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Abstract

Phylogenetic trees are fundamental tools for studies in Evolutionary Biology, Population

Genetics, and Comparative Genomics. However, the algebraic and topological properties of

spaces of phylogenetic trees are, by and large, unexplored. The majority of contemporary

works are built under the infrastructure of BHV tree space, in which each phylogenetic tree

is represented as a point and the branch lengths as its coordinates. Despite the fundamental

role of the BHV space in phylogenetic inference, computational complexity of the geodesic

metric for the BHV space significantly limits its applications for studying algebraic and

topological properties of tree spaces. In this dissertation we propose a novel mathematical

framework for phylogenetic inference and demonstrate its applications in statistical inference

of phylogenetic trees.

This thesis includes two major parts. First, we develop a topological vector space V

in which the topology of a phylogenetic tree is defined as a linear map of V . We further

map phylogenetic trees with branch lengths to spaces of graphical-path vectors. We show

that there exists an isomorphism between phylogenetic trees and a polyhedral complex in

Euclidean space by this vectorization mapping. In addition, the topological vector space can

be metricized by the L2 norm.



In the second part, statistical properties of phylogenetic trees are studied in the context

of the corresponding metric space. Based on the vectorization of trees, we define a centroid

and variability measure for phylogenetic tree and propose an estimation method for the

mean tree. The estimator is inferred algebraically and demonstrated by a simulation study

as asymptotically normal distributed.

Index words: phylogenetic tree, BHV tree space, path distance, statistical inference
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Chapter 1

Introduction

Phylogenetic trees are tree-like mathematical graphs describing the evolutionary relation-

ships of a given collection of organisms. Phylogenetic trees have been fundamental tools

for understanding the evolution of research subjects of interest in various domains, such as

the spread of pathogen (Hillis and Huelsenbeck, 1994), speciation of mammals (Wu et al.,

2018), and even the development of a literary genre (Liu and Yu, 2020). As genetic data

become increasingly available, it is of great interest to develop novel phylogenetic models for

analyzing enormous amount of phylogenetic data generated by next-generation sequencing

techniques.

Contemporary phylogenetic analysis uses molecular sequencing data collected from

existing organism to infer the historical evolutionary trace of species. The basic idea is to

model nucleotide substitution by a continuous time Markov chain with a homogeneous rate

matrix. The uncertainty in some critical variables in reconstruction process gives rise to

several types of error in reconstructed phylogenetic trees. For example, it is widely realized

that di↵erent genetic sites may imply conflicting gene trees (Maddison 1997; Reid, 2014).

This makes the phylogenetic tree substantially a random variable. In addition, the choice of

substitution models may have misleading e↵ect on resulting trees (Buckley and Cunningham,

2002; Ho↵ et al., 2016). Moreover, the reconstruction methods exploited may have e↵ect on

the inferred trees (Liu et al., 2015; Weyenberg 2015). Such systematic uncertainty as well as

the estimation error results in the phenomenon that researchers are often faced with a set

of phylogenies. The potential incongruency in a set of phylogenetic trees motivates a sys-

tematic approach for analysis on tree sets, especially for comparison of trees. Conventional
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approaches such as summarizing a set of trees by a consensus tree discourage the statistical

inference on the set of trees.

The majority work on the analysis of a set of trees is constructed upon the Billera-Holmes-

Vogtmann (BHV) tree space (Billera et al., 2001). This tree space gives us a geometry view

on the non-Euclidean space of all rooted trees built on a given set of taxa. By setting the

geodesic distance in the BHV space, a series of classical statistical problems have been

studied. For example, Nye (2011) proposed a geometrical approach to PCA in BHV tree

space by constructing a geodesic principal path. Barden et al. derived the limiting behaviors

of sample Fréchet means in BHV tree space (Barden et al., 2014; Barden et al., 2018). Willis

(2017) developed a procedure to construct a confidence set based on the log-map function

(Barden et al., 2014) in the BHV space. However, the geodesic metric used in BHV tree

space brings the complexity on computation of trees.

Figure 1.1 depicts the BHV space of 4-taxon phylogenetic trees. In BHV tree space, each

tree is represented as a point in an orthant. The coordinates of the tree are characterized by

the lengths of its internal edges. The geodesic metric (Gromov,1987) exploited in this space

is the shortest path connecting trees in this space. For computation in this space, the prelim-

inary work is to determine the geodesic connecting the trees. Though each “orthant” can be

viewed as part of the real vector space, the geodesic connecting two trees in distinct orthants

steps over the orthant boundaries, which makes the computation di�cult. The search for the

shortest path between trees is an optimization problem. In a tree space with large trees, the

optimization algorithms will be quite complicated, given that the determination of direction

of each segment in the geodesic involves an optimization procedure. Several algorithms have

been developed to search for the geodesic e�ciently (Amenta et al., 2007; Kupczok et al.,

2008; Owen and Provan, 2011). In these algorithms, the first step is to advance multiple

paths joining the two trees. The construction of such paths is especially complicated for

trees residing in non-neighbour orthants (Monod, 2019). Most e�cient as it is, Owen and
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Figure 1.1: A portion of Petersen graph exhibiting how orthants associated with three adja-
cent 4-taxa trees graft.

Reprinted from Confidence Sets for Phylogenetic Trees, by A. Willis, 2017.

Provan’s algorithm is shown (Lin et al., 2017) that the dimension of the geodesics in the

algorithm is unbounded.

The di�culty in the computation of geodesics in BHV tree space is caused by the com-

plex topological structure of phylogenetic trees. To alleviate this di�culty, we propose an

alternative approach by mapping phylogenetic trees to a real vector space. We show that

there exists an isomorphism between phylogenetic trees and the topological space of pairwise

path vectors. Based on this representation, a tree metric is defined by the L2 norm in vector
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space. Following this representation, we map the phylogenetic trees to the corresponding

vectors. By exploring the structure of the corresponding vectors, we show that the image of

' is also a polyhedral complex, or in a tropical geometry view, a tropical variety (Speyer

and Sturmfels, 2004). Under this infrastructure, we construct a classical statistical frame-

work on trees based on the vectors. Specifically, we define the mean tree and tree variance

as the measure of centroid and variability in trees. Based on the correspondence between

trees and vectors, we propose a sample mean tree whose corresponding vector is closet to

the vector corresponding to the mean tree as an estimation of mean tree. In addition, we

show that our sample mean tree has satisfying limiting properties, which makes the sample

mean tree defined under this vectorization infrastructure as a good estimator. This statistical

application supports the significance of vectorization of trees.

Comparing with other studies on this topic, the significance of our work is that we vec-

torize the tree at the very first step. So, instead of using the geometry metric in BHV

tree space to construct the statistical work, we conduct analysis on trees by manipulating

the corresponding vectors. The analytical advantage of this approach is quite clear, as the

topological ambiguity is addressed quantitatively in real vector space. In addition, this con-

struction of tree space has potentials to develop e�cient algorithms for moving phylogenetic

trees in the tree space.

The remainder of this thesis is organized as follows. In Chapter 2, we provide a literature

overview on phylogenetic trees and BHV tree space to explain our research motivation. In

Chapter 3, we construct a mathematical infrastructure for phylogenetic trees. We start with

presenting the basic concepts of trees, then introducing the mapping from tree to vector and

the induced tree metric, followed by an exploration of structure of the topological vector

spaces. Chapter 4 is the statistical application of our constructed settings. We establish the

basic statistical infrastructure in tree space based on the corresponding vectors. The main

part is that we propose a method to estimate the mean tree. In addition, we show the

multivariate central limit theorem of the vector corresponding to sample mean tree. At end,

4



we close this thesis by Chapter 5, in which a summary and a perspective on future work are

provided.
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Chapter 2

Literature Review

This part provides a literature review of phylogenetic trees and BHV tree space. Aiming at

explaining our research motivation, we will cover basic concepts in phylogenetics and the

literature closely related to our work.

Section 2.1 is a brief introduction to the field of phylogenetics, with emphasis on the

molecular evolution process. This part explains the estimation error in phylogenetic trees,

as well as other factors in the reconstruction process that may a↵ect the phylogenetic infer-

ence. Thus, the necessity of handling a set of trees is induced. In addition, we introduce

the traditional methods to deal with incongruent phylogenetic trees. In Section 2.2, we pro-

vide a literature overview on the BHV tree space, which is the primary topic covering the

exploration of all phylogenetic trees built on a given collection of taxa, and point out its draw-

back. Section 2.3 introduces some previous algebraic representation of trees and discusses

the merits of representing trees by matrices/vectors.

2.1 Phylogenetic Trees

In this part, we will start from the basic introduction to phylogenetic trees, then explain

the estimation and systematic errors in phylogeny reconstruction, which result in a set of

incongruent trees.

2.1.1 Introduction to Phylogenetic Inference

The idea of describing evolution by a branching pattern graph has appeared in Darwin’s

theory, which was inspired by the phenotypic variations of finches in the Galapagos Islands
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(Salemi et al., 2009). The phenotypic variation is observed to be a result of the genetic infor-

mation carried by the organisms. This stimulates the contemporary phylogenetic analysis

(Cavalli-Sforza and Edwards, 1967), which is to investigate the evolutionary history based

on the sequencing data collected from the existing organisms.

Phylogenetics is an inter-discipline of biology and statistics. Two essential elements con-

tribute to evolution: inheriting and mutation. As the DNA of a parent is copied to descen-

dants, mutation sometimes occurs. The accumulation of small mutations over generations

introduces the genetic variation in the organisms. In the science of speciation, if several

species arise from a common ancestor, they are expected to have similar DNA sequences.

Reversely, the di↵erences in the gene sequences imply the evolutionary divergence. In a word,

genomes contain traces of history. Thus, this field is inspired to use the gene sequence data

from several organisms to infer their evolutionary history.

Given a sequence alignment, the variation in the alignment comes from the mutation

of the nucleotides over the evolution. The most common and fundamental mutation is base

substitution, which is the replacement of one base for another. That is the reason why we can

compare the alignment to trace the evolution in genes. An example of such a reproduction

process is shown in Figure 2.1. Such reproduction process enables us to infer a historic

branching process based on the sequence data collected from contemporary organisms.

To quantify the distance among multiple sequences based on the nucleotide substitution,

the straightforward method is subtraction distance, which is the proportion of the dissim-

ilarity. However, this method neglects the possibility of multiple hits, such as the hidden

mutation like T ! A ! G, or the back mutation like G ! A ! G. To model such molecular

evolution, the most common approach is to treat the evolution of each site as a continuous-

time Markov chain, which has the memoryless property. Taking the process in Figure 2.1

as an example, the distinction between observed mutations and the actual mutations indi-

cates that using frequency to quantify mutation will underestimate the number of mutations.

However, if we use Markov chain to model the substitutions at any particular site, with the
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Figure 2.1: An example of reproduction with mutation

four nucleotides being set as the states of the chain, the transition probabilities for a Markov

chain satisfy the Chapman-Kolmogorov theorem

pij(t1 + t2) =
X

k

(pik(t1) + pkj(t2))

. This is how the Markov chain model corrects for multiple hits.

The behavior of a continuous-time Markov chain is characterized by a 4 ⇥ 4 transition

rate matrix Q. Its corresponding transition probability matrix over time t is referred to as

P (t). Based on the Markov property, P (t) is related to Q by the matrix exponential,

P (t) = exp (tQ)

Besides the basic assumption of Markov chain, we can place further constraints on the sub-

stitution rate between nucleotides. Di↵erent constraints lead to di↵erent models of Markov

substitution (Arenas, 2015). For example, the simplest model is Jukes-Cantor (Jukes and

Cantor, 1969), which assumes all
�
4
2

�
types of nucleotide substitutions have the same tran-

sition rate. A model that only constraints the time-reversibility between bases is the GTR

model (Tavare, 1986), which allows for all types of substitutions to occur at a distinct rate.
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Figure 2.2: The simplest process of molecular evolution modelling by continuous-time Markov
process

Example 1. We use the example of Jukes-Cantor model to illustrate how to calculate the

transition probability as a function of substitution rate parameter and the evolution time

parameter.

The Jukes-Cantor model assumes the transition rate matrix Q as

Q =

0

BBBBBBB@

qAA qAG qAC qAT

qGA qGG qGC qGT

qCA qCG qCC qCT

qTA qTG qTC qTT

1

CCCCCCCA

=

0

BBBBBBB@

�↵ ↵/3 ↵/3 ↵/3

↵/3 �↵ ↵/3 ↵/3

↵/3 ↵/3 �↵ ↵/3

↵/3 ↵/3 ↵/3 �↵

1

CCCCCCCA

= S⇤S�1

The transition matrix corresponding to this Q is

P (t) =

0

BBBBBBB@

pAA(t) pAG(t) pAC(t) pAT (t)

pGA(t) pGG(t) pGC(t) pGT (t)

pCA(t) pCG(t) pCC(t) pCT (t)

pTA(t) pTG(t) pTC(t) pTT (t)

1

CCCCCCCA

= exp(Qt) = Se
⇤t
S
�1

This gives the transition probability as

Pi,j(t1 + t2) =
1

4

⇣
1� e

� 4
3↵(t1+t2)

⌘
, i, j 2 {A,G,C, T}

in the simplest process as in Figure 2.2.
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Given a sequence alignment as material and a substitution model as Markov parameter,

the genetic distance, or say p�distance, which is measured by the expected number of sub-

stitutions (like t̂1 + t̂2 between i and j in tree shown by Figure 2.2), can be estimated from

the mutation in the alignment (P̂i,j). A more complicated approach is that, given the align-

ment as an observed sample and a Markov substitution to model the stochastic process, a

likelihood function can be built as a function of t and substitution model parameter ↵. These

two approaches are the basis for the tree reconstruction methods as distance-based methods

and probabilistic methods, respectively.

Given the alignment and substitution model, we can infer the evolutionary relationship

in a tree diagram as shown in Figure 2.3. The tree reconstruction methodology has been

studied by numerous researches. Based on the materials and criteria, the methods can be

grouped into the following categories.

Maximum parsimony methods (e.g., Fitch, 1971; Nixon, 1999; Golobo↵, 1999) take align-

ment as input and aim to find the tree topology such that the given sequences can be

explained with the smallest number of changes.

Distance-based takes the distance matrix as input. The distance commonly refers to

genetic distance. One natural way to construct a tree from the distance matrix is the clus-

tering algorithm. The most commonly used methods are UPGMA (Sneath and Sokal, 1973)

and NJ (Bruno et al., 2000). The alternative way is to set a tree score based on the dis-

tance matrix, and then search for the tree who optimizes the tree score. The most commonly

implemented score is the least square. Many algorithms have been developed to minimize the

least square score (e.g., Fitch and Margoliash 1967; Kuhner and Felsenstein 1994, Gascuel

2000).

Besides the maximum parsimony and distance-based methods, the reconstruction based

on probabilistic models of sequence evolution has been in great popularity since the likelihood

approach is used to model the evolution on the alignment (Felsenstein, 1973a). The basic

idea of the maximum likelihood method is to maximize the likelihood tree score. A frequently

10



Figure 2.3: An example of estimated phylogeny with 4 taxa

used tool to build the maximum likelihood tree from the alignment is RAxML (Stamatakis,

2014). A similar alternative approach to the maximum likelihood method is the Bayesian

methods (Rannala and Yang, 1996), which is also based on the probabilistic model and

aims to search for the tree with the maximum posterior probability. A popular Bayesian

phylogenetic analysis tool is MrBayes (Huelsenbeck and Ronquist, 2011).

