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ABSTRACT

Landing gear doors on aircraft have experienced flutter during preliminary flight testing. While

designs vary widely, landing gear doors are typically plate-like structures with a relatively rigid

actuator attached to their inside surface. To better understand the aeroelasticity of landing gear

doors, this study investigates the aeroelastic stability of an idealized model. The model consists

of a hinged plate with an interior constraint approximating the actuator attachment. The plate is

subject to uniform flow, and an unsteady vortex lattice model is coupled to the structural model to

predict critical flow velocities. The location and footprint area of the internal constraint, along with

plate aspect and mass ratios, are varied to investigate a large parameter space. Results reveal that

the critical flow speed and instability mechanism are sensitive to the postulated actuator placement.

In general, flutter is the dominant mode of instability when the actuator is postulated in the leading

quarter of the plate. In other postulated locations, divergence dominates. However, the exact shape

and location of the boundary between flutter and divergence is configuration dependent and found

to be especially sensitive to changes in aspect ratio.
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Chapter 1

Introduction and Background

It should be noted that much of the content of this thesis is taken directly from the author’s original research

article submission [1]. Before discussing the fine details of the aeroelastic model and results, it is useful to

present several topics that will add perspective to the present work. First, the typical features of landing gear

doors are discussed. Second, the literature on aeroelastic models of landing gear doors and similar systems

is presented and discussed. Finally, an overview of panel methods focusing on methods suitable for lifting

surface analysis is presented to lend insight into the properties of each method.

1.1 Landing Gear Doors

Although not present on all winged aircraft, landing gear doors are a common feature in airplane design.

Landing gear doors are typically thin, flexible structures that cover the landing gear during flight. The doors

are opened during takeoff and landing to allow the landing gear to be deployed. While the exact geometry

of landing gear doors varies across aircraft designs, they are typically plate-like structures with a hinge at

one edge and a relatively rigid actuator installed somewhere on the interior surface of the door. Figure 1.1

shows two examples of landing gear doors from two different manufacturers. Note that the actuator in 1.1a

is mounted near the leading edge while the actuator in 1.1b is mounted near the trailing edge.
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(a) (b)

Figure 1.1. Examples of landing gear doors on (a) a Gulfstream G650 (front view, reproduced
from [2]), and (b) a Boeing 727 (front view, reproduced from [3])

Landing gear doors on aircraft have experienced flutter during flight testing [4]. According to the Federal

Aviation Regulations Parts 23 and 25, aircraft must be completely free of any type of aeroelastic instability

[5, 6]. However, the aeroelastic behavior of typical landing gear doors has not been widely studied. The

aspect ratio of the door and the location of the actuator are common design parameters, but there is currently

no published guidance on how these parameters influence the aeroelastic stability of landing gear doors.

The ability to quickly estimate the aeroelastic behavior of a design without the use of detailed modeling

techniques enables aircraft engineers to identify the potential for aeroeslatic instability early in the design

process, thus preventing costly redesigns. Here, we intend to address this by considering the aeroelasticity

of an idealized landing gear door model.

1.2 Plates with Internal Boundary Conditions

The aeroelastic stability of airfoils is typically discussed in terms of flutter and divergence. Flutter is a type

of instability during which the airfoil experiences unbounded, harmonic motion. The vibrational amplitude

of the structure increases exponentially with time. Divergence is a type of instability characterized by a

loss of structural stiffness and an unbounded displacement of the airfoil. The flutter or divergence velocity

of the structure is the lowest free-stream velocity at which the structure experiences flutter or divergence,

respectively. Few studies have directly considered the aeroelastic stability of landing gear doors. Blades and

Cornish [4] conducted one such study in which they used fully coupled finite element and computational

fluid dynamics models to predict the critical flutter speeds of a landing gear door with fixed geometry and

subject to different sideslip angles and flow speeds. They were able to match stability data from flight
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tests with a few different values of sideslip angle and velocity. The analysis informed a redesign of the

door which stiffened the door and satisfied the necessary stability criteria. A similar study by Tomac et

al. [7] investigated the aerodynamics of aircraft landing gear using a hybrid Reynolds-averaged Navier-

Stokes/large eddy simulation (RANS-LES) technique. The researchers intend to use the results to inform a

vibration mitigation effort on the aircraft. Despite the accuracy of these methods, they are computationally

expensive and provide little insight into how design changes may influence aeroelastic stability.

In an attempt to further increase accuracy and reduce computational costs, some studies have investi-

gated landing gear doors through hybrid experimental-numerical approaches. Abarca et al. [8] used wind

tunnel data to construct a fluid loading model based on principles of random response analysis. The wind

tunnel data was used to construct a cross-spectral pressure matrix that was used to predict aerodynamic load-

ing on a finite element structural model of a landing gear door. The hybrid model was validated with flight

test data. The model inherits mathematical rigor and reproducibility from the structure while retaining the

physical accuracy and detail from the experimental fluid measurements. However, because the fluid model

is introduced to the structure as a simple load, only one-way coupling is achieved. Schwochow et al. [9]

performed an operational modal analysis of a landing gear door in flight. Using the stochastic subspace

identification method (SSI), they were able to extract modal information from the door under operating con-

ditions. The experimental method automatically accounts for all kinds of aerodynamic loading and likely

provides the most accurate estimates of aeroelastic modal properties. However, given the expense of flight

testing, and the fact it does not result in predictive models, the utility of the method is limited.

The acoustic noise generated by landing gear assemblies has been studied extensively [10–15]. Fattah

et al. [16] studied the aeroacoustics of a simplified landing gear door with an actuator strut. The model

consisted of a rigid flat plate and cylinder in a uniform flow field, and CFD calculations were performed

using a standard finite-volume solution of the Navier-Stokes equations. Results showed that the presence of

the cylinder can have significant effects on the system’s acoustic pressure. However, the far-field effects of

the cylinder appear to decrease quickly with the distance from the plate to the surface of the cylinder.

While few studies have investigated the stability of landing gear doors themselves, there are many

studies that investigate variations of flat plates under aerodynamic loading. Since the structure is the primary

element of interest in these studies, and since the variations to the standard flat plate model typically serve

to modify the mass, stiffness, or aerodynamic properties of the structure, the present work on landing gear

3



doors may be considered a part of a larger class of research on modified flat plates in external flow. Hence,

it is useful to consider these related works since they may expose similar trends to those present in the

dynamics of landing gear doors.

When an aircraft wing is damaged by a projectile, the resulting hole modifies the fluid-structure inter-

action by changing the fluid boundary condition on the wing’s interior. Conyers et al. [17, 18] numerically

and experimentally studied the aeroelasticity of flat plates with holes. Using the doublet lattice method,

they found that flutter velocity is proportional to the damaged structure’s natural frequency. Their results

showed that the addition of a hole near the wing tip might significantly stabilize the nominal flutter mode,

thus increasing the plate’s flutter velocity. Similar experimental studies on the effects of ballistic damage

to helicopter rotors showed that damage to the rotors causes a decrease in lift and an increase in drag [19].

The increase in drag results in an increase in flutter velocity and a decrease in divergence velocity [20].

Therefore, there exists a critical amount of damage at which the divergence velocity drops below the flut-

ter velocity, making divergence the dominant mode of instability [20]. Other studies have investigated the

stability behavior of aircraft wings with wing stores [21–23]. External stores used to carry missiles are com-

mon components of military aircraft. Tang et al. [21] models the wing store as an added mass attached to

the wing via an added stiffness at the attachment point. Using the vortex lattice method (VLM), they found

that the flutter velocity is significantly increased when the store is located at approximately 50% span. They

also found that the location of the store significantly affects the wing’s natural frequencies.

1.3 Vibration of Plates

A plate is a flat structure with a thickness much smaller than its width or length. Due to the small thickness,

all quantities may be assumed to be constant through the plate’s thickness, reducing the problem to two

dimensions along the width and length. A comprehensive review of modal analysis of plates is given by

Leissa [24]. Many of the structural equations presented in the present work are taken from Leissa’s report.

There are several mathematical descriptions of structural plates, but the Kirchoff-Love theory of thin

plates (also called “classical plate theory”) [25] and the Mindlin-Reissner theory for thick plates [26] are

the most commonly used. Kirchoff-Love plate theory is the extension of Euler-Bernoulli beam theory to

two dimensions, and many of the same limitations apply to both theories. The primary assumption of both

classical beam and plate theory is that planar cross sections remain planar. Hence, the vibration amplitude
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must be small and there must be minimal local rotation. The Mindlin-Reissner theory accounts for the

rotational inertia and shear stresses present in thick plates, allowing for plate theory to be extended to

thicker elements without resorting to the use of the general theory of solids. However, thick plate theory is

still much more complicated than thin plate theory, so Kirchoff-Love is still the most commonly used when

applicable.

While analytical solutions exist for some simple geometries and boundary conditions, the classical plate

equations do not in general have a closed-form solution. Approximations for the natural frequencies and

mode shapes of rectangular plates with edge boundary conditions were first offered by Warburton, who

used products of beam mode shapes in the span and chordwise directions as an input basis for Rayleigh’s

method [27]. Warburton’s approximations were suitable for any combination of boundary conditions, but

lost accuracy for high-order mode shapes [24]. Another set of simpler approximations was later proposed

by Janich, who also employed Rayleigh’s method but used trigonometric functions as a basis [28]. Janich’s

approximations were less accurate than Warburton’s and were unsuitable for some boundary conditions, but

their formulation was much simpler [24].

Modern solution of the classical plate equation is typically accomplished via finite element analysis

(FEA) software. FEA results are themselves approximations, but they typically far surpass the required

level of accuracy of a given problem. Furthermore, FEA formulations may be used to solve the plate equa-

tion for plates with arbitrary planar geometry and boundary conditions. In contrast to classical methods

like Rayleigh’s method, FEA allows boundary conditions to lie on the interior of the domain. However,

the robustness of FEA may come at the cost of intuition. The approximations of Warburton and Janich,

while limited in their applicability, were elegant in that any plate mode shape could be readily described

and notated as a product of either beam mode shapes or sinusoids. While the low-order modes of compli-

cated systems solved via FEA may still often be loosely referenced as “bending” or “torsional” modes, it is

typically difficult to describe high-order modes without visualization.

1.4 Fluid Models

The following discussion draws heavily from the discussions in Ref. [29]. Note that while an enormous

body of research is dedicated to microscopic flows, only macroscopic flows relevant to the present work are

discussed here.
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1.4.1 Overview of Fluid Theories

A general continuous medium may be represented by the five fundamental balance laws, so-called con-

servation of mass, conservation of linear momentum, conservation of angular momentum, conservation of

energy, and the entropy inequality. These laws, together with the appropriate set of constitutive relation-

ships and boundary conditions are sufficient to model any classical continuous system. In this sense, fluid

systems differ from solid systems only in the constitutive relationships. If the pressure and density of a

fluid system do not depend appreciably on temperature, the system may be fully described using only the

laws of conservation of mass and momentum. In a fluid context, conservation of mass is represented by the

continuity equation while conservation of momentum is represented by the Navier-Stokes equations. These

four equations are generally accepted as a complete, yet complicated, representation of fluid mechanics.

