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ABSTRACT 

 Cognitive processing speed (CPS) has been shown to be a sensitive behavioral marker of 

cognitive decline prior to the onset of disease or the aging process. Together with white matter 

volume, CPS influences the successful completion of working memory (WM), yet it remains 

unclear to what extent neural activation during a WM paradigm is resultant of these variables in 

a healthy, non-aging sample. The present study employed an FMRI WM paradigm to examine 

neural response (i.e., overactivations) in four key regions of interest to quantify potential 

compensatory activation after controlling for WM performance. Results did not support CPS as 

an index of compensatory activation during the FMRI WM paradigm. White matter volume also 

did not significantly influence FMRI WM activations. Findings suggest that the processing speed 

model of aging does not extend to healthy, non-aged individuals and that possible latent factors 

account for FMR WM brain activity. 
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CHAPTER 1 

INTRODUCTION 

Cognitive Processing Speed 

 Performance on a wide-range of neuropsychological tests changes with age, and for this 

reason, raw performance scores are typically adjusted for age to guide inference. In other words, 

the scores obtained are compared to an age-matched normative sample. However, the biological 

basis for the age-related variance in different cognitive abilities is still not completely 

understood. Numerous theories and models, from neurophysiological perspectives to more 

behavioral and cognitive perspectives, have been proposed (see Cabeza, Nyberg, & Park, 2005; 

Reuter-Lorenz & Park, 2010, for reviews). To date, the most influential and empirically tested 

model is the processing speed theory, which implies a mediational indirect effect of such factors 

as age or brain injury on cognitive functioning through slowing cognitive processing speed 

(CPS; Salthouse, 1996). Accordingly, this generalized slowing has a detrimental effect not only 

on the quantitative but also the qualitative dimension of performance for a variety of cognitive 

skills. According to Salthouse, cognitive performance degrades because relevant, basic cognitive 

operations are executed too slowly and hence, slowed CPS reduces the amount of simultaneously 

available information needed for higher-order processing. 

CPS has been a fundamental component of the scientific inquiry of cognitive differences 

since the inception of that field (Cattell, 1890). In clinical and laboratory settings, it is primarily 

measured using perceptual speed tasks, involving visual search, elementary comparison, and 

substitution operations. In its most complicated form, CPS is assessed using timed decision-
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making tests that have been created and standardized psychometrically. Perhaps the most well-

known of these have been incorporated into the Wechsler (2008) intelligence scales and are 

called the Coding and Symbol Search subtests. Coding, for example, requires the subject to enter 

a number below each simple symbol in a long series using a readily available key. Scores are 

based on the numbers of items completed correctly in the allotted time. Yet more basic 

assessments of CPS also exist and have been derived not from psychometric tests, but from 

cognitive-experimental psychology and psychophysics. In these instances, the item content is 

more simple than those described previously and the relevant completion times for items are 

much shorter (i.e., milliseconds). These tasks typically take the form of reaction time tasks, such 

that the speed with which the subject performs a very simple mental operation is the 

measurement of CPS. Each of these types of CPS are significantly correlated with higher-order 

cognitive functions (Deary, Der, & Ford, 2001; Grudnik & Kranzler, 2001). 

CPS exhibits one of the most rapid declines with advancing age and is among the first 

impairments detected in many disorders with cognitive consequences (e.g., cardiovascular 

disease, multiple sclerosis, traumatic brain injury, psychosis; Genova, Hillary, Wylie, & Rypma, 

2009; Kelleher et al., 2013; Liebel & Sweet, 2019; Mathias & Wheaton, 2007). Although age-

related cognitive declines are expected in many other cognitive domains, they are usually less 

precipitous than CPS. This is evident among the subtests of the Wechsler Adult Intelligence 

Scale (WAIS), an assessment instrument that is widely recognized for its reliability, validity and 

excellent norms (Wechsler, 2008). Raw scores on the Symbol Search subtest, a validated 

measure of CPS, decline by more than 65% between the ages of 25 and 65, while performance 

on Matrix Reasoning, a measure of perceptual reasoning and fluid intelligence, declines by 

approximately 35% (Wechsler, 2008). Along these lines, extant research using both cross-
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sectional (Gottsdanker, 1982; Salthouse, 2000, 2009; Tombaugh, 2004; Wilkinson & Allison, 

1989) and longitudinal samples (Schaie, 2005) show that across the lifespan, CPS has a quadratic 

trajectory that takes the shape of an inverted U; it reaches maximum efficiency around the mid-

30s then demonstrates a generally linear decline thereafter. 

The fundamental importance of CPS is supported by a substantial body of research 

literature that has repeatedly demonstrated that CPS deficits are responsible for declines in 

higher-order cognitive domains such as executive functioning (EF), including working memory 

(Jensen, 1992; Kail & Salthouse, 1994; Liebel et al., 2017; Rypma & Prabhakaran, 2009; 

Salthouse, 1996; Salthouse & Ferrer-Caja, 2003; Shucard et al., 2004). The effects of slowed 

CPS on other cognitive domains are especially well-documented in older adults (Finkel et al., 

2004; Liebel et al., 2017; MacPherson et al., 2017; Salthouse & Coon, 1993; Whiting & Smith, 

1997) and in populations with specific pathologies, such as temporal lobe epilepsy (Dow, 

Seidenberg, & Hermann, 2004), left-hemisphere stroke (Turken et al., 2008), multiple sclerosis 

(Sperling et al., 2001; Kail, 1998; Swirsky-Sacchetti et al., 1992), and traumatic brain injury 

(Verger et al., 2001). However, declines in CPS are not solely reserved for patients with the 

aforementioned pathologies. Rather, slowed CPS and subsequent deficits in other cognitive 

domains are also observed in non-elderly adult patient populations (Albinet, Boucard, Bouquet, 

& Audiffren, 2012; Ebaid et al., 2017; Kelleher et al., 2013; Magistro et al., 2015; Schretlen, 

Pearlson, Anthony, & Aylward, 2000). For example, Kelleher and colleagues (2013) reported 

that adolescents with prodromal psychiatric syndromes performed worse than control subjects on 

multiple test of CPS. 

Although most studies supporting the processing speed theory have employed cross-

sectional designs that are unable to address within-person change and may provide biased 
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estimates of longitudinal mediational processes (Cole & Maxwell, 2003; Hofer, Flaherty, & 

Hoffman, 2006; Hofer & Sliwinski, 2001; Lindenberger & Pötter, 1998; Maxwell & Cole, 2007; 

Maxwell, Cole, & Mitchell, 2011), the role of CPS as a mediator of age-related change in other 

aspects of cognition has also been supported by a few longitudinal studies (Finkel et al., 2005, 

2007; Hertzog, Dixon, Hultsch, & MacDonald, 2003; Hultsch, Hertzog, Small, McDonald-

Miszczak, & Dixon, 1992; Lemke & Zimprich, 2005; MacDonald, Hultsch, Strauss, & Dixon, 

2003; Sliwinski & Buschke, 1999; Sliwinski, & Buschke, 2004; Taylor, Miller, & Tinklenberg, 

1992; Zimprich, 2002; Zimprich & Martin, 2002). More recent research, which utilized 

developments in structural equation modeling for longitudinal data, reported that time-specific 

variation in CPS accounted for a significant portion of the longitudinal relationship between age 

and cognitive functioning (Robitaille et al., 2013). 

