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Abstract

In an effort to analyze the baryon spectrum in low and medium energies a unitary isobar

model (UIM) is proposed. To build the proposed model, we first exhibit the full complex

structure of the meson-baryon reaction amplitude in coupled channels approach. By doing

so, the reaction amplitude is expressed in a form that may be viewed as the generalization of

the well-known Watson’s theorem in photoproduction. Furthermore, the reaction amplitude

is decomposed into the so-called pole and non-pole parts, corresponding basically to the res-

onant and background contributions. This allowed us to construct a UIM in which unitarity

is maintained automatically. As the first application of the proposed UIM, we performed

simultaneous analyses of the reactions πN → πN , πN → ηN , πN → ωN , and γN → ωN .

In total our model required 8 isospin T = 1/2 and 4 isospin T = 3/2 resonances to describe

the πN elastic scattering. We found a significant contribution from N(1520)3
2

−
, N(1700)3

2

−
,

and N(1680)5
2

+
to both pion and photon-induced ω production. Besides those 3 resonances

we saw a large contribution from N(1675)5
2

−
in γN → ωN reaction. In πN → ηN reaction

apart from the well known dominant contribution of the N(1535)1
2

−
for low energies, we also

found a significant contribution of the N(1680)5
2

+
.
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Chapter 1

Introduction

“The miracle is that the universe

created a part of itself, to study itself,

and that this part in studying itself

finds the rest of the universe in its own

natural inner realities.”

John C. Lilly
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Quantum Chromodynamics (QCD), a non-Abelian gauge theory, is the theory of strong

force that describes the interactions of colored quarks and gluons based on a SU(3)c symmetry

group. The QCD Lagrangian is given by

LQCD =
∑
q

ψ̄q,a(iγ
µ∂µδab − gsγµtCabACµ −mqδab)ψq,b −

1

4
GA
µνG

A µν , (1.1)

where ψq,a is the quark-field spinor of flavor q, color charge a, and mass of mq. The color

index a runs from 1 to Nc = 3 indexing the three elements of a color triplet. This color

triplet transforms under the fundamental representation of SU(3)c.

The ACµ represents the gluon field of type C with C running from 1 to N2
c − 1 = 8. The

gluon fields, ACµ , belong to the adjoint representation of the SU(3)c group, and tCab are the

generators of that group. The field tensor GA
µν is given by

GA
µν = ∂µAAν − ∂νAAµ − gsfABCABµACν

[
tA, tB

]
= ifABCt

C , (1.2)

where fABC are the structure constants of the SU(3)c group.

The QCD coupling constant gs, or αs = g2
s

4π
, is a function of exchange energy, figure (1.1);

this energy dependence not only results in asymptotic freedom of quarks at high-energies,

but also at low energies results in the confinement of quarks and gluons inside color-neutral

hadrons. Although the underlying QCD Lagrangian eq. (1.1) and the implied asymptotic

freedom (106; 59) are well established, our understanding of the confinement property of

QCD is not yet complete. The major objective of Hadron Physics is to understand the

confinement phenomenon. For this the study of hadron spectroscopy is imperative.

To access the baryon spectrum, over the past few decades many facilities across the

world have been accumulating observables in light-meson production reactions. Most data

on πN elastic and inelastic scattering was collected in 1960s and 1970s. In recent years,

facilities such as Jefferson Lab in the United States, the MAinz MIcrotron (MAMI), the

GRenoble Anneau Accelerateur Laser (GRAAL), the ELectron Stretcher Accelerator (ELSA)

in Eroupe, and the 8 GeV Super Photon Ring (SPring-8) in Japan have been collecting cross

section and polarization observables in light-meson photo- and electro-production reactions.
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Figure 1.1: A summary of αs measurements as a function of energy scale Q. Figure from
PDG19.

These observables are being collected for a variety of different final states such as πN , ππN ,

ηN , η′N , ωN , KΣ, KΛ, etc. Analyzing such a large experimental data set in order to extract

information on the baryon resonances requires a reaction theory capable of quantitatively

describing these meson-baryon reaction processes. In the next section, we briefly overview

some of the fundamental theories and phenomenological models used to extract and identify

resonances.

1.1 Overview of theoretical models

One of the main goals of recent experiments at energies up to 2.5 ∼ 3 GeV is to study

the baryon spectrum. Both these new experiments and the theoretical models bear on our

search for and our understanding of baryon resonances. In the following we discuss some of

theoretical models describing strong interactions in the non-perturbative regime.
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1.1.1 Lattice QCD

An ab-initio approach to hadron physics is provided by Lattice QCD (LQCD) (142). In

this approach, QCD is formulated on a 4-dimensional discrete Euclidean space-time lattice

with no additional parameters or field variables resulting in a gauge invariant approach.

LQCD retains the fundamental character of QCD. The discrete space-time lattice acts as a

non-perturbative regularizer scheme and the lattice spacing, a, provides an ultraviolet cutoff

rendering the quantum field theory finite. At the limit of a → 0 the continuum theory is

recovered.

The properties of both ground (89) and excited state (129; 50; 51) hadrons can be studied

using LQCD calculations. Despite the success of LQCD in determining hadron resonance

spectrum, a continuing problem for LQCD is an unphysical pion mass, around 300 MeV

(104) as oppose to observed mass of 138 MeV, that enters in calculations.

1.1.2 Effective field theory

The assumption that high energy dynamics would not affect the dynamics of the low energy

interactions give rise to one of the most powerful tools, effective field theories (EFT)s, in

studying the non-perturbative regime of QCD. The free parameters of EFTs, also known

as low energy constants (LEC), capture the omitted dynamics of the underlying theory at

higher energies. The values of LECs can not be directly inferred from the underlying theory,

instead they can be determined phenomenologically. As Weinberg stated (138) the goal is

then to find the most generalized Lagrangian that preserves all the symmetries of the full

theory but involves only the low energy degrees of freedom.

1.1.3 Chiral perturbation theory

At the “chiral limit”, mq = 0, the QCD Lagrangian exhibits chiral symmetry besides all the

other obvious symmetries such as Lorentz invariance, SU(3)c gauge invariance, etc. Consid-

ering that the masses of the three lightest quarks, u, d, and s, are not that far off from the

4



chiral limit, one can construct an effective field theory that invokes a perturbative expansion

in the quark mass. Such an effective field theory is called Chiral perturbation theory (ChPT).

In order to construct such a theory, we start by decomposing the quark field into its chiral

components

=
1

2
(1− γ5)ψ +

1

2
(1 + γ5)ψ = PLψ + PRψ = ψL + ψR, (1.3)

where for simplicity we have suppressed the flavor and color indices.

Inserting Eq. (1.3) into Eq. (1.1) we have

LQCD = L0
QCD + LmQCD + . . .

L0
QCD = iψ̄L /DψL + iψ̄R /DψR −

1

4
GA
µνG

A µν

LmQCD = ψ̄LMψR + ψ̄RM†ψL, (1.4)

where we introduced the covariant derivative D = ∂µ + igstAµ. Here ψ only collects the

lightest quarks ψT = (ψu, ψd, ψs) andM = diag(mu,md,ms) is the quark mass matrix. The

ellipse denotes the term for the higher mass quark, t, b, and c, Lagrangian and etc. L0
QCD is

invariant under the chiral flavor transformation U(3)L × U(3)R which can be rewritten as

U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A. (1.5)

Here we introduced vector transformation V = L + R and axial vector transformation A =

L−R. The Noether current associated with each part of this symmetry group is realized in

a different way. The U(1)V current, the quark number, is a conserved current of the standard

model. The U(1)A current is broken by quantum effects. And finally the currents associated

with chiral symmetry group SU(3)L × SU(3)R is explicitly broken by the quark masses, but

this should be a small effect.

In nature, the Chiral symmetry is realized in the Goldstone mode and as a consequence

“Goldstone bosons” appear. The 8 lightest pseudoscalar hadrons namely π±, π0, K±, K0,

K̄0, and η are indeed the Goldstone bosons. At energies well below 1 GeV, these bosons are

the only relevant degrees of freedom but a general formalism based on ChPT requires to

5



include baryons as well. Such a formalism can include the ground state baryons in form of

matter fields, a review of ChPT involving one or more nucleons can be found in Ref. (52; 25).

Chiral Lagrangian can be used in a variety of different approaches. For example, in Uni-

tarized Chiral Perturbation Theory (UChPT) one iterates a scattering kernel derived from

Chiral Lagrangian in a Bethe-Salpeter equation. Then Baryon resonances can be described

in S-waves. UChPT gives a complementary picture of these low-lying resonances (99; 87).

1.1.4 Quark model

In early 60s, Gell-Mann and, independently, George Zweig developed a model (55; 149) which

successfully organized the large number of lighter hadrons into a meson octet, a baryon octet,

and a baryon decuplet; Figure (1.2) shows these multiplets. At the time, Gell-Mann predicted

the existence of Ω− to complete the spin-3/2 baryon decuplet. Later, Ω− was experimentally

observed in 1964 (19). Based on the underlying flavor SU(3) or the Eightfold Way of quark

model, the constituent quarks of the lighter hadrons are of three flavors, up (u), down (d),

and strange (s). Although these 3 quark flavors were initially successful in describing the

properties of lighter hadrons, the discovery of new hadrons suggested the existence of 3

additional heavy flavors, charm (c), bottom (b), and top (t).

Despite the success of quark model in organizing hadrons and predicting their quantum

numbers, unfortunately it can not account for the mass discrepancy between the hadron’s

valence quarks’ combined masses and the observed mass of the hadron. For example the

lightest meson, the pion π, has a mass of ≈ 135 MeV which is almost 14 times the mass of

its valence quarks. This difference in mass is contained in the quark-gluon ‘soup’ inside the

hadron. At low and medium energy scattering experiments, this internal structure of hadrons

is inaccessible to probe and one needs a non-perturbative description of the strong interaction

to study such scatterings. It happens that within this energy range a rich spectrum of excited

states, resonances, have been observed.
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Understanding the excitation spectrum of hadrons is an essential part of a universal

description of the non-perturbative regime of QCD. Quark model predictions of lighter res-

onances are in good agreement with experimental observations but when it comes to the

higher mass resonances the evidence for such predictions is missing, as such this problem

has been referred to as “missing resonance problem” (79). Partially this problem arises

from the fact that not all resonances have a genuine three-quark structure. For example

the quark model prediction for the mass of the first positive parity nucleon resonance, the

Roper resonance N(1440) 1/2+, lies above the mass of the first negative parity resonance but

experimental observation revealed otherwise. This led to the interpretation that the Roper

resonance is generated dynamically from the meson-baryon interaction instead. Such obser-

vations combined with the fact that there are no active quark models concerned with the

decay width of resonances make more fundamental approaches the more attractive choice in

hadron spectroscopy.

1.1.5 Dynamical couple channel

Dynamical couple channel (DCC) approaches are valuable tools in extracting broad reso-

nances that are close in energy. These robust reaction theories are ideal specially at energies

above the first inelastic threshold where different reaction channels become available and the

coupling between them becomes more important. DCCs make use of effective Lagrangians

to define their scattering kernel V ; these kernels include meson exchange in t-channel and

baryon exchange via u-channel. Resonances are explicitly contained in s-diagrams but they

can also be dynamically generated. Dynamical generation of resonances is important in per-

ceiving the nature of different resonances such as the Roper resonance. In a recent paper (29),

Burkert and Roberts highlight the 5 decade effort in understanding the Roper resonance.

They shed light on a coherent picture connecting the Roper resonance with the nucleon’s

first radial excitation.

7



(a) (b)

(c)

Figure 1.2: (a) Meson octet, (b) Baryon octet, (c) Baryon decuplet.

DCC approaches guarantee unitarity via Lippmann-Schwinger equation and by employing

the full two body propagator in solving this equation, DCC approaches ensure analyticity

of the scattering amplitude as well. Analytic continuation of the amplitude provides the

opportunity to characterize baryon resonances by the poles and residues of S-matrix on

second Riemann sheet with less ambiguity (than the usual Breit-Wigner parametrization)

and model dependency.

Within the framework of DCC, multiple reactions can simultaneously be analyzed making

DCC approaches very well suited to shed light on the “missing resonances problem” since

resonances might couple to multiple channels.

8



1.1.6 K-matrix

Another approach to analyze and extract resonances from scattering data is K-matrix. Sim-

ilarly in this method one solves Lippmann-Schwinger equation with the difference that the

real part of the two body propagator is omitted. Even though the unitarity is still preserved

since the imaginary part of the propagator is present, neglecting the real part of the two

body propagator results in the loss of analyticity. This approximation means simplifying

Lippmann-Schwinger equation by reducing the integral equations to a set of algebraic ones.

This reduction is achieved by ignoring the real part of the two-body propagator. Further-

more ignoring the real part of two body propagator means only on shell intermediate states

are taken into account which reduces the contribution from multiple scattering processes.

Consequently this method is not capable of generating resonances dynamically and the lack

of analyticity renders pole extraction impossible. The technical simplicity and flexibility of

K-matrix approach makes it an efficient method to reproduce a large set of experimental

data.

Some of the prominent groups such as Bonn-Gatchina (7), Gießen (121), Kent State

University (123), GWU/SAID (143) rely on K-matrix approach and their variants for their

analysis.

1.1.7 Isobar model

Since many resonances are packed within a small energy region with overlapping and large

widths, studying their properties usually requires a large set of experimental data and a

very robust method based on a coupled-channel approach. As a results such analysis can

be very computationally expensive. Isobar models overcome that problem by decomposing

the reaction amplitude into a resonance and a background contribution, corresponding to

the pole and non-pole parts of the T -matrix amplitude. The simplicity of isobar models

arises from the parametrization of the background by some smooth functions of energy and

parametrization of the resonance amplitude by Breit-Wigner forms. Despite their simplicity

9



they can capture many properties of the resonances. This simplicity usually comes at the

cost of violating the unitarity. Many efforts have been made to recover unitarity (14; 44;

42; 82; 21; 97; 18; 56; 91; 35; 1) by imposing unitary conditions separately on resonance

and background contribution; this results in a rather involved constraint, specially on the

resonance amplitude. For example, the Mainz group recently has introduced a constant

complex phase to each of their resonance amplitudes in their etaMAID isobar model (132).

