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ABSTRACT 

I develop a generic coarse-grained potential in order to study the mechanical performance of 2D 

materials-based cellular kirigami structures towards understanding of the relationship between 

mechanical properties, structure pattern, and component material. Results indicate that there are 

two distinct stress-strain stages, J-shape non-linear elasticity and linear elasticity, determined by 

the material structure density. Moreover, hole-in structures show a better performance over no-

hole structures for ductility. In addition, the material effect on the mechanical performance of 2D 

materials-based cellular kirigami is significant, exemplified by graphene-based structures 

outperforming those composed of other 2D materials.  Furthermore, by integrating coarse-grained 

molecular dynamics (CGMD) simulations with machine learning algorithms, the mechanical 

performance of 2D materials-based kirigami structures with mixed cellular patterns can be 

predicted in order to optimize the design patterns of the kirigami structures. CGMD simulation are 

performed to obtain stress-strain responses of the 3 ∗ 3 grid architectured graphene kirigami under 



 

biaxial tensile tests, in which 2,483 datasets are obtained with different combinations of cellular 

patterns. With previous stress-strain responses, feedforward neural networks (FNN) have been 

applied in order to obtain prediction of mechanical performance. Result shows the R2 were able 

to increase up to 0.4 by optimizing the structure of the input dataset, which revealed the possibility 

of using machine learning method to design and predict mechanical properties of architectured 2D 

materials, it also specifically demonstrated that FNN could achieve an acceptable accuracy in 

terms of prediction by increasing the structural details and size of the training dataset . Overall, 

this study provides a computational basis towards the predictive design of future kirigami 

structures with outstanding properties and functions. 
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CHAPTER1 INTRODUCTION AND LITERATURE REVIEW 

1.1 A brief history of 2D nanomaterials 

Since ancient times, the improvement of materials has been an essential basis for human survival 

and development, and the history of human development is also the evolutionary history of 

materials. With recent developments in science and technology, human being has entered the age 

of nanomaterials. The technological revolution brought about by new nanomaterials will have a 

profound impact on human society1. 

Materials are normally classified according to their structure or properties. Nanomaterials are a 

type of material that have at least one dimension less than 100nm and can have much different 

physical properties when compared with so-called ‘bulk’ materials. According to the dimensions 

of the material, it can be divided into three categories: zero-dimensional atomic clusters or 

nanocage structures; one-dimensional nanowires or nanotubes, such as silicon nanowires2, carbon 

nanotubes3, and similar; and two-dimensional nanosheets, such as graphene4, silicene5, and similar. 

Each type of nanomaterial has attracted wide attention from researchers, and each have their own 

unique characteristics. One of the most intriguing properties of two-dimensional nanosheets is its 

large specific surface area (SSA), which determines the surface chemical activity of the material. 

A very large SSA is one of the reasons why so much interest is focused on graphene6. It is expected 

that catalytic materials with high specific surface area will have huge application prospects6. In 

addition to the huge specific surface area, the surface atom coordination of nanomaterials is 

insufficient due to the lack of bulk material on either side, making these surface atoms easy to 



 2 

combine with other foreign atoms, making for excellent gas adsorbent materials6. In terms of optics, 

as opposed to conventional bulk materials, single-layer two-dimensional nanomaterials have a 

range of absorption effects on electromagnetic waves and can be used as both invisible materials 

and radiation shielding materials4.The size effect, which expands the application range of nano-

optoelectronic materials, has important practical significance in optical applications. In terms of 

magnetism, the giant magnetoresistance effect in the layered film structure was first discovered in 

late 1980s7. Research shows that the resistance value of the giant magnetoresistive material is 

related to the magnetization direction of the ferromagnetic material thin film layer, and the 

resistance value of the two layers of magnetic material when the magnetization directions are 

opposing is significantly greater than the resistance value when the magnetization directions are 

the same7, 8. In addition, magnetoelectronics is a new cross-effect of magnetism and electricity in 

nanoscale materials8. The direction of electron spin will affect the transport properties of the 

material. As an important part of nanoelectronics, magnetoelectronics has a wide range of 

applications in the fields of magnetic recording, non-volatile information storage, spin transistors 

and quantum computers8.  

Although for a long time the research community believed that two-dimensional (2D) crystals may 

not be stable experimentally, Novosolev, Geim, and colleagues4 demonstrated for the first time the 

isolation of single-atom-thick carbon sheets in 2004, which is termed graphene. This discovery 

inspired physicists, chemists, and even circuit designers around the world to develop new ideas 

using carbon-based electronics. In the past few years, many applications related to graphene have 

been developed and are likely to be industrialized in the near future9, 10 (Figure1-1). Some 

promising applications include RF electronics11, advanced sensors12, translucent electrodes and 
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electronics13, low-power switches14, solar cells15, battery energy storage16, and adjustable plasma 

devices for terahertz17 and mid-infrared applications.  

Recently, 2D materials provide a new ideal world for creation and innovation. The unique 

properties of 2D materials have attracted a wide range of research activities to use this new material 

system to improve existing electronics, optoelectronics18, and sensing applications18, as well as 

invent new applications. From a mechanical point of view, crystalline two-dimensional materials19 

can withstand more than 10% in-plane deformation strain before fracture, which is an order of 

magnitude higher than the deformation of a typical bulk semiconductor whose fracture value is 

usually <1%19. The inherently high flexibility, in-plane as well as out-of-plane, has also stimulated 

great efforts to further control and modulate the electrical and optical properties of 2D 

semiconductors through strain engineering19. Various methods can be used to further improve the 

mechanical properties of two-dimensional materials, and even optimize specific mechanical 

properties as needed.  
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Figure 1-1 The emergence of new classes of 2D nanomaterials 

1.2 2D materials kirigami 

Techniques to combine the application of paper-cutting technology with two-dimensional 

materials is a natural evolution of two-dimensional nanomaterials design. The novel innovation in 

Ortrud Medical’s tourniquet design is the use of a Kirigami ‘pattern’, a Japanese paper art 

involving cutting and folding, to reduce the resistive force of the 2D material20. Moreover, it can 

be used to alter the properties of a sheet of 2D material and turn it into a metamaterial – a material 

engineered to produce properties which do not occur naturally. Mechanical properties of kirigami-

enhanced materials such as the stiffness and Poisson’s ratio can be changed by altering cut lengths 

or patterns20. In addition, patterned defects can also be used to change the material properties of a 

2D sheet in 3 dimensions – such as increasing the buckling stiffness21.  

A lot of effort has been put towards research into kirigami materials, in which different designs 

are proposed to achieve exceptional auxetic mechanical properties, such as negative Poisson’s 
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ratio22, 23, negative stiffness24, 25,  outstanding stretchability23, 26, 27, etc. For example, Liu et al. has 

adopted a sinusoidal cutting pattern for kirigami based on 2D materials, in which the auxeticity 

can be systematically tuned by geometrical parameters of cutting patterns and mechanical 

anisotropy of base materials.23 Timothy et al. proposed a design utilizing buckling of small-scale 

structural elements, which can achieve a negative stiffness for kirigami materials.25  Rogers and 

Huang et al. have proposed multiple designs of 2D kirigami structures which can form different 

targeted 3D morphologies through out-of-plane buckling.28 Xu et al. proposed two theoretical 

models based on continuum mechanics to predict the elastic properties of architected 

heterogeneous 2D structures, and thus promoted the search for novel architected 2D structures 

with exceptional mechanical performance.29 30  

Along with the great advances witnessed in both theoretical and experimental researches of 2D 

kirigami, plenty of cutting patterns have been proposed to design architected 2D structures with 

targeted mechanical properties. Through combining different cellular cutting patterns, 2D kirigami 

materials can be designed with systematically tunable mechanical performance.30-34  In addition to 

assembly of cellular cutting patterns, manipulation of bonding connections between adjacent 

cutting units is also critical for altering material performance and developing new functionalities 

for 2D material kirigami.35-37 Despite the successful designs proposed above, the fundamental 

physics of those designing strategies remains an open question. In this case, machine learning 

algorithms can serve as a powerful tool to establish a solid connection between cutting patterns 

and mechanical performance for 2D kirigami material without enough prior knowledge of relevant 

physics, which will be discussed in the section below. 