The Navier-Stokes equations may be simplified under certain assumptions about the constitutive re-

lationships. If the fluid is Newtonian (viscosity is not a function of strain rate) and viscosity is constant

through the domain, the viscous terms of the Navier-Stokes equations simplify greatly. If the fluid is also

inviscid, the equations further reduce to the Euler equations. Note that for incompressible flow the Euler

equations simplify greatly, and the set of incompressible Euler equations is commonly referred to as just

“the Euler equations”. Adding the assumptions that the flow is irrotational and incompressible results in a

simple fluid model known as “ideal” or “potential” flow. Potential flow is described by Laplace’s equation,

a linear differential equation. Hence, Laplace’s equation may be satisfied by any superposition of known

solutions, provided the solutions satisfy the boundary conditions.

1.4.2 Navier-Stokes Solvers

Until the 1950s and the advent of scientific computing, the Navier-Stokes equations saw limited use in

engineering applications due to their complexity. Between the 1950s and the end of the century, several

researchers began developing and implementing computational fluid dynamics (CFD) algorithms. By the

turn of the century, the use of CFD codes in engineering design was ubiquitous.

Navier-Stokes and other similar CFD solvers traditionally employ finite-difference methods where the

equations are discretized, a meshed grid of solution points is generated, and the equations are solved at

each grid point. The discretization and grid generation schemes must be chosen carefully, since a poor dis-

cretization can easily lead to an unstable algorithm [29]. Implicit discretizations such as Crank-Nicolson are
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commonly used for their improved stability [30]. Alternatively, the Navier-Stokes equations may be solved

via a finite element approach. Indeed, many modern commercial FEA packages support fluid modeling.

The general form of the Navier-Stokes equations includes time derivatives, which enable the solution of

unsteady flow problems. Algorithms that solve the general, unsteady form of the equations are often called

“unsteady” or “time-accurate” CFD algorithms. For steady flow, the time-varying terms may be neglected,

resulting in a set of equations that vary only in space. Algorithms that solve the steady form of the Navier-

Stokes equations are often called “steady” CFD algorithms. While steady algorithms are computationally

efficient, they are only suitable for simple flows where turbulence is negligible. Unsteady algorithms are

typically required to study complicated flows where turbulence must be modeled. Steady algorithms may

also only be applied to static or quasi-static structural problems where one-way coupling is assumed. If

the motion of the elastic structure is expected to significantly modify the behavior of the fluid, an unsteady

algorithm must be used to account for two-way coupling.

Due to their accuracy, Navier-Stokes solvers are frequently used to study systems with complicated

geometry or turbulent flow regimes where high resolution is required. The method may also be modified to

garner additional insight from a system. The Reynolds averaged Navier-Stokes (RANS) equations represent

a time average of the flow [31]. The method results in a mean component representing the global evolution

of the flow and a fluctuating component representing turbulent fluctuations. The two components together

represent the total flow in a more understandable way. RANS models are time-averaged, so they do not

directly model turbulence. An eddy viscosity term is added to the equations to approximate turbulent effects.

A similar method known as large eddy simulation (LES) aims to reduce the computational costs of traditional

Navier-Stokes solvers by ignoring small length scales [32]. This is accomplished by applying a low-pass

filter to the Navier-Stokes equations [33]. In this way, turbulent flows may be resolved more efficiently than

by direct numerical simulation at the cost of high-frequency detail. While RANS and LES are ultimately

similar methods, RANS approaches the problem of data reduction statistically while LES uses a filtering

approach. LES is often more computationally expensive than RANS because LES models large length

scale turbulence while RANS only models the mean flow and includes turbulent effects through lower-order

modeling. Hybrid RANS-LES methods have recently been developed to unite the two approaches, and a

review of hybrid methodologies is available [34].
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1.4.3 Panel Methods

While Navier-Stokes CFD solvers allow for arbitrary geometry and are highly accurate, they are computa-

tionally expensive. For circumstances where only a low-order approximation of fluid behavior is required,

extreme accuracy can be sacrificed for computational efficiency. If irrotational, inviscid, incompressible

flow may be assumed, a class of simple models known as panel methods may be derived based on potential

flow. These methods are well suited to external flow problems where the effects of the fluid on a structure

are of primary interest.

Under the assumptions of potential flow, the Navier-Stokes equation reduces to Laplace’s equation.

Laplace’s equation is associated with a number of elementary solutions (such as sources, vortices, and

doublets) that are presented in most advanced fluid mechanics and aerodynamics texts [29, 35, 36]. These

solutions may be superposed to create a new solution satisfying a set of boundary conditions. The principle

of superposition, which is valid for linear systems, is therefore the foundation of all potential flow panel

methods.

A panel method begins by meshing the surface of the structure and an appropriate region in its wake

with a finite number of panel elements. Each panel has associated with it an elementary solution with an

unknown strength and a collocation point where a boundary condition is to be enforced. Since the assumed

solutions are elementary solutions, Laplace’s equation is automatically satisfied, and we are left with a

system of equations representing the boundary conditions in terms of the unknown strengths. The equations

are then solved, yielding a solution that satisfies the fluid equations of motion and the boundary conditions.

There are a few typical boundary conditions associated with panel methods [29]. Solution points on the

structure are typically associated with tangency conditions, wherein the component of flow normal to the

solid surface must be zero. Solution points in the wake are typically associated with convection conditions,

which state that the elemental solutions must move at the free-stream velocity. Finally, points at the interface

of the structure and the wake enforce the Kutta condition [36], which states that there must be no circulation

at the trailing edge. Other boundary conditions such as the "recovery of conditions at infinity" condition

may be applied to some systems.

The simplest panel method uses point source solutions, where the element strength represents the volume

flow rate from the source [36]. While the mathematical formulation for this panel method is simple and it is
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able to accurately capture the effects of a solid body on a fluid flow by the use of no-through-flow boundary

conditions, the symmetry of the element equations means it cannot accurately calculate lift on an airfoil [35].

Hence, panel methods using point sources are not widely used.

The two most widely used panel methods for calculations on lifting surfaces are the doublet lattice

method (DLM) and vortex lattice method (VLM), which employ doublet and vortex elementary solutions,

respectively. The DLM is a robust method that has been applied extensively to study lifting surfaces includ-

ing high-aspect ratio rectangular wings [37], delta wings [37, 38], T-tail aircraft [39], and rectangular wings

with internal holes [17, 18]. Conyers provides a detailed description of the DLM in his dissertation [18].

The most difficult technical challenge associated with the DLM is the calculation of the kernel function,

which relates the doublet strength to the induced velocity at all points in space. This is not a trivial task,

since the calculation involves the evaluation of a singular integral [18]. The evaluation of this integral has

been studied and improved by several researchers [40–42].

The VLM, while slightly less flexible than the DLM, is still widely used. A detailed description of the

VLM is given in Gibbs’ thesis [43]. A review of applications is available for the interested reader [44].

The VLM is a standard tool for airfoil analysis and has been used to study low aspect-ratio rectangular

plates [45], rectangular plates with a variety of boundary conditions [43,46–48], and limit cycle oscillations

of rectangular and delta wings [21, 22, 49–51]. The elementary solution used for the VLM is a horseshoe

vortex constructed from a finite-length, spanwise-oriented vortex filament connecting two semi-infinite vor-

tex filaments that extend infinitely into the wake. Unlike the kernel function for doublet elements, the kernel

function that relates the horseshoe vortex strength to the downwash velocity is an algebraic expression that

may be easily calculated for each element, making the VLM more computationally efficient. Furthermore,

reduced-order methods have been developed to optimize efficiency [52–54]. However, the DLM is slightly

more flexible than the VLM. In contrast to the VLM’s horseshoe vortex elements, the DLM’s doublets are

geometrically finite, so geometries with self-intersecting wakes (e.g., wings with holes, propellers) may be

accurately analyzed. Fortunately, recent work has extended the VLM to overcome this and other limita-

tions [55–58]. For a geometry in steady flow that does not generate a self-intersecting wake, the DLM and

VLM are identical [18].
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Chapter 2

Numerical Model

The aeroelastic model consists of an unsteady VLM coupled to a linearly elastic plate. This model has been

thoroughly described elsewhere (see, e.g., Refs. [43,45,47,59]), and the details are discussed in the following

sections. The plate is assumed to have isotropic material properties and undergo small displacement. The

fluid model is based on incompressible potential-flow (irrotational, inviscid) theory.

2.1 Structural Model

The out-of-plane displacement of the plate, w, is assumed to take the form of a sum of Ritz vectors, Ψ,

multiplied by generalized coordinates

w(x, y, t) =
∞∑
j

Ψj(x, y)qj(t), (2.1)

where x and y are spatial coordinates, t is time, and qj are generalized coordinates. Discretizing the domain

at a finite number of collocation points transforms Eq. (2.1) into a matrix equation,

w = [ψ]q(t), (2.2)

where [ψ] is a matrix of Ritz vectors. As shown by several authors [24,43,45,60], the kinetic energy T and

potential energy V of the plate are given by

T =
1

2
ρsh

∫
A

(
∂w

∂t

)2

dA, (2.3)

V =
D

2

∫
A

((
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+ 2ν

(
∂2w

∂x2

∂2w

∂y2

)
+ 2(1− ν)

(
∂2w

∂x∂y

)2
)
dA, (2.4)
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where ρs is the structural density, h is the plate thickness, and A is the plate surface area. The symbol D

denotes flexural rigidity and is defined by D = Eh3/12(1 − ν2), where E is Young’s modulus, and ν is

Poisson’s ratio. An application of Lagrange’s equation yields the familiar equations of motion,

[M ]q̈(t) + [K]q(t) = 0, (2.5)

where the elements of the structural mass and stiffness matrices are

Mjk = ρsh

∫
A

ΨjΨkdA, (2.6)

Kjk =

∫
A

[B]T [D][B]dA, (2.7)

In Eq. (2.7), the [B] and [D] matrices are given by

[B] =

 −
∂2Ψ
∂x2

−∂2Ψ
∂y2

−2 ∂2Ψ
∂x∂y

 , (2.8)

[D] =

1 ν 0

ν 1 0

0 0 (1− ν)/2

 . (2.9)

In the present study, the in vacuo structural mode shapes obtained from an FEA are used as the Ritz

vectors in Eq. (2.1). The mode shapes are calculated using the commercial finite element package ANSYS.

Fig. 2.1 shows a schematic of the plate model. The model mimics the physical configurations shown in

Fig. 1.1 wherein the door is hinged at the top edge where it meets the fuselage and connected to a linear

actuator on the interior surface. One of the plate edges parallel to the flow is hinged, allowing rotation

about the x-axis while constraining all other degrees of freedom. A rectangular patch of nodes of width

∆x and height ∆y on the interior of the domain is pinned to model the ball joint of an actuator attachment.

The location of the interior constraint is sampled at 2.5% intervals of chord and span across simulations.

The domain is meshed using 1600 rectangular 4-node Kirchoff-Love plate elements. A convergence study

was conducted on the highest-frequency structural configuration, and the 1600-element mesh yielded well-

converged frequencies for the highest-order modes of interest. An example ANSYS code used for generating

and solving the FEA model is shown in Appendix A.
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Figure 2.1. Geometry of the flat plate model. For all cases, a pinned boundary condition is ap-
plied to the edge at 0% span. This boundary condition fixes all degrees of freedom except for
rotation about the x-axis. The hatched region indicates a representative rectangular patch of nodes
where all translational degrees of freedom are fixed (with all rotational degrees of freedom left
unconstrained).