After introducing how the phylogenetic trees are reconstructed from the alignment

according to the substitution process, we will explain several types of errors that may

appear in the phylogeny reconstruction.

2.1.2 Uncertainty in Phylogenetic Inference

Like other inferential problems, the phylogenetic inference can be impacted by estimation

errors as well as systematic errors. Estimation errors arise from the random sampling of

genes and taxa, and thus can be reduced by increasing the sample size. Systematic error,

however, comes from the deficiency such as data artifact or model misspecification. With

systematic errors, increasing the sample size of the genetic data will not help reduce the bias

in estimated phylogenetic trees.
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In general, the phylogenetic inferences based on di↵erent genetic sites may result in dif-

ferent estimated trees (Maddison 1997; Rosenberg and Nordborg, 2002; Galtier and Daubin,

2008; Reid, 2014). Because the locus evolves independently to some extent and may imply

di↵erent gene trees from the underlying species tree, therefore, no matter which reconstruc-

tion approach is used, the phylogenetic trees may di↵er with respect to topology for genetic

data collected from multiple locus. This is a profound source of estimation error in phylogeny

reconstruction. In this sense, the phylogenetic tree from the underlying species tree can be

substantially viewed as a random variable.

Besides the estimation errors from the sampling genes, many other factors in the recon-

struction process may impact the phylogenetic inference.

The uncertainty in alignment is a critical variable when building the phylogenetic tree.

Alignment is the fundamental material for the phylogenomic studies. In most organisms,

the genetic information is carried by DNA or RNA, which are polynucleotides with four

bases. In the gene duplication process, errors may cause mutations like deletion or inser-

tion of the nucleotides. To make the homologous sites which are assumed to diverge from

a common ancestral state comparable, a preliminary work of alignment should be done to

achieve the positional homology of the genetic sites. The alignment procedure arranges the

homologous sites in columns by implying “gaps” in some positions. However, the genera-

tion of optimal alignment can be di�cult and controversial(Salemi et al., 2009). Because

of the large size of genetic data, the alignment is often generated by an automatic pro-

gram. For example, a frequently used tool to align the sequence is MAFFT (Standley, 2013).

Numerous alignment programs have been developed. For example, the DCA (Stoye et al.,

1997; Stoye, 1998 program is a heuristic algorithm to sum-of-pairs optimal alignment. CON-

TRAALIGN Do et al., 2006) implements discriminative learning techniques to align the

sequences. MAFFT (Standley, 2013), which is a frequently used program to perform the

alignment, o↵ers various alignment methods, such as iterative refinement and consistency-

based scoring approaches. Nevertheless, there is no uniform standard to measure the per-

12



formance of the aligned sequence. The choice of the alignment procedure protocol may be

controversial. With this altercation, the e↵ect of alignment is of interest. The e↵ect of uncer-

tainty in alignment on the resulting phylogeny has been studied in several reconstructions

(e.g., Morrison and Ellis, 1997. Mugridge et al., 2000; Wu et al., 2012). Whether the applica-

tion of di↵erent alignment will alter the phylogeny has no explicit answer yet. For example,

there are studies indicating that changes in gene sequences may result in contentious phylo-

genies (Shen et al., 2017). Sometimes the choice of alignment does not impact the estimated

species tree (Du et al., 2019). Furthermore, some studies (Talavera and Castresana, 2007;

Wong et al., 2008) show that alignment uncertainty can be influential, while its misleading

e↵ects depend on the shape of the true phylogeny. Overall, the uncertainty in alignment may

a↵ect the reconstruction of phylogenetic trees.

The choice of substitution models is another critical variable in tree reconstruction. Sev-

eral studies (Posada and Crandall, 2001; Minin et al., 2003; Lemmon and Moriarty, 2004; Ho↵

et al., 2016) demonstrate that the improper substitution model may mislead the phylogenetic

tree inference, and the under-parameterization of the model can be more influential than the

over-parameterization (Lemmon and Moriarty, 2004). From the data-analytical view, there

are studies (Abadi et al., 2019; Du et al., 2019) suggest that the choice of substitution model

may not impact the inference. The gene tree estimation may be robust to the choice of sub-

stitution model. In another aspect, applying di↵erent current model selection strategies to

choose the most suitable substitution model leads to similar phylogenetic inference. How-

ever, it is noted that di↵erent choice of substitution models frequently results in incongruent

phylogenies (Abadi et al., 2019).

Given the fixed materials and methods such as alignment, substitution model, and recon-

struction approach, the phylogenetic tree can be viewed as randomly distributed in a proba-

bility space. The statistical inference on a “random” phylogenetic tree stimulates a method

to represent the phylogenetic tree quantitatively.
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In another aspect, the evaluation of phylogenetic trees resulting from di↵erent materials

or reconstruction procedures needs further exploration. There are preliminary work to select

the optimal input variables, such as optimal alignment (Thompson et al., 1999; Raghava

et al., 2003) and substitution model (Minin et al., 2003; Abdo et al., 2005) according to

some tree scorings and tests developed upon the scorings. However, the overall quality and

accuracy of optimal alignment and substitution models cannot be guaranteed (Salemi, M. et

al., 2009). Thus, the “optimal” tree is often controversial. The analysis on a set of estimated

trees can help with this problem.

2.1.3 Dealing with Incongruent Trees

We have discussed why incongruent phylogenetic trees appear. In this part, we will introduce

the traditional tools to deal with a set of incongruent trees. We will cover the traditional

tree distances, including tree rearrangement distances and inner product distances, and the

consensus method.

Within systematics, a fundamental problem is how to deal with the incongruent phy-

logenetic trees. If all the estimated phylogenies share the same branching pattern, then

the calculation on the trees can be conducted as in Euclidean space. However, if the trees

have conflicting topologies, which refers to its branching pattern without the information on

branch lengths, things become complicated. In real problems, because of reasons mentioned

relevant to either estimation or systematic errors, it is often necessary to compare trees with

di↵erent topologies.

Consider a rooted tree built on m organisms, it has (2m� 3)!! (Schroder, 1870) possible

topologies. There are two essential problems to investigate trees with more than one possible

topology. The first one is to measure how di↵erent two trees are. If two trees are topologically

identical, then it is natural to use the sum of the branch lengths di↵erences. To measure the

topological distance, several tools have been proposed. One idea is to measure the di↵erence

by graphically counting the tree rearrangement operations between two trees. Popular tools
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following this idea include Nearest-Neighbor-Interchange (NNI) distance (Robinson, 1971),

Subtree-Prune-Regraft (SPR) distance (Penny and Hendy, 1985), and a generalization of

SPR as Tree-Bisection-Regrafting (TRB) distance (Semple and Steel, 2003). However, the

computation of the above distances are NP-hard problems (Dasgupta et al., 1997; Hickey et

al., 2008; Allen and Steel, 2001).

Besides such tree rearrangement distances, an alternative is to derive the tree distance

from the vector magnitudes in Euclidean space. The general idea is to map phylogenetic trees

into Euclidean space by a vectorization function, and then the tree distance can be defined

based on the squared Euclidean distances. Such distance measures are called inner product

distances. The most frequently used measure is Robinson-Foulds distance (Robinson and

Foulds, 1981), which counts the bipartitions that are in one tree but not in the other. Besides

the Robinson-Foulds distance, triple distance (Critchlow et al., 1996) and quartet distance

(Estabrook et al., 1985) are favored to quantify the topological di↵erence. Compared with

the tree rearrangement distances, such tools are computationally e�cient because several

dynamic programming algorithms have been developed (Day, 1985; Steel and Penny, 1993;

Critchlow et al., 1996). However, the inference on trees, based on the above metric, needs

further exploration.

The second problem in systematics is how to summarize a collection of trees. Similarly,

if the trees share the same topology, then the branch length average is a natural summary

statistic. If not, the conventional approach is to construct a consensus tree (Adams 1972,

Bryant 2003) from a set of trees containing conflicting topologies. The simplest way is to

extract a strict consensus tree (McMorris, 1983), which shows the branching pattern that is

shared by all trees. Another way is to use majority-rule to construct a consensus tree that

shows the support values on each branch, referred to as the majority-rule consensus tree

(Margush and McMorris, 1981). However, if the maximum proportion is less than half, this

construction can still result in a tree with polytomy, which is undesirable since it loses the

information on certain nodes. In addition, several criteria and methods have been developed
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to retrieve a consensus tree from a set of trees (e.g., Ragan, 1992; Baum, 1992). Compared

with the consensus method that summarizes all trees by a single consensus tree, the analysis

on the collection of trees can keep more information and allow a statistical perspective on

the given trees (Willis, 2017).

In summary, compared with traditional methods on multiple phylogenies, quantitative

and inferential analysis on tree sets can give us a better understanding of incongruent trees.

2.2 BHV Tree Space

Last, we discussed some traditional methods on multiple trees to induce our motivation to

set up an infrastructure for analyzing a set of trees. This part gives a brief literature overview

on BHV tree space, which is the groundwork of the analysis on tree sets. We will introduce

the BHV tree space and the previous statistical work based on BHV tree space, and other

statistical studies derived from BHV tree space.

Billera et al. (2011) use a geometric model to describe the set of rooted trees built on a

given set of m taxa with positive internal branch lengths in a Hadamard space. The rooted

tree with m leaves has at most m� 2 internal branches. Each distinct binary tree topology

is associated with a “top-dimensional” Euclidean orthant. Each tree can be viewed as a

point in the orthant associated with its topology. The orthant coordinates represent the

internal branch lengths in the tree. Thus, if there is polytomy, which can be explained as

the corresponding internal branch decreasing to 0, then it resides on the orthant boundary,

which is an orthant with lower dimension. For example, a binary tree topology is associated

with an orthant with the top dimension m � 2. By collapsing an internal branch, it moves

to the orthant boundary (with dimension m � 3) and becomes a tree with a polytomy. As

Figure 2.4 shows, the boundary trees from two di↵erent orthants may describe the same

multifurcating topology. This coincidence inspires the construction of BHV tree space by

grafting the common orthant boundaries together, as in Figure 1.1.Thus, the entire BHV
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treespace is the Cartesian product of the (2m� 3)!! Euclidean orthant meanwhile the (2m�

3)!! topologies constitute a non-Euclidean space (Billera et al., 2011).

BHV tree space has inspired a number of statistical inference work on phylogenetic trees.

The di�culty of the statistical description on trees is that the trees are graph objects.

Therefore, their center and variability are hard to describe. However, under the infrastructure

of BHV tree space with the geometry metric, a number of statistical measures are allowed

to be developed, especially the mean and variance of phylogenetic trees (e.g., Brown and

Owen, 2017; Willis 2017).

Most previous work on statistical analysis in BHV tree space is based on the geodesic

distance, which is the length of the unique shortest path between two trees. Though Owen

and Provan develop an e�cient algorithm (Owen and Provan, 2011) to calculate the geodesic,

it is shown that the geodesics are unbounded in dimension (Lin et al., 2017).

Under the infrastructure of BHV tree space, two significant subjects have drawn the

attention of researchers. One, as aforementioned, is to establish statistical analysis in the

BHV tree space with geodesics (e.g., Barden et al., 2014; Barden et al., 2018; Willis, 2017).

The statistic measures and theory are built analytically. However, the calculation based on

the geodesics for a tree space with a large number of taxa is expected to be faced with

computational di�culty. The alternative approach is to derive a setting, for tree space and

metrics, based on BHV space. For example, Monod’s study in 2019 utilizes the tropical

geometry of BHV space to develop a palm tree space with the tropical metric based on

the tropical line segments. From the BHV geodesic to the tropical metric, it has significant

improvement in tree metric’s computation. However, the following statistical inference in this

tropical geometry tree space is limited. For example, Monod defines the population mean as

the tree who minimizes the sum of squared tropical distances. But the reasonability of this

estimation is tricky to demonstrate. Substantially, it did not propose a way to quantify the

tree such that both the centroid and direction of the tree di↵erence can be simultaneously

described.

17



Figure 2.4: The Petersen graph depicting the 15 topologies of 4-taxa

Reprinted from Statistics in the Billera-Holmes-Vogtmann Treespace, by G.S. Weyenberg, 2015.
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Our work will also exploit the geometry property of BHV tree space. However, instead

of manipulating trees, we want to vectorize them into the Euclidean space by an injective

mapping so that we can get a corresponding topological vector space isomorphic to the

tree space. And then, we can construct an infrastructure for the tree analysis through the

corresponding topological vector space.

2.3 Representation of Phylogenetic Trees

We have pointed out the necessity of analyzing tree sets, and have introduced the funda-

mental work of BHV tree space. Note that the computational complexity in analyzing a set

of trees comes from the fact that a tree is a graph, the intuitive solution is to represent the

tree by a mathematical object in Euclidean space. In this part, we will discuss the algebraic

representation of phylogenetic trees. Besides the literature on the representation, we will

discuss the other virtues brought by representing trees with matrices/ vectors.

2.3.1 Representation of Trees

In this part, some representation approaches previously used in the trees will be discussed.

Two major approaches are briefly presented, matrix describing the descendance relationship

and vector/matrix describing the pairwise relationship.

There is a long history of the study of graph-theoretic relationships. The most intuitive

ones are the incidence matrix, adjacency matrix, and Laplace matrix (Kolaczyk and Csárdi,

2014). In each of the above matrices, the (i, j)th entry indicates the neighboring relationship

between the pair of nodes (i, j). This relationship inspires researchers to use a matrix to

describe the neighboring pattern in the trees. Such mathematical representations of phy-

logeny have been used to describe or compare the shape of trees (eg. Farris, 1973). However,

the classical representation matrix from graph theory is not su�cient enough, because the

phylogenetic tree emphasizes more on the descendance relationships between parents and

children rather than the relationship between any two vertices in the graph.
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Several approaches have been developed to quantitatively describe the topology of phy-

logenetic trees. One way is the matrix representation based on the additive binary coding

of each node (Sokal and Sneath, 1963; Farris et al., 1970), which is substantially determined

by the descendance relationship. The typical method is the matrix representation of the

parsimony (MRP) method (Ragan, 1992). This method proposes a n⇥ s (s  n� 1) matrix

with values 0 or 1 to characterize a tree with n tips (including the root) and s internal nodes.

Each row in this matrix indicates the descendance between the tip and internal nodes. By

combining two matrices from two trees using additive binary coding, a hybrid supertree can

be reconstructed based on the parsimony analysis of the composite matrix.

Besides the matrix characterizing the descendant relationship between tips and internal

nodes, another approach is based on the pairs of the tips. Typical method in this category is

the cophenetic vector (Cardona et al., 2013), which proposes a
�
n
2

�
vector for a tree built on

n tips. Each entry for pair (i, j) is the cophenetic value, which is depth of the most recent

common ancestor (MRCA) of (i, j). A great application of the cophenetic values is the triple

distance advanced by Critchlow et al. (Critchlow et al., 1996). The triple distance counts the

number of common triple subtrees in two trees. The calculation of the triple distance can be

realized by the generational matrix, whose (i, j)th entry is actually the cophenetic value for

(i, j).