 6 

1.3 Machine learning of architected 2D structure. 

Typically, it will take between ten and twenty years of study on nanomaterials from the initial 

investigation to the first application. The most traditional method for studying nanomaterials is 

experimental exploration. Experimental measurement usually includes structure synthesis, 

microstructure property analysis, and property measurement38. Experimental studies can often take 

a very long time but can be considered the simplest and most accurate method to study materials. 

However, this method has high requirements for equipment, experimental environment, and the 

professional knowledge of researchers. These requirements are greatly affected by the external 

environment, experimental period, and budget, which make it difficult to accelerate the 

development of nanomaterials. As another option, the rise of computational chemistry has become 

a powerful tool for studying nanomaterials. High-precision computation39 methods such as DFT-

based electronic structure calculations40, molecular dynamics (MD) simulations41, Monte Carlo 

simulations42, phase field methods43, and continuous macroscopic methods44 are currently widely 

used in the discovery of new materials. Although theoretical computation requires experimental 

verification, it greatly shortens the tedious process of experiments and provides beneficial 

guidance for further study. However, the high-precision computation method requires high-

performance computing equipment, plus the limitation of running on large-scale computing cluster, 

which prevent this method from being widely used. 

In view of the limitations of the above nanomaterial design and property prediction methods, 

machine learning is a powerful solution. Computers can use pre-developed algorithms to learn data 

by simulating the linear or nonlinear relationship between material properties and related 

variables38. Machine learning extracts knowledge from existing results to gain insights, then 

produces reliable and repeatable decisions and results. Its adaptability to the classification and 
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regression problems of high-dimensional data has seen it playing an important role in speech 

recognition, image recognition, image classification, bioinformatics, drug discovery, customized 

advertising, and video recommendations38. The pioneering application of machine learning in 

materials science can be traced back to the 1990s45, when machine learning methods such as 

symbolic methods and artificial neural networks (ANNs) were used to predict the tensile strength 

and compression strength of the fiber/matrix interface in ceramic matrix composites, and very 

good results have been achieved45. Since then, machine learning has been used to solve various 

problems in materials science.  

Generally ,the modeling establishment of machine learning in materials science can be divided 

into three steps: sample establishment, model construction, and model evaluation38. The sample 

establishment can be divided into two parts: the preprocessing of raw data, and the selection of 

descriptors. The original data are generally obtained from computational simulations and 

experimental measurements38. These data are usually incomplete, noisy, or inconsistent. Therefore, 

the original data needs to be preprocessed when constructing a sample. In addition, the type and 

number of descriptors have even a greater impact on the results of the model, and it is likely that 

some of the descriptors are not related to the target properties, or the correlation between the 

descriptors is too strong, so it is necessary to filter the descriptors. The model establishment is 

essentially a black box that uses linear or non-linear functions to associate input data with target 

properties. In materials science research, there are often complicated relationships between 

descriptors and target properties, which cannot be solved well by traditional methods. However, 

machine learning can find a specific mapping function to achieve as close as possible the objective 

function coefficients, which can be well applied to the solution of these problems. Model 

evaluation can tell whether a data-driven model not only performs well on existing data, but also 
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performs well on unknown data. Usually the selected data set is divided into a training set and a 

test set, and the generalization error of the model is evaluated based on the prediction of the test 

set. Therefore, it is necessary to select the appropriate algorithm for the training process. Different 

algorithms have different prediction accuracy and generalization ability for the same problem. 

Each algorithm has its own application range, and there is no algorithm suitable for all problems. 

Machine learning algorithms commonly used in materials science can be divided into four 

categories: regression, classification, clustering, and probability estimation.38 Regression, 

clustering and classification algorithms are mainly used to predict the properties of materials at the 

macro and micro levels.45 The probability estimation algorithm is mainly used to discover new 

materials. The material properties predicted by machine learning mainly involve band gap, 

formation energy, lattice thermal conductivity, magnetism, elastic constant, melting point, gas 

adsorption capacity, etc. The basic steps of using machine learning to predict the properties of 

materials can be summarized into three steps. First, the data of the research system is processed 

and the features related to the predicted target properties are selected. Then, the mapping 

relationship between the selected features and the target properties is found through the training 

model, and the prediction ability and generalization ability of the model are evaluated. Finally, the 

best model is selected to predict the properties of unknown compounds. The predictive ability 

depends largely on the selected machine learning algorithm and sample construction, which means 

no model can be applied to all systems. Therefore, in order to find the best one, it is necessary to 

compare different machine learning models based on different algorithms. 

1.4 Contributions of this thesis 

Considering the representative role of graphene in two-dimensional materials, this work will study 

the mechanical properties of graphene-based cellular kirigami structures, which may also help to 
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study multiple other applications of 2D materials due to the exceptional transferability of the 

developed force-field potential. First, investigations will be performed into how to enhance the 

mechanical properties of 2D materials by using different kirigami structures and the effects of 

structure and unit cell parameters. Then, machine learning will be applied to study the designed 

architectured 2D materials. This paper will be organized as follows: Chapter 2 will present a 

computational study of 2D materials kirigami. Chapter 3 will further discuss details of 

architectured structure and its mechanical property prediction by machine learning algorithm. 

Chapter 5 will summarize the findings and conclude this thesis. 
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CHAPTER2 MECHANICS OF 2D MATERIALS BASED CELLULAR KIRIGAMI 

STRUCTURES: A COMPUTATIONAL STUDY1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Shaoheng Li*, Ning Liu, Matthew Becton, Nicholas Winter, Ramana M. Pidaparti, Xianqiao Wang, 2020, 

“Mechanics of 2D materials based cellular kirigami structures: A computational study”, JOM. Reprinted 

here with permission of publisher. 
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ABSTRACT 

In this paper, I develop a generic coarse-grained potential for a general group of 2D materials to 

study the mechanical performance of 2D materials-based cellular kirigami structures for 

understanding of the relation between mechanical properties and structure pattern as well as the 

material component.  By patterning the structure lattice cell, the mechanical properties of 2D 

materials-based structures show a very wide range from almost zero to those of the pristine 2D 

materials by orders of magnitude. Moreover, results indicate that there are two distinct stress-strain 

stages associated with density, J-shape non-linear, and linear elasticity. Results also indicate that 

hole-in structures show a better performance over no-hole structures on ductility. In addition, the 

material effect on mechanical performance of 2D materials-based cellular kirigami is significant, 

exemplified by graphene-based structure outperforming those made of other 2D materials.  Overall, 

this study provides a computational basis towards designing future kirigami structures with 

outstanding properties and functions. 
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2.1. Introduction 

Currently, due to the unique transformation characteristics such as twisting and rotation, 2D 

materials with reasonable designed 2D structures have shown a wealth of unique mechanical 

properties, such as tensile strength, toughness, and stiffness, as well as the ability for shape 

reconfiguration30. These extraordinary properties are usually governed by the structure30. However, 

it is still an open question of how the material composition influences the exceptional properties 

aforementioned. Thus, it would be interesting to explore if component material with outstanding 

mechanical properties, such as 2D Materials46, can help improve the emerging extraordinary 

properties of architected 2D structures. In the previous studies, along with the prosperity of 2D 

materials, rationally designed 2D structures have attracted enormous interest for applications in 

flexible and stretchable electronics47-49, phononic devices50, and structurally tunable optical51. 