In the VLM, the structural equations of motion must be discretized in time [43]. The equations are put

into first-order form by letting r1 = q and r2 = q̇. The state variables are discretized at time step n+ 1
2 with

step size ∆t,

r
n+ 1

2
1 =

rn+1
1 + rn1

2
, (2.10a)

ṙ
n+ 1

2
1 =

rn+1
1 − rn1

∆t
, (2.10b)

r
n+ 1

2
2 =

rn+1
2 + rn2

2
, (2.10c)

ṙ
n+ 1

2
2 =

rn+1
2 − rn2

∆t
. (2.10d)
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Substituting Eq. (2.10b) into Eq. (2.10c) yields a relationship between the state variables

rn+1
1 − rn1

∆t
− rn+1

2 + rn2
2

= 0. (2.11)

Substituting Eqs. (2.10a) and (2.10d) into Eq. (2.5), the resulting discretized equation of motion is

[M ]

(
rn+1

2 − rn2
∆t

)
+ [K]

(
rn+1

1 + rn1
2

)
= 0. (2.12)

Structural boundary conditions are specified during the creation of the in vacuo finite element model and are

introduced to the structural model via the resulting mode shapes.

2.2 Fluid Model

For incompressible potential flow, the velocity potential, φ, is given by the Laplace equation [29]

∇2φ = 0. (2.13)

The Laplace equation is satisfied by a superposition of elementary solutions. Hence, a mesh of elementary

solutions can be constructed to analyze a flow field. One such solution, the horseshoe vortex, is itself

constructed of three vortex filaments. Two semi-infinite filaments parallel to the flow are connected at their

endpoints by a third finite filament. All three filaments have equal circulation strength, Γ. The downwash

velocity Wd at point g induced by a horseshoe vortex is derived from the Biot-Savart law [43],

Wd = − Γ

4π

∫
c

pg × ds
p3
g

, (2.14)

where pg is the vector position of point g. In practice, it is convenient to define a kernel function that relates

the strength of the horseshoe vortex circulation to the velocity field,

Wd = k(x, y)Γ(t). (2.15)

The kernel function for a horseshoe vortex is given by Katz and Plotkin [35] as

kij =
−1

4π(yi − yja)

[
1 +

√
(xi − xja)2 + (yi − yja)2

xi − xja

]
+

1

4π(yi − yjb)

[
1 +

√
(xi − xja)2 + (yi − yjb)2

xi − xja

]
,

(2.16)
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where k is the influence coefficient due to the vortex geometry, xa is the chordwise position of the finite-

length vortex filament, and ya and yb are the spanwise positions of the lower and upper semi-infinite vortex

filaments, respectively. A sample VLM mesh is shown in Fig. 2.2. The mesh consists of uniform rectangular

elements of width δx and height δy. The mesh covers the structure and extends into the wake. Collocation

points where continuity between the fluid and the structure is enforced are located at the three-quarter chord

of each element. The horseshoe vortex is situated such that the finite filament lies at the quarter chord of the

element and the semi-infinite filaments are coincident with the top and bottom of the element, as shown in

Fig. 2.2. Assuming small structural deflections, the vortices are presumed to lie in the plane of the plate.

Structure Wake

U

x

y

x

δy

δx

x

Figure 2.2. Sample fluid mesh. For each element there exists an associated horseshoe vortex as
displayed on the second element of the third row. In the inset, the solid interior lines divide the
example element into quarters and show that the finite-length vortex filament lies at quarter chord
while the collocation point (“x”) lies at three-quarter chord and mid span.
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At each collocation point, the total downwash is equal to the structural velocity. The chain rule is applied to

relate the velocity of the plate in fluid reference frame to the fixed reference frame associated with the plate,

Wd =

(
dw

dt

)
fluid

=

(
∂w

∂t

)
plate

+
∂x

∂t

(
∂w

∂x

)
plate

=

(
∂w

∂t

)
plate

+ U

(
∂w

∂x

)
plate

, (2.17)

where U is the free-stream velocity. Substituting Eq. (2.1) into Eq. (2.17) and substituting the definitions of

r1 and r2 into the result yields the downwash relationship in the form

[k]Γn+1 = [β]rn+1 =

[
U
∂Ψ

∂x
Ψ

]
rn+1, (2.18)

where [β] is the downwash matrix.

In the wake, the fluid behavior is prescribed by the vortices convected off the plate. At this point, it is

useful to define the subscripts r and c to denote row, r, and column, c, of the rectangular fluid mesh. The

vortex strength of each element in the first column of the wake, W1 is related to the time rate of change of

the upstream circulation strengths by

Γn+1
r,W1

= −
W1−1∑
c=1

(
Γn+1
r,c − Γnr,c

)
. (2.19)

The second through the penultimate column of the wake are all defined by convection from the previous

column. The circulation of these wake elements is given by

Γn+1
r,c = Γnr,c−1. (2.20)

The last column of the wake is similar to the other intermediate columns but includes a relaxation factor, α,

to prevent the abrupt disappearance of the vortices at the end of the computational domain [61]

Γn+1
r,c = Γnr,c−1 + αΓnr,c. (2.21)

In accordance with other studies [45, 50], the relaxation factor is set to 0.992.

The fluid also couples to the structure through a generalized force which is given by a sum over all the

structural elements, ns,

Q
n+ 1

2
m =

ns∑
i=1

Ψi,mP
n+ 1

2
i , (2.22)
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Here, Pi represents the pressure on the ith structural element and can be expressed through an application

of the Bernoulli equation as a function of fluid density, ρf . and spanwise element length, δy,

P
n+ 1

2
r,p = ρfU

(
1

2

(
Γnr,p + Γn+1

r,p

)
+

p∑
c=1

(
Γn+1
r,c − Γnr,c

))
δy. (2.23)

Substituting Eq. (2.23) into Eq. (2.22) yields an expression for the discrete generalized force in matrix form,

Qn+ 1
2 = [C1]Γn+1 + [C2]Γn. (2.24)

2.3 Model Solution

The relevant equations from the previous two sections can be combined into a single equation of the form[
[σ] −[β]

−[C1] [D1]

]{
Γ

q

}n+1

+

[
[ξ] [0]

−[C2] [D2]

]{
Γ

q

}n
= 0, (2.25)

where σ and ξ are the vortex influence terms from Eq. (2.16), β includes the downwash relationships from

Eq. (2.18), C1 and C2 are the fluid forcing terms from Eq. (2.24), and D1 and D2 represent the structural

equations of motion in Eq. (2.12). The model is solved by substituting assumed solutions of the form Θ̄eλt

into Eq. (2.25), resulting in an eigenvalue problem of the form(
eλ∆t

[
[σ] −[β]

−[C1] [D1]

]
+

[
[ξ] [0]

−[C2] [D2]

])
Θ̄R = 0, (2.26)

with discrete-time eigenvalues Λ = eλ∆t and system eigenvectors, Θ̄R. The continuous time eigenvalues λ

are then calculated by

λ =
ln(Λ)

∆t
. (2.27)

The timestep is defined implicitly by forcing each vortex to convect downstream to the next downstream

gridpoint over a distance of δx for every time ∆t. Thus, the timestep is defined as

∆t =
δx

U
. (2.28)
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The viscous damping ratio, ζ, and temporal frequency, f , can be calculated directly from the eigenvalue

using

f =
Im(λ)

2π
, (2.29a)

and

ζ =
−Re(λ)

Im(λ)
. (2.29b)

The MATLAB implementation of the full aeroelastic VLM used in the present work is shown in Appendix

B.

2.4 Eigenvalue Tracking

The eigenvalues calculated from Eq. (2.27) correspond to a single flow velocity. To investigate system

stability, Eq. (2.26) is solved at several velocities both below and above the critical velocity. Most of the

eigenvalues are associated with aerodynamic degrees of freedom, but the structural eigenvalues of primary

interest typically have the largest real part and so are easily differentiated from the aerodynamic eigenvalues.

It is important to find which structural mode corresponds to each eigenvalue to determine which mode goes

unstable. However, the eigenvalues output from eigenproblem solvers are not in general sorted by mode, so

an eigenvalue tracking routine must be implemented. At low flow speeds, the aeroelastic natural frequencies

are similar to the in vacuo natural frequencies; thus, the first N imaginary parts of the eigenvalues ordered

from smallest to largest correspond to the first N structural modes. Once all the structural modes have been

initially linked to an eigenvalue, the eigenvalues are paired to the eigenvalues calculated in the next veloc-

ity step using the Hungarian assignment algorithm [62]. The pairing procedure is stepped across the the

assumed values of free stream velocity to generate “eigenvalue tracks”. The eigenvalue tracks are automat-

ically generated and then visually checked for anomalies (e.g., abrupt changes). The resulting eigenvalue

tracks allow the frequency and damping of each structural mode to be represented as a function of velocity.

The Hungarian algorithm was designed to solve the assignment problem. The details of the algorithm

fall outside the scope of this thesis, but a detailed overview is given in Ref. [62], and an excellent MATLAB

implementation is available in Ref. [63]. A version of the assignment problem may be roughly stated as,

“If N workers take different amounts of time to complete each of M different jobs, how should the workers
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be assigned to the jobs such that the total time spent working is minimized?” Furthermore, each worker

may be assigned to no more than one job, and each job may have no more than one worker assigned to it.

Mathematically, this problem may be described through the construction of a matrix RN×M with elements

corresponding to the “time” (cost) taken by the nth worker to complete the mth job. The goal becomes to find

the smallest sum of elements such that exactly one element is taken from each row and each column. For the

eigenvalue tracking problem, we wish to uniquely assign the set of structural modes to the set of eigenvalues

at the next velocity step. The elements of the cost matrix are taken as the distances between each mode’s

eigenvalue at its current velocity and all potential eigenvalues at the next velocity. The Hungarian algorithm

seeks to find pairings such that the total distance is minimized. Eigenvalues are tracked simultaneously, and

no tracks are given priority. By formulating the problem this way, some of the challenges associated with

naive nearest-neighbor techniques are overcome. In the author’s experience, the Hungarian algorithm is able

to capture eigenvalue crossing and veering phenomena better than nearest-neighbor trackers.

2.5 System Stability

Three different types of instability are of interest—divergence, flutter, and hump mode flutter. Divergence is

characterized by a loss of structural stiffness, resulting in pure exponential growth of the solution. When the

frequency associated with an eigenvalue track goes to zero, the corresponding mode has diverged. Flutter is

characterized by unbounded growth of the harmonic response of a structural mode, and is identified when

the damping of an eigenvalue track becomes negative. Negative damping corresponds to a positive real part

of a system eigenvalue, which leads to exponential growth of the assumed solution. Hump mode flutter is

similar, except the eigenvalue track returns to positive damping at a higher velocity. For the present study,

a mode is said to be a hump mode if the damping becomes negative but later increases toward zero with

increasing flow speed (resulting in an eigenvalue track resembling a “hump”). Hump modes often cause

discontinuous jumps to small values of critical velocity across a parameter space, leading to difficulties in

optimization procedures based on classical gradient-based techniques [64, 65]. These difficulties typically

come about because the optimization procedure focuses on the lowest system critical velocity rather than

the evolution of the eigenvalues. Methods based on eigenvalue separation constraints or mode tracking have

been developed to avoid these difficulties [64]. For the present work, hump mode flutter may be of limited

practical importance since the velocity at which a hump mode’s damping again becomes positive is usually
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higher than the critical velocity of another mode. In other words, even when the instability is hump mode

flutter, the structure usually does not re-stabilize at higher flow speeds.

