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ABSTRACT 

 Elevated streamwater conductivity is a symptom of watershed urbanization and is 

correlated with degraded water quality and impaired biotic assemblages. Stormwater runoff, 

sewage effluent, and sediment inputs are potential sources of ions that drive conductivity. Using 

in-situ and real-time remote monitoring technologies, we monitored specific conductance (SPC), 

stage height, and temperature over periods from July 2015 to January 2018 across an 

urbanization gradient in Athens, GA, USA. Water chemistry was measured at baseflow and 

elevated SPC conditions. Baseflow SPC was variable spatially among sites and temporally 

within sites. Normalized daily patterns in SPC were different in urban vs rural and suburban 

sites. Cross correlation of SPC and stage height revealed distinct stormwater first flush signals, 

and peak SPC was associated with elevated nitrogen concentrations at urban sites, consistent 

with sewage inputs. Continuous, real-time monitoring of SPC can be a useful management tool 

for identifying and diagnosing pollution events in urban watersheds. 
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CHAPTER 1 

INTRODUCTION 

Introduction 

Over half of the global population lives within urban areas, and the number of urban 

inhabitants is expected to continue to increase (Cohen 2006). This expansion and intensification 

of urbanization leads to significant changes in the form and function of nearby rivers and 

streams due to a variety of physical, chemical and biological pathways (Walsh et al., 2005; 

Wenger et al., 2009). While the specific drivers of watershed urbanization, as well as in-stream 

responses, can vary in different physiographic regions and with climate, streamwater 

conductivity (measured as specific conductance, SPC), is a robust indicator of the effects of 

urbanization on water quality (Booth et al. 2016). SPC can be elevated due to a variety of 

stressors associated with watershed disturbance, including inputs from sewage, sediment, road 

salting, and transportation infrastructure (Anderson et al. 2004, Daley et al. 2009, Kaushal et al. 

2018). With improved technology and lower cost of sensors, SPC can now be measured at 

greater spatial and finer-resolution temporal scales (Baker et al. 2019), creating new capacity 

for adoption as a management tool.  

The potential for access to SPC data provides new opportunities for watershed and 

water quality managers to track pollutants. Managers associated with municipalities may find 

SPC data useful, as they must meet state and federal water quality standards in order to remain 

in compliance with permits for discharges from critical infrastructure, such as stormwater and 

wastewater systems (40 C.F.R. § 122.21 (2015)). Managers regularly monitor water quality and 

address sources of pollution that cause water bodies to fall below regulatory standards. 

Traditional techniques used for monitoring water quality, which typically involve periodic site 

visits to collect instantaneous physical and chemical data (Grayson et al., 1997), are useful to 
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confirm or identify chronic and point-source pollution and describe ‘typical’ conditions in 

watersheds. Unfortunately, this type of sampling often misses episodic disturbances from acute 

stressors. Thus, we lack an understanding of how water quality in urban settings changes on 

fine temporal scales in response to episodic urban disturbances. 

Specific conductivity data can potentially assist water quality managers in identifying 

both chronic and acute pollution events in urban streams. Conductivity is relatively easy to 

measure using a variety of techniques and technologies (Moore et al., 2008) and has been 

strongly correlated with stressors such as total dissolved solids (Fenn 1987) and elevated 

nutrients (Morgan et al., 2006). In addition, SPC is an excellent indicator of biotic impairment 

(Wenner et al., 2003; Sterling et al. 2016). However, traditional techniques for monitoring 

conductivity, which involve periodic site visits to collect instantaneous data (Grayson et al., 

1997), typically only provide information on baseline watershed conditions. Exceptions include 

storm sampling programs which use targeted collection methods during rain events in order to 

assess the quality and chemical makeup of stormwater runoff from impervious surfaces (Deletic 

1998; Sansalone et al., 2005; Flint & Davis, 2007). However, even accounting for these targeted 

storm sampling programs, we frequently lack an understanding of how conductivity changes 

over time during episodic and acute disturbances that are common in urban settings. Our study 

aims to characterize fine-scale temporal trends in conductivity and explore the efficacy of 

continuous monitoring for management purposes.  

While many studies have related changes in conductivity to specific urban stressors, few 

studies have attempted to identify specific stressors associated with fine resolution temporal 

patterns in conductivity. In this study, we explored three pattern-stressor relationships. The first 

was the first flush effect (FFE) of stormwater runoff, which is well documented in urban areas 

and is characterized by an increased concentration of pollutants in runoff during the onset of a 

rain event. Several studies have found that FFE is associated with elevated SPC in urban 

streams (U.S. EPA 1996; Deletic 1998; Sansalone et al., 2005; Flint & Davis 2007). Therefore, 
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we hypothesized that corresponding increases in SPC and stage height are indicative of 

stormwater runoff entering the stream from the surrounding landscape.  Conductivity in streams 

affected by FFE tends to be elevated during the onset of a storm in correlation with the highest 

concentrations of total dissolved solids (TDS) and total suspended solids (TSS) (Deletic 1998; 

Sansalone et al., 2005). However, these relationships are typically documented with laborious 

storm sampling protocols, where managers must opportunistically collect runoff samples by 

hand during the beginning of a rainfall event. This type of sampling, similar to other traditional 

protocols, are challenging, time consuming and costly to perform across a broad spatial scale. 

Continuous monitoring of EC could potentially reduce the need for storm sampling in order to 

identify FFE in urban streams. 

Another well-documented source of pollution in urban landscapes is sewage and septic 

waste. Concentrations of many ions, as well as SPC, tend to be elevated in systems known to 

receive combined sewer overflows (CSOs) and sewage effluent (Rose 2002; Hatt et al., 2004; 

Rose 2007). In the Piedmont region of northern Georgia (USA), one study showed that HCO3
-, 

Cl-, SO4
2- concentrations and EC in basins characterized by close proximity to sewage trunk 

lines and known CSOs were up to 4x elevated when compared to other urban drainages (Rose 

2007). Similar results have been recorded in other countries (Bondarenko et al., 2016), showing 

the global applicability of SPC as an indicator of pollution from sewage. In practice, sewer leaks 

can be difficult to identify and locate, and some leaks may go undetected for extended periods 

of time. Continuous monitoring of SPC at a broad scale could assist managers in the 

identification of sewage leaks into streams and enhance management programs which aim to 

detect, diagnose and eliminate sewer leakage. In our study area, unlike areas that experience 

CSOs, the wastewater infrastructure is separate for storm and sewage. This separate system 

makes it unlikely that we would observe sewer leaks in conjunction with storm events. However, 

aging infrastructure and close proximity of sewer lines to streams creates high potential for 

sewer leaks to occur. We predicted that sewer leaks which occur during times of elevated stress 
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on the system (i.e. high usage of sewage infrastructure) would release pulses of wastewater 

carrying high concentrations of ions. Therefore, we hypothesized that changes in SPC which 

occur in the form of regular, nonrandom patterns that are not associated with changes in stage 

height are indicative of sewer leaks. We also tested whether particular ions (e.g., NO3, Na) that 

would be indicators of sewage inputs were elevated with SPC.  