It should be noted that, in principle, the complex phase is an energy-dependent function

containing proper threshold behaviors.

1.2 Unitary Isobar model

Among the theoretical models mentioned above, DCCs are the most suited for identifying and

extracting resonances states in the low energy region due to first the broad and overlapping

nature of these states and second the coupling of resonances to multiple channels. The cost

of such a robust method is its computational inefficiency. In order to capture the robustness

of DCC without its computation cost, we proposed a couple channel approach in which

we explicitly expose the full complex phase structure of the pole and non-pole parts of the

reaction amplitude. This complex phase structure captures the channel opening dynamics,

allowing us to maintain unitarity and analyticity for different levels of approximation. In

chapter 2 we give a detailed explanation of this proposed model.

10



Chapter 2

Complex phase structure of the meson-baryon T -matrix12

1Accepted by Physical Review D. Reprinted here with the permission of publisher.
2Shahab Razavi and K. Nakayama.
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Abstract: The full complex phase structure of the meson-baryon reaction amplitude in

coupled channels approach is investigated, including also the photon-baryon channel. The

result may be viewed as a generalization of the well-known Watson’s theorem. Furthermore,

the complex phase structure is exhibited for the pole and non-pole parts of the reaction

amplitude in such a way that it will serve as a convenient common starting point for con-

structing models with different levels of approximation, in particular, for building isobar

models where the basic properties of the S-matrix can be maintained. Such models should

be useful, especially, in coupled multichannel calculations, where a large amount of experi-

mental data are considered in resonance analyses, a situation encountered in modern baryon

spectroscopy. In particular, it is shown that the unitarity of the pole part of the T -matrix

arises automatically from the dressing mechanism inherent in the basic scattering equation.

This implies that no separate conditions are required for making this part of the resonance

amplitude unitary as it has been done in some of the existing isobar models.

2.1 Introduction

Baryon spectroscopy is an important part of the study of non-perturbative regime of QCD. So

far, most of the known baryon resonances have been identified in πN scattering experiments.

With recent progresses in this field, it is clear that a reliable resonance identification and

extraction of its properties from experimental spectra requires a consistent analysis of many

independent reaction processes. Coupled channels approach is the tool of choice for this

task. Indeed, reaction theories based on coupled channels approach have been developed at

various degrees of sophistication. Nowadays, such analyses in baryon spectroscopy involve

coupled multichannel calculations analyzing a large amount of experimental data in various

meson production channels. These data are being accumulated at major facilities world wide,

especially, in photoproduction reactions. The most sophisticated coupled channels approach

is that of Dynamical Coupled Channels (DCC) developed over many years (90; 68; 69; 67;

71; 72; 73; 74; 47; 48; 66; 111; 112; 110; 113). These calculations are quite involved and

12



it is customary to make some sort of approximations in order to keep such calculations

numerically more manageable. A common such approximation is the K-matrix approach

and its variations employed by some of the resonance analyses groups (9; 10; 6; 5; 7; 8; 122;

120; 30; 121; 88; 123; 144; 23; 58; 12; 143; 135; 118). A nice feature of the K-matrix approach

is that it reduces the original scattering equation to an algebraic equation while preserving

unitarity of the S-matrix. This feature enables incorporating a large amount of experimental

data in coupled multichannel analyses.

A particular variation of the K-matrix approach is the so-called isobar models, where

the reaction amplitude is decomposed into a resonance and a background contribution. Basi-

cally, they should correspond to the pole and non-pole parts of the T -matrix amplitude.

The background amplitude is usually parametrized by some smooth functions of energy

while the resonance amplitude is parametrized by Breit-Wigner forms. Isobar models are

practical and very economical in performing numerically demanding calculations, and are

often used in resonance analyses based on coupled channels calculations and also dealing

with a large amount of experimental data. Despite being simple, isobar models still cap-

ture many interesting properties of the resonances. One issue that arises in these models

is that unitarity is usually violated. There are many efforts to unitarize isobar models

(1; 35; 92; 57; 17; 98; 22; 83; 43; 45; 131; 14). There, the resonance and the background ampli-

tudes are unitarized separately and independently. This leads to a quite involved constraint

on the resonance amplitude in particular. One of the unitary isobar models used intensively

in the analyses of both the photo- and electro-production reactions is that of Mainz group

(43; 45; 131; 130). In their approach, the unitarization of the background amplitude is done by

solving the scattering equation for that amplitude. For the resonance pole amplitude, based

on Ref. (98), it introduces complex resonance coupling constants which are constrained by

imposing the unitarity condition independent from the background amplitude. Recently the

Mainz group has updated its etaMAID isobar model (132) by introducing a constant complex

phase to each of their resonance amplitudes. Note that, in principle, the complex phase is
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an energy-dependent function containing proper threshold behaviors. Complex phases in the

resonance coupling constants have been also introduced in the study of hadronic reactions

(see, e.g., Ref. (84)).

In the present work, we exhibit the full complex phase structure of the meson-baryon

T -matrix reaction amplitude in coupled channels approach. To this end, we first expose the

complex phase structure of the full reaction amplitude written in terms of the K-matrix and

the so-called generalized Watson’s factor. The result may be considered as a generalization

of the well-known Watson’s theorem in photoproduction (137). This helps us to expose, in a

second step, the full complex phase structure of the pole and non-pole parts of the reaction

amplitude which serves as a common staring point for introducing approximations to the

reaction amplitude with varying degrees of sophistication. The resulting form of the reaction

amplitude is such that the fundamental properties of the S-matrix, such as unitarity and/or

analyticity, can be maintained straightforwardly in different approximations. In particular,

we show how the unitarity of the pole part of the T -matrix arises automatically from the

dressing mechanism inherent in the basic T -matrix equation, and that, no separate conditions

are required for making this part of the resonance amplitude unitary as it has been done in

some of the existing isobar models.

This paper is organized as follows. In Sec. 2.2, we introduce the notation used throughout

this work for the sake of conciseness. In Sec. 2.3, we derive the full phase structure of the

meson-baryon reaction amplitude which is essentially a generalization of the Watson’s the-

orem. Based on this, the complex phase structure of the pole and non-pole parts of the

reaction amplitude is derived in Sec. 2.4. In Sec. 2.5, the phase structure of the photopro-

duction amplitude in one-photon approximation is derived. In Sec. 2.6, possible levels of

approximation to the full reaction amplitude are briefly discussed. A summary is given in

Sec. 2.7. For completeness, the phase-shift parametrizations of the T - and K-matrices as

well as of the generalized Watson’s factor are given in Appendix A. Since the decompo-

sition of the T -matrix into the pole and non-pole parts plays a central role in the present
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work, this decomposition is derived in Appendix B for both the meson-baryon and photopro-

duction reaction processes. Appendix C contains the explicit form of the dressed resonance

propagator in the case of the two resonance coupling.

2.2 Notation

Before starting the derivation of the complex phase structure of the meson-baryon reaction

amplitude, a remark on the notation used in the present work is in order.

The two-body reaction amplitude T obeys, in general, the Lippmann-Schwinger-type

scattering equation (also referred to as the T -matrix equation)

T = V + V GT , (2.1)

where V denotes the driving potential kernel, irreducible with respect to the “two-particle

cut” (116), and G stands for the two-body propagator. Note that the above equation is an

integral equation for operators in abstract space.

In momentum space, and in the coupled channels approach, the above equation becomes

3

Tν′ν(~q
′, ~q;E) = Vν′ν(~q

′, ~q)

+
∑
λ

∫
d3q′′Vν′λ(~q

′, ~q ′′)Gλ(~q
′′2, E)Tλν(~q

′′, ~q;E) . (2.2)

Here, ~q ′, ~q, and ~q ′′, denote the final, initial and intermediate two-particle relative momenta,

respectively. E stands for the total energy of the system. The indices ν ′, ν, and λ stand for

the final, initial and intermediate two-particle channels.

3The relativistic generalization of the scattering equation given by Eq. (2.2) - the so called Bethe-
Salpeter equation (116) - involving a four-dimensional momentum integration, may be reduced to
a three-dimensional integral equation of the form given by Eq. (2.2) in such a way to maintain
Lorentz covariance and elastic unitarity of the original reaction amplitude (34). This means that
Lorentz covariance can be also maintained in three-dimensional scattering equations, along with
the other basic properties of the S-matrix, such as unitarity and analyticity.
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The reaction amplitude given by Eq. (2.2) can be expanded in partial-waves as

〈S ′MS′ |Tν′ν(~q ′, ~q;E)|SMS〉 =

=
∑

iL−L
′
(S ′MS′L

′ML′ |JMJ)(SMSLML|JMJ)

× T JIS′Sν′ν L′L(q′, q;E)YL′ML′
(q̂′)Y ∗LML

(q̂)P̂I , (2.3)

where S, L, and J denote the spin, orbital angular momentum and total angular momentum,

respectively of the two-body initial state, while MS, ML and MJ stand for the corresponding

projection quantum numbers. The primed quantities refer to the corresponding quantum

numbers of the final two-body state. P̂I stands for the isospin projection operator which

projects the two-body state onto the total isospin state I. Ylml(p̂) stands for the usual spher-

ical harmonic function. Here, the argument p̂ is a short-hand notation for the polar (θ)

and azimuthal (φ) angles, i.e., p̂ = (θp, φp). The geometrical factor (j1m1j2m2|j3m3) is the

usual SU(2) Clebsch-Gordan coefficient. The summation in the above equation is over all

the quantum numbers appearing on the right-hand side and not specified on the left-hand

side of the equation.

The partial-wave amplitude T JIS
′S

ν′ν L′L(q′, q;E) in Eq. (2.3) can be extracted by inverting

that equation. We have

T JIS
′S

ν′ν L′L(q′, q;E) =
∑

iL
′−L
(

8π2

2J + 1

)(
2L+ 1

4π

) 1
2

× (S ′MS′L
′ML′ |JMJ)(SMSL0|JMJ) P̂I

×
∫ +1

−1

d(cos θq′)〈S ′MS′|Tν′ν(~q ′, ~q;E)|SMS〉

× Y ∗L′ML′
(θq′ , 0) , (2.4)

where, without loss of generality, the initial relative momentum ~q is chosen along the +z-axis

and the final relative momentum ~q ′ in the x-z plane. Similarly to Eq. (2.3), the summation

in the above equation is over all the quantum numbers appearing on the right-hand side and

not specified on the left-hand side of the equation.
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Inserting Eq. (2.3) into (2.2), yields the scattering equation for the partial-wave amplitude

T JIS
′S

ν′ν L′L(q′, q;E) = V JIS′S
ν′ν L′L(q′, q)

+
∑

S′′,L′′, λ

∫ ∞
0

dq′′q′′2V JIS′S′′

ν′λL′L′′(q
′, q′′)

×Gλ(q
′′2, E)T JIS

′′S
λν L′′L(q′′, q;E) . (2.5)

In the present work, we use the notation

Tα′α = Vα′α +
∑
β

Vα′βGβTβα (2.6)

to denote either Eq. (2.2) or (2.5) for the sake of conciseness. Accordingly, if the above

equation is to represent Eq. (2.2), the indices α′, α and β in the above equation stand for

the two-particle channel of the final, initial and intermediate states, respectively, and the

summation over β is to be understood as the summation over the intermediate two-particle

channels. On the other hand, if the above equation is to represent Eq. (2.5), then, the

indices α′, α and β specify, in addition to the two-particle channel of the final, initial and

intermediate states, respectively, also the corresponding two-body partial-wave states. Note

also that the reference to the two-particle relative momentum is completely suppressed in

the present notation, including its integration over the intermediate states.

The notation explained above is used throughout the present paper. In particular, the

main result of this work, given by Eqs. (2.66, 2.69), can be interpreted as given either in

plane-wave or in partial-wave basis.

2.3 Phase structure of the two-body T -matrix amplitude

To expose the phase structure of the two-body reaction amplitude, it is convenient to express

the T -matrix in terms of the K-matrix. We start with the T -matrix scattering equation

T = V + TGV = V + V GT , (2.7)
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where the two-body propagator G can, in general, be decomposed into the real and imaginary

parts

G = GR − iGI . (2.8)

In fact, the propagator involving stable particles is of the form (ε→ 0)

G =
1

E −H0 + iε
= P 1

E −H0

− iπδ(E −H0) , (2.9)

with P standing for the principal value part, while the propagator involving unstable particles

is of the form (90; 47) (Π = finite)

G =
1

E − h0 − Π

=
E −H0

(E −H0)2 + ΠI 2
− i ΠI

(E −H0)2 + ΠI 2
, (2.10)

where h0 denotes the unperturbed Hamiltonian involving the bare unstable particle and Π

is the self-energy of that unstable particle. H0 ≡ h0 + ΠR, with Π = ΠR − iΠI .

Inserting Eq. (2.8) into Eq. (2.7), we have (16)

T = K − iTGIK = K − iKGIT , (2.11)

with the K-matrix (K) given by

K = V + V GRK = V +KGRV (2.12)

which is Hermitian if the driving potential V is Hermitian.

For stable particles, using Eq. (2.9), Eq. (2.11) becomes

T (E) = K(E)− iπT (E)δ(E −H0)K(E) , (2.13)

which is the familiar equation for the T -matrix in terms of the K-matrix. Note that, for

unstable particles propagation (cf. Eq, (2.10)), the imaginary part of G – for which there is

no δ-function in energy – leads to a momentum loop integration over the intermediate state.
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Equation (2.7) – and consequently all the subsequent equations – represents actually

coupled equations in two-particle channels. Explicitly, for Eqs. (2.11,2.12), we have (using

the corresponding first equalities)

Tα′α = Kα′α − i
∑
β

Tα′βG
I
βKβα ,

Kα′α = Vα′α +
∑
β

Kα′βG
R
β Vβα , (2.14)

where the subscripts stand for the two-particle channels, i.e., α′ denotes the final two-particle

channel and α, the initial two-particle channel. β denotes the intermediate two-particle

channel and it is summed over all the channels (including the stable- and unstable-particles

propagations) to account for the possible couplings of the initial and final states to all other

channels. Note that, as explained in Sec. 2.2, the equations in (2.14) may be interpreted as

given either in plane-wave or in partial-wave basis. For the latter, the indices α′, α and β

specify also the partial-wave states, in addition to the two-particle channels. Note also that

the reference to the two-particle relative momentum is completely suppressed in the present

notation, including the momentum-loop integration over the intermediate states.