Despite the experimental achievements, the combined effect of cellular structure and component 

material on mechanical performance of architected structures based on 2D materials have not been 

thoroughly understood. Therefore, in this paper, mechanical performance of 2D material-based 

cellular kirigami structures will be investigated to establish such a link between nanoscale 

characteristics and macroscopic performance.  

Kirigami, a term taken from the Japanese art of cutting paper, due to the principles of classical 

elasticity, it is anticipated that increasing cuts (i.e., removing atoms) will both weaken and soften 

the material in most cases52. In principle, the elastic properties of the sheet materials are able to be 

designed and controlled in a highly flexible manner by this approach. So far, the kirigami approach 

has been successfully applied to improve the stretchability of 2D materials27, and examples of the 

structural and geometric diversity that can be achieved using kirigami approaches for 2D materials 



 13 

have already been demonstrated experimentally. For example, Qi et al.27 verified that the yield 

strain of MoS2 increased fourfold, and the fracture strain of graphene was enhanced about three 

times by kirigami approach27, 53.The fracture strain of hexagonal boron nitride kirigami structures 

increased three to five times compared to the original 2D material27, 53. However, the exact 

relationship between the structures of kirigami 2D materials and their mechanical properties is still 

an open question. Unlike macroscopic kirigami, which is able to be directly achieved by cutting 

flat sheets (e.g. paper) and manually transforming the sheets into desired shapes, 2D material 

kirigami in microscopic scales is challenging because of the limitation in finding a micro-

/nanomanipulator which is advanced enough to perform the desired carefully dictated steps 

necessary for the process54. Moreover, due to the limited resolution of current experimental 

techniques at the nanoscale, it is difficult to study the knowledge of molecular scale processes.55 

Therefore, in order to efficiently study different 2D materials and acquire a comprehensive 

understanding of 2D materials-based kirigami characteristics, a computational model both 

physically accurate and computationally efficient is needed. 

All-atom molecular dynamics (AAMD) simulation and theoretical modeling can serve as useful 

tools to study the phenomena of 2D materials at the nanoscale, also helps to interpret experimental 

data, such as transition from J-shaped nonlinear elasticity to linear elasticity.56, 57 Therefore, most 

pervious researches on 2D materials simulation were performed by AAMD simulations.58 Despite 

the tremendous success of these investigations, AAMD still has some drawbacks. In most cases, 

the system box sizes of the simulation of 2D materials-based systems is less than 10 𝑛𝑚 per 

dimension, which requires extremely high computational power58. Therefore, it is outrageously 

expensive to study the failure modes and failure mechanisms of 2D materials by AAMD 

simulations55, 58, thus restricting the understanding of the properties of 2D materials based kirigami. 
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In order to solve these drawbacks, coarse-grained molecular dynamics (CGMD) models would be 

an ideal choice for simulations due to its high computational efficiency and physical accuracy. 

CGMD model allows each CG bead to represent dozens of atoms, which significantly lowers the 

degrees of freedom of the atoms.56, 59 Therefore, CGMD simulations are able to carry out 

simulations of 2D materials several hundred times faster than AAMD simulations with alike 

precision. 59, 60.To date, there are several CG models that have been developed to simulate the 

mechanics of 2D materials, such as graphene, graphene oxide, and phosphorene55, 58, 60, 61. Most of 

those models have a fine coarse-graining mapping (four atoms to one CG bead), which enables it 

a good physical accuracy 55, 58, 60. In addition, the temporal scale these models can reach is 

significantly enhanced. For example, the timestep for the CG model of graphene by Luis et al. can 

be up to 7.6 fs, which is much greater than 1 fs in AAMD. Despite the extended temproal and 

spatial scale, the existing CG models can hardly reach micrometer in length and microseconds in 

time, making it hard to establish a link between experiments and theories. Moreover, the poor 

transferability of the above models prohibits their applications for a general group of 2D materials. 

Therefore, it is  necessary to develop a  generic CG model for a general group of 2D materials with 

a highly coarser mapping, which could help reach a significantly greater temporal and spatial scale.  

This work will establish a CG model to study the mechanical properties of 2D materials-based 

cellular kirigami structures, which may also help to study multiple other applications of 2D 

materials due to the exceptional transferability of the developed force-field potential. Here, I will 

investigate how to enhance the mechanical properties of 2D materials by using different kirigami 

structures and the effects of structure and unit cell parameters. My paper will be organized as 

follows: Section 2 will discuss the CG model development and simulation set-up of this paper; 

Section 3 will focus on the analysis of mechanical behaviors of 2D material-based cellular kirigami 
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structures under uniaxial tension, in order to explore the relation between mechanical performance 

and structure pattern as well as material type; Section 4 will summarize the findings and conclude 

this paper. 

 

2.2. Models and methods  

2.2.1. Model setup 

In this study, I introduce and set my focal investigation on five distinct 2D materials based kirigami 

cells. These basic cells are four-node structures with rationally designed architectures. When a 

uniaxial tensile stress 𝜎𝑥  is applied to a cell, nonuniform stresses will appear due to the 

deformation heterogeneity with structure being contractile or auxetic. From the geometric 

parameters shown in Figure 2-1a, d is the width of the structural ligands; 𝐿 is the length of the 

bridges. 𝐿  is fixed as 0.5 𝑎0 and due to the limitation of the structural integrities of different 

structures 𝑑 varies from a minimum of 4 𝑎0 to a maximum based on cell shape. The width of the 

bridge changes as the width of the ligand changes. The base unit termed 𝑎0 is equal to a length of 

2.5 nm. For the octagonal cell, d varies from 4𝑎0 to 28𝑎0. For the star-shaped cell, d varies from 

4𝑎0 to 14 𝑎0. For the fan-shaped cell, d varies from 4𝑎0 to 14𝑎0. For the bent-cross cell, d varies 

from 4𝑎0 to 18𝑎0. Finally, for the sinusoidal cell, the width d varies from 4𝑎0 to 28𝑎0. All the cells 

are designed using my in-house code written in MATLAB before being exported to LAMMPS for 

simulation (further details below).  
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Figure 2-1 (a) Overall view of five kirigami models, namely octagon, star-shape, san-shape, bent-cross, 

sinusoid. (b) CG model schematics. Illustration of the contributions of the CG force-field to the potential 

energy of the system. The CG lattice is shown in blue and the different interactions are highlighted with 

ball-stick representations in different colors. The distance between each mesoscale particle is r0 = 25Å, 

where each particle effectively describes the behavior of approximately 250 atoms per monolayer. 