Note that a tree topology can entirely be described by a matrix, or other mathematical

objects similar to matrix. naturally such representation has been implemented to address

the following two problems in phylogenetics. One is the construction of a metric between

trees. The other topic is the construction of a supertree from a set of trees. Besides these

applications, it opens up lots of possibilities in the analysis of phylogenetics. Next, we will

discuss a significant merit of vectorization of the tree.
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2.3.2 Moves in Tree space

Tree reconstruction is the most crucial topic in phylogenetics. As aforementioned, most

commonly used reconstruction tools involve the optimization procedure over the tree space.

Besides the need to manipulate various phylogenies, another challenge to our interest is that,

the searching over the tree space across di↵erent tree topologies involves graphical changes

in tree.

For any reconstruction method aiming to maximize a tree score, there are two levels

of optimization. A tree score, based on the Markov substitution process, is a function of

substitution rate and branch length parameters. The first step of optimization is to maximize

the tree score under a given tree topology. The second step is to search over the maximal

tree scores for an optimal topology.

Following such reconstruction approaches, the di�culty of finding the optimal tree is the

complicated computation. Researchers have endeavored to simplify the calculation in both

the steps. An example in simplifying the tree score calculation is the pruning algorithm

(Felsenstein, 1973b) on likelihood score over a single tree, which saves much time by iden-

tifying common factors and calculating them only once. For the second step, however, the

optimization over all the possible tree topologies is an NP-complete problem (Foulds and

Graham, 1982). The exhaustive search, which is guaranteed to find the best tree out of all

the possible topologies, is computationally infeasible for a tree with a large number of taxa.

Thus, much e↵ort has been taken to develop e�cient algorithms for heuristic searching for

the locally optimal tree, such as the maximum likelihood tree search (Guindon and Gas-

cuel, 2003; Vinh and von Haeseler, 2004), and maximum posterior probability tree search

(Drummond and Rambaut, 2000; Huelsenbeck and Ronquist, 2001).

Note that all the above searching procedures have to move in the tree space. The tree score

is a function of topology, and the change of topology has to be realized by manipulating its

branches graphically. This impediment in computation motivates us to find a way to enable

the tree change in an algebraic way. If we can represent the phylogenetic tree by matrix/
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vector following some specific rules, then instead of searching over tree space by pruning or

grafting branches, we can manipulate their corresponding matrices/ vectors, and thus can

reform the computation on trees to the computation in Euclidean space. The drawback of

the aforementioned representation methods is that they only deal with topology. Thus, both

the computational and inferential work is limited since trees with the same topology are

viewed as identical. Therefore, an alternative representation method, that captures both the

topology and branch lengths information, is desired.
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Chapter 3

A topological vector space for phylogenetic trees

The obstacles in tree computation and analysis come from two aspects. One is the high

dimensionality of the tree topologies. The other aspect is that both quantitative and statis-

tical analyses are elusive for graphical objects. In this section, we will map the phylogenetic

trees to vectors to manipulate phylogenetic trees in Euclidean space, and thus construct a

topological vector space for phylogenetic trees.

3.1 Combinatorics of trees

In this section, we will introduce the combinatorics of trees from its graphic essence. Besides,

the quartet tree is explicitly demonstrated as a prerequisite for the remaining sections.

3.1.1 Basic Concepts in Tree

Aiming at setting up an infrastructure on the trees, we will start by introducing the combi-

natorics of trees in this part.

The graph is an abstract idea describing the relationship between organisms by drawing

the diagram. To be precise in the following analysis, we will first introduce the terminologies

and notations in trees.

DEFINITION 2. A graph refers to G = (V,E), where V is the set of vertices/ nodes,

and E is the collection of edges/ branches.

Each edge e 2 E is a two-element set e = (v1, v2) of vertices v1, v2 2 V . A weighted graph

is a pair (G, b), where b is a weight function b : E ! R>0 such that each e 2 E is assigned
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with a non-negative real number b(e). If the edges in the graph have no specified weight, or

say that edges have constant weight of 1, then the graph is called unweighted.

The degree of a vertex is the number of edges to which it is incident.

The topology of a graph G with a given vertex set V refers to its edge pattern repre-

sentation of whether an edge between any pair of vertices exists.

We say v1 and v2 are the ends of e, as well as v1 and v2 are incident to e. e joins v1 and

v2. v1 and v2 are adjacent nodes. If a vertex is the end of only one edge, it is called a tip/

leaf/ terminal node/ taxon. Otherwise, it is called an internal node.

In practice, for both the computational and analytical purposes, we do not want to present

a graph each time when we want to exploit the graph tools. The topological information

contained by a graph should be summarized by a mathematical object that can easily be

stored and executed. As aforementioned, a common approach characterizing a topology of a

graph is the adjacency matrix.

DEFINITION 3. For a graph G = (V,E), its adjacency matrix is a |V |⇥ |V | matrix A

that is

A(i, j) =

8
<

:
1, if i, j 2 E

0, otherwise

The adjacency matrix contains the information on the edge pattern of a graph, as well

as the information of vertices set. However, the adjacency matrix is a sparse matrix. Thus,

the usage of the adjacency matrix is often accompanied by a sparse tool in graph theory

(Kolaczyk and Csárdi, 2014). This motivates us to find another representation of the topology

of phylogenetic trees.

Biologically, each leaf on a phylogenetic tree represents an organism, such as a population,

species, genera, families, orders, phyla, etc., that are present so that we can collect sequencing

data. An internal vertex/ node in a phylogeny represents a common ancestor for several

taxa. We typically do not have sequence data measured for the internal node. The edges in

phylogenetic trees indicate lines of descent. The two ends of an edge are the parent/ ancestor

24



and child/ descendant. The edge weights, or called branch lengths, describe how closely the

adjacent organisms are to each other. The edge length in the phylogeny is usually measured

by the expected number of substitutions. The topology of a phylogeny represents all the

evolutionary relationship, without the information on divergence time or genetic distance.

The topology is characterized by the graph shape and leaf labels, and can be represented by

adjacency matrix.

If we use graphs to depict the evolutionary relationship between a collection of organisms,

note that not all types of graphs can reasonably describe evolution. Next, we will introduce

the combinatorics of phylogenetic trees.

DEFINITION 4. A path from vertex v0 to vn is a sequence of distinct vertices v0, v1, . . . , vn

such that each vi is adjacent to vi+1. If there is a path between any two distinct vertices,

then a graph is said to be connected. A cycle is a sequence of vertices v0, v1, . . . , vn which

are adjacent to each other while distinct from each other except for v0 = vn with n � 3.

In a graph modeling the evolution, any vertex being an ancestor of itself should be ruled

out. In general, we do not want any “loop” in the phylogeny.

DEFINITION 5. A tree T = (V,E) is a connected acyclic graph.

There may be multiple paths in a graph, and the shortest path will be selected to measure

the distance between vertices. However, multiple distinct paths form a cycle. Thus, we have

the following statement.

LEMMA 6. For any two vertices v1 and v2 in a tree T , there is a unique path between

them.

This property of tree validates the following definition of distance in a tree.

DEFINITION 7. The length of the unique path between two vertices is called (weighted)

graphical distance between two vertices.

d(v1, v2) =
X

e on the path from v1 to v2

b(e)
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Figure 3.1: A 5-taxa unrooted binary tree with branch lengths

Note that each tip in the graph is incident to a terminal edge with positive length. Thus,

the graphical distance between any pair of distinct vertices should be positive.

Example 8. Figure 3.1 presents a tree. It is connected while with no cycles. It has 8 nodes,

including 5 tips (S1, S2, S3, S4, S5) and 3 internal nodes (v6, v7, v8). The degrees of Si (i =

1, . . . , 5) are 1 and degrees of v6/ v7/ v8 are 3. There is a unique path between any pair of

vertices. For example, d(S1, S2) = b(e(S1, v6))+ b(e(v6, v7))+ b(e(v7, v8))+ b(e(v8, S2)) = 0.4.

d(S3, S4) = 0.45. The graphical distance d measures the distance between the vertices.

LEMMA 9. The function d : V ⇥ V ! R>0 has the properties of non-negativity, symmetry

and triangle inequality. Thus, the graphical distance d is a metric on V (T ).

Besides the basic concepts of vertices, edges, degrees, and paths, there are concepts such

as root and polytomy that can group the phylogenetic trees into di↵erent presentation types.

In the biological sense, the ancestor of all taxa is the root. A rooted phylogenetic tree

means that time is represented by a single direction. If a tree has no specified root, then
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it is an unrooted tree. Under the assumption of the molecular clock that the evolutionary

rate is constant over time, the root can be identified (Yang and Rannala, 2012). According

to the pulley principle (Felsenstein, 1981), the position of the root does not impact the

reconstruction. Also, an unrooted tree can be easily rooted by out-grouping (Iwabe et al.,

1989). Thus, for the benefit of computation, our research will focus on unrooted trees. As

the rooted trees and unrooted trees can switch to each other by pulley principle, all the

inferences on unrooted trees can be applied parallelly to rooted trees.

For an unrooted tree, if each internal node has degree of 3, then this tree is said to be

binary/ resolved. If it has vertices with degree more than 3, then it is said to have polytomy,

or say, it is unresolved. A binary phylogenetic tree indicates that in the evolution process, all

speciation events produce two taxa from one. Usually, phylogenetic trees are assumed to be

binary because the possibility that several new species arise simultaneously is so small that

it can be ignored. However, to cover up all possible phylogenetic trees, we want to take the

tree with polytomies into consideration. Thus, our research will cover not only binary trees

but also multifurcating trees.

Example 10. Figure 3.2 shows a rooted binary tree and an unrooted binary tree with 5 tips.

For simplification, only the tips will be labeled. Such trees are referred to as semi-labeled

trees. The rooted tree on the left-hand side has 3 internal edges while the unrooted tree on

the right-hand side has 2 internal edges.

In the graphical presentation of trees, sometimes two trees will have di↵erent “shapes”

while their combinatorial structures, or say, their adjacency matrices are the same. Then,

they are identified as the same tree. In contrast, sometimes, two trees seem to have the

same branching pattern, while their terminal nodes are labeled di↵erently. Then, they are

considered as di↵erent trees. For example, in Figure 3.3, T1 and T2 are the same tree, while

T1 and T3 are di↵erent trees.

Consider an unrooted tree T with m ordered tips S = (S1, S2, . . . , Sm), terminal edges

(e1, e2, . . . , em) 2 Rm
>0 and internal edges (em+1, em+2, . . . , em+r) 2 Rr

>0 where r  m � 3. If
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Figure 3.2: A rooted and an unrooted binary tree with 5 tips labeled

Figure 3.3: Three picture of rooted tree with 5 labeled tips
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Figure 3.4: Quartet topologies

T is binary, then r = m�3. There are (2m�5)!! (Schroder, 1870) distinct binary topologies

to be its potential topology.

3.1.2 Quartet Trees

The smallest informative rooted tree is a tree with three tips. Relabelling a 2-tips tree makes

no di↵erence in the adjacency matrix, but relabelling a 3-tips tree identifies distinct topology.

Similarly, the smallest informative unrooted tree is a tree with four tips (Estabrook et al.,

1985). For any four taxa {i, j, x, y}, there are 4 possible topologies, as shown in Figure 3.4.

One is the star tree in which all four tips are adjacent to a common internal node, resulting

in no internal edge. The others are binary trees. The four topologies correspond to distinct

adjacency matrices.
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We can check that for a quartet tree with any possible topologies, the graphical distance

d satisfies the four-point condition (Buneman, 1974) , which is

DEFINITION 11 (Four-point Condition). For any four points (i, j, x, y) in a tree, if the

metric d satisfies the inequality:

d(i, j) + d(x, y)  max

8
<

:
d(i, x) + d(j, y)

d(i, y) + d(j, x)

then it is said the metric d on the set {i, j, x, y} satisfies the four-point condition.

The four-point condition, which involves the operations of addition (+) and max

(max(a, b)), encourages the introduction of max-plus semiring (Pin, 1998), which is iso-

morphic to the min-plus semiring (Speyer and Sturmfels, 2004). To describe the quartet

topologies intuitively, we utilize the equivalent min-plus expression.

PROPOSITION 12. A metric d satisfies the four-point condition if and only if the one of

the following inequalities is valid:

(1) d(i, j) + d(x, y)  d(i, x) + d(j, y) = d(i, y) + d(j, x)

(2) d(i, x) + d(j, y)  d(i, j) + d(x, y) = d(i, y) + d(j, x)

(3) d(i, y) + d(j, x)  d(i, x) + d(j, y) = d(i, j) + d(x, y)

We call these relations as min-plus inequalities. Another equivalent expression of the

four-point condition is the quadratic Plücker relations (Speyer and Sturmfels, 2004) in trop-

ical geometry literature.

After the introduction of the basic tree concepts and quartet trees, in the next part we

will introduce how we represent tree to vector and show the property of this representation

by the quartet decomposition of a tree.

3.2 Vectorization of Trees

In this section, we will introduce the vectorization mapping, show its isomorphism, and

induce a metric in tree space.
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Figure 3.5: A 4-taxa unrooted weighted tree

3.2.1 Pairwise Path Mapping '

T with m ordered tips S = (S1, S2, . . . , Sm) has p =
�
m
2

�
pairs of taxa. For each pair of taxa

(Si, Sj), there is a graph-theoretic distance between them. The graphical distance between

the pair of taxa (Si, Sj), i, j 2 {1, 2, . . . ,m} is denoted as d(Si, Sj) = d(i, j) = di,j. In the

same manner exploited by cophenetic vector (Cardona et al., 2013), a vector that captures

the distance between each pair of taxa can be defined.

DEFINITION 13 (Pairwise Path Vector). For a tree T with a lexicographically ordered

taxa set S = (S1, S2, . . . , Sm) , without loss of generality, the pairwise path vector of T is

'(T ) = ((d(i, j)))1i<jm = (d1,2, d1,3, . . . , dm�1,m) 2 Rp
>0

The mapping ' is called pairwise path mapping.

Example 14. Given a tree T as shown by the following Figure 3.5, its pairwise path vector

is '(T ) = (0.2, 0.4, 0.4, 0.4, 0.4, 0.2)0. The vector '(T ) specifies a point in R6
>0.

Note that the pairwise path mapping ' projects each unrooted tree T with m tips to a

point in Rp
>0, and thus represents an element in tree space to the Euclidean space. Next we

will explore the property of ', to see if there is any correspondence between the tree space

and its image in vector space.
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3.2.2 Injection

Denote Tm as the set of all the unrooted trees built on the same set of m taxa S =

(S1, S2, . . . , Sm). For two unrooted trees T1 and T2 in Tm, the comparison of '(T1) and

'(T2) is not intuitive. As aforementioned, in an unrooted tree, the smallest informative sub-

tree is quartet subtree. Therefore, we will address this problem by decomposing the tree to

quartet subtrees, and then the comparison can be made by comparing their sets of quartet

subtrees.

DEFINITION 15 (Quartet subtree). For an unrooted tree T 2 Tm, a quartet subtree is

a set of four taxa {i, j, x, y} ⇢ S that inherits from T . A more detailed description is that,

when all the branches incident to the vertices not in the quartet {i, j, x, y} are removed from

T , it results to a subtree of T inherited by the quartet {i, j, x, y}.