Usually, the integral equation for T in Eq. (2.14) is solved to yield

Tα′α =
∑
β

Kα′β

[
1

1 + iGIK

]
βα

. (2.15)

In the present work, however, we solve that equation as follows. First, we write it as

∑
β 6=α′

Tα′β(δβα + iGI
βKβα) = (1− iTα′α′GI

α′)Kα′α

∑
β 6=α′

Tα′βDβα = Nα′Kα′α , (2.16)

where we have defined

Dβ′β ≡ δβ′β + iGI
β′Kβ′β , (β′, β 6= α′)

Nα′ ≡ 1− iTα′α′GI
α′ . (2.17)
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Next, we multiply Eq. (2.16) throughout from the right by the inverse matrix of D to get

Tα′α = Nα′

∑
β′ 6=α′

Kα′β′D
−1
β′α . (2.18)

Finally, we insert the above result back into the equation for T in (2.14) to arrive at

Tα′α = Nα′

[
Kα′α − i

∑
β,β′ 6=α′

Kα′β′
(
D−1

)
β′β

GI
βKβα

]
= Nα′K̂α′α . (2.19)

The last equality in Eq. (2.19) defines K̂ to be

K̂α′α ≡ Kα′α − i
∑

β,β′ 6=α′
Kα′β′

(
D−1

)
β′β

GI
βKβα , (2.20)

which – unlike the K-matrix – is, in general, a complex quantity. Note that below the first

inelastic threshold, K̂ = K. Also, note that the explicit dependence on the channel α′ in

the intermediate state is absent in K̂α′α. This dependence is contained implicitly in the

K-matrices, Kij.

Inserting Eq. (2.19) into the definition of Nα′ in Eq. (2.17), yields

Nα′ = 1− iTα′α′GI
α′ =

1

1 + iK̂α′α′GI
α′

. (2.21)

Starting from the second equality in Eq. (2.11), it is straightforward to show that the

T -matrix can be also expressed as

Tα′α = ˆ̄Kα′αN̄α , (2.22)

where

N̄α ≡ 1− iGI
αTαα =

1

1 + iGI
αK̂αα

,

D̄β′β ≡ δβ′β + iKβ′βG
I
β , (β′, β 6= α)

ˆ̄Kα′α ≡ Kα′α − i
∑
β,β′ 6=α

Kα′β′G
I
β′

(
D̄−1

)
β′β

Kβα . (2.23)
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Equation (2.19) or (2.22) is the desired result: we have exhibited the full phase structure

of the T -matrix which is non-trivial in general due to the phase structure of K̂α′α, introduced

by the terms involving GI
βs in Eq. (2.20) or (2.23). For on-shell K̂αα, its phase structure can

be expressed simply in terms of the phase-shift and inelasticity of the elastic scattering

T -matrix as shown in Appendix A.

Note also that Eq. (2.19) or (2.22) is completely general and holds for fully off-shell

T -matrix. Hereafter, we refer to the factors Nα′ and N̄α defined in Eqs. (2.17,2.23) as the

generalized Watson’s factors. For completeness, we show how Watson’s theorem emerges

from these equations in the following Sec. 2.3.1, when the initial channel α corresponds to

the photon-baryon channel.

If we wish, combining Eqs. (2.19,2.22), the T -matrix can be expressed in a symmetric

form

Tα′α =
1

2

(
Nα′K̂α′α + ˆ̄Kα′αN̄α

)
. (2.24)

2.3.1 Two-channel case and Watson’s theorem

Confining now to the case of two channels problem, K̂α′α in Eq. (2.20) simplifies and

Eq. (2.19) takes the form

Tα′α = Nα′
[
Kα′α − iKα′βN̄KβG

I
βKβα

]
, (β 6= α′) (2.25)

with

N̄Kα ≡
1

1 + iGI
αKαα

. (2.26)

For a transition reaction, where α′ 6= α, Eq. (2.25) further reduces to

Tα′α = Nα′Kα′αN̄Kα . (2.27)

If the two channels considered involve only stable particles, then, in partial-wave basis,

Eqs. (2.25,2.27) are simple algebraic equations, where GI
β → ρβ after the momentum loop

integration with ρβ denoting the phase-space density. Moreover, if the on-shell T -matrix and
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the on-shell K-matrix can be parametrized in terms of phase-shifts and inelasticities as given

in Appendix A, we obtain from Eq. (2.27),

Tα′α =

{
1

2

(
ηα′e

i2δα′ + 1
)}

Kα′α

(
eiδα cos δα

)
, (2.28)

for the transition amplitude (α′ 6= α). Here, we have made use of Eqs. (A.4,A.5).

Equation (2.28) reveals the phase structure of the T -matrix amplitude explicitly in terms

of the phase-shifts for the transition amplitude in the case of a two-channel problem. It is

the analog of the well-known Watson’s theorem for photoproduction (137) in the case of

two-body hadronic reactions. The phase of the reaction amplitude is determined by both

the on-shell initial and final state interactions through the Watson’s factors N̄Kα and Nα′ ,

respectively. Note that, in Eq. (2.28), the effect of the channel openings is lumped entirely

into the final state interaction factor. We remind that, from Eq. (2.12), if V is Hermitian, so

is K and, together with time reversal invariance, Kα′α is either pure real or pure imaginary.

If we start with the T -matrix in the form given by Eq. (2.22), instead of Eq. (2.19) as

we have done above, we obtain an equivalent alternative form for the transition amplitude

(α′ 6= α),

Tα′α = Nα′Kα′αN̄α , (2.29)

with

NKα ≡
1

1 + iKααGI
α

. (2.30)

In terms of the phase-shift parametrization, Eq. (2.29) becomes

Tα′α =
(
eiδα′ cos δα′

)
Kα′α

{
1

2

(
ηαe

i2δα + 1
)}

. (2.31)

In contrast to Eq. (2.28), where the effect of the channel openings is lumped into the final

state interaction factor, here, this effect is lumped into the initial state interaction factor.

It should be mentioned that, strictly speaking, the two channels consideration of the

meson-baryon reaction processes applies only to πN charge-exchange scatterings, such as

π0p→ π+n. This is due to the fact that the lightest meson-baryon channel, apart from πN ,
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is the ηN channel which is already above the ππN threshold, leading to the presence of

an inelastic channel even when the isospin symmetry breaking of the strong interaction is

ignored.

In the case of meson photoproduction, Eq. (2.27) becomes (α′ 6= α = γ)

Tα′γ = Nα′Kα′γ N̄Kγ , (2.32)

where N̄Kγ = 1/(1 + iGI
γKγγ) is the Watson’s factor due to the γN initial state interaction.

In the one-photon approximation, due to the weakness of the electromagnetic interaction,

the Watson’s factor NKγ approaches unit since we may set Kγγ appearing in NKγ to zero.

Likewise, for the two-channel case, where one of the channels is the photon-baryon channel,

Nα′ = NKα′ in one-photon approximation. Equation (2.32), then, becomes

Tα′γ = NKα′Kα′γ =
(
eiδα′ cos δα′

)
Kα′γ , (2.33)

which is the usual form of Watson’s theorem for photoproduction (137). Equation (2.29)

yields the same result as above. Note that Watson’s theorem is a direct consequence of uni-

tarity and time reversal invariance of the S-matrix, in addition to the one-photon approxima-

tion assumption. Also, as is well known, in practice, ignoring the isospin symmetry breaking

of the hadronic interactions, Watson’s theorem applies to pion photoproduction below ππN

threshold.

2.4 Phase structure of the pole and non-pole meson-baryon T -matrix

In this section we exhibit the phase structure of the T -matrix in terms of the pole (T P ) and

non-pole (X ≡ TNP ) parts.

First, we recall that the full T -matrix given by Eq. (2.7) can be decomposed as (see,

Appendix B)

T = V + V GT

≡ T P +X , (2.34)
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where

X = U + UGX , (2.35)

with U ≡ V NP ≡ V − V P and

V P =
∑
r

|F0r〉S0r〈F0r| , (2.36)

where |F0r〉 and S−1
0r = E − m0r denote the bare meson-baryon vertex and bare baryon

propagator, respectively. The summation is over the resonances specified by index r.

The pole part of the T -matrix in Eq. (2.34) is (following the ket and bra notation used

in Ref. (61; 62))

T P =
∑
r′r

|Fr′〉Sr′r〈Fr| , (2.37)

where the dressed vertices read

|F 〉r′ ≡ (1 +XG) |F0r′〉 ,

〈F |r ≡ 〈F0r| (1 +GX) , (2.38)

and the dressed baryon propagator, Sr′r,

S−1
r′r = S−1

0r δr′r − Σr′r (2.39)

with the self-energy

Σr′r ≡ 〈F0r′ |G|Fr〉 . (2.40)

Note that the dressed baryon propagator in Eq. (2.39) couples resonances, so it is a matrix

propagator in resonance space. It’s structure is shown explicitly in Appendix C for the case

of a two-resonance coupling since, in practice, this is the maximum number of resonance

couplings in most of the cases.

Second, since the structures of the T - and K-matrix scattering equations are the same

(cf. Eqs. (2.7,2.12)), it is straightforward to decompose the K-matrix into the pole (KP ) and

non-pole (W ≡ KNP ) parts

K = V + V GRK

≡ KP +W , (2.41)
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where

W = U + UGRW , (2.42)

and

KP =
∑
r′r

|FKr′〉SKr′r〈FKr| . (2.43)

Here, the dressed vertices are given by

|FKr′〉 ≡
(
1 +WGR

)
|F0r′〉 ,

〈FKr| ≡ 〈F0r|
(
1 +GRW

)
, (2.44)

and the dressed baryon propagator by

S−1
Kr′r = S−1

0r δr′r − ΣKr′r , (2.45)

with the self-energy

ΣKr′r = 〈F0r′|GR|FKr〉 . (2.46)

Third, since the T -matrix can be expressed in terms of the K-matrix as given by

Eq. (2.11), which exhibits the same integral-equation structure as Eq. (2.7), except for the

appearance of the imaginary part of the meson-baryon propagator −iGI instead of the

full propagator G, it is straightforward to express the pole and non-pole T -matrices (cf.

Eqs.(2.34,2.35,2.37,2.38,2.39,2.40)) in terms of theK-matrix (cf. Eqs.(2.41,2.42,2.43,2.44,2.45,2.46)).

Then, the non-pole T -matrix X(≡ TNP ) given by Eq. (2.35) becomes

X = W − iXGIW = W − iWGIX . (2.47)

The pole part (T P ) is given by Eq. (2.37) with

|Fr′〉 ≡ (1− iXGI)|FKr′〉 ,

〈Fr| ≡ 〈FKr|(1− iGIX) , (2.48)

and the dressed propagator Sr′r expressed as

S−1
r′r = S−1

Kr′r − Σ̂r′r (2.49)
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where the self-energy Σ̂ is

Σ̂r′r ≡ −i〈FKr′|GI |Fr〉 . (2.50)

Writing the meson-baryon channel indices explicitly, we have, for Eq. (2.42),

Wα′α = Uα′α +
∑
β

Wα′βG
R
βUβα . (2.51)

For Eq. (2.47), we have,

Xα′α = Wα′α − i
∑
β

Xα′βG
I
βWβα

= Wα′α − i
∑
β

Wα′βG
I
βXβα , (2.52)

which can be solved to yield (from the first equality)

Xα′α = NX
α′ Ŵα′α , (2.53)

with

Ŵα′α ≡ Wα′α − i
∑

β,β′ 6=α′
Wα′β′

(
(DX)

−1
)
β′β

GI
βWβα , (2.54)

and

DX
β′β ≡ δβ′β + iGI

β′Wβ′β ,

NX
α′ ≡ 1− iXα′α′G

I
α′ =

1

1 + iŴα′α′GI
α′

. (2.55)

From the second equality in Eq. (2.52), it is also immediate that Xα′α can be expressed

as

Xα′α = ˆ̄Wα′αN̄
X
α , (2.56)

with

ˆ̄Wα′α ≡ Wα′α − i
∑
β,β′ 6=α

Wα′β′G
I
β′

(
(D̄X)

−1
)
β′β

Wβα , (2.57)
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and

D̄X
β′β ≡ δβ′β + iWβ′βG

I
β ,

N̄X
α ≡ 1− iGI

αXαα =
1

1 + iGI
α

ˆ̄Wαα

. (2.58)

Note that in the case the particles in channel α are stable (GI
α → ρα), N̄X

α = NX
α .

In the following, to exhibit the phase structure of the pole T -matrix, T P , we make use

of the dressed vertices and propagator as given by Eqs. (2.48,2.49,2.50). Writing the meson-

baryon channel indices explicitly, Eq. (2.37) becomes

T Pα′α =
∑
r′r

|Fr′〉α′Sr′r〈Fr|α . (2.59)

The dressed meson-baryon vertex |Fr′〉 (cf. Eq. (2.48)) becomes

|Fr′〉α′ ≡ |FKr′〉α′ − i
∑
β

Xα′βG
I
β|FKr′〉β

= NX
α′ |F̂Kr′〉α′ , (2.60)

where

|F̂Kr′〉α′ ≡ |FKr′〉α′ − i
∑
β 6=α′

Ŵα′βG
I
β|FKr′〉β . (2.61)

To arrive at the last equality in Eq. (2.60), Eqs. (2.55,2.53) have been used.