A third urban stressor is sediment inputs into streams, which is commonly measured as 

suspended sediment or turbidity. Increased turbidity is a common symptom of urbanization that 

is associated with impaired biotic condition and ecosystem function (Paul & Meyer 2001; Walsh 

et al., 2005; Wenger et al., 2009). The primary source of elevated sediment in many urban 

streams is erosion from land-disturbing activity in the watershed, although channel erosion and 

legacy sediment can also be important sources. In one study, erosion in urban areas 

experiencing active construction resulted in total suspended sediment concentrations of 3,000 

to 150,000 mg/L, while nearby natural and agricultural catchments rarely exceeded 2,000 mg/L 

(Wolman & Schick 1967). In Georgia, the Erosion and Sedimentation Control Act (ESCA) was 

developed to limit the load of sediment in streams and protect state waters from excess erosion 

and sedimentation from land disturbing activities. The ESCA mandates that best management 

practices (BMPs) must be implemented for all land disturbing activities, and that those BMPs 

must control any discharge from the disturbed area sufficiently so that turbidity does not 

increase by more than 25 NTUs. Given that SPC integrates ions associated with surrounding 

geology and urban pollutants, and that turbidity reflects increased runoff of urban soils, it is 

possible that continuous monitoring of SPC could reveal patterns attributable to sediment 

inputs. Therefore, we hypothesized that apparently random and irregular fluctuations in SPC are 

indicative of sediment inputs. This has potential applications for monitoring land disturbing 

activity and identifying regulatory violations.  

Development of real-time remote monitoring (RTRM) (Glasgow et al., 2004) technology 

has solved many of the challenges associated with traditional sampling methods and allowed for 
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an improved understanding and management of river systems using high temporal resolution 

data (Hart and Martinez, 2006; Kotomaki et al., 2009; O’Flynn et al., 2010). RTRM has also 

been shown to be valuable in monitoring of water quality and compliance with environmental 

standards (Kotomaki et al., 2009; Eidson et al., 2010; O’Flynn et al., 2010). Across the United 

States, RTRM networks have been implemented by the United States Geological Survey 

(USGS) to monitor precipitation, discharge, water temperature, and in some cases streamwater 

conductivity (USGS 2020). Recently, increased availability of low-cost sensors and 

microcontrollers has encouraged the development and testing of custom-built RTRM systems. 

This “do-it-yourself” (DIY) approach allows for more specific and focused data collection at a 

lower cost than stock multi-sensor systems. Additionally, RTRM can be integrated with 

diagnostic systems that provide risk-alert strategies for environmental conditions that may pose 

risks to human health, such as flooding (Ancona et al., 2014). Using this technology for the 

continuous monitoring of EC could potentially assist in management decision making for 

assessing multiple pollutants. 

The goals of this study were to characterize fine-scale temporal patterns of SPC across 

a spatial gradient of urbanization and to test the efficacy of real-time, continuous monitoring of 

SPC as a tool for diagnosing watershed disturbance in cooperation with the Athens-Clarke 

County Transportation & Public Works Department (ACC TPWD). We predicted that by 

continuously tracking SPC, we could distinguish between stressors which episodically enter the 

system via runoff and those which are chronic. Specifically, we hypothesized that 1) urban sites 

would display positive relationships between SPC and stage height indicative of the FFE, 2) 

sites impacted by sewer leaks would display changes in SPC which diverge from stage height in 

regular, nonrandom patterns, and 3) random and irregular fluctuations in SPC independent of 

stage height would be indicative of sediment inputs. 
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CHAPTER 2 

METHODS 

Study area  

This study took place in the Piedmont physiographic region of northeast Georgia (USA), 

which is characterized by red clay soils and basins are underlain by aluminosilicate rock (Drever 

1997). Stream water ions are dominated by Ca2+, Na+, and HCO3
- from mineral weathering 

(Drever 1997; Rose 2002; Griffith 2014). Urban streams in the Piedmont have been shown to 

contain elevated concentrations of Ca2+, Na+, HCO3
-, Cl-, and SO4

2-, producing elevated SPC 

(Rose 2002; Rose 2007).  

 All study sites were located in Athens-Clarke County within the upper Oconee River 

Basin (Figure 1). We collected data in ten 2nd and 3rd order tributaries across a gradient of 

urbanization (5.53-99.05 % urban).We delineated the catchment above each site and calculated 

the percentage of forested, agricultural, and developed land uses using the Georgia Land Use 

Trends dataset from the University of Georgia Natural Resources Spatial Analysis Lab. After 

calculating the percentage of each major land use in each of the ten study catchments, we 

categorized sites based on the % of urban land use where four sites were categorized as urban 

(> 50% urban), three sites were suburban (25-49% urban), and three sites were forested (0-

24% urban) (Table 1).  

Sampling Period 1: Characterization of trends in SPC 

To identify unique patterns of specific conductivity (SPC) that may be attributed to urban 

stressors, we first had to understand how SPC varied at fine temporal scales. We collected 

SPC, stage height and temperature at each site at five-minute intervals using in-situ data 

loggers (Onset Computer Corporation, Bourne, Massachusetts) from July 2015 to April 2016 at 

all sites except R1, S2 and U4 (Table 1, Sampling Period 1). To establish a baseline 
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relationship between water chemistry and SPC at each site, we collected grab samples in June 

and October 2015 at all sites except S2. Sites R1, S2 and U4 were added to this study during 

Sampling Period 2 to reflect priorities of local managers, as described in the following section 

“Development of real-time monitoring stations.”  