Neuroimaging techniques have been applied in both healthy individuals and clinical 

populations to elucidate the relationships between CPS and functional brain activity. For 

example, FMRI research has found a positive relationship between CPS performance and 

activation of fronto-parietal networks (Forn et al., 2013). Furthermore, increased CPS demands 

are associated with greater patterns of connectivity within fronto-parietal and fronto-occipital 

networks, as well as an increase in the number of functional networks involved (Forn et al., 

2013). 

Thus, as a fundamental cognitive process required for efficient higher-order functions, 

the accurate assessment of CPS may be particularly useful as a sensitive predictor of changes in 

these higher-order cognitive domains, and therefore, an early marker of brain dysfunction 

(Duering et al., 2014; Eckert, 2011; Salthouse & Ferrer-Caja, 2003; Tam, Lam, Huang, Wang, & 

Lee, 2015). Indeed, measures of CPS are frequently recommended for detection of cognitive 
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changes associated with both normal age-related and pathological changes in brain integrity that 

often occur in cardiovascular disease, traumatic brain injury, multiple sclerosis, and healthy 

aging (Cutter et al., 1999; Gronwall, 1977; Liebel & Sweet, 2019).  

White Matter and CPS 

White matter pathways of the brain mediate the long-range transmission of information 

across distributed brain networks and support the synchronization and integration of operations 

carried out by individual brain areas (Mesulam, 1998; Mesulam, 2000). Structural neuroimaging 

studies document protracted developmental maturation of bidirectional anterior-posterior white 

matter connections between the prefrontal cortex (PFC) and posterior parietal lobes (Giedd, 

2004; Østby, Tamnes, Fjell, & Walhovd, 2011). White matter volume increases linearly through 

young adulthood, which yields relatively stable total brain volumes after puberty (Giedd et al., 

2009). It has been shown by computer simulations of brain connectivity patterns that distributed 

patterns of cortical activity can be largely attributed to the patterns of interaction afforded by the 

white matter fiber systems (Hilgetag et al., 2000; Kötter & Sommer, 2000). Therefore, individual 

differences in CPS are likely to depend to a large extent on structural variations in the 

development of these pathways, which both constrain and facilitate the communication and 

coordination among cortical nodes of brain-wide networks (Magistro et al., 2015).  

Long association tracts sub-serve functional integration among frontal, parietal, and 

temporal association cortices (Schmahmann & Pandya, 2006). The most prominent association 

tracts bridging frontal, temporal, and parietal regions are the superior longitudinal fasciculus, 

inferior longitudinal fasciculus, occipito-frontal fasciculus, and the uncinate fasciculus. Higher-

order association areas in prefrontal cortex and temporal and posterior-parietal lobes are 

considered to have important roles in attention, working memory, and response selection 
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(Goldman-Rakic, 1988; Mesulam, 2000). These are brain regions that are most commonly 

recruited by the diverse range of cognitive tasks used in functional neuroimaging studies (Cabeza 

& Nyberg, 2000; Duncan & Owen, 2000; Shulman et al., 1997).  

Functional and structural coupling between posterior and frontal brain regions, mediated 

by long-range cortico-cortical association tracts, are construed as being central for carrying out 

cognitive operations (Fuster, 2001; Goldman-Rakic, 1988). Studies have increasingly focused on 

the role of white matter as the biological basis underlying CPS (Bartzokis et al., 2007; Bucur et 

al., 2008; Charlton et al., 2006; Deary et al., 2006; Kennedy & Raz, 2009; Kuznetsova et al., 

2016; Lu et al., 2011; Madden et al., 2009; Marner, Nyengaard, Tang, & Pakkenberg, 2003; 

O’Sullivan et al., 2001; Tang, Nyengaard, Pakkenberg, & Gundersen, 1997; Tuch et al., 2005; 

Turken et al., 2008; Vernooij et al., 2009). For example, Turken et al. (2008) found that CPS is 

closely associated with the structural integrity of major white matter tracts that run along the 

anterior-posterior axis of the brain allowing fronto-posterior network interactions. Kennedy and 

Raz (2009) examined relationships between imaging biomarkers in several white matter regions 

and cognitive tests, including CPS, in a sample of 52 subject aged between 19 and 81 years. 

After correcting for the effects of age, working memory and CPS remained significantly 

associated with white matter structure in anterior brain regions. Haász et al. (2013) further 

illustrated the relationship between white matter and CPS. These authors investigated links 

between general fluid intelligence and white matter water diffusion parameters in a cohort of 100 

healthy participants aged between 49 and 80 years. Using two measures of CPS, a color-word 

interference test and a visuospatial attention task, they found that CPS scores contributed most 

towards associations with white matter structure than did other measures of fluid intelligence. 
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Performance on CPS measures requires these diffuse white matter systems of integrated 

brain networks, as disruption of white matter between these networks results in slowed CPS 

(Kuznetsova et al., 2016; Seiler et al., 2018). The critical role of white matter in CPS and other 

cognitive functions is most evident in the hallmark features of many disorders of the cerebral 

white matter, such as cardiovascular disease (Breteler et al., 1994), sickle cell anemia 

(Stotesbury et al., 2018), multiple sclerosis (Rao, 1995), and traumatic brain injury (Donders, 

Tulsky, & Zhu, 2001; Rao, 1996). Research on the cognitive functioning of patients with white 

matter diseases, such as multiple sclerosis, which leads to demyelination and wide spread 

damage across fiber systems, suggests that approximately 50% of patients demonstrate a 

cognitive disorder (Rao, 1995). Similarly, investigations of the effects of traumatic brain injury 

on cognition show an overall slowing of cognitive processes attributable to its effects on the 

cerebral white matter (Levine et al., 2006; Rao, 1996; Stotesbury et al., 2018).  

There are also normal individual differences in CPS that are believed to reflect individual 

variation in neural efficiency and capacity (Birren & Fisher, 1995; Mendelson & Ricketts, 2001), 

as well as age-related changes in neural processing, including both the development and decline 

of axonal myelination across the lifespan (Charlton et al., 2006, 2008; Kuznetsova et al., 2016). 

Indeed, Lu and colleagues (2011) reported that the myelin integrity of a large sample of very 

healthy older adults was significantly correlated with CPS in highly vulnerable late-myelinating 

regions, including the prefrontal cortex and the genu of the corpus callosum.  

Considered together, extant research on the relationship between white matter and CPS 

demonstrates a linear relationship such that CPS declines as a function of white matter integrity. 

This pattern is evident across healthy, neurological, and aging samples. In each of these 

populations, bidirectional anterior-posterior white matter connections sub-serve functional 
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integration among frontal, parietal, and temporal association cortices. As these distinct and 

intricately related brain systems perform a multitude of cognitive functions, the disruption of the 

white matter bridges connecting them results in subsequent cognitive decline, particularly slowed 

CPS. 