2.2.2. CGMD model parameters, force field development, and validation 

Here I developed a square coarse-grained model.  Although the most 2D materials are of hexagonal 

symmetry, such as graphene and silicene, they are highly mechanical anisotropic along the zigzag 

and armchair directions. Also, the mechanical properties along these two directions holds the key 

to the design and development of 2D materials-based devices. The square coarse-grained lattice is 

a simple but generic model to well capture the mechanical anisotropy in 2D materials. Specifically, 

one of the advantages of this generic CGMD model is that the mechanical properties along the 
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lattice edge directions can be tuned through varying the interaction parameters, like the stiffness 

of the 𝑏1 and 𝑏2 bonds in Figure 2-2, in a decoupled manner, therefore offering a robust way to 

represent different kinds of 2D materials with widely varied and anisotropic mechanical properties.  

 

Figure 2-2 (a) The stress-strain curve for octagonal cell based on graphene. (b) The stress-strain 

curve for sinusoidal cell based on graphene. (The width increases by 2a0 from 4a0 to 20a0, and 

the width increase by 1a0 from 20a0 to 28a0. As it can be seen from the curve, the tensile strength 

increases dramatically. Therefore, to well describe the relationship between strength and density, 

I add more data points from 20a0 to 28a0; The stress-strain curve for other cells are given in 

supplementary material Figure A-5) 

The CGMD model’s potential field can be divided into four parts: bonds, angles, dihedrals, and 

non-bonded interactions (Figure 2-1b)55.The sum of potential energy (𝑈𝑝𝑜𝑡) can thus be expressed 

as: 
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𝑈𝑝𝑜𝑡 = 𝑈𝑏 + 𝑈𝑎 + 𝑈𝑑 + 𝑈𝑛𝑏                                                                                                          (2.1) 

 

where 𝑈𝑏  is the elastic energy from in-plane bond stretching, 𝑈𝑎 is the elastic energy from in-plane 

angle bending , 𝑈𝑑  is the elastic energy from out-of-plane dihedral bending, 𝑈𝑛𝑏  is the elastic 

energy from non-bonded interactions. 55, 61 

For the bonded interactions, a Morse potential is implemented for axial stretching: 

𝑈𝑏 = 𝐷[1 − 𝑒−𝛼(𝑟−𝑟0)]2                                                                                                                 (2.2) 

where 𝐷 is the parameter governing the depth of the potential well of the bond, 𝛼 governs the 

width of the potential well of the bond, and 𝑟0 is the equilibrium distance of the bond.  

For 3-body (angle) interactions, a harmonic spring potential is implemented for shear deformation 

and out-of-plane bending, given by: 

𝑈𝑎 = 𝐾𝑎[𝜃 − 𝜃0]2                                                                                                                           (2.3) 

where 𝐾𝑎 is the spring constant of the angle interactions, and 𝜃0 is the equilibrium angle.  

For 4-body (dihedral) interactions, a cosine potential was used, given by: 

𝑈𝑑 = 𝐾𝑑[1 − 𝑐𝑜𝑠(2𝜙)]                                                                                                                     (2.4) 

where 𝐾𝑑 is the spring constant of the dihedral interactions. 

I use a Lennard-Jones potential to describes non-bonded interactions: 

𝑈𝑛𝑏 = 4𝜖 [(
𝜎

𝑟
)

12
− (

𝜎

𝑟
)

6
]                  𝑟 < 𝑟𝑐                                                                                       (2.5) 
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Here, 𝜖   is determined by the interlayer adhesion energy for non-bonded interactions, 𝜎 is the 

specific distance between two non-bonded beads where the non-bonded potential energy 𝑈𝑛𝑏 is 

equal to zero, and 𝑟𝑐 is the cut off beyond which the nonbonded effects are zero. 

So, in total, there are 5 parameters (𝐷, 𝛼, 𝐾𝑎, 𝐾𝑑 , 𝜖)  that require calibration so as to simulate the 

mechanical properties of different 2D materials. 

The developed CG model is related to the mechanical behavior of different systems that reproduce 

certain 2D materials and the mechanical constitutive properties of those materials. Therefore, I 

choose the method of strain energy conservation as the calibration method of the model. In this 

method, the parameters of the CG potential-field are selected to match certain mechanical 

properties of the model, including the in-plane Young’s modulus, 𝐸, which is obtained by applying 

a uniaxial strain and thus determining the stress-strain relationship, the failure strain in two 

different directions, armchair and zigzag, 𝜖𝑎𝑟𝑚 and 𝜖𝑧𝑖𝑔 , the tensile strength, 𝜎𝑎𝑟𝑚 , and 𝜎𝑧𝑖𝑔 as 

listed in Table 2-1. The in-plane tensile properties can be solely determined by the bond potential. 

The two parameters which determine the bond potential, namely 𝐷 and α, can be systematically 

tuned to reproduce the Young’s Modulus, failure strain, and tensile strength based on the 

expressions below, 

𝜖𝑎𝑟𝑚(or 𝜖𝑧𝑖𝑔) =
ln(2)

𝛼∗𝑟0
                                                                                                         (2.6) 

𝐸𝑎𝑟𝑚 , (or 𝐸𝑧𝑖𝑔) =
2∗𝐷∗𝛼2

𝑟0
2                                                                                                          (2.7) 

𝜎𝑎𝑟𝑚(or 𝜎𝑧𝑖𝑔) =
𝐷∗𝛼

𝑟0∗ℎ
∗ (1 − 𝑒−𝛼∗((1+𝜖)∗𝑟0−𝑟0)) ∗ 𝑒−𝛼∗((1+𝜖)∗𝑟0−𝑟0)                                      (2.8) 
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where ℎ is the interlayer distance. First, I determine 𝐷 ∗ 𝛼2 and  𝛼 by varying Young’s modulus 

and failure strain, respectively, around the target value. Then I calculate tensile strength based on 

the 𝐷 and  𝛼 above. Next, I calculate the difference between current value and target value for 

Young’s modulus, failure strain and tensile strength. I pick out the 𝐷  and 𝛼  values with the 

smallest relative error for the mechanical properties under considerations as listed in 

supplementary material Table 2-2.  

Table 2-1 Summary of the in-plane mechanical properties of the CG model. 

 Graphene Borophene BP Silicene MoS2 

Young’s Modulus 

𝐸𝑎𝑟𝑚 
965GPa55 1127GP62 33.5GPa63 144GPa 64 166GPa63 

Young’s Modulus 

𝐸𝑧𝑖𝑔 
965GPa 55 490GPa 62 105.5GPa63 117GPa64 166GPa 63 

Tensile Strength 

𝜎𝑎𝑟𝑚 
81GPa55 77.363GPa 62 4GPa63 11GPa 64 18GPa 63 

Tensile Strength 

𝜎𝑧𝑖𝑔 
64GPa 55 30.945GPa 62 8GPa63 13.6GPa 64 16GPa63 

Failure Strain      

𝜖𝑎𝑟𝑚 
11% 55 14% 62 23%63 7% 64 20% 63 

Failure Strain       

𝜖𝑧𝑖𝑔 
15% 55 14% 62 12%63 14% 64 21% 63 

Timestep upper limit 

Δt 
62.8 fs 58.38 fs 106.99 fs 177.22 fs 304.58 fs 
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Table 2-2 Parameter of the CG model force-field. 