There are
�
m
4

�
quartet subtrees in T . Each quartet subtree will satisfy one of the min-plus

inequalities concerning the metric d. The
�
m
4

�
quartets are not independent of all, and a set

of
�
m
4

�
quartet subtrees uniquely determines its supertree.

LEMMA 16. (Steel and Penny, 1993) Any two distinct topologies in Tm can not have all

quartet topologies in common.

For any two trees with distinct topologies, they cannot have the same set of quartet

subtree topologies. Therefore, they must di↵er in at least one quartet, and thus their pairwise

path associated with that quartet cannot be the same. Therefore, the following statement

can be deduced.

THEOREM 17 (Injection). ' : Tm ! Rp
>0 is an injective function.

Proof. For two distinct trees T1, T2 2 Tm

(a). If their topologies are distinct, then there is at least one set of four taxa having

distinct quartet topology. For this set of four taxa, their corresponding 6 entries in the
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projected vectors should follow di↵erent min-plus inequalities. Thus, T1 and T2 cannot be

the same.

(b). If they have the same topology, but distinct edge weight vector. Then for any pair of

(i, j), the path from i to j in two trees covers the same set of edges. d(1)i,j in '(T1) and d
(2)
i,j in

'(T2) are the same linear combination from b(1) and b(2) respectively. b(1) 6= b(2) guarantees

'(T1) 6= '(T2).

Therefore, the injective mapping ' : Tm ! Rp
>0 sends each T 2 Tm to its pairwise path

vector.

3.2.3 Pairwise Path Metric

Denote image(') = {v 2 Rp
>0|v = '(T ), where T 2 T }, which is a subset in Rp

>0. The

one-to-one relationship between T and image(') allows us to induce a metric on Tm based

on the Euclidean norm of vector.

DEFINITION 18. Given two trees Tk, Tl 2 Tm, the pairwise path distance between

two trees is defined as

DL2(Tk, Tl) = k'(Tk)� '(Tl)k2 =
s X

1i<jm

(d(Tk)(i, j)� d(Tl)(i, j))2

Obviously DL2 is a metric in Tm. The metric tree space {Tm, DL2} will be named as L2 tree

space. For the sake of description, we denote the Euclidean distance between two vectors as

D(·, ·).

The pairwise path distance is an inner product metric, as well as the Robinson-Foulds

distance that is commonly used to measure the topological distance between trees.

Example 19. For the following three trees on the same set of 4 taxa shown in Figure 3.6.

The pairwise path distance is DL2(T1, T2) = 0.17, DL2(T1, T3) = 0.40, DL2(T2, T3) = 0.44.

The pairwise path distance between two topologically identical trees can be calculated

straightforwardly. For two trees with di↵erent topologies, the preliminary work for calculating
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Figure 3.6: Three 4-tax trees with edge lengths

pairwise path distance is the construction of a the set of all paths. It takes O(m2) time for

computation (Bryant and Waddell, 1997). Nonetheless, the statistical analysis of trees based

on the pairwise path metric remains untapped.

3.2.4 A topological vector space Vm

We want to explore the property of ' and the structure of image('), which will be denoted

as Vm := '(Tm) = image('). The mapping ' : Tm ! Vm is bijection. Actually, ' is distance

preserving. Therefore, the L2 tree space (Tm, DL2) and the topological vector space (Vm, D)

are isomorphic.

Given that a BHV tree space characterizes the structure of Tm, the structure of Tm

inspires the exploration of Vm.

As the orthant in BHV space shown by Figure 1.1, we define the trees that reside in the

same orthant (including orthant boundary) as compatible.

DEFINITION 20. If a topology ⌧1 can be got from removing internal edges from another

topology ⌧2, then ⌧1 is called the degeneration of ⌧2. If two trees are exactly topologically

identical, or one’s topology is the degeneration of the other’s, then these two trees are

compatible.
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Figure 3.7: Four compatible trees with 5 tips

A tree topology can be viewed as a tree with unit branch lengths. Therefore, in our

discussion, we will apply the concepts of degeneration and compatibility to both topologies

and trees.

Example 21. The Figure 3.7 shows 4 trees built on the taxa (S1, S2, S3, S4, S5). T1 and T2

have the same topology and di↵er in branch lengths, so they are compatible. The topology

of T3 can be got by removing an internal edge from the topology of T1/T2, therefore T3 are

compatible with T1 and T2. Similarly, T4 are compatible with T1, T2 and T3. Furthermore, in

Figure 3.7, for the tree T3 with a polytomy with a 4 degree internal node, it is compatible

with each of the three binary topology ⌧
(1), ⌧ (2) and ⌧

(3). However, ⌧ (1), ⌧ (2) and ⌧
(3) are not

compatible with each other.

35



Figure 3.8: A multifurcating tree compatible with multiple binary trees

Any multifurcating tree is compatible with at least three binary topologies. But any two

distinct binary topologies are not compatible. Note that there are (2m� 5)!! distinct binary

topologies in Tm. Any T 2 Tm is compatible with at least one binary topology. Therefore,

we can define the compatible tree class in Tm as induced by the binary topologies .

DEFINITION 22. The (2m � 5)!! distinct binary topologies in Tm are denoted as ⌧
(k)

(k = 1, 2, . . . , (2m � 5)!!). A compatible tree class induced by ⌧
(k) is defined as T (k)

m =

{T 2 Tm|T is compatible with ⌧
(k)}, (k = 1, 2, . . . , (2m� 5)!!).

Through the mapping ', each compatible tree class can be projected to a compatible

vector set.
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DEFINITION 23. The image of T (k)
m is V (k)

m = {v 2 Rp
>0|v = '(T ), T 2 T (k)

m }, where

k = 1, 2, . . . , (2m� 5)!!. V (k)
m can be denoted as '(T (k)

m ), and is called a compatible vector

set.

Note that in a compatible tree class T (k)
m in BHV tree space, the binary trees which have

strict positive internal edge lengths reside within the top-dimensional stratum (Willis, 2017),

while the multifurcating trees reside at the boundary of the top-dimensional orthants. To

facilitate our analysis, we introduce the following definitions.

DEFINITION 24. A strictly compatible tree class induced by ⌧
(k) is T̊ (k)

m = {T 2

T (k)
m and T is binary}. Also, denote its image as V̊ (k)

m = '(T̊ (k)
m )

Since T̊ (k)
m ⇢ T (k)

m , and ' is injective, thus V̊ (k)
m ⇢ V(k)

m . The (2m � 5)!! compatible tree

classes constitute the whole tree space. It is intuitive to deduce that the Vm is the collection of

the (2m�5)!! compatible vector sets. We are interested in Vm because, if we can characterize

Vm, then it is an alternative way to describe the tree space Tm. In the next part, we will

explore the structure of Vm.

3.3 Exploration On Quartet Trees

We will start from the trivial situation of T4 and V4. Our exploration of the mapping ' and

the topological vector space V4 includes two main aspects. First, the vectorization mapping

' is a piecewise linear transformation that can be operated by a matrix associated with

topology. Second, by analyzing the composite of the linear operator matrix, the structure of

the topological vector space V4 will be presented.

From the phylogenetic perspective, there are two essential elements featuring a tree T :

the topology and edge lengths. We denote a phylogenetic tree as T = (⌧, b). For any T 2 T4,

it has 4 possible topologies as shown in Figure 3.4. In T4, the star tree is compatible with

either of the three binary topologies in 3.9, by viewing it as a special case with the internal
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Figure 3.9: Three 4-taxa unrooted binary tree

edge length decreasing to 0. Denote the compatible tree class in T4 induced by ⌧
(k) as T (k)

4 ,

where k = 1, 2, 3. Then,

PROPOSITION 25.
3T

k=1
T (k)
4 = {quartet star tree} ⇢ T4 =

3S
k=1

T (k)
4

For any T 2 T4, it has 4 positive terminal edges and 1 non-negative internal edge. Without

loss of generality, we assign ei as connected to Si where i = 1, 2, 3, 4 and the last edge e5 as the

internal edge. The edge weights will be given as b = (b(e1), b(e2), b(e3), b(e4), b(e5))0 2 R5
�0.

To di↵erentiate the terminal edges and internal edge, we denote the edge length vector b as

b = (b0TER, bINT )0 where bTER 2 R4
>0 represents the edge lengths for the 4 terminal edges and

bINT 2 R�0 is the edge length for the one internal edge. In other words, b = (b0TER, bINT )0

can be denoted as b 2 R4
>0 � R�0.

3.3.1 Characterizing The Mapping by Matrices

Assume that for k = 1, 2, 3, Tk = (⌧ (k), b) 2 T (k)
4 as shown by Figure 3.9. Then,
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'(T1) =

0

BBBBBBBBBBBBBB@

b(e1) + b(e2)

b(e1) + b(e3) + b(e5)

b(e1) + b(e4) + b(e5)

b(e2) + b(e3) + b(e5)

b(e2) + b(e4) + b(e5)

b(e3) + b(e4)

1

CCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBB@

1 1 0 0 0

1 0 1 0 1

1 0 0 1 1

0 1 1 0 1

0 1 0 1 1

0 0 1 1 0

1

CCCCCCCCCCCCCCA

b := M
(1)b

'(T2) =

0

BBBBBBBBBBBBBB@

b(e1) + b(e2) + b(e5)

b(e1) + b(e3)

b(e1) + b(e4) + b(e5)

b(e2) + b(e3) + b(e5)

b(e2) + b(e4)

b(e3) + b(e4) + b(e5)

1

CCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBB@

1 1 0 0 1

1 0 1 0 0

1 0 0 1 1

0 1 1 0 1

0 1 0 1 0

0 0 1 1 1

1

CCCCCCCCCCCCCCA

b := M
(2)b

'(T3) =

0

BBBBBBBBBBBBBB@

b(e1) + b(e2) + b(e5)

b(e1) + b(e3) + b(e5)

b(e1) + b(e4)

b(e2) + b(e3)

b(e2) + b(e4) + b(e5)

b(e3) + b(e4) + b(e5)

1

CCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBB@

1 1 0 0 1

1 0 1 0 1

1 0 0 1 0

0 1 1 0 0

0 1 0 1 1

0 0 1 1 1

1

CCCCCCCCCCCCCCA

b := M
(3)b

The matrix M
(1), M (2), and M

(3) are the 6⇥ 5 matrices. The mapping ' : T4 ! R6
>0 can

be characterized by three linear operators M (1)
,M

(2)
,M

(3), according to the tree topology.

Thus, we can present the mapping ' by the matrix.

PROPOSITION 26. For a tree T = (⌧, b), the pairwise path mapping ' : T4 ! R6
>0 can

be presented as

'(T ) =

8
>>>><

>>>>:

M
(1)b, T 2 T (1)

4

M
(2)b, T 2 T (2)

4

M
(3)b, T 2 T (3)

4
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' is a piecewise linear transformation on T = (⌧, b).

Each quartet topology is described by a matrix, or say, a linear operator. From '(T =

(⌧ ; b)) = Mb, we can say that the topology of a quartet tree is associated with the linear

map.

3.3.2 Visualization of V4

In each compatible tree class, '(T ) is a linear transformation on the edge length vector.

The strictly compatible vector set V̊ (k)
4 corresponding to T̊ (k)

4 is the collection of vectors

corresponding to the binary trees with topology ⌧
(k).

PROPOSITION 27. V̊ (k)
4 = {M (k)b|b 2 R5

>0} is the positive orthant in the column space

of M (k).

Relating to BHV tree space, the vector set corresponding to the trees in the kth “top-

dimensional stratum” is the positive orthant in the column space of M (k).

Note that in matrix M
(1), M (2), and M

(3), the first 4 columns are the same. Denote the

first four columns as M
(0). The entries on the 6 rows of M (0) are the indicator of the

�
4
2

�

combinations. The last column corresponds to the binary quartet topology by the min-plus

inequalities. Note that in column5, the entry of (i, j) is 0 means there is no internal edge

(e5) between the pair of taxa (i, j). Thus, the last column is, in fact, an indicator of the

bipartition.

DEFINITION 28. (Split Indicator) In a tree with edge el, the vector Il with
�
m
2

�
entries

has values of 0 or 1 that

Il(i, j) =

8
<

:
1, the pair i and j are separated by el

0, the pair i and j are on the same part of the bipartition by el

The indictor vector Il is called the split indicator of el.

The column 5 in M
(k) is denoted as I(k) respectively for k = 1, 2, 3. In T (1)

4 , S1 and S2

are on the same part, and S3 and S4 are on the same part. Thus, the entry of I(1) at the
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position (1, 2) and (3, 4) are 0. Likewise,

M
(k) =

⇣
M

(0) I(k)

⌘
, where

8
>>>><

>>>>:

I(1) = (0, 1, 1, 1, 1, 0)

I(2) = (1, 0, 1, 1, 0, 1)

I(3) = (1, 1, 0, 0, 1, 1)

The split indicator I(k) contains enough information to identify the topology. In this sense,

I(k) is related to the Robinson-Foulds distance (Robinson and Foulds, 1981), which counts

the distinct splits among two trees.

DEFINITION 29. (Steel and Penny, 1993) The Robinson-Foulds distance between two

trees T1 and T2 is

#{internal edges in T1}+#{internal edges in T2}�2#{internal splits shared by T1 and T2}

, where # indicates the number of elements in the set.

For two trees, if their split indicators corresponding to the internal edge el are the same,

then the splits created by el are same. With respect to this edge, the number of internal

splits shared by the two trees increases by 1. Otherwise, the shared split created by this edge

will be 0. Thus, the Robinson-Foulds distance can be calculated by the split indicator.

PROPOSITION 30. For two binary trees T1 2 T (k1)
4 and T2 2 T (k2)

4 , where k1, k2 2

{1, 2, 3}, there is

DRF (T1, T2) = 2� 2⇥#{I(k1) = I(k2)} =

8
<

:
2, if I(k1) = I(k2)

0, otherwise

Remark 31. An equivalent expression for I(k1) = I(k2) is (I(k1))0(j6 � I(k2)) = 0 where j6 is

an all 1’s vector with dimension 6. It can be checked that , for T1 and T2 as binary trees in

T4, DRF (T1, T2) = 2� (I(k1))0(j6 � I(k2)) = 4� (I(k1))0I(k2).

The exception for the above proposition is the star tree. For the star tree, its internal edge

length is 0. Therefore any linear operator M (k) on it gives the same result. Its corresponding

vector set is V (0)
4 = {'(T )|T is star tree in T4}.
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PROPOSITION 32. The image of quartet start trees V (0)
4 =

3T
k=1

V (k)
4 = {M (k)b, where bINT =

0} = {M (0)bTER, bTER 2 R4
>0} is the positive orthant in the column space of M (0).

A compatible tree class T (k)
4 is a top-dimensional stratum and its boundaries in tree

space. Likewise,

PROPOSITION 33. V (k)
4 = V̊ (k)

4

S
V (0)
4

Though v 2 V (k)
4 is a vector length of 6, V (k)

4 is vector set with dimension 5 since the

column rank of M (k) is 5. In T4, the kth (k = 1, 2, 3) compatible tree class have the common

boundary as the set of star trees. Correspondingly, V (k)
4 (k = 1, 2, 3) coincides with each

other on V (0)
4 . The structure of V (1)

4 , V (2)
4 and V (3)

4 can be described as grafted with each

other as 3.10 shows, similar to BHV tree space.