Analogously,

〈Fr|α ≡ 〈F̂Kr|αN̄X
α , (2.62)

where

〈F̂Kr|α ≡ 〈FKr|α − i
∑
β 6=α

〈FKr|βGI
β

ˆ̄Wβα . (2.63)

The self-energy given by Eq. (2.50) reads

Σ̂r′r = −i
∑
β

〈FKr′|βGI
β|Fr〉β

= −i
∑
β

〈FKr′|βGI
βN

X
β |F̂Kr〉β . (2.64)
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Then, inserting the above result into Eq. (2.49), we have for the full propagator,

S−1
r′r = S−1

Kr′r + i
∑
β

〈FKr′ |βGI
βN

X
β |F̂Kr〉β . (2.65)

Finally, making use of Eq. (2.45) and inserting Eqs. (2.60,2.62,2.65) into Eq. (2.59), and

combining with Eq. (2.53), we arrive at the result we are seeking

Tα′α = T Pα′α +Xα′α

=
∑
r′r

{
NX
α′ |F̂Kr′〉α′

(
1

(E −m0)I − ΣK + i
∑

β〈FK |βGI
βN

X
β |F̂K〉β

)
r′r

〈F̂Kr|αN̄X
α

}
+NX

α′ Ŵα′α .

(2.66)

where I stands for the identity matrix in resonance space. ΣK is given by Eq. (2.46).

The above equation exhibits the full phase structure of the T -matrix amplitude in terms

of the pole and non-pole parts. First of all, we note that the phase structure of the T -

matrix is determined by the branch points introduced in the amplitude due to the opening

of the meson-baryon channels. This is controlled by the availability of the phase space for a

given meson-baryon channel β encoded in the imaginary part of the corresponding meson-

baryon propagator GI
β. This quantity appears implicitly in many places in Eq. (2.66) and,

consequently, makes the phase structure of the T -matrix highly non-trivial in general. Note

that the Watson’s factor NX and all the quantities with “hat” in Eq. (2.66) involve GI

[cf. Eqs. (2.53,2.55,2.57,2.58,2.61,2.63)]. All other terms appearing in Eq. (2.66) are real

quantities and do not involve GI . We also recall that the dressed vertex |F̂K〉(〈F̂K |), as

well as the Watson’s factor NX(N̄X), are all expressed in terms of the quantity Ŵ ( ˆ̄W )

(cf. Eqs. (2.55,2.58,2.61,2.63)). The latter quantity is the non-pole T -matrix apart from

the Watson’s factor NX (cf. Eqs. (2.53,2.56)). This means that the dynamical effects on the

phase structure are determine by the non-pole part of the T -matrix (up to the corresponding

Watson’s factor), and that there is an intimate relationship between the phase structure of

the pole and non-pole parts of the T -matrix amplitude.
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In the following, we discuss the elastic scattering below the first inelastic threshold where

the phase structure of the T -matrix amplitude becomes much simpler. Here, we ignore the

resonance couplings for simplicity. We also assume a stable meson-baryon channel α and

consider the phase-shift parametrization of the on-shell non-pole T -matrix such that NX
α =

N̄X
α = eδ

X
α cos δXα , where δXα stands for the phase-shift of the non-pole T -matrix (X ≡ TNP ).

Then, in partial-wave basis, Eq. (2.66) reduces to

Tαα =
∑
r

{
eiδ

X
α gαr

1

E −Mr + iΓr
2

gαre
iδXα

}
+ eiδ

X
α W̃αα , (2.67)

where we have introduced the (suggestive) notations

gαr ≡ cos δXα |FK〉α,r ,

Γr ≡ 2ρα g
2
αr ,

Mr ≡ m0r + ΣKrr + tan δXα
Γr
2
,

W̃αα ≡ cos δXαWαα . (2.68)

Equation (2.67) exhibits, explicitly, the full phase structure of the elastic T -matrix amplitude

below the first inelastic threshold. Apart from the phase eiδ
X
α arising from the Watson’s factors

in the dressed vertices and propagator, there is also the same phase factor arising from the

Watson’s factor in the non-pole part of the amplitude. Note that the last term in Eq. (2.67)

is simply the statement of Watson’s theorem for the non-pole T -matrix X. Recall that W

is the non-pole part of the K-matrix and, as such, it is Hermitian if the non-pole driving

potential U ≡ V NP is.

Equation (2.66) is the main result of this section. It serves as a convenient starting point

for approximations one can make with varying degrees of sophistication. In particular, it

allows to keep track on the basic properties of the S-matrix in these approximations. Indeed,

Eq. (2.66) is being used by us in the construction of an isobar model in which unitarity is

automatically satisfied.
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2.5 Phase Structure of the Photoproduction amplitude

As shown explicitly in Appendix B, the gauge-invariant photoproduction amplitude in one-

photon approximation also admits a decomposition into the pole and non-pole parts. Thus,

we must be able to exhibit the complex phase structure of this amplitude in terms of the

corresponding pole and non-pole amplitudes, analogous to what has been done for the meson-

baryon T -matrix amplitude in the previous section. 4 Indeed, the meson photoproduction

amplitude can be obtained by simply considering the photon-baryon channel as an additional

channel in the coupled channels T -matrix equation of Eq. (2.34), i.e., all the results of

the previous sections apply to photoproduction as well. In terms of the coupled channels

formulation of the previous sections, the one-photon approximation means to ignore the

photon-baryon channel in the intermediate states, i.e, this channel appears only as the initial

state. Then, Eq. (2.66) leads to

Mµ
α′γ = MP µ

α′γ +Xµ
α′γ

=
∑
r′r

{
NX
α′ |F̂Kr′〉α′

(
1

(E −m0)I − ΣK + i
∑

β〈FK |βGI
βN

X
β |F̂K〉β

)
r′r

〈F̂ µ
Kr|γ

}
+NX

α′ Ŵ
µ
α′γ ,

(2.69)

where the initial meson-baryon channel α has been replaced by the photon-baryon channel

γ which appears only in the initial state. In particular, note that the Watson’s factor N̄X
γ =

1/(1 + iGI
γ

ˆ̄W µ
γγ)→ 1 in one-photon approximation. The superscript µ stands for the Lorentz

index of the photon polarization.

4Note that, to preserve gauge invariance of the decomposed photoproducton amplitude into
the pole and non-pole parts, we need to consider what to take for the non-pole driving potential
Uµ(≡ V NP µ) and for the bare photon coupling 〈Fµ0r|. They enter in the definition of Wµ and 〈FµKr|
in Eqs. (2.71,2.73), respectively. For example, in the field theoretic approach of Appendix B, the
bare coupling 〈Fµ0r| gets renormalized as given by Eq. (B.17). And the driving potential Uµ contains
additional terms compared to the usual u- and t-channel Feynman diagrams (cf. Eq. (B.20)).
These observations should be kept in mind when constructing (gauge-invariant) photoproduction
amplitude in the present approach.
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The quantity Ŵ µ
α′γ in Eq. (2.69) follows from Eq. (2.54). Explicitly, we have

Ŵ µ
α′γ ≡ W µ

α′γ − i
∑

β,β′ 6=α′
Wα′β′

((
DX
)−1
)
β′β

GI
βW

µ
βγ . (2.70)

where, from Eq. (2.51),

W µ
α′γ = Uµ

α′γ +
∑
β

Wα′βG
R
βU

µ
βγ . (2.71)

Note that the summations over the channels in the above two equations, and all the sub-

sequent equations in this section, exclude the photon-baryon channel in the intermediate

states, i.e., β, β′ 6= γ due to the one-photon approximation. This is to be understood for the

remainder of this paper.

The dressed photon vertex 〈F̂ µ
Kr|γ in Eq. (2.69) follows from Eq. (2.63):

〈F̂ µ
Kr|γ ≡ 〈F

µ
Kr|γ − i

∑
β

〈FKr|βGI
β

ˆ̄W µ
βγ , (2.72)

where, from Eq. (2.44),

〈F µ
Kr|γ ≡ 〈F

µ
0r|γ +

∑
β

〈F0r|βGR
βW

µ
βγ

= 〈F µ
0r|γ +

∑
β

〈FKr|βGR
βU

µ
βγ , (2.73)

and, from Eq. (2.57),

ˆ̄W µ
α′γ ≡ W µ

α′γ − i
∑
β,β′

Wα′β′G
I
β′

((
D̄X
)−1
)
β′β

W µ
βγ . (2.74)

It is straightforward to show that Eq. (2.69) reduces (as it should) to Watson’s theorem for

photoproduction below the first inelastic threshold (137). To this end, we realize that the first

term on the right-hand side of Eq. (2.69) is the pole part of the photoproduction amplitude

given by Eq. (B.23) as shown in Appendix B. This equation, in turn, can be recast in terms

of the pole and non-pole K-matrices (cf. Eq. (2.76)) as MP µ = NXKP µ−iT PGI(KP µ+W µ)

through the substitutions G → −iGI , V P µ → KP µ and V NP µ → KNP µ (≡ W µ). Then,
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below the first inelastic threshold, we have

Mµ
α′γ =

∑
r′r

{
NX
α′ |FKr′〉α′

(
1

(E −m0)I − ΣK + i〈FK |α′GI
α′N

X
α′ |FK〉α′

)
r′r

〈F̂ µ
Kr|γ

}
+NX

α′W
µ
α′γ

= NX
α′K

P µ
α′γ − iT

P
α′α′G

I
α′

(
KP µ
α′γ +W µ

α′γ

)
+NX

α′W
µ
α′γ

=
(
NX
α′ − iT Pα′α′GI

α′

) (
KP µ
α′γ +W µ

α′γ

)
=
(
1− iTα′α′GI

α′

)
Kµ
α′γ = Nα′K

µ
α′γ

= eδα′ cos δα′K
µ
α′γ , (2.75)

where we have also made use of Eqs. (2.70,2.72) and of Eq. (2.41) for photoproduction, i.e.,

Kµ
α′γ = KP µ

α′γ +W µ
α′γ (2.76)

with W µ
α′γ given by Eq. (2.71) and

KP µ
α′γ =

∑
r′r

|FKr′〉α′SKr′r〈F µ
Kr|γ . (2.77)

Recall that Kµ
α′γ is Hermitian if the driving term V µ

α′γ in Eq. (2.41) is.

Equation (2.69) is the main result of this section. Together with Eq. (2.66) of the previous

section, they may be used as the starting points in the construction of unitary isobar models.

This is done in the following sections.

Before leaving this section, a remark is in order. It is straightforward to show that if we

use the form of the non-pole T -matrix given by Eq. (2.53) for photoproduction,

Xµ
α′γ = NX

α′ Ŵ
µ
α′γ , (2.78)

instead of that given by Eq. (2.56), the full dressed photoproduction vertex 〈F µ
r |γ can be

expressed in the form (cf. Eq. (2.48))

〈F µ
r |γ ≡ 〈F

µ
Kr|γ − i

∑
β

〈FKr|βGI
βX

µ
βγ

= 〈F µ
Kr|γ − i

∑
β

〈FKr|βGI
βN

X
β Ŵ

µ
βγ , (2.79)
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instead of that form given by Eq. (2.62). Thus, one can replace the photon vertex 〈F µ
r |γ =

〈F̂ µ
Kr|γNX

γ = 〈F̂ µ
Kr|γ appearing in Eq. (2.69) by the form given in the above equation. Which

of the two forms to use depends on what one wants to do. In the full calculation, where

the channel couplings are fully taken into account, the form given by Eq. (2.79) would be

preferable numerically, for it involves Ŵ µ
βγ which requires the matrix inversion of the same

DX that enters in the calculation of the final state hadronic interaction part. In contrast,

〈F µ
r |γ = 〈F̂ µ

Kr|γ involves ˆ̄W µ
βγ that requires an independent matrix inversion of D̄X from that

for the final hadronic interaction. In an approximate calculation, however, as discussed in

the following sections, the form 〈F µ
r |γ = 〈F̂ µ

Kr|γ may be more suitable.

2.6 Possible approximations

The basic result of Sec. 2.4 given by Eq. (2.66) and of Sec. 2.5 given by Eq. (2.69) provide

a convenient starting point for possible approximations one can make with different levels

of sophistications. In Eq. (2.66), the three basic ingredients for possible approximations are

the non-pole K-matrix amplitude W (≡ KNP ) as given by the integral equation (2.51), the

dressed K-matrix resonance vertex |FKr′〉 (〈FKr|) given by Eq. (2.44) and the K-matrix

self-energy ΣKr′r given by Eq. (2.46). These involve an integration over the loop momentum

through the real part of the meson-baryon propagator GR
β . Note that all the ingredients,

the Watson’s factor NX , the dressed K-matrix vertex as well as the K-matrix self-energy,

entering in Eq. (2.66) are expressed in terms of W . W enters the K-matrix self-energy

through the dressed K-matrix vertex. The different approximations one makes on the basic

three ingredients just mentioned may be classified into few broad categories:

a) Unitary and Analytic Isobar Model (UAIM) : In this approach, the driving non-pole

term U in Eq. (2.51) is approximated by a phenomenological separable potential (see,

e.g., Ref. (94)) whose form allows to solve the integral equation for W in Eq. (2.51) ana-

lytically. The bare vertex |F0r′〉( 〈F0r|) is obtained either from a microscopic Lagrangian

or simply parametrized phenomenologically. Then, the momentum-loop integration in
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Eq. (2.44) is carried out analytically to obtain |FKr′〉(〈FKr|). ΣKr′r is obtained as given

by Eq. (2.46), also by performing the momentum loop integration analytically. This

model maintains unitarity and analyticity; the latter, by keeping explicitly both the

real and imaginary parts of the meson-baryon propagator. Of course, the adopted sep-

arable potential should be analytic. Note that the contribution due to the real part

of the meson-baryon propagator may lead to pole structures in the resulting reaction

amplitude in the complex-energy plane that would correspond to dynamically gener-

ated resonances (70; 100; 28).

b) Unitary Isobar Model (UIM) : Here, W and |FKr′〉(〈FKr|) are directly parametrized in

a completely phenomenological or semi-phenomenological manner, thereby avoiding to

solve the integral equation forW and the momentum-loop integration for |FKr′〉(〈FKr|).

Here, the self-energy ΣKr′r (cf. Eq. (2.46)) is also simply parametrized. In this model,

the analyticity of the original reaction amplitude is lost, because the momentum-loop

integrations involving the real part of the meson-baryon propagator in Eqs. (2.44,2.46,2.51)

are not performed. In general, ignoring the contributions arising from the real part of

the meson-baryon propagator violates analyticity, since the dispersion relation condi-

tion due to analyticity between the real and imaginary parts of the reaction amplitude

(119) will no longer be satisfied.

