014) regularized matrix model, which penalizes the singular values of a matrix-valued

parameter. The main challenge in extending Zhou and Li’s model to tensors is how to

define a “singular value” for tensors. Multiple definitions for higher-order analogs of the

matrix SVD have been proposed. None of the proposals share every property of the matrix

SVD, but all share some properties. We focus on a decomposition that enforces the higher-

order analogs of the singular vectors to be orthogonal and the rank of the tensor to equal

the number of nonzero singular values. Chen and Saad (2009) characterized some of the

properties of the decomposition, which they called a low rank, orthogonal approximation to

tensors (LROAT), and proposed an algorithm to compute the decomposition. We focus on

the LROAT decomposition because the rank of the tensor is guaranteed to equal the number

of nonzero singular values; if we penalize the singular values so that some shrink to zero, then

we can find a low rank approximation of the parameter tensor just as we can for matrices.

The guarantee that the rank equals the number of nonzero singular values is not without

cost. By employing the LROAT decomposition in our tensor regression model, we make the

additional assumption that the parameter tensor is orthogonally-decomposable. Not all ten-

sors admit an orthogonal decomposition, so Chen and Saad’s algorithm finds the closest ap-

proximation to the tensor when it is not orthogonally-decomposable. Because orthogonally-

decomposable is a strong assumption, in almost all cases the estimate obtained from our

model will be an approximation of the parameter tensor in more than one sense. It will be a

low rank approximation of the parameter tensor whenever the assumed rank is smaller than

the true rank, which is our main goal. However, it will also be an approximation whenever

the true population parameter tensor is not orthogonally-decomposable. Importantly, that
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implies the estimator of the parameter tensor cannot be consistent (unless we make the unre-

alistic assumption that the population parameter is also orthogonally-decomposable). That

is, no matter how much data we collect, we can never make the estimation error arbitrarily

small. Section 2.1.1 shows some examples of low rank tensors and their closest orthogonal

approximation to give some idea of how much accuracy we sacrifice by using the LROAT

decomposition. Section 2.3 explores the issue in the context of the proposed tensor regres-

sion model through a simulation experiment. Section 2.4 applies the model to a real dataset.

Both the simulation experiment and real data analysis suggest the benefits of the proposed

model outweigh its limitations, given the limitations of the best available alternatives. Al-

though our model makes stricter assumptions, the algorithm we propose to fit the model

appears to perform better than the algorithms proposed to fit alternative models.

Chapter 3 considers the problem of describing the dominant modes of co-variation be-

tween two datasets while simultaneously performing variable selection. The dominant modes

of co-variation between two datasets can be found through a low rank approximation of the

matrix containing all of the pairwise relationships between variables. We focus on the es-

timated covariance or correlation matrix. We develop a method that penalizes both the

singular values of the matrix and the row or column norms. The penalty on the singular

values encourages a low rank representation of the matrix, while the penalty on the row or

column norms results in variable selection from one of the datasets. The problem is especially

challenging to solve numerically because both the number of nonzero singular values and the

number of nonzero rows or columns influence the rank.

One of the main contributions of Chapter 3 is to show that the proposed approach aims

to select the same subsets of variables as certain state-of-the-art approaches for sparse CCA.

Section 3.2.2 discusses the theoretical assumptions necessary to make such a claim. Section

3.2.4 introduces an alternative to tuning parameter selection that ranks variables according

to their importance. In simulation, the average rank of the non-sparse variables can serve as a
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proxy for the variable selection accuracy. In practice, ranking the variables can be viewed as

a kind of continuous variable selection. It can also alleviate some of the instability associated

with trying to select a single model. Section 3.3 demonstrates through simulation that the

proposed approach and sparse CCA not only rank the non-sparse variables highly, but also

that the proposed approach performs better in that respect in many instances. Section 3.4

provides some empirical justification for our claims through a real data analysis. That the

proposed approach and sparse CCA aim to select the same variables requires assumptions

that are not likely to hold for real data. Despite that, we demonstrate that the proposed

approach and sparse CCA share a high degree of overlap with respect to which variables

they rank highly. In addition, if one performs non-sparse CCA with a few of the most highly

ranked variables, the estimated canonical correlation is as high or higher using the variables

selected by the proposed approach than the variables selected by sparse CCA. That fact

is rather surprising given that the proposed approach does not attempt to maximize the

canonical correlation.

Chapter 4 further explores regularization techniques for CCA. Whereas the methods

described in Chapters 2 and 3 utilize a penalty on the singular values to achieve a low rank

approximation, the methods introduced in Chapter 4 utilize the more traditional fixed-rank

approximation for CCA. The methods in Chapter 4 explore some alternative approaches to

achieve variable selection through sparse estimation. One of the main goals of Chapter 4 is to

relax some of the assumptions that have been imposed in other sparse CCA proposals. For

example, the sparse CCA methods of Witten et al. (2009) and Safo et al. (2018) standardize

the data and assume the within-set covariance matrices ΣXX and ΣY Y are identity, thus

avoiding the need to estimate their inverses and allowing the method to depend on the

estimate of ΣXY alone. Assuming ΣXX and ΣY Y are identity amounts to assuming the

variables within each dataset are uncorrelated, which will almost never be realistic in practice.

To avoid making the assumption that ΣXX and ΣY Y are identity, the methods in Chapter
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4 make use of an alternative formulation of CCA as a multivariate regression problem (Izen-

man, 1975). Formulated as a multivariate regression, the canonical vectors corresponding to

the largest canonical correlation can be obtained by solving a least squares criterion. The

formulation is especially useful in the high dimensional setting because we can make use

of all of the tools that have been developed for high dimensional regression. In particular,

our interest is in applying the tools developed for sparse estimation. The formulation is not

only amenable to adding a LASSO penalty (Tibshirani, 1996), as has been done in other

sparse CCA proposals, but also other sparsity-inducing penalties, such as SCAD (Fan and Li,

2001) and MC (Zhang, 2010) penalty, which are known for their improved variable selection

properties.

Although CCA can be formulated as a penalized least squares regression problem, it is

much more challenging to solve than regression. Unlike a standard regression problem, CCA

remains a non-convex optimization problem even when it is reformulated to look like a re-

gression problem. Whereas a standard regression problem is convex in the parameters, CCA

is bi-convex in the parameters. In addition, CCA involves quadratic equality constraints,

which are non-convex. As a consequence, one of the algorithms we propose to solve the sparse

CCA problem (the proximal gradient method described in Section 4.2.2) tends to be sensitive

to the initial value. The other algorithm we propose (the ADMM algorithm described in

Section 4.2.2) makes use of a solver designed to handle quadratic equality constraints, and so

is less sensitive to the initial value, but only performs well when the dimension is small. The

solver does not scale well with the dimension, so the computation time is prohibitive for high

dimensional problems. In addition, neither algorithm performs well relative to sparse CCA

methods that assume ΣXX and ΣY Y are identity, suggesting that the cost of relaxing that

assumption exceeds the benefit. Section 4.4 discusses the major limitations of the approach,

as well as some ideas for future directions. Although it is unlikely that the approach could

outperform the best sparse CCA methods in high dimensional settings, it is competitive in
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low dimensional settings. The approach also has other advantages, such as a natural way to

extend CCA to more than two datasets or to grouped data.

Chapter 5 provides some concluding remarks and ideas for future research that incorpo-

rate regularization into statistical methods that are based on or utilize low rank matrix/tensor

approximations.
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Chapter 2

A Low Rank, Orthogonal Tensor Regression

Model

2.1 Introduction

Modern technology allows researchers to collect data that can be represented as images. For

example, images such as those obtained by structural magnetic resonance imaging (MRI),

diffusion tensor imaging (DTI), electroencephalography (EEG), and functional MRI (fMRI)

are frequently used by psychologists, neuroscientists, and others within health and medical

disciplines to diagnosis or study disease. The need to analyze such imaging data poses

new challenges for statisticians because many traditional statistical methods do not readily

accommodate imaging data. Different approaches have been proposed depending on the type

of question the researcher would like to answer using the imaging data. Our work considers

research questions in which the image may be considered a covariate, and one would like to

know how the image covariate relates to or affects a response variable (which may be discrete

or continuous). Some examples of questions of interest include whether an image obtained

via fMRI can be used to predict whether a person would be diagnosed with a particular

psychiatric disorder (such as schizophrenia), or whether a structural MRI can be used to
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predict disease status (e.g., Alzheimer’s). In either example, the response may be binary

(1=disorder/disease, 0=healthy) or continuous (e.g., symptom scale scores). Determining

whether an image can be used to make such a prediction and what elements of the image

are important to the prediction can help researchers identify the neural circuitry involved in

the disorder/disease and potentially contribute to a better understanding of its etiology.

From the statistical perspective, images can be treated as matrix-valued (2D) or array-

valued (3D or higher) data. However, images are challenging to model using traditional

methods because of the implicit spatial structure and large number of parameters to estimate.

For example, if one wanted to model the relationship between disease status and a fMRI

covariate using a generalized linear model (GLM), one would need to estimate 40 × 48 ×

38 = 72, 960 parameters – the dimension of a typical image obtained by fMRI (and this

is ignoring that fMRI data are usually collected over many time points). One solution is

to fit a regularized GLM with a sparsity-inducing penalty, which effectively reduces the

number of parameters to estimate. However, the results from penalized regression are often

unsatisfactory when the data are ultra-high dimensional. Moreover, the penalized regression

approach does not account for the spatial structure inherent in imaging data.

Several researchers have proposed tensor regression models to handle array-valued imag-

ing data. “Tensor” simply refers to a multidimensional array (e.g., a 1D tensor is a vector,

a 2D tensor is a matrix, etc.). Tensor regression models exploit the expected spatial depen-

dency of the array-valued image by assuming the corresponding tensor of model parameters

can be well-approximated by a low rank structure, thereby accounting for the spatial depen-

dency while simultaneously reducing the number of parameters to estimate. To illustrate

the intuition behind this idea, we consider a 2D image as an example. Notions of rank and

decomposability of matrices do not extend directly to 3D and higher dimensional arrays, so

we defer a general discussion of the low rank tensor model until after a brief introduction to

multilinear algebra in Section 2.1.1.
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Consider a p1 × p2 image consisting of intensities for p1p2 pixels. For example, the

values might be the blood oxygen-level dependent (BOLD) signal for a slice of a brain image

acquired by fMRI. If we obtain such images from two groups of subjects, say healthy controls

and subjects diagnosed with a psychological disorder, then we might expect the images within

each group to be more similar on average than images between groups. Moreover, if there

are features that distinguish images belonging to healthy subjects from images belonging to

subjects diagnosed with a disorder, we might expect the features to be few and to occur in

spatially compact locations. Thus, an image consisting just of the features that distinguish

one group of images from the other might be well-approximated by a low rank matrix. To

place the example in the context of a GLM, the group status would represent the response,

the fMRI images would represent the covariate, and the image of features that represent areas

of the brain where the BOLD signal differs between the groups on average would represent

the matrix of model parameters. Then, the tensor regression model assumes that the matrix

of model parameters can be well-approximated by low rank matrix. Note that the model does

not assume the images themselves are low rank. Also note that the model does not explicitly

account for spatial dependency. It implicitly accounts for spatial dependency through the

posited mechanism by which a low rank structure for the model parameters might arise. The

extent to which a low rank assumption might hold in practice, and the usefulness of such a

model in general, depends on the context and scientific question of interest. As the example

demonstrates, a low rank tensor regression model may be reasonable for some experiments

that collect fMRI data.

Two main approaches have been proposed to impose a low rank structure on the model’s

parameter tensor. One approach assumes a fixed rank a priori. However, the true rank of

the parameter tensor will generally not be known, and it may not be clear how to choose the

rank suitably. As the rank increases, the fit of the model should improve (assuming that the

sample size is sufficient to fit higher rank models). Thus, the question is: What is the lowest
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rank such that the model fit is adequate (or does not improve appreciably for higher ranks)?

Answering such a question is non-trivial and usually will require the subjective judgment of

the analyst or an ad hoc approach.

To avoid fixing the rank a priori, another approach penalizes the `1 norm of the singular

values of a matrix. That approach can be applied directly when the images are 2D because the

parameter tensor is itself a matrix. When the images are 3D or higher, the parameter tensor

must first be converted into a matrix (see “matricization” in Section 2.1.1), and various ways

to do this have been proposed. Since the number of nonzero singular values equals the rank,

such a model effectively reduces the rank of the matrix by shrinking some of its singular

values to zero. Then the rank of the matrix is determined in a data-driven way through

selection of the tuning parameter (e.g., by cross-validation, AIC, BIC, etc.).

Methods that penalize the singular values rely on the singular value decomposition (SVD)

of a matrix. As a consequence, these methods cannot be applied directly to 3D or higher

dimensional images because the matrix SVD does not have a direct analog for higher dimen-

sional tensors. Although previous authors have overcome this limitation by converting the

tensor into a matrix, an alternative is to use a tensor decomposition that has some key sim-

ilarities with the matrix SVD. Several tensor decompositions have been proposed that share

some, but not all, of the properties of the matrix SVD. Here, we extend methods that penalize

singular values to higher dimensional tensors through a low rank, orthogonal approximation

of tensors (LROAT) (Chen and Saad, 2009). In Section 2.1.1, we give some background on

multilinear algebra, describe LROAT and several other tensor decompositions, and interpret

the decompositions as higher-order analogs of the matrix SVD. In Section 2.1.2, we describe

the some of the matrix/tensor regression models that have previously been proposed. In

Section 2.2, we define the proposed LROAT regression model. We first present an algorithm

to fit the model for fixed rank. We then extend the method to work by shrinking the “sin-

gular values,” which can be viewed as an extension of methods for matrices. In Section 2.3,
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we conduct a simulation experiment to compare the proposed methods to state-of-the-art

methods. In Section 2.4, we apply the proposed methods for visual stimulus decoding using

a real fMRI dataset. We provide some concluding remarks in Section 2.5.

2.1.1 Background: Multilinear Algebra

[Note: The background information in this section follows Kolda and Bader (2009); see their

review for a more extensive background on multilinear algebra.] Multilinear algebra extends

concepts in linear algebra for vectors and matrices to multidimensional arrays called tensors.

The number of dimensions of a tensor is called the order or the number of modes. Thus, a

matrix is a second-order tensor or a two-mode tensor. If we fix the indices of all modes but

one, we get vectors along that mode, which we call fibers. For example, the columns of a

matrix are its mode-1 fibers and the rows are its mode-2 fibers. If we fix the indices of all

modes but two, we get matrices, which we call slices.

A D-mode tensor may be written as the sum of an outer product of D vectors. For

example, the SVD of a m× n matrix A can be written as

A = UΣV T =
R∑
r=1

σrurv
T
r =

R∑
r=1

σrur ◦ vr s.t. u ∈ Rm,v ∈ Rn,

rank(A) = R,

σr > 0, and

UTU = V TV = IR,

where “◦” denotes the vector outer product. Note that the outer product of two vectors is a

rank-1 matrix, and the outer product of D vectors is a rank-1 tensor.
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A general p1 × p2 × · · · × pD tensor can be written as

X =
R∑
r=1

β1r ◦ β2r ◦ · · · ◦ βDr, β1r ∈ Rp1 ,β2r ∈ Rp2 , . . . ,βDr ∈ RpD , r = 1, . . . , R.

Here, R denotes the tensor rank, defined as the minimal number of rank-1 tensors needed

such that their sum reconstructs the original tensor exactly. Although this definition of

rank applies to both matrices and higher-order tensors, other properties of the matrix rank

do not extend to higher-order tensors. For example, rank(A) = dim(C(A)) = dim(C(AT ));

that is, the rank is equal to the dimension of the column space is equal to the dimension

of the row space. However, if one were to arrange the mode-n fibers of a tensor X into a

matrix, the dimension of the column space of the resulting matrix need not be the same as

the tensor rank. Arrangement of the mode-n fibers of a tensor into a matrix is called the

mode-n matricization of X , written X(n), and the rank of the mode-n matricization is called

the mode-n rank. The mode-n ranks of a tensor need not all be the same, nor do any need

to equal the tensor rank, although they are all bounded above by the tensor rank. Since the

mode-n ranks are not necessarily the same, they are written as the tuple (R1, R2, . . . , RD),

called the multilinear rank.

Tensors can be multiplied with matrices or vectors of appropriate size, called the n-mode

product. The multiplication of a p1× p2× · · · × pD tensor X with a J × pd matrix U results

in a tensor of size p1 × p2 × · · · × pd−1 × J × pd+1 × · · · × pD. The n-mode product can be

expressed as

X ×n U ⇐⇒ UX(n).

We may also take the inner product of two tensors of the same size. The inner product of

two tensors X and Y simply multiplies the corresponding elements and sums everything up.

23



This idea is equivalently expressed as

〈X ,Y〉 ⇐⇒ xTy, where x := vec(X ), y := vec(Y).

The squared Frobenius norm of a tensor X , denoted ||X ||2F , is defined as 〈X ,X〉.

Using these concepts and notations, we can discuss tensor decompositions. For nota-

tional convenience, we restrict the discussion to tensors of order three. The results extend

in a straightforward manner to general tensors of higher order. The canonical polyadic de-

composition (CPD) (Hitchcock, 1927) of a tensor expresses the tensor as a sum of rank-1

tensors, which we have already seen. That is, the CPD of a rank-R tensor can be written as

X =
R∑
r=1

β1r ◦ β2r ◦ β3r, β1r ∈ Rp1 ,β2r ∈ Rp2 ,β3r ∈ Rp3 , r = 1, . . . , R.

We may also collect the vectors β1r,β2r,β3r, r = 1, . . . , R into factor matrices B1 : p1 × R,

B2 : p2 × R, and B3 : p3 × R and write X = [[B1, B2, B3]]. Note that unlike the matrix

SVD, the CPD imposes no constraints on the factor matrices, such as orthogonality. Even

without additional constraints, the CPD is often unique up to scaling and permutation.

Kruskal (1977, 1989) derived sufficient conditions for the uniqueness of the CPD for general

p1×p2×p3 tensors. First, the k-rank of a matrix B1, denoted kB1 , is defined as the maximum

value kB1 such that any kB1 columns are linearly independent. Then Kruskal’s results state

that the CPD is unique if kB1 + kB2 + kB3 ≥ 2R + 2. Sidiropoulos and Bro (2000) derived

an analogous result for tensors of higher order.
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In general, the rank of a higher-order tensor will not be known. Then for fixed k ≤ R, the

CPD can be used to find a rank-k approximation of the tensor. The rank-k approximation

of a tensor solves

min
X̂
||X − X̂ ||F s.t. X̂ =

k∑
r=1

β1r ◦ β2r ◦ β3r = [[B1, B2, B3]]. (2.1)

The problem (2.1) is typically solved by an alternating least squares (ALS) algorithm. ALS

computes the CPD by fixing B2, B3 and solving (2.1) for B1, then fixing B1, B3 and solving

for B2, then fixing B1, B2 and solving for B3. The procedure is repeated until convergence

(the change in ||X − X̂ || between successive iterations falls below some threshold). The

matrices B1, B2, B3 need to be initialized, and the initial values can be arbitrary (e.g., random

initialization). Unlike matrices, higher-order tensors do not necessarily admit a best rank-k

approximation (i.e., there is no version of the Eckart and Young (1936) theorem for higher-

order tensors). Consequently, one may not apply the ALS algorithm sequentially to obtain

low rank approximations for an increasing sequence of ranks k1 < k2 < · · · ≤ R by using the

factors found for lower ranks when solving for the additional factors of higher ranks.

Whereas the CPD is most strongly associated with the notion of tensor rank, the Tucker

decomposition (TKD) is more strongly associated with the notion of multilinear rank. Tucker

(1966) proposed to decompose a tensor as the multilinear product of a core tensor (same

shape as the original tensor, but smaller size) and factor matrices corresponding to each

mode. In fact, the CPD is a special case of the TKD, in which the core tensor is constrained

to be diagonal. The TKD of a tensor X is

X = G ×1 B1 ×2 B2 ×3 B3 = [[G; B1, B2, B3]].

Note that the factor matrices B1, B2, B3 depend on the core tensor G, and so are not the

same as the factor matrices of the CPD in general. The core tensor in the TKD is of minimal
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size if its dimensions are the same as the multilinear rank of X .

There are several variants of TKD, differing primarily in the constraints imposed on the

factor matrices. The most common constraint is that the factor matrices be orthonormal.

For orthonormal B1, B2, B3, De Lathauwer et al. (2000a) argued that the TKD shares many

properties analogous to the matrix SVD, so they called this version of TKD the higher-order

singular value decomposition (HOSVD). For a rank-(R1, R2, R3) tensor, the HOSVD can be

computed using Algorithm 1. By construction, the HOSVD is an exact decomposition and

can be applied to any tensor (see Proposition 1 in the Appendix).

Algorithm 1: Higher-Order Singular Value Decomposition (HOSVD)

Input: Tensor X , multilinear rank (R1, R2, R3).
Output: G, B1, B2, B3 s.t. BT

1 B1 = IR1 , B
T
2 B2 = IR2 , B

T
3 B3 = IR3 .

for n = 1, 2, 3 do
Bn ←− left singular vectors corresponding to Rn largest singular values from
SV D(X(n))

end

G = X ×1 B
T
1 ×2 B

T
2 ×3 B

T
3

The HOSVD algorithm can also be used to obtain an approximation of the original tensor

by letting some or all of the Rn’s to be less than the mode-n ranks. This version is known

as the truncated HOSVD. Like for the tensor rank, there is no version of the Eckart and

Young (1936) theorem for the multilinear rank. Consequently, the truncated HOSVD is not

necessarily optimal in terms of the Frobenius norm of the difference between the true tensor

and the truncated decomposition. In light of this fact, given (R1, R2, R3) s.t. Rn is less than

the actual mode-n rank for some n, one can instead solve

min
G,B1,B2,B3

||X − G ×1 B1 ×2 B2 ×3 B3||F (2.2)

subject to G ∈ RR1×R2×R3 and Bn ∈ Rpn×Rn column-wise orthonormal, n = 1, 2, 3.
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As with the CPD, an ALS algorithm can be used to solve the problem (2.2). One can

use the HOSVD algorithm to supply the initial values. De Lathauwer et al. (2000b) gave

an efficient method for solving problem (2.2), which they called the higher-order orthogo-

nal iteration (HOOI); however, their algorithm is not guaranteed to converge to a global

optimum.

In real data applications, tensor decompositions are often used to obtain a low rank,

interpretable approximation of a data tensor. With respect to obtaining a decomposition

with low tensor rank, the CPD has an advantage over the TKD because the TKD fixes

the multilinear rank, which does not have a direct relationship to the tensor rank. How-

ever, with respect to obtaining a decomposition with interpretable factor matrices, the TKD

has an advantage over the CPD because the factor matrices in the CPD are completely

unconstrained. In the TKD, the columns of the factor matrices may be constrained to be

orthonormal, non-negative, linearly independent, etc. to suite the context of the application.

Chen and Saad (2009) proposed a decomposition that yields a low tensor rank and con-

strains the factor matrices to be orthonormal, combining the strengths of the CPD and TKD.

Their decomposition, called low rank orthogonal approximation to tensors (LROAT), takes

the form

X =
R∑
r=1

σrβ1r◦β2r◦β3r = [[diag(σ1, . . . , σR); B1, B2, B3]] s.t. BT
1 B1 = BT

2 B2 = BT
3 B3 = IR.

The LROAT decomposition can be considered a special case of the CPD, since it takes

the same form as the CPD but imposes additional constraints. Chen and Saad (2009) argued

that the LROAT decomposition also shares many properties with the matrix SVD, and so

LROAT can be thought of as a higher-order generalization of the matrix SVD. Like the

HOSVD, the factor matrices in the LROAT decomposition are column-wise orthonormal.

However, the LROAT decomposition also shares additional properties with the matrix SVD
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that are not properties of the HOSVD. For a third-order orthogonally-decomposable tensor

X , the LROAT decomposition has the following additional properties:

1. The tensor rank is bounded by the smallest size among the modes:

R = rank(X ) ≤ min(p1, p2, p3).

2. The “singular values” are non-negative and ordered: 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σR.

3. The tensor rank equals the number of nonzero singular values:

R = #{σr : σr > 0, r = 1, . . . ,min(p1, p2, p3)}.

4. The decomposition is unique up to signs (even when some singular values are repeated).

The key difference between LROAT for higher-order tensors and the matrix SVD is that

not all tensors are orthogonally-decomposable. From property 1, a tensor with rank(X ) >

min(p1, p2, p3) does not admit an orthogonal decomposition. Moreover, even if rank(X ) ≤

min(p1, p2, p3), there is no guarantee that X is orthogonally-decomposable. Thus, in real data

applications, the LROAT decomposition is nearly always an approximation of the original

tensor (hence “approximation” is part of the acronym). In contrast, the CPD and TKD (the-

oretically) provide exact decompositions for R and (R1, R2, R3) large enough, respectively.

Despite this shortcoming of the LROAT decomposition, Chen and Saad (2009) proved that

the approximation is optimal in the sense that the problem

min
σ1,...,σR,B1,B2,B3

∣∣∣∣∣
∣∣∣∣∣X −

R∑
r=1

σrβ1r ◦ β2r ◦ β3r

∣∣∣∣∣
∣∣∣∣∣
F

s.t. BT
1 B1 = BT

2 B2 = BT
3 B3 = IR (2.3)

has a solution for any X ∈ Rp1×p2×p3 and R ≤ min(p1, p2, p3). Some examples of 3D tensors

that do not admit an orthogonal decomposition and their closest orthogonally-decomposable

approximations are shown in Figure 2.1.
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(i) Cross (rank 2) (ii) Closest orthogonal approximation

(iii) Hyper-rectangles (rank 2) (iv) Closest orthogonal approximation

Figure 2.1: Examples of non-orthogonally-decomposable 3D tensors and their closest orthog-

onal approximations.

Chen and Saad (2009) proposed an alternating algorithm to solve problem (2.3). Their

algorithm is given in Algorithm 2 for a Dth-order tensor. Note that the polar decomposition

step implies that their algorithm is a more general block coordinate descent algorithm rather

than an ALS algorithm.
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Algorithm 2: Low Rank Orthogonal Approximation of Tensors (LROAT)

Input: Tensor X , tensor rank R, orthonormal initial guesses B1, . . . , BD (typically
obtained by HOSVD with R1 = · · · = RD = R).

Output: σ1, . . . , σR, final estimates B1, . . . , BD s.t. BT
1 B1 = · · · = BT

DBD = IR.

while objective criterion not met do
for d = 1, . . . , D do

Compute Vd = (vd1, . . . ,vdR), where
vdr = X ×1 β

T
1,r × · · · ×d−1 β

T
d−1,r ×d+1 β

T
d+1,r × · · · ×D βTD,r ∈ Rpd

Compute Σ = diag(σ1, . . . , σR), where
σr = X ×1 β

T
1,r × · · · ×D βTD,r = 〈βdr,vdr〉

(Qd, Hd)← polar-decomp(VdΣ)

Update Bd ← Qd

end

end

2.1.2 Matrix and Tensor Regression Models

Tensor decompositions have a long history of applications in the fields of psychometrics,

chemometrics, and signal processing (Kolda and Bader, 2009). In these applications, the

objective is often to approximate an observed tensor by one of lower rank. The CPD and

TKD described in Section 2.1.1 are commonly employed for this purpose. In contrast, for

applications in statistics and machine learning, the tensor to approximate by one of lower

rank is usually not observed. In a tensor regression model, the parameter tensor is assumed to

admit a low rank structure. That is, the problem is to simultaneously estimate the parameter

tensor and approximate it by a tensor of lower rank. Thus, the problem of estimating and

decomposing an unobserved quantity is of a fundamentally different nature than finding an

approximation to an observed quantity.

Various types of tensor regression models have been considered. For classification prob-
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lems, Hung and Wang (2012) and Tan et al. (2013) studied logistic regression with a matrix

and tensor covariate, respectively. Hung and Wang (2012) formulated the systematic part

of the model as a bilinear form in the parameters, which is equivalent to a rank-1 CPD. Tan

et al. (2013) considered the more general case of tensors of arbitrary order and a rank-R

CPD. Signoretto et al. (2014) also studied classification problems using a logistic loss, but

assumed the TKD for the parameter tensor. They penalized the spectral norm of the mode-n

matricizations to achieve low (multilinear) rank structure.

Hoff (2015) and Lock (2018) considered models in which both the response and covariate

are tensors (not necessarily of the same size). Hoff (2015) used the TKD for the parameter

tensor, while Lock (2018) used the CPD with an additional ridge penalty for the elements

of the factor matrices in the CPD. When both the response and covariate are tensors, the

number of parameters to estimate grows quickly, so the ridge penalty on the elements of the

factor matrices ensures that the parameters can be estimated even when the sample size is

small relative to the number of parameters.

Several authors have considered the case of scalar or multivariate response and tensor

covariate. Guo et al. (2012) studied linear regression for continuous responses and support

vector machine for binary responses. In both cases, they used CPD with an additional ridge

penalty or group sparsity penalty. Guhaniyogi et al. (2017) constructed a Gaussian linear

regression model under a Bayesian framework by specifying priors for the factor matrices in

the CPD.
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Others have approached the case of scalar response and tensor covariate from the frame-

work of GLMs. A GLM with tensor covariate can be written as

g(µ) = α + γTzi + 〈B, Xi〉

where g(µ) : a link function for the mean of Yi

α : a constant parameter

zi : a vector of regular covariates

γ : a vector of parameters corresponding to the regular covariates

Xi : a tensor covariate (usually an image) of order D and size p1 × · · · × pD

B : a tensor of parameters corresponding to the tensor covariate

Zhou et al. (2013) assumed a rank-R CPD for the parameter tensor. The systematic

component of their model can be expressed as

g(µ) = α + γTzi + 〈
R∑
r=1

β1r ◦ β2r ◦ · · · ◦ βDr, Xi〉 (2.4)

= α + γTzi + 〈[[B1, B2, . . . , BD]], Xi〉.

Assuming a fixed rank for the parameter tensor can be interpreted in the strict sense – that

the true parameter tensor is rank R. Alternatively, the assumption may be interpreted more

loosely – that the true parameter tensor is well-approximated by a rank-R CPD. The rank-

R assumption reduces the number of parameters associated with the tensor covariate from∏D
d=1 pd to R

∑D
d=1 pd. For the fMRI example from Section 2.1, a rank-1 assumption would

reduce the number of parameters from 40× 48× 38 = 72, 960 to 40 + 48 + 38 = 126.

Zhou et al. (2013) proposed to fit the tensor regression model (2.4) by a block coordinate

descent algorithm, similar in principle to the ALS algorithm used for the CPD. The problem
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is naturally suited to an alternating algorithm because (2.4) is nonlinear problem in B, but

reduces to separate classical GLM problems in Bd for fixed (B1, . . . , Bd−1, Bd+1, . . . , BD).