For each site, temperature, SPC and stage height data were characterized by mean, 

standard deviation (SD), daily minimum and daily maximum. For stage height, we excluded 

known probe errors, which occurred in the data as negative water level observations. We 

characterized patterns in SPC at each site over a 24-hour period to test for differences in diel, or 

daily, patterns among streams. To do so, we sorted continuous SPC data by site and hour of 

the day, resulting in mean hourly SPC values at each site. These mean hourly SPC data were 

then plotted over a 24-hour period and plots were smoothed using a general additive model with 

a cubic spline. We calculated the normalized SPC by subtracting the mean and then dividing by 

the standard deviation of each site. To quantify the similarity in daily patterns of SPC at each 

site, we analyzed the correlation between all sets of daily smoothed, normalized SPC signals 

using the diss function in the R package TSclust (Montero and Vilar 2014). We then performed 

hierarchical clustering on the correlation dissimilarity matrix to identify patterns among different 

daily signals using the R function hclust with the complete linkage method (R Core Team 2018).  

Water chemistry data were analyzed by taking the mean and standard deviation of 

nutrients and major ions at each site. We then tested for relationships between SPC and each 

nutrient and ion by calculating the Pearson correlation coefficient using the R function cor. 

Development of real-time monitoring stations 

To test the management applications of continuous SPC monitoring, we built three 

custom monitoring stations which measured continuous SPC, stage height, and temperature at 

five-minute intervals using HYDROS 21 sensors (Meter Group, Inc., Pullman, WA). For each 

station, the sensor was connected to an Arduino-compatible Mbili microcontroller (SODAQ, 

Hilversum, Netherlands), which relayed the raw data to our servers via a cellular data uplink 
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using a GPRSbee communications expansion board (SODAQ, Hilversum, Netherlands). 

Stations were deployed at Trail Creek, Brooklyn Creek and Tanyard Creek, which were selected 

based on accessibility and management priority, as determined by local managers with the ACC 

TPWD.  

Sampling Period 2: Hypothesis testing 

Hypothesis 1 - FFE 

 To test the FFE hypothesis, we conducted a second round of field measurements, 

recording SPC, stage height and temperature continuously at five-minute intervals across a 

gradient of urbanization using the same in-situ data loggers (Onset Computer Corporation, 

Bourne, Massachusetts). Data collection occurred from October 2016 to January 2018 at all 

sites except Tallassee Creek, McNutt Creek, and Brickyard Creek (Table 1, Sampling Period 2). 

We obtained archived precipitation data for our study period from the University of Georgia 

Weather and Climate Research Laboratory.  

 We used two approaches to test the ability of SPC to capture a first flush effect. First, for 

every day during which precipitation was recorded, we identified the maximum SPC value 

recorded at each site, under the hypothesis that this represented the first flush peak. We 

compared this value to the mean SPC in the 20-minute period prior to the peak (not counting 

the reading just before the maximum), which we called baseflow SPC for this purpose. We 

subtracted baseflow SPC from stormflow SPC to get a change in SPC (ΔSPC) for the first flush 

of rain events. 

Secondly, we characterized the relationship between SPC and stage height with cross 

correlation function (CCF) analysis of the time series for each site. The time series used in the 

cross-correlation analyses were constructed by binning and averaging SPC and stage height 

data into 15-minute intervals to account for differences in the timing of the 5-minute collection 

intervals for each probe. To satisfy the stationarity assumption for conducting cross-correlation 

analyses (i.e., variables at time t, ��, are not related to variables at time t-1, t-2, etc.), we first-
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differenced each time series (i.e., ���� − ��) (Hyndman and Athanasopoulos 2018). We 

interpreted sample cross-correlation analyses of SPC ���� and stage height �	�� by assessing 

the correlations between ���
  and 	� for ℎ = 0, ±1, ±2, ±3 and so on. A significant correlation 

between ���
  and 	� for a positive h means that x lags y (or y leads x). We expected SPC to lag 

behind stage height by approximately one to two lags (15-30 minutes) due to the delay between 

the onset of a storm and the timing of runoff entering the stream which is attributed to varied 

distance of overland flow and length of stormwater infrastructure at each site. All calculations 

were computed using the statistical package R 3.4.3 (R Core Team 2004). 

Hypothesis 2 - sewage 

To test for relationships between SPC and sewer leaks, we collected water chemistry 

samples at sites S2, U3 and U4 during baseflow and peak SPC conditions. These samples 

were collected using a custom-built automated peristaltic pump system powered by the real-

time monitoring station at each site. Sample collection was triggered by site-specific threshold 

SPC values. Threshold values were based on the third quartile range of each site and reflect the 

observed frequency of potential sewage patterns at each site, based on the continuous data 

collected during baseflow characterization. At S2 and U4, target SPC conditions of 90 µS cm-1 

and 180 µS cm-1, respectively, occurred at a frequency of approximately one event in three 

days. At U3, target SPC conditions of 150 µS cm-1 occurred at a frequency of approximately one 

event per day.  

Water samples were collected into acid-washed polypropylene bottles, returned to the 

laboratory on ice, then frozen until analysis. Samples were analyzed for nutrients and a suite of 

25 ions and metals. Nutrients were analyzed at the University of Georgia Soil, Plant and Water 

Laboratory. Ions were analyzed at the University of Georgia Center for Applied Isotope Studies 

using ICP-OES. A subset of samples was also analyzed for E. coli by the Joye Research Group 

at the University of Georgia. These samples were collected into 710 mL Whirl-Pak bags (Nasco, 
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Fort Atkinson, WI), returned to the laboratory on ice, and stored in a refrigerator for up to 24 

hours until analysis. Water samples were analyzed for E. coli according to the US 

Environmental Protection Agency (EPA) Method 1603 for E. coli using modified mTec agar (BD, 

Franklin Lakes, New Jersey).  

All water chemistry data from were analyzed by taking the mean and standard deviation 

of nutrients and major ions at each site. We then compared mean concentrations of analytes 

with baseflow samples taken during Sampling Period I to determine the relative increase or 

decrease that occurred during elevated SPC conditions. E. coli data were analyzed by taking 

the mean value at each site and comparing it to EPA water quality regulatory standards.  