2.7 Summary

We have exposed the full complex phase structure of the meson-baryon T -matrix reaction

amplitude in the coupled channels framework. By exhibiting the complex phase structure of

the pole and non-pole parts of the T -matrix, we have achieved to express the reaction ampli-

tude in a form which suitably serves as a starting point for making approximations of varying

degrees of sophistication. In particular, it allows for approximations where the basic prop-

erties of the S-matrix, namely, unitarity and analyticity, can be maintained automatically.

Recall that in earlier works (98; 43; 45; 131) unitarity of the reaction amplitude in isobar
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models is implemented by imposing the unitarity condition on the resonance amplitude (pole

amplitude T P ), separately from the unitarity condition on the background amplitude (non-

pole amplitude X(≡ TNP )). In the present work no such additional condition is required.

Here, the unitarity of T P arises automatically from the dressing mechanism inherent in the

basic scattering equation (Eq. (2.7)). In the case of photoproduction, gauge invariance can

be satisfied as well. Furthermore, we have shown how the analog in meson-baryon reaction

of the well-known Watson’s theorem in photoproduction emerges in the present formulation.

Finally, we mention that calculations based on a coupled channels unitary isobar model

as described briefly in Sec. 2.6 will be reported shortly.
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Chapter 3

Pion and photon-induced reactions

In recent years, the interest in studying photoproduction of vector mesons, such as ω, ρ,

and φ, has been growing. The production of these vector mesons is particularly interesting

since they carry the same quantum numbers, JPC = 1−−, as the incoming photons and

therefore, they are expected to play an important role in photoproduction. At very high

energies, Eγ > 20 GeV, the photoporuction of vector mesons can be successfully described

as a diffractive process; photons convert to vector meson, which then scatters off the proton

by exchange of Pomerons (40; 41). Pomerons are virtual colorless objects that carry the

same quantum numbers, JPC = 0++, as the vacuum. However, at intermediate energies,

Eγ < 5 GeV, Pomeron exchange alone is no longer sufficient to describe the existing data

for ω photoproduction, and the authors of Ref. (126) suggested that the exchange of π and

f2-meson become the dominant contribution. At energies below 3 GeV, N∗ states strongly

contribute to the production of ω.

The interest, in general, in heavier meson production is not only directed toward the non-

strangeness sector, and an intense effort has been directed toward the search for hyperon

resonances with strangeness quantum number S = −1 via KΛ and KΣ photoproduction.

Furthermore, most known baryon states were discovered in elastic πN scattering (79). The

heavier meson productions are of main interest due to the opportunity they provide to search

for new baryon resonances that might have not been detected before because of their weak

coupling to πN final state (12).

In this effort, we have studied 4 reaction channels, πN → πN , πN → ηN , πN → ωN , and

γN → ωN , among which the production of ω-meson was of particular interest. Considering
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the 782.6 MeV mass of ω, these reactions provide a means of probing the possible missing

resonances in 2 GeV mass region, a region of resonance energy much less explored than

at lower mass resonance region. Besides, being an iso-scalar meson, ω-meson production

provides an “isospin filter”, guaranteeing no ∆∗ with T = 3/2 contribution, which simplifies

the already complex task of resonance extraction. The available data for pion-induced ω

production is sparse and of low precision, hence, the inclusion of high-statistics measurements

for photon-induced ω production is highly valuable in this analysis.

The amplitude for ω photoproduction off the proton is represented by 2× 2× 2× 3 = 24

complex numbers, 2 spin states of target nucleon, 2 spin states of the photon beam, 2

spin states of recoil nucleon, and 3 spin states of ω. By the virtue of parity conservation,

out of these 24 complex amplitudes, only 12 complex amplitudes or 24 real numbers are

independent. This means, in order to achieve a “complete experiment” (105) one needs 23

carefully chosen observables to be measured to fix the amplitude up to an overall arbitrary

phase. This is a challenging task and many collaborations are working toward collecting as

many of these observables as possible.

Earlier this year, first measurements of the double-polarization observables F, P, and

H in ω photo-production were reported (115). Besides these newly measured observables,

various collaborations reported cross section measurements (20; 139; 141; 127), spin-density

matrix elements (SDMEs) (139; 141), the beam asymmetry Σ (114; 3; 77; 136; 33), double

polarization observables E (49; 4) and G(49), and target asymmetry T (114) in this reaction.

Several attempts have been made to extract resonant contributions from ω photo-

production in the past, but they produced conflicting results (39; 3; 140; 96; 145; 101;

145; 134; 103; 122; 146; 95; 117; 15; 148). Using a quark model approach with an effective

Lagrangian developed in (148; 147), Zhao (145) found N(1720)3
2

+
and N(1680)5

2

+
have

the dominant contribution. Oh et al. (96) used the quark model by Capstick and Roberts

(31; 32) and reported that the dominant contributions are from a “missing” N(1910)3
2

+
state

(i.e., a state predicted by the constituent quark model but not observed experimentally) and
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a N(2080)3
2

−
state. Titov and Lee (134) showed the dominant resonant contribution comes

from N(1680)5
2

+
, while the next large contribution arises from N(1520)3

2

−
, N(1650)1

2

−
, and

N(1720)3
2

+
. In their calculation, they fixed the resonance couplings from the helicity ampli-

tudes with vector meson dominance assumption. Meanwhile Denisenko et al. (39), within

the the Bonn-Gatchina (BnGa) coupled channels partial-wave analysis, considered the con-

tribution of 12 N∗ states, along with their branching ratios, and determined the dominant

contribution near threshold was found to be from P13 partial-wave, which was primarily

identified with the sub-threshold N(1720)3
2

+
resonance. In (140), Williams et al., within

a partial-wave model, described differential cross section and spin density matrix elements

with a reasonable accuracy. They identified the dominant resonance states are N(1680)5
2

+

and N(1700)3
2

−
near threshold, as well as the N(2190)7

2

−
at higher energies. Analyzing only

the cross-section data, the Giessen group (103) found the ωN photo-production is dominated

by large N(1710)1
2

+
and N(1900)3

2

+
contributions. In a later analysis, with the inclusion of

the low-precision polarization data from SAPHIR, they found a strong contribution from

the N(1675)5
2

−
and N(1680)5

2

+
, while the effects of N(1520)3

2

−
and N(1950)3

2

−
states were

of minor importance. Within the frame work of constituent quark model approach, the

numerical calculation done by Zhao et al. (147; 148) showed that the resonance coupling of

N(2000)5
2

+
was larger than other resonances.

Most of these analyses only included cross section data and some of the older polarization

data with limited precision. Incorporating the new high precision polarization data in the

analysis imposes more stringent constraints on the model used, in particular, on the resonance

content. In this work, we included, in our analysis, all the cross section and polarization data

currently available.

This chapter is organized as follows. We present in Sec. 3.1 a brief description of the

unitary isobar model used in this work. In Sec. 3.2 the details of the database and fitting

techniques, together with the description of the observables achieved in the various reaction

channels is presented. In particular, we discuss the dominant contribution from partial-wave
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and resonance contributions in each reaction channel considered. Some technical details are

presented in appendices D and E.

3.1 Unitary Isobar Model

We construct our unitarized effective isobar model based on the results obtained in the

previous chapter. Our starting pint is the final form of the T -matrix amplitude, Eq. (2.66),

derived in previous chapter

Tα′α = T Pα′α +Xα′α

=
∑
r′r

{
NX
α′ |F̂K〉α′,r′

(
1

(E −m0)I − ΣK + i
∑

β〈FK |βGI
βN

X
β |F̂K〉β

)
r′r

〈F̂K |α,rN̄X
α

}
+NX

α′ Ŵα′α .

Time reversal invariance in conjunction with hermiticity implies that the driving poten-

tial U and consequently W should be be either pure real or pure imaginary. We start by

parametrizing W in Eq. (2.42) as a separable function of the modulus of the outgoing,

q′α′ ≡ |~q′α′|, and incoming, qα ≡ |~qα|, meson-baryon three-momenta.

Wα′α(q′α′ , qα) = h̄α′(q
′
α′)hα(qα) , (3.1)

where h is appropriately chosen to be a polynomial with respect to qα

h̄α′(q
′
α′) = Γα′

jmax∑
j=jmin

āj α′

(
q′α′

Λ

)(Lα′+j)

e
−λj α′

(
q′
α′
Λ

)2

,

hα(qα) = Γα

jmax∑
j=jmin

aj α

(qα
Λ

)(Lα+j)

e−λj α( qαΛ )
2

, (3.2)

where Γα′ (Γα) is equal to i (−i) when the α′ (α) channel has even parity, and is equal to 1

when the parity of channel α′ (α) is even. The overall sign of Γα′ × Γα, for α = α′, is chosen

by the fit to experimental data. aj α (āj α′) and λj α are real constant fit parameters and Λ is

a hadronic scale parameter which may be chosen to be Λ ∼ 1 GeV.

Second, the dressed resonance vertex |FK〉r(〈FK |r) is parametrized as a pure real or

pure imaginary function of the relative meson-baryon momentum involved at that vertex.
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Explicitly,

|FK(q′α′)〉α′ r′ = Γα′ ḡα′ r′

(
q′α′

Λ

)L′α
Fα′ r′(p

2
r) ,

〈FK(qα)|α r = Γα gα r

(qα
Λ

)Lα
Fα r(p

2
r) , (3.3)

with ḡα′ r′ , gαr, and Fα r(p
2
r) denoting the coupling constants and off-shell form factor, respec-

tively. They are to be adjusted to fit the data. p2
r stands for the four-momentum squared

of the off-shell baryon r at the three-point vertex. qα stands for the meson-nucleon relative

(three-) momentum in the channel α and Lα, the corresponding relative orbital angular

momentum. The off-shell form factor in the above equation is, in turn, parametrized as

Fα r(p
2
r) =

(
nΛ4

α r

nΛ4
α r + (p2

r −m2
0 r)

2

)n
. (3.4)

As mentioned in Sec. 2.3, the momentum integration involving the imaginary part of the

meson-baryon propagator GI
β for stable particles (cf. Eq. (2.9)) can be carried out trivially

such that

GI
β = πδ(E −H0β)

→ ρβ = πqβ
εβωβ
εβ + ωβ

Θ(E −mBβ −mMβ
) , (3.5)

with εβ ≡
√
q2
β +m2

Bβ
and ωβ ≡

√
q2
β +m2

Mβ
denoting the on-shell energies of the the baryon

and meson, respectively, in the channel β. mBβ (mMβ
) stands for the mass of the baryon

Bβ (meson Mβ), specified by the channel index β. qβ is the on-shell relative momentum of

the particles determined by E = εβ + ωβ. The last factor, Θ(E − mBβ − mMβ
), is a step

function (Θ(x) = 0 if x ≤ 0 and 1, if x > 0) indicating that below the β channel threshold,

ρβ vanishes identically.

Note that the ‘collapse’ of the momentum integration involving GI
β for stable particles

in channel β, turns the T -matrix equation in Eq. (2.66) into an algebraic equation with

respect to momentum variables. This is, however, not the case for GI
β associated with the

unstable particle channels (cf. Eq. (2.10)), where the momentum integration is present. The
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meson-baryon propagator Gβ for these channels are more involved (81), (47). In the present

application, to reduce computational complexity, we will make an additional approximation

to reduce the integral equations involving unstable channel propagators to algebraic ones.

To achieve this, we start with equations involving the momentum integration of GI
β for an

unstable channel β.

Iα′βα(p′α′ , pα) ≡
∫ ∞

0

p′′2dp′′ O
(1)
α′β(p′α′ , p

′′) GI
β(E, p′′) O

(2)
βα(p′′, pα) .

Here O(1) and O(2) stand for any of the quantities that multiply GI from the left and from

the right and are under the momentum integral. We approximate this integral with

Iα′βα(p′α′ , pα)→ O(2)
α′β(p′α′ , pβ) GIβ(E) O(1)

βα(pβ, pα) , (3.6)

where

GIβ(E) ≡
∫ ∞

0

p′′2dp′′ fβ(p′′)GI
β(E, p′′)fβ(p′′) ,

O(2)
α′β(p′α′ , pβ) ≡ O

(2)
α′β(p′α′ , pβ)f−1

β (pβ) ,

O(1)
βα(pβ, pα) ≡ f−1

β (pβ)O
(1)
βα(pβ, pα) , (3.7)

with

fβ(pβ) ≡ (pβ)Lβ e−λ̄β(
pβ
Λ )

2

. (3.8)

The parameter λ̄β in the above equation is chosen to be some averaged value of λj β appearing

in Eq. (3.2). pβ stands for the on-shell meson-baryon relative momentum in the channel β.

With the approximation given by Eq. (3.6), Eq. (2.66) becomes an algebraic equation

in momentum space even when unstable particle channels are present. Together with the

parametrizations of the non-pole part and dressed resonance vertex (cf. Eqs. (3.9,3.2,3.3,3.4)),

it defines our UIM. Of course, Eq. (2.66) is still a matrix equation in meson-baryon channel

space.

Analogously, for the photoproduction amplitude, we parametrize W µ
α′γ appearing in

Eq. (2.71) as follows
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W µ
α′γ(q

′
α′ , qγ) = h̄α′(q

′
α′)h

µ
γ(qγ) , (3.9)

where h̄ is parameterized exactly as in Eq. (3.2) while hµ is chosen to be a polynomial with

respect to c.m. energy E =
√
q2
γ +m2

N + qγ

hµγ(E) = Γγ
∑
j

gµj

(
E − Es
mN

)Lγ+j

e−λγ(E−Es) , (3.10)

where gµj and λγ are fit parameters, with Es being a suitable expansion point equal to

the hadronic channel threshold, e.q. Es = mN + mω in the case of ω photo-production.

Respectively the dressed photon vertex 〈F µ
Kr|γ in Eq. (2.73) is parametrized as follows

〈F µ
Kr(E)|γ = Γγ g

µ
r

(
E − Es
mN

)Lγ
e−λγ(E−Es) , (3.11)

where gµ r and λµ are fit parameters.

3.2 Results

3.2.1 Database and fit parameters

In this analysis, we consider 4 reaction channels, πN → πN , πN → ηN , πN → ωN , and

γN → ωN . The results of our fit together with the included experimental data are displayed

in figures 3.1 to 3.14(a). Some of the data sets that differ by only a few MeV in C.M. energy

are depicted in the same panel.