However, the model inherits the nonuniqueness problems associated with the CPD and the

algorithm is not guaranteed to converge to a global optimum. Zhou et al. (2013) imposed

some additional constraints to deal with nonuniqueness and suggested initializing the algo-

rithm from many random starts to obtain a solution that achieves a good objective value.

Note that Zhou et al. (2013) also introduced a penalized version of model (2.4) by adding

a penalty to the loss as a function of the elements of the βdr’s. Solving a penalized version

of the problem may be desirable to improve the interpretability of the solution or further

reduce the effective number of parameters to estimate (since R
∑D

d=1 pd can still be quite

large relative to the sample size). Li et al. (2016) extended the penalized version of model

(2.4) to the case of a multivariate (i.e., vector-valued) response.

Recently, Li et al. (2018) and Chen et al. (2019) proposed GLMs with tensor covariates

that make use of the TKD. The systematic components of their models can be written as

g(µ) = α + γTzi + 〈[[G; B1, B2, . . . , BD]], Xi〉, (2.5)

which is similar to model (2.4) except that the core tensor G is not constrained to be diagonal

and it assumes a fixed multilinear rank rather than a fixed tensor rank. Although the TKD

is more flexible than the CPD in some respects, the improved flexibility comes at the cost

of additional parameters to estimate. Thus, the model (2.5) may be difficult to fit unless

the dimensionality is reduced or the sample size is large. In addition, since the model (2.5)

assumes a fixed multilinear rank (R1, R2, . . . , RD), it compounds the problem of choosing

an appropriate rank that was encountered for the model (2.4). Chen et al. (2019) overcame

those difficulties to some extent through various assumptions about the multilinear rank

(e.g., the maximum of the mode-n ranks is bounded).
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Because a priori specification of the tensor rank or multilinear rank may be difficult

in practice, Zhou and Li (2014) proposed a convex relaxation of the rank for matrices by

penalizing the singular values, which they call regularized matrix regression. Their approach

does not require fixing the rank in advance, but instead shrinks some of the singular values of

the parameter matrix to zero, thereby encouraging a low rank representation of the parameter

matrix. The objective function for their model can be written as

min
B
− ``(B) + Pλ(σ(B)), (2.6)

where B is the parameter matrix, −``(·) is the negative log-likelihood of a GLM, σ(·) ex-

tracts the singular values of a matrix, and Pλ(·) is a sparsity-inducing penalty function. For

example, if Pλ(·) is a LASSO penalty (Tibshirani, 1996), then Pλ(σ(B)) is a function of the

nuclear norm of B, ||B||∗ =
∑R

r=1 σr. The systematic component of the GLM is

g(µ) = α + γTzi + 〈B, Xi〉,

which is the same as in models (2.4) and (2.5) except that there are no restrictions on the

parameter matrix B.

Zhou and Li (2014) provide an algorithm based on the proximal gradient method for solv-

ing the problem (2.6). The algorithm splits the problem into two steps: one that minimizes

the negative log-likelihood by a gradient descent step, and one that applies the proximal

operator associated with Pλ(σ(B)). The penalty functions they consider all result in prox-

imal operators that threshold the singular values, driving some to exactly zero. Note that

the penalty effectively reduces the number of parameters to estimate by encouraging a low

rank representation of B. However, unlike the models (2.4) and (2.5) that use a fixed rank,

the effective degrees of freedom must be estimated. Zhou and Li (2014) showed that the

effective degrees of freedom of the regularized matrix regression model is always dominated
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by the naive count of the number of parameters. As a consequence, their model can be fit

even when min(p1, p2) exceeds the sample size.

2.2 Proposed Methodology

In this section, we develop a low rank, orthogonal tensor regression model that makes use

of the LROAT decomposition, which we call the LROAT regression model. We first specify

the model for fixed tensor rank and propose a projected gradient descent algorithm to fit

the model. Such a model is similar to the model proposed by Zhou et al. (2013), albeit more

restrictive. We then formulate a version of the problem that avoids fixing the tensor rank

by penalizing the objective function instead. The penalty is applied to the “singular values”

of the LROAT decomposition, which encourages a low rank representation of the parameter

tensor by shrinking some of the singular values to exactly zero. We propose an algorithm

based on the proximal gradient method to solve the problem. This version of the problem

can be viewed as an extension of the model proposed by Zhou and Li (2014) to higher-order

tensors. However, a key difference between the two problems is that matrices always admit

an orthogonal decomposition (by the SVD), while higher-order tensors are not guaranteed

to be orthogonally decomposable.
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Under the GLM framework, the LROAT regression model for fixed rank can be specified

as

g(µ) = α+ γTzi + 〈B, Xi〉 s.t. rank(B) = R and orthogonally decomposable

= α+ γTzi + 〈
R∑
r=1

σrβ1r ◦ β2r ◦ · · · ◦ βDr, Xi〉

s.t. βTdrβdr′ = I(r = r′), d = 1, . . . , D, r, r′ ∈ {1, . . . , R}

= α+ γTzi + 〈[[diag(σ1, . . . , σR); B1, B2, . . . , BD]], Xi〉 (2.7)

s.t. BT
1 B1 = · · · = BT

DBD = IR,

where I(·) denotes the indicator function. The model (2.7) is very similar to the model (2.4),

with the only difference being that the factor matrices are restricted to be orthogonal. In

fact, when D = 2 (i.e., the tensors are matrices), the two models are essentially equivalent

in that the estimated parameters B̂ should be equal. However, the estimated factor matrices

B̂1, B̂2 will not be equal because of the orthogonality constraint. The interpretation is that

the models (2.4) and (2.7) are estimating the same parameter B, but the model (2.4) allows

any basis for the column space of B, while the model (2.7) requires an orthogonal basis for

the column space of B. When D ≥ 3, the models are not equivalent because the parameter

space of model (2.4) is all rank-R tensors of size p1 × · · · × pD, while the parameter space of

model (2.7) is all rank-R orthogonally-decomposable tensors of size p1 × · · · × pD.

Because of the orthogonality constraints, the alternating minimization algorithm of Zhou

et al. (2013) cannot be used to fit model (2.7), even when D = 2. We propose a projected

gradient descent algorithm to fit model (2.7). For a general problem min f(x) s.t. x ∈ S,

where S denotes a set of constraints, the updates of the projected gradient descent algorithm

take the form

x(k+1) =
∏
S

(
xk − δk∇f(xk)

)
,
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where δk is a step size and
∏
S denotes the projection operator onto the feasible set S.

The projection operator can be defined as
∏
S(x) = arg minz∈S ||x − z||F . The projected

gradient descent method can be interpreted as the usual gradient descent method with the

additional modification that each update is required to lie in the feasible set. The projection

step ensures that each update lies in the feasible set while minimizing the distance between

the update and the update that would be obtained from an unconstrained version of the

problem.

The constraint set in model (2.7) is the space of rank-R orthogonally-decomposable ten-

sors. To project onto this set, recall problem (2.3). Problem (2.3) is identical to the problem

defined by projecting onto the space of rank-R orthogonally-decomposable tensors. This sug-

gests that Algorithm 2 may be used for the projection step in a projected gradient descent

algorithm for fitting model (2.7). The gradient descent step may be based on a suitable loss

function, such as the negative log-likelihood. The complete details of the proposed algorithm

for fitting model (2.7) are given in Algorithm 3.
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Algorithm 3: Projected Gradient Descent for LROAT Regression Model

Input: Response YN×1, regular covariates ZN×p0 , tensor covariate Xp1×···×pD×N ,
initial guesses for parameters α(0),γ(0),B(0), assumed rank R, and
distribution (normal or Bernoulli, though any distribution in the
exponential family in theory).

Output: Final estimates α̂, γ̂, B̂ = [[diag(σ̂1, . . . , σ̂R); B̂1, . . . , B̂D]].

// Force initial guess to be rank-R and orthogonally-decomposable.

[B1 . . . , BD]← hosvd(B(0), R1 = · · · = RD = R) // Calls Algorithm 1

B(0) ← lroat(B(0), R,B1 . . . , BD) // Calls Algorithm 2

k ← 0 // iteration counter

δ0 ← 1 // initialize step size

while objective criterion not met do

// gradient descent step

vec(α(temp),γ(temp), B̃(temp))← vec(α(k),γ(k),B(k))− δk∇f(α(k),γ(k),B(k))
// function f is −``

// projection step

[B1 . . . , BD]← hosvd(B̃(temp), R1 = · · · = RD = R) // Calls Algorithm 1

B(temp) ← lroat(B̃(temp), R,B1 . . . , BD) // Calls Algorithm 2

if f(α(temp),γ(temp),B(temp)) < f(α(k),γ(k),B(k)) then
[α(k+1),γ(k+1),B(k+1)]← [α(temp),γ(temp),B(temp)] // accept update

δk+1 ← 1.2 ∗ δk // increase step size

else
// reject update; perform line search for step size

[α(k+1),γ(k+1),B(k+1)]← [α(k),γ(k),B(k)]
δk+1 ← 0.5 ∗ δk // shrink step size

end

k ← k + 1 // update iteration counter

end

[α̂, γ̂, B̂]← [α(final),γ(final),B(final)]
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To modify model (2.7) to avoid a priori specification of the rank, we penalize the objective

function associated with the model as in Zhou and Li (2014). The penalized version of the

problem can be written as

min
B
− ``(B) + Pλ(σ(B)), (2.8)

where B is the parameter tensor, −``(·) is the negative log-likelihood of a GLM, σ(·) extracts

the singular values of an orthogonally-decomposable tensor, and Pλ(·) is a sparsity-inducing

penalty function. For this study, we only consider the LASSO penalty. Note that for D = 2,

the problem (2.8) is identical to the problem (2.6) considered by Zhou and Li (2014). Thus,

the solution simply involves shrinking the singular values of B. However, for D ≥ 3, the

solution involves first projecting onto the set of orthogonally-decomposable tensors, then

shrinking the singular values. That is, problem (2.8) has different interpretations depending

on D. For D = 2, the problem constrains the magnitudes of the singular values, but places

no restriction on the parameter space of matrices. For D ≥ 3, the problem constrains both

the parameter space of tensors and the magnitudes of the singular values.

To solve problem (2.8), we propose an algorithm based on the proximal gradient method

similar to the algorithm proposed by Zhou and Li (2014). Their algorithm improves on the

standard proximal gradient method by incorporating an extrapolation step due to Nesterov

(1983) that achieves an accelerated convergence rate. In addition, we modify Zhou and Li’s

algorithm to account for the fact that tensors of order D ≥ 3 must be projected onto the set

of orthogonally-decomposable tensors before shrinking the singular values. We propose to

include a step that projects onto the set of rank-min(p1, . . . , pD) orthogonally-decomposable

tensors – the largest rank possible for the LROAT decomposition of a tensor of size p1 ×

· · · × pD. When the actual tensor rank R < min(p1, . . . , pD), this does not pose a problem

because we will have σR+1 = · · · = σmin(p1,...,pD) = 0.

39



Note that although we say the proposed algorithm is based on the proximal gradient

method (and name it as such), it is more appropriate to say that the algorithm is inspired

by or modeled after the proximal gradient method. The step that projects onto the set of

orthogonally-decomposable tensors is not part of the standard proximal gradient method

or any of its variants. Furthermore, even if the tensor resulting from the gradient descent

step was already orthogonally decomposable (and hence no projection was necessary), the

algorithm could still not accurately be called a proximal algorithm. To be called a proximal

algorithm, it would require a concept or definition of a proximal operator for the sum of

the singular values of an orthogonally-decomposable tensor. As far as we know, no such

proximal operator has been defined. For matrices, the proximal operator of the sum of the

singular values (i.e., the nuclear norm) is the soft thresholding operator, which shrinks each

of the singular values as max(0, σr − λ) for some fixed constant λ, but does not alter the

factor matrices (i.e., the singular vectors). Thus, for orthogonally-decomposable tensors, we

apply the soft thresholding operator to the tensor’s singular values in an analogous way.

The full details of the proposed algorithm are given in Algorithm 4. Note that although

the algorithm initializes all of the parameters as zero, the parameters may be initialized as

any value. In particular, it may be desirable to warm start the algorithm from previous

estimates when fitting the model for a sequence of values of the tuning parameter.
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Algorithm 4: Proximal Gradient Method for LROAT Regression Model

Input: Response YN×1, regular covariates ZN×p0 , tensor covariate Xp1×···×pD×N , tuning parameter λ, and
distribution (normal, Bernoulli, or another distribution in the exponential family).

Output: Final estimates α̂, γ̂, B̂ = [[diag(σ̂1(λ), . . . , σ̂min(p1,...,pD)(λ)); B̂1, . . . , B̂D]].

// Note: θ := vec(α,γ,B)
// initial guesses all zero

α(0) = α(1) ← 0; γ(0) = γ(1) ← 0p0 ; B(0) = B(1) ← 0p1×···×pD

k ← 0 // iteration counter

δ0 ← 1 // initialize step size

η0 ← 0; η1 ← 1 // initialize extrapolation parameters

while objective criterion not met do

// extrapolation step

θ(k) = θ(k) + ηk−1−1
ηk

(θ(k) − θ(k−1))

while not descended do

// gradient descent step

vec(α(temp),γ(temp), Ã)← θ(k) − δk∇f(θ(k))
// function f is −``
// Ã is part of an intermediate update for B(k)

// projection step

[A1 . . . , AD]← hosvd(Ã, R1 = · · · = RD = min(p1, . . . , pD)) // Calls Algorithm 1

A ← lroat(Ã, R = min(p1, . . . , pD), A1 . . . , AD) // Calls Algorithm 2

// thresholding step

for r = 1, . . . ,min(p1, . . . , pD) do

σ
(temp)
r ← max(0, ar − δkλ) // ar’s are singular values of A

end

// update B(k) with thresholded singular values and orthogonal factor matrices of A
B(temp) ← [[diag(σ

(temp)
1 , . . . , σ

(temp)
min(p1,...,pD)

); A1 . . . , AD]]

// check if descent

if f(θ(temp)) < f(θ(k)) +∇f(θ(k))T (θ(temp) − θ(k)) + 1
2δk
||θ(temp) − θ(k)||22 then

[α(k+1),γ(k+1),B(k+1)]← [α(temp),γ(temp),B(temp)] // accept update

else
// reject update; perform line search for step size

δk ← 0.5 ∗ δk // shrink step size

end

end

ηk+1 ← 0.5 ∗
(

1 +
√

1 + (2ηk)2
)
// update extrapolation parameter

k ← k + 1 // update iteration counter

end

[α̂, γ̂, B̂]← [α(final),γ(final),B(final)]
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2.3 Simulation Experiment

We compare the LROAT regression models and our methods for estimating them to the

methods of Zhou et al. (2013) through three simulation experiments. The methods of Zhou

et al. (2013) and Zhou and Li (2014) are implemented in the MATLAB TensorReg Toolbox

(Zhou, 2017). We refer to model (2.7) for fixed rank simply as LROAT, the regularized version

formulated in problem (2.8) as regLROAT, and Zhou et al.’s model (2.4) as CPD (since it

is based on the canonical polyadic decomposition). In Experiment 1, we compare the fixed-

rank LROAT model to the CPD model for a 2D covariate. For 2D covariates, models (2.7)

and (2.4) are equivalent, differing only in their parametrizations and estimation algorithms.

Thus, our main purpose is to compare the performance of our proposed Algorithm 3 to

the alternating minimization algorithm of Zhou et al. (2013) with respect to number of

iterations until convergence, computation time, and objective value achieved by the solution.

In Experiment 2, we compare the fixed-rank LROAT model to the CPD model for a 3D

covariate. For 3D covariates, the models (2.7) and (2.4) are not equivalent. We expect

the LROAT model to perform poorly relative to the CPD model when the true parameter

tensor does not admit an orthogonal decomposition, but there may be an advantage to the

LROAT model when the true parameter tensor is orthogonally decomposable. In Experiment

3, we compare the fixed-rank LROAT and CPD models to the regLROAT model for a 3D

covariate. Our purpose here is to determine whether soft-thresholding the singular values

yields a better low rank solution than enforcing a low rank solution by fixing the rank

(which may be interpreted as hard-thresholding the singular values). We expect the relative

performances of the three methods to depend on the orthogonal-decomposability of the true

parameter tensor. Additional details for each experiment follow.
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2.3.1 Experiment 1

We generate data under model (2.7) for several scenarios. Note that, for 2D covariates,

generating data under model (2.7) is equivalent to generating data under model (2.4). For

the purposes of simulation, we omit a regular covariate from the model. The scenarios are:

1. Yi ∼ N(β0+ < Xi,B >, σ2), (Xi)jk ∼ N(0, 1), B: a 64× 64 image of a triangle

(rank 13), sample size: 2000

(a) σ2 = 1.

(b) σ2 = 100.

2. Yi ∼ N(β0+ < Xi,B >, 1), (Xi)jk ∼ N(0, 1), B: a 64× 64 image of a butterfly

(rank 28), sample size: 2500

3. Yi ∼ Bernoulli
(
p = exp(β0+<Xi,B>)

1+exp(β0+<Xi,B>)

)
, (Xi)jk ∼ N(0, 1), B: a 64×64 image of a triangle

(rank 13), sample size: 3000

4. Real fMRI images.

For each scenario, we fit the LROAT and CPD models for a sequence of ranks. Note that the

“images” in the scenarios are actually white noise, but the true parameter tensor is an image.

Generating the “images” as white noise is simply for convenience, and using an image for the

true parameter tensor makes it easy to control the rank of the true parameter tensor and to

evaluate the performance of the methods visually (with respect to how well the estimated

tensor matches the true tensor). Plots of the triangle and butterfly images used for the true

parameter tensors are shown in Figure 2.2.
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(i) Triangle: rank 13 (ii) Butterfly: rank 28

Figure 2.2: Images used for true parameter tensors in Scenarios 1–3.

Because Scenarios 1 − 3 are not representative of what one might encounter with real

data, we also wanted to simulate data for which the covariates are actually images. For

that purpose, we used slices from a fMRI activation map dataset in Scenario 4. For a fixed

slice number, we sampled (with replacement) images obtained from 35 healthy subjects 1000

times. So that none of the images were exactly the same, we added a small amount of

noise to each sampled image. For half of the sampled images, we created a small “signal

region” in the image by adding some value to a 6× 6 region in the image. The 6× 6 region

was designed to appear (on average) as a 2 × 2 square nested inside a 6 × 6 square by

generating the inner values as N(0.60, 2(0.03)2) and the outer values as N(0.30, 0.032). The

response was generated as Y ∼ N(0, 1) for images without the signal and Y ∼ N(12, 1)

for images with the signal. The intuition behind this data-generating scheme is that the

subjects come from two groups with activation maps that differ on average in a small region,

and the differences in activation are associated with some response. Note that the signal

is not uniform in magnitude over the region (the inner square has larger signal than the

outer square, on average), and subjects with the signal express it to a different extent (the

values making up the signal region are generated randomly for each subject). In addition,
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the relationship between the response and activation map is not defined in an exact way.

Thus, the data cannot be viewed as coming a from a model in the usual sense. However,

the data might be viewed as approximately coming from model (2.7), where the elements

of the true parameter tensor take value zero except for a 6 × 6 region with the 2 × 2 inner

part taking value two and the outer part taking value one (so that rank(B) = 2); a plot of

the tensor is shown in Figure 2.3. Since the data are not generated from an exact model,

this simulation scenario should pose a more challenging estimation problem with respect to

fitting the LROAT and CPD models.

Figure 2.3: Average signal (rank 2) added to fMRI slices in Scenario 4.

It is desirable to evaluate the estimation accuracy of the proposed Algorithm 3 vs. the

alternating minimization algorithm of Zhou et al. (2013). It is also of interest to compare

the estimation accuracies of the fixed rank models (i.e., LROAT and CPD) to that of the

regularized matrix model (Zhou and Li, 2014). However, fitting the models is computation-

ally intensive even for one dataset, so it is impractical to repeat all of Scenarios 1-4 many

times. Since Scenario 4 most closely resembles what one might encounter with real data, we

repeat Scenario 4 100 times and measure estimation accuracy in terms of the mean squared
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error (MSE). We calculate MSE as MSE= 1
100

∑100
i=1〈B̂i−B, B̂i−B〉, where B represents the

average difference in the activation map between the two groups of subjects and B̂ is the

estimate obtained under the LROAT, CPD, or regularized matrix model. Since the activa-

tion map slices were sampled only from healthy subjects, one would not expect differences

in activation on average except for the region where signal was added for one group. That

is, we take B to be the rank-2 tensor consisting of elements taking value zero except for the

6× 6 region in which the 2× 2 inner part takes value 0.6 and the outer part takes value 0.3.

Results - Experiment 1, Scenario 1

The LROAT and CPD models were fit for ranks 1–15. Plots of the estimates under each

model for noise levels σ2 = 1 and σ2 = 10 are shown in Figures 2.4 and 2.5, respectively.

The higher noise level poses a more challenging estimation problem for both methods, as

expected. Neither method is able to estimate a clear image of the true signal regardless of

the rank when σ2 = 10. In contrast, both methods are able to estimate a clear image of the

true signal when σ2 = 1 as long as the rank ≥ 7 (roughly).

With respect to objective value achieved, neither method seems to have a consistent

advantage – sometimes the CPD model achieves a lower objective value and sometimes the

LROAT model achieves a lower objective value. That suggests that the projected gradient

descent algorithm used to fit the LROAT model works at least as good as the alternating

minimization algorithm used to fit the CPD in terms of minimizing the objective function.

Both methods also appear to behave similarly with respect to the number of iterations until

convergence, with the LROAT model taking slightly longer to converge on average. With

respect to computation time, the LROAT model has a distinct advantage. The CPD model

has slightly less computation time for ranks 1–3, but longer computation time for ranks ≥ 4

and much longer computation time for ranks ≥ 12. For ranks ≥ 12, the computation time

for the CPD model is often on the order of 100’s of seconds, whereas for the LROAT model

it is on the order of 10’s of seconds.
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(i) LROAT

(ii) CPD

Figure 2.4: Estimates from the LROAT and CPD models, noise level σ2 = 1.
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(i) LROAT

(ii) CPD

Figure 2.5: Estimates from the LROAT and CPD models, noise level σ2 = 10.

The LROAT model also offers a way to choose an appropriate rank. Since the number

of nonzero singular values equals the rank, one possibility is to look at a scree plot of the
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singular values obtained from the LROAT fit. Although none of the singular values of

the estimated parameter tensor will be exactly zero, small singular values should indicate

diminishing returns with respect to fitting higher rank models. Thus, one may choose the

rank by finding the “elbow” in the scree plot of the singular values. Figure 2.6 shows scree

plots of the singular values from the rank-15 fit for each noise level. The elbow is clearly

visible for low noise level, but is less distinct for high noise level. However, both plots

indicate that a rank-3 or rank-4 model should be sufficient for estimating the parameter

tensor. Although the true parameter tensor is rank 13, the estimates shown in Figures 2.4

and 2.5 agree with the scree plots in suggesting that the true parameter tensor can be well-

approximated by one of (much) lower rank. In both Figures 2.4 and 2.5, the estimate can

be distinguished as a triangle for as low a rank as rank-3. For low noise level, the resolution

improves up to about rank-7, so there may be an advantage to fitting higher rank models for

signals that take more complex shapes than a triangle. The point here is that most of the

major features that comprise a triangle can be discerned for ranks as low as rank-3, and the

scree plot of the singular values is in agreement with the visual inspection of the estimates.

(i) σ2 = 1 (ii) σ2 = 10

Figure 2.6: Scree plots of the singular values from the LROAT fit.
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Results - Experiment 1, Scenario 2

The LROAT and CPD models were fit for ranks 1–20. The results were qualitatively

similar to the results from Scenario 1(a). Plots of the estimates and a scree plot of the

singular values are included in the Appendix.

Results - Experiment 1, Scenario 3

The LROAT and CPD models were fit for ranks 1–15. Plots of the estimates under each

model are shown in Figure 2.7. Note that the color scales differ for each subplot, as indicated

by the colorbars to the right of each subplot. Logistic regression is a more challenging

estimation problem than the Gaussian linear model. That is reflected by the plots of the

estimates in that the estimates do not improve after about rank-3 or rank-4. In addition,

the estimates become unreliable for ranks ≥ 7. That can be seen by the large computation

times, failure to converge in one instance (the maximum iterations was set to 5000), and the

magnitudes of the values indicated on the colorbars. Based on the colorbars, many estimates

for higher ranks have elements with values exceeding ±15. One possible explanation for

this phenomenon is quasi-complete separation – viz., that so many parameters are being

estimated in the higher rank models that a few elements of the estimated parameter tensor

are able to separate the 0-1 response. When quasi-complete separation occurs, maximum

likelihood estimates computed numerically tend toward ±∞. For ranks ≤ 6, the alternating

minimization algorithm used to fit the CPD model seems to have a slight advantage over

the projected gradient descent algorithm used to fit the LROAT model with respect to

the number of iterations until convergence, computation time, and objective value achieved.

However, the estimates for the LROAT model seem to remain stable for slightly longer as the

rank of the model increases. Based magnitudes of the values of the estimates, the estimates

from the CPD model become unreliable for ranks ≥ 7, while the estimates from the LROAT

model become unreliable for ranks ≥ 9.
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(i) LROAT

(ii) CPD

Figure 2.7: Estimates from the LROAT and CPD models for logistic regression.

Figure 2.8 shows scree plots of the singular values from the rank-5, rank-8, and rank-15

LROAT fits. From the rank-15 fit [Fig. 2.8(iii)], it is clear that a scree plot of the singular
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values is less useful for choosing the rank if the estimate itself is unreliable. However, the

scree plots from the rank-5 and rank-8 fits [Fig. 2.8(i) and (ii)] both suggest that the rank-2

model is sufficient for estimating the parameter tensor. This conclusion agrees with a visual

inspection of the estimates in Figure 2.7. That is, the rank-2 estimate captures the major

features of the signal, and little is to be gained by fitting higher rank models (in this case,

because of the challenging nature of the problem combined with the limited sample size).

(i) rank-5 (ii) rank-8 (iii) rank-15

Figure 2.8: Scree plots of the singular values from three LROAT fits.

Results - Experiment 1, Scenario 4

We resampled fMRI images from slice 27 for Scenario 4. Figure 2.9 shows the images

+ small amount of added noise for four randomly selected subjects. Figure 2.10 shows the

images + small amount of added noise + added signal for a different set of four subjects.

The images in Figures 2.9 and 2.10 are masked for the purposes of visualization, but we used

the unmasked images in the simulation. The absolute values of the images are shown so

that zeros display as white. Comparing the images in Figures 2.9 and 2.10, one can mostly

make out the region of added signal. However, in some examples, the signal region is not

obvious [e.g., Fig. 2.10(ii)]. Moreover, the shape of the signal (see Fig. 2.3) is not obvious in

any example. Thus, the altered images are realistic in the sense that the signal is expressed

non-uniformly in a compact region and to a different extent across subjects. However, the
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altered images are unrealistic in the sense that the difference between subjects expressing

the signal vs. those not expressing the signal would not be as marked.

(i) (ii)

(iii) (iv)

Figure 2.9: Masked fMRI images from slice 27 with small amount of added noise for four

randomly selected subjects.
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(i) (ii)

(iii) (iv)

Figure 2.10: Masked fMRI images from slice 27 with small amount of added noise and added

signal for four randomly selected subjects.

The LROAT and CPD models were fit for ranks 1–3 and the regularized matrix model was

fit for 12 values of the tuning parameter. The MSEs based on 100 simulations are reported in

Table 2.1. The regularized matrix model performed the best, with higher penalization (i.e.,

larger values of the tuning parameter) achieving better MSE. The LROAT model achieved

substantially better MSE than the CPD model. For the LROAT model, the rank-2 and rank-

3 estimates achieved better MSE than the rank-1 estimate. This was expected because the
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true signal was rank-2. Although the rank-3 estimate achieved better MSE than the rank-2

estimate, the difference was slight. For the CPD model, the rank-1 estimate achieved the best

MSE, and the MSE worsened as the rank increased. This pattern is potentially attributable

to the increasing number of parameters to estimate, although the LROAT model should have

been similarly affected if that explanation alone sufficed.

Table 2.1: MSE for LROAT, CPD, and regularized matrix models. 100 simulations.

Method MSE

rank-1 27.15

LROAT rank-2 15.02

rank-3 12.85

rank-1 68.14

CPD rank-2 133.71

rank-3 238.69

λ = 1 2.23

λ = 2 2.22

λ = 4 2.22

λ = 8 2.20

λ = 16 2.18

Regularized λ = 32 2.13

Matrix λ = 64 2.06

λ = 128 1.94

λ = 256 1.73

λ = 512 1.40

λ = 1024 0.50

λ = 2048 1.01
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Plots of the estimates from one of the simulations are shown in Figure 2.11. The pattern

in the estimated images match the pattern of MSE in Table 2.1. That is, the estimates from

the regularized matrix model [Fig. 2.11(iii)] most closely match the true signal from Figure

2.3, indicating that the regularized matrix model performed the best. The LROAT model

performed second best [Fig. 2.11(ii)], with the rank-2 and rank-3 estimates matching the

true signal more closely than the rank-1 estimate. The estimates from the CPD model [Fig.

2.11(i)] help explain why it did not perform well and why the MSE became worse as the

rank increased. Although the CPD model was able to correctly identify the region in which

the signal occurred, it was not able to clearly identify the shape of the signal. Moreover, the

estimate was much more noisy than the estimates from the LROAT and regularized matrix

models. There were many nonzero estimates in the region where the signal was zero, which

increased as the rank increased. Note that with respect to the objective values displayed in

Figure 2.11, the CPD model performed the best, followed by the LROAT model then the

regularized matrix model [the Pλ(σ(B)) part of the regularized matrix objective function

was omitted to make the values comparable]. That the pattern in the objective value was

opposite the pattern in MSE was surprising. However, it may indicate overfitting. Only

6 + 6 = 12 nonzero parameters need to be estimated to correctly identify the signal region

for a rank-1 fit, and only 6 + 6 + 2 + 2 = 16 nonzero parameters need to be estimated to

identify the signal perfectly for a rank-2 fit. The LROAT and regularized matrix models

came closer to the correct level of parsimony than did the CPD model.
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(i) LROAT

(ii) CPD

(iii) Regularized matrix

Figure 2.11: Estimates from the LROAT, CPD, and regularized matrix models for one

simulation.
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2.3.2 Experiment 2

For 3D covariates, generating data under model (2.4) is not necessarily equivalent to gener-

ating data under model (2.7).

For two scenarios, we generate data under model (2.4):

1. Yi ∼ N(β0+ < Xi,B >, 1), (Xi)jk ∼ N(0, 1),

B: a 25× 25× 25 image of two hyperrectangles

(rank 2), sample size: 400

2. Yi ∼ N(β0+ < Xi,B >, 1), (Xi)jk ∼ N(0, 1),

B: a 32× 32× 32 image of a cross

(rank 2), sample size: 600

Note that for Scenarios 1 and 2, the true parameter tensor does not admit an orthogonal

decomposition.