2.6 Fluid-Loaded Mode Extraction

The procedure for extracting the real-valued fluid-loaded structural mode shapes from the generally complex

aeroelastic mode shapes is based on a complex modal analysis technique outlined in Ref. [66, 67]. The

relevant equations are presented here without derivation. The left eigenvectors of Eq. (2.26) may be found

through the solution of the adjoint eigenvalue problem,

Θ̄T
L

(
eλ∆t

[
[σ] −[β]

−[C1] [D1]

]
+

[
[ξ] [0]

−[C2] [D2]

])
= 0, (2.30)

where Θ̄L is the left eigenvector. The left and right eigenvectors have the same set of eigenvalues. Eqs. (2.26)

and (2.30) each yield n pairs of eigenvalues and eigenvectors, each consisting of a unique complex vector

and its complex conjugate. These may be rewritten in component form as,

Λj = αj + iβj , (2.31a)

Θ̄Rj = rj + isj , (2.31b)

Θ̄Lj = vj + iwj , (2.31c)

A purely real basis may be formed from the complex eigenvalues and eigenvectors by neglecting the con-

jugate part of each eigenvalue and eigenvector pair, recognizing that the set of imaginary numbers is or-

thogonal to the set of real numbers, and applying a linear transformation to put the relevant equations in

second-order form.

[Θ̃R] = [r1 − (α1/β1)s1, (1/β1)s1, ..., rn − (αn/βn)sn, (1/βn)sn], (2.32a)

[Θ̃L] = [v1, α1v1 − β1w1, ...,vn, αnvn − βnwn], (2.32b)

The aeroelastic coordinates may now be cast in terms of [Θ̃R] and a new set of aeroelastic modal coordinates

ξ̃, η̃, {
Γ

q

}
= [Θ̃R]

{
ξ̃1, η̃1, ξ̃2, η̃2, ..., ξ̃n, η̃n

}T
. (2.33)
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Eliminating the rows of [Θ̃R] associated with Γ and q̇ and eliminating the columns associated with η̃ yields

a relationship between the aeroelastic modal coordinates ξ̃ and the structural modal coordinates q

q = [Θ̃q]ξ̃, (2.34)

where [Θ̃q] is a mode shape matrix constructed by reducing the dimension of [Θ̃R]. Substituting Eq. (2.34)

into Eq. (2.2) yields a relationship between displacement in physical coordinates and the aeroelastic modal

coordinates

w = [ψ][Θ̃q]ξ̃(t), (2.35)

The product [ψ][Θ̃q] represents the displacement mode shape of the structure under the influence of aerody-

namic loading. The MATLAB implementation of the complex modal analysis used in the present work is

available in Appendix B.5.

2.7 Convergence

Convergence of the VLM depends on the number and arrangement of elements on the structure, the number

of structural modes used, and the modeled length of the wake. Of these parameters, the configuration of

mesh elements on the structure typically requires the most attention [45]. The structural mesh controls the

resolution of the structural mode shapes. Hence, the use of higher-order modes with smaller wavelengths

typically requires the use of more structural elements. Furthermore, Eq. (2.28) dictates that the timestep, and

thus the highest resolvable frequency, is directly controlled by the free-stream velocity and the chordwise

resolution of the structural mesh. Kohtanen [45] provides a detailed convergence study focused on the

resolution of the mesh on the structure which confirms that convergence is improved at high flow speeds and

low structural natural frequencies. Fig. 2.3 shows the first six structural frequencies for a plate with an aspect

ratio (defined as the ratio of the plate’s spanwise to chordwise lengths) of 0.33 in a flow speed of 1 m/s with

a variety of structural mesh configurations. This plate represents the case with the highest natural frequency

and lowest flow speed considered in the present work, so this figure represents a worst-case scenario. Both

frequency and damping have converged to within 10% of the converged value for the first six modes with

200 chordwise elements and 30 spanwise elements, and to within 5% with 230 chordwise and 40 spanwise

elements. Most cases are simulated using 50 chordwise and 60 spanwise elements; however, the cases
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with H = 1/3 and H = 2/3 have significantly higher natural frequencies and are therefore run with 250

chordwise and 20 spanwise elements to ensure convergence at all simulation velocities by decreasing the

timestep, as per Eq. (2.28). The number of elements in each direction was chosen to ensure convergence at

velocities well below the critical velocity using VLM convergence results from Ref. [45].

0 50 100 150 200 250
0

20

40

Chordwise Elements

f(
H

z)

(a)

20 40 60 80

4.5

5

Spanwise Elements

f(
H

z)

(b)

Figure 2.3. First six structural frequencies of a plate of aspect ratio 0.33 in a flow speed of 1 m/s
using (a) a number of chordwise elements and 10 spanwise elements, and (b) a number of spanwise
elements and 10 chordwise elements.

As more structural modes are included in the analysis, convergence is quickly achieved. Fig. 2.4 plots

the first and second calculated frequency of the same plate shown in Fig. 2.3 for an increasing number of

included structural modes. Both frequencies and the corresponding damping values have converged once

three modes are included in the analysis. However, six modes are used in the present work to accurately

capture the effects of fluid loading on the first five modes. Since it is typically necessary to include modes

in the analysis beyond the highest mode of interest, results for the sixth mode cannot be trusted.
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Figure 2.4. First two frequencies of a 0.33 aspect ratio plate as a function of the number of included
modes.
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Accurate modeling of the aerodynamics requires a sufficiently long wake region. Fig. 2.5 shows wake

length versus the first six frequencies for a plate with an aspect ratio of 2.67. Previous work has shown that

the effects of the wake diminish as the plate dimension perpendicular to the stream decreases relative to the

streamwise dimension [68]. Fig. 2.5 represents a worst-case convergence scenario since all aspect ratios

used in the present work are less than or equal to 2.67. Both frequency and damping have converged to

within 10% of the converged value for all modes with a wake-to-chord ratio of less than 0.5 and to within

5% with a wake-to-chord ratio of 1. A wake-to-chord ratio of 0.5 is used for all cases presented here.

0.5 1 1.5 2 2.5 3
0

2

4

Wake-to-Chord Ratio
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Figure 2.5. First six frequencies of a 2.67 aspect ratio plate with various wake lengths.

22



Chapter 3

Numerical Studies

3.1 Simulation Setup and Parameter Study Map

The aspect ratio of the plate, H , mass ratio, µ, and footprint size of the actuator, Af , are varied across

simulations. The aspect ratio is defined as the ratio of the plate’s spanwise to chordwise lengths, H = a/b,

and is changed by varying the span length while keeping the chord length constant. The mass ratio is defined

as µ = 4ρsh/(πρfb), and is changed by varying the density of the fluid. The properties for a nominal case

are shown in Table 3.1. The material properties are consistent with aluminum, a common material for

aerospace applications. The fluid density is nominally consistent with air, but for the cases in which mass

ratio is varied, fluid density is changed to achieve the desired mass ratio. It is noted that the plate thickness

of 1 mm is considerably thinner than is realistic for typical landing gear doors. This value was chosen to

reduce the computational expense of the parameter study. Due to their lower natural frequencies, thin plates

require fewer chordwise elements to converge than do thick plates, as per Eq. (2.28). A preliminary study

by the authors [69] considered an 8 mm-thick plate and showed that the sensitivity of instability mode to

postulated actuator placement is very similar to what is reported here. Thus, we expect the critical instability

mode and the reduced critical velocities to be insensitive to plate thickness.

The parameters are varied one at a time starting with this nominal case. There are no cases in which two

parameters are varied simultaneously, and the parameter values for the different cases are given in Fig. 3.1.

Besides the nominal case, there are three cases varying aspect ratio, four cases varying mass ratio, and three

cases varying pinned footprint area, for a total of eleven configurations.

For each of the 11 configurations, a total of 1521 (39 spanwise by 39 chordwise) postulated actuator

locations are considered. This results in 16731 simulation cases, each involving the solution of the eigen-
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problem for at upwards of 40 discrete flow velocities. Simulations were run in several batches of parallel jobs

using the Georgia Advanced Computing Resources Center (GACRC). A total of approximately 1,000,000

core-hours were used to complete the simulations.

Table 3.1. Material properties and geometry of the nominal case.

Property Symbol Value

Span a 1.5 m

Chord b 0.9 m

Aspect Ratio H 1.67

Thickness h 1 mm

Footprint Size Ratio Af/A 0.25 %

Young’s Modulus E 70 GPa

Poisson’s Ratio ν 0.3

Structural Density ρs 2700 kg/m3

Fluid Density ρf 1.23 kg/m3

Mass Ratio µ 3.105

Nominal Case
H = 1.67

µ = 3.11

Af/A (%) = 0.25 %

H
0.33
0.67
2.67

µ
6.21
9.32
12.42
24.84

Af/A (%)
1%
4%
9%

Figure 3.1. Map of the parameter study. Starting with the nominal case, each parameter is varied
independently across the values in the associated branch.
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3.2 In Vacuo Structural Results

3.2.1 Natural Frequencies

It is useful to understand how the placement of the actuator changes the natural frequencies of the in vacuo

structure since the critical flutter and divergence velocities are expected to be proportional to natural fre-

quency [4, 17, 18]. Fig. 3.2 shows normalized natural frequencies for the first six modes of the plate as a

function of postulated actuator placement. For each mode, the natural frequencies are normalized by the

largest natural frequency found for each mode (2.76, 2.83, 4.83, 6.51, 8.90, and 9.65 Hz). For all modes, but

especially the first two, the natural frequency increases as the spanwise location of the actuator increases.

While the natural frequencies of all modes are affected by the placement of the interior boundary condition,

the low-order modes are affected much more than the higher-order modes. The lowest natural frequency of

the first mode is approximately 10% of the highest value, while the lowest natural frequency of the sixth

mode is approximately 80% of the maximum.
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Figure 3.2. (a) First, (b) second, (c) third, (d) fourth, (e) fifth, and (f) sixth natural frequencies of
the plate as a function of actuator position. The natural frequencies are normalized by the greatest
natural frequency found for each mode.

3.2.2 In Vacuo Mode Shapes

Sample in vacuo mode shapes are shown in Fig. 3.3 for the case in which the simulated actuator is placed

at 50% of span and 50% of chord. Because of the cluster of pinned nodes simulating the actuator, the mode

shapes do not always resemble those of a classical flat plate. For instance, while the shape of the first mode

is similar to that of a typical (1,1) cantilevered plate mode and the second mode is similar to a (1,2) mode,

the third through sixth modes are more difficult to classify and describe. Additionally, the mode shapes are

significantly affected by the location of the pinned interior nodes, and the mode shapes shown in Fig. 3.3

correspond to just a single case.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3. (a) First, (b) second, (c) third, (d) fourth, (e) fifth, and (f) sixth mode shapes for an
arbitrarily chosen 50% chordwise, 50% spanwise pinned boundary condition.

To observe how the postulated location of the actuator affects the in vacuo mode shapes, Fig. 3.4 shows

the first mode shape of the plate for three different locations of the pinned internal boundary condition (50%

chord, 2.5% span, 50% chord, 97.5% span, and 97.5% chord, 50% span). In the first case, the first mode

looks like a classical (1,1) cantilevered plate mode. Moving the internal boundary condition down the span

(as in the second case) results in a first mode shape that resembles the first mode of a pinned-free-pinned-free

plate. When the internal boundary condition is moved off the mid-line in the third case, the first mode shape

most closely resembles the (1,2) chordwise bending mode of a cantilevered plate. The sensitivity of the

mode shapes to the internal boundary conditions foreshadows a similar sensitivity of the aeroelastic results.
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(a) (b) (c)

Figure 3.4. First structural mode of the nominal case with the internal boundary condition posi-
tioned at (a) 50% chord, 2.5% span, (b) 50% chord, 97.5% span and (c) 97.5% chord, 50% span.