To extract resonance masses and widths, we determined the values of our UIM’s free

parameters, coupling constants aα and gα in Eqs. (3.9, 3.2, 3.3, 3.4, 3.8, 3.10, 3.11) and the

effective resonance masses, MR ≡ m0I −ΣK in Eqs. (2.66), by optimizing χ2 using MINUIT

on UGA Linux High Performance Computing (HPC) cluster called Sapelo2. Since the fitting

procedure is not very sensitive to the exact values of the cut off parameters in Eqs. (3.3, 3.8,

3.10, 3.11) as long as they are set to a reasonable value; as such, we set the cut of parameters

to 1 for all channels except for πN which is set to 1.5. We started our fitting procedure by

fitting the coupling constants to SAID partial-wave solution (143) for πN elastic scattering.
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Starting the fit by finding the coupling constants to reproduce SAID partial-waves guarantee

a good initial value for those couplings since each partial-wave can be fitted independently

while capturing the dynamics of πN → πN reaction. We then included 3 inelastic reactions

πN → ηN , πN → ωN , and γN → ωN at a later stage.

The combined study of these reactions provide us with a means to probe the resonance

states in the 2 GeV mass region, referred to as the third resonance region. The inclusion of

ω-meson photoproduction is of particular importance in probing the possible missing states

in the third resonance region which may couple to ωN channel and not to πN channel.

Besides the πN , ηN , ωN , and γN channels that are constrained by experimental data, we

also included σN , ρN , and π∆ channels which effectively account for the ππN intermediate

state.

3.2.2 Reactions

3.2.3 πN → πN

We included the energy dependent partial-wave WI08 solution of SAID group (143) as an

input in our calculation. We considered partial waves up to H wave both for isospin 1/2 and

3/2. The results of our calculation for the partial-waves are displayed in Figs. 3.1 and 3.2.

The points displayed in these figures, however, show the single energy (energy independent)

solutions of Ref. (143).

The resonances required in our calculation to fit the partial-waves S11 to F15 matched

those reported in GWU/SAID SP06 solution (12) plus one extra D13 state, N(1700)3
2

−
, which

was mainly added to the our analysis to describe other reactions. However this was not the

case for higher partial-waves, F17 to H19. We could describe the WI08 solution (143) with

a good agreement without the need to include any resonances explicitly for those partial-

waves. We have tabulated all these resonances and their respective mass and total width in

Table 3.1.
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N Baryons Status Mass Γtot ∆ Baryons Status Mass Γtot
N(1535)1

2

−
**** 1539± 1 135± 5 ∆(1620)1

2

−
**** 1608± 2 140± 5

N(1650)1
2

−
**** 1693± 3 99± 8 ∆(1232)3

2

+
**** 1229± 3 99± 8

N(1440)1
2

+
**** 1446± 5 183± 3 ∆(1905)5

2

+
**** 1907± 1 169± 8

N(1720)3
2

+
**** 1704± 8 320± 17 ∆(1950)7

2

+
**** 1950± 1 170± 7

N(1520)3
2

−
**** 1508± 2 104± 7

N(1700)3
2

−
*** 1720± 3 259± 6

N(1675)5
2

−
**** 1669± 2 151± 11

N(1680)5
2

+
**** 1684± 6 109± 4

Table 3.1: List of isospin T = 1/2 and T = 3/2 resonances and their extracted masses and
widths.
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Figure 3.1: Reaction πN → πN isospin, T = 1/2, S− to H− waves. points: GWU/SAID
partial-wave analysis (single-energy solution) from Ref (143).
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Figure 3.2: Reaction πN → πN , isospin T = 3/2, S− to H− waves. points: GWU/SAID
partial-wave analysis (single-energy solution) from Ref (143).

For isospin T = 3/2 waves, our model required only the inclusion of 4, 4 star, resonances;

a list of which is tabulated in Table 3.1.

We should point out that in describing the second S11 resonance peak at w = 1650 MeV,

our model shifted the mass of N(1650)1
2

−
to a much higher value of 1693 MeV and a width

of 99 MeV. Despite this higher mass our results, qualitatively, are in very good agreement

with the SAID single energy solution as it can be seen in Fig. 3.1.

3.2.4 πN → ηN

The experimental data for πN → ηN reaction was mostly measured between 1960s and

1980s. These observables exhibit many inconsistencies among each other, as such, Clajus et

al. (128) scrutinized these inconsistencies and published their detailed analysis of different

experiments and the quality of the corresponding data. GWU/SAID group (11) and (125)
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also provided their ηN data selection analysis. Rönchen et al. (111) have done a detailed

analysis of all the available data and provided their systematical error assignment to different

experimental data which in this work we took advantage of. It is worth mentioning that the

differential cross section data from Brown et al. (27) is highly questionable at low energies

but at higher energies the data can be used if the beam momenta are lowered by 4% and

an additional 10% systematic error is added to data as mentioned in (111). In general due

the inconsistencies and unreliability of differential cross section data for πN → ηN reaction,

this data was entered our fit with a very low weight. For total cross section we included the

data that GWU/SAID analysis (11; 12) deemed reliable. Note that we did not include the

total cross section data in our fitting process.

The differential cross section results from our calculation alongside the experiential data

are shown in Fig. 3.3. As it can be seen the overall agreement between our calculation and

the experimental data is good.

The total cross section prediction from our calculation is shown in Fig. 3.4(a). In order to

display the influence of each partial-wave we have included a partial-wave decomposition of

total cross section in Fig. 3.4(b). As it can be seen the first peak in total cross section is mostly

due to S11 contribution, specifically N(1535)1
2

−
, to this reaction. Meanwhile, N(1680)5

2

+

is responsible for the second peak measured in total cross section. Besides the dominant

contribution from N(1535)1
2

−
and N(1680)5

2

+
, we have also noticed a minor contribution

from N(1440)1
2

+
, N(1650)1

2

−
, and N(1700)3

2

−
states.

3.2.5 πN → ωN

In a series of bubble and drift chamber experiments (26; 76; 75) the cross section of the

πN → ωN reaction was measured. Over the years these data resisted a consistent theoretical

description which were mainly caused by too large Born contributions (78). Consequently

these diagrams were either suppressed by very soft formfactors (133) or completely neglected

(107; 86). Due to these findings, a discussion was motivated in the literature over the methods
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Figure 3.3: Differential cross section for the reaction πN → ηN . Data: filled squares from
Ref. (108); filled circles from Ref. (24); empty circles from Ref. (93); empty triangles up from
Ref. (80); stars from Ref. (37); filled triangles up from Ref. (38); empty squares from Ref.
(109); filled diamonds from Ref. (54); empty diamonds from Ref. (27).
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Figure 3.4: Total cross section and partial-wave decomposition of total cross section for the
reaction πN → ηN . Data: filled squares indicate experiments accepted by the GWU/SAID
group (13); empty circles from Ref. (108).
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used by the experimentalists to extract the two-body cross section (63) and readjustment of

the published π−p→ ωn cross section data were performed (124; 133).

The experimentalists used an unusual method to cover the full range of the ω spectral

function (102; 64). Conventionally, to insure that all pion triples with invariant masses around

mω are taken into account to successfully cover the ω spectral function with a width of 8

MeV, one needs to perform an integration over at least one kinematical variable. The authors

of (26; 76; 75) fixed the outgoing neutron laboratory momentum and angle and integrated

over the incoming pion momentum, instead of fixing the incoming pion momentum and

integrating out the invariant mass of the pion triples directly. Despite these controversies

over the validity of the experimental data, here we assumed the experimental data is correct

as it was originally published but we entered these data with a lower weight in our analysis.

Due to the lack of any differential cross section data above 2.0 GeV, we included the total

cross section data for this reaction as well as the available differential cross section data at

lower energies in our fit. The results of our calculation for the differential cross section and

total cross section are presented in figures 3.5 and 3.6(a) respectively.

At and near the threshold, two resonances N(1680)5
2

+
and N(1700)3

2

−
play the most

important role in describing the hadronic production of ω meson; their role can be seen in

the dominance of F and D waves, respectively, in the partial-wave decomposition of total

cross section shown in figure 3.6(b). N(1440)1
2

+
and N(1520)3

2

−
also play a minor role in

this reaction as well. The photoproduction of ω is dominated byN(1520)3
2

−
and N(1700)3

2

−

and, even though, these two states play an important role in πN → ωN their significance in

this reaction is subdued.

3.2.6 γN → ωN

Different groups (SAPHIR, CLAS, A2 and CBELSA/TAPS) have reported differential cross

section and single and double spin polarization experimental data for γp → ωp reaction.

Although these data sets have been measured with high precision, some of the measured
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Figure 3.5: Differential cross section for the reaction πN → ωN . Data from Refs. (75; 76; 36).
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observables by different groups show inconsistencies. The cross section data from SAPHIR,

CLAS, and A2 collaborations are in good agreement with each other overall, but near the

threshold there are some noticeable inconsistencies. Despite a considerable effort to find

the source of these inconsistencies, in particular, between the CBELSA/TAPS and CLAS

Collaborations, no clear reason for the nature of these inconsistencies have been found (141).

Ideally, we should prune the data using statistical methods, but since at the moment a full

statistical analysis of the data is not feasible, we chose to include CLAS data, differential

cross section, SDMEs data, Σ, T , E, and recently reported P , F , and H in our analysis

as the input. Due to the sparse differential cross section data near forward and backward

angles specially at energies near the threshold, we also included A2 total cross section data

to further constrain our fit parameters at energies close to the threshold.

Considering the inconsistencies between the A2 and CLAS data near the threshold and

the contribution from many resonances, we could not achieve an accurate agreement between

our calculation and the data at energies near the threshold. The differential cross section

measurements from A2 are systematically smaller than those of CLAS from the threshold

up to 1820 MeV. This meant our model, besides a significant contribution from D13 wave,

required a stronger S-wave to describe the CLAS data. The effect of this S-wave contribution,

caused by the N(1535)1
2

−
resonance, opening was also seen in ηN cross section results. We

have considered the contribution from other resonances such as N(1710)1
2

+
, N(1875)3

2

−
,

N(1895)1
2

−
, and N(1900)3

2

+
but they didn’t help much to provide the required enhancement

in question. We have also considered the effects of ω meson width via a folding mechanism

and, also, the effect of energy bin spans reported by experimentalists by an averaging method.

Although, taking into account those effects reduced our underestimation of these observables,

it did not completely eliminate it.

On the other hand, if we instead considered the A2 cross section data, at lower energies

stronger S-wave contribution is required.
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The partial-wave decomposition of γN → ωN reaction is shown in Fig. 3.14(b). We

found a significant contribution from P13, D13, D15, and F15 while other partial-waves have

a smaller contribution. At the threshold the D13 has the most significant contribution and

S11 has the second largest contribution.

We found a significant contribution from N(1520)3
2

−
, N(1700)3

2

−
, N(1675)5

2

−
, and

N(1680)5
2

+
in the photoproduction of ω off proton. The inclusion of N(1535)1

2

−
is also

important specially near the threshold. N(1650)1
2

−
and N(1720)3

2

+
play less of a role

compared to other resonances in this reaction.

We also checked whether the inclusion of several heavier resonances, namely N(2040)3
2

+
,

N(2060)5
2

−
, N(2120)3

2

−
, N(2190)7

2

−
, and N(2250)9

2

−
, would improve the results but we could

not obtain any significant improvement in our description of ω meson production.

3.3 Summary

Following the proposed approximation for constructing a Unitary Isobar Model (UIM) after

exposing the complex phase structure of T -matrix in previous chapter, we proposed a UIM by

directly parameterizing W and dressed vertices |FK〉 and 〈FK | in a completely phenomeno-

logical manner. Subsequently, we performed an analysis of ω meson production in πN and

γN reactions within proposed model. We have also included η production in πN reaction and

πN elastic scattering. We have investigated the contribution of several resonance states with

masses up to 2250 MeV to these reactions. To fix the phenomenological resonance couplings,

a coupled-channel calculation has been carried out for final states (γ/π)N → πN , ηN , and

ωN . All the hadronic channels, πN , ηN , and ωN , plus ππN which is parametrized by σN ,

ρN , and π∆ were considered as intermediate states. Due to the weakness of the electromag-

netic interaction, we carried the photoproduction amplitude in one-photon approximation.

The resonance and background amplitude contribution couplings are constrained by exper-

imental reaction data for energies from the pion threshold up to 2.5 GeV. The extracted

widths and masses for resonances are in good agreement with PDG.
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Figure 3.8: Differential cross section for the reaction γN → ωN . Data was taken from
CBELSA/TAPS collaboration Ref. (141).
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Figure 3.10: (a) Beam target helicity asymmetries E for the reaction γN → ωN . Data dis-
played with squares is taken from CLAS collaboration Ref. (4), and those shown with circles
are from CBELSA/TAPS Collaboration Ref. (39). (b) Beam target helicity asymmetries F
for the reaction γN → ωN . Data from CLAS collaboration Ref. (115).
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Figure 3.11: (a) Beam target helicity asymmetries H for the reaction γN → ωN . Data
from CLAS collaboration Ref. (115). (b) Recoil polarization asymmetry P for the reaction
γN → ωN . Data from CLAS collaboration Ref. (115).
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Figure 3.12: (a) Spin Density Matrix Elements in the Adair frame for the reaction γN → ωN
as a function of cos θ. Data from CLAS collaboration Ref. (139). (b) Target asymmetry T
for the reaction γN → ωN . Data from CLAS Collaboration Ref. (114).
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Figure 3.14: Total cross section and partial-wave decomposition of total cross section for the
reaction γN → ωN . Data displayed with empty squares is from A2 collaboration at MAMI
Ref. (127), partially filled circles from CBELSA/TAPS collaboration Ref. (141), and black
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Our calculation shows the available data of the reaction channels studied can be satis-

factorily described by the 8 identified resonances in this work. It is worth mentioning that

although we have tried our best to look at a variety of combinations of resonances available

in this region, it was not feasible to consider all combinations. Perhaps taking advantage of

statistical methods, e.g. the least absolute shrinkage and selection operator (LASSO) (85),

would be beneficial in identifying, in a more statistically significant manner, contributing

resonance states in the spectrum to these reaction channels. Inclusion of more reaction chan-

nels such as γN → ηN and γN → η′N is required to further constrain the free parameters

in our model.
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Chapter 4

Summary and Outlook

There has been a multi decade effort to understand the QCD confinement and to this

date studying color neutral hadrons is our best means in this quest. For this the study

of a hadron spectroscopy is imperative and a robust and computationally efficient reaction

theory is needed to extract relevant information from experimental data. Over the years,

many theoretical models have been proposed to help us with extracting resonances infor-

mation from experimental data. Dynamical coupled-channel models (DCC) can capture the

coupling of different reaction channels and describe the complicated nature of overlapping

and broad resonances at the high computational cost. On the other hand models such as

K-matrix approaches are computationally efficient but lack the machinery to generate res-

onances dynamically and violate analyticity. Isobar models are based on coupled-channel

approach and very effective in handling a large set of experimental data. In isobar models

the reaction amplitude is decomposed into a resonance and a background contribution, cor-

responding to the pole and non-pole parts of the T -matrix amplitude. The simplicity of

these models arises from the parametrization of the background with some smooth func-

tion of energy and parametrization of the resonance amplitude by Breit-Wigner forms. This

simplicity usually comes at the cost of violating the unitarity.