Working Memory 

 While the term working memory (WM) was introduced into the behavioral literature more 

than 50 years ago (see Miller, Galanter, & Pribram, 1960), the most enduring conceptualization 

of WM has been that of Alan Baddeley and Graham Hitch which defines WM as a limited 

capacity system used to store and manipulate information in support of goal-directed behavior 

during a short time span (Baddeley, 1998; Diamond, 2013). It is a key component of EF 

(Diamond, 2013). Along with CPS, WM accounts for a substantial portion of developmental 

variance in global intelligence in children and adults (Conway, Kane, & Engle, 2003; Fry & 

Hale, 1996). Performance on WM tasks improves throughout adolescence (Conklin, Luciana, 

Hooper, & Yarger, 2007), and individuals vary in terms of how many pieces of information they 

can hold and manipulate in WM (Engle, Tuholski, Laughlin, & Conway, 1999). These individual 

differences have been variously associated with performance on a wide variety of academic and 

occupational outcomes in addition to reasoning and problem-solving (Engle, Kane, & Tuholski, 

1999).  

 WM is a property of the brain that supports successful attainment of behavioral goals that 

are being carried out by any of the several systems, including sensory systems, those that 

underlie semantic and episodic memory, and motor systems (D’Esposito & Postle, 2015). Extant 

research of WM at such a systems-level has supported several neural mechanisms that likely 

underlie WM function, including prefrontal cortex, posterior parietal cortex, basal ganglia, 
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thalamic, and brainstem systems. The PFC and posterior parietal lobes are most frequently 

implicated in functional imaging studies of WM such that brain activation reliably scales with 

the amount of information required to be held in the system (Braver et al., 1997; Nee et al., 2013; 

Sweet et al., 2006). Meta-analyses of previous neuroimaging studies have also revealed 

activation of a fronto-parietal network in response to WM task demands (Curtis & D’Esposito, 

2003), including lateral frontal cortex, and bilateral lateral posterior parietal cortex (Owen, 

McMillan, Laird, & Bullmore, 2005; Rottschy et al., 2012; Wang et al., 2019).  

Another consistent finding in functional neuroimaging studies of WM is compensatory 

activation in order to maintain successful task performance. There is evidence that suggests 

certain populations (e.g., carriers of the APOE ε4 allele, multiple sclerosis patients, individuals 

with Alzheimer’s disease, substance-dependent patients) demonstrate overactivation of these 

WM-related fronto-parietal networks in the absence of behavioral differences that is thought to 

constitute a compensatory response (Bookheimer et al., 2000; Chariet et al., 2014; Scheller et al., 

2017; Sweet et al., 2006: Sweet et al., 2010b; Trachtenberg, Filippini, Mackay, 2012; Wishart et 

al., 2006). Moreover, compensatory activation has been noted when stressors or increased task 

demands are introduced, even among healthy samples (Sweet et al., 2006; Sweet et al., 2008; 

Sweet, Jerskey, Aloia, 2010a; Sweet et al., 2010b). 

WM and CPS 

The rate at which the brain processes cognitive information (i.e., CPS) is intricately 

related to WM (Nebes et al., 2000; Salthouse, 1994). Indeed, some researchers have argued that 

variability in WM directly reflects variability in CPS (Jensen, 1992; Salthouse, 1994, 1996). 

Researchers have also postulated that age-related changes in CPS drive developmental changes 

in WM function (Fry & Hale, 1996; Jensen, 1992; Salthouse, 1996; Verhaeghen & Salthouse, 



 

10 

1997). Fundamental to these theories are the notion that efficient processing of stimuli by the 

brain depends, in part, on a balance between the rate at which the incoming information can be 

processed and the rate at which the information decays or is displaced. Consider the Paced 

Auditory Serial Addition Task (PASAT; Gronwall, 1977). The PASAT is a speed-dependent task 

that is frequently used in clinical setting to assess WM, sustained attention, and CPS (Fisk & 

Archibald, 2001; Rao, Leo, Bernardin, & Unverzagt, 1991). In order to accurately perform the 

PASAT, one must both quickly and efficiently process incoming stimuli (i.e., numbers), hold the 

results of this processing for subsequent manipulation, and efficiently combine these results with 

new incoming stimuli. Thus, the PASAT requires both CPS and WM abilities to function in 

concert to result in accurate performance. A breakdown of either system renders the task 

impossible. 

In multiple sclerosis, a disorder characterized by CPS and WM deficits, two models have 

been proposed to explain the relationship between them. The relative consequence model 

purports that impaired CPS accounts for deficits in cognitive domains such as WM, particularly 

in patients with the less severe disease course (Archibald & Fisk, 2000; DeLuca et al., 2004; 

Lengenfelder et al., 2006). Therefore, given adequate time on WM tasks, patients with CPS 

deficits should perform within normal limits. Thus, an apparent deficit in WM is actually an 

indirect effect of a CPS deficit. The independent consequence model suggests that impairments 

in separate cognitive domains such as CPS and WM are independent, although not mutually 

exclusive, of each other (DeLuca et al., 2004). Accordingly, WM could be impaired 

independently of CPS even though CPS is an important component of WM ability. 

N-back Tasks 
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N-back tasks have been used often in experimental studies of WM. They provide 

behavioral indices of simple and complex CPS and WM (Parmenter et al., 2006; Parmenter, 

Shucard, & Shucard, 2007). During the N-back task, participants decide whether each currently 

presented stimulus matches the stimulus previously presented “n” trials back. As n increases, the 

task difficulty increases, placing greater demand on WM. Simple CPS reflects the mental speed 

required to perform undemanding attentional tasks such as target detection (e.g., 0-back), while 

complex CPS reflects the additive time required to perform the increasingly more demanding 

executive aspects of WM (e.g., 1- and 2-back). The N-back is widely used in functional 

neuroimaging studies, resulting in demonstrated validity and reliability, including well-replicated 

activation patterns (Owen, McMillan, Laird, & Bullmore, 2005; Rottschy et al., 2012; Wang et 

al., 2019) across subjects (Drobyshevsky et al., 2006) and time (Caceres, Hall, Zelaya, Williams, 

& Mehta, 2009). In addition, there is data suggesting that the N-back may be used as a functional 

localizer (Drobyshevsky, Baumann, & Schneider, 2006), and it can be modified to assess 

multiple embedded contrasts (e.g., memory load, stimulus type, error-related activity, conflict-

related activity; Awh et al., 1996; Smith & Jonides, 1997; Sweet et al., 2008). 

 

Rationale and Hypotheses 

 In summary, CPS is a sensitive behavioral marker of individual differences that has been 

shown to account for variation in higher-order EFs, such as WM, and neuroimaging indices of 

white matter. Previous studies have reported a positive relationship between faster CPS and 

larger global white matter volume (Turken et al., 2008). Therefore, it is not surprising that a 

positive relationship between white matter volume and WM has also been demonstrated (Darki 

& Klingberg, 2015; Nee et al., 2013). Because CPS measures are among the most sensitive 
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indicators of cognitive decline in aging and white matter disease, it is likely that CPS paradigms 

may also be a useful complement to functional neuroimaging studies. While behavioral CPS 

indices may serve as early detection of cognitive dysfunction, they are also likely to capture 

individual differences in brain function that may not be detected in behavioral or functional 

neuroimaging assessments of higher-order domains (e.g., WM).  