3.3 Aeroelastic Results

3.3.1 Typical Aeroelastic Behavior

Before discussing how the aeroelastic instability of the plate changes with aspect ratio, mass ratio, and

actuator footprint size, the typical behavior with respect to postulated actuator placement is considered. We

define normalized damping, ζ̂,

ζ̂ =
−Re(λ)√

Re(λ)2 + Im(λ)2
=
−Re(λ)

|λ| , (3.1)

Normalizing damping in this way bounds ζ̂ between ∓1 and simplifies the identification of instabilities.

Fig. 3.5 shows ζ̂ for the first four eigenvalues of the nominal plate with the interior boundary conditions

placed at 30% span and 5%, 50%, and 95% of chord. The system is stable for positive values of normalized

damping and unstable for negative values. When |ζ̂| = 1, the corresponding mode’s natural frequency has

gone to zero, indicating divergence. Note that moving the boundary condition along the chord changes the

type of instability. When the boundary condition is at 5% of chord the critical instability is second mode

flutter. At 50% of chord, hump mode flutter of the second mode is critical, and when the boundary condition

is at 95% of chord, the plate goes unstable by divergence.
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Figure 3.5. Normalized damping of the first (dashed), second (solid), third (dash-dotted), and
fourth (dotted) modes for the nominal plate with the actuator positioned at 30% span and (a) 5%,
(b) 50%, and (c) 95% chord.

Fig. 3.6 maps the type of instability and the corresponding mode number across the full range of postu-

lated actuator placements for the nominal plate described in Table 3.1. The features of this map are typical

of the plate configurations studied here. Second-mode flutter dominates at low chord placements, whereas

divergence dominates at high chord placements. In general, the location of the boundary between flutter

and divergence changes with the spanwise location of the postulated actuator. As the actuator is positioned

closer to the trailing edge, the flutter velocity typically increases while the divergence velocity simulta-

neously decreases. The boundary between the flutter and divergence regions occurs when the divergence

velocity drops below the flutter velocity, similar to the results seen in Ref. [20]. There is also a small region

at high span and low chord at which the critical instability is associated with higher-order modes.
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Figure 3.6. First unstable structural mode (denoted by the number) and the type of instability (D
- divergence, F - flutter, H - hump) for various postulated actuator positions on the nominal plate
configuration.

The critical flow velocity,Ucr, of the nominal plate configuration is shown in Fig. 3.7(a) for all postulated

actuator positions. Note that the low critical velocities reported here are due to the small thickness chosen for

each plate. In general, the critical velocities increase when the actuator is postulated at higher percentages

of the span. This is related to the fact that in vacuo natural frequencies tend to increase when the actuator

is postulated at higher percentages of span (see Fig. 3.2). When the actuator is placed at a high chordwise

location, the critical velocity changes quickly as the postulated placement crosses the flutter-divergence

boundary. Fig. 3.7(a) indicates that actuator placement can have nearly a fourfold effect on critical velocity.

In Fig. 3.7(b), the flutter frequency is shown across the range of postulated actuator positions where

flutter is predicted. The frequencies are normalized by the corresponding in vacuo natural frequency for a

given placement of the actuator. This isolates the effects of fluid interaction. The flutter frequency tends

to be more similar to the natural frequency at high span, with low-span locations having normalized flutter

frequencies much less than unity.
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Figure 3.7. (a) Critical velocity and (b) flutter frequency as a function of actuator position. For a
given actuator placement, the frequencies in (b) are normalized by the in vacuo natural frequency of
the fluttering mode. The gray line overlays show the boundary between flutter (left) and divergence
(right).

3.3.2 Parameter Study

The effects of different parameters on system instability are now discussed. The flutter-divergence bound-

aries for the cases varying spanwise length, fluid density, and actuator footprint size are shown in Fig. 3.8.

Aspect ratio has the greatest influence on the shape of the boundary, followed by mass ratio. The size of the

actuator footprint has little effect on the shape of the boundary. As the aspect ratio increases, the boundary

moves toward the trailing edge near the root and toward the leading edge near the tip. At high aspect ratios,

the boundary curves from mid-chord at very low span, to high chord, and then back to mid-chord at around

mid-span. The boundaries for all the cases with different aspect ratios intersect when the actuator placement

is at approximately 20% chord and 70% span. As the mass ratio increases, the boundary moves closer to the

trailing edge at high spanwise locations. The boundary appears to remain nearly stationary once the mass

ratio is greater than about ten.
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Figure 3.8. Flutter-divergence boundary shape and location as a function of (a) aspect ratio, (b)
mass ratio, and (c) footprint size. For all cases, flutter occurs when the actuator is positioned
to the left (upstream) of the boundary while divergence occurs for actuator positions to the right
(downstream) of the boundary.

Two important design parameters are the value of the largest critical velocity that may be achieved, and

the location of the actuator needed to achieve this velocity. The markers in Fig. 3.9 shows the actuator

placement that maximizes critical velocity for all of the configurations considered in the parameter study.

The markers indicate the parameter being varied, and the arrows indicate the direction of the parameter’s

increase. The color of the markers in Fig. 3.9a represents the critical velocity while the corresponding

reduced critical velocities (U∗cr = Ucr/bf , where f is the in vacuo natural frequency of the critical mode

expressed in Hz) are shown in Fig. 3.9b. The actuator location where the largest critical velocity occurs

changes little with aspect ratio or mass ratio, staying near 80% span and 20% chord. As the footprint size
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increases, the location of the largest critical velocity moves from approximately 10% chord and 75% span

to 40% chord and 60% span.

By normalizing by natural frequency, the reduced critical velocities shown in Fig. 3.9b isolate the aeroe-

lastic effects of changing different parameters. As aspect ratio increases, the largest critical reduced velocity

tends to decrease. This decrease may be caused by larger aerodynamic moments about the hinge and actua-

tor. As mass ratio increases, the largest reduced critical velocity increases nearly linearly. This is expected

since Eq. (2.23) indicates that the dynamic pressure on the structure is inversely proportional to the mass

ratio. As the fixed-node footprint area increases, the dimensional critical velocity decreases, as seen in

Fig. 3.9a. Increasing the footprint of the internal boundary condition stiffens the structure leading to larger

natural frequencies and higher critical velocities. However, removing the effects of these natural frequency

changes by expressing the results in terms of reduced critical velocity (Fig. 3.9b) reveals that a larger fixed-

node footprint actually destabilizes the structure from an aeroelasticity perspective.
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Figure 3.9. Location of the cluster of fixed nodes at which the largest critical velocity is achieved
for varying aspect ratio (circles), mass ratio (squares), and footprint size (triangles). All parameter
studies intersect at the nominal case (diamond). The (a) critical velocity, and the (b) corresponding
reduced critical velocity are shown as the marker color.
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3.4 Discussion of Key Results

3.4.1 High-Order Instability

We first attempt to explain the high-order mode flutter that is predicted when the actuator is positioned at

relatively low chord and high span locations (see Fig. 3.6). To do this, we use the modal assurance criterion

(MAC), an indicator of the spatial similarity between two mode shapes. The MAC is defined as

MACij =
|φ̂Ti φ̂j |2

(φ̂Ti φ̂i)(φ̂
T
j φ̂j)

, (3.2)

where φ̂ is a mode shape and i and j are indices. The baseline mode is defined as the second (i.e., critical)

mode of the nominal plate with the actuator placed at 50% chord and 50% span. The MAC is then calculated

by comparing the baseline mode to each of the first six modes of the same plate for the range of postulated

actuator placements. For each case, the mode with the largest MAC value is identified as being the most

spatially similar to the baseline. The results of this analysis are shown in Fig. 3.10. The results show that

the baseline mode (which is a second mode) is most similar to the first or third modes when the actuator

is positioned at mid-to-high span and near the leading or trailing edge. In Fig. 3.6, it was observed that

higher-order mode flutter occurs when the actuator is positioned at mid-to-high span and near the leading

edge. Thus, we believe that these regions of higher-order mode flutter can be at least partially explained by

recognizing that actuator placements at mid-to-high span and near the leading edge result in higher-order

modes that are spatially similar to the nominal second mode of the plate.
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Figure 3.10. Mode at each actuator position with the most similarity to a nominal mode as de-
termined by the MAC value. The nominal mode is taken as the second structural mode when the
actuator position is prescribed at mid chord and span.

The mode shapes observed in flow may differ from the in vacuo modes. For the following discussion,

we refer to the structural modes obtained from FEA as in vacuo or structural modes, and the modes obtained

using the complex modal analysis method discussed in Ch. 2.6 as aeroelastic or fluid-loaded modes. The in

vacuo modes may couple together in a fluid flow, resulting in aeroelastic modes that are a combination of the

two coupled modes. Modal coupling is often accompanied by a frequency veering phenomenon, wherein the

system frequencies associated with the two coupling modes first approach each other and then veer away as

a parameter (in this case flow velocity) increases. Fig. 3.11 shows the frequency of the first two eigenvalues

of the nominal case with the actuator positioned at 2.5% span and 47.5% chord. At low velocity, the second

mode decreases in frequency, approaching the frequency of the first mode. Near the critical velocity, the

two frequency tracks veer away from each other with the second frequency slightly curving upward and the

first frequency curving toward zero. Since the veering phenomenon occurs very near the flutter velocity, we

expect the first two modes to experience coupling.
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Figure 3.11. Frequency of the first (dashed) and second (solid) modes for the nominal plate with
the actuator positioned at 2.5% span and 47.5% chord. The vertical red line indicates the critical
velocity at 4.85 m/s.

Coupled aeroelastic modes may be described in terms of the input structural modes. The MAC is

again used to inform this discussion. For a postulated actuator position and corresponding critical velocity,

Eq. (3.2) is used to compare the spatial similarity between the unstable aeroelastic mode i and the first six

structural modes. If a MAC value between fluid-loaded mode i and structural mode j is greater than an

arbitrarily chosen value of 30% of the MAC value between aeroelastic mode i and structural mode i (i.e.,

MACij > 0.3MACii), significant modal coupling has occurred between modes i and j. Fig. 3.12 shows

postulated actuator positions where modal coupling occurs at the first critical velocity for the nominal case

and the parameter study case with µ = 24.84. The marker colors indicate the unstable aeroelastic mode

associated with the first critical velocity (similar to Fig. 3.6) and the marker shape indicates the coupling

structural mode. The region where first-mode divergence dominates is not checked for coupling because

divergence is characterized by a sudden loss of stiffness, so the concept of modal coupling at divergence is

not applicable.

For the nominal case, all configurations where second-mode flutter dominates exhibit coupling with

the first structural mode, and the aeroelastic mode shape is much more similar to the first than the second

structural mode. Fig. 3.13a shows an example MAC diagram for the nominal case indicating the influence

of each structural mode on each aeroelastic mode. The coupling of the first two modes results in flutter mode

shapes which contain a first mode (bending) component in addition to the second mode (torsion) component,
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similar to classical bending-torsion flutter. In the high-span, low-chord region, coupling is also present.