In this work, we proposed a unitary isobar model (UIM) in which unitarity is maintained

automatically. To build the proposed model, we have exposed the full complex phase struc-

ture of the meson-baryon T -matrix reaction amplitude in a coupled channels framework. This

could be viewed as a generalization of the well-known Watson’s theorem in photoproduction

(137). Exposing the complex phase structure of the pole and non-pole parts of the T -matrix,
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enable us to build computationally efficient and robust reaction amplitude by introducing

approximations with varying degrees of sophistication while easily maintaining the funda-

mental properties of S-matrix, such as unitarity and/or analyticity. In particular, we show

how the unitarity of the pole part of the T -matrix arises automatically from the dressing

mechanism inherent in the basic T -matrix equation, and that, no separate conditions are

required for making this part of the resonance amplitude unitary.

As the first application, we performed simultaneous analyses of the reactions πN →

πN , ηN , ωN , and γN → ωN within the framework of the proposed UIM. We identified the

relevant resonances to achieve an overall good description of the observables. This description

required 8 isospin T = 1/2 and 4 isospin T = 3/2 resonances.

An improvement of this work would be the approximation of the driving non-pole term

U in Eq. (2.51) by a phenomenological separable potential (see, e.g., Ref. (94)) whose form

allows to solve the integral equation for W in Eq. (2.51) analytically. The bare vertex |F0〉r′(

〈F0|r) is obtained either from a microscopic Lagrangian or simply parametrized phenomeno-

logically. Then, the momentum loop integration in Eq. (2.44) is carried out analytically

to obtain |FK〉r′ (〈FK |r). ΣK r′r is obtained as given by Eq. (2.46), also by performing the

momentum loop integration analytically. This will results in a model that not only requires

no separate conditions to preserve unitarity, but also it maintains analyticity, to the extent

that the adopted separable potential is analytic.

We can also reduce the number of phenomenological parameters required in this analysis

by approximating either the driving non-pole term U or the dressed non-pole, W , part of

K-matrix by Feynman diagrams.
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Appendix A

Phase-shift parametrization

In this appendix, we give the phase-shift parametrization of the Watson’s factors Nα and

N̄α defined in Eqs. (2.17,2.23) as well as of the on-shell K̂αα defined in Eq. (2.20). Here,

we confine ourselves to stable particles only and consider the channels whose on-shell elastic

scattering T -matrix amplitude in partial-wave basis can be parametrize in terms of the

phase-shift (δα) and inelasticity (ηα) as

ραTαα =
i

2

(
ηαe

i2δα − 1
)
, (A.1)

with ρα denoting the (phase-space) density of state in the channel specified by the index α.

Then, inserting Eq. (A.1) into Eqs. (2.17,2.23), we have for the Watson factor, 1

Nα = N̄α = 1− iραTαα =
1

2

(
ηαe

i2δα + 1
)
. (A.2)

Inserting the above two equations into Eq. (2.19), and solving for K̂αα, we obtain

K̂αα = − 1

ρα

2ηα sin 2δα + i(1− η2
α)

1 + η2
α + 2ηα cos 2δα

. (A.3)

This result reveals a very simple phase structure of the on-shell K̂αα in terms of the

phase-shift and inelasticity of the elastic scattering T -matrix amplitude.

Below the inelastic threshold (ηα = 1), Eq. (A.3) reduces to

K̂αα = Kαα = − sin 2δα
ρα (1 + cos 2δα)

= − 1

ρα
tan δα , (A.4)

and, as it should, one recovers the phase-shift parametrization of the on-shell K-matrix Kαα

(valid even above the inelastic threshold) which is a pure real quantity.

1Note that, for a stable particles channel β, GIβ = πδ(E −H0β)→ ρβ after the momentum loop

integration.
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Inserting the phase-shift parametrization of the on-shell K-matrix into Eq. (2.26), yields

NK α = N̄K α = eiδα cos δα . (A.5)

In complete analogy to the phase-shift parametrization of the on-shell elastic T -matrix

amplitude (cf. Eq. (A.1)), if we assume the corresponding phase-shift parametrization of the

on-shell elastic non-pole T -matrix (X ≡ TNP ) in Eq. (2.35) to be

ραXαα =
i

2

(
ηXα e

i2δXα − 1
)
, (A.6)

then, the corresponding Watson’s factors NX
α and N̄X

α defined by Eqs. (2.55,2.58) become

NX
α = 1− iραXαα =

1

2

(
ηXα e

i2δXα + 1
)

= N̄X
α . (A.7)

For the on-shell Ŵαα, we obtain

Ŵαα = − 1

ρα

2ηXα sin 2δXα + i(1− ηXα 2)

1 + ηXα
2 + 2ηXα cos 2δXα

, (A.8)

and below the inelastic threshold (ηXα = 1), it reduces to

Ŵαα = Wαα = − sin 2δXα
ρα (1 + cos 2δXα )

= − 1

ρα
tan δXα . (A.9)
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Appendix B

Pole and non-pole decomposition of the T -matrix reaction amplitude

Although the pole and non-pole decomposition of the meson-baryon T -matrix reaction ampli-

tude is widely used in the literature (see, e.g., (2; 90)), due to its central role in the present

work, its derivation is provided in this Appendix. We will also decompose the photoproduc-

tion amplitude starting from the gauge-invariant amplitude obtained from the field theoretic

considerations (61). In this Appendix, the reference to two-particle channels are suppressed

for the sake of not overloading with unessential notations in the derivation.

B.1 Meson-baryon T -matrix reaction amplitude

The meson-baryon T -matrix obeys the Lippmann-Schwiger-type scattering equation

T = V + V GT . (B.1)

It can be recast into the form

T = T P + TNP , (B.2)

with

TNP = V NP + V NPGTNP , (B.3)

where V NP stands for one-nucleon irreducible potential (the non-pole part of V ), i.e.,

V NP = V − V P , (B.4)

with the one-nucleon reducible potential V P (the pole part of V ) given by

V P =
∑
r

|F0r〉S0r〈F0r| . (B.5)
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In the above equation, |F0r〉 denotes the bare vertex and S0r, the bare baryon propagator

for a given bare resonance r, including the nucleon (r = N).

Below, we show how the pole T-matrix, T P , in Eq. (B.2) can be expressed in a compact

form. For this purpose, let us start from Eqs. (B.1,B.2,B.3,B.4) to express T P as

T P =
(
1 + TNPG

)
V P + T PGV

T P (1−GV ) =
(
1 + TNPG

)
V P

T P =
(
1 + TNPG

)
V P (1−GV )−1

=
(
1 + TNPG

)
V P (1 +GT )

=
(
1 + TNPG

)
V P
[(

1 +GTNP
)

+GT P
]
.

(B.6)

Inserting Eq. (B.5) into Eq. (B.6), we have

T P =
∑
r

{
|Fr〉S0r〈Fr|+ |Fr〉S0r〈F0r|GT P

}
, (B.7)

with the dressed vertex defined as

|Fr〉 ≡
(
1 + TNPG

)
|F0r〉 ,

〈Fr| ≡ 〈F0r|
(
1 +GTNP

)
,

(B.8)

Multiplication of Eq. (B.7) by 〈F0r′ |G from the left gives

〈F0r′ |GT P =
∑
r

{
Σr′rS0r〈Fr|+ Σr′rS0r〈F0r|GT P

}
∑
r

Σr′rS0r 〈Fr| =
∑
r

(
S−1

0r δr′r − Σr′r

)
S0r〈F0r|GT P ,

(B.9)

where the last equality is a simple rearrangement of the first equality together with the

introduction of the self-energy matrix

Σr′r ≡ 〈F0r′ |G|Fr〉 . (B.10)
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Defining the dressed propagator matrix

S−1
r′r ≡ S−1

0r δr′r − Σr′r , (B.11)

we have, from Eq. (B.9),

∑
r′r

Skr′Σr′rS0r〈Fr| =
∑
r′r

Skr′S
−1
r′rS0r〈F0r|GT P

= S0k〈F0k|GT P . (B.12)

Inserting the above result back into Eq. (B.7), we have

T P =
∑
r

{
|Fr〉S0r〈Fr|+ |Fr〉

∑
r′l

SrlΣlr′S0r′〈Fr′|
}

=
∑
rr′

|Fr〉
{
δrr′S0r′

+
∑
l

Srl
(
S−1

0l δlr′ − S
−1
lr′

)
S0r′

}
〈Fr′|

=
∑
rr′

|Fr〉Srr′〈Fr′ | .

(B.13)

B.2 Photoproduction reaction amplitude

Following the field theoretic approach of Haberzettl (61), the gauge-invariant photoproduc-

tion amplitude in the one-photon approximation can be expressed as

Mµ = V µ + TGV µ, (B.14)

with µ denoting the Lorentz index of the photon polarization and

V µ = m̃µ
s +Mµ

u +Mµ
t +mµ

KR + UµG|FN〉 , (B.15)

where Uµ stands for the exchange current which arises from the coupling of the photon to

V NP ; mµ
KR stands for the sum of the bare Kroll-Ruderman contact current arising from the

direct coupling of the photon to the bare vertex |F0r〉 appearing in Eq. (B.5); Mµ
x (x = u, t)
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denotes the x-channel (tree-level Feynman diagram) contribution and, m̃µ
s stands for the

s-channel bare current. The latter is given by

m̃µ
s =

∑
r

|F0r〉S0r〈F̃ µ
0r| , (B.16)

where 〈F̃ µ
0r| is defined as

〈F̃ µ
0r| ≡ 〈F

µ
0r|+ m̄µ

KRrG|FN〉 , (B.17)

with 〈F µ
0r| denoting the bare rNγ vertex and, m̄µ

KRr, the bare Kroll-Ruderman term for a

given resonance r in mµ
KR with the meson leg reversed, i.e., NMγ → r.

Now, analogous to Eq. (B.4), we decompose V µ in Eq. (B.15) as

V µ = V Pµ + V NPµ , (B.18)

where

V Pµ ≡ m̃µ
s =

∑
r

|F0r〉S0r〈F̃ µ
0r| , (B.19)

and

V NPµ ≡Mµ
u +Mµ

t +mµ
KR + UµG|FN〉 . (B.20)

Inserting Eqs. (B.2,B.18) into Eq. (B.14), we have

Mµ = V Pµ + V NPµ + (T P + TNP )G(V Pµ + V NPµ)

= MPµ +MNPµ , (B.21)

where

MNPµ ≡ V NPµ + TNPGV NPµ , (B.22)

and

MPµ ≡ V Pµ + TNPGV Pµ + T PG(V Pµ + V NPµ) . (B.23)

Now, using Eqs. (B.8,B.19),

V Pµ + TNPGV Pµ =
∑
r

|Fr〉S0r〈F̃ µ
0r| . (B.24)
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Similarly, using Eqs. (B.10,B.13,B.19),

T PG ( V Pµ + V NPµ) =

=
∑
rr′

|Fr〉Srr′
[
〈Fr′|G

∑
l

|F0l〉S0l〈F̃ µ
0l|

+〈Fr′|GV NPµ
]

=
∑
rr′l

|Fr〉Srr′
[
Σr′lS0l〈F̃ µ

0l|+ δr′l〈Fl|GV NPµ
]
.

(B.25)

Inserting Eqs. (B.24,B.25) into Eq. (B.23), and with help of Eq. (B.11), we have

MPµ =
∑
rr′l

|Fr〉Srr′
[
(S)−1

r′lS0l〈F̃ µ
0l|+ Σr′lS0l〈F̃ µ

0l|

+δr′l〈Fl|GV NPµ
]

=
∑
rr′l

|Fr〉Srr′
[ {

(S)−1
r′l + Σr′l

}
S0l〈F̃ µ

0l|

+δr′l〈Fl|GV NPµ
]

=
∑
rr′

|Fr〉Srr′〈F µ
r′ | , (B.26)

where, in the last equality above, we have introduced the dressed electromagnetic vertex

〈F µ
r′ | ≡ 〈F̃

µ
0r′|+ 〈Fr′|GV

NPµ

= 〈F̃ µ
0r′|+ 〈F0r′ |GMNPµ . (B.27)

66



Appendix C

Two-resonance coupling

The resonance propagator appearing in the pole part of the T -matrix (cf. Eq. (2.66)) is,

in general, a matrix in resonance space. In most of the cases, there is only one resonance

for a given partial-wave state, in which case, the propagator reduces to a number. In other

cases, such as in the πN S11 partial wave, there can be two resonances close to each other

(S11(1535) and S11(1650)) which causes a considerable resonance coupling effect. For the

two-resonance case, the resonance propagator matrix S can be obtained explicitly. Following

Ref. (60), we have,

S−1 = S−1
0 − Σ =

E −m0 1 − Σ11 −Σ12

−Σ21 E −m0 2 − Σ22

 , (C.1)

and hence

S =

(
1

S−1
0 − Σ

)

=
1

|D|

E −m0 2 − Σ22 Σ12

Σ21 E −m0 1 − Σ11

 , (C.2)

where |D| stands for the determinant of S−1,

|D| = (E −m0 1 − Σ11)(E −m0 2 − Σ22)− Σ12Σ21 . (C.3)

Now, defining

µi ≡ m0 i + Σii and C2 ≡ Σ12Σ21 , (C.4)

the pole condition reads

|D| = (E − µ1)(E − µ2)− C2 = 0 , (C.5)
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producing two solutions

E → M± =
µ1 + µ2

2
± 1

2

√
(µ1 − µ2)2 + 4C2 . (C.6)

We then have

1

|D|
=

1

(E −M−)(E −M+)

=
1

(E −M−) + (E −M+)

[
1

E −M−
+

1

E −M+

]
=

1

(E − µ1) + (E − µ2)

[
1

E −M−
+

1

E −M+

]
, (C.7)

where the equality M− +M+ = µ1 + µ2 has been used.