Figure 3.10 gives us a graphic visualization on the topological vector space V4. Each tree

in tree class T (k)
4 with edge length vector b 2 R4

>0 � R�0 is projected to a point in a semi-

positive orthant of a space ranged by the 6 ⇥ 5 matrix M
(k), which is a subset in R6

>0. Its

coordinate is M
(k)b = M

(0)bTER + I
(k)
bINT . As the internal edge bINT decreases to 0, the

corresponding vector moves to the “boundary” V (0)
4 with dimension 4.

Note that in Figure 3.10, the space ranged by M
(0), I(1), I(2) and I

(3) are not orthogonal,

as none of the inner products is 0.

3.4 Generalization to Large Trees

We have shown several excellent properties about the tree space (T4, D) and its corresponding

vector set V4. Most conclusions in T4 are very straightforward. In this section, we will see if

the parallel conclusions hold in the general Tm when m > 4.

LEMMA 34. 1. Tm =
S(2m�5)!!

k=1 T (k)
m .

2. T (0)
m :=

T(2m�5)!!
k=1 T (k)

m is the set of (m�degree) star trees in Tm.
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Figure 3.10: The structure of V4 in R6
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Proof. (1). According to the definition of T (i)
m , there is

S(2m�5)!!
k=1 T (i)

m ⇢ Tm. For any T 2 Tm,

if T is a binary tree with topology ⌧
(k0), then T is in the tree class T (k0)

m . If T is a tree with

polytomy, then it can finally become a binary tree T
0 by adding branches into it, such that

T is in the same tree class with the binary tree T
0.

(2)A star tree can become any other topology by adding branches, therefore the set of star

tree is subset in T (0)
m . For a T 2

T(2m�5)!!
k=1 T (k)

m , assume T has an internal edge e. e splits T

into two parts, with each part have at least two tips. Arbitrarily select tips (i, j) from one

part and (x, y) from the other part. The quartet subtree (i, j, x, y) has the quartet topology

of ⌧ (1). Manipulate T by exchanging the label of j and x such that T becomes a di↵erent tree

T̃ . Then the quartet subtree (i, j, x, y) in T̃ has the topology of ⌧ (2). The quartet subtrees

inherit by the same set of four tips from T and T̃ conflict, therefore T and T̃ are incompatible.

This is contradiction to the assumption of T 2
T(2m�5)!!

k=1 T (k)
m .

3.4.1 Characterizing the mapping by matrices

For T 2 Tm, without loss of generality, order its edges lexicographically, such that the first m

edges are terminal edges incident to (S1, S2, . . . , Sm) while the last (m�3) are internal edges.

Let b be the edge length vector. In T 2 Tm with (2m�5)!! possible topologies, the path from

Si to Sj definitely covers ei and ej while no other terminal edges. For m + 1  l  2m� 3,

if el separates Si and Sj, then the path from Si to Sj covers el. Therefore, the mapping ' is

determined by the topology, as well as the matrix operator representing the topology.

LEMMA 35. For T = (⌧, b) 2 T (k)
m (1  k  (2m � 5)!!), '(T ) = M

(k)b, where M
(k) :

p⇥ (2m� 3) is the linear operator determined by the topology ⌧
(k).

In matrixM
(k), the firstm columns, which will be multiplied with the firstm edge lengths

to contribute to the terminal composite of the path, constitute to a p⇥m matrix M
(0) whose

entries on the p rows are the indicators of the
�
m
2

�
combinations. The last (m� 3) columns

are the split indicators by the internal edges I(k)
l where (m + 1  l  2m � 3). The last

(m� 3) columns constitute a p⇥ (m� 3) matrix, denoted as M (k)
INT .
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Within each compatible class, '(T ) is a linear transformation the edge length vector.

Thus the statement that '(T ) is a piecewise linear transformation still holds.

In the tree class T (k)
m , ' is presented by a p⇥ (2m� 3) matrix M

(k). We will characterize

the mapping ' and the image '(T (k)
m ) by analyzing the matrix M

(k).

LEMMA 36. Each M
(k) is full column rank.

Proof. The proof is shown in the appendix.

In order to compare two trees, we will look at the matrices corresponding to them.

LEMMA 37. For two binary trees T1 2 T (k1)
m and T2 2 T (k2)

m , where k1, k2 2 {1, 2, . . . , (2m�

5)!!}, there is

DRF (T1, T2) = 2(m� 3)� 2⇥#{I(k1)
l = I(k2)

h ,m+ 1  l, h  2m� 3}

Proof. I(k1)
l = I(k2)

h indicates that the split created by edge el in T1 is same with the split

created by edge eh in T2, contributing to the same bipartition shared by T1 and T2. Therefore,

#{I(i1)
l = I(i2)

h ,m + 1  l, h  2m � 3} is the number of all the splits shared by T1 and

T2.

Example 38. For four trees T1, T2, T3and T4 shown in Figure 3.11.

The splits created by internal edges in T1 are {S1, S2|S3, S4, S5, S6}, {S1, S2, S3|S4, S5, S6},

{S1, S2, S3, S4|S5, S6}.

Splits created by internal edges in T2 are {S1, S2|S3, S4, S5, S6}, {S1, S2, S5|S3, S4, S6},

{S1, S3, S4, S5, S6|S3, S4}.

Splits created by internal edges in T3 are {S1, S3|S2, S4, S5, S6}, {S1, S3, S4|S2, S5, S6},

{S1, S3, S4, S5|S2, S6}.

Splits created by internal edges in T4 are {S1, S2|S3, S4, S5, S6}, {S3, S4|S1, S2, S5, S6},

{S5, S6|S1, S2, S3, S4}.

In the graph, the internal edge colored as orange creates the same bipartition in T1 and

T2. There is one common split ({S1, S2|S3, S4, S5, S6}) shared by T1 and T2. Moreover, the

45



Figure 3.11: An example of four 6-taxa binary unrooted trees with distinct topologies
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split indicators of this edge in the two trees are the same. The orange internal edge and light

green internal edge create the same bipartition in T1 and T4. There are two common splits

({S1, S2|S3, S4, S5, S6}) and ({S5, S6|S1, S2, S3, S4})shared by T1 and T4. The split indicators

in the matrix corresponding to the T1 and T4 have two common split indicators. T3 has no

common split with any of the other three trees. Likewise, there is no same split indicator in

the associated matrix of T3 and other matrices.

DRF (T1, T4) = DRF (T2, T4) = 2, DRF (T1, T2) = 4, DRF (T1, T3) = DRF (T2, T3) =

DRF (T4, T3) = 6.

In the corresponding matrices M (k1), M (k2), M (k3) and M
(k4),

#{I(k1)
l = I(k4)

h , 7  l, h  9} = #{I(k4)
l = I(k2)

h , 7  l, h  9} = 2,

#{I(k1)
l = I(k2)

h , 7  l, h  9} = 1,

#{I(k1)
l = I(k3)

h , 7  l, h  9} = #{I(k2)
l = I(k3)

h , 7  l, h  9} = #{I(k4)
l = I(k3)

h , 7 

l, h  9} = 0

This example provides a perspective on the relationship between bipartition and the

structure of M (k)
INT . The (m � 3) columns in M

(k)
INT are independently from each other, and

independent with M
(0). However, the (2m � 5)!! ⇥ (m � 3) columns in the collection of

{M (k)
INT , k = 1, 2, . . . , (2m � 5)!!} will have a huge number of repeats. So, we are interested

in the configuration that how M
(k)b constitute Vm.

M
(k)
INT has (m� 3) columns as split indicators determined by the internal edges. Because

one split indicator corresponds to one split. Thus, the total number of di↵erent split indicators

in {M (k)
INT , k = 1, 2, . . . , (2m�5)!!} equals the number of di↵erent splits, denoted as #{splits}.

#{splits} =

8
<

:

�
m
2

�
+
�
m
3

�
+ · · ·+

�
m

[(m�1)/2]

�
, when m is odd

�
m
2

�
+
�
m
3

�
+ · · ·+ 1

2

�
m

m/2

�
, when m is even

= 2m�1 �m� 1

.
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3.4.2 Structure of Vm

The Petersen graph shown by Figure 3.12 depicts the structure of T5. In this graph, there

are 10 vertices (presented by the bullets) and 15 edges (edges connecting the bullets). Each

vertex represents a tree with a polytomy with a 4-degree internal node. Each edge represents

a binary topology. Three edges sharing a common end vertex means that three distinct

binary topologies can degenerate to the same multifurcating topology with a polytomy with

a 4-degree internal node.

In this part, we will explore how the topological vector sets V (k)
m constitute the image Vm

based on the repetition among the columns in {M (k)
, k = 1, 2, . . . , (2m� 5)!!}.

As we have pointed out, in matrix M
(k) (k = 1, 2, . . . , (2m � 5)!!), the first m columns

are M
(0). The last (m � 3) columns are the split indicators I(k)

m+1, I
(k)
m+2, . . . , I

(k)
2m�3. Denote

the edge length vector as b = (b0TER, b
0
INT ) 2 Rm

>0�Rm�3
�0 , where bTER 2 Rm

>0 represents the

edge lengths of the m terminal edges, and bINT = (b(em+1), b(em+2), . . . , b(e2m�3))0 2 Rm�3
�0

represents the lengths of the (m� 3) internal edges. For T 2 T (k)
m , its pairwise path vector is

'(T ) = M
(k)b = M

(0)bTER +
2m�3X

l=m+1

b(el)I
(k)
l

The image of the top-dimensional stratum T̊ (k)
m is the vector set characterized by matrix

M
(k) in space Rp

>0.

PROPOSITION 39. V̊ (k)
m = {M (k)b|b 2 R2m�3

>0 } is the positive orthant in the column space

of M (k).

As one internal edges eh in T 2 T̊ (k) decreasingly approaches to 0, the corresponding

vector '(T ) moves to the boundary of the V̊ (k)
m , which is a lower dimensional stratum char-

acterized by a matrix with column rank (2m� 2).

Example 40. Three distinct binary trees with 5-taxa T1, T2 and T3 in Figure 3.13 are part

of the Petersen graph shown by Figure 3.12. From the Petersen graph, we can see that the
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Figure 3.12: The Peterson graph depicting the 15 unrooted topologies of 5-taxa
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three trees are connected to a common vertex which represents the tree ((a, b), (c, d, e)) with

a polytomy and maintains the internal edge who create the split as {a, b|c, d, e}.

From the view of vectors, the corresponding vectors are in the facet restricted by M
(k)

as

'(Tk) = M
(k)b = M

(0)bTER + b(e6)I
(k)
6 + b(e7)I

(k)
7

Since I(k)
6 , I(k)

7 and M
(0) are independent, thus the existence of each internal edge increases

the dimension of the range of a p�length vector '(Tk) by 1. Reversely, removal of one internal

edge moves the point to a lower dimensional space, which is the vector set corresponding

to a tree with polytomy. Beside the first 5 columns as M
(0), M (1)

INT ,M
(2)
INT and M

(3)
INT have

a common column of I(k)
6 , denoted as I(0)

6 , and presented in the graph by the internal edge

colored in green. By removing the “orange” edge in T1, the “light blue” edge in T2, and “light

purple” edge in T3, the three trees degenerate to their consensus tree as ((a, b), (c, d, e)), which

has the “green” edge whose split indicator is I(0)
6 .

In general, the topological vector set isomorphic to the tree space Tm is

Vm = {'(T ) 2 Rp
>0|T 2

S(2m�5)!!
k=1 T (k)}

= {M (k)b|k = 1, 2, . . . , (2m� 5)!!, b 2 Rm
>0 � Rm�3

�0 }

= {M (0)bTER +
2m�3P
l=m+1

b(el)I
(k)
l |k = 1, 2, . . . , (2m� 5)!!, bTER 2 Rm

>0, b(el) � 0}

Since there are 2m�1 �m � 1 possible distinct I(k)
l , thus besides M (0), the top-dimensional

stratums {V̊ (k)
m , k = 1, 2, . . . , (2m�5)!!} have (2m�5)!! facets with 2m�1�m�1 boundaries

in total.

For any two matricesM (k) andM
(h) (k 6= h), the number of their common split indicators

ranges from 0 to (m�2). If the two matrices have no common split indicator, then T (k)
m

T
T (h)
m

is the set of star trees. If M (k) and M
(h) have a collection of common split indicators , then

their corresponding topology ⌧
(k) and ⌧

(h) have the strict consensus tree with the internal

edges associated with the common split indicators.
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Figure 3.13: A part of V5 in R10
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PROPOSITION 41. V (k)
m

T
V (h)
m = {M (0)bTER +

P

Iz exists both in M(k) and M(h)

Izb(ez), b 2

Rm
>0, b(ez) > 0} = {'(T )|T is compatible with the consensus tree of ⌧ (k) and ⌧

(h)}.

PROPOSITION 42. V (0)
m :=

(2m�5)!!T
k=1

V (k)
m = {M (0)b, b 2 Rm

>0} is the positive orthant in the

column space of M (0), and is the vector set corresponding to m�degree star trees.

Because Vm is characterized by M
(0) and the 2m�1 �m � 1 split indicators, Vm cannot

range over Rp
>0. It is a strict subset of Rp

>0. This arises the question that what vectors in

Rp
>0 have preimages in Tm.

LEMMA 43. For two trees T1, T2 2 Tm, '(T1) + '(T2) 2 Vm if and only if T1 and T2 are

compatible.

Proof. The proof is provided in appendix.

This statement suggests that, though each phylogenetic tree has its corresponding vector

in Rp
>0, not the vector yielded from the calculation of trees has its associated phylogenetic

tree.

Example 44. There are three trees T1, T2 and T3 in T6 as shown by Figure 3.14 (a). T2 has

a polytomy and T2 is compatible with both T1 and T3, while T1 and T3 are incompatible.

Their corresponding vectors are

'(T1) = (0.20, 0.45, 0.50, 0.60, 0.70, 0.45, 0.50, 0.60, 0.70, 0.45, 0.55, 0.65, 0.40, 0.50, 0.30)0

'(T2) = (0.20, 0.30, 0.30, 0.40, 0.40, 0.30, 0.30, 0.40, 0.40, 0.20, 0.30, 0.30, 0.30, 0.30, 0.20)0

'(T3) = (0.25, 0.40, 0.40, 0.60, 0.60, 0.45, 0.45, 0.65, 0.65, 0.20, 0.60, 0.60, 0.60, 0.60, 0.40)0

The additions are

'(T1) + '(T2) = (0.40, 0.75, 0.80, 1.00, 1.10, 0.75, 0.80, 1.00, 1.10, 0.65, 0.85, 0.95, 0.70, 0.80, 0.50)0

'(T2) + '(T3) = (0.45, 0.70, 0.70, 1.00, 1.00, 0.75, 0.75, 1.05, 1.05, 0.40, 0.90, 0.90, 0.90, 0.90, 0.60)0

'(T1) + '(T3) = (0.45, 0.85, 0.90, 1.20, 1.30, 0.90, 0.95, 1.25, 1.35, 0.65, 1.15, 1.25, 1.00, 1.10, 0.70)0

To project vector back to tree, the first step is to identify its topology. Assume T1 is in

the compatible tree class T (k), then '(T1) + '(T2) is a vector in the compatible vector set
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V (k) which can be characterized by M
(k). The tree associated with '(T1) + '(T2) has the

topology as ⌧
(k) and has the branch length vector as ginv(M (k)) · ('(T1) + '(T2)), where

ginv(M (k)) is the left generalized inverse of M (k). This tree is shown as the tree T̃1 in Figure

3.14 (b).