For three scenarios, we generate data under model (2.7):

3. Yi ∼ N(β0+ < Xi,B >, 1), (Xi)jk ∼ N(0, 1),

B: a 32× 32× 32 image of an orthogonally-decomposable cross

(rank 2), sample size: 500

4. Yi ∼ N(β0+ < Xi,B >, 1), (Xi)jk ∼ N(0, 1),

B: a 32× 32× 32 image of an orthogonally-decomposable circle

(rank 3), sample size: 600

5. Yi ∼ N(β0+ < Xi,B >, 1), (Xi)jk ∼ N(0, 1),

B: a 32× 32× 32 image of an orthogonally-decomposable triangle

(rank 9), sample size: 1200

As in Experiment 1, we fit the LROAT and CPD models for a sequence of ranks.
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Results - Experiment 2, Scenario 1

The LROAT and CPD models were fit for ranks 1–5. Plots of the estimates under the

LROAT and CPD models are shown in Figures 2.12 and 2.13, respectively. The color of a

dot corresponds to the value of an element of the estimated tensor; a colorbar is included to

the right of each subplot for reference. The size of a dot corresponds to the magnitude of

an element of the estimated tensor. The rank-1 estimates for the LROAT and CPD models

are very similar. The rank-2 estimate for the CPD model matches the true signal almost

perfectly [see Fig. 2.1(iii)] , while the rank-2 estimate for the LROAT model matches the

closest orthogonal approximation to the true signal [see Fig. 2.1(iv)]. As a consequence,

the objective value is much lower for the rank-2 CPD estimate than for the rank-2 LROAT

estimate. For ranks ≥ 3, the estimates from the CPD model are very noisy. The rank-3

estimate partially captures the true signal, while the rank-4 and rank-5 estimates miss the

true signal entirely. In contrast, the rank-3, rank-4, and rank-5 estimates from the LROAT

model all partially capture the true signal, though they all resemble the closest orthogonal

approximation to the true signal rather than the true signal itself. The estimates also contain

more noise as the rank increases, which partially occludes the signal region.

For the CPD model, the results suggest that the alternating minimization algorithm

struggles to find the global optimum as the number of free parameters approaches the sample

size (for the rank-5 model, there are 375 parameters to estimate with a sample size of

N = 400). For the LROAT model, the results suggest that there is no advantage to fitting

higher rank models than the rank of the true signal to ameliorate the effects caused by the

orthogonality constraints.
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(i) rank-1 (ii) rank-2

(iii) rank-3 (iv) rank-4

(v) rank-5

Figure 2.12: Estimates from the LROAT model.
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(i) rank-1 (ii) rank-2

(iii) rank-3 (iv) rank-4

(v) rank-5

Figure 2.13: Estimates from the CPD model.
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As with 2D images, one can make a scree plot of the singular values to choose an appro-

priate rank. Figure 2.14 shows a scree plot of the singular values from the rank-5 fit. The

plot appears to favor the rank-2 fit, which is the rank of the true signal.

Figure 2.14: Scree plot of the singular values from the LROAT fit.

Results - Experiment 2, Scenarios 2 – 4

For Scenario 2, the LROAT and CPD models were fit for ranks 1–5. The results were

qualitatively similar to the results from Scenario 1. Plots of the estimates and a scree plot

of the singular values are included in the Appendix. For Scenarios 3 and 4, the LROAT and

CPD models were fit for ranks 1–5 and ranks 1–6, respectively. The results for Scenarios 3–5

are all qualitatively similar, so we report the results from Scenario 5 in the next section and

include plots of the estimates and scree plots of the singular values for Scenarios 3 and 4 in

the Appendix.

Results - Experiment 2, Scenario 5

A plot of the true signal for Scenario 5 is shown in Figure 2.15. The signal was constructed

by downsizing the image used for Experiment 1, Scenario 1 to 32×32, then finding the SVD

of the resulting image. The singular values and corresponding singular vectors were then

used construct the image via a 3-way outer product.
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Figure 2.15: True signal: orthogonal triangle (rank 9).

The LROAT and CPD models were fit for ranks 1–12. Plots of the estimates under the

LROAT and CPD models are shown in Figures 2.16 and 2.17, respectively. The plots of the

estimates and objective values achieved are similar for the LROAT and CPD models up to

about rank-6. For ranks ≥ 6, the estimates from the CPD model become more noisy than

the estimates from the LROAT model. For ranks ≥ 10, the noise in the CPD estimates

is so extreme that the signal region is almost completely occluded. Although the LROAT

estimates also become more noisy for higher rank models, they do so to a lesser extent

and the signal region remains clearly visible. These results suggest that there may be an

advantage to assuming the parameter tensor is orthogonally decomposable when it is in fact

orthogonally decomposable. However, from Scenarios 1–4, it is apparent that the alternating

minimization algorithm used to fit the CPD model becomes less effective at minimizing the

objective function as the number of parameters to estimate approaches the sample size. Thus,

it is not possible to determine to what extent the advantages of the LROAT model over the

CPD model are a consequence of differences in the model assumptions vs. the estimation

algorithms.

The LROAT model also has an advantage with respect to computation time and number
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of iterations until convergence. When the computation time is on the order of 100’s of seconds

for the CPD model, it is on the order of 10’s of seconds for the LROAT model. When the

computation time is on the order of 1000’s of seconds for the CPD model, it is on the order

of 100’s of seconds for the LROAT model.

A scree plot of the singular values from the rank-12 LROAT fit is shown in Figure 2.18.

As in Experiment 1, Scenario 1, the scree plot suggests that a rank much lower than the rank

of the true parameter tensor is adequate to fit the data. Figure 2.18 suggests that the rank-3

or rank-4 model is appropriate. Comparing the estimates in Figure 2.16(iii)–(iv) to the true

signal in Figure 2.15, we can see that the rank-3 and rank-4 estimates capture most of the

major features of the true signal, even though the true signal has rank 9. Thus, although

higher rank models may offer some minor refinements for estimating the true signal, most of

the main features are captured for ranks as low as rank-3.
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(i) rank-1 (ii) rank-2 (iii) rank-3

(iv) rank-4 (v) rank-5 (vi) rank-6

(vii) rank-7 (viii) rank-8 (ix) rank-9

(x) rank-10 (xi) rank-11 (xii) rank-12

Figure 2.16: Estimates from the LROAT model.
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(i) rank-1 (ii) rank-2 (iii) rank-3

(iv) rank-4 (v) rank-5 (vi) rank-6

(vii) rank-7 (viii) rank-8 (ix) rank-9

(x) rank-10 (xi) rank-11 (xii) rank-12

Figure 2.17: Estimates from the CPD model.
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Figure 2.18: Scree plot of the singular values from the LROAT fit.

2.3.3 Experiment 3

We use three scenarios in Experiment 3:

1. Yi ∼ N(β0+ < Xi,B >, 1), (Xi)jk ∼ N(0, 1),

B: a 25× 25× 25 image of two hyperrectangles

(rank 2), sample size: 400

2. Yi ∼ N(β0+ < Xi,B >, 1), (Xi)jk ∼ N(0, 1),

B: a 32× 32× 32 image of an orthogonally-decomposable triangle

(rank 9), sample size: 1200

3. A 3D version of Scenario 4 from Experiment 1: instead of slices of real fMRI images, we

resample the whole-brain images 1000 times; instead of using a small square nested inside

of a larger square for the signal, we use a small cube nested inside a larger cube.

For Scenarios 1 and 2, we fit the regLROAT model for a sequence of values for the

tuning parameter. The LROAT and CPD models were already fit to data generated under

these scenarios in Experiment 2, so we compare to those results. For Scenario 3, we fit the
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regLROAT model for a sequence of values for the tuning parameter and the LROAT and

CPD models for a sequence of fixed ranks.

Results - Experiment 3, Scenario 1

Estimates from the regLROAT model are shown in Figure 2.19 for a sequence of values of

the tuning parameter. For small values of the tuning parameter, the estimates most closely

resemble the higher rank estimates from the LROAT model in Experiment 2, Scenario 1 [e.g.,

Fig. 2.12(v)]. That is, the estimates are noisy and do not capture the true signal exactly.

The latter was expected because the true signal does not admit an orthogonal decomposition.

For larger values of the tuning parameter, the noise begins to clear and the estimates more

closely resemble the lower rank estimates from the fixed-rank LROAT model. The most

striking difference between the estimates for the regLROAT model and the estimates for

the fixed-rank LROAT model is that the regLROAT estimates appear intermediate in rank.

For example, the estimate in Figure 2.19(v) appears to be intermediate between rank-1 and

rank-2 estimates [i.e., between Fig. 2.12(i) and (ii)], and the estimate in Figure 2.19(vi)

appears to be intermediate between rank-0 and rank-1 [i.e., between Fig. 2.12(i) and the

zero tensor]. The plots illustrate that soft thresholding can result in continuous changes in

the estimated parameter tensor, whereas hard thresholding (i.e., fixing the rank) can only

result in a finite number of discrete changes in the estimated parameter tensor.
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 2.19: Estimates from the regLROAT model.
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Results - Experiment 3, Scenario 2

Estimates from the regLROAT model are shown in Figure 2.20 for a sequence of values

of the tuning parameter. In general, the plots are similar to the plots shown in Figure 2.16

for the fixed-rank LROAT model. However, as in Experiment 3, Scenario 1, some of the

estimates appear to be intermediate in rank. For example, the estimates in both Figure

2.20(v) and (vi) appear to be intermediate between rank-0 and rank-1 [i.e., between Fig.

2.16(i) and the zero tensor].
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 2.20: Estimates from the regLROAT model.
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Results - Experiment 3, Scenario 3

A plot of the true signal for Scenario 3 is shown in Figure 2.21. Similar to Experiment 1,

Scenario 4, the inner 2× 2× 2 cube takes value 0.6 and the outer 6× 6× 6 cube takes value

0.3. As in the 2D version of the experiment, the signal has rank 2; however, the signal is not

orthogonally decomposable. Note that the 3D version of the parameter tensor represents a

more difficult estimation problem not only with respect to the total number of parameters

involved, but also with respect to the proportion of nonzero parameters. For the 2D version,

the proportion of nonzero parameters is 6×6
40×48

= 0.01875. For the 3D version, the proportion

of nonzero parameters is 6×6×6
40×48×38

= 0.00296. Also note that the signal shown in Figure 2.21

denotes the true signal on average. For a given image, the actual values added to the image

are randomly drawn from N(0.30, 0.032) and N(0.60, 2(0.03)2).

Figure 2.21: True signal: nested cubes (rank 2).

The LROAT and CPD models were fit for ranks 1–3. The estimates for both models are

shown shown in Figure 2.22. The regLROAT model was fit for a sequence of values of the

tuning parameter. The estimates for the regLROAT model are shown in Figure 2.23. As in

the 2D version of the experiment (see Fig. 2.11), the estimates from the regLROAT model
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are less noisy and more closely resemble the true signal than the estimates from the LROAT

or CPD models. For even the smallest values of the tuning parameter [e.g., Fig. 2.23(i)],

the estimates from the regLROAT model are less noisy than the estimates from the LROAT

or CPD models, regardless of the rank. For larger values of the tuning parameter [e.g.,

Fig. 2.23(v) and (vi)], the estimates from the regLROAT model correctly identify the signal

region as nonzero and the rest of the parameter tensor as zero (or near zero). However, for

the tuning parameter values shown, the estimates from regLROAT model do not distinguish

between the inner and outer cubes comprising the true signal without also estimating many

parameters in the non-signal region as nonzero. Thus, refining the estimate of the true signal

seems to come at the cost of estimating additional noise.

Unlike the 2D version of the experiment, the CPD model seemed to perform slightly

better than the LROAT model. In the 2D version, the estimates from the LROAT model

were less noisy and more accurately captured the shape of the true signal than the estimates

from the CPD model [see Fig. 2.11(i) vs. (ii)]. In the 3D version, neither model produced

estimates that accurately captured the shape of the true signal (although they did correctly

identify the region of the signal) and the estimates from the LROAT model contained more

noise than the estimates from the CPD model. One possible explanation for this opposite

behavior is that the true signal in the 2D version admits an orthogonal decomposition while

the true signal in the 3D version does not. Thus, the LROAT model encounters additional

challenges when moving from 2D to 3D than does the CPD model.
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(i) LROAT: rank-1 (ii) CPD: rank-1

(iii) LROAT: rank-2 (iv) CPD: rank-2

(v) LROAT: rank-3 (vi) CPD: rank-3

Figure 2.22: Estimates from the LROAT and CPD models.
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 2.23: Estimates from the regLROAT model.
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2.4 Real Data Analysis

In Section 2.1, we described a scenario in which the proposed methods could be applied to

fMRI data collected from two groups of subjects performing the same task, with the goal

of identifying brain regions that help discriminate between healthy subjects and subjects

diagnosed with a disease or disorder. Another application of the proposed methods is to fMRI

data collected from the same subject performing different tasks, with the goal of identifying

the brain regions involved for one task versus another. The Visual Object Recognition

(VOR) data (Haxby et al., 2001; Hanson et al., 2004; O’Toole et al., 2005) is freely available

through the OpenNeuro project (openneuro.org) and contains fMRI data for six subjects

as they viewed different types of images (viewing each type of image is considered a task).

There were eight different types of images: bottles, scissors, shoes, chairs, houses, cats, faces,

and scrambled images. Data were recorded for each subject for 12 runs. For each run, the

image types were shown sequentially in blocks of 24 s duration with 12 s of rest between

blocks of different image type. Within a block, images of the same type were shown every

2 s (images of the same type includes different objects of the same type and different views

of the same object).

We analyze the data from subject 1. The data for one subject for a single run consists

of two parts: 1) an events file giving the time of onset of an image and the type of image

and 2) a 40 × 64 × 64 × 121 fMRI tensor containing raw BOLD signal. The 40 × 64 ×

64 component of the fMRI tensor represents the spatial component with pixel dimensions

3.50 mm × 3.75 mm × 3.75 mm. The component of length 121 represents the time

component with pixel dimension 2.5 s. For each block of image type, we extract the time

slices corresponding to 6 s after the onset of the first image (to account for the delay in

the hemodynamic response) up to the onset of the last image in the block. Because the

resolution of the time component of the fMRI tensor does not match up exactly with the
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duration of a block, the number of time slices we obtain for a block varies slightly across

image types (±1 slice). For each run and image type, we set aside one time slice as part of

a test dataset.

Haxby et al. (2001) showed that the VOR data can be used for visual stimulus decoding.

In encoding step of visual stimulus decoding, one uses fMRI images to train a classification

model in which the fMRI data serve as the predictor and the type of image being viewed

serves as the response. For the decoding step, one uses the model to predict the type

of image being viewed for a separate test set of fMRI images. We apply the regLROAT,

LROAT, and CPD models to the VOR data for binary visual stimulus decoding. We use

a logistic regression model with the indicator of image type as the response and the subset

of the fMRI tensor corresponding to the visual cortex as the predictor. The visual cortex is

located in the posterior part of the brain. By visualizing the whole-brain fMRI image, we

determined that indices 1–40 along the first spatial dimension, indices 9–30 along the second

spatial dimension, and indices 23–48 along the third spatial dimension should conservatively

capture the visual cortex. The size of the resulting image was 40 × 22 × 26. For each

pair of image types, we obtained approximately N = 134 time slices for the training data

(approximately 67 time slices for each image type) and 24 time slices for the test data (exactly

12 time slices for each image type).

We focus on two kinds of classification tasks: scrambled images vs. all others and shoe

vs. bottle. We compare scrambled images against all others because the signal should be

strongest for these comparisons, and so they serve as good examples to illustrate the uses

of the proposed methods. We compare shoes vs. bottles because it was one of the most

challenging tasks among the many combinations we tried, and so it serves as a good example

to compare the performances of the regLROAT, LROAT, and CPD models. For LROAT

and CPD, we are restricted to fitting rank-1 models. The limited sample size relative to the

dimension of the fMRI tensor precludes fitting higher rank models. For regLROAT, we fit the
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model for a sequence of values of the tuning parameter. For each type of image comparison,

we report the classification accuracy achieved for the test dataset. We classified an image as

1 if p̂ > 0.5 and 0 if p̂ < 0.5, where p̂ is defined as

p̂ =
1

1 + exp
[
−β̂0 − 〈Xi, B̂〉

] .
The test dataset classification accuracies achieved by each model are shown in Table

2.2. Using the fMRI tensor as input, all three models were able to predict which type of

image was being viewed better than chance. The LROAT and regLROAT models performed

uniformly better than the CPD model, and sometimes substantially better. The LROAT

and regLROAT models performed equally well for many tasks, and when they differed, the

regLROAT model outperformed the LROAT model. The regLROAT model was able to

achieve 100% classification accuracy for at least one value of the tuning parameter for all

classification tasks but one. The most challenging task was discriminating between shoe

vs. bottle. Predictions based on the CPD model were barely better than chance, and the

classification accuracy for the LROAT model was the lowest among all tasks tried. The

regLROAT model performed better than the LROAT model, but it did not achieve 100%

classification accuracy for any value of the tuning parameter. Note that the rank of the

estimated parameter tensor under the regLROAT model was often larger than 1.
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Table 2.2: Test dataset classification accuracy (%) for the CPD, LROAT, and regLROAT

models applied to the VOR data.

CPD LROAT regLROAT
Task (rank-1) (rank-1) λ = 50 λ = 100 λ = 500 λ = 1000 λ = 2000
scrambled vs. face 100 100 100 100 100 100 100

(rank-4) (rank-2) (rank-2) (rank-2) (rank-1)
scrambled vs. cat 87.5 100 100 100 100 100 95.83

(rank-4) (rank-3) (rank-2) (rank-2) (rank-1)
scrambled vs. house 91.67 100 100 100 100 100 100

(rank-4) (rank-3) (rank-3) (rank-2) (rank-1)
scrambled vs. house∗ 79.17 100 100 100 100 100 100
(larger) (rank-5) (rank-4) (rank-4) (rank-3) (rank-2)
scrambled vs. bottle 79.17 95.83 100 95.83 95.83 95.83 95.83

(rank-6) (rank-4) (rank-4) (rank-2) (rank-2)
scrambled vs. scissors 95.83 100 100 100 100 100 95.83

(rank-6) (rank-4) (rank-4) (rank-3) (rank-2)
scrambled vs. chair 95.83 95.53 100 100 100 100 100

(rank-4) (rank-3) (rank-3) (rank-3) (rank-2)
scrambled vs. shoe 87.5 100 100 100 100 95.83 95.83

(rank-6) (rank-3) (rank-3) (rank-2) (rank-2)
shoe vs. bottle 66.67 79.17 95.83 91.67 95.83 95.83 95.83

(rank-9) (rank-5) (rank-3) (rank-3) (rank-2)
∗The size of the fMRI tensor was increased by including
indices 9–40 along the second spatial dimension.

In addition to making accurate predictions, another goal of the proposed methods is to

understand what components of the image are most related to the response. For visual

stimulus decoding, this can be interpreted as understanding what areas of the brain are

responsible for discriminating between one type of viewed image and another, as measured by

the BOLD response. Figures 2.24 – 2.27 show the absolute values of the estimated parameter

tensors (so that white corresponds to zero) from the CPD, LROAT, and regLROAT models

for selected tasks. For scrambled images vs. house, we expanded the indices along the second

spatial dimension from 9–30 to 9–40 to capture the signal region better. The regLROAT

model estimates are shown for two values of the tuning parameter, representing different

extremes with respect to the amount of shrinkage. Note that the colorbars for the regLROAT

model estimates are on a much smaller scale than those for the rank-1 LROAT and CPD
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model estimates, reflecting the powerful effect of shrinkage. The size of the dots in the

regLROAT estimates have been magnified to a comparable level as the LROAT and CPD

estimates to enable easier identification of regions with (relatively) large values.

In all of the figures, regions of the estimated tensor with large magnitude values (relative

to other regions within the same estimate) can be interpreted as signal regions – i.e., regions

that are strongly associated with the type of image being viewed. The CPD estimates (Fig.

2.24) are noisy, with the largest values occurring in scattered voxels rather than in spatially

compact locations. Such estimates are difficult to interpret because no clearly defined regions

stand out. Although the CPD estimates are less interpretable, the classification accuracy for

the test dataset was high for two tasks (scrambled vs. face and scrambled vs. scissors) and

better than chance for the others.

The LROAT estimates (Fig. 2.25) are less noisy than the CPD estimates, especially

for the scrambled vs. face [Fig. 2.25(i)] and scrambled vs. house [Fig. 2.25(ii)]. For

those, distinct, spatially compact regions of the estimate stand out, suggesting that the

corresponding region of the brain is relevant to the task. For scrambled vs. bottle [Fig.

2.25(iii)] and scrambled vs. scissors [Fig. 2.25(iv)], the estimates are easier to interpret than

the CPD estimates, but not as easy to interpret as for the other two tasks. The regions with

relatively large values are diffuse rather than spatially compact, making it more difficult to

identify a well-defined brain region that might be relevant to the task.

The regLROAT estimates (Figs. 2.26 and 2.27) are easiest to interpret and become more

interpretable with less shrinkage. The same regions that stood out in the rank-1 LROAT

estimates for scrambled vs. face and scrambled vs. house stand out in the regLROAT

estimates as well. The most improvement occurs for the scrambled vs. bottle and scrambled

vs. scissors tasks under less shrinkage [Fig. 2.27(iii) and (iv)]. Although certain regions

of the estimates stand out to some extent with greater shrinkage [Fig. 2.26(iii) and (iv)],

they are much more well-defined with less shrinkage. From Table 2.2, the scrambled vs.
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bottle estimate was rank-2 with greater shrinkage (λ = 1000) and rank-6 with less shrinkage

(λ = 50). The estimate with greater shrinkage closely resembles the rank-1 LROAT estimate,

suggesting that a higher rank estimate is needed to capture the main features associated with

the scrambled vs. bottle task.

(i) scrambled vs. face (ii) scrambled vs. house

(iii) scrambled vs. bottle (iv) scrambled vs. scissors

Figure 2.24: Estimated parameter tensor from the rank-1 CPD model for selected tasks.
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(i) scrambled vs. face (ii) scrambled vs. house

(iii) scrambled vs. bottle (iv) scrambled vs. scissors

Figure 2.25: Estimated parameter tensor from the rank-1 LROAT model for selected tasks.
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(i) scrambled vs. face (ii) scrambled vs. house

(iii) scrambled vs. bottle (iv) scrambled vs. scissors

Figure 2.26: Estimated parameter tensor from the regLROAT model (λ = 1000) for selected

tasks.
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(i) scrambled vs. face (ii) scrambled vs. house

(iii) scrambled vs. bottle (iv) scrambled vs. scissors

Figure 2.27: Estimated parameter tensor from the regLROAT model (λ = 50) for selected

tasks.

In Figure 2.28, we plot a randomly selected whole-brain fMRI image and overlay blue

points for voxels in which the magnitude of the estimated parameter tensor from the rank-1

LROAT model exceeded 0.01. The 0.01 threshold was chosen for visualization purposes, and

the estimate from the rank-1 LROAT model was chosen as a representative example. Our

goal is to show where the strongest signal regions are located on a more complete picture of

the brain. One noticeable feature of the images in Figure 2.28 is that some of the voxels with
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large magnitude values are actually located outside the brain region. This can be attributed

to an artifact caused by fitting a rank-1 model. From the simulation experiment in Section

2.3, many of the rank-1 estimates had large values outside of the true signal region [see the

rank-1 estimates in Figs. 2.11(i)–(ii) or 2.22(i)–(ii) for good examples]. These extraneous

values were typically contained within indices associated with the true signal region along

one dimension, but occurred outside of indices associated with the signal region along one

or more of the other dimensions. Besides the few stray voxels located outside the brain, the

other noticeable feature in Figures 2.25 and 2.28 is that many of the voxels with large values

are grouped together in spatially compact regions. The regions selected in Figure 2.28(i)

and (ii) appear to correspond roughly to the fusiform face area and parahippocampal place

area, respectively, while the regions selected in Figure 2.28(iii) and (iv) seem to more closely

correspond to the lateral occipital complex (although the selected regions are more diffuse).

Note that expert judgment would be necessary to confirm that assessment. The fusiform

face area, parahippocampal place area, and lateral occipital complex are known to respond

to visual stimuli from faces, places, and things, respectively, which is consistent with tasks

shown.

85



(i) scrambled vs. face (ii) scrambled vs. house

(iii) scrambled vs. bottle (iv) scrambled vs. scissors

Figure 2.28: Randomly selected fMRI image with blue points indicating voxels for which the

magnitude of the estimated parameter tensor exceeded 0.01.

2.5 Discussion

Using a real fMRI dataset, we demonstrated that the proposed LROAT and regLROAT

models have the potential to perform better than existing methods both with respect to

predictive performance and interpretation. Because the LROAT model is a special case of
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the CPD model to which we compared (and the two are in fact equivalent in some instances),

the superior performance of the LROAT model can be attributed to some extent to the

estimation algorithm rather than the model itself. Particularly in the real data analysis

(Section 2.4), the projected gradient descent algorithm used to fit the LROAT model yielded

parameter estimates that achieved smaller values of the objective function and were easier to

interpret from the biological perspective. In contrast, the alternating minimization algorithm

used to fit the CPD model yielded parameter estimates that were barely distinguishable

from noise. Both algorithms used the same tolerance criterion and tolerance value, so the

differences cannot be attributed to differences in the stopping rule. One possible explanation

for the poor performance of the alternating minimization algorithm is that alternating among

parameters makes the algorithm more likely to find local optima, especially when the number

of parameters is large relative to the sample size. The projected gradient descent algorithm

updates all parameters at once, perhaps making it less likely to get stuck in a local optimum.

Even though the parameter estimates from the LROAT and regLROAT models were easier

to interpret than the solutions from the CPD model, the interpretations of the parameter

estimates were not without difficulty. The examples in Figure 2.28 show that many voxels

with large magnitude values were located outside of the brain region. Although one can easily

recognize estimated signals outside of the brain region as spurious, their presence casts doubt

on the findings inside of the brain region. That is, in the presence of substantial noise, how

can one identify regions that are likely to be real signal? Such a question is an inherent aspect

of any estimation problem. However, for the proposed methodology, part of the noise in the

parameter estimates originates as an artifact of the estimation algorithm. Thus, imaging

data analysis poses additional challenges beyond what is in encountered in traditional linear

models, where analytic solutions for the parameters are available and the only source of

spurious signal is from sampling variability (given that other model assumptions are met).

Consequently, the proposed methods are perhaps best used as an exploratory device rather
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than a tool for hypothesis testing [though hypothesis testing would be possible using the

results of Zhou et al. (2013)]. Indeed, the key strength of the methodology is the ability to

visualize the estimated parameter tensor, which is more in line with the goals of exploratory

data analysis than formal hypothesis testing.

Another issue related to the interpretation of the estimated parameters from both the

LROAT and regLROAT models is that the estimated parameters are not sparse. Al-

though the singular values of the estimated parameter tensor are shrunk toward zero in

the regLROAT model, none of the elements of the estimated parameter tensor are exactly

zero. This poses a challenge for interpretation because one must decide subjectively how

large the magnitudes of the estimates must be before a region of the image is considered

“important.” In Figure 2.28, an arbitrary threshold was chosen such that the estimates over-

lain on an original image would be easy to visualize. However, methods that obviate the

need to choose subjective thresholds, such as those that produce sparse estimates, would be

preferred. One way to employ sparse estimation in a low rank tensor model is to penalize the

elements of the vectors comprising each of the rank-1 tensors in the tensor decomposition.

Zhou et al. (2013) used this approach to develop a regularized version of the CPD model.

For the proposed LROAT and regLROAT models, the approach would be challenging to

implement because the algorithm used to fit such a model would need to simultaneously

maintain sparsity and orthogonality of the factor matrices in each update. If an algorithm

could be devised, a sparsity penalty on the elements of the vectors in the assumed tensor

decomposition may not be the best way to achieve sparsity within the estimated parameter

tensor. In our experience, the regularized version of Zhou et al.’s CPD model was highly

sensitive to the initial value when the model was applied to real data (results not shown).

For several different starting values, the non-sparse regions of the resulting estimates were

rarely in the same locations, making the estimates useless for interpretation. Note, however,

that the non-regularized version of their model was also sensitive to the initial value, so it
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is unclear whether the observed behavior in the estimates was mainly due to the alternating

minimization algorithm or the approach used to achieve sparsity.

One limitation of the proposed methods, and any other methods that aim to exploit low

rank tensor decompositions, is that the rank depends on both the orientation and resolution

of the images. For example, for the butterfly image in Figure 2.2(ii), if the butterfly were

rotated such that the image was symmetric across one of the axes, then the rank would be

less than it is under the orientation shown. Similarly, the 64 × 64 triangle image in Figure

2.2(i) is rank-13, but becomes rank-9 if the image is downsized to 32 × 32. Although the

64 × 64 and 32 × 32 images look the same, a higher rank tensor model might be needed to

provide an adequate approximation to the 64 × 64 image. One solution to the orientation

problem is to try several different rotations and choose one that balances adequate fit with

low rank. However, this approach would be computationally demanding for 2D images and

impractical for 3D and higher dimensional images. For the resolution problem, one may

downsize the original images. Downsizing was used in Zhou et al. (2013) and Li et al. (2018)

in their real data applications out of necessity because, even under a low rank assumption,

the number of parameters to estimate exceeded the sample size. Although downsizing may

provide a suitable solution in particular cases, it should generally be avoided because it is not

clear how to quantify whether or how much information is lost for estimating the parameter

tensor after the downsizing.