 Graphene Borophene BP Silicene MoS2 

Bond 

𝑟0 = 25Å61 

𝑟𝑐𝑢𝑡 = 30.7Å61 

𝐷 = 965.6661𝑒𝑉 

𝛼 = 0.1216Å−1  

𝑟0 = 25Å 61 

𝑟𝑐𝑢𝑡 = 28.5Å62 

𝐷𝑎𝑟𝑚 = 338.08𝑒𝑉 

𝐷𝑧𝑖𝑔 = 156.04𝑒𝑉 

𝛼𝑎𝑟𝑚 = 0.1980Å−1 

𝛼𝑧𝑖𝑔 = 0.1980Å−1 

𝑟0 = 25Å61 

𝑟𝑐𝑢𝑡 = 29.375Å65 

𝐷𝑎𝑟𝑚 = 38.21𝑒𝑉 

𝐷𝑧𝑖𝑔 = 42.11𝑒𝑉 

𝛼𝑎𝑟𝑚 = 0.1205Å−1 

𝛼𝑧𝑖𝑔 = 0.2310Å−1 

𝑟0 = 25Å61 

𝑟𝑐𝑢𝑡 = 27.75Å64 

𝐷 = 32.11𝑒𝑉 

𝛼 = 0.2521Å−1  

𝑟0 = 25Å61 

𝑟𝑐𝑢𝑡 = 30Å63 

𝐷 = 159.22𝑒𝑉 

𝛼 = 0.1386Å−1  

Angle 
𝐾𝑎 = 36.6𝑒𝑉 61 

θ0 =90° 

𝐾𝑎 = 42.43𝑒𝑉 66 

θ0 =90° 

𝐾𝑎 = 10.82𝑒𝑉 67 

θ0  =90° 

𝐾𝑎 = 5.48𝑒𝑉64 

θ0  =90° 

𝐾𝑎 = 15.78𝑒𝑉68 

θ0  =90° 

Dihedral 𝐾𝑑 = 0.1661𝑒𝑉 61 𝐾𝑑 = 0.0553𝑒𝑉 66 𝐾𝑑 = 0.8922𝑒𝑉67 𝐾𝑑 = 5.3470𝑒𝑉 64 𝐾𝑑 = 1.5226𝑒𝑉69 

Non-bond 

𝑟𝑐𝑢𝑡 = 8.67Å 

𝜖 = 20.60𝑒𝑉61 

σ = 2.89Å 

𝑟𝑐𝑢𝑡 = 10.92Å 

𝜖 = 35.31𝑒𝑉  70 

σ = 3.64Å 

𝑟𝑐𝑢𝑡 = 11.07Å 

𝜖 = 59.83𝑒𝑉  70 

σ = 3.69Å 

𝑟𝑐𝑢𝑡 = 11.48Å 

𝜖 = 78.86𝑒𝑉 70 

σ = 3.83Å 

𝑟𝑐𝑢𝑡 = 15.51Å 

𝜖 = 38.82𝑒𝑉71 

σ = 5.17Å71 

Interlayer 

distance 
ℎ = 3.35Å55 ℎ = 3.23Å62 ℎ = 5.29Å65 ℎ = 4.3Å 64 ℎ = 6.092Å 63 

 

2.2.3. Model validation 

In this work, I perform CGMD simulations by using the massively parallel simulator software--

LAMMPS72. The timestep ∆𝑡 of CGMD simulations should be carefully selected to allow the 

lowest vibrational frequency of the bonds to be adequately sampled. When the deformations are 

relatively small, the difference between harmonic bond potential and Morse bond potential is 

marginal. Therefore, the frequency of a harmonic oscillator can be shown as 𝜔 = √2𝑘 𝑚⁄ , where 

𝑘 is the bond stiffness and m is the mass55. The criterion widely used in the literature for sufficient 

sampling is ∆𝑡 <
𝑇

10
 , where 𝑇 is the period of the oscillator55. The theoretical upper limit of the 

timestep that I obtained is 62.8947 𝑓𝑠. In order to ensure the stability of my simulations, a time 

step  10𝑓𝑠  is chosen for the simulations for graphene hereafter. The time steps 10𝑓𝑠  is also 
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applicable for other 2D materials according to the timestep upper limit listed in supplementary 

material Table SI. 

The 2D materials sheet(s) lies on the 𝑥𝑦-plane, in which armchair direction is along the 𝑥-axis 

while zigzag direction is along the 𝑦-axis. And the 𝑧-axis is perpendicular to the plane of the sheet. 

In all of the simulations, non-bonded interactions are only applied between beads that are not 

explicitly connected by covalent bonding including bond, angle, and dihedral. Simulations of out-

of-plane bending of a single sheet and adhesion between two adjacent sheets are performed for the 

calibration process. Figure A-1 shows the comparison of the stress-strain relationships between 

the CGMD and AAMD models for a pristine graphene sheet. The size of the graphene sheet for 

both models is 200nm × 200nm. It can be seen that the stress-strain curve for the CGMD is in 

good agreement with that from AAMD. Figure A-2 shows the comparison of the stress-strain 

curves between the CGMD and AAMD for the octagonal structure. The size of the graphene sheet 

for both models is 200nm × 200nm. It can be seen that both AAMD and CGMD simulations 

show similar patterns, namely J-shaped stress-strain curves. Moreover, the fracture stress predicted 

from CGMD simulations is very close to that from AAMD simulations. Figure A-3 shows the 

snapshots from both AAMD and CGMD simulations from the same time series. It can be seen that 

the conformational changes of the kirigami structure from CGMD simulations are very similar 

compared with those from AAMD simulations. The ligands are first rotated and aligned along the 

loading direction, consistent with the low stress feature of the first stage. Subsequently, the ligands 

are significantly stretched under the external loading direction, consistent with the high stress 

feature of the second stage. However, it could be seen that, in the first stage of the stress-strain 

curve, CGMD simulations slightly underestimate the overall stress of the simulations. In addition, 

the crack initiation estimated from CGMD simulations is slightly larger compared with the AAMD 



 23 

simulations. Those differences between AAMD and CGMD simulations of Octagon-shaped 

kirigami structures result from the accuracy loss associated with the coarse mapping of the CGMD 

model, in which one particle represents a cluster of atoms in a 2.5 nm × 2.5 nm sheet. Overall, 

the CGMD model adopted here is reliable and accurate for simulating mechanical responses of 2D 

kirigami structures. Finally, I performed uniaxial stretching of different material sheets to measure 

the performance of the different models. The simulation set-up applied in the aforementioned 

simulations is explained below. 

In order to take the measurement of the elastic and fracture properties of the model, I use 2D lattice 

material sheets with the size 200𝑛𝑚 × 200𝑛𝑚. Due to the changing of the model’s width, the 

number of the beads the system contained varied from 640 to 4480. I applied periodic boundary 

conditions in the loading direction while free boundary conditions are applied in the lateral 

directions. The system is minimized at the beginning and then equilibrated in the NPT ensemble 

at 𝑇 =  1 𝐾 and zero pressure for 5,000 time steps. After equilibration, the uniaxial tensile test is 

carried out by a strain-controlled method when strain rate is  107 s-1, namely enlarging the 

simulation box by 0.1 percent every 10000 timesteps and relaxing the model in between two 

adjacent box enlargement, at a strain rate of 107𝑠−1. The temperature is controlled at 1𝐾 in NVT 

ensemble during the uniaxial deformation, to allow for minimal contributions from thermal noise. 