Hypothesis 3 - sediment 

To test the hypothesis that sediment inputs were associated with changes in 

conductivity, we performed turbidity trials in the lab using clay soils, hereafter referred to as 

‘sediment’, collected from the banks of Tanyard Creek. In each trial, sediment was added to 500 

mL of tap water to reach predetermined threshold NTU values and continuously suspended 

using a magnetic stir plate and stir bar at a rate of 1000 rotations per minute (RPMs). In order to 

determine the value of SPC for identifying sediment pollution, we utilized regulatory standards 

from the Georgia Erosion and Sedimentation Act of 1975 (OCGA 12-7-6), which states that 

runoff of sediment from disturbed areas cannot exceed an increase of 25 NTU over baseline for 

waters supporting warm water fisheries. Trial 1 assessed the relationship between sediment 

and SPC below the 25 NTU regulatory threshold, while Trials 2 and 3 evaluated relationships in 

sediment conditions above the regulatory threshold (Table 2). Each trial lasted 30 minutes and 

consisted of SPC readings taken every 5 minutes, where sediment release commenced at 

minute 10 and continued in equal increments every 5 minutes through minute 25. Readings of 

SPC taken during all turbidity trials were plotted over time and compared to field data of 

hypothesized sediment inputs to test for similarity in patterns. 
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Table 1: Characterization of each site by stream name, GPS location (Latitude, Longitude), percent urbanization (% Urban), sampling 

duration, percent of forest cover (% Forest), percent of pasture cover (% Pasture) and drainage area in km2. Sampling Period 1 

refers to sites where data was collected from July 2015 to April 2016. Sampling Period 2 refers to sites where data was collected 

from October 2016 to January 2018. 

 

 

 

Stream Name Site ID 
Urbanization 

Category 
Latitude Longitude 

Sampling 
Period 1 

Sampling 
Period 2 

% Urban % Forest % Pasture 
Drainage Area 

(km²) 

Bear Creek R1 Rural 33.9674 -83.4973  X 5.53% 79.97% 8.23% 2.11 

Tallassee Creek R2 Rural 33.9766 -83.4846 X  18.41% 59.25% 19.06% 1.94 

Shoal Creek R3 Rural 33.9699 -83.3038 X X 19.72% 24.69% 47.75% 2.10 

Turkey Creek S1 Suburban 33.9719 -83.4549 X X 34.46% 45.32% 9.64% 10.14 

Trail Creek S2 Suburban 33.9549 -83.3647  X 41.10% 37.54% 14.25% 29.09 

McNutt Creek S3 Suburban 33.9262 -83.4629 X  41.93% 31.94% 15.19% 22.53 

Carr Creek U1 Urban 33.9370 -83.3525 X X 62.94% 13.43% 2.74% 3.97 

Brickyard Creek U2 Urban 33.9743 -83.3957 X  75.35% 12.46% 5.40% 3.63 

Brooklyn Creek U3 Urban 33.9545 -83.3990 X X 93.47% 4.86% 0.47% 0.96 

Tanyard Creek U4 Urban 33.9497 -83.3750  X 99.05% 0.85% 0.04% 2.13 
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Table 2: Target conditions for turbidity trials. All values are reported in Nephelometric Turbidity 

Units (NTU) where “Start NTU” is the turbidity conditions at the beginning of each trial, “Addition 

X” is the targeted total turbidity following the first, second, or third sediment addition, and “End 

NTU” is the final total turbidity desired for each trial. 

 

 Start 

NTU 
Addition 1 

Addition 

2 
Addition 3 End NTU 

Trial 1 5 10 15 20 25 

Trial 2 5 15 25 35 45 

Trial 3 5 30 55 80 105 

Control 5 - - - 5 
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Figure 1: Map of all sampling sites and watershed land cover based on the 2008 Georgia Land 

Use Trends (GLUT 2008). Red colors represent developed land and green colors represent 

natural/forest cover.  
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CHAPTER 3 

RESULTS 

Sampling Period 1: Characterization of trends in SPC 

Across all sites, mean temperature ranged from 15.4-26.9 ˚C, mean SPC ranged from 

30.7-512 µS/cm, and mean stage height ranged from 0.24-0.61 m (Table 3). Temperature and 

stage height were variable across the urban gradient, while SPC was positively related to 

urbanization. Site R2 displayed the lowest mean SPC (30.7 µS/cm) while site U1 displayed the 

largest mean SPC (512 µS/cm).  

Throughout the entire time series, SPC was highly variable within most sites except at 

R1, the most forested site, where it remained relatively constant over time (Figure 2). 

Normalized daily trends of SPC revealed that urban sites experienced a much larger range of 

SPC conditions within a single day than rural or urban sites (Figure 3). U2 and U3 displayed the 

largest daily variability in SPC across all sites with ranges of -0.5-0.10 µS/cm and -0.75-0.05 

µS/cm, respectively. No consistent temporal pattern was observed in normalized daily trends of 

SPC, but in general, rural and urban sites peaked unimodally in the morning, then declined 

steadily until the evening when SPC began to rise again (Figure 3). Notably, sites U3 and U4 

exhibited distinct deviations from this general trend. At U3, the daily trend displayed a large 

peak of SPC in the morning, followed by a smaller, second peak in the evening. At U4, the daily 

trend displayed a moderate peak of SPC in the morning, followed by a series of minor peaks 

and declines throughout the day.  

A summary of baseflow water chemistry results is shown in Table 4. Water chemistry 

taken during baseflow showed that concentrations of NO3, TN, DIN, PO4, Cl, SO4, Ca, K, Mg, 

and Na were positively correlated with urbanization and significantly elevated at the urban sites 

compared to the forested and suburban sites. Correlation analysis between all analytes at 
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baseflow showed that SPC was strongly positively correlated with Mg, K, Ca, SO4 and Mn and 

moderately positively correlated with NO3, NH4, TN, Na, and Cl (Figure 4).  

Sampling Period 2: Hypothesis testing 

Hypothesis 1  

CCF analysis revealed a negative temporal relationship between SPC and stage height 

at most of our sites. We interpreted this as dilution by rainwater: as stage height increased, we 

generally observed concurrent decreases in SPC. However, at two of our urban sites (U3 and 

U4) we saw brief positive relationships between SPC and stage height followed by negative 

correlations later in the time series, which we interpreted as a first flush. As these are the two 

sites with highest urban cover, we considered this as evidence in favor of Hypothesis 1 (Figure 

5).  