Likewise, T̃3 is the tree associated with the vector '(T2) + '(T3).

For '(T1) + '(T3), note that T1 and T3 di↵er in the quartet subtree (S1, S3, S4, S6). The

pairwise paths in '(T1)+'(T3) corresponding to this quartet is (0.85, 0.9, 1.3, 0.65, 1.25, 1.1).

None of the min-plus inequalities is valid for this quartet. Therefore, '(T1) + '(T3) /2 Vm.

3.4.3 Geometry of Vm

As a supplementary to the structure of Vm, we will explore the geometry of Vm. Though

V4 can be visualized as in Figure 3.10, the graphical visualization of the topological vector

space corresponding to large trees is infeasible. We want a more systematic way to describe

the structure of V4. The fact that vector '(T ) is related to min-plus inequalities, and the

mapping ' is a piecewise linear transformation, stimulates us to explore the structure of V4

in the literature of tropical geometry.

Study of Speyer and Sturmfels (2004) shows that in tropical algebraic geometry, the

structure of BHV tree space Tm is a tropical Grassmannian G2,m, which is a polyhedral

complex in Rp. This polyhedral complex in Rp has 2m�1 � m � 1 vertices and (2m � 5)!!

facets. Each facet (also referred to as top dimensional stratum in Willis (2017)) has the same

dimension of (2m� 3).

From the Figure 3.10 which shows the trivial situation of V4, the topological vector space

V4 is a polyhedral fan with three five-dimensional cones R4
>0 � R�0 glued along R4

>0. As

general case, the geometry of Vm can be detected by the matrices. The (2m�5)!! nonnegative

orthants in column space of M (k) constitute Vm, and there are 2m�1 �m � 1 possible split

indicators in {M (k)
INT , k = 1, 2, . . . , (2m�5)!!}. Therefore, when m � 5, the Vm is a polyhedral

complex in Rp
>0 with 2m�1 � m � 1 vertices and (2m � 5)!! facets, and each facet V (k)

m has
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Figure 3.14: An example of manipulating tree with 6 taxa by vectors
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the dimension of (2m � 3). Two facets V (k)
m and V (h)

m are glued along the set of vectors

corresponding to the strict consensus tree of ⌧ (k) and ⌧
(h).

3.4.4 (Tm, DL2) and (Vm, D) are Polish Space

To conduct probabilistic and statistical analysis in the L2 tree space (Tm, DL2) as well as the

topological vector space (Vm, D), in this part, we point out that they are Polish space, which

is separable completely metrizable. Since (Tm, DL2) and (Vm, D) are isometry, for simplicity,

we will show that (Vm, D) is complete and separable.

LEMMA 45. A topological vector space (Vm, D) is complete.

Proof. The proof is provided in the appendix.

Vm is a subset in Euclidean vector space, therefore it is separable. The establishment that

(Tm, DL2) and (Vm, D) allows the probability measures under this setting. In next chapter,

we will show the application of this vectorization setting from a statistical perspective.
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Chapter 4

Mean and Variance of Phylogenetic Trees

Because the tree is a graph-like object, it is hard to define computation on trees. This poses an

impediment to the statistical inference on a collection of trees. Under the settings constructed

in the last chapter, we can manipulate the corresponding vectors instead of phylogenetic trees.

In this chapter, several classical statistical works will be explored, including the definition

of mean and variance, and the proposal of an estimation method for the mean tree. For

simplicity, we will omit the number of taxa in the notation, but note that the tree space T

is built on a given set of taxa.

4.1 Centroid and Variability Measure

In Chapter 3, we build a pairwise path distance DL2 as a metric in the tree space T . As

aforementioned, the possibility that there may be multiple gene trees from an underlying

species tree makes the phylogenetic tree can be viewed as a random variable with a distribu-

tion. In order to study the random phylogenetic tree from a statistical perspective, we aim

to set a statistical infrastructure for the phylogenetic tree in the metric tree space (T , DL2).

Assume there’s a tree distribution T ⇠ F in the tree space (T , DL2). The mean of distri-

bution F is
R
T2T TdF (T ). If the tree population resides in a compatible tree class T (k), then

the mean tree can be naturally defined as having the topology ⌧
(k) and with the mean branch

lengths. If we consider the trees with conflicting topologies, the integration
R
T2T TdF (T ) is

not intuitive. Fortunately, based on the relationship between trees and vectors defined in

Chapter 3, we can define a mean vector for the tree distribution.
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Figure 4.1: An example of a multifurcating tree as a special case of binary tree

Because there are finite possible topologies in T , so the integration in V can be divided

to V (k). Note that a multifurcating tree is compatible with at least three distinct binary

topologies. For simplification as well as avoiding double-counting, we treat a multifurcating

tree as a special case of the binary tree, in a way by adding the internal edges subsequently

to the lexicographically ordered tips within the polytomy. For example, the trees in Figure

4.1 (a) is compatible with 15 distinct binary topologies. In computation, it is treated as a

special case of the topology in Figure 4.1(b), which is obtained by adding internal edges

connected to tip c and d. The multifurcating tree in Figure 4.1(a) will be calculated as it is

in the compatible tree class yielded from the tree in Figure 4.1(b).

4.1.1 Proposal of Mean and Variance

The mean of a random tree is hard to define. Chapter 3 constructs a setting that relates each

phylogenetic tree to a vector. This representation encourages us to define the mean of the

corresponding random vector instead. Since the tree space (T , DL2) and topological vector

space (V , D) are Polish space, therefore we can define the probability triples in them.
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DEFINITION 46. (mean vector of F ) Given a probability space (T ,B(T ), PF ) for a

random phylogenetic tree, it has an associated probability triple in the isometric topological

vector space as (V ,B(V), PF ). Define its mean vector as

VF = EF ('(T )) =

Z

T2T
'(T )dF (T ) =

Z

'(T )2V
'(T )dF (T )

Since V =
(2m�5)!!S

k=1
V (k), the integration of '(T ) is actually the sum of integrations on V (k).

Therefore,

VF =
(2m�5)!!P

k=1

R
T2T (k) '(T )P (T 2 T (k))dF (T |T (k))

=
(2m�5)!!P

k=1
P (T 2 T (k))

R
T2T (k) '(T )dF (T |T (k))

=
(2m�5)!!P

k=1
EF ('(T )|T (k))P (T 2 T (k))

.
=

(2m�5)!!P
k=1

VF |T (k)P (T 2 T (k))

VF is the weighted average of the conditional mean vectors from the compatible tree

classes. As an integration, VF 2 Rp
>0 exists if and only if

R
T '(T )dF (T ) < 1. However,

LEMMA 43 points out that VF is not necessarily in V . In other words, there may not exist

a tree in T such that '(T ) = VF . In general, a natural way is to define the tree whose

corresponding vector is “closest” to VF as the optimal tree associated with VF .

DEFINITION 47. (mean tree of F ) For a tree distribution F with mean vector VF , its

mean tree is defined as

TF = argmin
T2T

k'(T )� VFk2

Given this definition, next we will discuss the existence and uniqueness of TF . Since V is

complete, therefore, if VF exists, then TF exists.

For the uniqueness of TF , note that k'(T )� VFk2 achieves 0 if and only if '(T ) = VF .

Therefore, if VF 2 V , then it is guaranteed that TF is unique.

LEMMA 48. Given that the mean tree TF for a random tree T ⇠ F exists, then
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1. If T distributes within a tree class, then its mean tree is unique and is in the same tree

class.

2. If the mean vector VF 2 V, then the mean tree is unique as '
(�1)(VF ).

3. In each tree class, there is at most one tree minimizing the distance to VF .

Proof. Here we give a brief proof to the last statement. If in T1 and T2 are two distinct

trees in T (i) who minimize the distance to VF . k'(T1)� VFk22 = k'(T2)� VFk22 = �. Let

V0 = (V1 + V2)/2, then '
�1(V0) 2 T (i) and kV0 � VFk22 < �. This is a contradiction to the

assumption that both T1 and T2 are minimizers.

Generally the uniqueness of TF can not be guaranteed.

Example 49. Assume a random tree has the same probability of being either of the two trees

in Figure 4.2. Then the mean vector VF = (3, 3, 4, 4, 3, 3)0. To find the minimizer to VF , search

in three compatible vector classes V (i) that constitute V4. Two trees are selected because they

give the same minimal distance to VF . One tree is compatible with the first tree, and has

the corresponding vector as V1 = (3, 3.5, 3.5, 3.5, 3.5, 3)0. The other tree is compatible with

the second tree, and has the corresponding vector as V2 = (3.5, 3, 3.5, 3.5, 3, 3.5)0.

In this example, there are two minimizers because the two distinct tree classes have the

same weight on the tree distribution, so the minimization gives symmetric results in the two

tree classes. If the tree is inclined to a particular tree class, or say, if there is a compatible

vector set V (i) such that the distance of the mean vector VF to V (i) is less than the distance

to any other compatible vector set, then the minimizer is unique.

PROPOSITION 50. Given that the mean tree TF for a random tree T ⇠ F exits, if there

is k0, such that min
V 2V(k0)

kV � VFk22 < min
V 2V(j)

kV � VFk22 for any j 6= k0, then TF is unique and

is in T (k0).

The definition of variability in a set of trees is even more troublesome than the centroid.

The variability measure should capture both the direction and latitude of the tree di↵erence.

59



Figure 4.2: An example of 4-taxa tree distribution

Traditional tree metrics such as Robinson-Foulds distance can present the latitude; however,

the direction of tree di↵erence is hard to describe. Given the relationship between trees and

vectors constructed by the mapping ', our intuition is to characterize the variability in a

set of trees by the variability in the corresponding set of vectors. Therefore, similar to the

definition of mean vector for a tree distribution, based on the tree’s vectorization, we can

define a variance of a phylogenetic tree.

DEFINITION 51. For a tree T ⇠ F with mean vector VF , its covariance matrix is

defined as

⌃F = EF (('(T )� VF )('(T )� VF )
0) =

Z

T
('(T )� VF )('(T )� VF )

0
dF (T )

Likewise,

⌃F =
(2m�5)!!P

k=1
P (T 2 T (k))

R
T2T (k)('(T )� VF )('(T )� VF )0dF (T |T (k))

=
(2m�5)!!P

k=1
P (T 2 T (k))MSEVF ('(T )|T (k))

=
(2m�5)!!P

k=1
P (T 2 T (k))

⇥
V ART ('(T )|T (k)) + (ET ('(T |T (k)))� VF )(ET ('(T |T (k)))� VF )0

⇤

.
=

(2m�5)!!P
k=1

P (T (k))
⇥
V ART ('(T )|T (k)) + (VF |T (k) � VF )(VF |T (k) � VF )0

⇤
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⌃F is the weighted average of the conditional variance and the squared bias of conditional

mean vector to VF from each compatible tree class. It measures the variability in '(T ) where

T ⇠ F .

4.1.2 Sample Mean Tree

For a collection of trees {T1, T2, . . . , Tn}, its average tree is not intuitive. However, by the

vectorization mapping ', we can propose a sample mean tree based on the average of their

corresponding vectors. Given a sample of trees, similar to the definition of mean tree, we

can first get their average vector, and then look for the tree that optimally “matches” the

average vector.

DEFINITION 52. (sample mean tree) Given a random sample of trees {T1, T2, . . . , Tn}

drawn from distribution F , the sample mean vector is defined as the mean of the sample

trees’ corresponding vectors.

V n =
1

n

nX

i=1

'(Ti)

The sample mean tree is defined as the tree closest to the sample mean vector.

T n = argmin
T2T

��'(T )� V n

��
2

The sample mean tree is defined as the tree whose corresponding vector is closest to the

sample mean vector in the L2 norm. Since the tree metric DL2 is defined from the L2 norm in

the vector space, hence the sample mean tree is the tree that minimizing the pairwise path

distance to the sample trees. Therefore, the sample mean tree is the Fréchet mean (Nye,

2011) of the sample trees. This argument can be proved.

LEMMA 53. T n is the sample Fréchet mean of {T1, T2, . . . , Tn} in the metric space

(T , DL2).

Proof. Denote VT = '(T ) = (v(T )
kl )kl, Vi = '(Ti) = (v(i)kl )kl, and V n = 1

n

Pn
i=1 '(Ti) = (vkl)kl.

nX

i=1

kVT � Vik22 =
nX

i=1

��Vi � V n + V n � VT

��2

2
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=
nX

i=1

X

k<l

(v(i)kl � vkl + vkl � v
(T )
kl )2

=
nX

i=1

X

k<l

⇣
(v(i)kl � vkl)

2 + (vkl � v
(T )
kl )2 + 2(vkl � v

(T )
kl )(v(i)kl � vkl)

⌘

=
nX

i=1

��Vi � V n

��2

2
+

nX

i=1

��Vt � V n

��2

2
+ 2

X

k<l

(vkl � v
(t)
kl )

nX

i=1

(v(i)kl � vkl)

=
nX

i=1

��Vi � V n

��2

2
+

nX

i=1

��Vt � V n

��2

2

Given {T1, . . . , Tn},
Pn

i=1

��Vi � V n

��2

2
is a fixed value. Thus min

Pn
i=1 kVT � Vik22 ,

min
Pn

i=1

��Vt � V n

��2

2
. T n = argmin

T2T

Pn
i=1 D

2
L2(T, Ti)

In this part, we define the mean tree and propose a sample mean tree based on the

vectorization of trees. Next, we will show that the sample mean tree is an excellent estimator

for the mean tree.

4.2 Asymptotic Behavior of Sample Mean Tree

The mean tree TF cannot be guaranteed to be unique in general cases. The LEMMA 43

also indicates that for a given sample {T1, T2, . . . , Tn}, the tree minimizing the pairwise path

distance may not be unique. From LEMMA 48, if the tree distributes within a tree class,

the minimizer is guaranteed to be unique.

LEMMA 54. If the random tree T distributes within a tree class T (i) and its mean vector

exists, then its unique sample mean tree is unbiased estimator (UE) for its unique mean tree.

Proof. The population of T reside in T (i), thus its mean vector VF and sample mean vector

V n are in V (i). Hence, both the mean tree and sample mean tree are unique. TF = '
�1(VF )

and T n = '
�1(V n). For T n as a random tree, its mean vector is E('(T n)) = E(V n) =

E( 1n
nP

i=1
'(Ti)) =

1
n

nP
i=1

E('(Ti)) = E('(T )) = VF . Therefore, the mean of T n is '
�1(VF ) =

TF .
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In this literature, the unbiasedness of tree estimator means its corresponding vector is

unbiasedness. From the proof, '(T n) = V n is the su�cient condition for unbiasedness .

PROPOSITION 55. T n is UE for TF if and only if the sample mean vector V n 2 V.

If there are conflicting topologies in tree population, there is no guarantee that V n 2 V .

Hence T n is not necessarily to be unbiased. Nevertheless, T n has the following satisfying

property of consistency.

THEOREM 56. (Consistency of Sample Mean Tree) For a random sample generated from

T ⇠ F , if the mean tree TF uniquely exists, then the sample mean tree T n 2 T (k) is a

consistent estimator for TF in (T , DL2).