For each case, five independent runs with different initial velocity profiles are performed to further 

reduce effects from thermal noise. Simulations with different numbers of unit cell tiles 

(1 × 1; 2 × 2; 3 × 3) are performed to test the effect of box size while corresponding results 

(details are given in supplementary material Figure A-4) indicates that the influence on stress-

strain curves is marginal. Therefore, for simplicity, 1 × 1 is used for simulations hereafter. My 

results are presented with the visualization package OVITO73. 
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Figure 2-3  (a) Snapshots of octagonal cell deformation. (b) Snapshots of sinusoidal cell 

deformation. (I chose four snapshots to show the deformation under tension:  the first one is before 

deformation, the second one is before the deformation hit the tensile strength point, the third one 

is around tensile strength point, and the last one is after the structure completely break. Snapshots 

are colored by atomic stress.) 

2.3. Results and discussion  

2.3.1. Cell structure effect 

2.3.1.1. Structure analysis 

There are two classes of the stress-strain relationships for the cells with an inner hole, and they are 

distinguished according to the degree of change in the slopes of the stress-strain curves. For further 

explanation, here I choose the stress-strain curve of the octagonal unit cell for illustration (Figure 

2-2a). For octagonal cells with a characteristic width between 4 𝑎0 and 18 𝑎0, the slopes of the 

stress-strain curves change during the stretching process. From 20 𝑎0 to 28 𝑎0, the slopes of stress-

strain curves barely change. The above transition from nonlinearity to linearity associated with the 
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width increase is due to the decreasing rotation ability of the structure components (Figure 2-3a). 

When the characteristic width is relatively small, the deformation of the model is mainly from the 

rotation of ligands with minor deformation of the material itself (Figure 3-3a), resulting in marginal 

stress increase, which can be termed as a free-stress stage. After the ligand aligns along the loading 

direction due to stretching, stress starts to increase dramatically due to the deformation of the 

material itself while the elastic modulus gradually becomes a constant. However, as the width of 

the model increases (Figure 3-3a), the ability of structural rotation is restricted as the structure 

becomes closer to a pristine sheet of material. Therefore, the 2D material itself is stretched at the 

very beginning, rather than undergoing structural changes, thus the free-stress stage shortens.  

 
Figure 2-4 (a)Snapshot of bent-cross cell deformation. (b) Snapshots of sinusoidal cell 

deformation. (c)Snapshot of star-shaped cell deformation.  (The snapshots are picked out in the 

same manner as described in Figure 2-3) 
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The slopes of the stress-strain curves of the cells without an inner hole, such as the sinusoidal and 

bent-cross unit cells, also show similar behavior to the cells discussed previously. Here I choose 

the stress-strain curve of the sinusoidal unit cell for illustration (Figure 2-2b). Since there is no 

hole in these cells (Figure 2-3b, Figure 2-4a and 2-4b), the rotation ability of the structural 

components is weaker than that observed in the structures with an inner hole, which makes the 

cells not as stretchable as the cells with an inner hole. It can be easily seen from their stress-strain 

curves (Figure 2-2), under the same width, the yield strain of the sinusoidal cell is smaller than the 

octagonal cell. Meanwhile, also due to the structural difference, the material itself is stretched at 

the very beginning with the no-hole cells (Figure 2-3b, Figure 2-4a and 2-4b), and so the free-

stress stage occurs over a much smaller range of strain than for the hole-in cells.  

Another interesting phenomenon is the transition of fracture patterns (Figure 2-3). For the cells 

with an inner hole, when the width is below 8 𝑎0, the model breaks abruptly after reaching the 

stress peak, indicating a brittle structural failure (Figure 2-3a). In contrast, when the width further 

increases, the model experiences a jagged stress-strain response after a dramatic stress decrease 

(Figure 2-2).  This fracture pattern change can be attributed to stress localization due to the increase 

in width. When the width is below 8 𝑎0, it can be seen that the entire cell is under a high-stress 

status before crack initiation. After crack starts to nuclearize in the bridges (Figure 2-3a), the bonds 

in that region are broken abruptly, resulting in a brittle failure. In comparison, when the width is 

larger than 8 𝑎0, the stress localizes at the inner edge of the hole right accompanied by crack 

initiation and propagation along the central line of the cell through cleaving bonds (Figure 2-3a), 

resulting in a ductile failure. Therefore, the jagged stress-strain response reflects bond breaking 

within the structure.  No-hole cells also display the jagged-like stress-strain responses due to the 

bond breaking of the structure.  But for this type of structure, the crack initiation of brittle failure 
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occurs at the same position with the crack initiation of ductile failure, appearing at a turning point 

of the structure (Figure 2-3b, Figure 2-4) where stress concentrates. 

In order to further study the specific fracture patterns of different structures, here I choose the 

medium-width model to compare their fracture patterns. For the hole-in structure, namely 

octagonal and star-shaped cells, the model breaks at the turning point of the inner hole (Figure 2-

3a and Figure 2-4c), where are the sharp corners located. Sharp corners would be stress 

concentration sites, with being possible candidates for crack nucleation and deteriorating the 

strength and toughness of the entire structure. As it can be seen from Figure 2-4c, the shapes of 

sharp corners are highly distorted due to mechanical extension. Specifically, it can be told from 

the snapshot when the strain is 0.39 that these sharp corners are in red, indicating high stress 

concentration. Consequently, the cracks nucleate in these sites, leading to final rupture for star-

shaped kirigami as shown in the snapshot when the strain is around 0.485 in Figure 2-4c. In Figure 

2-7a and 2-7b, it can be seen that the performance of star-shaped kirigami structures in strength 

and fracture energy is worse than octagon-shaped and bent-cross kirigami structures with less 

sharp corners. Overall, sharp corners of star-shaped kirigami would lower the mechanical 

performance due to stress concentration.  For the no-hole structures, bent-cross and sinusoidal cells, 

the models break at the turning point of the ligand (Figure 2-4a and Figure 2-3b). Although the 

fan-shaped cell has an inner hole, the hole is not large enough to support similar structural rotation 

observed in the octagonal and star-shaped cells. During the deformation, crack initiation actually 

occurs at the connection point between the central circle and the ligand. Therefore, it shows similar 

behaviors to no-hole cells (Figure 2-4b). Moreover, it can be also seen that, before the out-plane 

deformation reaches its peak (Supplementary material Figure A-7), the stress does not show a 

dramatic increase, which provides the existence of free-stress stages. Different cell shows varying 
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lengths of free-stress stages under the same characteristic width, but they all follow a similar 

inversely decreasing trend of the free-stress stage as width increases, due to the ability of the 

structure to hamper rotation. This rotation tunability opens a window to alter the influence of 

structure on each cell’s tensile behavior. 