In future work we hope to explore the convergence properties of the algorithms we have

proposed for fitting the LROAT and regLROAT models. Empirically, the algorithms appear

to converge based on the simulated and real examples we have tried. Moreover, the solutions

are frequently better than the solutions from the alternating minimization algorithm of Zhou

et al. (2013). Unfortunately, there are myriad challenges for proving global convergence for

tensors of order ≥3. One challenge is that both of the algorithms we have proposed rely on

Chen and Saad’s (2009) algorithm for the LROAT decomposition (Algorithm 2). They were
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unable to prove global convergence of their algorithm. In addition, their algorithm is not

guaranteed to converge to the global optimum of problem (2.3). Thus, the projection steps

in the proposed Algorithms 3 and 4 are not necessarily carried out exactly. That creates a

difficulty for applying any known results about the convergence of projected gradient descent

with non-convex constraints. Another challenge is in dealing with the non-convex constraints

imposed by the low rank and orthogonality assumptions. Some results regarding the con-

vergence of projected gradient descent are known in the context of low rank matrices [see

Jain and Kar (2017)] and have been applied in the context of the HOSVD for tensors [e.g.,

Chen et al. (2019)]. However, given that not all tensors admit an orthogonal decomposition,

it is not clear how one might extend those results to the LROAT decomposition utilized in

Algorithms 3 and 4. Finally, a major challenge in proving convergence of Algorithm 4 for the

regLROAT model is that it is neither a projected gradient descent algorithm nor a proximal

gradient algorithm in the strict sense, but rather a mixture of the two. Although superfi-

cially similar to Zhou and Li’s (2014) algorithm for spectral-regularized matrix regression,

Algorithm 4 involves an additional projection step onto the set of orthogonally-decomposable

tensors. For matrices, this is simply the SVD and is a change of basis rather than a pro-

jection. For tensors, it is a non-convex projection for all but the rare cases in which the

tensor already admits an orthogonal decomposition. Since Algorithm 4 adds a non-trivial

modification to the standard proximal gradient method, it may not be possible to apply any

known convergence results for the proximal gradient method.
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Chapter 3

A Sparse, Low Rank Matrix Approximation

with Application to Variable Selection in

High-Dimensional Canonical Correlation

Analysis

3.1 Introduction

Much of modern scientific research aims to characterize the associations among high-dimensional,

multimodal data. That is, researchers measure many variables representing different, often

complementary, sources of information with the goal of performing an integrated analysis

that combines information across all of the sources. For example, in epigenetics, one might

want to understand how methylation of CpG sites is associated with the expression of genes

related to breast cancer (Holm et al., 2010). In a model of ischemic stroke, one might want

to know how magnetic resonance imaging (MRI) measurements obtained shortly after stroke

are related to short- and long-term recovery patterns in behavior, cognition, and mobility

(Platt et al., 2014; Duberstein et al., 2014). In the Human Connectome Project (humancon-
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nectomeproject.org), researchers hope to map the anatomical and functional connectivity of

the brain by integrating information obtained by structural MRI, functional MRI, diffusion

MRI, and other imaging modalities. In each example, not only are data obtained from differ-

ent modalities, but also within a modality, the number of variables measured often exceeds

the number of subjects. In the breast cancer study by Holm et al. (2010), the methylation

levels at 1452 CpG sites and gene expressions for 511 genes were obtained from 179 sam-

ples. Thus, the total number of variables measured exceeded the sample size by an order of

magnitude.

We propose to study the association between two high-dimensional sets of variables repre-

senting different modalities. Suppose the data consist of p variables from one modality and q

variables from the other modality measured from a common set of n subjects or experimental

units. Denote the data from the first modality as Xn×p and the data from the second modality

as Yn×q. We can construct a p× q nonsymmetric matrix K containing the pairwise associa-

tions between the variables in X and the variables in Y . In our work, we focus on the Pearson

correlation between X and Y , but in principle, any suitable measure of association could be

used. If Σ̂XX , Σ̂Y Y , and Σ̂XY denote the sample within- and between-covariance matrices of

X and Y , then K can be constructed as K := [diag(Σ̂XX)]−1/2 Σ̂XY [diag(Σ̂Y Y )]−1/2. When

all of the variables within each dataset are measured in the same units (but variables between

datasets needn’t be in the same units), it may be desirable to use the sample covariance as

a measure of association rather than the correlation, so that K := Σ̂XY .

Our analysis has two primary goals: (1) to describe the dominant modes of co-variation

between X and Y and (2) to select variables from X and Y that contribute most to the

dominant modes of co-variation. To achieve these goals, we approximate K by a matrix W

that is low rank and sparse. By finding a low rank matrix close to K, we reduce the pq

pairwise associations to a few modes that capture the most prominent features describing

the overall association between X and Y . We use sparsity to select the most important
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variables contributing to those features. For high-dimensional data, variable selection is an

essential tool for improving the interpretation of the analysis.

Our problem falls into a more general class of problems based on nuclear norm regulariza-

tion. Let ‖W‖∗ :=
∑min(p,q)

j=1 σj(W ) denote the nuclear norm, where σ(·) is an operator that

extracts the singular values of a matrix. Then our problem is a special case of the generic

class of problems

min
W

f(W ; data) + λ1‖W‖∗ + λ2P (W ),

where f is a suitable loss function, P is sparsity-inducing penalty function, λ1 and λ2 are

tuning parameters, and “data” is either an observed matrix to be approximated by W (in our

problem, the matrix K) or additional information, depending on the application. The nuclear

norm can be expressed as ‖W‖∗ =
∑min(p,q)

j=1 |σj(W )| = ‖σ(W )‖1. Since rank(W ) = ‖σ(W )‖0,

the nuclear norm can be viewed as a convex relaxation of the rank. Penalizing the nuclear

norm shrinks some of the singular values to exactly zero, yielding a low rank matrix. The

choice of sparsity penalty P depends on the goals of the analysis, and in some cases it may

be omitted. In our problem, we choose a penalty function that results in variable selection

for one of the datasets X or Y .

We are motivated to employ nuclear norm regularization because of its successful appli-

cation in other problems involving low rank matrix approximations. An example of one such

problem is regression with matrix-valued covariates (Zhou and Li, 2014). For that problem, f

is the negative log-likelihood of a generalized linear model (GLM) and the data are the pairs

(yi, Xi), i = 1, . . . , n, where the yi’s are scalar-valued responses and the Xi’s are matrix-

valued covariates. The model assumes the link function g (E[Yi]) = 〈Xi,W 〉 =
∑

j,k xijkwjk,

where W is a matrix-valued parameter corresponding to the covariates X. Because of the

large number of parameters involved, it is necessary to find a regularized estimate of W .

Zhou and Li argued that regularization of the rank can be more appropriate in certain con-
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texts (e.g., neuroimaging) than sparse regularization. Thus, they penalized the objective

function of the GLM with the nuclear norm of W to find a low rank estimate. They showed

that the nuclear norm-regularized objective function is convex, and thus easier to optimize,

than a similar non-convex version of the problem based on the rank-R approximation of W

(Zhou et al., 2013). In addition, they showed that the effective degrees of freedom (Efron,

2004) of the nuclear norm-regularized model is always dominated by the naive count of the

number of parameters. That is, a nuclear norm-regularized model achieves greater shrinkage

than a fixed rank-R model, potentially providing a better low rank estimate of W in some

situations.

In Zhou and Li’s regularized matrix model, the parameter W is unobserved, so their

problem is an example of simultaneous estimation and regularization. In other applications,

the data is an observed matrix K, so the goal is reduced from simultaneous estimation and

regularization to finding a good low rank approximation of K. In latent variable graphical

models (Chandrasekaran et al., 2012) and robust principal components analysis (Candès

et al., 2011), one assumes the observed matrix K can be decomposed as K = L+ S, where

L is low rank and S is sparse. Then the problem can be written as

min
L,S
‖K − (L+ S)‖2

F + λ1‖L‖∗ + λ2‖S‖1,

where ‖ · ‖F denotes the Frobenius norm and ‖S‖1 is interpreted as the LASSO penalty

(Tibshirani, 1996) applied element-wise to the matrix S. The constants λ1 and λ2 are

tuning parameters controlling the rank of L and the level of sparsity of S, respectively. In

latent variable graphical models, the marginal precision matrix K is decomposed into the

conditional precision matrix of the observed variables S and another matrix L representing

the effect of marginalizing over the latent variables; the former is assumed to be sparse, while

the latter is assumed to be low rank. In robust PCA, the sparse matrix S serves to absorb
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the effects of outliers when estimating the principal components contained in L. Note that

in either application, the sum L+ S is not necessarily sparse or low rank.

Rather than decomposing a matrix as the sum of a sparse matrix and a low rank matrix,

one may want to find an approximation to the matrix that is simultaneously sparse and low

rank. Then the problem can be written as

min
W
‖K −W‖2

F + λ1‖W‖∗ + λ2‖W‖1. (3.1)

This version of the sparse and low rank approximation problem has been proposed for de-

noising applications, such as covariance matrix estimation with small sample size and net-

work estimation when the observed adjacency matrix may have irrelevant or missing edges

(Richard et al., 2012).

We formally state the optimization problem we propose to solve in Section 3.2.1. The

problem we propose shares a close connection with recent proposals for sparse canonical cor-

relation analysis (CCA). In Section 3.2.2, we introduce sparse CCA and explore its connection

to our problem in depth. In particular, we show that, under some assumptions, our problem

and sparse CCA aim to select the same subsets of variables from X and Y . In Section 3.2.3,

we describe an algorithm based on the alternating direction method of multipliers (ADMM)

to solve the proposed problem. In Section 3.2.4, we address tuning parameter selection. Em-

pirically, tuning parameter selection has proven difficult for complex optimization problems

such as sparse CCA because of its instability. As an alternative, we propose to rank the

variables according to their importance by defining metrics that combine information across

the estimates obtained for every combination of the tuning parameters. In Section 3.3, we

compare the proposed methods to the sparse CCA methods of Witten et al. (2009) and Safo

et al. (2018) through a simulation experiment, where we measure the performance of each

method by its variable selection accuracy. In Section 3.4, we apply the proposed method
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to the breast cancer data from Holm et al. (2010). We provide some concluding remarks in

Section 3.5.

3.2 Proposed Methodology

3.2.1 Problem Statement

Let K denote the p × q matrix containing the pairwise Pearson correlations between the

variables in X and the variables in Y . The discussion generalizes to other measures of

association. We approximate K by a matrix W that is low rank and has row or column

sparsity. Let wr, r = 1, . . . , p, denote the rows of W and wc, c = 1, . . . , q, denote the

columns. We solve the problems:

Ŵr = arg min
W

‖K −W‖2
F + λ1‖W‖∗ + λ2

p∑
r=1

‖wr‖2, (3.2)

Ŵc = arg min
W

‖K −W‖2
F + λ1‖W‖∗ + λ3

q∑
c=1

‖wc‖2. (3.3)

As in other applications, penalizing the nuclear norm shrinks some of the singular values

to exactly zero, yielding a low rank approximation of K. The function
∑
‖ · ‖2 is known as

the group LASSO penalty (Yuan and Lin, 2006), and in our application causes entire rows

or columns to be estimated as exactly zero. Since each row or column of K corresponds to

a variable in X or Y , shrinking entire rows or columns to zero achieves variable selection.

Thus, when applied together, the nuclear norm penalty and group LASSO penalty enable

us to estimate the dominant modes of co-variation characterizing the association between

X and Y while simultaneously selecting a subset of variables that contribute most to those

modes of co-variation.

Remark 1. In problems (3.2) and (3.3), only the group LASSO penalty affects the sparsity
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of the estimate, but both the nuclear norm and group LASSO penalties affect the rank. The

group LASSO penalty affects the rank because rank(Ŵ ) ≤ min(# nonzero rows, # nonzero

columns). Consequently, we could omit the nuclear norm penalty and find a sparse, low

rank approximation of K using the group LASSO penalty alone. However, such an estimate

would not capture the dominant modes of co-variation between X and Y . For example, if

we set λ1 = 0 and solve problem (3.2), we would select the variables in X that individually

have the highest correlation with all of the variables in Y , as measured by the `2 norm. In

addition, rank(Ŵr) = min(n, # nonzero rows) w.p. 1. In contrast, if we let λ1 6= 0 and solve

problem (3.2), we not only select variables in X that have high correlation with the variables

in Y , but also describe the nature of the association in a few dominant modes; that is, the

estimate captures the association between Y and the selected variables from X holistically

rather than individually.

Remark 2. The proposed problems are similar to problem (3.1) from Section 3.1. Although

both problems entail sparse and low rank approximations, our motivations for and formula-

tion of problems (3.2) and (3.3) are distinct from those of problem (3.1). In problem (3.1), the

estimate Ŵ is low rank and element-wise sparse. In our context of finding a low rank, sparse

approximation of the sample correlation matrix, such an estimate would be interpreted as

characterizing the dominant modes of co-variation between X and Y while estimating some

of the pairwise correlations between variables in X and Y as zero. However, we desire to

select a subset of variables that contribute most to the dominant modes of co-variation. To

achieve this objective, entire rows or columns of Ŵ must be sparse. Thus, we penalize the

objective function with the group LASSO rather than the standard LASSO. We also note

that, from a computational perspective, problems (3.2) and (3.3) are more challenging than

problem (3.1). Although there is some interplay between the LASSO penalty and nuclear

norm penalty, the interplay between the group LASSO penalty and nuclear norm penalty
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is much stronger. For example, after solving problem (3.1), we could in principle obtain an

estimate that was sparse except for min(p, q) elements, but had the same rank as the original

matrix K.

Remark 3. As an alternative to problems (3.2) and (3.3), we could solve a single optimization

problem that selects the variables from X and Y at the same time. For example, we could

solve the problem:

Ŵ = arg min
W

‖K −W‖2
F + λ1‖W‖∗ + λ2

p∑
r=1

‖wr‖2 + λ3

q∑
c=1

‖wc‖2. (3.4)

However, by penalizing both the rows and columns, we penalize each element of W twice.

In addition, all three penalties affect the rank of the estimate, making the computational

problem even more challenging. Thus, we consider selecting the variables from X and Y as

separate problems and solve (3.2) independently of (3.3).

3.2.2 Application to Variable Selection in High-Dimensional CCA

Canonical correlation analysis (CCA) (Hotelling, 1936) seeks to characterize the relation-

ship between a p-dimensional set of continuous variables X and a q-dimensional set of

continuous variables Y by finding linear combinations Xu and Y v such that the corre-

lation ρ := Cor(Xu, Y v) is maximized. Let V ar(X) := ΣXX , V ar(Y ) := ΣY Y , and

Cov(X, Y ) := ΣXY denote the population within- and between-covariance matrices of X

and Y . Then solution to CCA can be obtained from the singular value decomposition

(SVD) of the matrix

K̃ := Σ
−1/2
XX ΣXY Σ

−1/2
Y Y .
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The largest singular value of K̃ yields the correlation ρ and the corresponding left- and

right-singular vectors yield Σ
1/2
XXu and Σ

1/2
Y Y v. We call ρ the canonical correlation and u,v

the canonical vectors. In practice, the population covariance matrices are replaced by their

sample analogs Σ̂XX , Σ̂XY , and Σ̂Y Y .

When the dimension p or q exceeds the sample size n, the inverses of one or both of the

within-set sample covariances does not exist. A variety of approaches have been implemented

to address the invertibility of the within-set covariance matrices, including extracting their

diagonals (Witten et al., 2009; Parkhomenko et al., 2009; Chalise and Fridley, 2012; Safo

et al., 2018; Jung et al., 2019), making structural assumptions such as Toeplitz (Chen et al.,

2013), and adding a ridge correction (Vinod, 1976; Safo et al., 2018). Note that extracting

the diagonals of Σ̂XX and Σ̂Y Y amounts to the SVD of the sample correlation matrix between

X and Y and is equivalent to assuming ΣXX and ΣY Y are identity for standardized Xn×p

and Yn×q (i.e., each column has mean zero and variance one).

In addition to the computational issues that arise in high dimensional settings, the large

number of variables involved also complicates the interpretation of the solution. One can

improve the interpretation by selecting a relatively small number of the most relevant vari-

ables. Toward this end, many authors have proposed sparse versions of CCA by assuming

the canonical vectors u and v are sparse. Witten et al. (2009), Parkhomenko et al. (2009),

and Chalise and Fridley (2012) develop algorithms that include a soft-thresholding step,

which results in some of the elements of u and v estimated as exactly zero. Chen et al.

(2013) take a similar approach, but use hard thresholding. Safo et al. (2018) and Jung et al.

(2019) consider a more general class of problems known as generalized eigenvalue problems

(GEPs), of which CCA is a special case. Safo et al. (2018) begin with a non-sparse estimate

of the canonical vectors, such as from the SVD of sample correlation matrix between X

and Y , then obtain new estimates via sparse estimation with linear programming (SELP).

Jung et al. (2019) modify the orthogonal iteration algorithm (Golub and Van Loan, 1996)
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for solving GEPs by adding a sparsity-inducing penalty

We now explore the connection between the proposed methodology and certain sparse

CCA methods. For a (not necessarily sparse) CCA model with d nonzero canonical correla-

tions, the population covariance for (X, Y ) can be written as (Chen et al., 2013)

Σ =

 ΣXX ΣXY

ΣY X ΣY Y

 =

 ΣXX ΣXXUDV
TΣY Y

ΣY Y V DU
TΣXX ΣY Y

 ,

where Dd×d is a diagonal matrix containing the canonical correlations such that ρ1 ≥ · · · ≥

ρd and the matrices Up×d, Vq×d contain the canonical vectors. We require uTj ΣXXuj =

vTj ΣY Y vj = 1 and uTi ΣXXuj = vTi ΣY Y vj = 0 (i 6= j). In practice, we are interested in

situations in which the largest canonical correlation is nonzero and the rest are relatively

small or zero. Thus, for the rest of this section, we focus on the single canonical pair model

(d = 1), so that ΣXY = ρΣXXuv
TΣY Y .

In sparse CCA, we assume the canonical vectors u, v are sparse. Without loss of general-

ity, we can assume the first psig elements of u and the first qsig elements of v are nonzero, with

the remaining elements zero. We call the variables corresponding to the nonzero elements of

u and v signal variables, and the variables corresponding to the zero elements of u and v

noise variables.

To estimate the canonical vectors under the single canonical pair model, we need to find

the SVD of the matrix K̃ = Σ
−1/2
XX ΣXY Σ

−1/2
Y Y = ρΣ

1/2
XXuv

TΣ
1/2
Y Y . To see how variable selection

in sparse, high dimensional CCA relates to a low rank matrix decomposition with row or

column sparsity, we need to consider the structure of K̃ implied by sparsity of the canonical

vectors. We further assume that the signal variables are uncorrelated with the noise variables

(i.e., that ΣXX and ΣY Y are block diagonal). Let the superscripts S and N denote the signal

and noise variables, respectively. Then, under suitable partitions of u, v, ΣXX , and ΣY Y ,
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we can write K̃ as

1

ρ
K̃ =

 Σ
SS 1/2
XX 0

0 Σ
NN 1/2
XX


 uS

0

 (
vST 0T

)  Σ
SS 1/2
Y Y 0

0 Σ
NN 1/2
Y Y


=

 Σ
SS 1/2
XX uSvSTΣ

SS 1/2
Y Y 0

0 0

 . (3.5)

From equation (3.5), we can see that when the canonical vectors are sparse and the signal

variables are not correlated with the noise variables, CCA involves finding the SVD of a rank-

1 matrix with row and column sparsity. In addition, the within-set correlation structures of

the noise variables play no role in the CCA optimization problem [i.e., ΣNN
XX and ΣNN

Y Y are

absent from equation (3.5)]. Furthermore, the within-set correlation structures of the signal

variables (i.e., ΣSS
XX and ΣSS

Y Y ) affect neither the row and column sparsity patterns nor the

rank of K̃.

Although the structures of the within-set covariance matrices do not alter the overall

objectives of the analysis, we must estimate them with their sample equivalents before per-

forming CCA. We do not know which variables are the signal variables and which are the

noise variables before the analysis, so we must estimate the entire p× p and q× q within-set

covariance matrices. Because of the difficulty inherent in high-dimensional covariance esti-

mation, some authors [e.g. Witten et al. (2009)] have suggested to standardize X and Y and

avoid estimating the within-set covariance matrices by assuming they are identity; that is,

set ΣXX = Ip and ΣY Y = Iq. Then the sample version of the problem reduces to the SVD of

the p× q matrix containing the correlations between the variables in X and the variables in

Y . We follow that suggestion throughout the rest of the manuscript and work with sample

correlation matrix between X and Y . We denote the population correlation matrix as RXY

and the sample version as R̂XY .
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If we relax the objective of CCA from finding sparse u and v such that Cor(Xu, Y v)

is maximized to finding a low rank approximation of R̂XY with the same row and column

sparsity pattern as that implied by sparse u and v, then we can consider the new objec-

tive as variable selection for CCA. That is, we shift the focus from accurate estimation of

the canonical correlation to accurate variable selection. Under the assumptions stated in

the previous paragraphs, the row sparsity pattern of RXY has a one-to-one correspondence

with the sparsity pattern of u and the column sparsity pattern of RXY has a one-to-one

correspondence with the sparsity pattern of v. The variables corresponding to the nonzero

elements of the canonical vectors, or equivalently, the nonzero rows/columns of RXY , are the

signal variables that we wish to select. Thus, rather than estimating u and v directly, we

instead try to find a low rank approximation of R̂XY with sparse rows and columns.

We can find a low rank approximation of R̂XY with sparse rows or columns by setting

K = R̂XY in problems (3.2) and (3.3) introduced in Section 3.2.1. Rows estimated as nonzero

by solving problem (3.2) correspond to variables selected from the X dataset, and columns

estimated as nonzero by solving problem (3.3) correspond to variables selected from the Y

dataset. Moreover, as shown in the preceding paragraphs, the proposed methodology aims

to select exactly the same (population-level) signal variables as would a sparse CCA method

that standardizes the data and assumes the within-set covariance matrices are identity [such

as Witten et al. (2009) and Safo et al. (2018)]. Thus, the proposed methodology shares a

close connection with those sparse CCA methods in the sense that the goals regarding the

variable selection aspect of the problem are the same.

A crucial difference between the proposed methodology and sparse CCA methods is how

the two approaches find low rank structure in R̂XY . To estimate the first canonical vector

pair, sparse CCA methods find the leading left- and right-singular vectors of R̂XY under

sparsity constraints. Because they are based on the SVD, such approaches can be interpreted

as a sparse versions of finding the best rank-1 approximation of a matrix (in the sense of
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the Eckart and Young (1936) theorem). Then, sparse CCA methods find low rank structure

in R̂XY by assuming a fixed rank. In contrast, the proposed methodology does not assume

a fixed rank approximation. Rather, the penalty on the nuclear norm induces a low rank

approximation by continuously shrinking the singular values to zero. Fixing the rank can

be thought of as a hard-thresholding approach for finding a low rank approximation, while

penalizing the nuclear norm can be thought of as a soft-thresholding approach.

Remark 4. We emphasize that problems (3.2) and (3.3) do not solve the same objective

function as CCA. Although one could extract sparse vectors û and v̂ from the estimates Ŵr

and Ŵc, respectively, they would not be optimal in the sense that Cor(Xû, Y v̂) would be

maximized. In fact, Cor(Xû, Y v̂) would not even be guaranteed to be positive. Conse-

quently, the proposed method should not be considered as a sparse CCA method. Rather,

we can say that the proposed approach is closely related to sparse CCA because they aim

to select the same variables, albeit by solving different objective functions.

Remark 5. We note that, if desired, one could exploit the close connection of the proposed

method with sparse CCA through a combined procedure. For example, one could use the

proposed methodology to select variables from X and Y , then estimate the canonical vectors

and canonical correlation by performing (non-sparse) CCA with the subsets of selected vari-

ables. We use that approach in the real data analysis in Section 3.4 for illustrative purposes,

but focus most of our attention in other sections on the variable selection problem, leaving

a thorough study of the various possibilities for a combined procedure as a subject of future

study.

3.2.3 ADMM Algorithm

We propose an algorithm based on the alternating direction method of multipliers (ADMM)

to solve problems (3.2) and (3.3). For ease of exposition, we discuss solving problem (3.2),
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but the similar results apply to problem (3.3). ADMM splits problem (3.2) as

min
W1,W2,W3

‖K −W1‖2
F + λ1‖W2‖∗ + λ2

p∑
r=1

‖w3r‖2 s.t. Wj = W, j = 1, 2, 3

where thew3r’s are the rows of W3. Splitting the objective function into three components by

introducing additional parameters allows one to break the overall problem into three separate

subproblems, each of which is easier to solve than the original problem. The constraint

Wj = W, j = 1, 2, 3, enforces that the new parameters are all equal, which ensures that the

new problem is the same as the original. The updates for ADMM consist of solving

W k+1
1 = arg min

W1

‖K −W1‖2
F + Y kT

1 (W1 −W
k
) +

η

2
‖W1 −W

k‖2
F

W k+1
2 = arg min

W2

λ1‖W2‖∗ + Y kT
2 (W2 −W

k
) +

η

2
‖W2 −W

k‖2
F

W k+1
3 = arg min

W3

λ2

p∑
r=1

‖w3r‖2 + Y kT
3 (W3 −W

k
) +

η

2
‖W3 −W

k‖2
F

W
k+1

= (W k+1
1 +W k+1

2 +W k+1
3 )/3

Y k+1
j = Y k

j + η(W k+1
j −W k+1

), j = 1, 2, 3.

ADMM can be interpreted as a type of proximal algorithm (Parikh and Boyd, 2014), and

the form of the updates described above is known as consensus ADMM (Boyd et al., 2011).

The parameter η is an augmented Lagrangian parameter that controls the trade-off between

minimizing one component of the objective function and satisfying the constraint. In all of

our experiments, we set η = 1.
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The update for W1 is straightforward to solve using matrix calculus. The updates for W2

and W3 are solved by the proximal operators of the functions f := ‖ ·‖∗ and g :=
∑p

r=1 ‖ ·‖2.

The proximal operators of the nuclear norm f and group LASSO g are given by

proxλ1f (W ) =

min(p,q)∑
j=1

(σj − λ1)+ujv
T
j (nuclear norm)

proxλ2g(W ) =

(
1− λ2

‖wr‖2

)
+

wr, r = 1, . . . , p (group LASSO)

where (·)+ = max(0, ·) denotes the soft thresholding operator and W =
∑min(p,q)

j=1 σjujv
T
j

denotes the SVD of W . Thus, the proximal operator of the nuclear norm of W involves

shrinking its singular values to zero, and the proximal operator of the group LASSO applied

to the rows of W involves shrinking entire rows to zero. Note that the only difference in the

ADMM algorithm for solving (3.3) as opposed to (3.2) is that the proximal operator of the

group LASSO is applied to the columns rather than the rows. For more information about

the proximal operators of the nuclear norm and group LASSO, see Parikh and Boyd (2014)

and references therein.

The full details of the proposed ADMM algorithm are described in Algorithm 5. In

addition to the updates described above, Algorithm 5 describes some other details relevant

to ADMM, such as the stopping conditions.

In Algorithm 5, each of the parameter updates satisfies one component of the objective

function exactly and the others approximately. That is, Ŵ1 is close to K with respect to

the Frobenius norm, Ŵ2 is low rank, and Ŵ3 is row-/column-sparse, but none of the three

estimates are simultaneously close to K, low rank, and row-/column-sparse. Similarly, the

consensus estimate Ŵ is only approximately low rank and row-/column-sparse.

Because the nature of ADMM precludes any single estimate from being simultaneously

low rank and sparse, Algorithm 5 returns both Ŵ2 and Ŵ3 as the estimate of Ŵr. Ŵ2 con-
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tains the information about the dominant modes of co-variation between X and Y , and Ŵ3

contains the information about the subset of variables that contribute most to the domi-

nant modes of co-variation. If one was concerned only with which variables were selected by

solving problem (3.2), one would only need the estimate of W3.

Algorithm 5: ADMM algorithm for Sparse, Low Rank Matrix Approximation

Input: Matrix K (such as the sample correlation matrix R̂XY or covariance matrix Σ̂XY ), tuning parameters
λ1, λ2 and λ3, absolute tolerance εabs, relative tolerance εrel, augmented Lagrangian parameter η.

Output: Final estimate Ŵr = {Ŵ2, Ŵ3}
.
// intialize parameters

W 0
1 ← K; W 0

2 ← 0p×q ; W 0
3 ← 0p×q

W
0

= (W 0
1 +W 0

2 +W 0
3 )/3

Y 0
j ← 0p×q , j = 1, 2, 3

εprimal ←
√

3pq ∗ εabs // primal tolerance

εdual ←
√

3pq ∗ εabs // dual tolerance

resprimal ← εprimal ∗ 1.1 // primal error

resdual ← εdual ∗ 1.1 // dual error

k ← 0 // iteration counter

while resprimal > εprimal or resdual > εdual do

// solves arg minW1
‖K −W1‖2F + Y kT1 (W1 −W

k
) + η

2
‖W1 −W

k‖2F
Wk+1

1 ← 1
1+η

(K + ηW
k − Y k1 )

// solves arg minW2
λ1‖W2‖∗ + Y kT2 (W2 −W

k
) + η

2
‖W2 −W

k‖2F
Wk+1

2 ←
∑min(p,q)
j=1 (σ2j − λ1)+u2jv

T
2j // soft threshold singular values from SVD(Wk

2 )

// solves arg minW3
λ2
∑p
r=1 ‖w3r‖2 + Y kT3 (W3 −W

k
) + η

2
‖W3 −W

k‖2F
wk+1

3r ←
(

1− λ2

‖wk
3r‖2

)
+

wk3r, r = 1, . . . , p // soft threshold rows of Wk
3

// consensus

W
k+1 ← (Wk+1

1 +Wk+1
2 +Wk+1

3 )/3

// residuals

Y k+1
j ← Y kj + η(Wk+1

j −Wk+1
), j = 1, 2, 3

resprimal ← ‖(Wk+1
1 ,Wk+1

2 ,Wk+1
3 )− (W

k+1
,W

k+1
,W

k+1
)‖F

resdual ← ‖− η((W
k+1

,W
k+1

,W
k+1

)− (W
k
,W

k
,W

k
))‖F

εprimal ←
√

3pq ∗ εabs + εrel ∗max
(
‖(Wk+1

1 ,Wk+1
2 ,Wk+1

3 )‖F , ‖ − (W
k+1

,W
k+1

,W
k+1

)‖F
)

εdual ←
√

3pq ∗ εabs + εrel ∗ ‖(Y k+1
1 , Y k+1

2 , Y k+1
3 )‖F

k ← k + 1 // update iteration counter

end

// Repeat procedure to find Ŵc, replacing the update of W3 with soft thesholding of the columns.
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3.2.4 Variable Importance Metrics

In sparse CCA, there are tuning parameters associated with each canonical vector that

affect their sparsity levels. A variety of approaches have been proposed to select the tun-

ing parameters for sparse CCA. Witten and Tibshirani (2009) suggested a permutation

approach for both selecting the tuning parameters and testing for significance of the esti-

mated canonical correlation. Wilms and Croux (2015) proposed to select the tuning pa-

rameters at each iteration based on BIC under a Gaussian likelihood assumption. Others

have proposed to select the tuning parameters by M -fold cross-validation. Waaijenborg

et al. (2008) suggested to choose the tuning parameters that minimize the average difference

between the training correlation ρ̂−mtrain = Cor(X−mû−m, Y −mv̂−m) and the test correlation

ρ̂mtest = Cor(Xmû−m, Y mv̂−m). Safo et al. (2018) used a similar criterion. Parkhomenko et al.

(2009) and Chalise and Fridley (2012) suggested to maximize the average test correlation.

For the proposed methodology, there are tuning parameters that affect the rank and

row/column sparsity of the low rank approximation of K. Unlike the sparse CCA methods,

the proposed methodology does not solve the CCA objective function, nor does it produce

an estimate of the canonical correlation. Thus, we cannot adapt the methods proposed by

others in the context of sparse CCA to our problem. One alternative is to use a measure

of variable selection stability, such as Cohen’s κ (Cohen, 1960), as the criterion in cross-

validation, bootstrapping, or related techniques. This approach has been applied in the

context of penalized regression (Sun et al., 2013), but in principle could be applied to any

objective function as long as variable selection was a key goal of the analysis. However, any

approach based on cross-validation or bootstrapping entails a large computational burden.