Proof. For a random sample {T1, T2, . . . , Tn} generated from F , by the strong Law of Large

Numbers (L.L.N.), lim
n!1

V n = VF almost surely. Also, we have

8T 2 T , k'(TF )� VFk2  k'(T )� VFk2
8T 2 T , 8n,

��'(T n)� V n

��
2


��'(T )� V n

��
2

Take limits on both sides of the second inequality and set T as T n in the first inequality,

then

8n, k'(TF )� VFk2 
��'(T n)� VF

��
2

8T 2 T ,

��� lim
n!1

'(T n)� VF

���
2

 k'(T )� VFk2 almost surely

Take limits on both sides of the first inequality and set T as TF in the second inequality,

then

k'(TF )� VFk2 
��� lim
n!1

'(T n)� VF

���
2
almost surely

��� lim
n!1

'(T n)� VF

���
2

 k'(TF )� VFk2 almost surely

Thus, we have

k'(TF )� VFk2 =
��� lim
n!1

'(T n)� VF

���
2
almost surely
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Since TF uniquely exists, we can assume TF 2 T (k). We assert that there exists N 2 N

such that 8n > N , T n is in T (k).

Otherwise, since there are finite possible tree classes, there is at least one tree class, other

than T (k), that will contain infinite T n for n � 1. Assume that tree class is T (h) (h 6= k).

There is a subsequent T nh
such that T nh

2 T (h) and

���� lim
nh!1

'(T nh
)� VF

����
2

= k'(TF )� VFk2 almost surely

Therefore, there exists a T
(h)
F 2 T (h) such that lim

nh!1
'(T nh

) = '(T (h)
F ), i.e.,

���'(T (h)
F )� VF

���
2
= k'(TF )� VFk2

T
(h)
F 2 T (h) is the mean tree. This contradicts with the assumption that the mean tree is

unique.

There existsN 2 N such that 8n > N , T n is in T (k). Thus, lim
n!1

'(T n) = TF almost surely.

That is DL2(T n, TF ) ! 0. Hence, the sample mean tree converges to the mean tree.

Moreover, the uniqueness of T n cannot be guaranteed unless the sample mean vector

V n is “inclined” to a particular tree class. If the mean tree TF exists but is not unique, the

sample mean tree T n may not converge in (T , DL2). However, from the above inference, if

we focus on TF 2 T (k) and restrict the sample mean tree sequence to the subsequence in the

tree class T (k), then the subsequence of T n in the tree class T (k) converges to the mean tree

TF in T (k).

Since it is assumed that {T1, T2, . . . , Tn}
iid⇠ F , then their corresponding vectors

{'(T1),'(T2), . . . ,'(Tn)} are also i.i.d., with the mean vector VF = E('(T )) and covari-

ance matrix ⌃F = V AR('(T )). According to the multidimensional Central Limit Theorem

(C.L.T.), there is
p
n(V n � VF )

d! Np(0,⌃F )

Based on the isomorphism between trees and vectors, we attempt to extend this statement

to tree space.
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THEOREM 57 (Asymptotic Normality of Sample Mean Tree). For the random sample

{T1, T2, . . . , Tn} generated from T ⇠ F , if the mean tree TF uniquely exists, then

p
n('(T n)� '(TF ))

D! Np(0, ⌃̃F )

Proof. There exists N such that 8n > N , T n reside in the same tree class with TF . Without

loss of generality, assume they are in the tree class T (k) which is characterized by M
(k) :

p⇥ (2m� 3). Then V (k) is the semi-positive orthant in the column space of M (k).

For n > N , T n = argmin
T

��'(T )� V n

��
2
2 T (k), thus T n = arg min

'(T )=M(k)b

��M (k)b� V n

��
2
.

Note M (k) is full column rank, assume ginv(M (k)) : (2m�3)⇥p is the left generalized inverse

of M (k). Therefore, '(T n) = M
(k)
ginv(M (k))V n

.
= G · V n, where G = M

(k) · ginv(M (k)).

Note that '(TF ) is the projection of VF on V (k), thus '(TF ) = G ·VF . Explicitly, '(TF ) =

M
(k) · b(TF ) = M

(k) · ginv(M (k))VF = G · VF .

According to
p
n(V n � VF )

d! Np(0,⌃F ), we have

p
n(G · V n �G · VF )

d! Np(0, G⌃FG
0)

That is
p
n('(T n)� '(TF ))

d! Np(0, ⌃̃F )

where ⌃̃F = M
(k) · ginv(M (k))⌃F (ginv(M (k)))0(M (k))0.

This theorem validates the asymptotic normality of the vectors corresponding to the

sample mean tree. Based on this infrastructure, a series of statistical inferences can be devel-

oped. For example, given a sample of trees {T1, T2, . . . , Tn}
iid⇠ F , we can build a confidence

procedure as follows. First, calculate the sample mean tree T n. Then, the confidence region in

the Euclidean space can be built as
n
x 2 Rp

>0|n
�
'(T n)� x

�0
⌃̃F

�1 �
'(T n)� x

�
<

p
n�pFp,n�p(1� ↵)

o
.

Next,for an arbitrary tree T0, we can determine if it is in the confidence set by identifying if

'(T0) is in the confidence region.
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Figure 4.3: Potential topologies for the random sample tree

4.3 A Simulation Study

In this section, we will conduct a simulation to show the asymptotic performance of '(T n)�

'(TF ).

Step 1. Assume the tree distribution F .

In this simulation study, to show the asymptotic behavior, we use an arbitrary distri-

bution. For a more complicated construction, we can assume a species tree and generate

a sample of phylogenetic trees according to the distribution from the coalescent process

(Rosenberg and Nordborg, 2002; Liu et al., 2015).

Our assumed distribution is that the tree has three possible topologies as shown by

Figure 4.3. P (T 2 T (1)) = 1/2, P (T 2 T (2)) = 1/4, P (T 2 T (3)) = 1/4. The 6 terminal

edges are fixed to be with length 1. The three internal edges are assumed to be exponentially

distributed as exp(0.5) for each tree class.

It can be calculated that the mean vector is

VF = (3.0, 4.0, 6.5, 7.5, 6.5, 5.0, 5.5, 6.5, 6.5, 4.5, 6.5, 5.5, 4.0, 5.0, 3.0)0
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VF /2 V6, while the mean tree TF whose corresponding vector is closest to VF is TF 2 T (1)

and has the edge lengths as

bTER = (1.625, 1.375, 1.750, 1.750, 1.625, 1.375)0, bINT = (1.250, 1.333, 1.250)0

. The corresponding vector of the mean tree is

'(TF ) = (3.000, 4.625, 5.958, 7.083, 6.833, 4.375, 5.708, 6.833, 6.583, 4.833, 5.958, 5.708, 4.625, 4.375, 3.000)0

Step 2. Generate K = 100 samples.

Each sample contains n (n = 10, 50, 300) trees randomly sampling from F . For each

sample {T1, T2, . . . , Tn}, calculate the corresponding vectors of each tree, and then get the

sample mean vector V n. Next, reconstruct the sample mean tree T n from the sample mean

vector. The last step is to vectorize the sample mean tree T n to get its corresponding vector

'(T n).

Step 3. Calculate the di↵erences between '(TF ) and '(T n) for 100 samples.

We have 100 replicates of '(T n)�'(TF ) (n = 10, 50, 300), which are vectors of
�
6
2

�
= 15

entries.

To demonstrate the multidimensional normality of '(T n) � '(TF ), we present the his-

tograms of its 15 marginal distributions. In addition, we randomly generate a linear com-

bination of '(TF ) � '(T n) and show its distribution. Furthermore, we demonstrate the

distribution of
��'(T n)� '(TF )

��2

2
, which should be approximately Chi-squared.

From Figure 4.4, Figure 4.5 and Figure 4.6, the marginal distribution of '(T n)� '(TF )

seems more and more normal as n increases.

Figure 4.7 shows the distribution of a linear combination a0('(T n)�'(TF )) for a random

15-length vector a. As n increases, the a0('(T n) � '(TF )) seems to be more normally dis-

tributed.

Figure 4.8 shows the distribution of
��'(T n)� '(TF )

��2

2
. As n increases, the distance

between '(T n) and '(TF ) decreasingly approaches to the expectation of the Chi-square

distribution.
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Figure 4.4: Histogram for the marginal distribution of '(T n)� '(TF ) when n = 10

Figure 4.5: Histogram for the marginal distribution of '(T n)� '(TF ) when n = 50
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Figure 4.6: Histogram for the marginal distribution of '(T n)� '(TF ) when n = 300

Figure 4.7: Histogram of a random linear combination of '(T n)�'(TF ) when n = 10, 50, 300
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Figure 4.8: Histogram of the distance between '(T n) and '(TF ) when n = 10, 50, 300

4.4 A Real Case Study

In this section, we will use a real case to show how to build a confidence procedure in tree

space, based on the vectorization mapping.

Step 1. The material collection. We use a portion of Multiz alignment block from the

RefSeq Genes published on genome.ucsc.edu. The alignment block 5 of 102 in windows,

79935440-79935592 (153 bps) collected from (Chicken, Cow, Dog, Rat) is used.

Step 2. Use RAxML (Kozlov et al., 2019; Stamatakis, 2014) to generate 100 bootstrap

phylogenetic trees (T1, T2, . . . , T100) from the alignment. The substitution model is assumed

as GTR. The best tree built from RAxML is shown by Figure 4.9.

The 100 bootstrap trees distribute in the three tree classes in T4. Order the taxa lexico-

graphically as Chicken, Cow, Dog, Rat. There are 7 trees with topology ⌧
(1), 5 trees with

topology ⌧
(2) and 88 trees with topology ⌧

(3) as shown by Figure 4.10. The internal edge

lengths are presented in Figure 4.11. The sizes of trees in T (1) and in T (2) are small, but it

can be told that the lengths of internal edge for trees in T (3) concentrate around 0.06.
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Figure 4.9: The maximum likelihood tree from RAxML built from the alignment of 4 species
and 153 bps

Figure 4.10: Three possible topologies for the 100 bootstrap trees

Figure 4.11: The internal edge lengths of the 100 bootstrap trees
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Step 3. Calculate the statistics from the bootstrap trees. The sample mean vector is

V 100 = (0.467, 0.430, 0.422, 0.123, 0.242, 0.199)0

V 100 /2 V4. Minimizing the distance over the tree space gives the sample mean tree T 100.

T 100 has the topology ⌧
(3) and has the edge lengths as

b = (0.325, 0.085, 0.041, 0.097, 0.062)0

. The corresponding vector of T 100 is

'(T 100) = (0.468, 0.428, 0.422, 0.123, 0.240, 0.200)0

The sample covariance matrix S is

S =

0

BBBBBBBBBBBBBB@

0.009 0.006 0.005 0.001 0.002 0.001

0.007 0.005 0.001 0.001 0.002

0.008 0.001 0.001 0.001

0.001 0.001 0.000

0.003 0.002

0.002

1

CCCCCCCCCCCCCCA

Step 4. According to the central limit theorem, the 100(1 � ↵)% confidence region in

vector space built from this sample is

⇢
x 2 R6

>0|('(T 100)� x)0S�1('(T 100)� x) <
p(n� 1)

n(n� p)
Fp,n�p(1� ↵)

�

The confidence set in tree space built from this sample is

⇢
T 2 T4|('(T 100)� '(T ))0S�1('(T 100)� '(T )) <

p(n� 1)

n(n� p)
Fp,n�p(1� ↵)

�

It can be checked that, the sample mean vector V 100 is in the 95% confidence region, and

the ML tree estimated from RAxML is in the 95% confidence set.
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Chapter 5

Conclusion and Future Work

Aiming at manipulating object in Euclidean space instead of in tree space, this dissertation

utilizes a pairwise path mapping to vectorize the phylogenetic tree. By the establishment

of the isomorphism between the tree space and the topological vector space, two properties

are shown in Chapter 3. First, the mapping is a piecewise linear transformation that can

be realized by matrices related to bipartition. Second, the topological vector sets in the

Euclidean space is the positive orthant in the column space of associated matrices and

structured similar to the tropical variety as a polyhedral complex in Rp. After setting up

the above mathematical infrastructure for trees in vector space, we develop its statistical

application. The mean tree and tree variance are defined based on the corresponding vectors

of trees, as centroid and variability measure in tree space. For the foremost application, we

propose a sample mean tree as the estimator for the mean tree. The unbiasedness, consistency,

and asymptotically normal distribution of the sample mean tree’s vectorization are proved.

A simulation is conducted to show the asymptotic normality, and a real study demonstrates

a confidence procedure based on the asymptotic normality.

The significance of this work is that it constructs a work-frame on phylogenetic trees

based on the preliminary vectorization, including the inducing of metric in L2 tree space. The

structure of the image vector set is presented. Furthermore, the computation and inference

work on trees can be easily manipulated through the vectors by vectorization of trees.

Future work that can be perceived through this dissertation includes two major parts. The

first is to develop the representation algorithms to facilitate computation on trees. The linear

transformation by matrices is ideal for computation. The principles of the matrices encourage
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the development of dynamic programming algorithms yielding matrices for large trees. The

natural idea is that the programming should be based on the quartet decomposition of the

tree. By systemizing the matrix operators, all manipulations on trees can be conducted by

altering the vectors in real number space.

Another aspect is the statistical application of the vectorization of trees. If we push the

sample mean tree approach further, we can utilize the property of corresponding vectors to

develop various data-analytic work. For example, by construction of a confidence set from

a sample of trees, the questions like “whether a particular branch should be rejected at the

0.05 significance level” can be answered quantitatively. The usage of confidence level instead

of bootstrap support percentage (Yang, 2006) will give a statistically interpretable meaning.

Furthermore, some adjustment methods can be exploited to make the confidence procedure

more accurate.
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Appendix

Proofs

Proof to LEMMA 36

LEMMA 36. Each M
(k) is full column rank.

Proof.

The values in every column of M (k) are either 0 or 1. Each pairwise path will cover a set

of edges, while any two pairwise paths will not cover the same set of edges. Therefore, the

columns in M
(k) will be di↵erent from each other.

Assume there is
P2m�3

l=1 alIl = 0, where {al, l = 1, . . . , 2m�3} are real number coe�cients.

Note that there are at least two “end” edges in the tree. Here, end edge refers to the

internal edge that is adjacent to three terminal edges. Assume one such edge is el0 as shown

in Figure 5.1. It appears that this edge is incident to three tips and one cluster of tips. The

Figure 5.1: A general situation of the “end” edge and the edge adjacent to “end” edge
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path between the pair (x, i) covers el0 and no other internal edges. That is,

P2m�3
l=1 alIl(x, y) = ax + ay = 0

P2m�3
l=1 alIl(x, i) = ax + al0 + ai = 0

P2m�3
l=1 alIl(y, i) = ay + al0 + ai = 0

This gives ax = ay = 0 and al0 + ai = 0.

Then, assume the internal edge eh0 is adjacent to el0 , as shown by Figure 5.1. The path

between the pair (x, j) covers el0 and eh0 . Therefore,

P2m�3
l=1 alIl(x, j) = al0 + ah0 = 0

P2m�3
l=1 alIl(i, j) = ai + ah0 = 0

Combined with al0 + ai = 0, this gives ai = al0 = ah0 = 0.