Closer analysis of SPC and stage height during precipitation events revealed that most 

sites experienced at least occasional elevated SPC at the initiation of stormflow, but the 

increases were more consistent and pronounced at urban sites compared to rural and suburban 

sites. When summarized across urbanization categories, the elevation of SPC during 

stormflows was greatest at urban sites (11.2 µS/cm) and lowest at rural sites (2.6 µS/cm). U4 

displayed the greatest change in SPC at 31.5 µS/cm, which was 52.5x greater than R2, which 

displayed the lowest change in SPC at 0.6 µS/cm (Table 5). We interpreted these results as 

additional support for Hypothesis 1.  

Hypothesis 2 

Water chemistry samples taken at sites U3 and U4 during peak SPC conditions revealed 

that most, but not all, analyte concentrations were elevated when compared with baseflow water 

chemistry at the same site (ratio > 1.0) (Table 6). At U3, concentrations of NH4 were nearly 9x 

higher during peak SPC conditions. However, concentrations of NO3 and TN were not similarly 

elevated. Concentrations of Si and TP decreased slightly during elevated SPC conditions. At 

U4, concentrations of Mg, Mn, Na, NH4, and TP were nearly 1.5x higher than at baseflow. 
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Manganese showed large increases in concentrations at both sites. E. coli concentrations at all 

three sites were 1.6-4.5x higher than the EPA water quality standard of 200 CFU/100mL for the 

months of May through October (Table 6). However, we lacked baseflow E. coli concentrations 

for comparison. Correlation analysis between nutrients and ions showed that SPC was strongly 

positively correlated with Mg and TN (Figure 6). Water chemistry analyses for samples taken 

during peak SPC conditions which did not occur coincidently with peak stage height conditions 

showed some support for Hypothesis 2, that sewer leaks may be revealed by changes in SPC 

which occur in regular, non-random patterns independent of changes in stage height. 

 

Hypothesis 3 

Patterns of SPC recorded during turbidity trials showed that SPC readings during sediment 

release were not significantly higher or more variable compared to SPC immediately prior to 

release of sediment. The largest variation occurred during Trial 3, where SPC increased by 9 

µS/cm, reaching a maximum SPC of 142 µS/cm. Mean SPC was slightly elevated for trial 

durations but did not differ significantly from the control (Table 9). These results do not support 

Hypothesis 3, that random and irregular fluctuations in SPC are indicative of sediment inputs 

from riparian areas.  
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Table 3: Summary of in-stream conditions at each site. Readings for specific conductivity (μS 

cm-1), stage height (meters), and temperature (degrees Celsius) were taken every 5 minutes 

using in-situ data loggers. Mean (standard deviation), minimum (Min), and maximum (Max) 

recorded values were summarized over the total sampling duration at each site. Sampling 

periods for each site are outlined in Table 1. Data was cleaned prior to analysis by excluding 

known logger errors, including erroneous measurements, improper installation of loggers, and 

periods of logger inactivity. 

 

 Stage Height (m) Specific conductivity (µS cm-1) Temperature (˚C) 

 Mean Min Max Mean Min Max Mean Min Max 

R1 0.3 (0.14) 0.05 0.73 53.8 (11.5) 17.2 140.8 15.4 (4.3) 4.8 24.3 

R2 0.24 (0.06) 0.11 0.28 30.7 (7.3) 2.1 113.2 16.9 (4.6) 6.8 25.3 

R3 0.41 (0.23) 0.07 1.05 61.8 (13) 6.3 526.7 20.6 (12.7) 4.8 21.2 

S1 0.49 (0.35) 0.02 1.6 65.4 (9.8) 3.3 210.2 20.8 (16.1) 4.2 26.8 

S2 0.5 (0.35) 0.04 1.49 79.3 (12.4) 18.7 133 17.5 (5.8) 4.2 29.2 

S3 0.48 (0.14) 0.21 0.42 57.2 (9.2) 2.5 368.1 17.2 (5.6) -2.5  27.2 

U1 0.61 (0.34) 0.08 1.34 512 (100.9) 28 933.2 24.5 (16.9) 5.7 24.1 

U2 0.35 (0.08) 0.23 0.56 137.2 (24.7) 25.2 252.4 17.6 (5.4) 6.2 29.9 

U3 0.41 (0.23) 0.04 0.99 79.1 (21.5) 5.7 1044.2 24.5 (17.3) 5.8 24.8 

U4 0.38 (0.26) 0.01 2.4 177.1 (35.5) 15.5 1092.7 26.9 (17.2) 7.4 22.6 
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Table 4: Mean (standard deviation) of water chemistry data collected during Sampling Period 1. SPC data were collected continuously at 5-minute intervals while water chemistry samples were collected in June and 

October 2015 at all sites except S2, which does not have data for this sampling period. S2 was added to the study during Sampling Period 2 to reflect management priorities, as stated by the Athens-Clarke County 

Transportation and Public Works Department (ACC TPWD). Units are reported in mg L-1 unless otherwise noted. Sites are listed left-to-right in order of increasing percent imperviousness as defined in Table 1. The number 

of water chemistry samples analyzed equals two in all cases except for site R1 analyte PO4, which is represented by a single data point due to suspected contamination during analysis of the October 2015 sample.  

 R1 R2 R3 S1 S2 S3 U1 U2 U3 U4 

SPC (μS cm-1) 49.05 (1.34) 32.25 (1.06) 58.91 (0.12) 59.00 (11.31) -- 61.00 (4.24) 576.80 (19.52) 146.50 (7.78) 84.10 (18.24) 189.70 (3.82) 

NO3 0.13 (0.09) 0.23 (0.02) 1.31 (0.51) 0.34 (0.03) -- 0.39 (0.02) 4.74 (1.34) 1.19 (0.52) 1.15 (0.10) 2.44 (0.00) 

NH4 (μg L-1) 14.03 (2.86) 32.55 (13.60) 19.88 (9.57) 22.30 (8.00) -- 36.40 (3.86) 156.49 (174.20) 31.31 (8.36) 105.80 (102.56) 42.59 (16.04) 

TN  0.30 (0.06) 0.46 (0.12) 1.99 (0.38) 0.60 (0.14) -- 0.63 (0.03) 5.41 (1.24) 1.82 (0.02) 1.36 (0.03) 2.77 (0.13) 

DIN (μg L-1) 141.52 (89.84) 265.55 (34.82) 1334.38 (520.82) 363.30 (24.54) -- 424.90 (22.95) 4896.48 (1165.06) 1222.31 (514.90) 1252.30 (7.10) 2480.08 (12.50) 