The goal of the present study was to capitalize on the sensitivity of CPS measures to reflect 

changes in age-related cognitive function and to take advantage of the ability of FMRI to detect 

individual differences in brain function before they are apparent in behavior (e.g., compensatory 

activation). It was expected that slower CPS would be associated with smaller white matter 

volumes and greater brain response to a WM challenge after statistically controlling WM 

performance level (i.e., compensatory activity). CPS performance and white matter volume were 

expected to provide better predictors of compensatory activation than either alone. Thus, the 

current study had three Aims: 

1. Determine whether the substantial research literature that has demonstrated strong 

relationships in patient populations can be extended to a large healthy sample. Hypothesis 1: 

Faster CPS and larger white matter volumes will be significantly correlated with better N-

back performance as measured via both reaction time and accuracy. Hypothesis 2: CPS and 

white matter volume will be significantly positively correlated with each other.  

2. Quantify the amount of compensatory activation that may be predicted by CPS performance 

and/or white matter volume. Hypothesis 3: CPS performance will be positively related to 

compensatory activation in N-back regions on FMRI when performance is statistically 

controlled.  
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3. Examine the generalizability of the expected Aim 2 findings. Specifically, determine whether 

individuals with the greatest compensatory activity during the N-back exhibited evidence of 

lower cognitive function on another EF domain. Hypothesis 4: The magnitude of compensatory 

activity during the N-back will be inversely related to scores on a neuropsychological test of EF. 
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CHAPTER 2 

METHOD 

Participants 

 Structural and functional magnetic resonance imaging (MRI) data were collected from a 

community sample of 1,051 participants at Washington University in St. Louis as part of the 

Human Connectome Project between August 2012 and October 2015, and released in full on 

March 1, 2017 (see Table 1; Van Essen et al., 2013). The primary participant pools came from 

healthy individuals born in Missouri to families that include twins. They were recruited from the 

Missouri Department of Health and Senior Services Bureau of Vital Records. Additional 

recruiting efforts were used to insure that participants broadly reflect the ethnic and racial 

composition of the U.S. population as represented in the 2000 decennial census. Participants 

were 22-35 years old and had no significant history of psychiatric disorder, substance abuse, 

neurological disorder, cardiovascular disease, or Mendelian genetic disease (e.g., cystic fibrosis). 

They also did not have any contraindications for MRI such as metal devices in the body or 

claustrophobia (Van Essen et al., 2012). In order to ensure that the brain activation patterns 

elicited during the WM FMRI paradigm (described below) were actually associated with WM 

cognitive processes, participants who performed the 2-Back at a below chance level (<50% 

correct response rate) were excluded. The final total sample following these exclusions was 

1,051. 

Procedures 
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 Participants completed the structural and functional MRI scans over a total of 4 imaging 

sessions, each approximately one hour in duration. The neurocognitive assessment took place on 

the same days as the MRI scans. Participants provided written informed consent and were not 

monetarily compensated. The study was approved and monitored by the local Institutional 

Review Board and conformed to the Helsinki Declaration.  

Measures 

MRI Data Acquisition  

Structural MRI data were collected on a 3T Siemens Skyra scanner (Siemens AG, 

Erlanger, Germany) with a 32-channel head coil. High-resolution T1-weighted MPRAGE 

structural images were acquired with a resolution of 0.7 mm3 isotropic (FOV = 224 × 240, matrix 

= 320 × 320, 256 sagittal slices; TR = 2400 ms and TE = 2.14 ms). FMRI data were collected 

using the same scanner as structural MRI with a multi-band EPI pulse sequence that collected 

eight slices simultaneously. Images were acquired with a resolution of 2 mm3 isotropic (FOV = 

208 × 180 × 144, matrix = 104 × 90, 72 axial slices; TR = 720 ms and TE = 33 ms). 

White Matter Volume Quantification 

All structural images were reviewed by a technician immediately following acquisition to 

ensure scans did not have any significant artifact or exhibit substantial movement. If problems 

were found, structural scans were reacquired immediately. Within hours of the initial acquisition, 

scans were examined by quality control specialists who assessed them for image crispness, 

blurriness, and motion and other artifacts. Based on these factors, scans were rated on a 1 to 4 

scale (poor to excellent). In all cases where structural scans were below 3 (good), new structural 

scans were reacquired on the participant’s second day. Through this process, all subjects 

provided high quality structural imaging data (Marcus et al., 2013). T1 structural data were 
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reconstructed and preprocessed using a modified version of the Freesurfer pipeline (Dale, Fischl, 

& Sereno, 1999; Fischl, Sereno, Dale, 1999; Fischl, Sereno, Tootell, & Dale, 1999; Fischl et al., 

2004) using FreeSurfer Image Analysis Suite version 5.3 (http://surfer.nmr.harvard.edu) and 

using DICOM to NIFTI conversion software (https://www.nitrc.org/projects/dcm2nii/). Among 

other output, this processing pipeline yields a measure of intracranial volume and whole-brain 

white matter volume that excludes the brainstem, cerebellum, ventricles, and cortical and 

subcortical gray matter. White matter volumes were converted to proportions of intracranial 

volume before use in hypothesis testing. 

FMRI N-back 

The HCP N-back task included the 0- and 2-back and both used embedded category 

specific stimuli presented in blocks of trials that consisted of pictures of faces, places, tools, and 

body parts (Barch et al., 2013). HCP investigators chose faces, places, tools, and body parts as 

the four categories of stimuli due to evidence that N-back versions using these stimuli reliably 

engage cortical regions shown to be critical for WM functioning (Downing et al., 2001; Fox, 

Iaria, & Barton, 2009; Peelen & Downing, 2005; Taylor, Alison, Wiggett, & Downing, 2007) 

and because the associated brain activations are reliable across subjects (Downing et al., 2001; 

Fox et al., 2009) and time (Kung, Peissig, & Tarr, 2007; Peelen & Downing, 2005). 

Within each imaging run, the four different stimulus types were presented in separate 

blocks. One half of these blocks presented during a 2-back WM task, during which participants 

responded to each “target” - whenever the current stimulus was the same as the stimulus 

presented two before. Half of these blocks presented a 0-back active control task, during which a 

target cue is presented at the start of each block and the person responded to any presentation of 

that target during the block. Images were presented on a computer screen and participants 
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responded via response box in the dominant hand. A 2.5 second cue indicated the task type at the 

start of the block. Each of the two runs contained eight 2-Back and 0-Back task blocks (10 trials 

of 2.5 seconds each for 25 seconds) and four fixation blocks (15 seconds each). Each N-back 

stimulus was presented for 2 seconds, followed by a 2500 millisecond response period. Each 

block contains 10 trials, of which two were targets, and 2-3 were non-target lures (i.e., repeated 

items in the wrong N-back position, either 1- or 3-back). The inclusion of lures was used to 

ensure that participants were using an active memory approach to the task and to allow the 

assessment of conflict-related activity as well as error-related activity. 