Extend this step further, until to the farthest pair that covers the most internal edges in

the graph. We can get that every al, (l = m+ 1, . . . , 2m� 3) is 0.

Therefore, the 2m� 3 columns Il in the topology matrix M
(k) are independent.

Proof to LEMMA 43

LEMMA 43. For two trees T1, T2 2 Tm, '(T1) + '(T2) 2 Vm if and only if T1 and T2 are

compatible.

Proof.

(1). Assume T1 and T2 are in the compatible tree class T (k), and T1 = (⌧ (k), b1), T2 =

(⌧ (k), b2). Then, '(T1) + '(T2) = M
(k)(b1 + b2). There exists T = (⌧ (k), b1 + b2) such that

'(T ) = '(T1) + '(T2).

(2). Assume T1 and T2 are in two distinct tree classes. Then, there is at least one quartet

(x, y, i, j) such that the quartet subtrees (x, y, i, j) inherited from T1 and T2 have di↵erent

topologies. Without loss of generality, assume the quartet subtree (x, y, i, j) in T1 has the

topology of ⌧ (1) while the quartet subtree (x, y, i, j) in T2 has the topology of ⌧ (2), which is
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shown by Figure 3.9. Then, their four-point conditions are respectively,

d
(1)
xy + d

(1)
ij = x1 � �1

d
(1)
xi + d

(1)
yj = x1

d
(1)
xj + d

(1)
yi = x1

d
(2)
xy + d

(2)
ij = x2

d
(2)
xi + d

(2)
yj = x2 � �2

d
(2)
xj + d

(2)
yi = x2

If there is a tree T such that '(T ) = '(T1) + '(T2), then the pairwise path distance in T

associated with the quartet (x, y, i, j) is

dxy + dij = x1 + x2 � �1

dxi + dyj = x1 + x2 � �2

dxj + dyi = x1 + x2

It does not satisfy any of the min-plus inequalities. Therefore, (x, y, i, j) is not a quartet in

T . It contradicts the assumption. Therefore, if the summation of two vectors corresponding

to two trees can be projected back into tree space, then these two trees are compatible. Its

contrapositive proposition also holds.

Proof to LEMMA 45

LEMMA 45. V = {'(T )|T 2 T } is a complete subset in Rp
>0.

Proof. Assume a series of vectors {V1, V2, . . . } in V has its limitation V = lim
k!1

Vk 2 Rp
>0, i.e.,

kVk � V k2 ! 0. For an arbitrary quartet (x, y, i, j), denote the corresponding subvectors as

Ṽk and Ṽ . Then,
���Ṽk � Ṽ

���
2
! 0.

We claim that, there are two possibilities.
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(1). There exists N 2 N, such that 8k > N , Ṽk satisfies the same min-plus inequality

with Ṽ . Without loss of generality, assume the series of quartets has topology of ⌧ (1), then

lim
k!1

(dkxy + d
k
ij) = lim

k!1
(x(k) � �

(k))

lim
k!1

(dkxi + d
k
yj) = lim

k!1
x
(k)

lim
k!1

(dkxj + d
k
yi) = lim

k!1
x
(k)

Then, we can see Ṽ satisfies the min-plus inequality (1).

(2). Otherwise, the series of quartets (x, y, i, j) will convergence to the star tree. Without

loss of generality, assume there are two subsequences Ṽk1 and Ṽk2 converging to Ṽ , and

respectively have the topology of ⌧ (1) and ⌧
(2). Then

lim
k1!1

(d(k1)xy + d
(k1)
ij ) = lim

k1!1
(x(k1)

1 � �
(k)
1 ) = lim

k2!1
(d(k2)xy + d

(k2)
ij ) = lim

k2!1
x
(k2)
2

lim
k1!1

(d(k1)xi + d
(k1)
yj ) = lim

k1!1
x
(k1)
1 = lim

k2!1
(d(k2)xi + d

(k2)
yj ) = lim

k2!1
(x(k2)

2 � �
(k2)
2 )

lim
k1!1

(d(k1)xj + d
(k1)
yi ) = lim

k1!1
x
(k1)
1 = lim

k2!1
(d(k2)xj + d

(k2)
yi ) = lim

k2!1
x
(k2)
2

That gives,

lim
k1!1

x
(k1)
1 = lim

k2!1
x
(k2)
2

and

lim
k1!1

�
(k1)
1 = lim

k2!1
�
(k2)
2 = 0

This suggests that these two subsequences converge to Ṽ corresponding to star tree.

In either of the case, the limitation Ṽ satisfies the four-point condition and corresponds

to a quartet subtree that is the “limitation” of the series of quartet subtrees associated with

{V1, V2, . . . } in L2 tree space. Therefore, the vector V corresponds to a tree. V is closed.

Because Rp
>0 is complete, therefore V is complete.

R code for simulation

Simulation

library(ape)
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library(phytools)

m0<-matrix(0,ncol=6,nrow=15)
for(i in 1:15) m0[i,t(combn(6,2))[i,]]<-1

par(mfrow=c(1,3))
t1<-read.tree(text="((a,b),c,(d,(e,f)));")
plot(t1,type="u",edge.width = 3)
m1.int<-matrix(c(0,0,0,

1,0,0,
1,1,0,
1,1,1,
1,1,1,
1,0,0,
1,1,0,
1,1,1,
1,1,1,
0,1,0,
0,1,1,
0,1,1,
0,0,1,
0,0,1,
0,0,0),byrow=T,ncol = 3)

t2<-read.tree(text="((a,b),(c,d),(e,f));")
plot(t2,type="u",edge.width = 3)
m2.int<-matrix(c(0,0,0,

1,1,0,
1,1,0,
1,0,1,
1,0,1,
1,1,0,
1,1,0,
1,0,1,
1,0,1,
0,0,0,
0,1,1,
0,1,1,
0,1,1,
0,1,1,
0,0,0),byrow=T,ncol = 3)

t3<-read.tree(text="(((a,c),f),b,(d,e));")
plot(t3,type="u",edge.width = 3)
m3.int<-matrix(c(1,1,0,

0,0,0,
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1,1,1,
1,1,1,
1,0,0,
1,1,0,
0,0,1,
0,0,1,
0,1,0,
1,1,1,
1,1,1,
1,0,0,
0,0,0,
0,1,1,
0,1,1),byrow=T,ncol=3)

m1<-cbind(m0,m1.int)
m2<-cbind(m0,m2.int)
m3<-cbind(m0,m3.int)
mlist<-list(m1,m2,m3)

t1.mean<-m1%*%c(rep(1,6),rep(2,3))
t2.mean<-m2%*%c(rep(1,6),rep(2,3))
t3.mean<-m3%*%c(rep(1,6),rep(2,3))

Vf<-t1.mean/2+t2.mean/4+t3.mean/4
opt2<-function(V)
{

D<-matrix(0,ncol=6,nrow=6)
D[t(combn(6,2))]<-V
D[lower.tri(D)]<-t(D)[lower.tri(D)]
dimnames(D)<-list(c("a","b","c","d","e","f"),c("a","b","c","d","e","f"))
return(optim.phylo.ls(D))

}
Tf<-opt2(Vf)
ordered.Tf.V<-m1%*%Tf$b

opt2<-function(V)
{

min1<-sum((V-m1%*%ginv(m1)%*%V)^2)
min2<-sum((V-m2%*%ginv(m2)%*%V)^2)
min3<-sum((V-m3%*%ginv(m3)%*%V)^2)
ind<-which.min(c(min1,min2,min3))
return(list(type=ind,b=ginv(mlist[[ind]])%*%V))

}

#---------------------------
#
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# 100 replicates, n=10
#
#---------------------------
res1<-NULL
RF.d1<-NULL
for(i in 1:100)
{

V<-NULL
for(j in 1:10)
{ind<-sample(c(1,1,2,3),1)
V<-cbind(V,mlist[[ind]]%*%c(rep(1,6),rexp(3,0.5)))}
V.tmp<-apply(V,1,mean)
ordered.T.avg.V<-mlist[[opt2(V.tmp)$type]]%*%opt2(V.tmp)$b
DIFF<-ordered.T.avg.V-ordered.Tf.V
res1<-cbind(res1,DIFF)
RF.d1<-c(RF.d1,opt2(V.tmp)$type==1)

}

par(mfrow=c(3,5))
for(i in 1:15)

{hist(res1[i,],main=paste("V",i),xlab="")
abline(v=0,col="red",lty=2,lwd=2)}

dev.off()

res.square1<-NULL
for(i in 1:100) res.square1<-c(res.square1,norm(res1[,i]))
#---------------------------
#
# 100 replicates, n=50
#
#---------------------------
res2<-NULL
RF.d2<-NULL
for(i in 1:100)
{

V<-NULL
for(j in 1:50)
{ind<-sample(c(1,1,2,3),1)
V<-cbind(V,mlist[[ind]]%*%c(rep(1,6),rexp(3,0.5)))}
V.tmp<-apply(V,1,mean)
ordered.T.avg.V<-mlist[[opt2(V.tmp)$type]]%*%opt2(V.tmp)$b
DIFF<-ordered.T.avg.V-ordered.Tf.V
res2<-cbind(res2,DIFF)
RF.d2<-c(RF.d2,opt2(V.tmp)$type==1)
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}

par(mfrow=c(3,5))
for(i in 1:15)

{hist(res2[i,],main=paste("V",i),xlab="")
abline(v=0,col="red",lty=2,lwd=2)}

dev.off()

res.square2<-NULL
for(i in 1:100) res.square2<-c(res.square2,norm(res2[,i]))

#---------------------------
#
# 100 replicates, n=300
#
#---------------------------
res3<-NULL
RF.d3<-NULL
for(i in 1:100)
{

V<-NULL
for(j in 1:300)
{ind<-sample(c(1,1,2,3),1)
V<-cbind(V,mlist[[ind]]%*%c(rep(1,6),rexp(3,0.5)))}
V.tmp<-apply(V,1,mean)
ordered.T.avg.V<-mlist[[opt2(V.tmp)$type]]%*%opt2(V.tmp)$b
DIFF<-ordered.T.avg.V-ordered.Tf.V
res3<-cbind(res3,DIFF)
RF.d3<-c(RF.d3,opt2(V.tmp)$type==1)

}

par(mfrow=c(3,5))
for(i in 1:15)
{hist(res3[i,],main=paste("V",i),xlab="")
abline(v=0,col="red",lty=2,lwd=2)}

dev.off()

res.square3<-NULL
for(i in 1:100) res.square3<-c(res.square3,norm(res3[,i]))

#---------------------------
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#
# random linear combination
#
#---------------------------

a<-runif(15,min=0,max=3)
par(mfrow=c(1,3))
hist(t(res1)%*%a,xlab="",main="n=10")
abline(v=0,col="red",lty=2,lwd=2)
hist(t(res2)%*%a,xlab="",main="n=50")
abline(v=0,col="red",lty=2,lwd=2)
hist(t(res3)%*%a,xlab="",main="n=300")
abline(v=0,col="red",lty=2,lwd=2)
round(a,3)
dev.off()

#---------------------------
#
# Distance Distribution
#
#---------------------------
par(mfrow=c(1,3))
hist(100*res.square1,xlab="",main="n=10",prob=T)
lines(density(100*res.square1),col="red",lty=2,lwd=2)
hist(100*res.square2,xlab="",main="n=50",prob=T)
lines(density(100*res.square2),col="red",lty=2,lwd=2)
hist(100*res.square3,xlab="",main="n=300",prob=T)
lines(density(100*res.square3),col="red",lty=2,lwd=2)
dev.off()

Real Study

library(ape)
library(phangorn)
library(ggplot2)

a<-read.table("bstrees.txt",header=F)

best.tree<-read.tree(text="((Dog:0.040262,Cow:0.083899):0.050133,Chicken:0.334728,Rat:
0.102365):0.0;")
plot(best.tree,type="u",edge.width = 3)
edgelabels(round(best.tree$edge.length,2))
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tau1<-read.tree(text="((Chicken,Cow),(Dog,Rat));")
tau2<-read.tree(text="((Chicken,Dog),(Cow,Rat));")
tau3<-read.tree(text="((Chicken,Rat),(Cow,Dog));")

a<-unfactor(a)
tree.list<-list()
ee.list<-list()
type<-c()
for(i in 1:100)
{
t<-read.tree(text=a[i,])
ee<-setNames(t$edge.length[sapply(1:4,function(x,y) which(y==x), y=t$edge[,2])],
t$tip.label)
ee[5]<-t$edge.length[which(!t$edge.length%in%ee)]
names(ee)[5]<-"Internal"
ee<-c(ee[order(names(ee)[1:4])],ee[5])
tree.list[[i]]<-t
ee.list[[i]]<-ee
if(RF.dist(tau1,t)==0) type<-c(type,1)
else if(RF.dist(tau2,t)==0) type<-c(type,2)
else if(RF.dist(tau3,t)==0) type<-c(type,3)
else type<-c(type,0)
}
table(type)

m0<-matrix(c(1,1,0,0,
1,0,1,0,
1,0,0,1,
0,1,1,0,
0,1,0,1,
0,0,1,1),byrow=T,ncol=4)

I1<-c(0,1,1,1,1,0)
I2<-c(1,0,1,1,0,1)
I3<-c(1,1,0,0,1,1)
m1<-cbind(m0,I1)
m2<-cbind(m0,I2)
m3<-cbind(m0,I3)
mlist<-list(m1,m2,m3)

#plot for internal edges

internal.length<-NULL
for(i in 1:100) internal.length<-c(internal.length,ee.list[[i]][5])
summary<-data.frame(type,internal.length)
gg<-ggplot(summary[type!=0,],aes(x=internal.length,y=type,color=factor(type)))+
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geom_point()
gg+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour="black"))

# sample mean vector

V.set<-NULL
for(i in 1:100)
{
V<-mlist[[type[i]]]%*%ee.list[[i]]
V.set<-rbind(V.set,t(V))
}
V.average<-apply(V.set,2,mean)

# sample mean tree
norm<-function(v) sqrt(sum(v^2))
norm(m1%*%ginv(m1)%*%V.average-V.average)
norm(m2%*%ginv(m2)%*%V.average-V.average)
norm(m3%*%ginv(m3)%*%V.average-V.average)
#type 3 is the optimal
T.average<-ginv(m3)%*%mV.average
V.T.average<-m3%*%ginv(m3)%*%V.average

# sample covariance
S<-cov(V.set)

# Is Vf in the confidence region
t(V.average-V.T.average)%*%solve(S)%*%(V.average-V.T.average)<6*99/(100*94)*
qf(0.95,6,94)

# Is the best tree from RAxML in the confidence region
best.ee<-setNames(best.tree$edge.length[sapply(1:4,function(x,y) which(y==x),
y=t$edge[,2])],best.tree$tip.label)
best.ee[5]<-best.tree$edge.length[which(!best.tree$edge.length%in%best.ee)]
names(best.ee)[5]<-"Internal"
best.ee<-c(best.ee[order(names(best.ee)[1:4])],best.ee[5])
V.best.tree<-m3%*%best.ee
t(V.best.tree-V.T.average)%*%solve(S)%*%(V.best.tree-V.T.average)<6*99/(100*94)*
qf(0.95,6,94)
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