PO4 (μg L-1) 10.71* 4.64 (1.75) 7.03 (1.12) 6.96 (3.30) -- 5.38 (0.69) 4.65 (1.22) 16.51 (9.80) 33.10 (29.76) 27.85 (19.06) 

TP (μg L-1) 17.18 (6.14) 14.76 (4.48) 37.31 (4.45) 19.14 (6.80) -- 19.09 (4.13) 16.14 (6.14) 64.40 (47.90) 34.23 (19.14) 36.95 (27.54) 

Cl  2.86 (2.14) 1.99 (0.37) 4.30 (0.14) 2.97 (0.17) -- 3.82 (0.57) 13.32 (0.23) 7.62 (0.40) 10.56 (4.58) 19.45 (5.33) 

SO4 1.27 (0.23) 0.74 (0.45) 1.43 (0.70) 1.17 (0.52) -- 2.97 (2.14) 198.57 (40.21) 9.80 (10.92) 10.11 (2.26) 18.67 (3.05) 

HCO3 4.54 (0.51) 2.14 (0.34) 3.04 (0.48) 5.29 (1.11) -- 3.88 (0.54) 2.07 (0.61) 6.15 (3.05) 6.02 (3.99) 5.69 (1.54) 

CO3  0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) -- 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 

Ca  3.40 (0.51) 1.51 (0.46) 3.78 (0.57) 4.50 (0.41) -- 4.08 (0.86) 62.74 (7.67) 13.41 (2.83) 4.89 (0.64) 14.02 (0.98) 

K  1.81 (0.04) 1.10 (0.08) 2.45 (0.46) 1.63 (0.45) -- 1.78 (0.30) 8.20 (0.61) 3.00 (0.05) 2.07 (0.07) 3.00 (0.58) 

 
Mg  

1.49 (0.10) 0.94 (0.20) 1.30 (0.10) 1.68 (0.06) -- 1.31 (0.11) 10.95 (0.62) 3.13 (0.01) 1.26 (0.10) 2.99 (0.50) 

Mn 0.03 (0.01) 0.03 (0.01) 0.02 (0.02) 0.06 (0.02) -- 0.09 (0.03) 0.96 (0.02) 0.03 (0.01) 0.01 (0.00) 0.02 (0.01) 

Na  3.21 (0.12) 2.03 (0.43) 3.59 (0.05) 4.08 (0.26) -- 3.40 (0.22) 8.73 (0.49) 5.87 (0.82) 5.75 (1.50) 9.94 (0.09) 

Si 13.49 (12.92) 7.09 (7.58) 8.86 (9.58) 16.18 (8.14) -- 9.42 (6.46) 6.66 (7.87) 16.28 (1.07) 8.10 (6.01) 14.15 (1.45) 

Sr 0.03 (0.00) 0.01 (0.01) 0.04 (0.00) 0.03 (0.00) -- 0.03 (0.00) 0.16 (0.02) 0.08 (0.01) 0.04 (0.00) 0.10 (0.00) 

Zn 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -- 0.00 (0.00) 0.06 (0.08) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
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Table 5: Minimum, maximum, and mean of stormflow SPC aggregated by imperviousness and 

site for all identified storm events. Stormflow SPC was determined by identifying the SPC value 

recorded 20 minutes prior to the start of a precipitation event. The change in SPC from baseflow 

during storm events (ΔSPC) was calculated by subtracting the mean SPC value for stormflows 

from the mean SPC value during baseflow prior to storm events. The sampling period for each 

site is outlined in Table 1. The number of storm events assessed varies by site and ranges from 

85-284 events. In all cases, ΔSPC is positive, which represents an increase in SPC during 

stormflows, and the largest ΔSPC values occur at the more urbanized sites. All values are 

reported in μS cm-1. 

  
Min 

(µS cm-1) 
Max 

(µS cm-1) 

Storm 
Mean 

(µS cm-1) 

Pre-
Storm 
Mean  

(µS cm-1) 
ΔSPC  

(µS cm-1) 

summarized by site     
R1 35.5 140.8 58.6 56.1 2.5 

R2 18.6 113.2 32.0 31.3 0.6 

R3 34.7 274.3 64.9 61.3 3.6 

S1 42.6 210.2 68.6 66.0 2.6 

S2 55.0 124.6 82.1 79.2 3.0 

S3 103.9 252.4 149.0 144.0 5.0 

U1 212.0 933.2 518.2 516.9 1.3 

U2 103.9 252.4 149.0 144.0 5.0 

U3 46.9 1044.2 106.4 92.2 14.2 

U4 92.0 1092.7 221.5 190.0 31.5 

summarized by ISC category    

Rural 18.6 274.3 54.3 51.7 2.6 

Suburban 42.6 252.4 96.4 93.0 3.4 

Urban 46.9 1092.7 263.2 251.9 11.2 
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Table 6: Summary of water chemistry data collected from January to August of 2018. Sampling 

occurred at sites S2, U3, and U4 where real time remote monitoring stations were installed. 

Samples were automatically collected during high SPC conditions at real-time remote 

monitoring stations. We calculated mean (standard deviation) of nutrient and ion concentrations 

at each site, then determined the ratio of mean ionic concentrations at peak SPC conditions 

compared to mean ionic concentrations at baseflow SPC conditions. Ratio values greater than 1 

indicate higher concentrations at peak SPC conditions, while values less than 1 indicate higher 

concentrations at baseflow SPC conditions. For example, peak calcium (Ca) concentration was 

1.21x higher than baseflow concentrations at U3 but was 0.83x lower than baseflow 

concentrations at U4. 