FMRI Analyses  

Data were spatially and temporally preprocessed in a pipeline designed by HCP scientists 

that utilizes tools from FSL, Freesurfer, and their in-house software Workbench (Glasser et al., 

2013; Smith et al., 2013). Following pre-processing, dataset processing and statistical analyses 

were performed using Analysis of Functional NeuroImages (AFNI; Cox, 1996). Additional 

quality control checks were performed to identify and remove movement artifact. Preprocessing 

of the functional N-back datasets included slice-time correction and registration of each volume 

to the third volume of the first imaging run to correct for head movement. Data from participants 

with head movement > 2.0 mm (one voxel) in any direction were omitted from analyses. 

Individual anatomical images were aligned to the volume-registered functional run, skull-

stripped, and then transformed into Talairach standard stereotaxic space. The functional runs in 

native space were then aligned to the anatomical image in Talairach space using the concatenated 

transformation matrices from the volume registration, anatomical to functional alignment, and 

anatomical transformation into standard space. A 5-mm full-width Gaussian filter was applied 
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and the raw time-series was scaled to a mean of 100 to enable interpretation as a percent signal 

change from baseline. 

The general linear model (GLM) was used to quantify condition-specific activity for each 

brain voxel of individual datasets. That is, a multiple regression of the temporal pattern of 2-back 

presentation, 0-back control task presentation, and covariates (i.e., instruction screens, observed 

movement, linear drift) were performed using BOLD signal over time as the dependent variable. 

A direct GLTest of the effects of the 2-back compared to the 0-back was added to the GLM. A 

resulting individual activation map for each participant of 2-back versus 0-back BOLD signal 

was created and this brain response was expressed as voxel-wise betas. These were used to 

conduct group level analysis using participants’ mean betas in a priori regions of interest as the 

dependent variable in analyses. 

Group level activation maps were created from the individual 2-back vs 0-back contrast 

maps using voxel-by-voxel one sample t-tests versus a hypothetical mean of zero and 

thresholded using a two-tailed p < .01, corrected for multiple comparisons using AFNI’s false 

discovery rate (FDR) procedure. Clusters with fewer than 200 voxels were excluded from the 

group level activation maps (Owens et al., 2018). This group summary map was used for 

comparison to prior literature and generation of ROIs.  

Region of Interest Analyses 

As N-back compensatory activation was expected in task-related regions, functionally 

defined regions of interest (ROI) were delineated within the larger a priori ROIs. Specifically, 

the whole brain voxel-wise analyses conducted to reveal regions that demonstrate significant 

WM effects in this sample were used. In order to optimize internal and external validity, we 

chose four task-related clusters of significant activation from our sample that fell within the four 
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larger a priori regions consistently reported in prior literature. Given the widespread use of the 

N-back, its activation patterns are well-documented (Owen et al., 2005; Yeo et al., 2015). We 

chose the four most robust regions of activation reported in this prior literature: the bilateral PFC 

and bilateral posterior parietal cortex (PPC). In the current study, structures anterior to the pre-

motor cortex, including the lateral, dorsolateral, ventrolateral, orbitofrontal, and medial 

prefrontal cortices, were considered part of the PFC. The PPC included those structures posterior 

to the primary somatosensory cortex and included the superior and inferior parietal lobules. The 

overlap of these a priori ROI and the largest cluster of significant activation became the 

functional ROI within which activation was examined to test hypotheses. 

In order to determine whether these 2-back task-related functional ROI responses were 

related to CPS at the group level, activation effects (GLM beta values) were averaged for each 

ROI for each participant and examined at the group level for associations with CPS and white 

matter volumes. As described below, group level hypothesis testing included a multiple 

regression analysis predicting mean activation effects from white matter volume and CPS scores 

after controlling N-back performance level. 

NIH Toolbox Cognition Battery Tests 

The NIH Toolbox Cognition Battery (NIHTB-CB; http://www.nihtoolbox.org) is one 

module within the larger NIH Toolbox for the Assessment of Neurological and Behavioral 

Function. It is a fully computerized battery that was developed to assess cognitive function 

across the lifespan (ages 3-85). It is available in both English and Spanish, and only requires 

approximately 30 minutes to administer. The Cognition Battery consists of seven tests measuring 

five neurocognitive domains, including CPS and EF. 
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CPS task. The Pattern Comparison subtest of the NIHTB-CB was used in the current 

study as the measure of CPS. The Pattern Comparison CPS measure was modeled directly on 

Salthouse’s Pattern Comparison Task (Salthouse, Babcock, & Shaw, 1991). During the NIHTB-

CB Pattern Comparison Test, participants were asked to identify whether two visual patterns are 

the “same” or “not the same” via pressing a “yes” or “no” button (Figure 1). Patterns were either 

identical or varied on one of three dimensions: color, adding/taking something away, or one 

versus many. Scores reflect the number of correct items (of a possible 130) completed in 90 

seconds. The Pattern Comparison Test demonstrates strong convergent (r = .50 to r = .54, all p < 

.0001) and discriminant (r = .36 to r = .38, all p < .0001) validity and test-retest reliability (ICC 

= .73 [95% CI: .62, .81]; Carlozzi et al., 2014). 

 EF task. The DCCS of the NIHTB-CB is a measure of cognitive flexibility, and is 

similar, but more simple, than other card sorting tasks, like the Wisconsin Card Sorting Task 

(Heaton et al., 1993). This measure was presented on a touch-screen monitor. Target pictures 

were presented that vary along two dimensions: shape and color. Participants were asked to 

match a series of bivalent test pictures (e.g., yellow balls and blue trucks) to the target pictures, 

first according to one dimension and then, after a number of trials, according to the other 

dimension (Figure 2). Switch trials were also employed, in which the participant must have 

changed the dimension being matched. A total of 50 mixed trials were given and scoring was 

based on a combination of accuracy and reaction time (see Zelazo et al., 2014 for a complete 

description of scoring procedures). Briefly, a two-vector scoring method combining accuracy 

and reaction time into one score was utilized to ensure an accurate representation of the 

participants’ cognitive flexibility was captured. That is, both accuracy of the card sort task and 

the speed with which participants performed these sorts were weighted so an approach favoring 
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speed over accuracy (or vice versus) did not skew results. The NIHTB-CB DCCS demonstrates 

adequate to good convergent validity (r = .52 to r = 71, all p < .0001) and good discriminant 

validity (rs = .06, p = .35 to p = .37. It also shows excellent test-retest reliability (ICC = .81 to 

.92, all p < .0001; Zelazo et al., 2014). For Aim 3, the generalizability of functional 

compensatory activity was assessed to address the hypothesis that it may be a result of CPS 

effects on WM brain activity and other measures of EF. To do this, the relationship between 

measures of compensatory activity and performance on the NIHTB-CB DCCS was examined. 