2.3.1.2. Energy analysis 

To gain a deep understanding of the mechanical performance of 2D material-based cellular 

kirigami structures, the potential energy evolution of different types of interactions, such as bond, 

angle, and dihedral have been analyzed in this section.  Figure 2-5a shows the system energy 

contribution from angle bending (normalized by particle number) versus strain. It can be seen that 

in the first stage of deformation, the energy change has a minimal contribution from angle 

deformation. This stage coincides with the free-stress stage in the stress curves, further confirming 

that in the free-stress stage the deformation is mainly attributed to rigid body motion, rather than 

material deformation. Moreover, as the width decreases, the peak values of the curves increase, 

indicating an increased shear deformation of the material which is also in good agreement with the 

deformation pattern in Figure 2-3a. Figure 2-5b shows the normalized energy contribution from 

bond stretching versus strain. Interestingly, the peak value of bond energy undergoes a decrease 

followed by an increase as the width increases. When width increases from 4𝑎0  to 18𝑎0, the peak 

bond energy decreases due to decreased rotation ability of the ligands. As can be seen in Figure 2-

3a, right before fracture, all the ligands are fully stretched along the loading direction, enabling a 

larger fracture strain than the bending-dominated samples with larger ligand width. The small 

width characteristics render a low bending stiffness of the 2D cells in this study, leading to an 

increased out-of-plane deformation with the stress concentration within the material also being 

lower. Therefore, a relatively greater amount of energy comes from bond stretching. As width 
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increases, the bending stiffness of ligands increases, and the rotation ability decreases with the 

stress concentration being high. Therefore, when the crack initiates, cells with a thicker width 

achieve a lower average bond energy compared with models with thinner ligands width. However, 

when the width increases beyond 18 𝑎0, the average bond energy increases due to the increasing 

connectivity in materials. It can be seen in Figure 2-3a, the ligands barely rotate while the material 

is under a more uniform stress distribution with stress concentration around the hole compared 

with models with the width equal to 18 𝑎0 as shown in Figure 2-3b. Figure 2-5c shows the average 

dihedral energy change versus strain. It can be seen that, regardless of width change, the dihedral 

energy would increase to the same level. In addition, the dihedral energy will not increase 

dramatically until the structure approaches fracture. Overall, the dihedral energy contribution is 

two orders of magnitude smaller than the in-plane strain energy, i.e. bond and angle energy. Figure 

2-5d shows the total potential energy change versus strain. It can be seen that the average potential 

change peak undergoes a marginal change due to the competition between stretching and bending 

deformation. However, as the width decreases further, average potential energy increases 

dramatically as both bond and angle energy increase intensively. Figure 2-6 also shows the average 

strain energy of sinusoidal cell versus strain. It can be seen that, despite different geometrical 

designs, the maximum peak values for bond and angle energy for different widths are very close 

to each other, which indicate that the fracture of 2D materials based kirigami cell structures are 

ultimately controlled by materials. The comparison between potential energy changes of sinusoidal 

and octagonal cells show that the geometrical designs can make a difference for mechanical 

performance, especially for fracture strain.   
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Figure 2-5 Energy evolution of octagonal cell based on graphene. (a) Angle Energy (b) Bond 

Energy (c) Dihedral Energy (d) Summation of Potential Energy (Note that the energy changes here 

are all normalized by the number of particles). 

 

Figure 2-6 Energy evolution of sinusoidal cell based on graphene. (a) Angle Energy (b) Bond 

Energy (c) Dihedral Energy (d) Summation of Potential Energy (Note that the energy changes here 

are all normalized by the number of particles) 
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2.3.1.3. Property analyses 

Here, I analyzed their mechanical properties versus “density”, which is an indicator of porosity. 

For a 200nm × 200nm sheet, I define the number of particles without pattern cut as 𝑁𝑠𝑢𝑚, equal 

to 6400 in my case. For different cut patterns, I define the number of particles deleted from the 

pristine sheet as 𝑁𝑑𝑒𝑙. Similarly, I define the number of particles remaining as 𝑁𝑟𝑒𝑚 for different 

patterns as shown in Figure 2-1. The density of different kirigami structures, denoted as 𝜌, can be 

calculated with the expression below, 

𝜌 =
𝑁𝑟𝑒𝑚

𝑁𝑠𝑢𝑚
∗ 𝜌𝑚𝑎𝑡                                                                                             (2.9) 

where 𝜌𝑚𝑎𝑡 is the density of different 2D materials without any cut. It is straightforward to tell 

that, when the width of ligands increases, the density 𝜌 approaches to the material density  𝜌𝑚𝑎𝑡. 

The hole-in structures show a good performance on ductility, namely free-stress strain and yield 

strain due to the inner hole (Figure 2-7). In addition, the octagonal cell outperforms all other tested 

cells by the metrics of tensile strength and fracture energy due to its wider density range. The main 

structural difference between the star-shaped and octagonal cells is the shape of their inner hole. 

The octagonal cell has a convex hole while the star-shaped cell’s interior hole is concave. 

Therefore, the star-shaped cell shows the extraordinary performance on free-stress strain and yield 

strain due to the concave shape of the inner hole, which allows for greater deformation due to the 

structure change. However, the octagonal cell shows a greater change in fracture energy, while the 

fracture energy of the star-shaped cell barely changes as the density increases due to the structural 

difference between the hole of these two cells. Specifically, sharp corners of star-shaped cell inhibit 

the rotation of ligands and induce high stress localization, resulting in relatively poor ductility and 

low fracture energy.  
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For no-hole structures, the bent-cross one shows the weakest performance on tensile strength, 

while sinusoidal cell displays superior properties (Figure 2-7). This can be mainly attributed to the 

difference between their structures, with the bent-cross cell having sharp structural angles, 

allowing for higher stress concentration and thus earlier material failure. However, the bent-cross 

cell shows a greater free-stress strain region at small strain, allowing for improved performance 

for certain applications. Overall, the mechanical performance of the cells with an inner hole is 

superior in every aspect. Even though the fan-shaped cell shows similar behavior with no-hole 

structures, the tensile strength still slightly outperforms the other two cells due to the inner hole 

brings the fan shaped cell a better connection between the ligands (Figure 2-4b). However, the fan-

shaped cell shows the weakest performance on fracture energy, due to the weaker rotation ability 

and higher stress concentration factor. Specifically, the high stress concentration factor results 

from a mismatch between the loading axis and the direction axis of ligands.  
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Figure 2-7 Graphene-based mechanical properties changes of five structures (a) Tensile Strength 

(b) Fracture Energy (c) Free-stress Strain (d) Yield Strain. (a and b are semi-log plots.) 

With mechanical properties being fitted with analytical expressions, their performance of these 2D 

materials based kirigami cells can be compared with other porous materials, which can be 

described by polynomial scaling laws 74-78. For 3D porous materials, the order of polynomial 

scaling laws varies from 1 74 to 3 78 based on the deformation pattern. For a stretch-dominated 

structure, the ultimate strength scales linearly with density 74. However, for a bending-dominated 

structure, the mechanical performance would follow a polynomial scaling law with a higher order 

78. For tensile strength in Figure 2-7a, I use a fifth order polynomial function, the order of which 

is higher compared with previous studies. The high order of scaling laws can be attributed to the 

competing two deformation patterns, namely stretching and bending. For instance, octagonal cell 

with a characteristic width smaller than 18 𝑎0 follows a stretch-dominated deformation pattern as 
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shown in Figure 2-3a, resulting in a linear and moderate increase in ultimate strength. In contrast, 

as the width increases, bending starts to dominate while the ultimate strength increases nonlinearly 

and dramatically.   