 S2 U3 U3 U4 U4 
 Peak Mean Peak Mean Ratio Peak Mean Ratio 

SPC (µS cm-1) 87.33 (0.47) 158.17 (11.19) 1.881 655.50 (447.50) 3.455 

Ca 2.19 (0.27) 6.40 (1.09) 1.21 6.80 (0.12) 0.83 

K 1.45 (0.17) 3.19 (1.02) 1.33 2.36 (0.30) 1.48 

Mg 0.58 (0.10) 1.66 (0.28) 1.15 1.86 (0.46) 1.54 

Mn 0.03 (0.01) 0.05 (0.07) 2.66 0.02 (0.00) 1.74 

Na 2.24 (0.20) 5.45 (0.51) 1.04 5.42 (0.77) 1.62 

NH4 0.03 (0.03) 0.10 (0.20) 8.88 0.00 (0.00) 1.38 

NO3 0.66 (0.12) 1.07 (0.16) 1.1 2.82 (0.18) 1.12 

PO4 0.01 (0.00) 0.01 (0.00) 1.26 0.03 (0.03) 1.06 

Si 5.14 (0.36) 9.28 (3.95) 0.76 4.15 (2.28) 0.48 

Sr 0.02 (0.00) 0.04 (0.00) 1.03 0.05 (0.00) 1.13 

TN 4.29 (0.41) 4.74 (0.86) 1.02 6.31 (0.34) 1.42 

TP 0.06 (0.00) 0.08 (0.02) 0.95 0.08 (0.04) 1.55 

E. coli (CFU) 2132 899.67 -- 325 -- 
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Table 7: Readings of SPC taken at the start, end, and every 5 minutes during turbidity trials. 

Conditions for each trial are listed in Table 2. 

 SPC (µS cm-1) 

 Control Trial 1 Trial 2 Trial 3 

Start 134 133 135 133 

5 min 133 134 137 137 

10 min 134 135 135 137 

15 min 134 134 136 141 

20 min 134 134 136 140 

25 min 134 134 137 142 

End 134 135 137 141 
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Figure 2: Complete time series of SPC readings taken at each of the 10 sites. Line colors 

correspond to classification of sites based on urbanization categories. Green represents rural 

sites, blue represents suburban sites, and red represents urban sites. 
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Figure 3: Normalized daily trends of SPC based on continuous data collected at five-minute 

intervals at each site. Variation from the mean value is on the y-axis and time of day is on the x-

axis on a 24-hour time scale from 12:00AM to 11:59PM. 
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Figure 4: Heat map of correlation between nutrients and ions across all baseflow water 

chemistry samples at all sampled sites. Two baseflow water chemistry samples were collected 

at each site during Sampling Period 1 (Table 1), where the first and second samples were 

collected in June and October 2015, respectively. The size of each dot represents the strength 

of the correlation between the two intersecting analytes, while the color represents the positive 

(blue) or negative (red) direction of the relationship. 
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Figure 5: Cross correlation of SPC and stage height at each site. The y-axis represents the 

strength and direction of the relationship between SPC and stage height, while the x-axis 

represents the number of time lags (k), where a single time lag equals 10 minutes.  
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Figure 6: Heat map of correlation between nutrients and ions across all samples collected at 

sites S2, U3 and U4 using automated water chemistry sampling. Samples were collected from 

January to August 2018. The size of each dot represents the strength of the correlation between 

the two analytes, while the color represents the positive (blue) or negative (red) direction of the 

relationship.  
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Figure 7: Boxplot of ionic concentrations at site U3 comparing water chemistry of samples taken 

at baseflow to that of samples taken during peak SPC conditions. Concentration of analytes is 

represented on the y-axis where the scale on each plot is adjusted to encompass the range of 

variability for each analyte. Boxes represent the median and first and third quartiles while 

whiskers represent the minimum and maximum. 
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Figure 8: Boxplot of ionic concentrations at site U4 comparing water chemistry of samples taken 

at baseflow to that of samples taken during peak SPC conditions. Concentration of analytes is 

represented on the y-axis, where the scale on each plot is adjusted to encompass the range of 

variability for each analyte. Boxes represent the median and first and third quartiles while 

whiskers represent the minimum and maximum.  



 

29 

 

 

CHAPTER 4 

DISCUSSION 

Conductivity as a monitoring metric 

A growing body of work indicates the need for management tools that address multiple 

water quality stressors simultaneously, rather than single contaminants (Kaushal et al., 2018). In 

particular, the emerging “freshwater salinization syndrome” (Kaushal et al., 2018; Kaushal et al., 

2019) proposes that concurrent trends in SPC, pH, alkalinity, and base cations are indicative of 

a human-induced shift in freshwater chemical composition and processes in North America. 

This shifting chemical composition hinders many ecosystem services provided by freshwater 

systems and leads to negative impacts on human resources and human and biotic health. 

Elevated salinization has been strongly correlated with degraded stream macroinvertebrate 

community health and can lead to acute toxicity in some species, withimplications for overall 

biotic integrity in freshwater systems (Horrigan et al., 2004; Horrigan et al., 2007; Kaushal et al., 

2017). SPC is a useful indicator of the freshwater salinization syndrome because it is often used 

as a proxy measurement for salinity. In addition, SPC is a strong indicator of  a variety of 

stressors associated with urban watershed disturbance, including inputs from sewage, 

sediment, road salting, and transportation infrastructure (Anderson et al. 2004, Daley et al. 

2009, Kaushal et al. 2018). With advances in sensor technology, the capacity to collect high 

resolution spatial and temporal data is becoming increasingly accessible and provides an 

opportunity for the expanded use of SPC as a management tool. 

In this study, continuous monitoring of SPC in streams across a gradient of urbanization 

revealed fine-scale temporal variability in SPC that is likely indicative of multiple distinct urban 

pollutants. Evaluation of patterns in SPC resulted in support for Hypothesis 1, the detection of 

the stormwater first flush effect, partial support for Hypothesis 2, the detection of sewage inputs, 
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and no support for Hypothesis 3, the detection of sediment inputs. Despite these mixed results, 

we conclude that there is sufficient evidence to promote continuous monitoring of SPC as a 

useful tool for detecting episodic water quality impacts to urban streams from multiple stressors. 

When paired with real-time monitoring technology, these results establish a baseline for the 

application of continuous SPC data as an indicator of and first-warning system for specific 

pollution events, such as illicit discharges, stormwater runoff and sewage leaks.  

This study provided evidence for the use of SPC as an indicator of the first flush effect. 

When assessed across a gradient of urbanization, CCF of SPC with stage height showed that 

our two most urban sites, U3 and U4, displayed brief positive relationships between SPC and 

stage height followed by sustained negative correlations, while all other sites showed consistent 

negative relationships between SPC and stage height. Stormflow peak SPC values displayed 

greater changes from baseflow SPC values at urban sites compared to rural and suburban 

sites, supporting the use of continuous conductivity monitoring for detection of the FFE.  

When used in conjunction with real-time monitoring systems, SPC has potential to serve 

as a single, simple metric for rapid detection of disturbance associated with stormwater runoff. 