Statistical Analyses 

 Aim 1. CPS performance, as measured by the NIHTB-CB Pattern Comparison Test, and 

whole brain white matter volume were examined for significant correlations with FMRI 2-back 

accuracy and median reaction time for correct responses. Results were expected to replicate a 

consistent prior literature and support the premise that people with lower CPS and lower white 

matter volumes will find EF tasks, including the 2-back, more difficult.  

A second analysis examined the correlation between CPS performance and white matter 

volume. These have exhibited consistent significant associations in prior literature and were used 

as predictors of compensatory activation in Aim 2. These yielded a preliminary understanding 

about whether they may serve as independent or common predictors of compensatory activation. 

That is, large Pearson correlation coefficients between CPS and white matter volume would 

suggest these indices are highly related and both must be included in statistical modeling in order 

to capture appropriate variance in WM 2-back brain activation that may not have been captured 

using just one or the other. 

Aim 2. Multiple regression analyses were conducted to examine the associations between 

CPS performance and white matter volume (predictors) and FMRI brain response in functional 
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ROIs (criterion) during successful performance of the 2-back task while controlling for 2-back 

accuracy. The goal was to reveal compensatory effects related to CPS, an intended proxy index 

of effort. At the group level, overactivations (variance in activation after controlling 2-back 

accuracy) in the a priori ROIs (bilateral PFC and bilateral PPC) were expected. 

Aim 3. The ∆R2 values reflecting the amount of variance accounted for in WM 2-back 

activation by CPS after controlling for 2-back accuracy were used in a multiple regression model 

to predict participants’ performance on the DCCS of the NIHTB-CB. As ∆R2 is an effect size 

estimate, it was ideal for assessing how much or how little the hypothesized CPS might relate to 

compensatory effect of WM 2-back brain activation after controlling performance level affects 

and how strongly this activity relates to other EFs. It was predicted that the magnitude of the 

compensatory activity during WM 2-back (i.e., ∆R2 for the CPS variable) would be related to 

scores on the separate tests of EF. 

For the Pattern Comparison Task and the DCCS of the NIHTB-CB, age-adjusted scores 

were used in all analyses. As such, participant age was not included in statistical models as a 

distinct covariate to avoid over-estimation of age effects. 

Power Analyses 

A statistical power analysis was performed for sample size estimation for Aims 1 and 2, 

based on data from Liebel et al. (2017), comparing CPS to an EF composite measure. The effect 

size in this study was Cohen’s d = .57 which is considered to be a medium-to-large effect size 

using Cohen’s (1992) criteria. With a two-tailed alpha = .05 and power = .80, the sample size 

needed for this effect size is approximately N = 51 (G*Power 3.1; Faul, Erdfelder, Buchner, & 

Lang, 2009). Thus, the proposed sample size of N = 1,051 was more than adequate for these 

hypotheses. Because of the novelty of Aim 3, there is no prior literature available on how the 
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relationship between CPS and N-back brain response after controlling performance level 

generalized to other EFs. However, this large sample size suggests that the current proposal 

should be able to detect very small effects (d <  .10) given the same power and alpha parameters. 
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CHAPTER 3 

RESULTS 

Preliminary Analyses 

 Statistical Package for Social Sciences (SPSS 21.0 for Windows, SPSS, Chicago, IL) was 

used for preliminary and primary data analyses. Demographic characteristics and cognitive 

performance are displayed in Table 1. The study sample was comprised of adults with above 

average educational attainment. Pattern Comparison Test and DCCS scores were in the average 

range. Similarly, 2-back performance accuracy and reaction times were consistent with prior N-

back literature (Braver et al., 1997; Smith & Jonides, 1997; Sweet et al., 2008). The distributions 

of the Pattern Comparison Test (Kolmogorov-Smirnov test: D[1051] = .02, p = .11, DCCS 

(D[1051] = .04, p = .09), 2-back accuracy (D[1051] = .08, p = .10), 2-back median reaction time 

(D[1051] = .03, p = .06), and white matter volume (D[1051] = .04, p = .07) were normally 

distributed. 

FMRI Response  

Brain response patterns associated with the 2-back at the group level are listed in Table 2 

and shown in Figure 3. Results of these whole brain voxel-wise analyses across the sample 

revealed regions of activation consistent with prior literature, including the bilateral PFC and the 

bilateral PPC (Owen et al., 2005; Owens, Duda, Sweet, & MacKillop, 2018; Smith & Jonides, 

1995; Sweet et al., 2008). 

Aim 1 



 

25 

 As hypothesized, Pattern Comparison Test performance was significantly correlated with 

both 2-back performance indices, and these relationships were found to be in the predicted 

directions (see Table 3). The association between the Pattern Comparison Test and 2-back 

accuracy was positive and significant (r[1049] = .28, p < .01), indicating that as Pattern 

Comparison Test performance improved so did 2-back accuracy. Pattern Comparison Test and 2-

back median reaction time for correct responses were significantly, negatively related (r[1049] = 

-.30, p < .01), indicating that as Pattern Comparison Test performance improved the speed of 

accurate 2-back performance also improved (i.e., reaction time went down). Participant 

performance on the DCCS, a separate measure of EF, was positively, significantly related to 

Pattern Comparison Test performance (r[1049] = .41, p < .01). DCCS was also significantly 

associated with 2-back accuracy (r[1049] = .31, p < .01) and 2-back median reaction time 

(r[1049] = -.22, p < .01). DCCS was the only measure of cognitive functioning significantly 

associated with white matter volume (r[1049] = .10, p < .01). 

 It was further hypothesized that Pattern Comparison Test performance would be 

significantly, positively related to white matter brain volume, as a significant body of prior 

research literature has reported such findings. However, results from the current study revealed 

that, after controlling intracranial volume, Pattern Comparison Test performance was not 

significantly correlated with total brain white matter volume. Of note, neither 2-back accuracy 

nor 2-back median reaction time was significantly associated with white matter volume (Table 

3). 

Aim 2 

 Following quantification of significant brain response to the 2-back (controlling 0-back), 

mean intensity effects were summarized by ROI (i.e., left PFC, right PFC, left PPC, right PPC; 
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Table 4). Participants’ mean 2-back activation effects in the left PFC were not significantly 

predicted by Pattern Comparison Test performance or white matter volume after controlling 2-

back performance level, (R2 = .09, F(4,1047) = .414, p = .60; Table 5). Similarly, neither Pattern 

Comparison Test performance nor white matter volume significantly predicted 2-back activation 

effects in the right PFC, (R2 = .04, F(4,1047) = 1.20, p = .31; Table 6). Activation effects within 

the left PPC were not significantly predicted by Pattern Comparison Test performance or white 

matter volume after controlling 2-back performance level, (R2 = .04, F(4,1047) = 1.14, p = .34; 

Table 7). Right PPC activation was similarly not predicted by Pattern Comparison Test 

performance or white matter volume, (R2 = .00, F(4,1047) = 0.55, p = .70; Table 8).  

Aim 3 

 As reported above, analyses revealed no significant compensatory effects of Pattern 

Comparison Test performance on 2-back activation. Thus, the ∆R2 value of Pattern Comparison 

Test performance predicting 2-back activation were zero and their use in predicting how much or 

how little they contribute to the prediction of performance on another measure of EF (i.e., the 

NIHTB-CB DCCS) was not performed. 