We take a different approach that avoids selection of the tuning parameters altogether and

instead produces a ranking of the variables according to each variable’s “importance,” which

we define formally shortly. There are several reasons that a ranking of the variables might

be considered more useful than selecting fixed values of the tuning parameters. Whereas
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selecting fixed values of the tuning parameters produces a single subset of selected variables,

a ranking of the variables can be considered as a kind of continuous variable selection, in

the sense that one can set one or more thresholds for the rank that correspond to subsets

of selected variables, and within each subset, the variables are ordered according to their

importance. One can also think of a ranking of the variables as a sequence of nested subsets

of selected variables, where subsets of smaller size include the more important variables. In

practice, it is often of interest to explore multiple scales of sparsity, and a ranking of the

variables provides a natural way to do so. It also gives researchers the flexibility to include

the context of the problem in the variable selection process, rather than relying solely on a

data-driven procedure. For example, if a group of highly ranked variables are all part of the

same biological pathway, it makes sense to set a threshold that includes all of those variables.

For both the proposed methodology and sparse CCA methods, one solves the optimization

problem for a sequence of values of the tuning parameters over a suitable range. Because all

of the problems involve two tuning parameters, the pairs of values are chosen from a two-

dimensional grid. The endpoints of the grid are chosen to yield a suitable range of sparsity in

the solutions. The values of the upper endpoints are typically the smallest values that yield

a completely sparse solution (because larger values =⇒ more penalization =⇒ higher

sparsity). The values of the lower endpoints are typically the largest values that select the

maximum number of variables desired. Two common choices for the maximum number of

selected variables are all of the variables and, for high dimensional problems, a number of

variables equal to or slightly less than the sample size.

We define two simple, intuitive metrics to measure a variable’s importance that combine

information across the entire sequence of optimization problems. For one importance mea-

sure, we simply count the number of times a variable was selected over the entire sequence

of values of the tuning parameters tried. For example, for a 30× 30 grid, the metric counts

the number of times a variable was selected out of 900. The intuition is that the longer a
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variable persists along the solution path (i.e., the more times it is selected), the more impor-

tant it is. For a given pair of values of the tuning parameters, the proposed metric weights

all of the selected variables as equally important. Traditionally in CCA, a variable’s relative

importance is interpreted with respect to the magnitude of its canonical vector loading, with

larger magnitudes indicating greater importance. Thus, we also consider another importance

metric that sums up the magnitudes of the canonical vector loadings over the entire sequence

of values of the tuning parameters tried. A metric that accumulates the magnitudes of the

canonical vector loadings not only accounts for the the number of times a variable was se-

lected, but also allows for unequal weighting among the selected variables for each pair of

values of the tuning parameters.

The second importance metric requires the magnitudes of the loadings of the canonical

vectors. Because the proposed methodology does not actually solve the CCA objective

function, it does not produce estimates of the canonical vectors. Thus, to calculate the

second importance metric, we must first extract two vectors from the estimates Ŵr and Ŵc

produced by Algorithm 5 that are in some sense like estimated canonical vectors. For Ŵr, we

first extract the leading left-singular vector from Ŵ2. We then set elements of the singular

vector to zero so that it has the same row-sparsity pattern as Ŵ3. Thus, we produce a vector

that takes advantage of the fact that Ŵ2 is exactly low rank and Ŵ3 is exactly sparse. We

repeat the procedure for Ŵc, extracting the leading right-singular vector from Ŵ2 and setting

elements to zero to correspond to the column-sparsity pattern of Ŵ3. The magnitudes of the

elements of the sparse singular vectors are treated like the loadings of the canonical vectors

in CCA and are used the calculate the second variable importance metric.

The proposed metrics are less computationally demanding than cross-validation because

they only require the optimization problem to be solved for each pair of values of the tuning

parameters. In contrast, cross-validation not only requires the optimization problem to be

solved for each pair of values of the tuning parameters, but also to repeat the procedure M
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times – once for each fold. In addition, for the proposed metrics, one need only choose a

sequence of the tuning parameters that explores a reasonable range of sparsity levels. For

cross-validation, one needs to first choose an appropriate sequence of values, then select a

single pair out of the many pairs tried. The latter task poses a substantially more challenging

problem than the former.

The variable importance metrics can be applied to both the proposed methodology and

sparse CCA methods, enabling comparisons among the different approaches. In particular,

we use the two importance metrics to compare the proposed methodology to two sparse CCA

methods with respect to the estimated average rank of the signal variables. The average rank

of the signal variables is a proxy for the variable selection accuracy. For example, for a method

that achieves perfect variable selection (i.e, selects all psig signal variables and none of the

p− psig noise variables), the best possible average rank of the signal variables (assuming no

ties) is

1

psig

psig∑
j=1

j =
(psig + 1)

2
.

Note that because we are not defining a true ranking at the population level – we are only

defining which variables are signal and which are noise – the ordering of the estimated ranks

of the signal variables does not matter (which is why we take the average). Also note that

because of the way we have defined the ranks, rank 1 corresponds to the most important

variable. In our simulation experiments in Section 3.3, lower values of the average rank

indicate better performance.

3.3 Simulation Experiment

We evaluate the performance of the proposed methodology, which we call spLRMA (for

sparse Low Rank Matrix Approximation), through a simulation experiment. We compare
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to the penalized matrix decomposition (PMD) method of Witten et al. (2009) and SELP-

I method of Safo et al. (2018). Both PMD and SELP-I are sparse CCA methods that

standardize the data and assume the within-set covariance matrices are identity. Thus, the

proposed methodology, PMD, and SELP-I all attempt to find a low rank approximation of

the sample correlation matrix R̂XY while simultaneously performing variable selection. We

simulate data under the assumptions stated in Section 3.2.2 so that all three methods aim

to select the same sets of signal variables. We measure the performance of each method with

respect to its variable selection accuracy. We use the variable importance metrics described

in Section 3.2.4 to rank the variables, then use the average rank of the signal variables as a

proxy for the variable selection accuracy.

We focus on the high dimensional setting in our experiments. We simulate p = 200

variables in the X dataset and q = 160 variables in the Y dataset with a sample size of

N = 150. For one group of settings, we use the single canonical pair model introduced

by Chen et al. (2013), which is based on the multivariate normal (MVN) distribution. We

fix the within-set covariance matrices ΣXX and ΣY Y and generate a set of canonical vectors

(u,v). Then the single canonical pair model defines the between-covariance matrix as ΣXY =

ρΣXXuv
TΣY Y . We use several different block-diagonal structures for ΣXX and ΣY Y and vary

the strength of the within-set correlation parameter as well as the canonical correlation. For

all settings but one, we use 90% sparsity for the canonical vectors (i.e., 20 signal variables in

X, 16 signal variables in Y ); for the other setting, we use 95% sparsity (i.e., 10 signal variables

in X, 8 signal variables in Y ). We draw the values of the signal portion of the canonical

vectors independently from Unif(1, 2) and the sign from Bernoulli with P (+) = P (−) = 0.5.

We set the noise portion equal to zero. We normalize the canonical vectors with respect to

their corresponding covariance matrices prior to generating (X, Y ) (i.e., we scale u and v

by a factor of 1/
√
uTΣXXu and 1/

√
vTΣY Y v, respectively). We give the full details of the

simulation settings based on the MVN distribution in Table 3.1.

111



For another group of settings, we adapt the single canonical pair model to the multivariate

t distribution. Our goal is to determine how the methods perform when the data may

contain outliers. The covariance matrix of the multivariate t distribution is defined through

the degrees of freedom and scale matrix. We fix the degrees of freedom then set the scale

matrices as we did the covariance matrices of the MVN distribution. We use df = 15 in all of

our settings. The rest of the details for the settings based on the multivariate t distribution

are included in Table 3.1.

Table 3.1: Within-set covariance/scale matrices and canonical correlations for simulation

settings based on the multivariate normal (MVN) or multivariate t(df = 15) distribution.

BD: block diagonal, CS: compound symmetry, AR: first-order autoregressive.

Distribution ΣXX ΣY Y ρ

MVN BD [AR(0.9)20, I180] BD [AR(0.9)16, I144] 0.9, 0.5

BD [AR(0.7)20, I180] BD [AR(0.7)16, I144] 0.9, 0.7, 0.5, 0.3

BD [AR(0.2)20, I180] BD [AR(0.2)16, I144] 0.9

BD [CS(0.2)20, I180] BD [CS(0.2)16, I144] 0.9, 0.5

BD [I20, I180] BD [I16, I144] 0.9

BD [I10, I190] BD [I8, I152] 0.9

BD [AR(0.7)20, AR(0.6)180] BD [AR(0.7)16, AR(0.6)144] 0.9

BD [CS(0.7)20, I180] BD [CS(0.7)16, I144] 0 (null setting)

MV t(df = 15) BD [AR(0.7)20, I180] BD [AR(0.7)16, I144] 0.9, 0.5

BD [CS(0.2)20, I180] BD [CS(0.2)16, I144] 0.9, 0.5

Two settings in Table 3.1 are of particular interest. One setting is when the signal

variables are uncorrelated, so that ΣXX = Ip and ΣY Y = Iq. For that setting, the methods

of Witten et al. (2009) and Safo et al. (2018) assume the correct population-level covariance

structure, so we might expect the methods to perform better in that setting relative to the

other settings. The other setting of special interest is the null setting. When ρ = 0, the true
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population correlation matrix RXY = 0. Although the between-set correlation is zero, we

set some variables to have high within-set correlation. We still refer to the variables with

high within-set correlation as “signal” variables, even though the corresponding elements of

the canonical vectors are zero. Under the null setting, we might expect all of the methods to

rank the signal variables about the same as the noise variables. Our purpose in considering

such a setting is to determine to what extent the methods are responding to the structure

of ΣXY as dictated by ρ, u, and v vs. ΣXX and ΣY Y .

3.3.1 Results: Multivariate Normal

In Figures 3.1–3.4, we show the results for some selected settings in Table 3.1 corresponding

to the MVN distribution. The results for all of the settings (reported as mean and SD) can

be found in Table 5.1 in the Appendix. We focus on four groups of settings: (1) correlated

signal variables, uncorrelated noise variables, (2) correlated signal variables, correlated noise

variables, (3) uncorrelated signal variables, uncorrelated noise variables, and (4) the null

setting. Note that uncorrelated vs. correlated (i.e., identity vs. non-identity) refers to the

block-diagonal structure of the within-set covariance matrices; in all of the settings, the

signal variables are uncorrelated with the noise variables.

Figures 3.1–3.4 show boxplots of the average rank of the signal variables for each method.

Each figure contains the results for both sets of variables X and Y as well as both variable

importance metrics. Metric 1 corresponds to the metric based on the number of times a

variable was selected and Metric 2 corresponds to the metric based on the magnitudes of the

loadings.

For the X set, the average rank of the signal variables is the average ranks of the first

20 variables for settings with 90% sparsity or the first 10 variables for the setting with 95%

sparsity. The best possible average rank (assuming no ties) of the X signal variables is 10.5

for 90% sparsity and 5.5 for 95% sparsity. For the Y set, the average rank of the signal
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variables is the average ranks of the first 16 variables for settings with 90% sparsity or the

first 8 variables for the setting with 95% sparsity. The best possible average rank of the Y

signal variables is 8.5 for 90% sparsity and 4.5 for 95% sparsity.

Correlated signal variables, uncorrelated noise variables

In Figure 3.1, we show results for settings using first-order autoregressive (AR) and

compound symmetric (CS) covariance structures with different values of the canonical cor-

relation. PMD and SELP-I perform about the same as each other in all four settings. In

addition, both methods perform worse when the signal variables are less correlated among

themselves [AR(0.7) vs. CS(0.2)] or when the value of the canonical correlation becomes

smaller (ρ = 0.9 vs. 0.5). The performances decline both with respect to the value of the

average rank (the values tend to get further from the best possible rank) and the variability

across repeated simulation. In contrast, spLRMA outperforms PMD and SELP-I in all of

those aspects. For a given setting, the average rank tends to be closer to the best possible

rank and is less variable. It is also more robust to changes in the degree of correlation of the

signal variables and the value of the canonical correlation, achieving about the same value of

the average rank in all four settings [albeit with slightly increased variability for the CS(0.2)

setting]. For all three methods, the average rank does not appear to depend on the variable

importance metric.
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(i) BD [AR(0.7), I], ρ = 0.9, 90% sparsity (ii) BD [AR(0.7), I], ρ = 0.5, 90% sparsity

(iii) BD [CS(0.2), I], ρ = 0.9, 90% sparsity (iv) BD [CS(0.2), I], ρ = 0.5, 90% sparsity

Figure 3.1: Boxplots of average rank of signal variables. Selected settings with correlated

signal variables, uncorrelated noise variables. 100 simulations.

Correlated signal variables, correlated noise variables

In Figure 3.2, we show results for the setting in which the noise variables are correlated

among themselves. Because the data were generated under the assumptions stated in Sec-

tion 3.2.2, the population correlation matrix has the same block structure as the matrix in
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equation (3.5). Namely, the population-level matrix RXY does not depend on the within-set

correlation structure of the noise variables. Then, in theory, the results should not depend

on whether the noise variable are correlated among themselves or not.

Comparing the results in Figure 3.2 to the results in Figure 3.1(i), we can see that the

correlation structure of the noise variables does affect the analysis, at least empirically. The

simulation settings corresponding to those figures are comparable because the only difference

is the correlation structure of the noise variables. When the noise variables are correlated

among themselves, all of the methods perform worse. The average rank tends to be further

from the best possible rank and it is more variable across multiple simulation. In addition,

the relative performances of the three methods differ between Figure 3.2 and Figure 3.1(i).

In Figure 3.1(i), spLRMA performed better than PMD and SELP-I, but in Figure 3.2, all

three methods perform about the same.

Figure 3.2: Boxplots of average rank of signal variables. Setting with correlated signal

variables, correlated noise variables: BD [AR(0.7), AR(0.6)], ρ = 0.9, 90% sparsity. 100

simulations.
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Uncorrelated signal variables, uncorrelated noise variables

Figure 3.3 shows the results when the signal variables are uncorrelated for two different

levels of sparsity. For the settings corresponding to Figure 3.3, ΣXX = Ip and ΣY Y = Iq.

Because PMD and SELP-I both assume the correct covariance structure, we might expect

them to perform better than in settings in which the signal variables are correlated. However,

the results in Figure 3.3 indicate that they perform much worse. In fact, all three methods

perform worse than in any other simulation setting, barely discriminating between the signal

and noise variables. To illustrate, consider the X set of variables under the 90% sparsity

setting. In the best case scenario – when the signal and noise variables are ranked perfectly

– the average rank of the signal variables is 10.5 while the average rank of the noise variables

is 110.5. When the ranks are chosen at random, the average rank of both sets is 100.5. In

Figure 3.3(1), the bulks of the boxplots fall just below 100, meaning that the average rank

of the signal variables is hardly different than the average rank of the noise variables.

For both 90% sparsity and 95% sparsity, spLRMA seems to perform slightly better than

PMD and SELP-I, with the advantage becoming more noticeable with higher sparsity. With

higher sparsity, all three methods perform better for single instances of simulated data [the

whiskers of the boxplots in Figure 3.3(ii) extend closer toward the best possible rank], but

at the expense of greater overall variability.

We provide additional discussion of the results presented in Figure 3.3 in Section 3.5.

117



(i) BD [I, I], ρ = 0.9, 90% sparsity (ii) BD [I, I], ρ = 0.9, 95% sparsity

Figure 3.3: Boxplots of average rank of signal variables. Settings with uncorrelated signal

variables, uncorrelated noise variables. 100 simulations.

Null setting

In the null setting, there are no true signal variables because the canonical vectors and

correlation are zero. However, the first 20 variables in the X set are correlated among

themselves and first 16 variables in the Y are correlated among themselves. Because the

corresponding 20× 16 matrix in the upper left corner of RXY is zero, we should not expect

any of the methods to rank those “signal” variables differently from the rest. That is, average

rank should be about the same as if the rank were chosen at random: 100.5 in the X set and

80.5 in the Y set.

Although there is high variability, the results in Figure 3.4 indicate that all three methods

are able to detect the variables with high within-set correlation using only the information in

the sample between-set correlation matrix R̂XY . The average rank of the those variables is

frequently much smaller than 100.5 and 80.5. Among the three methods compared, spLRMA

does the worst in the sense that it most consistently finds the variables with high within-set
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correlation using the information from R̂XY , even though the true between-set correlation is

zero.

We provide additional discussion of the results for the null setting in Section 3.5.

Figure 3.4: Boxplots of average rank of “signal” variables. Null setting (RXY = 0). 100

simulations.

3.3.2 Results: Multivariate t(df = 15)

Figure 3.5 shows the results for the simulation settings based on the multivariate t(df = 15)

distribution. The results in Figure 3.5 correspond to the results in Figure 3.1 in the sense

that the scale matrices for the multivariate t settings are the same as the covariance matrices

for the MVN settings. Our goal was to determine how the methods fared when the data

were drawn from a distribution with heavier tails than the MVN distribution.

Comparing the results in Figure 3.5 with those in Figure 3.1, we can see that the qualita-

tive patterns are similar. PMD and SELP-I perform about the same, and spLRMA performs

better than either. Both PMD and SELP-I perform worse when the value of the canonical

correlation becomes smaller (ρ = 0.9 vs. 0.5), but the performance of spLRMA is more

robust. Unlike the MVN settings, all three methods perform noticeably worse when the
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signal variables are less correlated among themselves [AR(0.7) vs. CS(0.2)]. The variability

of the methods’ performances also appears to increase as the signal variables become less

correlated.

(i) BD [AR(0.7), I], ρ = 0.9, 90% sparsity (ii) BD [AR(0.7), I], ρ = 0.5, 90% sparsity

(iii) BD [CS(0.2), I], ρ = 0.9, 90% sparsity (iv) BD [CS(0.2), I], ρ = 0.5, 90% sparsity

Figure 3.5: Boxplots of average rank of signal variables. Settings with correlated signal

variables, uncorrelated noise variables. 100 simulations.
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3.4 Real Data Analysis

We apply the proposed method (spLRMA), PMD (Witten et al., 2009), and SELP-I (Safo

et al., 2018) to the breast cancer data from Holm et al. (2010). The breast cancer data consist

of two sets of variables measured from a common set of N = 179 samples. One set contains

methylation levels at 1452 CpG sites. The other set contains gene expressions as measured by

511 gene probes. CpG sites are often found in high frequency in the promoter regions of genes.

Epigenetic changes such as methylation can affect the expression of the downstream gene.

Hypermethylation is associated with gene silencing, while hypomethylation is associated

with overexpression. Because the expression of one gene can affect the expression of others,

changes in the methylation level at one CpG site can affect the expression levels of an

entire group of genes. Moreover, changes at multiple CpG sites may affect the expression of

overlapping groups of genes. Thus, the ultimate goal of the analysis is to select a group of

CpG sites whose methylation levels are associated with the expression of a group of genes.

In both the original analysis by Holm et al. and a previous analysis by Safo et al., the

dimension of the methylation set was reduced in a preprocessing step by removing CpG sites

with standard deviation less than 0.3. We follow that procedure here, resulting in p = 334

CpG sites included in our analysis. We retain all of the genes from the expression set,

resulting in expressions measured by q = 511 probes. Note that each CpG site is located at

a gene, and multiple CpG sites can be located at the same gene. As a consequence, the 334

CpG sites correspond to only 249 unique genes. Similarly, multiple probes were sometimes

used to measure the expression of one gene, so the 511 probes measure the expression of

only 470 unique genes. Among the unique genes in the methylation and expression sets, 139

genes are common to both sets.

In our analysis, we aim to demonstrate empirically the close connection between spLRMA

and sparse CCA that was explored theoretically in Section 3.2.2 and demonstrated through
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simulation in Section 3.3. Namely, we aim to demonstrate that: (1) spLRMA selects similar

sets of variables as does PMD and SELP-I and (2) the overall association between the two

sets of selected variables can be described by a high canonical correlation. In Section 3.2.2,

the fact that spLRMA should select the same subset of variables as sparse CCA methods

relied on two key assumptions: sparsity of the canonical vectors and uncorrelatedness of the

signal and noise variables. Neither of those assumptions is likely to hold for real data because

real data are not generated from a hypothetical CCA model. Nevertheless, we hope that

spLRMA selects similar variables as sparse CCA in practice as well as in theory. In addition,

we hope that the overall association between the two sets of variables selected by spLRMA

can be described by a high canonical correlation. spLRMA captures the dominant modes

of co-variation between two sets of variables, but it does not maximize the same objective

function as CCA. Then if we use the estimate of the dominant modes of co-variation produced

by Algorithm 5 to construct two vectors û and v̂, we cannot expect the linear combinations

Xû and Y v̂ to have high correlation. However, the canonical correlation does capture one

aspect of the dominant modes of co-variation between two sets of variables. Thus, if we

perform (non-sparse) CCA with the sets of variables selected by spLRMA, we might expect

that canonical correlation to be high.

We apply spLRMA, PMD, and SELP-I to the breast cancer data, using the metric based

on the magnitudes of the canonical vector loadings to rank the variables in the methylation

and expression sets according to their relative importances. Figure 3.6 shows the overlap in

the top 25 genes selected by spLRMA, PMD, and SELP-I for each set of variables. Note that

the choice of top 25 is purely for illustrative purposes. For the methylation set, CpG sites at

14 genes were selected by all three methods (and actually 3 CpG sites were selected at the

MEST gene, 2 sites were selected at the RASSF1 gene, and 2 sites were selected at the ISL1

gene, so the overlap is slightly more than 14). For the expression set, 10 genes were selected

by all three methods. The high degree of overlap among the top 25 genes indicates that
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spLRMA, PMD, and SELP-I are ranking similar groups of variables as important. Among

the rest of the genes, there is more overlap between PMD and SELP-I than between PMD

and spLRMA or between SELP-I and spLRMA. As a consequence, there are more genes

selected uniquely by spLRMA – a pattern that is more apparent in the expression set than

in the methylation set. Given that the objectives of PMD and SELP-I are more similar to

each other than either is to spLRMA, it is not surprising that the greatest amount of overlap

(beyond that for all three methods) occurs between PMD and SELP-I.

(i) Methylation set (CpG sites) (ii) Gene Expression set

Figure 3.6: Overlap of top 25 genes selected by spLRMA, PMD, and SELP-I.

We next examine how well the top-ranked variables rate with respect to achieving a high

canonical correlation. In Figure 3.7, we show the estimated canonical correlation based on

non-sparse CCA using the top-ranked variables from the methylation and expression sets.

We show how the estimated canonical correlation changes as we change the threshold for

the number of top-ranked variables included in CCA. The x-axis in Figure 3.7 shows the

number of top-ranked variables included from each set, which we vary from 5 to 50. Thus,
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the minimum number of total variables we include in CCA is 10 and the maximum is 100.

spLRMA performs competitively with PMD and SELP-I over the entire range considered.

In fact, the estimated canonical correlation for the variables selected by spLRMA is actually

higher than the corresponding value for PMD or SELP-I over a large portion of the range.

That fact is rather surprising given that spLRMA selects variables by optimizing an objective

function that is not directly related to maximizing the canonical correlation.

Our analysis of the breast cancer data was primarily meant to illustrate that, despite

not being a sparse CCA methodology, spLRMA can be a highly effective tool for one of the

main goals of sparse CCA – variable selection. Our final step in the analysis would be to

interpret our findings with respect to the underlying biology; that is, we desire to describe

how the methylation levels at the top-ranked CpG sites are associated with the expression

of the top-ranked genes, and what role that association plays in the development of cancers.

Some genes, such as RASSF1, are well known to function as tumor suppressors, so silencing

through hypermethylation has a clear role in cancer development. However, the functions of

many of the top-ranked genes from both the methylation and expression sets have not been

fully described, so the judgment of a subject-matter expert would be necessary to make an

assessment about any potential findings regarding the association between DNA methylation

and gene expression.
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Figure 3.7: Estimated canonical correlation based on non-sparse CCA using the top-ranked

variables selected from the methylation and expression sets. The x-axis indicates the number

of top variables included from each set (so the total number of variables included in CCA is

twice the value on the x-axis).

3.5 Discussion

We developed a methodology that describes the dominant modes of co-variation between

variables in two datasets while simultaneously performing variable selection. We studied

certain aspects of the method’s variable selection properties theoretically in Section 3.2.2,

through simulation in Section 3.3, and empirically in 3.4. In addition, in Section 3.2.4 we
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proposed two metrics to measure a variable’s importance and a procedure to rank variables

according to their importance. The procedure avoids tuning parameter selection and is ap-

plicable to both the proposed method and related methods, such as sparse CCA. In principle,

the procedure could be adapted to other analyses (e.g., regression) where variable selection

is a primary goal and regularization is employed to achieve the variable selection property.

In Section 3.2.2, we showed that, under some assumptions, the proposed method and

certain sparse CCA methods aim to select the same set of variables. In our simulation

experiment in Section 3.3, we generated data under a sparse CCA model and showed that the

proposed method performed as well as or better than two sparse CCA methods with respect

to variable selection accuracy (as measured by the average rank of the signal variables). In

our real data analysis in Section 3.4, we provided further evidence for the close relationship

between the proposed method and sparse CCA. For real data, neither the assumptions of

Section 3.2.2 are likely to hold, nor do we know the identities of the true signal variables (or

if there even is a concept of signal vs. noise variables). Nevertheless, we were able to show

that the proposed method and the two sparse CCA methods rank similar subsets of variables

as important, and that the most highly ranked variables have high canonical correlation if

we perform non-sparse CCA with them.

Although we showed that the proposed method and sparse CCA aim to select the same set

of signal variables, a natural question is: Why does the proposed method in some scenarios

actually perform better than sparse CCA methods with respect to variable selection accuracy?

Because the data were generated under a sparse CCA model, and the proposed method does

not optimize the CCA objective function, one might expect methods developed as sparse

versions of CCA to always perform the best. One possible explanation is that we have relaxed

the objectives of CCA to focus on a single aspect of the problem. Rather than simultaneously

maximizing the canonical correlation and performing variable selection, our formulation of

the problem foregoes estimation of the canonical correlation and instead emphasizes variable
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selection. Given the difficulty of accurate estimation of the canonical correlation in high

dimensional settings, it makes sense that relaxing that aspect of the analysis could result in

better performance for other aspects.

Another possible explanation for the proposed method’s better performance is that the

proposed method only attempts to select variables from one dataset at a time, whereas the

two sparse CCA methods – PMD and SELP-I – select variables from both datasets at the

same time. Because of the additional challenge in selecting variables from multiple datasets

simultaneously, the proposed method perhaps enjoys an unfair advantage by considering

variable selection in each dataset as separate problems. We plan to address that possibility

in future work. We aim to develop an algorithm to solve problem (3.4), which would select

variables from both datasets as part of a single optimization.

In our simulation experiment, we designed some of the scenarios to highlight some of

the major challenges for CCA in high dimensions. Two scenarios use within-set covariance

structures ΣXX = Ip and ΣY Y = Iq. The PMD method of Witten et al. (2009) and the SELP-

I method of Safo et al. (2018) make such an assumption; that is, both methods assume

the correct model generating the data. One might expect a method to perform better

when its assumptions match the underlying model. Counterintuitively, the simulation results

in Section 3.3.1 indicate that the methods actually perform worse for scenarios in which

the methods’ assumptions hold. Why then do the methods perform poorly when their

assumptions hold and perform better when their assumptions are violated?

Comparing the true between-set covariance matrix ΣXY to the observed sample matrix

Σ̂XY lends some insight into that question. Figures 5.15–5.18 in the Appendix show heatmaps

comparing the true ΣXY to several realizations of the observed Σ̂XY for selected simulation

scenarios listed in Table 3.1. When the signal variables have high within-set correlation (e.g.,

Fig. 5.15), the region of Σ̂XY corresponding to the nonzero part of ΣXY is readily apparent.

In contrast, when the signal variables have little (e.g., Figs. 5.16 and 5.17) or no (e.g., Fig.
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5.18) within-set correlation, the region is barely detectable. The nonzero region of ΣXY

corresponds to the signal variables that PMD, SELP-I, and the proposed method aim to

select, and the extent to which that region is apparent in the sample matrix Σ̂XY reflects the

level of difficulty of each simulation scenario. Thus, although the assumptions of PMD and

SELP-I are satisfied in scenarios that set ΣXX = Ip and ΣY Y = Iq, those are actually the

most difficult scenarios with respect to detecting the signal variables, and all of the methods

perform poorly. Conversely, the assumptions of PMD and SELP-I are violated for scenarios

in which the signal variables are highly correlated, but those are the easiest scenarios with

respect to detecting the signal variables, and so all of the methods perform well.

Another challenge for analyses involving high dimensional datasets is the potential for

spurious findings. The null scenario of the simulation experiment was designed to determine

whether the methods detected structure in the data arising from spurious sources. Under

the null scenario, the true between-set covariance matrix was ΣXY = 0, but a group of

variables in each dataset had high within-set correlation. As in the other scenarios, 10%

of the variables within a dataset were correlated among themselves. Although none of the

variables correlated among themselves can accurately be called “signal” variables (because

the canonical vectors are zero), all three methods tended to rank those variables as more

important than the others (see Fig. 3.4). Thus, all three methods responded to dependence

structure in Σ̂XY arising from blocks of correlated variables in ΣXX and ΣY Y , even though

the true structure of ΣXY was null.

Again, inspection of heatmaps of the observed Σ̂XY sheds some light into why the methods

are susceptible to spurious signal. Figure 5.19 in the Appendix shows four realizations of

Σ̂XY under the null scenario. In some realizations [such as Fig. 5.19(iii)], the observed

Σ̂XY contains a region of apparent “signal” that is virtually indistinguishable from scenarios

in which the canonical vectors are non-null. Thus, all of the methods have a tendency to

select the variables corresponding to that region. The phenomenon is analogous to observing
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large, spurious correlations in the context of high dimensional regression, as discussed in Fan

and Lv (2008) and Fan and Lv (2010). However, rather than observing a large, spurious

correlation between a single variable in X and a single variable in Y , we tend to observe an

entire block of spurious of correlations in Σ̂XY due to the high degree of correlation among

the group of variables within each set.

Although all three methods ranked the spurious signal variables as more important than

the other noise variables, spLRMA did so to a greater extent (and with less variability).

Figure 5.20 in the Appendix helps explain why. It compares the null scenario with three

other scenarios with respect to several measures associated with the observed Σ̂XY . It shows

the measures for elements/columns corresponding to the signal variables, and also an equal

number of noise variables (for reference). Note that similar results for the rows could be

obtained, but the columns are sufficient to illustrate the idea. One measure is the Frobenius

norm of the upper left block of Σ̂XY , which serves as a measure of the strength of the signal

(i.e., how dark the block is). For the null scenario, there is very large variability, which

is consistent with Figure 5.19 (namely, sometimes the block isn’t dark at all, sometimes

it’s very dark). That helps explain why PMD and SELP-I rank the spurious signal variables

highly, but have large variability, but it doesn’t help explain why spLRMA is far less variable.