For local governments, management of stormwater runoff often requires a significant amount of 

both time and resources, because monitoring of stormwater quality is mandated by the Federal 

Clean Water Act (CWA) (33 U.S.C. §§1251-1387). Real time monitoring of SPC could be 

applied in several ways to enhance regulatory compliance under the CWA. If applied 

strategically throughout watersheds to in proximity to permitted discharges, continuous 

monitoring of SPC could allow managers to monitor compliance with stormwater discharge 

permits at industrial facilities. In addition to regulatory requirements, it is also in a municipality’s 

interest to effectively transport and discharge of stormwater from public property, such as parks, 

roadways, and sidewalks, because of the physical damage that stormwater can cause to 

infrastructure. If applied at fine-scale spatial resolutions, continuous monitoring of SPC could 
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assist in assessing the performance of stormwater infrastructure, both traditional and ‘green’, for 

detaining and treating runoff.  

Water chemistry revealed that baseflow concentrations of nearly all major ions were 

elevated at urban sites compared to rural or suburban sites. Sulfate, calcium, potassium, and 

manganese were strongly positively correlated with SPC across all sites, which suggests that 

baseflow SPC in Athens-Clarke County streams is driven by a combination of geologic and 

urban factors. While calcium is usually associated with mineral weathering (Drever 1997; Rose 

2002; Griffith 2014), elevated sulfate and potassium has been associated with urbanization in 

Georgia Piedmont streams (Rose 2002; Rose 2007). Peak SPC water chemistry showed strong 

positive correlations of SPC with chromium, total nitrogen, nitrate, and copper. Elevated 

concentrations of chromium and copper are considered a common feature of urban streams 

(Paul & Meyer 2001). Sources of chromium and copper in urban watersheds include brake 

linings, tires, and metal alloys which accumulate on roads and parking lots and are carried into 

streams by stormwater runoff. Elevated concentrations of nitrate and other nitrogen compounds 

have been recorded downstream of urban centers which receive direct inputs of untreated 

sewage effluent. In addition, other studies from around the world have noted diel patterns in 

SPC and ionic concentrations which correlated with human activity in the watershed, such as 

decreased concentrations at night (low human activity) and elevated concentrations during 

daytime (high human activity; Santos et al., 2019). Time series plots of SPC show that 

continuous monitoring at a 5-minute time scale is sensitive enough to change rapidly in 

response to natural and human inputs. Normalized daily trends of SPC recorded during this 

study suggest that urban sites display greater variability in SPC than non-urban sites, with 

higher daytime peaks and lower nighttime lows. These results may indicate support for 

Hypothesis 2, which asserted that regular, nonrandom patterns in SPC are indicative of sewage 

inputs. However, this should be verified with monitoring of fecal coliform and other more direct 

indicators of sewer leaks.  
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Sediment addition experiments did not reveal relationships between SPC and inputs of 

surface sediment from surrounding soils, such as might be observed downstream of cleared 

land due to development and other urban activity. While there are clear relationships between 

surrounding geology and SPC (Drever 1997, Griffith 2014), soils in the Piedmont contain 

relatively low ionic concentrations compared to other regions in the USA. It is possible that in 

physiographic regions with soils with high ionic concentrations, continuous monitoring of 

conductivity could prove to be a useful indicator of erosion events.  

Limitations of continuous monitoring techniques 

 In this study we explored two methods for collecting continuous water quality data using 

remote sensing technology. Continuous monitoring using “disconnected” in-situ devices, such 

as the HOBO loggers used in this study, requires very little knowledge of software or 

programming and provides straightforward installation and data retrieval. However, data cannot 

be accessed in real-time, and instrument costs are much higher than DIY systems. Lack of real-

time reporting also means that errors take longer to detect. Over the course of this study, 

several months of data were rendered unusable due to logger errors, such as loggers being 

buried under sediment or installed improperly, that were not discovered until after data collection 

had ended. Real-time monitoring technologies provide more reliable data collection due to the 

ability to monitor systems and identify errors immediately. However, these DIY systems require 

significant knowledge of software and programming in order to assemble and operate the 

technology. Installation of these systems also requires more space, time, and materials due to 

the need for external power sources such as solar panels and large batteries. While HOBO 

loggers can be installed readily in a variety of locations, real-time monitoring stations must be 

anchored to streambanks within close range of solar panels so that appropriate power 

connections can be maintained. Despite this, real-time technologies are becoming simpler and 

more user friendly as these systems becomes more widely used and promoted through 

programs like the Stroud Water Research Center’s EnviroDIY (https://www.envirodiy.org/). Both 
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forms of remote sensing also produce a large amount of data, which can be cumbersome to 

manage and manipulate for analysis.  

 Use of SPC as a monitoring metric would be complemented by the collection of 

additional water quality data, such as concurrent water chemistry and microbial sampling. In this 

study, we were limited in our ability to collect a large number of contemporaneous water 

chemistry and E. coli samples due to the time required to develop each real-time monitoring 

station. The small sample size did not allow us to compare directly between high SPC 

conditions at each real-time monitoring site and monitoring of conductivity alone cannot provide 

direct evidence of specific pollutants. In addition, sediment experiments were fairly limited in 

their scope and turbidity was not measured in-situ during this study. Real-time monitoring 

technology for turbidity is available and compatible with systems used in this study. Experiments 

performed in this study to test for Hypothesis 3 may have been enhanced through a better 

understanding of temporal and spatial variability in turbidity.  

Future considerations 

Despite the drawbacks outlined above, this study demonstrates the many advantages to 

the use of real-time systems for monitoring of water quality. The customizability of real-time 

technology provides endless potential for monitoring programs, and the relatively inexpensive 

technology could be deployed broadly at a fine spatial scale to provide highly detailed insights 

into stressors. In addition, these systems are portable enough to be redeployed multiple times 

as monitoring priorities shift with continuous management. With the right programming 

knowledge, managers can tailor monitoring stations to meet very specific local needs and 

personal preferences. Real-time systems can easily be coupled with notification systems, such 

as email or text alerts, which notify managers of concerning water quality conditions and lead to 

more targeted sampling programs. If deployed downstream of stormwater control structures 

throughout a watershed, real-time monitoring of SPC could provide instantaneous feedback on 
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performance and efficacy of stormwater infrastructure, helping managers to track and report the 

functional status of stormwater infrastructure. 
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