 

 

 

 

 

 

 

 



 

27 

 

 

CHAPTER 4 

DISCUSSION 

The present study investigated the potential roles that a behavioral measures of CPS and 

white matter volume play in WM performance among a very large sample of healthy adults. The 

experimental design capitalized on the sensitivity of CPS as a behavioral marker of individual 

differences in cognitive function and the use of FMRI to detect individual differences in brain 

function before they are apparent in behavior. It was hypothesized that CPS performance levels 

would reflect a compensatory effect on FMRI WM brain activation patterns after WM 

performance was controlled because it is an independent marker of effort needed to perform the 

N-back. The current study had three Aims. First, the relationships between CPS, white matter 

volume, and performance on the N-back WM task were measured. Second, it was predicted that 

CPS and white matter volume could each be used to gauge the effort required to successfully 

perform the N-back, and therefore might be a useful marker of compensatory brain activation 

during this task. Third, if evidence linking CPS or white matter volume to compensatory 

activation were supported, Aim 3 was to examine variance in another measure of EF to address 

convergent validity. 

 Hypothesis 1 was partially supported. Results from these analyses indicated that CPS was 

significantly related to WM accuracy and reaction time and these associations were in expected 

directions. That is, as CPS increased, the number of accurate WM responses increased and the 

speed of correct responses to the WM paradigm decreased, indicating more efficient and rapid 

decision making. These findings are consistent with a sizeable research literature that includes 



 

28 

similar positive relationships among several different measures of CPS and WM function in 

healthy adult populations (Albinet, Boucard, Bouquet, & Audiffren, 2012; Ebaid et al., 2017; 

Kelleher et al., 2013; Magistro et al., 2015; Schretlen, Pearlson, Anthony, & Aylward, 2000). 

However, white matter volume was not significantly associated with N-back performance, as had 

been predicted. This finding is not consistent with prior literature that has found significant, 

positive correlations between white matter volume and measures of WM (Takeuchi et al., 2011) 

and might be explained by the use of a whole brain metric of white matter volume in the current 

study rather than regional white matter volumes. However, the critical role of white matter 

volume in the performance of other aspects of EF was identified in the current study. The 

significant, positive relationship found between white matter volume and the DCCS, a measure 

of cognitive flexibility, reflects the relationship between white matter and higher-order EF more 

broadly. Prior research has suggested that, even among “young” adults similar in age to the 

current study sample, white matter volume mediates the successful performance of EF tasks 

(Brickman et al., 2006). Thus, current study findings and those from prior research indicate that 

white matter volume is integral to the successful completion of EF tasks prior to the onset of 

disease or aging processes.  

Another possible explanation for mixed support for Hypothesis 1 is that Hypothesis 2 

was not supported; the expected inverse relationship between CPS and white matter volume was 

not found. These findings were unexpected given the significant associations reported between 

these variables in previous research studies (Madden et al., 2009; Turken et al., 2008). As the 

current study measured CPS and white matter volume in a large sample, there was excellent 

statistical power to detect even small effects. A possible explanation for why there was no 

relationship between CPS and white matter is that this sample of young, healthy adults may 
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possess a distinct “CPS ability” that does not yet rely as heavily on white matter volume as 

occurs in aging and various disease processes. 

Aim 2 was the quantification of compensatory activation during WM performance. 

Findings from Hypothesis 3 revealed that neither CPS nor white matter volume were associated 

with WM brain activation, as would be expected were they indices of effort. After statistically 

controlling WM performance accuracy in order to reveal unexpected compensatory response and 

participant education, the amount of variance explained in WM activation was virtually zero in 

each a priori ROI (see Tables 5-8).  These findings suggest CPS was not responsible for the 

maintenance of WM abilities in this sample. Such null results are particularly surprising in the 

bilateral PFC a priori ROI. Frontal regions are especially critical in the performance of both CPS 

and WM, which suggests WM activation in these regions would have demonstrated an 

association with CPS. Because Aim 2 was not supported and effects sizes were nearly zero, 

Hypothesis 4 was not tested. The purpose of Aim 3 was to assess how much or how little the 

hypothesized compensatory activity of CPS generalized to other, non-WM, measures of EF. As 

noted, this Aim was not supported, as no compensatory activity was found. The DCCS task of 

the NIHTB-CB measures cognitive flexibility and requires rapid decision-making processes 

similar to some CPS tasks. It was hypothesized that CPS compensatory effects would explain a 

significant amount of performance variance in this measure as well. As the ∆R2 values reflecting 

the amount of variance accounted for in WM N-back activation by CPS were zero (0), statistical 

analysis of these questions were not able to be carried out.  

This was the first study to investigate potential WM compensatory activation as indexed 

by putative measures of difficulty and effort, specifically behavioral CPS performance and white 

matter volume. It was a novel attempt to determine whether the processing speed theory 
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(Salthouse 1996) might be extended to a large sample of healthy younger adults. Results do not 

support this extension. Indeed, the processing speed theory suggests that CPS should been an 

excellent choice for an index of compensatory WM brain activation because of the strong 

covariance between the two cognitive functions (Jensen, 1992; Nebes et al., 2000; Salthouse, 

1994, 1996). Without the predicted compensatory effects on WM brain activation, it appears 

some other variable not included in the current study (e.g., grey matter, another cognitive 

function) may assist in explaining participants’ WM brain activity. 

Current findings also suggest a different mechanism of action than what might be 

explained by the relative consequence model or the independent consequence model (DeLuca et 

al., 2004). Because participant performance on measures of WM and CPS were within expected 

ranges, neither would have inhibited nor propagated the other as suggested in these models. 

A potential explanation for the lack of explanatory power of CPS may the use of age-

adjusted scores. As described previously, CPS is sensitive to the effects of age and often used as 

a behavioral marker of cognitive change (Schaie, 2005). By controlling individual differences 

related to age, these known effects on the NIHTB-CB measure of CPS, one of the factors driving 

the effect that CPS was meant to capture may have been removed from the analyses. That is, the 

use of age-adjusted scores may have removed a substantial proportion of the variance 

responsible for compensatory activity.  

Limitations 

 The current study requires consideration in light of several limitations. First, the study 

sample was young (Mage = 28.77 years), performed the CPS, WM, and DCCS in the average 

range, and was well-educated, which poses potential problems with generalizability. Similarly, 

participants in the sample likely possessed optimal white matter volume as they were free of 
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germane disease processes or normal aging effects. As such, the index of white matter volume 

used may not have been sensitive enough or possessed sufficient variance to detect white matter 

effects on WM brain activation patterns. Prior research on the influence of regional white matter 

volume on neuropsychological functioning indicates there may exist differential effects of 

specific white matter regions on certain neuropsychological functions (Brickman et al., 2006). 

Related, the current study utilized a volumetric index of white matter that may be less sensitive 

to individual differences in white matter integrity than other measures, including those provided 

by diffusion tensor imaging. 