The other two measures help explain the results for spLRMA. One measure is the average

`2 norm of the columns of Σ̂XY corresponding to the signal variables. Since the objective

function for spLRMA penalizes the `2 norm, if it is large on average for the spurious signal

variables, then spLRMA will tend to rank them highly. We see that the `2 norm is indeed

large on average in the null scenario. The last measure tries to quantify the degree of linear

dependence of the columns of Σ̂XY corresponding to the signal variables. We can take those

columns, form a matrix A (which is just the p× qsig left submatrix of Σ̂XY ), then calculate

the condition number of ATA, which serves as measure of the degree of linear dependence

of the columns (with larger values indicating more linearly dependent). We see that the
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first few columns of Σ̂XY are more linearly dependent when the within-in set correlation is

high, regardless of whether the canonical vectors are null or not. Since PMD, SELP-I, and

spLRMA are all trying to find a low rank matrix close to Σ̂XY , greater linear dependence

among columns will cause the methods to rank the corresponding variables more highly.

The simulation scenarios with high within-set correlation (including the null scenario)

highlight another issue related to the evaluation of the performances of new sparse CCA

and related methodologies: Researchers should test their methods against more challenging

simulation settings. The visualizations of the signal region of Σ̂XY in Figures 5.15–5.18, as

well as the methods’ tendencies to find spurious signal when groups of variables are highly

correlated among themselves, suggest that the methods are responding more to structure

in the data arising from the within-set correlation rather than structure arising from the

sparsity pattern of the canonical vectors. When the groups of highly correlated variables

match the sparsity pattern of the canonical vectors, the results can give the false impression

that a method has very good performance. In reality, the good performance is essentially

coincidence: The method is effective at detecting the signal variables not because it is inher-

ently good at accurately estimating the sparsity pattern of the canonical vectors, but because

the within-set correlation structure coincides with the sparsity pattern of the canonical vec-

tors. This phenomenon is especially apparent in our scenario with within-set correlation

BD[AR(0.9), I)]. All three methods seem to perform extremely well with respect to rank-

ing the signal variables highly. However, the good performance is mainly an artifact resulting

from the high correlation of the signal variables among themselves, as evidenced by the de-

cline in performance for the BD[AR(0.7), I)], BD[AR(0.2), I)], and BD[I, I)] scenarios.

If researchers want to test their method’s ability to detect the underlying sparsity pattern

of the canonical vectors, the more challenging scenarios with weak within-set correlation

provide more information toward that purpose.

Finally, we focused on the variable selection aspect of the proposed method for this work.
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However, variable selection was only one of our primary goals. Our other main goal was to

describe the dominant modes of co-variation between the variables in two datasets. Although

the proposed method and sparse CCA aim to select similar sets of variables, the proposed

method and CCA differ with respect to how they characterize the co-variability between two

datasets. CCA captures one specific notion of co-variability: the correlation between Xu and

Y v. In contrast, the proposed method provides a more general description of the dominant

modes of co-variation. In fact, the proposed method is more similar to multivariate partial

least squares (PLS) with respect to how it describes the modes of co-variation between two

datasets [at least, the version of PLS described in McIntosh et al. (1996), Worsley (1997),

and Lorenzi et al. (2018)]. Our approach may even be considered as a sparse version of PLS,

similar to the method Chun and Keleş (2010) proposed. We intend to compare our method

with PLS in another line of investigation. Rather than variable selection, we will turn our

attention toward describing the dominant modes of co-variation, evaluating the methods

both with respect to how well they capture the modes of co-variation and how to interpret

them.
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Chapter 4

Sparse Canonical Correlation Analysis as a

Regularized Least Squares Problem with

Quadratic Equality Constraints

4.1 Introduction

Let X denote a set of p variables and Y denote a different set of q variables, where both X and

Y are centered. Canonical correlation analysis (CCA) (Hotelling, 1936) seeks to characterize

the relationship between X and Y by finding linear combinations Xu and Y v such that the

correlation ρ := Cor(Xu, Y v) is maximized. The vectors u and v of linear coefficients are

called the canonical vectors and the correlation ρ is called the canonical correlation.

Let Σ =

 ΣXX ΣXY

ΣY X ΣY Y

 denote the population covariance of (X, Y ). The objective of

CCA can be expressed mathematically as

ρ = max
u,v

uTΣXY v√
uTΣXXu

√
vTΣY Y v

. (4.1)
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The objective function (4.1) is invariant to scaling, so (4.1) can be equivalently expressed as

ρ = max
u,v

uTΣXY v s.t. uTΣXXu = vTΣY Y v = 1.

Replacing Σ with its sample equivalent, an estimate of the canonical correlation defined

by (4.1) can be obtained from the singular value decomposition (SVD) of the matrix

K := Σ̂
−1/2
XX Σ̂XY Σ̂

−1/2
Y Y .

The estimate of the canonical correlation ρ̂ is given by the largest singular value of K. The

corresponding left- and right-singular vectors give Σ̂
1/2
XXû and Σ̂

1/2
Y Y v̂, so the estimates of the

canonical vectors can be obtained by transformation. One may find additional canonical

correlations ρ̂2, . . . , ρ̂min(p,q) from the other nonzero singular values of K, but we focus on the

situation where one is only interested in the largest canonical correlation.

For many modern applications of CCA, the datasets corresponding to X and Y consist

of many more variables than observations (e.g., microarray studies in genetics). When the

number of variables in either X or Y exceeds the sample size, the inverses Σ̂
−1/2
XX and/or Σ̂

−1/2
Y Y

do not exist, so it is not possible to perform CCA via the SVD of K. Vinod (1976) proposed a

ridge correction to address the invertibility issue, so that the matrix K is computed using the

inverses of Σ̂XX + λxIp and Σ̂Y Y + λyIq. One could also apply more extreme regularization,

such as extracting the diagonals of Σ̂XX and Σ̂Y Y (so that K is the sample correlation matrix

between X and Y ) or assuming ΣXX = Ip and ΣY Y = Iq (so that K is the sample covariance

matrix between X and Y ).

Although methods that directly address the invertibility of Σ̂XX and Σ̂Y Y yield a solution

for CCA, the solution itself is often difficult to interpret. Interpretation of the results from

CCA focuses on the magnitudes of the loadings in û and v̂. Variables with loadings that

are large in magnitude relative to the others are considered more important (in some sense).
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However, it is often unclear what should be considered a “large” loading or where a threshold

should be set to distinguish important variables from relatively unimportant variables. One

approach to overcome those difficulties and improve the interpretability of the results is to

invoke the principle of sparsity: We assume that only a small subset of the variables in X and

Y are relevant to the analysis, and the rest do not contribute substantially. By finding sparse

estimates of the canonical vectors, the results can be interpreted with respect to the subset

of variables in X and Y with nonzero coefficients, while the variables with zero coefficients

are considered unimportant.

Several sparse CCA proposals have been put forward. One group of proposals exploits

the power method of calculating the SVD of a matrix by incorporating a thresholding step

in the SVD of K to achieve a sparse solution to CCA. Witten et al. (2009) calculated

the sample correlation matrix R̂XY := [diag(Σ̂XX)]−1/2 Σ̂XY [diag(Σ̂Y Y )]−1/2, then applied

the power method to the SVD of R̂XY with a thresholding step derived from a bound on

the `1 norm of the canonical vectors. Note that performing CCA with R̂XY is equivalent

to standardizing the variables and assuming ΣXX = Ip and ΣY Y = Iq. Parkhomenko et al.

(2009) took a similar approach as Witten et al. (2009), but derived the thresholding step from

the Lagrange form of the `1 constraint. Chalise and Fridley (2012) extended the methods of

Parkhomenko et al. (2009) by considering additional penalty functions and combining with

a variable filtering procedure proposed by Zhou and He (2008). Chen et al. (2013) estimated

the precision matrices Σ̂−1
XX and Σ̂−1

Y Y directly by assuming a particular form of either the

precision matrices (e.g., sparse) or covariance matrices (e.g., Toeplitz), then applied the

power method with hard thresholding.

Other proposals cast CCA into the regression framework by rewriting the bilinear form of

the objective function as a least squares form. Waaijenborg et al. (2008) proposed to solve the

least squares problem as two separate regression problems, each with an elastic net penalty

(Zou and Hastie, 2005). However, they approximated the elastic net penalty by univariate
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soft thresholding, so their method is very similar to the methods of Parkhomenko et al. (2009)

and Witten et al. (2009). Wilms and Croux (2015) took an alternating regression approach,

where they applied a LASSO penalty (Tibshirani, 1996) to each regression subproblem.

More recent proposals consider the more general class of problems called generalized

eigenvalue problems (GEPs), of which CCA is a special case. See Safo et al. (2018) or Jung

et al. (2019) for sparse CCA methods based on the GEP formulation.

Following Waaijenborg et al. (2008) and Wilms and Croux (2015), we solve CCA within

the regression framework. We propose two sparse CCA algorithms, each based on a type

of proximal algorithm. First, we rewrite the CCA objective function as minimization of a

quadratic form. We then solve a regularized version of the optimization problem that yields

sparse estimates of the canonical vectors. We consider the LASSO (Tibshirani, 1996), SCAD

(Fan and Li, 2001), and MC (Zhang, 2010) penalties, all of which result in a thresholding

step as a consequence of their proximal operators. We compare the proposed method to

methods based on alternating minimization.

4.2 Proposed Methodology

4.2.1 Minimization of a Quadratic Form

For a sample of n observations, Izenman (1975) characterizes CCA as a prediction problem

by expressing the objective function as

û, v̂ = arg min
u,v

(Xu− Y v)T (Xu− Y v) s.t. uTΣXXu = vTΣY Y v = 1. (4.2)

For fixed v, (4.2) is a least squares problem in u under quadratic equality constraints.

Similarly, for fixed u, (4.2) is a least squares problem in v under quadratic equality con-

straints. Based on that observation, Wilms and Croux (2015) proposed an alternating re-
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gression procedure similar to Wold’s algorithm (Wold, 1968) to solve (4.2). To yield a sparse

solution for the canonical vectors, they formulate a penalized version of the objective func-

tion,

û, v̂ = arg min
u,v

(Xu− Y v)T (Xu− Y v) + λx||u||1 + λy||v||1

s.t. uTΣXXu = vTΣY Y v = 1,

which they propose to solve by an alternating LASSO-regularized regression procedure. We

take a similar approach, but we rewrite the objective function in (4.2) to facilitate simulta-

neous (as opposed to alternating) estimation of (u,v). We also consider additional penalties

besides the `1 norm.

Let A = (X, − Y )n×(p+q) and w = (uT , vT )T . We write a penalized version of (4.2) as

ŵ = arg min
w

1

2
wTATAw + Pλx,λy(w) s.t. wTC1w = wTC2w = 1, (4.3)

where C1, C2 are block diagonal matrices C1 = BD(ΣXX , 0q×q) and C2 = BD(0p×p,ΣY Y )

and Pλx,λy(w) is a penalty function. We consider three different penalties:

1. LASSO (Tibshirani, 1996)

2. SCAD (Fan and Li, 2001)

3. MC (Zhang, 2010)

For example, for the LASSO penalty, Pλx,λy(w) = ||Fw||1, where F = BD(λxIp, λyIq).

Then (4.3) is identical to the penalized objective function defined by Wilms and Croux

(2015) (besides scaling by the factor 1/2) because ||Fw||1 = λx||u||1 + λy||v||1. See the

references listed for the form of Pλx,λy(w) for the other penalties.
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Without the penalty term, the objective function (4.3) involves minimization of a quadratic

form under quadratic constraints. The unconstrained minimization of such a quadratic form

would yield ŵ = 0 for any matrix A. The additional constraints wTC1w = wTC2w = 1

ensure that the solution is not trivially the zero vector; however, the constraints also cause

the optimization problem to be non-convex.

4.2.2 Proximal Algorithms

The motivation for writing the penalized objective function in the form of (4.3) is to devise an

algorithm that makes use of proximal operators. A general class of algorithms that make use

of proximal operators are called proximal algorithms and are often applied to optimization

problems of the form

minimize f(x) + g(x),

where f and g are convex functions and f is differentiable. A proximal algorithm typically

splits the minimization of f+g into two subproblems by minimizing f and g separately. The

proximal operator is applied to the function g, and for some algorithms, to the function f

as well. The proximal operator is related to the Moreau-Yosida regularization of a function.

For a function f , it is defined as

prox 1
η
f (v) := arg min

x
f(x) +

η

2
||x− v||22.

The parameter η > 0 controls the trade-off between minimizing f and staying close to v. See

Parikh and Boyd (2014) for a detailed discussion of proximal operators and their applications

in function optimization.
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We devise two proximal algorithms for solving problem (4.3). The first is based on the

proximal gradient method. The proximal gradient method is an iterative algorithm with

updates

xk+1 = proxγkg(x
k − γk∇f(xk)),

where proxg denotes the proximal operator of the function g and γk is a step size. Follow-

ing the general approach of a proximal algorithm, the proximal gradient method splits the

minimization of f + g into two subproblems. The term xk − γk∇f(xk) is simply the gradi-

ent descent method for minimizing f . The term proxg(x) minimizes g with an additional

regularity term that ensures the solution lies close to the argument x. Thus, the update

xk+1 = proxγkg(x
k − γk∇f(xk)) can be interpreted as a compromise between minimizing g

and staying close to a gradient descent step for minimizing f .

For the optimization problem defined by (4.3), we split the objective as f(w) := 1
2
wTATAw

and g(w) := Pλx,λy(w). Then the general form of the proximal gradient method applied to

problem (4.3) is

wk+1 = proxγkg(w
k − γkATAwk).

The proximal operators of the three penalty functions we consider have closed-form solutions.

Moreover, the proximal operators each involve element-wise thresholding of the vector wk−

γkATAw, so the final solution will be sparse, with the level of sparsity depending on the

tuning parameters λx and λy. The proximal operators of the three penalty functions we

consider are summarized in Table 4.1.
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Table 4.1: Proximal operators of the LASSO, SCAD, and MC penalty functions. Each

thresholding operator is applied element-wise to the vector w and λx = λy := λ is assumed

for notational convenience.

Penalty Function Proximal Operator Additional Notes

LASSO ŵ = sgn(w)(|w| − λ)+ The (·)+ operator is defined as:
(·)+ = max(0, ·).

SCAD ŵ =


sgn(w)(|w| − λ)+ |w| ≤ 2λ
(a−1)w−sgn(w)aλ

a−2 2λ < |w| ≤ aλ
w |w| > aλ

We use a = 3.7.

MC ŵ = sgn(w) min
{
|w|, a(|w|−λ)+a−1

}
We use a = 3.

Although each component in the splitting of problem (4.3) is a convex function, the

overall problem is non-convex. The non-convexity is due to the quadratic equality constraints

involving u and v (i.e., w). The updates in the standard proximal gradient method do not

enforce those constraints, so we propose to follow each update with a normalization step.

The full details of the proposed algorithm are given in Algorithm 6.
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Algorithm 6: Proximal Gradient Method for Sparse CCA

Input: Centered data matrices X and Y , initial estimate w(0) = (u(0);v(0)) s.t.
||u(0)||2 = ||v(0)||2 = 1, tuning parameters λx and λy.

Output: Final estimates û, v̂, and ρ̂ = Cor(Xû, Y v̂).

A← (X, − Y ) // create A matrix

γ0 ← 1 // initialize step size

k ← 0 // iteration counter

while objective criterion not met do

w∗(temp) = (u∗(temp);v∗(temp))← proxγkg(w
k − γkATAwk)

// proxg applied element-wise according to the penalty g listed in Table 4.1

w(temp) ←
(

u∗(temp)

||u∗(temp)||2
; v∗(temp)

||v∗(temp)||2

)
// normalize

// the function f is f(w) = 0.5 ∗wTATAw

if f(w(temp)) < f(w(k)) +∇f(w(k))T (w(temp) −w(k)) + 1
2γk
||w(temp) −w(k)||22 then

w(k+1) ← w(temp) // accept update

γk+1 ← 1.2 ∗ γk // increase step size

else
w(k+1) ← w(k) // reject update; perform line search for step size

γk+1 ← 0.5 ∗ γk // shrink step size

end

k ← k + 1 // update iteration counter

end

(û; v̂)← w(final)

ρ̂← Cor(Xû, Y v̂)
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The normalization step that we insert into the proximal gradient method is an ad hoc

solution for handling the quadratic equality constraints of problem (4.3). We develop another

algorithm based on the alternating direction method of multipliers (ADMM) to handle the

constraints in a more rigorous way. Again keeping with the general approach of proximal

algorithms, ADMM splits the minimization of a function f + g by separately minimizing f

and g. To accomplish this, the problem min f(x) + g(x) is rewritten as

min f(x) + g(z) s.t. x− z = 0.

The generic form of ADMM for the new formulation of the problem is

xn+1 = prox 1
η
f (z

n − rn)

zn+1 = prox 1
η
g(x

n+1 + rn)

rn+1 = rn + xn+1 − zn+1.

The basic intuition of ADMM is to minimize one function while ensuring the new update

is close to the update for minimizing the other function. The variable r accumulates the

residuals for the difference x−z. As the algorithm progresses, x converges to a point close to

minimizing f , z converges to a point close to minimizing g, and the residual term encourages

x and z to converge to each other.
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Using the same splitting as for the proximal gradient method (but explicitly incorporating

the quadratic equality constraints), the updates for the ADMM algorithm for solving problem

(4.3) can be written as

wn+1 = prox 1
η
f (z

n − rn)

= arg min
w

1

2
wTATAw +

η

2
||w − zn + rn||22 s.t. wTC1w = wTC2w = 1

zn+1 = proxλ
η
g(w

n+1 + rn)

rn+1 = rn +wn+1 − zn+1,

where we have again assumed λx = λy := λ for notational convenience. As in the proximal

gradient method, the proximal operator for the function λg is one of the thresholding oper-

ators listed in Table 4.1. Note that after convergence, the final solution for w is not sparse

– it is only approximately sparse. However, the final solution for z is exactly sparse, so we

take (û; v̂) = z(final).

Writing the update for w as

wn+1 = arg min
w

1

2
wT (ATA+ ηI)w − ηwT (zn − rn) + c (4.4)

s.t. wTC1w = wTC2w = 1,

where c is a constant not involving w, we can see that it is a quadratically constrained

quadratic program (QCQP). Because the constraint is an equality, rather than an inequality,

the problem is non-convex and many of the well-known off-the-shelf QCQP solvers cannot

be used. Furthermore, we cannot apply a convex relaxation to the constraints, such as

wTC1w ≤ 1 and wTC2w ≤ 1, because the solution to the problem would be the zero vector.

Instead, we solve the w update by sequential quadratic programming (Kraft, 1988, 1994)

using a solver available through the NLopt library (Johnson, 2019). In the context of the
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ADMM algorithm, the final solution for w will satisfy the constraints exactly, while the final

solution for z will satisfy the constraints approximately.

The stopping condition for the proximal gradient method can be based on a simple crite-

rion, such as the change between iterations in the estimate or the objective value evaluated

at the estimate. However, the stopping conditions for ADMM are more involved. The full

details of the proposed ADMM algorithm are described in Algorithm 7.
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Algorithm 7: ADMM algorithm for Sparse CCA

Input: Centered data matrices X and Y , initial guesses w0 and z0, tuning
parameters λx and λy, absolute tolerance εabs, relative tolerance εrel,
augmented Lagrangian parameter η.

Output: Final estimates û, v̂, and ρ̂ = Cor(Xû, Y v̂).

A← (X, − Y ) // create A matrix

r0 ← 0 // initialize residual vector

εprimal ← √px + py ∗ εabs // initialize primal tolerance

εdual ← √px + py ∗ εabs // initialize dual tolerance

resprimal ← εprimal ∗ 1.1 // initialize primal error

resdual ← εdual ∗ 1.1 // initialize dual error

k ← 0 // iteration counter

while resprimal > εprimal or resdual > εdual do

// w-update (solved by sequential quadratic programming)

wk+1 ← arg minw
1
2w

TATAw + η
2 ||w − z

k + rk||22 s.t. wTC1w = wTC2w = 1

// z-update

zk+1 ← proxλ
η
g(w

k+1 + rk)

// proxλg applied element-wise according to the penalty λg listed in

Table 4.1

// residual update

rk+1 ← rk +wk+1 − zk+1

resprimal ← ||wk+1 − zk+1||2
resdual ← || − η(zk+1 − zk)||2
εprimal ← √px + py ∗ εabs + εrel ∗max(||wk+1||2, || − zk+1||2)

εdual ← √px + py ∗ εabs + εrel ∗ ||ηrk+1||2

k ← k + 1 // update iteration counter

end

(û; v̂)← z(final)

ρ̂← Cor(Xû, Y v̂)
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Algorithm 7 requires an initial guess for both w and z. From problem (4.4), we can see

that the quadratic form in w involves a positive definite matrix, so the problem has a unique

solution (up to signs). Consequently, the ADMM algorithm is robust to the initial guess for

w. The vector z can be (and typically is) initialized as the zero vector. However, if one

desires to run the algorithm multiple times for a sequence of values of the tuning parameters

λx and λy, it may be beneficial to warm start the algorithm to reduce computation time. In

that case, one may use the final solution for z from a previous fit as the initial guess.

Remark 6. We note that when Pλx,λy(w) is the LASSO penalty, the problem (4.3) is the

same objective function considered by Wilms and Croux (2015). However, both the proximal

gradient method and ADMM applied to problem (4.3) solve for u and v simultaneously at

each iteration. Thus, the solutions from the proximal gradient and ADMM algorithms will

not in general be the same as the solution from Wilms and Croux’s alternating minimization

algorithm (even with identical initial values u(0),v(0)). Part of our purpose in rewriting

the objective to facilitate simultaneous estimation of the canonical vectors is that we hope

the proposed algorithms will converge faster and result in a solution that achieves a better

objective value, at least for “good” initial guesses u(0),v(0) (“good” meaning closer to a

global optimum). However, since the problem (4.3) is non-convex, neither the proximal

gradient method, ADMM, nor alternating minimization is guaranteed to converge to a global

optimum.

4.2.3 Extension to Multiple Datasets

The proposed methodology can also be extended to accommodate multiple datasets. Suppose

there are D > 2 datasets X1 . . . , XD containing p1, . . . , pD variables, respectively. When

there are multiple datasets, one may choose to perform separate analyses for each pair of

datasets. However, in some contexts, it may be desirable to perform an integrated analysis

instead of multiple, separate analyses. For example, one may desire to study the association
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between two datasets while controlling for the others (Iaci et al., 2010). In addition, separate

analyses entail estimating
(
D
2

)
canonical vectors, whereas an integrated analysis only involves

estimating D canonical vectors. One way to perform an integrated analysis is to generalize

the objective function in (4.2) by writing

û1, . . . , ûD = arg min
u1,...,uD

∑
d<d′

||Xdud −Xd′ud′ ||22

s.t. uT1 ΣX1X1u1 = · · · = uTDΣXDXDuD = 1.

We can rewrite the objective function above by combining the matrices X1 . . . , XD into a

single matrix A and concatenating the canonical vectors u1, . . . ,uD into a single vector w.

The objective function can then be expressed as minimization of a quadratic form, which we

can solve with either the proposed proximal gradient algorithm or ADMM algorithm.

For illustration of how to rewrite the multi-set objective function as a quadratic form as

in (4.3), consider the case where D = 3. We can write

A =


X1 −X2 0

X1 0 −X3

0 X2 −X3

 , w =


u1

u2

u3

 .

Then

wTATAw = ||X1u1 −X2u2||22 + ||X1u1 −X3u3||22 + ||X2u2 −X3u3||22.

The penalty function and constraints in (4.3) are extended in a natural way.
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4.2.4 Extension to Grouped Data

A regularized regression approach can also be useful for handling grouped data in CCA. For

illustration, consider two groups of observations on two sets of variables X and Y . One would

like to study the association between the variables in X and the variables in Y , but part of

the association may differ depending on group. One could perform CCA on each group of

observations separately, but the group differences may only occur for a small subset of the

variables involved. Thus, one would like to use the information from all of the observations for

estimating the shared association, but use group-specific information for estimating aspects

of the association that differ between groups.

One could formulate the problem as minimization of a quadratic form, as in Section 4.2.1,

with an additional fused LASSO-type penalty. Let X1 ∈ Rn1×p, Y1 ∈ Rn1×q denote the data

from the first group and X2 ∈ Rn2×p, Y2 ∈ Rn2×q denote the data from the second group.

Similarly, let (u1, v1) denote the canonical vectors for the first group and (u2, v2) denote

the canonical vectors for the second group. Then, subject to appropriate size constraints on

the canonical vectors, the objective function can be written as

ŵ1, ŵ2 = arg min
w1,w2

(
wT

1 wT
2

) AT1A1 0

0 AT2A2


 w1

w2


+ λx

p∑
j=1

|u1j − u2j| + λy

q∑
j′=1

|v1j′ − v2j′|,
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where w1 :=

 u1

v1

 , w2 :=

 u2

v2

 ,

AT1A1 :=

 XT
1 X1 −XT

1 Y1

−Y T
1 X1 Y T

1 Y1

 ,

AT2A2 :=

 XT
2 X2 −XT

2 Y2

−Y T
2 X2 Y T

2 Y2

 .

When λx = λy = 0, the objective function is equivalent to performing CCA separately

for each group of observations. When λx > 0 and λy > 0, the penalty term encourages some

of the elements of u1 to be estimated the same as the corresponding elements in u2 and

some of the elements of v1 to be estimated the same as the corresponding elements in v2.

Elements estimated exactly the same are more likely to represent shared associations across

the two groups of observations, while elements that are different are more likely to represent

group-specific associations.

The size constraints for the canonical vectors are not as straightforward to specify as in

sparse CCA. For example, consider taking λx sufficiently large so that û1 = û2. If one were

to use the same constraints as Section 4.2.1, one cannot simultaneously satisfy û1 = û2 and

ûT1 Σ̂X1X1û1 = ûT2 Σ̂X2X2û2 = 1. One could relax the constraints as ûT1 û1 = ûT2 û2 = 1, but

then the problem does not reduce to the usual CCA problem when λx = λy = 0. Another idea

is to replace the group-specific sample covariance matrices in the constraints with weighted

averages of the form Σ̃X1X1 := αλxΣ̂X1X1 + (1 − αλx)Σ̂XX and Σ̃X2X2 := αλxΣ̂X2X2 + (1 −

αλx)Σ̂XX , where αλx = 1 if λx = 0 and αλx → 0 as λx → ∞. Then, when λx = λy = 0, the

problem reduces to the usual CCA problem. Similarly, as λx →∞, the matrix used for the

constraints approaches the sample covariance matrix for the full set of observations. One
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function satisfying the requirements is α(λx) = e−λx . An ADMM algorithm similar the the

one described in Section 4.2.2 could be used to optimize the objective function.

The formulation can be extended to accommodate more than two groups. The approach

could also be combined with the sparse CCA formulation of Section 4.2.1, albeit at the cost

of substantially increased computational complexity.

4.3 Simulation Experiments

We evaluate the proposed proximal gradient and ADMM algorithms in two separate simula-

tion experiments. As in Chapter 3, we compare the proposed methods to existing approaches

based on their performances according to the variable importance metrics described in Sec-

tion 3.2.4.

4.3.1 Proximal Gradient Algorithm

For the proximal gradient algorithm, we focus on the high dimensional setting. We simulate

p = 200 variables in the X dataset and q = 160 variables in the Y dataset with a sample

size of N = 150. We use 90% sparsity, resulting in 20 signal variables in the X dataset

and 16 signal variables in the Y dataset. We set the within-covariance matrices as ΣXX =

BD[ARpsignal(0.7), Ipnoise ] and ΣY Y = BD[ARqsignal(0.7), Iqnoise ], where BD means block-

diagonal and AR denotes a first-order autoregressive structure. We use the single canonical

pair model to define the between-covariance matrix as ΣXY = ρΣXXuv
TΣY Y with ρ = 0.9.

We generate a different set of canonical vectors (u,v) for each simulated dataset. For the

signal portion of the canonical vectors, we generate the value from Unif(1, 2) and the sign

from Bernoulli with P (+) = P (−) = 0.5. We set the noise portion of the canonical vectors

to zero. We normalize the canonical vectors with respect to their corresponding covariance

matrices prior to generating (X, Y ) (i.e., we scale u and v by a factor of 1/
√
uTΣXXu and
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1/
√
vTΣY Y v, respectively).

We compare the proposed proximal gradient algorithm to four existing sparse CCA ap-

proaches and to the proposed spLRMA method from Chapter 3. We compare to Waaijenborg

et al. (2008) and Wilms and Croux (2015) because they both approach sparse CCA from a

regression framework, as we have. Waaijenborg et al. (2008) use univariate soft thresholding

(UST), while Wilms and Croux (2015) use an alternating LASSO-penalized regression pro-

cedure. Note that, although Waaijenborg et al. describe the u and v updates in separate

steps, their algorithm does not alternate between solving for u|v and v|u. We also compare

to the penalized matrix decomposition (PMD) approach proposed by Witten et al. (2009)

and the sparse estimation with linear programming (SELP-I) approach proposed by Safo

et al. (2018). For each method, we vary the sparsity tuning parameters over a 2-dimensional

grid of values.

The proposed proximal gradient algorithm, the UST approach of Waaijenborg et al.

(2008), and the alternating LASSO regression approach of Wilms and Croux (2015) all

require an initial guess for the estimated canonical vectors. Because the quality of the results

may depend on the closeness of the initial guess to the global solution, we will investigate

several different approaches for choosing the initial value. Using several different initial

guesses will also allow us to evaluate the sensitivity of the different methods to the choice of

initial value.

We use four different approaches to set the initial guess for the canonical vectors. For the

first and second approaches, we obtain (u(0),v(0)) as the left and right singular vectors from

the SVD of the sample covariance and sample correlation matrices of X and Y . The former

assumes the variables within sets are uncorrelated and have variance one, while the latter only

assumes the variables within sets are uncorrelated. For the third approach, we add a ridge

correction to make the estimated within-set covariance matrices invertible; that is, we take

(u(0),v(0)) to be the left and right singular vectors from the SVD of K := Σ̃
−1/2
XX Σ̂XY Σ̃

−1/2
Y Y ,
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where Σ̃XX = Σ̂XX +
√

log p
n
Ip and Σ̃Y Y = Σ̂Y Y +

√
log q
n
Iq. For the fourth approach, we set

(u(0),v(0)) to be the true population canonical vectors plus a small amount of noise. The

true canonical vectors should be closer to the global solution than the initial guesses from

the other approaches (on average).

Results

Tables 4.2 and 4.3 summarize the mean rank and standard deviation (SD) for the signal

variables and noise variables, respectively, where the rank was determined by the importance

measure based on whether the canonical vector loading is nonzero. To obtain the values

reported in the tables, we first calculated the mean over the group of variables (signal or noise)

for each simulated dataset, and then calculated the mean and SD over the 100 simulations.