The critical aeroelastic modes in the regions of third and fourth mode flutter exhibit spatial similarity with

low-order structural modes. At the boundary between the third- and fourth-mode flutter regions, the third

structural mode is spatially similar to the fourth aeroelastic mode (green triangular markers), suggesting a

smooth transition of the aeroelastic mode shapes as this boundary is crossed.
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Figure 3.12. First unstable aeroelastic mode (marker color) and the coupling in vacuo mode
(marker shape) for (a) the nominal case and (b) the case with µ = 24.84. The gray line over-
lays show the boundary between flutter (left) and divergence (right). Only postulated actuator
positions that demonstrate coupling are shown. The region near the boundary in (b) that does not
show modal coupling is actually inconclusive.

The results for the high-order mode flutter regions observed for the nominal case hold for the high mass

ratio case, with the high-order aeroelastic modes sharing spatial similarity with low-order structural modes.

As in the nominal case, the third and fourth aeroelastic modes again display significant contributions from

the fourth and third in vacuo modes, respectively. However, many of the aeroelastic mode shapes observed

in the second mode flutter region do not exhibit significant contributions from in vacuo modes other than the

second. That is, there are regions of parameter space in which the flutter modes are not appreciably coupled

and the system exhibits single-mode flutter. Note that in Fig. 3.12b the region near the flutter-divergence

boundary that appears to experience single-mode flutter is actually inconclusive. Most likely this region
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experiences modal coupling between the first two modes, but an unresolved computational error prevents

the calculation of these system mode shapes. Fig. 3.13b shows an example MAC diagram for the µ = 24.84

case.
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Figure 3.13. MAC plots showing the similarity between each aeroelastic mode (rows) and each
in vacuo mode (columns) for (a) the nominal case, and (b) the µ = 24.84 case for a postulated
actuator positioned at 47.5% chord, 2.5% span.

Fig. 3.14 shows a comparison of the second aeroelastic mode shape for the two different cases. The

postulated actuator position at 47.5% chord, 2.5% span yields coupled-mode flutter in both cases. Note

that the flutter mode from the nominal case is similar to a first-order bending mode (MAC21/MAC22 =

18.3738) while the flutter mode from the µ = 24.84 case is more similar to a first-order torsion mode

(MAC21/MAC22 = 1.28).
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(a) (b)

Figure 3.14. Second structural mode (blue) compared to the second aeroelastic mode (red) of (a)
the nominal case, and (b) the µ = 24.84 case for a postulated actuator positioned at 47.5% chord,
2.5% span.

3.4.2 Effects of Natural Frequency

We expect critical velocity to be proportional to structural stiffness and, consequently, natural frequency [4,

17,18]. The reduced critical velocity normalizes the critical velocity by the corresponding natural frequency,

thus removing structural stiffening effects and isolating aeroelastic effects. Fig. 3.15 shows reduced critical

velocity across the full range of postulated actuator placements. Here, the reduced velocity decreases with

increasing spanwise location, which is opposite of the general trend observed in Fig. 3.7(a). This indicates

that, in Fig. 3.7(a), the increase in dimensional critical velocity with increasing spanwise actuator location

is entirely due to the added stiffness provided by the change in the placement of the boundary condition, and

not due to an increase in the inherent aeroelastic stability of the system. The reduced critical velocity again

increases at low chordwise and high spanwise positions near the boundary between flutter and divergence,

indicating the system tends to be more aeroelastically stable on the divergence side of the boundary.
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Figure 3.15. Reduced critical velocity as a function of the postulated actuator placement. The gray
line overlay shows the boundary between flutter (left) and divergence (right)
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Chapter 4

Summary

4.1 Summary of Findings

The aeroelastic instability of a hinged plate with an interior pinned boundary condition is studied using

a coupled linear VLM for subsonic potential flow. Instability type, critical velocity, and flutter frequency

are reported for a large parameter space, including plate aspect ratio, mass ratio, and various locations and

footprint sizes of the interior boundary condition.

As the interior boundary condition is varied, the results reveal the existence of a flutter-divergence

boundary. Flutter dominates when the interior boundary condition is placed on the leading-edge side of this

boundary, while divergence dominates when it is placed on the trailing-edge side. The chordwise location

and shape of the boundary are primarily affected by the plate’s aspect ratio, but it may also be affected

slightly by the mass ratio or actuator footprint size. The highest critical velocities across all cases seem to

appear when the actuator is positioned at a high spanwise (~75%) and a low chordwise (~25%) location.

However, the highest reduced critical velocities seem to appear at low span, indicating that the optimal

actuator position to achieve the largest dimensional critical velocity is more dependent on structural stiffness

than on the coupled aerodynamics. We expect these results to inform preliminary landing gear design by

providing a first-order estimate of the optimal actuator position on the door.

4.2 Recommendation for Future Work

Future work could focus on improved modeling. Landing gear doors often experience flow separation

near the leading edge that is proportional to the flow speed [4]. The low pressure induced by the flow

separation can significantly influence critical velocity predictions. In addition, the actuator strut connecting
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the landing gear door to the aircraft likely has a significant effect on the aerodynamics of the surrounding

fluid. Fattah [16] states that vortex shedding from the strut is likely the primary source of acoustic noise

from aircraft main landing gear. The angle of the landing gear door, the gap between the strut and the door,

and the diameter of the strut all affect the system aerodynamics [16]. The inclusion of flow separation effects

from the plate leading edge and aerodynamic effects of the strut in an aeroelastic model would enable higher

fidelity predictions.

The model presented here uses an idealized, plate-like geometry, while real landing gear doors are

often curved to match the contours of the aircraft body (like the door depicted in Fig. 1.1a). Numerical

studies considering detailed and realistic landing gear door geometries have been performed [4, 7], but the

parameter space is typically much smaller than the space investigated here. A parameter study considering

a realistic landing gear door geometry and studying parameters similar to the present work would highlight

the differences between the idealized geometry and the high-fidelity geometries used in recent work.

While the presence of flutter does signify a design failure, it does not always result in structural failure.

Flutter often manifests as a limit cycle oscillation (LCO), a form of mechanical saturation where the oscil-

lation amplitude is limited by structural nonlinearities. LCO cannot be predicted using the linear methods

applied to the present work, but they may be studied by time marching the solution of a linear VLM fluid

model coupled to a nonlinear structural model [21,49–51,70,71]. The flow velocity and frequency of a limit

cycle oscillation does not in general match the critical velocity or flutter frequency associated with linear

flutter for a given configuration. It would be interesting to study the configurations and flow velocities where

landing gear doors experience LCO.

Modeling the effects of multiple interior boundary conditions to simulate multiple actuator positions on

a landing gear door is also of potential value for design purposes. The inclusion of two or more actuators

would significantly change the mode shapes and natural frequencies calculated using a single actuator, which

would in turn affect the critical velocities of each configuration. The optimal actuator positions would likely

change from the high spanwise, low chordwise location recommended here. Since multiple actuators would

likely serve to stiffen the structure even more than a single actuator, a set of design guidelines for landing

gear doors with multiple actuator positions would be useful for thin or high aspect ratio doors.
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Appendix A

ANSYS Setup Configuration Code

1 ! There are 41 rows of nodes, each with 41 nodes. Loop from row 2:40 and column 2:40 (

reflected in node numbers).

2 !ALL DIMENSIONS/PROPERIES IN SI UNITS!!

3
4 !Code set to display first mode when finished

5 !Use set,next command followed by pldisp command in GUI to display other mode shapes.

6 !Use set,list command to display list of natural frequencies

7
8 *DIM,nodenumber,,39

9 nodenumber(1)=176

10 nodenumber(2)=215

11 nodenumber(3)=254

12 nodenumber(4)=293

13 nodenumber(5)=332

14 nodenumber(6)=371

15 nodenumber(7)=410

16 nodenumber(8)=449

17 nodenumber(9)=488

18 nodenumber(10)=527

19 nodenumber(11)=566

20 nodenumber(12)=605

21 nodenumber(13)=644

22 nodenumber(14)=683

23 nodenumber(15)=722

24 nodenumber(16)=761

25 nodenumber(17)=800

26 nodenumber(18)=839

27 nodenumber(19)=878

28 nodenumber(20)=917

29 nodenumber(21)=956

30 nodenumber(22)=995

31 nodenumber(23)=1034
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32 nodenumber(24)=1073

33 nodenumber(25)=1112

34 nodenumber(26)=1151

35 nodenumber(27)=1190

36 nodenumber(28)=1229

37 nodenumber(29)=1268

38 nodenumber(30)=1307

39 nodenumber(31)=1346

40 nodenumber(32)=1385

41 nodenumber(33)=1424

42 nodenumber(34)=1463

43 nodenumber(35)=1502

44 nodenumber(36)=1541

45 nodenumber(37)=1580

46 nodenumber(38)=1619

47 nodenumber(39)=1658

48
49 *DO,spaniter,1,39,1

50 *DO,iternumber,1,39,1

51
52 !User Inputs

53
54 l=1.5 !span [m]

55 w=0.9 !chord [m]

56 h=0.001 !thickness [m]

57 E=70e9 !Young's modulus [Pa]

58 rho=2700 !density [kg/m^3]

59 v=0.3 !Poisson's ratio [−]
60
61 mw_l=10 !Number of mode waves expected along span (used to set mesh density)

62 mw_w=10 !Number of mode waves expected along chord (used to set mesh density)

63 epw=4 !number of elements per wave (must be even)

64 nummodes=9 !number of modes to extract

65
66 !Pre−Processor
67
68 /PREP7 !enter pre−processor
69
70 ! Define keypoints

71
72 !bottom perimeter

73
74 K,1,0,0,0

75 K,2,w,0,0

76 K,3,w,l,0

77 K,4,0,l,0

78
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79 !Define lines

80
81 L,1,2

82 L,2,3

83 L,3,4

84 L,4,1

85
86 !Define number of elements on each line

87
88 !set element size along length

89
90 LESIZE,1,,,mw_w*epw

91 LESIZE,2,,,mw_l*epw

92 LESIZE,3,,,mw_w*epw

93 LESIZE,4,,,mw_l*epw

94
95 !Create Area

96 AL,1,2,3,4

97
98 !Define Element Type

99
100 ET,1,SHELL63 !Use Shell63 elements for plate

101 MP,EX,1,E !Young's Modulus (Pa)

102 MP,PRXY,1,v !Poisson's ratio

103 MP,DENS,1,rho !Density of structure (kg/m^3)

104 R, 1, h !Define thickness of plate

105
106 !Define Structural Mesh

107
108 ASEL,S,,,1 !Select plate area

109 AATT,1,1,1 !Assign material props, element type, and real constants to area 1

110 MSHKEY,1

111 AMESH,ALL

112
113 !Set Structural Boundary Conditions

114
115 LSEL,S,,,1 !select line 1

116 NSLL,S,1 !select nodes associated with selected line

117 D,ALL,UX,0

118 D,ALL,UY,0

119 D,ALL,UZ,0

120 D,ALL,ROTY,0

121 D,ALL,ROTZ,0

122 NSEL,S,,,(nodenumber(iternumber)−16)+spaniter !select footprint node elements

123 ! Each call of ESLN, NSLE creates a larger footprint for the ball joint. One call causes a

5% increase (additive) in chord and spanwise footprint dimensions.