Future Directions 

 The relationship between white matter volume and measures of cognitive functioning in 

this sample warrants additional investigation. Rather than using a single, whole-brain measure of 

white matter volume, future research may investigate the possible differential effects of white 

matter volume by hemisphere or smaller brain regions. The current study utilized mean 

activation intensities (expressed as beta values) to measure compensatory activation. Future 

research may also include volumetric quantification of significant task-related voxels in ROI to 

measure this construct. This approach is well-suited for examination of unexpected recruitment, 

rather than the compensatory increases in intensity examined in the current study. 

 A better understanding of factors that may influence compensatory activation processes 

in healthy adults may aide future research. For example, sociological and cultural factors such as 

education, occupational complexity, social activity, and physical exercise have been linked to 

maintenance of cognitive function in aging (Katzman, 1993; Stern, 2012). However, the effects 

of these factors on non-aged, healthy adults are, understandably, less well-known and 

understudied. 
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 Future research may also include measurement of brain deactivations as a variable of 

interest when assessing potential compensatory effects in WM. For instance, a bilateral “default 

network” of anterior and posterior cortices has been described that is most active at rest and 

relatively deactivated during task performance, presumably because its suppression enables 

successful cognitive performance (Raichle et al., 2001). As the current study found no evidence 

of compensatory activity linked to a CPS index of ability and presumed effort, the inclusion of 

default network regions may capture compensatory WM N-back brain activation after 

performance has been controlled. 
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APPENDIX A 

 

Table 1 

 

Descriptive Information of Study Participants (N = 1,051) and Performance on Cognitive 

Tests 

 M SD Min Max 

Age (years) 28.77 3.70 22 37 

Education (years) 14.95 1.77 11 17 

Handedness 66.05 44.20 -100 100 

Sex     

  Male 494 (46%)    

  Female 580 (54%)    

CPS 103.01 19.91 45.31 149.30 

WM-acc (%) 83.49 10.70 50 100 

WM-rt (ms) 966.30 142.00 559.63 1477.20 

DCCS 102.42 9.87 57.79 122.65 

Notes. Assessment of handedness is scaled such that -100 = completely left-handed and 100 = 

completely right-handed. CPS = Cognitive Processing Speed measure via the NIHTB-CB 

Pattern Comparison Task; WM-acc = Accuracy on 2-back task; WM-rt = Median reaction 

time on 2-back task; DCCS = NIHTB-CB Dimensional Change Card Sort task, measure of 

cognitive flexibility. 
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Table 2 

 

Clusters of Significant Activation Response to the 2-back Relative to the 0-back 

Hemi Region Size in Voxels X Y Z 

R Middle Frontal Gyrus 4135 -35 -26 37 

B Posterior Parietal 4109 -10 56 48 

L Middle Frontal Gyrus 3718 35 -22 36 

B Supplemental Motor Area 1710 -1 -22 45 

R Cerebellum 594 -36 61 -29 

L Cerebellum 488 26 68 -30 

L Insula 503 36 -20 1 

R Insula 484 -37 -21 1 

B Posterior Cingulate Cortex 306 -9 -48 31 

Notes. B = Bilateral; L = Left; R = Right. Coordinates reported in center of mass Talairach 

coordinates, RAI orientation. 
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Table 3 

 

Correlational Relationships of Cognitive Processing Speed, Working Memory Accuracy and 

Reaction Time, a Separate Measure of Executive Functioning, and White Matter Brain Volume 

 1 2 3 4 5 

1. CPS --     

2. WM-acc .28** --    

3. WM-rt -.30** -.24** --   

4. DCCS .41** .31** -.22** --  

5. White Matter 

Volume 

-.02 -.02 -.02 .10** -- 

Notes. CPS = Cognitive Processing Speed; WM-acc = Accuracy on 2-back task; WM-rt = 

Median reaction time on 2-back task; DCCS = NIHTB-CB Dimensional Change Card Sort 

task. Results of relations between neurocognitive measures and white matter volume are 

partial correlations controlling for the effect of intracranial volume. Values represent Pearson r 

correlation coefficients. 

*p < .05 
**p < .01 
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Table 4 

 

Mean Intensity of Activation Effects of 2-back versus 0-back by Region of Interest 

 Mean SD 

Left PFC 0.57 0.31 

Right PFC 0.38 0.23 

Left PPC 0.47 0.30 

Right PPC 0.52 0.35 

Notes. Values reflect partial beta weights. PFC = Prefrontal cortex; PPC = Posterior parietal 

cortex 
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Table 5 

 

Multiple Regression Analyses Predicting Left Prefrontal Cortex Working Memory Brain 

Activation (2-back versus 0-back) 

Model Variable B SEB R2 ∆R2 

1 Education -.02 .04   

 WM-acc .00 .01 .00 .00 

2 Education -.02 .04   

 WM-acc .00 .01   

 White Matter Volume -1.95E-.008 .00   

 CPS .00 .00 .00 .00 

Notes. WM-acc = Accuracy on 2-back WM task; CPS = Cognitive Processing Speed. 
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Table 6 

 

Multiple Regression Analyses Predicting Right Prefrontal Cortex Working Memory Brain 

Activation (2-back versus 0-back) 

Model Variable B SEB R2 ∆R2 

1 Education .00 .00   

 WM-acc .00 .00 .00 .00 

2 Education .00 .00   

 WM-acc .00 .00   

 White Matter Volume -3.74E-.007 .00   

 CPS .00 .00 .01 .00 

Notes. WM-acc = Accuracy on 2-back WM task; CPS = Cognitive Processing Speed. 
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Table 7 

 

Multiple Regression Analyses Predicting Left Posterior Parietal Cortex Working Memory Brain 

Activation (2-back versus 0-back) 

Model Variable B SEB R2 ∆R2 

1 Education .01 .01   

 WM-acc .00 .00 .00 .00 

2 Education .01 .01   

 WM-acc .00 .00   

 White Matter Volume 1.802E-007 .00   

 CPS .00 .00 .01 .00 

Notes. WM-acc = Accuracy on 2-back WM task; CPS = Cognitive Processing Speed. 
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Table 8 

 

Multiple Regression Analyses Predicting Right Posterior Parietal Cortex Working Memory 

Brain Activation (2-back versus 0-back) 

Model Variable B SEB R2 ∆R2 

1 Education .00 .00   

 WM-acc .00 .00 .00 .00 

2 Education .00 .00   

 WM-acc .00 .00   

 White Matter Volume -1.69E-01 .00   

 CPS .00 .00 .00 .00 

Notes. WM-acc = Accuracy on 2-back WM task; CPS = Cognitive Processing Speed. 
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APPENDIX B 

 

Figure 1. Example items of the NIH Toolbox-Cognition Battery Pattern Comparison Task (from 

Carlozzi et al., 2014). 
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Figure 2. Example items of the NIH Toolbox-Cognition Battery Dimensional Change Card Sort 

task (from Zelazo et al., 2014). 
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Figure 3. Clusters of significant brain response to the FMRI WM 2-back relative to 0-back 

 

Notes. Axial view: z-plane coordinates = 2, 26, 50. Sagittal view: x-plane coordinates = -42, 0, 

32. 

 

 

 

 

 