Note that the mean is equivalent to calculating the mean over both the group of variables and

the simulations, but the SD is not. In Table 4.2 lower values indicate better performance

of a method (because “1” corresponds to the most important variable, and we want the

signal variables to be ranked as important), while in Table 4.3 higher values indicate better

performance of a method (because we want the noise variables to be ranked as relatively

unimportant).

Excluding the results that used the true canonical vector + noise as the initial value,

PMD, SELP-I, spLRMA, and UST performed better than the methods of Wilms and Croux

(2015) and the proposed proximal gradient method. The spLRMA method performed slightly

better than PMD, SELP-I, and UST, which is consistent with the simulation results reported

in Chapter 3. Comparing the method of Wilms and Croux (2015) with the proposed prox-

imal gradient method, we can see that the proposed method performed better for all three

penalty functions, with the largest improvement obtained for the MC and SCAD penalties.

Comparing the proposed method across the different penalty functions, we can see that MC

and SCAD performed better than LASSO, with SCAD achieving a 10 point improvement in
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the mean rank of the signal variables in many cases. Thus, simultaneous estimation of the

canonical vectors via the proximal gradient method appears to work better than alternating

minimization, and the MC and SCAD penalties appear to work better than the LASSO

penalty.

For the methods that depend on the initial value, every method compared benefited from

using the true canonical vector + noise as the initial guess, with the degree of improvement

depending on the method. For UST, the gain was slight, with a less than 1 point improvement

in the mean rank of the signal variables. For the method of Wilms and Croux (2015), the

gain was larger, with a 4–6 point improvement in the mean rank of the signal variables. The

proposed proximal gradient method achieved the largest gains. In fact, the proposed method

with MC or SCAD penalty achieved nearly perfect variable ranking because under a perfect

ranking, the mean of the ranks in the X set would be 1
20

(1 + · · ·+ 20) = 10.5 and the mean

of the ranks in the Y set would be 1
16

(1 + · · · + 16) = 8.5. On the one hand, the results

indicate that the proximal gradient algorithm can achieve a better solution than can UST or

alternating minimization when started from an initial value close to the global optimum. On

the other hand, the proximal gradient algorithm appears to be more sensitive to the initial

value than the other methods. Since one cannot guarantee an initial value close to the global

optimum in practice, the cost may outweigh the benefit.
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Table 4.2: Mean (SD) rank of signal variables in the X and Y datasets according to the

importance measure based on whether the canonical vector loading was nonzero. Results

based on 100 simulations. Lower values of the rank are better. DNF: Did Not Finish.

Dataset X variables Y variables

Initial Value† 1 2 3 4 1 2 3 4

PMD (Witten et al. 2009) 37.98 (15) 25.71 (11)

SELP-I (Safo et al. 2018) 38.92 (13) 26.97 (12)

spLRMA 34.88 (14) 23.7 (11)

UST (Waaijenborg et al. 2008) 38.83 (13) 38.45 (13) DNF 37.88 (12) 26.8 (12) 26.7 (12) DNF 26.08 (11)

Wilms and Croux (2015) 70.56 (16) 70.09 (15) 70.19 (16) 64.72 (13) 50.59 (12) 50.73 (11) 53.85 (14) 46.53 (9)

Proximal Gradient - LASSO 63.43 (13) 62.77 (13) 67.03 (15) 17.78 (5) 46.74 (11) 46.29 (11) 48.47 (13) 13.15 (3)

Proximal Gradient - MCP 54.82 (13) 54.45 (13) DNF 10.65 (1) 39.22 (11) 39.23 (12) DNF 8.57 (0)

Proximal Gradient - SCAD 51.31 (13) 51.32 (13) DNF 10.77 (1) 36.79 (12) 36.52 (12) DNF 8.63 (0)

†Initial values: 1–SVD of sample covariance matrix, 2–SVD of sample correlation matrix, 3–ridge CCA, 4–true canonical vector + noise

Table 4.3: Mean (SD) rank of noise variables in the X and Y datasets according to the

importance measure based on whether the canonical vector loading was nonzero. Results

based on 100 simulations. Higher values of the rank are better. DNF: Did Not Finish.

Dataset X variables Y variables

Initial Value† 1 2 3 4 1 2 3 4

PMD (Witten et al. 2009) 107.45 (2) 86.59 (1)

SELP-I (Safo et al. 2018) 107.34 (1) 86.45 (1)

spLRMA 107.79 (2) 86.81 (1)

UST (Waaijenborg et al. 2008) 107.35 (1) 107.39 (1) DNF 107.46 (1) 86.47 (1) 86.48 (1) DNF 86.55 (1)

Wilms and Croux (2015) 103.83 (2) 103.88 (2) 103.87 (2) 104.48 (1) 83.82 (1) 83.81 (1) 83.46 (2) 84.27 (1)

Proximal Gradient - LASSO 104.62 (1) 104.69 (1) 104.22 (2) 109.69 (1) 84.25 (1) 84.3 (1) 84.06 (1) 87.98 (0)

Proximal Gradient - MCP 105.58 (1) 105.62 (1) DNF 110.48 (0) 85.09 (1) 85.09 (1) DNF 88.49 (0)

Proximal Gradient - SCAD 105.97 (1) 105.96 (1) DNF 110.47 (0) 85.36 (1) 85.39 (1) DNF 88.49 (0)

†Initial values: 1–SVD of sample covariance matrix, 2–SVD of sample correlation matrix, 3–ridge CCA, 4–true canonical vector + noise

Tables 4.4 and 4.5 summarize the mean rank and standard deviation (SD) for the signal

variables and noise variables, respectively, where the rank is determined by the importance

measure based on the magnitude of the canonical vector loading. Qualitatively, the differ-

ences among methods are similar to the results in Tables 4.2 and 4.3. Quantitatively, the

most obvious difference in the results is the performance of the proximal gradient method
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relative to Wilms and Croux’s (2015) method, and the relative performances of the differ-

ent penalty functions. Although the proximal gradient method with MC or SCAD penalty

performs better than Wilms and Croux’s method in all cases, Wilms and Croux’s method

does slightly better than the proximal gradient method with LASSO penalty in several cases

(i.e., depending on the initial value). In addition, the improvement in the mean rank of the

signal variables gained by using MC or SCAD penalty is not as large as when using the other

importance measure. Most of the differences can be attributed to the fact that, for Wilms

and Croux’s method and the proximal gradient method with LASSO penalty, the mean rank

of the signal variables is better when using the importance measure based on the magnitude

of the canonical vector loading, while the mean rank of the signal variables is the same or

slightly worse for the proximal gradient method with MC or SCAD penalty.

Table 4.4: Mean (SD) rank of signal variables in the X and Y datasets according to the

importance measure calculated from the magnitude of the canonical vector loading. Results

based on 100 simulations. Lower values of the rank are better. DNF: Did Not Finish.

Dataset X variables Y variables

Initial Value† 1 2 3 4 1 2 3 4

PMD (Witten et al. 2009) 36.27 (14) 24.25 (11)

SELP-I (Safo et al. 2018) 38.13 (12) 26.43 (12)

spLRMA 35.14 (13) 23.78 (11)

UST (Waaijenborg et al. 2008) 38.05 (12) 37.63 (12) DNF 36.4 (12) 26.29 (12) 26.17 (12) DNF 24.61 (11)

Wilms and Croux (2015) 63 (15) 62.6 (15) 62.2 (17) 55.07 (12) 40.53 (11) 40.72 (11) 45.32 (14) 35.45 (8)

Proximal Gradient - LASSO 58.47 (14) 58.97 (14) 63.11 (17) 11.54 (2) 42.32 (12) 42.4 (12) 45.18 (14) 9.16 (1)

Proximal Gradient - MCP 54.57 (13) 54.5 (13) DNF 10.58 (0) 38.83 (12) 38.93 (12) DNF 8.54 (0)

Proximal Gradient - SCAD 52.45 (13) 52.89 (13) DNF 10.6 (0) 37.09 (12) 37.32 (12) DNF 8.55 (0)

†Initial values: 1–SVD of sample covariance matrix, 2–SVD of sample correlation matrix, 3–ridge CCA, 4–true canonical vector + noise
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Table 4.5: Mean (SD) rank of noise variables in the X and Y datasets according to the

importance measure calculated from the magnitude of the canonical vector loading. Results

based on 100 simulations. Higher values of the rank are better. DNF: Did Not Finish.

Dataset X variables Y variables

Initial Value† 1 2 3 4 1 2 3 4

PMD (Witten et al. 2009) 107.64 (2) 86.75 (1)

SELP-I (Safo et al. 2018) 107.43 (1) 86.51 (1)

spLRMA 107.76 (1) 86.8 (1)

UST (Waaijenborg et al. 2008) 107.44 (1) 107.49 (1) DNF 107.62 (1) 86.52 (1) 86.54 (1) DNF 86.71 (1)

Wilms and Croux (2015) 104.67 (2) 104.71 (2) 104.76 (2) 105.55 (1) 84.94 (1) 84.92 (1) 84.41 (2) 85.51 (1)

Proximal Gradient - LASSO 105.17 (2) 105.11 (2) 104.65 (2) 110.38 (0) 84.74 (1) 84.73 (1) 84.42 (2) 88.43 (0)

Proximal Gradient - MCP 105.6 (1) 105.61 (1) DNF 110.49 (0) 85.13 (1) 85.12 (1) DNF 88.5 (0)

Proximal Gradient - SCAD 105.84 (1) 105.79 (1) DNF 110.49 (0) 85.32 (1) 85.3 (1) DNF 88.49 (0)

†Initial values: 1–SVD of sample covariance matrix, 2–SVD of sample correlation matrix, 3–ridge CCA, 4–true canonical vector + noise

4.3.2 ADMM Algorithm

For the ADMM algorithm, we consider both a low dimensional setting and a high dimensional

setting. For the low dimensional setting, we simulate p = 20 variables in the X dataset and

q = 20 variables in the Y dataset with a sample size of N = 50. For the high dimensional

setting, we simulate p = 60 variables in the X dataset and q = 60 variables in the Y dataset

with a sample size of N = 50. We use 75% sparsity in both cases, resulting in 5 signal

variables in the X and Y sets for the low dimensional setting, and 15 signal variables in the

X and Y sets for the high dimensional setting. We use the same covariance structures and

method of generating the (true population) canonical vectors as in Section 4.3.1.

We compare the ADMM algorithm to the methods of Wilms and Croux (2015) and Witten

et al. (2009). Like the proximal gradient algorithm, the ADMM algorithm requires an initial

value. However, because of the augmented Lagrangian term added to the objective function,

the matrix involved in the quadratic form for the w update is always positive definite, and

so the algorithm is robust to the choice of initial value. Thus, we choose a single approach

among the four described in Section 4.3.1 for initializing the ADMM algorithm and Wilms
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and Croux’s method. We obtain (u(0),v(0)) as the left and right singular vectors from the

SVD of the sample covariance matrix of X and Y . In addition, we use two different values

of the augmented Lagrangian parameter: η = 1 and η = 10.

The sequential quadratic programming solver used for the w update in the ADMM al-

gorithm is substantially slower than the matrix multiply operations used for the gradient

descent step in the proximal gradient algorithm. As a consequence, it is not practical to

fit the method over a 2-dimensional grid of values of the tuning parameters. To save com-

putation time, we search over a 1-dimensional grid by setting λx = λy. That approach is

partially justified by using p = q and the same level of sparsity for the X and Y sets in our

simulation settings. To ensure fair comparisons across methods, we also restrict the grid of

tuning parameters to λx = λy for the methods of Witten et al. (2009) and Wilms and Croux

(2015).

Results

Low dimension: p = 20, q = 20, N = 50

Tables 4.6 and 4.7 summarize the mean rank and standard deviation (SD) for the signal

variables and noise variables, respectively, for the low dimensional simulation setting. The

rank was determined by one of the two importance measures described in Section 3.2.4. The

relative performances of the methods depended both on the importance measure and value

of the augmented Lagragian parameter η. For the importance measure based on whether

the canonical vector loading was nonzero, PMD performed better than the method of Wilms

and Croux (2015) and the ADMM algorithm, regardless of the choice of penalty function.

Comparing Wilms and Croux’s method to the proposed ADMM algorithm, one can see that

the relative performance depended on both the value of η and the penalty function. For η = 1,

Wilms and Croux’s method performed better than ADMM with LASSO or SCAD penalty,

but for η = 10, the opposite occurred. In contrast, ADMM with MC penalty performed

156



better than Wilms and Croux’s method regardless of the value of η. Among the different

variants of the ADMM algorithm, the results tended to be better using MC or SCAD than

LASSO and better using η = 10 than η = 1. Note that for all of the comparisons, the

differences in mean rank of the signal variables among the methods was slight.

For the importance measure based on the magnitude of the canonical vector loading, the

ADMM algorithm tended to outperform PMD and the method of Wilms and Croux, with a

couple of exceptions (viz., ADMM with LASSO and η = 1). Similar to the other importance

measure, the results tended to be better with a larger value of η and with the SCAD or MC

penalty than with the LASSO penalty, but the differences in the mean rank of the signal

variables among the methods were quite small overall. Note that for all of the methods, the

mean rank of the signal variables was better using the importance measure based on the

magnitude of the canonical vector loading than the measure based on whether the loading

was nonzero.

Table 4.6: Mean (SD) rank of signal variables in the X and Y datasets according to two

importance measures. Results based on 100 simulations. Lower values of the rank are better.

Dataset X variables Y variables
Importance Measure† 1 2 1 2

PMD (Witten et al. 2009) 4.94 (2) 4.88 (2) 5.12 (2) 5.08 (2)
Wilms and Croux (2015) 6.17 (2) 5 (2) 5.95 (2) 4.71 (2)
ADMM - LASSO (η = 1) 6.37 (3) 4.99 (2) 6.29 (3) 4.86 (2)
ADMM - LASSO (η = 10) 5.93 (2) 4.77 (2) 5.83 (2) 4.6 (2)
ADMM - MCP (η = 1) 5.96 (3) 4.75 (2) 5.69 (3) 4.52 (2)
ADMM - MCP (η = 10) 5.58 (2) 4.63 (2) 5.41 (2) 4.27 (1)
ADMM - SCAD (η = 1) 6.19 (3) 4.78 (2) 5.98 (3) 4.49 (2)
ADMM - SCAD (η = 10) 5.34 (2) 4.49 (2) 5.22 (2) 4.24 (1)
†1–No. of times a variable was selected,

2–Magnitude of canonical vector loading
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Table 4.7: Mean (SD) rank of noise variables in the X and Y datasets according to two

importance measures. Results based on 100 simulations. Higher values of the rank are

better.

Dataset X variables Y variables
Importance Measure† 1 2 1 2

PMD (Witten et al. 2009) 12.35 (1) 12.37 (1) 12.29 (1) 12.31 (1)
Wilms and Croux (2015) 11.94 (1) 12.33 (1) 12.02 (1) 12.43 (1)
ADMM - LASSO (η = 1) 11.88 (1) 12.34 (1) 11.9 (1) 12.38 (1)
ADMM - LASSO (η = 10) 12.02 (1) 12.41 (1) 12.06 (1) 12.47 (1)
ADMM - MCP (η = 1) 12.01 (1) 12.42 (1) 12.1 (1) 12.49 (1)
ADMM - MCP (η = 10) 12.14 (1) 12.46 (1) 12.2 (1) 12.58 (0)
ADMM - SCAD (η = 1) 11.94 (1) 12.41 (1) 12.01 (1) 12.5 (1)
ADMM - SCAD (η = 10) 12.22 (1) 12.5 (1) 12.26 (1) 12.59 (0)
†1–No. of times a variable was selected,

2–Magnitude of canonical vector loading

High dimension: p = 60, q = 60, N = 50

Tables 4.8 and 4.9 summarize the mean rank and standard deviation (SD) for the signal

variables and noise variables, respectively, for the high dimensional simulation setting. The

rank was determined by one of the two importance measures described in Section 3.2.4.

Unlike the low dimensional setting, PMD outperformed both Wilms and Croux’s method

and the proposed ADMM algorithm, regardless of the penalty function or value of η. Wilms

and Croux’s method either performed similar to or slightly better than ADMM with η = 1.

However, with η = 10, the proposed ADMM algorithm performed much better than Wilms

and Croux’s method.

One noticeable difference in the relative performances of the penalty functions used for

the ADMM algorithm was that the MC and SCAD penalties only had an advantage over

LASSO for larger values of the augmented Lagrangian parameter η. For the low dimensional

setting, the mean rank of the signal variables was better using MC or SCAD penalties than

LASSO whether one set the augmented Lagrangian parameter as η = 1 or η = 10. For

158



the high dimensional setting, the mean rank of the signal variables was better using MC or

SCAD penalties for η = 10, but the LASSO, MC, and SCAD penalties all performed about

the same for η = 1.

Another difference between the low and high dimensional settings was that the choice of

importance measure did not influence the relative performances of the methods substantially.

In the low dimensional setting, PMD performed best if using the importance measure based

on whether the canonical vector loading was nonzero, but some other methods performed

better if using the importance measure based on the magnitude of the canonical vector load-

ing. In the high dimensional setting, PMD performed much better than the other methods

for both importance measures, with a 10 point improvement in the mean rank of the signal

variables in many cases. Like in the low dimensional setting, the importance measure based

on magnitude of the canonical vector loading improved the mean rank of the signal variables

slightly for all of the methods.

Table 4.8: Mean (SD) rank of signal variables in the X and Y datasets according to two

importance measures. Results based on 100 simulations. Lower values of the rank are better.

Dataset X variables Y variables
Importance Measure† 1 2 1 2

PMD (Witten et al. 2009) 19.24 (5) 18.91 (5) 18.79 (5) 18.32 (5)
Wilms and Croux (2015) 28.37 (4) 27.43 (4) 26.34 (4) 24.98 (5)
ADMM - LASSO (η = 1) 28.68 (4) 27.97 (4) 29.01 (5) 28.4 (5)
ADMM - LASSO (η = 10) 26.34 (5) 25.57 (5) 26.38 (4) 25.69 (5)
ADMM - MCP (η = 1) 27.86 (4) 27.03 (4) 27.77 (4) 26.82 (4)
ADMM - MCP (η = 10) 22.41 (4) 22.52 (4) 22.51 (4) 22.74 (5)
ADMM - SCAD (η = 1) 28.39 (4) 26.59 (4) 29.27 (4) 27.34 (5)
ADMM - SCAD (η = 10) 22.14 (4) 22.15 (4) 22.41 (4) 22.59 (4)
†1–No. of times a variable was selected,

2–Magnitude of canonical vector loading
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Table 4.9: Mean (SD) rank of noise variables in the X and Y datasets according to two

importance measures. Results based on 100 simulations. Higher values of the rank are

better.

Dataset X variables Y variables
Importance Measure† 1 2 1 2

PMD (Witten et al. 2009) 34.25 (2) 34.36 (2) 34.4 (2) 34.56 (2)
Wilms and Croux (2015) 31.21 (1) 31.52 (1) 31.89 (1) 32.34 (2)
ADMM - LASSO (η = 1) 31.11 (1) 31.34 (1) 31 (2) 31.2 (2)
ADMM - LASSO (η = 10) 31.89 (2) 32.14 (2) 31.87 (1) 32.1 (2)
ADMM - MCP (η = 1) 31.38 (1) 31.66 (1) 31.41 (1) 31.73 (1)
ADMM - MCP (η = 10) 33.2 (1) 33.16 (1) 33.16 (1) 33.09 (2)
ADMM - SCAD (η = 1) 31.2 (1) 31.8 (1) 30.91 (1) 31.55 (2)
ADMM - SCAD (η = 10) 33.28 (1) 33.28 (1) 33.2 (1) 33.14 (1)
†1–No. of times a variable was selected,

2–Magnitude of canonical vector loading

4.4 Limitations and Future Directions

Compared to other methods, neither of the proposed algorithms described in Section 4.2.2

performed well with respect to all aspects of the optimization procedure. The weaknesses of

the proximal gradient algorithm tended to be the strengths of the ADMM algorithm, and vice

versa. We discuss some of the major weaknesses and directions for potential improvement.

Sensitivity to Initial Value

The update forw in the ADMM algorithm is solved by sequential quadratic programming,

and the solver available in the nloptr package in R requres an initial guess. As shown in

problem (4.4), the matrix involved in the quadratic form in w is always positive definite,

so the nloptr solver is robust to the choice of initial value. As a consequence, the ADMM

algorithm as a whole is robust to the choice of initial value. The ADMM algorithm also

requires an initial value for z, but it is typically initiated as the zero vector or warm-started.

The positive-definiteness of the matrix involved in the quadratic form in w is a conse-
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quence of augmented Lagrangian term added to the objective function for the update. It is

also a general property of the proximal operator: if a function f is convex, then the proximal

operator of f is strongly convex (Parikh and Boyd, 2014). [Though note that the w update

itself is not actually convex because of the additional quadratic equality constraints.] In

contrast to the ADMM algorithm, the proximal gradient algorithm does not make use of an

augmented Lagrangian, so the quadratic form in w involves a positive semi-definite matrix

(unless p+ q < n). Thus, the intermediate update in the proximal gradient algorithm, which

is carried out by a gradient descent step, does not arrive at a unique solution. As a result,

the proximal gradient algorithm tends to be sensitive to the initial value.

Although the proximal gradient algorithm is sensitive to the initial value, it has the

potential to outperform other methods if one can supply a “good” initial value. In the

simulation experiment in Section 4.3.1, we used the true canonical vector + noise as the initial

value, reasoning that the true canonical vector should be closer to the global minimum than

values obtained through other approaches. Since one cannot use this approach in practice,

any improvement to the proximal gradient algorithm via the initialization strategy would

have to come through another avenue.

A common strategy for problems with many local optima is to try many different ran-

domly selected starting values. One can then choose the value that resulted in the best value

of the objective function. Since our goal is primarily accurate variable selection (or ranking),

a variation on that strategy may be more appropriate. One could fix the values of the tuning

parameters to achieve some desired level of sparsity. One could then obtain estimates for

many different randomly selected starting values and count the proportion of times each

variable is selected (i.e., has a nonzero canonical vector loading). Those variables selected

most often might represent the true signal variables, while those selected least often might

represent the true noise variables. One could set a threshold for the proportion of times

selected and use variables that fall above the threshold for constructing a new initial value.
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For example, one could perform CCA with the reduced set of variables falling above the

threshold, use the loadings from the reduced CCA to initialize those variables, and initialize

all other variables as zero. The new initial value could then be used to run the algorithm for

the entire 2D grid of tuning parameters.

We illustrate the first part of the approach described in the preceding paragraph in Figure

4.1. Using the same covariance structures as in Section 4.3.1, a single dataset was generated

and the proximal gradient algorithm was applied with the LASSO, MC, and SCAD penalties.

The values of the sparsity tuning parameters were set to achieve approximately the correct

level of sparsity (20 signal variables in the X set and 16 signal variables in the Y set); for

reference, the mean number of nonzero canonical vector loadings over the 500 random starts

is shown in each plot. The x-axis of each plot denotes the variable index and the y-axis

shows the proportion of times a variable was selected. The blue vertical bars correspond

to the signal variables and black bars correspond to the noise variables. On average, the

signal variables tend to be selected more often than the noise variables, with MC and SCAD

penalties differentiating the signal group from the noise group somewhat more than the

LASSO penalty.
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LASSO MC SCAD
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Figure 4.1: Proportion of times a variable was selected out of 500 random starts.

Based on the plots in Figure 4.1, it appears that one can identify the signal variables

by trying many different random starting values and setting a threshold for the proportion

of times a variable was selected. However, the success of this approach strongly depends

on the within-set covariance structures ΣXX and ΣY Y . To illustrate, we simulate datasets

with the same block-diagonal AR covariance structure as before, but we vary the autocor-

relation parameter from 0.4 to 0.8. In Figure 4.2, we show the proportion of times each X

variable was selected over 500 random starts using the SCAD penalty (the salient features
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are similar for the Y set or using the LASSO or MC penalty). First, comparing the panel

corresponding to AR(0.7) to the appropriate panel in Figure 4.1, we can see that setting

the tuning parameter to achieve higher sparsity than the true level of sparsity actually does

a better job of differentiating the signal and noise variables. Second, we can see how the

success of the approach changes as the within-set covariance structure becomes stronger or

weaker. When the signal variables have high within-set correlation, as in the AR(0.8) panel,

the signal variables are selected far more often than the noise variables. However, when

the signal variables have low within-set correlation, as in the AR(0.4) panel, the signal and

noise variables are selected about the same proportion of the time. Thus, overcoming the

sensitivity of the proximal gradient method to the initial value by trying many random starts

only appears to be feasible when one can expect the signal variables to be highly correlated

among themselves (and uncorrelated with the noise variables). For real data, one cannot

generally expect this, so an approach based on trying many random starting values cannot

be relied upon in practice.
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AR(0.4) AR(0.5) AR(0.6)

AR(0.7) AR(0.8)

Figure 4.2: Proportion of times an X variable was selected out of 500 random starts. Note:

All results use SCAD penalty.

Sensitivity to Algorithmic Parameters

In addition to the sparsity tuning parameters, both the proximal gradient method and

ADMM algorithm have algorithmic parameters that one must choose. For both algorithms,

one must define a stopping a criterion based on an absolute and/or relative tolerance. One

can choose the stopping criterion and tolerance based on standard suggestions, making ad-

justments if the situation warrants it. For example, for the proximal gradient algorithm,

we defined the error in terms of the objective value: |f(wk)−f(wk−1)|
1+|f(wk−1)| , where f denotes the

function specified in equation (4.3). We terminated the algorithm when the error fell below
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a tolerance of 1E−3. The quality of the solutions did not change substantially with smaller

values for the tolerance or other stopping criteria, such as ||wk −wk−1||2.

Besides the stopping criterion and tolerance, the only additional algorithmic parameter

for proximal gradient algorithm is the step size in the gradient descent step (γk in Algorithm

6). We determine the step size using a standard line search, so the proposed proximal gradient

method is robust to the initial choice of step size (although there is some computational cost

involved if the initial choice is not near an appropriate value).

For the ADMM algorithm, one must specify the value of the augmented Lagrangian

parameter (η in Algorithm 7). In the context of the sparse CCA problem, the augmented

Lagrangian parameter η controls the trade-off between minimizing the quadratic form in w

and staying close to z (where z can be interpreted as a sparse version of w). For many

applications, ADMM is not sensitive to the choice of η, and so it can be set as η = 1.

However, as shown in Tables 4.6–4.9, the quality of the solution depends on the value of η,

especially for the high dimensional setting p, q > n. To understand why the quality of the

solution changes with η, recall equation (4.4) and consider the case in which we initialize z

as the zero vector. The matrix ATA+ ηI can be expressed as

ATA+ ηI =

 XTX + ηIp −XTY

−Y TX Y TY + ηIq

 .

Rescaling by a factor of 1
n

(which does not change the solution for the w update), we can

write

1

n
ATA+ η∗I =

 Σ̂XX + η∗Ip −Σ̂XY

−Σ̂Y X Σ̂Y Y + η∗Iq

 .

The matrix above is the same matrix that would be involved in solving the problem of

ridge CCA. [Note that the solutions for the first w update and ridge CCA are not identical

because the constraints for ridge CCA are uT (Σ̂XX + ηIp)u = vT (Σ̂Y Y + ηIq)v = 1, whereas

166



the constraints for the w update are uT Σ̂XXu = vT Σ̂Y Y v = 1.] Thus, for the sparse

CCA problem, we can see that the augmented Lagrangian parameter has an alternative

interpretation beyond its typical interpretation in ADMM; namely, η plays a very similar

role as the tuning parameters in ridge CCA.

Because the first w update in the ADMM algorithm is so similar to ridge CCA, we might

expect the ADMM algorithm to produce good solutions when ridge CCA produces a good

solution and poor solutions when ridge CCA produces a poor solution. Since the solutions

from ridge CCA are not sparse, a good solution would have large magnitude loadings for

the signal variables and small magnitude loadings for the noise variables. For the high

dimensional simulation settings examined in this work, larger values of the ridge CCA tuning

parameters tended to produce better solutions than did smaller values. In fact, the choice of

η = 10 for one setting of the ADMM algorithm was not arbitrary, but rather a consequence

of this observation. When we realized the results using η = 1 were not as good as expected,

we used the connection between the ADMM algorithm and ridge CCA to guide our selection

of a better value of η. We plotted the loadings from ridge CCA as we varied the values of

tuning parameters and chose η = 10 because it produced better solutions on average.

Although the connection between the ADMM algorithm and ridge CCA is helpful for

understanding why the quality of the solution depends on the augmented Lagrangian pa-

rameter, the connection also suggests there is little room to improve the ADMM algorithm.

That is, when ridge CCA does not work well, neither will the ADMM algorithm. In con-

trast, the proximal gradient algorithm does not use an augmented Lagrangian, so it does

not share the connection to ridge CCA and its solution can be improved substantially with

modifications such as using a better initial value.

Computation Time

The proximal gradient algorithm only requires matrix-vector multiply operations and

element-wise vector thresholding. In addition, only a single gradient descent step is taken
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at each iteration (assuming the step size is chosen suitably). Consequently, the proximal

gradient algorithm is relatively fast.

For the ADMM algorithm, the z update requires the same element-wise vector thresh-

olding operations as for the proximal gradient algorithm. However, the w update in the

ADMM algorithm must itself be solved iteratively. As a consequence, the ADMM algorithm

is much slower than the proximal gradient algorithm. In addition, the sequential quadratic

programming solver does not scale well with the dimension (p + q), making the proposed

ADMM algorithm impractical for high dimensional problems. Since the bottleneck is due

the use of sequential quadratic programming for the w update (as opposed to the total num-

ber of ADMM iterations), the computation time could be improved by replacing sequential

quadratic programming with another algorithm that is both capable of solving QCQP prob-

lems and scales well with the dimension, such as those based on interior-point methods

(Byrd et al., 1999, 2000). Although it may be possible to improve the computation time

of the ADMM algorithm, its sensitivity to the augmented Lagrangian parameter appears to

be an inherent issue and changing the method for solving the w update will not improve

the variable selection accuracy. Thus, rather than searching for a faster QCQP solver to

incorporate into Algorithm 7, it may be more fruitful to develop an alternative to ADMM

to solve problem (4.3).

Variable Ranking Accuracy

For the high dimensional setting, both of the proposed algorithms achieved better results

than Wilms and Croux’s (2015) alternating regression approach (though for the ADMM al-

gorithm, the improvement was contingent on an appropriate value of augmented Lagrangian

parameter η). For the LASSO penalty, the proximal gradient algorithm, ADMM algorithm,

and alternating regression are all solving the same problem, so the improvement in the re-

sults can be attributed to the algorithms themselves. One possible explanation is that the

proximal gradient and ADMM algorithms update the estimates of the canonical vectors si-

168



multaneously, and simultaneous estimation has an advantage over alternating minimization.