Equation (C.7) allows to write the propagator in the form

S =
R

E −M−
+

R

E −M+

, (C.8)

with the “residue” matrix R given by

R ≡

E−µ2

d
Σ12

d

Σ21

d
E−µ1

d

 ,
1

d
=

1

(E − µ1) + (E − µ2)
. (C.9)

If the resonance coupling is small enough, i.e., Σ12 ∼ Σ21 ∼ 0, then M± and R reduce to

M+ = µ1 , M− = µ2 , and R =

E−µ2

d
0

0 E−µ1

d

 , (C.10)

so that

S =

 1
E−µ1

0

0 1
E−µ2

 , (C.11)

as it should be.
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Appendix D

Two body propagators

We begin with the explicit form of the propagator Gα for α = σN channel. According to

Refs. (46), (47), the σN propagator Gα=σN given by Eq. (2.10) may be parametrized as

GσN(E, p) =
1

E −
√
m2
N + p2 −

√
m2

0 σ + p2 − Πσ(zσ, p)
, (D.1)

where m0 σ and Πσ(zσ, p) stand for the bare σ mass and σ self-energy, respectively. The

latter is given by

Πσ(zσ, p) =

∫ ∞
0

q2dq
Γ2
σππ(q, p)

zσ − 2
√
m2
π + q2 + iε

, (D.2)

with

zσ ≡ zσ(E, p) ≡ E −
(√

m2
0 σ + p2 −m0 σ

)
−
√
m2
N + p2 (D.3)

and Γσππ(q, p) denoting the σππ vertex in the ππ partial-wave state with l = 0 and

isospin T = 0. Here, we follow its definition as given in the PDG. It may be obtained from

the Lagrangian density1

Lσππ = gσππmπ~π(x).~π(x)σ(x) , (D.4)

yielding (46)

1This form of the Lagrangian violates the chiral symmetry constraint at low energy. A form that
satisfies the chiral constraint is Lσππ = (gσππ/mN )∂µ~π(x).∂µ~π(x)σ(x).
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Γσππ(q, p) =
gσππ

2π
(√

m2
0 σ + p2

) 1
2

√
3

(
mπ√
m2
π + q2

)
Fσππ(q2) . (D.5)

In the above equation, the form factor of of the form Fσππ(q2) = Λ2
σππ/(Λ

2
σππ + q2) has

been introduced in order to make the integral in Eq. (D.2) converge. The free parameters

of the model given above for calculating the σ self-energy Πσ in Eq. (D.2) are adjusted to

reproduce the ππ phase-shift δ00 (46).

Analogously, the ρN propagator is obtained from the σN propagator given above by

replacing all the quantities referring to the σ meson by the corresponding ones referring to

the ρ meson. The ρππ vertex, Γρππ, in the ππ partial-wave state with l = 1 and isospin T = 1

may be obtained from the Lagrangian density

Lρππ = −gρππ(∂µ~π(x)× ~π(x)).~ρµ(x) (D.6)

yielding (46)

Γρππ(q, p) =
gρππ

2π
(√

m2
0 ρ + p2

) 1
2

1√
3

(
q√

m2
π + q2

)
Fρππ(q2) . (D.7)

In the above equation, the form factor Fρππ(q2) = (Λ2
ρππ +m2

ρ)/(Λ
2
ρππ + 4(m2

π + q2)) has

been introduced. The parameters of the model are adjusted to reproduce the ππ phase-shift

δ11 (46).

Similarly, the π∆ propagator is given by (46)

Gπ∆(E, p) =
1

E −
√
m2
π + p2 −

√
m2

0 ∆ + p2 − Π∆(z∆, p)
, (D.8)

where m0 ∆ and Π∆(z∆, p) stand for the bare ∆ mass and ∆ self-energy, respectively.

The latter is given by

Π∆(z∆, p) =

∫ ∞
0

q2dq
Γ2

∆Nπ(q, p)

z∆ −
√
m2
π + q2 −

√
m2
N + q2 + iε

, (D.9)

with
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z∆ ≡ z∆(E, p) ≡ E −
(√

m2
0 ∆ + p2 −m0 ∆

)
−
√
m2
π + p2 (D.10)

and Γ∆Nπ(q, p) denoting the ∆Nπ vertex in the πN partial-wave state with l = 1 and

T = 3/2. It may be obtained from the Lagrangian

L∆Nπ =
f∆Nπ

mπ

∆̄µ(x)T †.∂µ~π(x)N(x) + h.c. , (D.11)

yielding (46)

ΓΓNπ(q, p) =
f∆Nπ

2πmπ

q√
6

( √
m2
N + q2 +mN√

m2
N + q2

√
m2
π + q2

) 1
2

F∆Nπ(q2) . (D.12)

In the above equation, the form factor of the form F∆Nπ(q2) = (Λ4
∆Nπ + m4

∆)/(Λ4
∆Nπ +

(
√
m2
π + q2 +

√
m2
N + q2)4) has been introduced. Here, the parameters of the model are

adjusted to reproduce the πN phase-shift δ33 (46).
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Appendix E

Observables

We start by connecting the dimensionless meson-baryon amplitude τ (143) to the partial

wave amplitude T -matrix defined in Eq. (2.4),

τJIS
′S

ν′ν L′L = −π√ρν′ρν T JIS
′S

ν′ν L′L, ρν =
kνEνwν
W

(E.1)

where W is the c.m. energy and kν , Eν , and wν are on-shell three-momentum, baryon energy,

and meson energy respectively of the initial or final meson-baryon channel ν.

In order to define other observables in terms of reaction amplitude Eq. (2.2), we first

define a set of coordinated independent mutually orthogonal unit vectors n̂i (i = 1, 3)

n̂3 ≡ k̂ , n̂2 ≡
k̂ × q̂
|k̂ × q̂|

, n̂1 ≡ n̂2 × n̂3 . (E.2)

In the Center-of-Momentum (c.m.) frame where ~k + ~p = ~q + ~p′ = 0 the cartesian coordinate

system {x̂, ŷ, ẑ} is given by

{x̂, ŷ, ẑ} = {n̂1, n̂2, n̂3}(c.m.) , (E.3)

where the subscript (c.m.) indicates that {n̂1, n̂2, n̂3} is calculated in c.m. frame. Similarly

in the lab frame where ~p = 0 we have

{x̂L, ŷL, ẑL} = {n̂1, n̂2, n̂3}(lab) . (E.4)

Then using these coordinate independent unit vectors, the reaction plane is defined as (n̂1×

n̂2)-plane with n̂2 as its normal vector.

In photo-production reactions, the incoming real photon has two independent polarization

states. We specify the two states of a linearly polarized photon by ~ε‖ and ~ε⊥ where ~ε‖
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(~ε⊥) stands for the polarization vector parallel (perpendicular) to the reaction plane. More

generally, the rotated linearly polarized photon states ~ε‖′ and ~ε⊥′ are obtained by rotating

(counter clockwise) ~ε‖ and ~ε⊥ about n̂3-axis by an angle φ,

~ε‖′ = cosφ ~ε‖ + sinφ ~ε⊥ ,

~ε⊥′ = − sinφ ~ε‖ + cosφ ~ε⊥ . (E.5)

The circularly polarized photon is specified by

~ε± ≡ ∓
1√
2

(
~ε‖ ± i~ε⊥

)
. (E.6)

Furthermore, for convince, we define projection operators P̂λ which specify the polar-

ization state of photons, P̂λ~ε ≡ ~ελ. It should be noted that P̂λ′P̂λ = δλ′λ and
∑

λ P̂λ = 1.

The projection operator P̂λ is associated with the Stokes vector ~P S (53) which specifies the

direction and degree of polarization of the photon. For example, P̂⊥ and P̂‖ correspond to

P S
x=n1

= +1 and P S
x=n1

= −1 respectively, while P̂± corresponds to P S
z=n3

= ±1. Also the

difference between two appropriate projection operators can be expressed in terms of the

Pauli spin matrices in photon helicity space, i.e., P̂⊥ − P̂‖ = σn1 and P̂+ − P̂− = σn3 .

The Lorentz invariant reaction amplitude is related to the T -matrix amplitude defined

in Eq. (2.3) by

M̂ν′ν(~q
′, ~q;E) = (2π)3/2

√
2Eν′
√

2wν′ Tν′ν(~q
′, ~q;E) (2π)3/2

√
2Eν
√

2wν (E.7)

where Eν (Eν′) and wν (wν′) are respectively on-shell baryon and meson energies of the

initial (final) meson-baryon channel ν (ν ′).

Given the Lorentz invariant reaction amplitude, M̂, below we define coordinated-

independent observables which are also Lorentz invariant. The cross section is defined

as

dσ

dΩ
≡ 1

4
Tr[M̂M̂†] , (E.8)

where the trace is over both the nucleon spin and photon polarization. The 1
4

in front is due

to the averaging over target-nucleon spin and the photon beam polarization.
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The single polarization observables, photon beam asymmetry, Σ, target nucleon asym-

metry, T , and recoil nucleon asymmetry, P , are defined as

dσ

dΩ
Σ ≡ 1

4
Tr[M̂(P̂⊥ − P̂‖)M̂†] ,

dσ

dΩ
T ≡ 1

4
Tr[M̂σn2M̂†] ,

dσ

dΩ
P ≡ 1

4
Tr[M̂M̂†σn2 ] . (E.9)

For double, beam-target, asymmetries, E, F , G, H, and P ′, we have

dσ

dΩ
E ≡ 1

4
Tr[M̂(P̂+ − P̂−)σn3M̂†]

= 2
1

4
Tr[M̂P̂+σn3M̂†]

= −2
1

4
Tr[M̂P̂−σn3M̂†] ,

dσ

dΩ
F ≡ 1

4
Tr[M̂(P̂+ − P̂−)σn1M̂†]

= 2
1

4
Tr[M̂P̂+σn1M̂†]

= −2
1

4
Tr[M̂P̂−σn1M̂†] ,

dσ

dΩ
G ≡ 1

4
Tr[M̂(P̂⊥′ − P̂‖′)σn3M̂†]

= 2
1

4
Tr[M̂P̂⊥′σn3M̂†]

= −2
1

4
Tr[M̂P̂‖′σn3M̂†] ,

dσ

dΩ
H ≡ −1

4
Tr[M̂(P̂⊥′ − P̂‖′)σn1M̂†]

= −2
1

4
Tr[M̂P̂⊥′σn1M̂†]

= 2
1

4
Tr[M̂P̂‖′σn1M̂†] ,

dσ

dΩ
P ′ ≡ 1

4
Tr[M̂σn2σn1M̂†] . (E.10)

In the above definition P̂‖′ and P̂⊥′ correspond to photon polarization given by Eq. (E.5)

with φ = π/4.

Lastly, the spin density matrix elements are defined as

ρiλλ′ ≡
1

4
〈λ|M̂σniM̂†|λ′〉 (E.11)
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for i = 0, ..., 3, where λ and λ′ stand for the helicity of the produced meson or baryon and

σ0 = 1 is the unit matrix.
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V., Süle, A., Sumachev, V. V., Szczepanek, T., Thoma, U., Trnka, D.,

Varma, R., Walther, D., Weinheimer, C., and Wendel, C. Beam asymmetries

in near-threshold ω photoproduction off the proton. Phys. Rev. D 78 (Dec 2008),

86



117101.

[78] Klingl, F. PhD thesis, University of Munich, 1998.

[79] Koniuk, R., and Isgur, N. Where have all the resonances gone? an analysis of

baryon couplings in a quark model with chromodynamics. Phys. Rev. Lett. 44 (Mar

1980), 845–848.

[80] Kozlenko, N. G., Abaev, V. V., Bekrenev, V. S., Kruglov, S. P., Koul-

bardis, A. A., Lopatin, I. V., Starostin, A. B., Draper, B., Hayden, S.,

Huddleston, J., Isenhower, D., Robinson, C., Sadler, M., Allgower, C.,

Cadman, R., Spinka, H., Comfort, J., Craig, K., Ramirez, A., Kycia, T.,

Clajus, M., Marusic, A., McDonald, S., Nefkens, B. M. K., Phaisangit-

tisakul, N., Prakhov, S., Price, J. W., Tippens, W. B., Peterson, J.,

Briscoe, W. J., Shafi, A., Strakovsky, I. I., Staudenmaier, H., Manley,

D. M., Olmsted, J., Peaslee, D., Knecht, N., Lolos, G., Papandreou, Z.,

Supek, I., Slaus, I., Gibson, A., Grosnic, D., Koetke, D., Manweiler, R.,

and Stanislaus, S. Measurement of the total and differential cross sections for the

reaction πp → ηn with the crystal ball detector. Physics of Atomic Nuclei 66, 1 (Jan

2003), 110–113.

[81] Krehl, O., Hanhart, C., Krewald, S., and Speth, J. What is the structure of

the roper resonance? Phys. Rev. C 62 (Jul 2000), 025207.

[82] Laget, J. On the longitudinal electromagnetic coupling of the . Nuclear Physics A

481, 4 (1988), 765 – 780.

[83] Laget, J. On the longitudinal electromagnetic coupling of the . Nuclear Physics A

481, 4 (1988), 765 – 780.
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