124 ESLN,S,,1
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125 NSLE,S,,1

126
127 D,ALL,UX,0

128 D,ALL,UY,0

129 D,ALL,UZ,0

130
131 NSEL,ALL

132 ESEL,ALL

133
134 FINISH !Finish pre−processor
135
136 !Solution

137
138 /SOLU !Enter Solution processor

139
140 ANTYPE,2

141 MODOPT,LANB,nummodes !Unsymmetric solver, calculate 20 modes up to 1000Hz

142
143 MXPAND,nummodes !Expand 20 modes

144
145 SAVE

146
147 SOLVE ! Solve the problem

148 FINISH

149
150 ! Post−Process
151
152 /POST1

153
154 !/ANGLE,1,30,XS,1 !Rotate about x−axis for an oblique view of mode shape

155 !/ANGLE,1,60,YS,1

156 SET,FIRST ! Start at first mode

157 pldisp !display mode shape

158
159 ASEL,,,,1

160 NSLA,,1

161
162 *GET,NNUMMAX,NODE,0,COUNT

163 *DIM,PRVEC,ARRAY,NNUMMAX,1

164
165 *DO,j,1,nummodes,1

166
167 *get,natfreq,MODE,j,FREQ

168 *CFOPEN,platefreqs,dat,,append

169 *get,pfactor,MODE,j,PFACT

170 *VWRITE,j,natfreq

171 (F12.1,10x,F12.4)
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172 !*ENDDO

173
174 *CFOPEN,plate_mode_%iternumber%_%spaniter%_%j%,dat

175
176 *DO,i,1,NNUMMAX,1

177
178 *get,xpos,NODE,i,LOC,X

179 *get,ypos,NODE,i,LOC,Y

180 *get,zpos,NODE,i,LOC,Z

181 *get,pr,NODE,i,U,Z

182
183 *VWRITE,xpos,ypos,zpos,pr

184 (F12.8,10x,F12.8,10x,F12.8,10x,F12.8)

185
186 *ENDDO

187 SET,NEXT

188 *ENDDO

189
190 *CFCLOS

191
192 finish

193
194 *DEL,PRVEC

195 PARSAV,ALL,TSMparams

196 /CLEAR

197 PARRES,CHANGE,TSMparams

198 /prep7

199
200 *ENDDO

201 *ENDDO
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Appendix B

MATLAB Code

B.1 Main VLM Code

1 %% Inputs

2 clear all

3 % Element numbers in chord (S_c) and span (S_s) directions

4 S_c = 50;

5 S_s = 60;

6
7 % Number of structural modes to be included

8 nmodes_t = 6;

9
10 % Number of structural eigenvalues is nmodes_t*2, and in general (but not

11 % always) those are the eigenvalues with the highest real part. max_modes sets the

12 % number of eigenvalues to be stored from the analysis − it is good to play it safe

13 % and add additional eigenvalues.

14
15 max_modes = S_s+nmodes_t*2;

16
17 % wake_mult is the ratio of wake columns to chord columns, e.g. number of

18 % wake columns = wake_mult*S_c.

19 wake_mult = 0.5;

20
21 % Set desired flow speeds to solve for

22 flowmin = 1;

23 flowstep = 1;

24 flowmax = 60;

25
26 % Vortex relaxation factor

27 alpha = 0.992;

28
29 % Plate geometry

30 L_x = 0.9; % Chord length
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31 L_y = 1.5; % Span length

32 h = 0.001; % Plate thickness

33 dx = L_x/S_c;

34 dy = L_y/S_s;

35
36 % Material and fluid properties

37 E = 70e9; % Young's modulus

38 mu = 0.3; % Poisson's ratio

39 rho_s = 2700; % Structural density

40 rho_f = 1.23; % Fluid density

41 % Set flow velocity vector

42 U = flowmin:flowstep:flowmax;

43
44 % Degrees of freedom in the overall system matrices

45 dof = round((1+wake_mult)*(S_c*S_s)+2*nmodes_t);

46
47 % Initialize solution matrices

48 Freq = zeros(max_modes,length(U));

49 Reall = zeros(dof,length(U));

50 lambda = zeros(dof,length(U));

51 Damp = zeros(max_modes,length(U));

52 Real = zeros(max_modes,length(U));

53 Imagi = zeros(max_modes,length(U));

54
55 chord_pos = 1:39;

56 span_pos = 1:39;

57 % Mode shape location

58 location = 〈Location of ANSYS Mode Shapes〉;
59
60 %% Analysis

61 parpool(24)

62 k = 1; %Change this to match file name. This indicates the spanwise coordinate to study.

63 for j = 1:length(chord_pos)

64 % Call ansys mode shapes and interpolate onto VLM grid.

65 [psi,numelem_p,numelem_t] = build_psi_griddata_ansys_IFASD(nmodes_t,S_c,S_s,L_x,L_y,

location,wake_mult,chord_pos(j),span_pos(k));

66
67 % Build mass and stiffness matrices. Note that M and K are constant with

68 % respect to U.

69 [M,K] = build_MK_ansys(psi,nmodes_t,mu,E,h,rho_s,numelem_p,S_c,S_s,L_x,L_y);

70
71 parfor i = 1:length(U)

72 [kappa,omega,dt] = build_KapOm_ansys(psi,M,K,U(i),rho_f,dy,dx,h,E,L_x,L_y,

S_s,S_c,alpha,nmodes_t,wake_mult);

73
74 A = eig(omega,−kappa);
75
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76 lambda = log(A)/dt;

77 Reall(:,i) = real(lambda);

78 [B I] = sort(Reall(:,i),'descend');

79 Imagi(:,i) = imag(lambda(I(1:max_modes)));

80 Freq(:,i) = Imagi(:,i)/(2*pi);

81 Real(:,i) = real(lambda(I(1:max_modes)));

82 Damp(:,i) = −Real(:,i)./sqrt(Imagi(:,i).^2); % New damping definition

83 end

84 cd(〈Location of VLM Code〉);
85 csvwrite(sprintf('D_Chordpos%02d_Spanpos%02d.csv',chord_pos(j),span_pos(k)),Damp);

86 csvwrite(sprintf('F_Chordpos%02d_Spanpos%02d.csv',chord_pos(j),span_pos(k)),Freq);

87 end

B.2 Structural Mode Shape Interpolation Code

1 function [psi,numelem_p,numelem_t] = build_psi_griddata_ansys_IFASD(nmodes_t,S_c,S_s,L_x,L_y

,location,wake_mult,chord_pos,span_pos)

2
3 dx = L_x/S_c;

4 dy = L_y/S_s;

5
6 X = dx:dx:(1+wake_mult)*L_x; % length of plate + wake, can experiment with wake length

7 Y = dy:dy:L_y; % width of wake is same as width of plate

8
9 numelem_p = S_s*S_c; % number of plate elements

10 numelem_w = round(wake_mult*numelem_p); % number of wake elements

11 numelem_t = numelem_p + numelem_w; % total number of elements

12
13 ya = zeros(1,numelem_t);

14
15 for i = 1:length(X)

16 xa(1+(i−1)*length(Y):i*length(Y))=X(i)−3*dx/4; % left side of horseshoe vortex

17 for j = 1:length(Y)

18 ya(j+(i−1)*length(Y))=Y(j)−dy; % lower horseshoe vortex

19 end

20 end

21
22 % Need to interpolate ANSYS mode shapes to collocation points located at

23 % x_plate, y_plate on the structure

24 y = ya+dy/2; % collocation points along y (contains wake elems as well)

25 x = xa + dx/2; % collocation point along x (contains wake elems)

26 x_plate = x(1:numelem_p); % contains only structural elems

27 y_plate = y(1:numelem_p);

28
29 cd(location)

57



30 % Mode shape data from ANSYS named in the form '*_chord_pos_span_pos_*.dat'

31 Files = dir(fullfile(pwd,strcat('*_',num2str(chord_pos),'_',num2str(span_pos),'_*.dat')));

32
33 for k = 1:nmodes_t

34 Mode = Files(k).name;

35 A = importdata(Mode);

36 A = round(A,7);

37 A = sortrows(A,[2,1]);

38 dx_ansys = A(2,1)−A(1,1);
39 index = find(A(:,2) ~= A(1,2));

40 num_sc = index(1)−1;
41 num_ss = length(A)/num_sc;

42 dy_ansys = A(index(1),2)−A(1,2);
43
44 t = 0;

45 for i = 1:num_ss

46 for m = 1:num_sc

47 t = t+1;

48 ANSYS_grid(i,m) = A(t,4);

49 end

50 end

51
52 % Use gradient operator to find mode shape partial derivatives in x, y, xx,

53 % yy, and xy

54 [F_x,F_y] = gradient(ANSYS_grid,dx_ansys,dy_ansys);

55 [F_xx,F_xy] = gradient(F_x,dx_ansys,dy_ansys);

56 [~,F_yy] = gradient(F_y,dx_ansys,dy_ansys);

57
58 t = 0;

59 for i = 1:num_ss

60 for m = 1:num_sc

61 t = t+1;

62 F_xvec(t,1) = F_x(i,m);

63 F_yvec(t,1) = F_y(i,m);

64 F_xyvec(t,1) = F_xy(i,m);

65 F_xxvec(t,1) = F_xx(i,m);

66 F_yyvec(t,1) = F_yy(i,m);

67 end

68 end

69 % griddata() command interpolates ANSYS mode shapes to given x and y

70 % plate coordinates

71 psi{k} = zeros(numelem_p,6);

72 psi{k}(:,1) = griddata(A(:,1),A(:,2),A(:,4),x_plate,y_plate);

73 psi{k}(:,2) = griddata(A(:,1),A(:,2),F_xvec,x_plate,y_plate);

74 psi{k}(:,3) = griddata(A(:,1),A(:,2),F_yvec,x_plate,y_plate);

75 psi{k}(:,4) = griddata(A(:,1),A(:,2),F_xyvec,x_plate,y_plate);

76 psi{k}(:,5) = griddata(A(:,1),A(:,2),F_xxvec,x_plate,y_plate);
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77 psi{k}(:,6) = griddata(A(:,1),A(:,2),F_yyvec,x_plate,y_plate);

78 end

79
80 cd(〈Location of VLM Code〉)

B.3 Aeroelastic Matrix Code

1 function [kappa,omega,dt] = build_KapOm_ansys(psi,M,K,U,rho_a,dy,dx,h,E,L_x,L_y,S_s,S_c,

alpha,nmodes_t,wake_mult)

2
3 X = dx:dx:(1+wake_mult)*L_x; % length of plate + wake

4 Y = dy:dy:L_y; % width of wake is same as width of plate

5 dt = dx/U;

6
7 numelem_p = S_c*S_s; % number of plate elements

8 numelem_w = wake_mult*numelem_p; % number of wake elements

9 numelem_t = numelem_p + numelem_w; % total number of elements

10
11 % time step defined as element size divided by U. This way vorticity

12 % convects exactly the distance of one element length in one time step.