However, there may be other aspects of the algorithms that explain their better perfor-

mance. Both the proximal gradient algorithm and ADMM algorithm benefited further from

the use of MC and SCAD penalties, which is consistent with other applications (e.g., high

dimensional regression).

Although the proposed algorithms improved on the alternating regression approach, none

of the methods based on the regression formulation of CCA achieved as high variable rank-

ing accuracy as methods of Waaijenborg et al. (2008), Witten et al. (2009), or Safo et al.

(2018). All of these methods avoid the need to estimate the within-set covariance matrices

by assuming they are identity – i.e., they assume ΣXX = Ip and ΣY Y = Iq. [Note: Although

Waaijenborg et al. (2008) begin with a regression formulation using the elastic net penalty,

they take the limit of the ridge parameters λridge
x , λridge

y →∞, which effectively assumes the

within-set covariance matrices are identity.] Given that all of the simulation settings in-

volved some within-set correlation among the signal variables, the better performance of the

methods assuming identity covariance matrices is somewhat counterintuitive. That is, the

methods making no assumptions performed worse than methods making incorrect assump-

tions. Because covariance matrices are very difficult to estimate in the high dimensional

setting, it may be that the loss of efficiency outweighs the benefit of relaxing the assump-

tions regarding the covariance structure. The assumption that the within-set covariance are

identity can be viewed as form of regularization (separate from sparse regularization), and

the benefits of regularization resulting from the bias-variance trade-off are well known in the

high dimensional setting [e.g., the discussion in Tibshirani (1996)].

Future Directions

Barring a better approach for initializing the proximal gradient algorithm, it is unlikely

that either of the proposed algorithms can be improved to such an extent as to perform com-

petitively against the best performing methods for the high dimensional setting. However,
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the proposed algorithms, and more generally, the formulation of the sparse CCA problem as

in equation (4.3), are not without their merits. In the low dimensional setting, the ADMM

algorithm outperformed the method of Witten et al. (2009) in some instances, indicating

that the proposed methodology may find applications in problems for which the number of

variables is moderate compared to the sample size.

One of the main advantages of formulating CCA as minimization of a quadratic form

are the potential extensions discussed in Sections 4.2.3 and 4.2.4. In modern research, it

is becoming increasingly common to collect multimodal data and data from heterogeneous

groups of subjects. For multimodal data, it is natural to treat each data type as a separate

dataset, and in some situations, it may be sensible to perform an integrated analysis of all of

the datasets simultaneously. The extension to the proposed methodology discussed in Section

4.2.3 not only provides a way to solve such a problem, but also to solve the problem under

the additional assumption of sparsity. For grouped data, the proposed extension again relies

on the similarity of equation (4.3) to linear regression to leverage one of the many extensions

of the LASSO that have been proposed for regression. In particular, a fused LASSO-type

penalty Tibshirani et al. (2005) provides a way to account for associations in the data that

are shared across groups, while allowing for group-specific components in the association.

Although the extensions of the proposed methodology provide some advantages over other

methods, it is also important to consider their limitations. The major limitations encountered

for sparse CCA are likely to be encountered, and possibly exacerbated, in the extensions. For

example, with two datasets, the ADMM algorithm became less effective as p+ q approached

n. For three datasets with p1, p2, and p3 variables, one can expect the methodology to become

less effective as p1 + p2 + p3 approaches n. More generally, the performance can be expected

to decline as the number of datasets increases (assuming each additional dataset has about

the same number of variables as the others). Thus, the potential extensions are likely to be

the most useful for low dimensional problems.
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Chapter 5

Conclusions and Future Directions

Two important general conclusions from the work in Chapters 2 – 4 are: 1) shrinking the

singular values of a matrix can be an effective alternative to a fixed-rank approximation

for statistical methods relying on or incorporating low rank matrix approximations and 2)

incorporating sparsity into low rank matrix approximation problems can be challenging.

Singular value shrinkage vs. fixed-rank approximations

In Chapter 2, we demonstrated that an orthogonal tensor regression model that penalizes

the singular values (and hence shrinks some singular values to zero) can provide a better low

rank approximation of the parameter tensor than the corresponding fixed rank version of the

model. In the case of our real data analysis, “better” translated to more accurate prediction

for a test dataset and an estimate that was easier to interpret when visualized. In Chapter 3,

we demonstrated that variable selection accuracy in sparse CCA can be improved by relaxing

the problem to focus solely on variable selection rather than simultaneously maximizing the

canonical correlation. In that case, we redefined the problem so that we could incorporate

shrinkage, but it was unclear to what extent the improved variable selection accuracy was a

result of shrinkage vs. relaxing the objectives of the analysis.

Some natural follow-up questions are: For low rank matrix approximation problems,
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why do methods based on shrinkage sometimes outperform methods based on fixed-rank

approximations? When can we expect methods based on shrinkage to perform better than

methods based on fixed-rank approximations? How can we incorporate shrinkage into other

statistical problems that rely on low rank matrix approximations? Can we extend methods

traditionally based on matrices to higher-order tensors?

Some intuition into why methods based on shrinkage can outperform methods based on

fixed-rank approximations has already been discussed in Chapters 2 and 3. In the context

of regression with matrix-valued parameters, Zhou and Li (2014) showed that the effective

number of parameters in the version of the problem based on shrinkage is dominated by the

naive count of the number of parameters, which means that the effective number of param-

eters in the fixed-rank version of the problem is always larger (as long as the estimates have

the same rank). When the sample size is limited, there can be an advantage to reducing the

effective number of parameters beyond what the fixed-rank version of the problem permits.

In other contexts, such as CCA, it is more difficult to evaluate the relative merits of

shrinkage vs. fixed-rank approximations in terms of the effective number of parameters. We

may think of the canonical vectors themselves as the parameters, in which case the number

of parameters is the number of elements of the vectors (i.e., the total number of variables if

we are only concerned with the largest canonical correlation). The regression formulation of

CCA discussed in Chapter 4 also provides some support for the notion of canonical vectors as

parameters. However, it is unclear how one might define the effective number of parameters

such that the definition generalizes to methods based on shrinkage, where determining the

effective number of parameters may not simply be a matter of counting the number of

elements of the canonical vectors. Zhou and Li (2014) used the definition of effective degrees

of freedom studied by Ye (1998) and Efron (2004) to derive their estimate of the effective

number of parameters in regularized matrix regression. For a response Y := (Y1, . . . , Yn)T

such that Y ∼ N(µ, σ2I) and corresponding estimate µ̂ := (Ŷ1, . . . , Ŷn)T , that definition of

172



effective degrees of freedom is

df eff :=
1

σ2

n∑
i=1

Cov(Ŷi, Yi).

Besides that CCA involves a more general covariance structure Σ, the dual nature of CCA

presents a challenge for extending that concept of df eff . In regression, Yn×1 is the only

random variable, and we predict it using information in some fixed covariates Xn×p. In

CCA, Yn×q and Xn×p are both random, and each plays the role of both the (multivariate)

response and the predictor. We also have two sets of estimates: x̂i := xTi û and ŷi := yTi v̂.

Considering the regression formulation of CCA,

min
u,v

(Xu− Y v)T (Xu− Y v),

it would appear that ŷi is the estimate of x̂i and vice versa. Should we then define the

effective degrees of freedom in terms of Cov(ŷi, x̂i)? Or is the entire framework ill-suited for

CCA? Developing ideas such as those is a possible direction of future study.

Previous work has investigated the effectiveness of different techniques for the general

problem of recovering a low rank signal matrix X from a noisy realization Y = X+E, where

E represents random noise. That work may yield some insight into the question of when

methods based on shrinkage to outperform those based on fixed-rank approximations. Gavish

and Donoho (2014) and Gavish and Donoho (2017) studied the asymptotic mean squared

error (AMSE) of various methods of recovering X through a low rank approximation of

Y . Among the methods compared were singular value hard-thresholding (SVHT), which is

similar to methods based on fixed-rank approximations, and singular value soft-thresholding

(SVST), which is similar to methods based on shrinkage. In the settings they studied, the

AMSE of optimally-tuned SVST was larger than the AMSE of optimally-tuned SVHT for

high signal-to-noise ratio (SNR), but lower for low SNR. That is, shrinking the singular
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values may result in better performance than a fixed-rank approximation when the signal is

weak. Some of the CCA simulation results in Section 3.3 are in (loose) agreement with their

observations. For the simulation settings that used high within-set correlation structure for

the signal variables [e.g., AR(0.9)], the signal region of Σ̂XY was easily detectable, and in

those settings the proposed method based on shrinkage performed similarly (with respect to

variable selection accuracy) to two sparse CCA methods that find a rank-1 approximation of

Σ̂XY . For the simulation settings that used lower within-set correlation structure, the signal

region of Σ̂XY was less apparent, and the advantage of proposed method over the sparse CCA

methods was more obvious. However, we caution that the reasons for the apparent agreement

between our results and those of Gavish and Donoho (2014) and Gavish and Donoho (2017)

are purely speculative. We only considered a method’s variable selection accuracy when

measuring its performance, not its AMSE or even the observed MSE in simulation (i.e., we

may be trying to compare apples to oranges). In addition, all of the methods we compared in

Section 3.3 incorporate sparsity into the low rank approximation problem, so it is difficult to

isolate the effect of shrinkage vs. fixed-rank approximation from the effect of using different

approaches to achieve sparsity when analyzing the methods’ relative performances.

Determining whether a method’s advantage over another depends on the SNR, and

whether the advantage extends across multiple measures of performance, is another possible

future direction of study. Certainly in sparse CCA, it would be interesting to know whether

the approach used to obtain the low rank approximation affected the variable selection ac-

curacy. However, because the approach for incorporating sparsity most directly affects the

variable selection accuracy, it would be necessary to compare methods that achieve sparsity

in the same way. That may be challenging for CCA because methods based on the fixed-rank

approximation penalize the elements of the canonical vectors. It is difficult to imagine how to

write the problem such that one can both penalize the elements of canonical vectors and in-

corporate shrinkage; the fact that there are canonical vectors to penalize implies a fixed-rank
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formulation of CCA. The problem would perhaps be easier to study in the context of regres-

sion with matrix- or tensor-valued parameters. In our simulation experiment in Section 2.3,

we did not vary the SNR. However, it would not be difficult to design such an experiment,

though it would be easier to study in the context of matrices than tensors because of com-

putation time. One possible confounding factor is the algorithm used to fit the model. The

fixed-rank matrix regression model proposed by Zhou et al. (2013) is non-convex, and our

simulation and real data analysis results suggest their algorithm does a poor job of finding

the global optimum. In the case of matrices, the fixed-rank version of our orthogonal tensor

regression model is simply a reparametrization of Zhou et al.’s model, and our projected

gradient descent algorithm seems to find relatively good estimates of the parameter. Then

comparing the fixed-rank and shrinkage-based versions of our orthogonal tensor regression

model may be best way to address how the SNR affects the relative performances of two

approaches.

Some other statistical methods that can be viewed as low rank matrix approximations

based on a fixed-rank decomposition include PCA and Fisher’s LDA. As discussed in Chapter

1, the solutions to PCA and LDA can be obtained from the spectral decompositions of

Σ and Σ
−1/2
w ΣbΣ

−1/2
w , respectively. As we did for CCA in Chapter 3, we might develop

alternatives to PCA and LDA that achieve a low rank approximation of the relevant matrix

by shrinking the eigenvalues rather than finding a fixed-rank approximation. In addition,

we could incorporate sparsity that results in variable selection. We might also ask whether

we can relax one objective of the analysis so that we can improve another, such as we did

for CCA by forgoing the maximization of the canonical correlation so that we could improve

the variable selection accuracy. In that case, it would not be technically correct to call the

methods sparse PCA or sparse LDA, just as it is not correct to call the method proposed in

Chapter 3 sparse CCA.

One challenge in developing sparse versions of PCA or LDA based on eigenvalue shrinkage
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is how to actually incorporate sparsity into the problem. The matrices involved in PCA and

LDA are symmetric, so if we were to incorporate sparsity by penalizing the `2 norms of the

rows or columns, as we did in Chapter 3, we would also need to develop a new algorithm

that respects the symmetry of the matrices. We could consider alternative approaches for

incorporating sparsity, but it is unclear how to do so without penalizing the elements of the

eigenvectors (which would imply a fixed-rank form of the problem). We could also consider

alternative methods of obtaining the solutions of the problems. The solution to PCA can be

found from the SVD of the data matrix Xn×p, and the solution to LDA can be found from

the eigendecomposition of the (non-symmetric) matrix Σ−1
w Σb. At first glance, it would seem

we could achieve variable selection in PCA by penalizing the `2 norms of the columns of X.

However, in practice, we would often want to standardize the variables because variables are

often measured on different scales. In that case, all of the column norms of X are equal to

one, so it wouldn’t make sense to penalize them. It is neither clear whether penalizing the

column norms of Σ−1
w Σb would result in variable selection, nor whether such an approach

would have unintended consequences, such as it does for PCA. In either case, the matter

requires additional thought.

Sparsity in low rank matrix approximation problems

The methods proposed in Chapters 3 and 4 incorporated sparsity into low rank matrix

approximation problems as a way to achieve variable selection. The sparse CCA methods

proposed in Chapter 4 utilized the popular approach of penalizing the objective function

with a sparsity-inducing penalty. In the case of CCA, the objective function was based on

maximizing the canonical correlation, and the penalty was applied to the canonical vectors

themselves. Such a problem is difficult to solve because of the non-convexity implied by

the quadratic equality constraints. Although the standard formulation of CCA admits an

analytical solution, sparse CCA requires a numerical solution. Neither of the two algorithms

proposed to solve the sparse CCA problem in Chapter 4 performed well. The algorithm based
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on the proximal gradient method was highly sensitive to the initial value, and the algorithm

based on ADMM did not scale well to high dimensional problems. The proximal gradient

algorithm implemented an ad hoc approach for handling the quadratic equality constraints,

while the ADMM algorithm included a sub-routine explicitly designed to handle quadratic

equality constraints, perhaps accounting for the proximal gradient algorithm’s sensitivity to

the initial value and the better performance of the ADMM algorithm in low dimensional

problems.

Gaynanova et al. (2017) pointed out that the penalized and constrained versions of non-

convex problems such as PCA and CCA are not equivalent, adding to and possibly explaining

some of the difficulties encountered in Chapter 4. The biggest consequence of that lack of

equivalence in practice is that the penalized version of the problem may not be able to achieve

every level of sparsity. Gaynanova et al. (2017) observed a threshold beyond which sparser

solutions to the problem could not be obtained. The threshold increased as the number of

variables p increased relative to the sample size n. For example, with p = 2000 variables and

a sample of size n = 50, it may not be possible to select fewer than 500 variables when the

problem is formulated as a penalty on the `1 norm [e.g., Fig. 1 in Gaynanova et al. (2017)].

Given the frequency of high dimension, low sample size problems in practice, and the need

to obtain interpretable results based on a small number of variables, the inability to obtain

very sparse solutions is problematic. Although we did not directly investigate the sparsity

levels of the solutions produced by the algorithms proposed in Chapter 4, an inability to

explore all levels of sparsity could explain the poor performance of the algorithms for high

dimensional problems.

The sparse, low rank matrix approximation problem proposed in Chapter 3 circumvented

the issues described by Gaynanova et al. (2017) by reformulating the objective function as

a convex problem. The quadratic equality constraints in PCA, CCA, and similar problems

cause the non-convexity. When a low rank matrix approximation is formulated as a fixed-
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rank approximation, the `2 norms of the eigenvectors or singular vectors must be constrained

to equal one, which is a quadratic equality constraint. In contrast, the problem in Chapter

3 does not involve any constraints. The `1 norm of the singular values is a convex function,

so we can obtain a low rank approximation without introducing non-convex constraints.

Reformulating the problem as a convex problem as in Chapter 3 is not without drawbacks.

One issue was that the objective function no longer maximized the canonical correlation, so

it cannot accurately be called CCA. However, the more important issue was again sparsity.

Sparsity was incorporated as a penalty on the `2 norms of the rows or columns of the low

rank matrix. Such a penalty causes entire rows or columns to shrink to zero. Then, both the

penalty on the singular values and penalty on the row/columns norms affect the rank of the

low rank matrix that is the solution to the problem. Because of the interplay between the

two penalties with respect to their effect on the rank of the solution, the problem proposed in

Chapter 3 was challenging in the sense that it was difficult to choose the tuning parameters

such that every combination of rank and sparsity level of the solution was explored. So rather

than avoiding the challenge posed by incorporating sparsity into a non-convex problem such

as CCA, we simply traded one kind of challenge for another.

A direction of future research is to explore whether the methods proposed in Chapter 4 are

susceptible to the issues Gaynanova et al. (2017) studied. The methods described in Chapter

4 reformulated the CCA objective function as a quadratic program, then added a penalty

term involving the canonical vectors and one of the LASSO, SCAD, or MC penalties. The

problem could also be formulated with a bound constraint on the `1 norm of the canonical

vectors (i.e., the constrained version of the LASSO) rather than a penalty on the `1 norm.

That would allow one to study whether different levels of sparsity are achievable in sparse

CCA for the constrained vs. penalized versions of the LASSO, just as Gaynanova et al.

(2017) studied. In addition, it is not clear whether the same phenomenon occurs for concave

penalties such as SCAD and MC. Although it is not obvious what the constrained version of
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SCAD or MC penalty would be, one could at least compare the levels of sparsity achievable

with SCAD or MC penalty vs. the constrained form of the LASSO. It may also be possible

to extend the approach for sparse CCA developed in Chapter 4 to PCA and LDA. In which

case, one could study the relationship between sparsity level and constrained vs. penalized

versions of the problem in a wider context.

Although it would take little additional effort to reformulate the sparse CCA methods

of Chapter 4 as a constraint on the `1 norm of the canonical vectors, the main challenge

that would need to be addressed before pursuing the research directions described in the

previous paragraph is developing an algorithm that scales well with the dimension. The phe-

nomenon Gaynanova et al. (2017) described is most prominent when p� n. The sequential

quadratic programming sub-routine that is part of the ADMM algorithm for sparse CCA

is the bottleneck with respect to computation time, but is also the piece of the algorithm

that is responsible for its robustness to the initial value. To make the overall algorithm for

sparse CCA scale better, sequential quadratic programming would need to be replaced with

a faster algorithm that is still capable of handling quadratic equality constraints. Section

4.4 discussed some possibilities involving interior-point algorithms.
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Appendix

Proposition 1. The higher-order singular value decomposition of a rank-(R1, . . . , RD) ten-

sor X given in Algorithm 1 is an exact decomposition.

Proof. Let X denote the original tensor and X ∗ denote the tensor obtained from the TKD

of X . We will show X ∗ = X .

Two facts about the n-mode product are needed:

1. X ×m A×n B = X ×n B ×m A for m 6= n.

2. X ×n A×n B = X ×n (BA).

Then from the definition of the TKD, X ∗ = G ×1 B1 · · · ×D BD, where the Bd’s are

the left singular vectors corresponding to the Rd nonzero singular values of X(d) and G =

X ×1 B
T
1 · · · ×D BT

D (see Algorithm 1). Then X ∗ can be written as

X ∗ = G ×1 B1 · · · ×D BD

= X ×1 B
T
1 · · · ×D BT

D ×1 B1 · · · ×D BD.

189



Applying facts 1 and 2, we can rearrange as

X ∗ = X ×1 B
T
1 · · · ×D BT

D ×1 B1 · · · ×D BD

= X ×1 B
T
1 ×1 B1 · · · ×D BT

D ×2 B2 · · · ×D BD (fact 1)

= X ×1 B1B
T
1 · · · ×D BT

D ×2 B2 · · · ×D BD (fact 2).

From the definition of the n-mode product

X ×1 B1B
T
1 ⇐⇒ B1B

T
1 X(1).

But since B1 are the left singular vectors from SV D(X(1)), B1B
T
1 is a projection matrix

to the column space of X(1). Thus,

B1B
T
1 X(1) = X(1) ⇐⇒ X ×1 B1B

T
1 = X .

The same arguments can be made for the other modes to show that X ∗ = X .
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(i) LROAT

(ii) CPD

Figure 5.1: Estimates from the LROAT and CPD models for Experiment 1, Scenario 2.
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Figure 5.2: Scree plots of the singular values from the LROAT fit for Experiment 1, Scenario

2.

Figure 5.3: True signal for Experiment 2, Scenario 2.
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(i) rank-1 (ii) rank-2

(iii) rank-3 (iv) rank-4

(v) rank-5

Figure 5.4: Estimates from the LROAT model for Experiment 2, Scenario 2.
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(i) rank-1 (ii) rank-2

(iii) rank-3 (iv) rank-4

(v) rank-5

Figure 5.5: Estimates from the CPD model for Experiment 2, Scenario 2.
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Figure 5.6: Scree plots of the singular values from the LROAT fit for Experiment 2, Scenario

2.

Figure 5.7: True signal for Experiment 2, Scenario 3.
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(i) rank-1 (ii) rank-2

(iii) rank-3 (iv) rank-4

(v) rank-5

Figure 5.8: Estimates from the LROAT model for Experiment 2, Scenario 3.
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(i) rank-1 (ii) rank-2

(iii) rank-3 (iv) rank-4

(v) rank-5

Figure 5.9: Estimates from the CPD model for Experiment 2, Scenario 3.
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Figure 5.10: Scree plots of the singular values from the LROAT fit for Experiment 2, Scenario

3.

Figure 5.11: True signal for Experiment 2, Scenario 4.
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(i) rank-1 (ii) rank-2

(iii) rank-3 (iv) rank-4

(v) rank-5

Figure 5.12: Estimates from the LROAT model for Experiment 2, Scenario 4.
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(i) rank-1 (ii) rank-2

(iii) rank-3 (iv) rank-4

(v) rank-5 (vi) rank-6

Figure 5.13: Estimates from the CPD model for Experiment 2, Scenario 4.
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Figure 5.14: Scree plots of the singular values from the LROAT fit for Experiment 2, Scenario

4.
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Table 5.1: Mean (SD) rank of signal variables in the X and Y datasets according to two

importance metrics. Results based on 100 simulations from the multivariate normal distri-

bution. Lower values of the rank are better (except for the Null scenario).

X variables Y variables
Scenario Method Metric 1† Metric 2‡ Metric 1† Metric 2‡

AR(0.9), Identity PMD (Witten et al. 2009) 24.88 (19) 24.14 (18) 17.58 (13) 16.57 (13)
ρ = 0.9 SELP-I (Safo et a. 2018) 25.94 (20) 24.67 (19) 17.09 (14) 16.43 (13)
90% sparsity spLRMA 25.95 (18) 24.42 (17) 17.74 (13) 16.42 (12)
AR(0.9), Identity PMD (Witten et al. 2009) 32.16 (25) 31.23 (24) 21.33 (18) 20.28 (18)
ρ = 0.5 SELP-I (Safo et a. 2018) 32.38 (27) 31.4 (25) 20.4 (19) 19.58 (18)
90% sparsity spLRMA 24.29 (18) 21.37 (18) 15.86 (11) 13.57 (9)
AR(0.7), Identity PMD (Witten et al. 2009) 42.36 (17) 41.33 (16) 29.02 (12) 28.14 (12)
ρ = 0.9 SELP-I (Safo et a. 2018) 43.13 (17) 41.41 (16) 29.17 (12) 27.83 (11)
90% sparsity spLRMA 34.99 (13) 35.71 (13) 22.14 (10) 22.88 (10)
AR(0.7), Identity PMD (Witten et al. 2009) 48.59 (19) 47.33 (19) 31.89 (14) 30.64 (14)
ρ = 0.7 SELP-I (Safo et a. 2018) 49.55 (19) 47.11 (18) 31.89 (14) 30.4 (13)
90% sparsity spLRMA 33.66 (15) 35.52 (14) 19.98 (9) 21.37 (9)
AR(0.7), Identity PMD (Witten et al. 2009) 54.73 (22) 53.29 (22) 37.13 (18) 35.46 (17)
ρ = 0.5 SELP-I (Safo et a. 2018) 55.57 (22) 52.72 (21) 37.03 (17) 34.51 (16)
90% sparsity spLRMA 31.26 (16) 34.69 (15) 17.8 (8) 19.72 (8)
AR(0.7), Identity PMD (Witten et al. 2009) 61.12 (27) 59.56 (27) 43.2 (22) 41.44 (22)
ρ = 0.3 SELP-I (Safo et a. 2018) 62.62 (26) 58.79 (25) 42.74 (22) 39.75 (22)
90% sparsity spLRMA 30.43 (16) 34.81 (16) 16.82 (8) 19.6 (9)
AR(0.2), Identity PMD (Witten et al. 2009) 84.32 (18) 83.18 (18) 66.78 (17) 65.99 (17)
ρ = 0.9 SELP-I (Safo et a. 2018) 85.29 (18) 82.99 (19) 66.75 (17) 65.8 (17)
90% sparsity spLRMA 82.23 (16) 81.15 (17) 63.84 (14) 63.49 (15)
CS(0.2), Identity PMD (Witten et al. 2009) 46.74 (28) 46.11 (28) 34.69 (20) 34.27 (20)
ρ = 0.9 SELP-I (Safo et a. 2018) 46.24 (29) 44.82 (28) 33.93 (21) 33.21 (21)
90% sparsity spLRMA 31.03 (25) 31.04 (26) 21.4 (15) 21.48 (16)
CS(0.2), Identity PMD (Witten et al. 2009) 53.03 (35) 52.88 (35) 42.55 (26) 42.61 (26)
ρ = 0.5 SELP-I (Safo et a. 2018) 52.6 (37) 51.23 (36) 41.27 (27) 41 (27)
90% sparsity spLRMA 33.2 (27) 32.71 (29) 24.84 (19) 24.66 (20)
Identity, Identity PMD (Witten et al. 2009) 94.37 (14) 93.7 (14) 74.51 (12) 73.84 (12)
ρ = 0.9 SELP-I (Safo et a. 2018) 94.27 (14) 93.36 (15) 75.21 (12) 74.3 (12)
90% sparsity spLRMA 92.69 (14) 90.86 (14) 73.23 (12) 72.03 (12)
Identity, Identity PMD (Witten et al. 2009) 84.94 (27) 83.6 (28) 66.88 (22) 65.7 (22)
ρ = 0.9 SELP-I (Safo et a. 2018) 86.38 (27) 84.98 (27) 67.38 (22) 65.1 (21)
95% sparsity spLRMA 82.26 (20) 79.62 (20) 63.04 (18) 61.6 (19)
AR(0.7), AR(0.6) PMD (Witten et al. 2009) 53.7 (31) 53.59 (31) 39.84 (25) 39.22 (25)
ρ = 0.9 SELP-I (Safo et a. 2018) 53.14 (29) 52.7 (29) 38.8 (25) 38.03 (25)
90% sparsity spLRMA 52.6 (22) 52.95 (24) 36.3 (20) 35.04 (20)
CS(0.7), Identity PMD (Witten et al. 2009) 34.44 (42) 33.16 (41) 45.43 (38) 42.97 (38)
Null SELP-I (Safo et a. 2018) 40.79 (46) 37.16 (43) 42.73 (41) 39.11 (38)
(ρ = 0) spLRMA 19.82 (23) 17.8 (22) 15.34 (16) 13.28 (14)
†1–No. of times a variables was selected
‡2–Magnitude of canonical vector loading
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Table 5.2: Mean (SD) rank of signal variables in the X and Y datasets according to two

importance metrics. Results based on 100 simulations from the multivariate t(df = 15)

distribution. Lower values of the rank are better.

X variables Y variables
Scenario Method Metric 1† Metric 2‡ Metric 1† Metric 2‡

AR(0.7), Identity PMD (Witten et al. 2009) 50.85 (25) 49.93 (24) 37.41 (20) 36.66 (20)
ρ = 0.9 SELP-I (Safo et a. 2018) 51.07 (24) 49.63 (23) 36.76 (20) 35.51 (19)
90% sparsity spLRMA 47.32 (24) 47.12 (23) 31.66 (16) 31.67 (16)
AR(0.7), Identity PMD (Witten et al. 2009) 72.18 (26) 70.56 (26) 52.43 (23) 51.5 (23)
ρ = 0.5 SELP-I (Safo et a. 2018) 72.05 (26) 69.8 (26) 51.58 (23) 50.24 (23)
90% sparsity spLRMA 57.38 (26) 58.18 (25) 38.55 (21) 39.83 (21)
CS(0.2), Identity PMD (Witten et al. 2009) 68.99 (34) 68.43 (34) 58.77 (24) 58.37 (24)
ρ = 0.9 SELP-I (Safo et a. 2018) 69.29 (35) 68.06 (34) 59.55 (25) 58.43 (24)
90% sparsity spLRMA 63.75 (27) 61.85 (29) 54.36 (19) 53.39 (21)
CS(0.2), Identity PMD (Witten et al. 2009) 80.23 (31) 80.52 (30) 68.43 (23) 68.46 (22)
ρ = 0.5 SELP-I (Safo et a. 2018) 80.25 (31) 79.67 (31) 68.81 (24) 68.19 (23)
90% sparsity spLRMA 74.64 (25) 73.78 (27) 63.07 (19) 62.99 (20)
†1–No. of times a variables was selected
‡2–Magnitude of canonical vector loading
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(i) True ΣXY (ii) Σ̂XY Rep 1

(iii) Σ̂XY Rep 2 (iv) Σ̂XY Rep 3

Figure 5.15: True ΣXY vs. observed Σ̂XY for several datasets generated from scenario with

within-set covariances BD [AR(0.7), I] , ρ = 0.9.

204



(i) True ΣXY (ii) Σ̂XY Rep 1

(iii) Σ̂XY Rep 2 (iv) Σ̂XY Rep 3

Figure 5.16: True ΣXY vs. observed Σ̂XY for several datasets generated from scenario with

within-set covariances BD [AR(0.2), I] , ρ = 0.9.
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(i) True ΣXY (ii) Σ̂XY Rep 1

(iii) Σ̂XY Rep 2 (iv) Σ̂XY Rep 3

Figure 5.17: True ΣXY vs. observed Σ̂XY for several datasets generated from scenario with

within-set covariances BD [CS(0.2), I] , ρ = 0.9.
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(i) True ΣXY (ii) Σ̂XY Rep 1

(iii) Σ̂XY Rep 2 (iv) Σ̂XY Rep 3

Figure 5.18: True ΣXY vs. observed Σ̂XY for several datasets generated from scenario with

within-set covariances BD [I, I] , ρ = 0.9.
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(i) Σ̂XY Rep 1 (ii) Σ̂XY Rep 2

(iii) Σ̂XY Rep 3 (iv) Σ̂XY Rep 4

Figure 5.19: Observed Σ̂XY for several datasets generated from Null Scenario (true ΣXY = 0,

but ΣXX and ΣY Y are BD [CS(0.7), I]).
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(i) Frobenius norm (ii) Average `2 norm

(iii) Condition number

Figure 5.20: Measures associated with the strength of signal and degree of linear dependence

of elements/columns of Σ̂XY corresponding to the signal variables (with an equal number of

noise variables included for reference). Boxplots are based on 100 realizations of Σ̂XY .
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