13
14 for i = 1:length(X)

15 xa(1+(i−1)*length(Y):i*length(Y))=X(i)−3*dx/4; % left side of horseshoe vortex

16 for j = 1:length(Y)

17 ya(j+(i−1)*length(Y))=Y(j)−dy; % lower horseshoe vortex

18 end

19 end

20
21 y = ya+dy/2; % mid element

22 yb = ya+dy; % upper horseshoe vortex

23 x = xa + dx/2; % collocation point along x

24
25
26 %% Build Sigma and Xi

27 % A11: Circulation over wing, time step n+1

28 % A12: Circulation over wing, time step n

29 % W11: First column of wake, time step n+1

30 % W12: First column of wake, time step n

31 % W21: Columns excluding first and final column in the wake, time step n+1

32 % W22: Columns excluding first and final column in the wake, time step n

33 % W31: Last column in the wake, time step n+1

34 % W32: Last column in the wake, time step n

35
36 % Time step n+1 associated with Kappa, time step n is associated

37 % with omega.
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38
39 A11 = zeros(numelem_p,numelem_t);

40 A12 = zeros(numelem_p,numelem_t);

41
42 for j = 1:numelem_t

43 for i = 1:numelem_p

44 c1 = −1/(4*pi*(y(i)−ya(j)));
45 c2 = 1+sqrt((x(i)−xa(j))^2+(y(i)−ya(j))^2)/(x(i)−xa(j));
46 c3 = 1/(4*pi*(y(i)−yb(j)));
47 c4 = 1+sqrt((x(i)−xa(j))^2+(y(i)−yb(j))^2)/(x(i)−xa(j));
48 A11(i,j) = c1*c2+c3*c4;

49 end

50 end

51
52 W11 = zeros(S_s,numelem_t);

53 for i = 1:S_s

54 for j = 1:S_c+1

55 W11(i,(j−1)*S_s+i) = 1;

56 end

57 end

58
59 % First column of wake

60 W12 = −W11;
61 W12(:,numelem_p+1:end) = 0;

62
63 % Second to second−to−last column of wake

64 numcols = numelem_t/S_s;

65 W21 = [zeros((numcols−S_c−2)*S_s,numelem_p+S_s) eye((numcols−S_c−2)*S_s) zeros((numcols−S_c
−2)*S_s,S_s)];

66 W22 = −[zeros((numcols−S_c−2)*S_s,numelem_p) eye((numcols−S_c−2)*S_s) zeros((numcols−S_c−2)*
S_s,2*S_s)];

67
68 % Last column of wake

69 W31 = [zeros(S_s,numelem_t−S_s) eye(S_s)];

70 W32 = −[zeros(S_s,numelem_t−2*S_s) eye(S_s) alpha*eye(S_s)];

71
72 sigma = [A11 ; W11; W21; W31];

73 xi = [A12; W12; W22; W32];

74
75 %% Build Beta (fluid downwash relationships)

76 beta = zeros(numelem_p,2*nmodes_t);

77
78 for j = 1:nmodes_t

79 for i = 1:numelem_p

80 beta(i,2*j−1) = U*psi{j}(i,2);

81 beta(i,2*j) = psi{j}(i,1);

82 end
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83 end

84
85 beta = [beta;zeros(numelem_w,2*nmodes_t)];

86
87 %% Build C (fluid forcing)

88
89 Coeff1 = 1.5*eye(numelem_p);

90 Coeff2 = −0.5*eye(numelem_p);
91
92 for i = 1:numelem_p

93 for j = 1:S_c−1
94 Coeff1(S_s+(j−1)*S_s+i,i) = 1;

95 Coeff2(S_s+(j−1)*S_s+i,i) = −1;
96 end

97 end

98
99 Coeff1 = Coeff1(1:numelem_p,1:numelem_p);

100 Coeff2 = Coeff2(1:numelem_p,1:numelem_p);

101
102 C1 = zeros(2*nmodes_t,numelem_t);

103 C2 = C1;

104
105 for i = 1:nmodes_t

106 Coeff1_loop = Coeff1;

107 Coeff2_loop = Coeff2;

108 for j = 1:numelem_p

109 Coeff1_loop(j,:) = Coeff1(j,:).*psi{i}(j,1);

110 Coeff2_loop(j,:) = Coeff2(j,:).*psi{i}(j,1);

111 end

112 for j = 1:numelem_p

113 C1(i,j) = sum(Coeff1_loop(:,j))*rho_a*dy*U;

114 C2(i,j) = sum(Coeff2_loop(:,j))*rho_a*dy*U;

115 end

116 end

117
118 %% Structural EOM's

119
120 D1 = zeros(2*nmodes_t);

121 D2 = D1;

122
123 for i = 1:nmodes_t

124 for j = 1:nmodes_t

125 D1(i,2*j−1) = K(i,j)/2;

126 D1(i,2*i) = M(i,i)/dt;

127 D1(nmodes_t+i,2*i−1) = 1/dt;

128 D1(nmodes_t+i,2*i) = −0.5;
129 D2(i,2*j−1) = D1(i,2*j−1);
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130 D2(i,2*i) = −D1(i,2*i);
131 D2(nmodes_t+i,2*i−1) = −1/dt;
132 D2(nmodes_t+i,2*i) = −0.5;
133 end

134 end

135
136 %% Build Overall Matrices

137
138 kappa = [sigma beta; C1 D1];

139 omega = [xi zeros(size(beta)); C2 D2];

140 end

B.4 Structural Mass and Stiffness Matrix Code

1 function [M,K] = build_MK_ansys(psi,nmodes_t,mu,E,h,rho_s,numelem_p,S_c,S_s,L_x,L_y)

2
3 dx = L_x/S_c;

4 dy = L_y/S_s;

5
6 % Compute bending stiffnesses

7 D_x = (E*h^3)/(12*(1−mu^2));
8 D_d = 2*mu*D_x;

9 D_xy = 2*(1−mu)*D_x;
10 D_y = D_x;

11
12 %% Mass

13 psi_sqr = zeros(numelem_p,nmodes_t);

14 for i = 1:nmodes_t

15 psi_sqr(:,i) = psi{i}(:,1).^2;

16 end

17
18 for j = 1:nmodes_t

19 for i = 1:S_c

20 z(1:S_s,i) = psi_sqr(S_s*(i−1)+1:S_s*i,j);
21 end

22 psi_dxx_int = trapz(z);

23 M(j,j) = trapz(psi_dxx_int)*dx*dy*h*rho_s;

24 end

25
26 %% Stiffness

27
28 for j = 1:nmodes_t

29 for k = 1:nmodes_t

30 for i = 1:S_c
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31 psi_dxxdyy(1:S_s,i) = psi{j}(S_s*(i−1)+1:S_s*i,5).*psi{k}(S_s*(i−1)
+1:S_s*i,6);

32 psi_dxy(1:S_s,i) = psi{j}(S_s*(i−1)+1:S_s*i,4).*psi{k}(S_s*(i−1)+1:
S_s*i,4);

33 psi_dxx(1:S_s,i) = psi{j}(S_s*(i−1)+1:S_s*i,5).*psi{k}(S_s*(i−1)+1:
S_s*i,5);

34 psi_dyy(1:S_s,i) = psi{j}(S_s*(i−1)+1:S_s*i,6).*psi{k}(S_s*(i−1)+1:
S_s*i,6);

35 end

36 psi_dxx_int = trapz(psi_dxx);

37 psi_dyy_int = trapz(psi_dyy);

38 psi_dxxdyy_int = trapz(psi_dxxdyy);

39 psi_dxy_int = trapz(psi_dxy);

40 K_d(j,k) = trapz(psi_dxxdyy_int)*D_d*dx*dy;

41 K_dxy(j,k) = trapz(psi_dxy_int)*D_xy*dx*dy;

42 K_dx(j,k) = trapz(psi_dxx_int)*D_x*dx*dy;

43 K_dy(j,k) = trapz(psi_dyy_int)*D_y*dx*dy;

44 end

45 end

46
47 K = K_dx+K_dy+K_d+K_dxy;

B.5 Fluid-Loaded Mode Extraction Code

1 function [] = getLoadedModeShapes(chord,span,U)

2 %% Inputs

3 S_c = 50;

4 S_s = 30;

5 nmodes_t = 6;

6 max_modes = S_s+nmodes_t*2;

7 wake_mult = 0.5;

8 alpha = 0.992;

9 L_x = 0.9;

10 L_y = 1.5;

11 h = 0.001;

12 dx = L_x/S_c;

13 dy = L_y/S_s;

14 E = 70e9;

15 mu = 0.3;

16 rho_s = 2700;

17 rho_f = 1.23;

18 dof = round((1+wake_mult)*(S_c*S_s)+2*nmodes_t);

19
20 % Initialize solution matrices

21 Freq = zeros(max_modes,length(U));
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22 Reall = zeros(dof,length(U));

23 lambda = zeros(dof,length(U));

24 Damp = zeros(max_modes,length(U));

25 Real = zeros(max_modes,length(U));

26 Imagi = zeros(max_modes,length(U));

27 Vecs = zeros(dof,max_modes,length(U));

28
29 % Mode shape location

30 location = 〈Location of ANSYS Modes〉;
31
32 %% Analysis

33 [psi,numelem_p,numelem_t] = build_psi_griddata_ansys_IFASD(nmodes_t,S_c,S_s,L_x,L_y,location

,wake_mult,chord,span);

34 [M,K] = build_MK_ansys(psi,nmodes_t,mu,E,h,rho_s,numelem_p,numelem_t,S_c,S_s,L_x,L_y);

35 [kappa,omega,dt] = build_KapOm_ansys(psi,M,K,U,rho_f,dy,dx,h,E,L_x,L_y,S_s,S_c,alpha,

nmodes_t,wake_mult,0);

36
37 % Generate left and right eigenvectors in addition to eigenvalues

38 [phiR,A,phiL] = eig(omega,−kappa,'vector');
39
40 lambda = log(A)/dt;

41
42 Reall(:,i) = real(lambda);

43 [B I] = sort(Reall(:,i),'descend');

44 Imagi(:,i) = imag(lambda(I(1:max_modes)));

45 Freq(:,i) = Imagi(:,i)/(2*pi);

46 Real(:,i) = real(lambda(I(1:max_modes)));

47 Damp(:,i) = −Real(:,i)./sqrt(Imagi(:,i).^2);
48
49 %% Extract Loaded Mode Shapes

50 % Sort raw eigenvectors and discrete eigenvalues according to

51 % post−proc sorting

52 phiR = phiR(:,I(1:max_modes));

53 A = A(I(1:max_modes));

54
55 % Delete all data associated with a natural frequency of 0.

56 I = (~isinf(Damp));

57 phiR = phiR(:,I);

58 A = A(I);

59 Freq = Freq(I);

60 Damp = Damp(I);

61
62 % Assemble real basis from complex eigenvectors according to

63 % multiphysis eq. 2.129

64 newphiR = zeros(size(phiR));

65 for l = 1:length(phiR(1,:))/2
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66 newphiR(:,(2*l−1):(2*l)) = [real(phiR(:,(2*l−1)))−(real(A(2*l−1))/imag(A(2*l−1)))*
imag(phiR(:,(2*l−1))),(1/imag(A(2*l−1)))*imag(phiR(:,(2*l−1)))];

67 end

68 % Trim unnecessary rows (associated with Gamma and qdot)

69 phiComplex = newphiR(end−2*nmodes_t+1:2:end,:);
70
71 % Delete columns associated with eta

72 phiComplex = phiComplex(:,1:2:end);

73 A = A(1:2:end);

74 Freq = Freq(1:2:end);

75 Damp = Damp(1:2:end);

76
77 % Sort mode shapes according to frequency

78 [Freq,I] = sort(Freq,'ascend');

79 Damp = Damp(I);

80 A = A(I);

81 phiComplex = phiComplex(:,I);

82
83 % Generate new aeroelastic mode shapes as weighted sum of in−vacuo
84 % modes

85 psiAero = cell(1,nmodes_t);

86 for l = 1:nmodes_t

87 psiMat(:,l) = psi{l}(:,1);

88 end

89 psiMat = psiMat*phiComplex;

90 for l = 1:nmodes_t

91 psiAero{l} = psiMat(:,l);

92 end

93
94 csvwrite(sprintf('LoadedModes_Chordpos%02d_Spanpos%02d.csv',chord,span),psiMat);
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