 

Figure 2-8 Mechanical properties changes of octagonal cells based on five 2D materials. (a) 

Tensile Strength (b) Fracture Energy (c) Free-stress Strain (d) Yield Strain. (a and b are semi-log 

plots) 

2.3.2. Material effects 

Five different 2D materials are chosen to investigate the material effect on mechanical 

performance, namely graphene, borophene, black phosphorus, silicene, and MoS2(Figure 2-8). For 

the sake of simplicity without loss of generality, I choose the octagonal cell as a typical example 

to study them (details are given in supplementary material Figure A-6). Here I use exponential 

functions to fit the fracture energy, and polynomial function to fit the tensile strength. The free-
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stress strain and yield strain are fitted by linear function. Results indicate that although they all 

show similar behaviors, graphene outperforms the other 2D materials regarding tensile strength 

and fracture energy due to the outstanding mechanical properties of material itself. But for free-

stress strain and yield strain, the difference between materials shows limited effect on the results, 

demonstrating that the structural geometry is a dominating factor for these properties. Note that 

MoS2 shows a great span of density compared with the other materials due to its much higher 

density for pristine structures. Based on my calculation, the density for MoS2 is around 5.09 g/cm3, 

much higher than the other materials (borophene 2.38g/cm3, phosphorene 2.70 g/cm3, graphene 

2.27g/cm3, silicene 2.10 g/cm3). The cutting pattern and the width range of ligands are the same, 

however, the higher density of MoS2 enables a broader range of density for MoS2-based kirigami 

structures in Figure 2-8. Overall, the structure dominates the property trends, while the chosen 

materials determine the exact values.  

Ultimate strength and fracture toughness of the 2D materials based kirigami cells displayed here 

are exceptional compared with other materials in the literature 77.  The density of structures here 

ranges from ~400 to ~4000 kg/m3, falling in the range of polymers, ceramics and glasses 77. 

However, the ultimate strength varies from 0.1 to 10 GPa, which is among the top level of both 

synthetic and natural materials in this density range. The fracture energy, namely fracture 

toughness, is in the range of 10 to 1,000 𝑀𝐽/𝑚3, ranks in the top class of materials for this density 

range. For instance, a previous study has reported a porous material design made of silicon in the 

similar range, while the toughness is from 300 to 600 𝑀𝐽/𝑚3 75. In Figure A-8, the normalized 

mechanical properties have been plotted as a function of density. It can be seen that, for the 

normalized strength and fracture energy, the magnitudes are all below 1, meaning that the 

performance of 2D material kirigami pales in comparison to their base material. However, the 
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normalized yield strain for most kirigami structures is above 1, meaning that the kirigami structures 

outperform their base materials in deformability. The deterioration of strength and fracture energy 

for kirigami structures originates from the stress concentration at the sharp cuts as shown in Figure 

2-3 and Figure 2-4. However, the strengthening of yield strain for these kirigami structures can be 

attributed to the outstanding deformability of the ligands. Overall, the kirigami structures designed 

here shows great enhancement in terms of deformability. Moreover, as discussed before, the J-

shaped stress-strain responses under external forces as shown in Figure 2-2 are very similar to 

those of biomaterials, enabling them a good compatibility in medical applications. Overall, the 

material performance of the structures here are outstanding while the polynomial scaling law can 

provide guidelines for design of kirigami based on 2D materials. 

2.4. Conclusion 

In the present paper, the underlying research of enhancing the mechanical properties of 2D 

materials by using different kirigami structures, and the effects of structure and unit cell parameters 

have been investigated. With the developed CG model that can be readily extended to other 

materials, I also presented the relationship between mechanical performance with different 

materials. Results indicate that there are two stress-strain behavior patterns associated with density, 

J-shape non-linear and linear elasticity. The transition of those two stress-strain patterns results 

from the variance of rotation ability of ligands due to the variance of width. Moreover, results 

indicate that structures with the inner hole show a good performance on ductility, namely free-

stress strain and yield strain. The effect of material on mechanical performance have also been 

investigated, in which graphene, silicene, phosphorene, borophene, and molybdenum disulfide 

(MoS2) are chosen. Graphene outperforms the other 2D materials regarding tensile strength and 
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fracture energy due to the outstanding mechanical properties of material itself. Overall, research 

findings here deepen our understanding the relations between mechanical performance and 

structure pattern as well as component material properties for 2D material based cellular kirigami 

structures. Therefore, my results could provide useful guidelines for designing and fabricating 

metamaterials with exceptional mechanical performance. 
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CHAPTER3 DESIGN ARCHITECTURED GRAPHENE KIRIGAMI USING MACHINE 

LEARNING  

3.1 Introduction 

The rapid development of science and technology begets higher and higher requirements for the 

performance of materials, especially in aerospace instruments, precision medical equipment, high-

tech electronic products, and other fields which generally require materials to have good 

conductivity, light weight, and high strength performance simultaneously. The lack of a suitable 

material to meet multiple needs at the same time has always restricted the development of products 

in these high-tech fields. In 2004, physicists Andre Geim and Konstantin Novoselov79 of the 

University of Manchester in the United Kingdom successfully isolated graphene from graphite and 

verified that it has a variety of excellent performance properties through multiple studies. The 

emergence of this new material has shown its great potential in various fields as soon as it was 

discovered. This immediately attracted widespread attention in materials science, physics, and 

other fields, especially with the continuous deepening of its performance research. Although 

graphene has a variety of excellent properties, it is a brittle material, and its relatively small failure 

strain has greatly limited its application in elastic and flexible electronic devices and aspects. The 

failure strain obtained by numerical simulation is only about 0.2, and is even smaller when tested 

by experiment79. This limitation greatly hinders applications for graphene. Cornell University 

physicist Paul McEuen20 pointed out that ordinary paper cannot be stretched, but if you introduce 

some cuts in it, it can; his team introduced this concept, called “kirigami”, to graphene to allow for 

significant improvement in tensile tests. Graphene kirigami can be considered to open another door 
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for graphene applications. The Paul McEuen20 research group of Cornell University first 

successfully prepared monolayer graphene kirigami through experimental methods, and conducted 

tensile simulation tests on them, and demonstrated that graphene kirigami has strong deformability. 

Molecular dynamics simulations showed that the yield and fracture strain of monolayer two-

dimensional graphene kirigami can reach 3 times that of perfect graphene, which fully 

demonstrated the broad application prospects of graphene kirigami in flexible electronic devices 

and composite materials80. However, how to adjust the mechanical properties of graphene kirigami 

to meet work needs is still an open question. 

Architectured 2D kirigami structures show many unique mechanical properties, such as ultrahigh 

specific failure strain, tensile strength, and toughness, as well as a potential for a negative Poisson’s 

ratio29. Beyond that, these unique mechanical properties are governed by the structure, rather than 

material. Their independence to composition material brings tremendous potential towards 

application in flexible electronics, mechanically controllable thermal structures, and structurally 

tunable optical and phononic devices81. It is expected that the combination of reasonably designed 

architectured 2D kirigami structure using monolayer graphene sheets can not only improve the 

mechanical properties of graphene, but also allow them to be adjustable for different needs. 

However, most existing architectured structures, usually called mechanical metamaterials, are 

periodically arranged with a repeating unit cell. This type of arrangement design limits the 

diversity of the mechanical performance of the composed material. By increasing unit cell 

diversity and assembling heterogeneous architectured structure unit cells to a modal grid has made 

several mechanical metamaterials achieve programmable mechanical properties. This method 

allows the network connection of grid architectured structure to be modified by changing the 

arrangement order of the unit cells. However, the combination of a simple grid architectured 
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structure can be massive depends on how many structure unit cells are provided. Therefore, the 

simulation progress of exploring all the possibilities of these grid architectured structures is as 

good as impossible to fully complete due to computational resource limitations.  

Machine learning (ML) methods show huge potential to screen across a huge design space81. ML 

has been used to study and design materials with low thermal conductivity, such as porous 

graphene. ML has also been applied to design functional materials and structures, such as graphene 

kirigami with high yield strain81. Specifically, a backpropagation (BP) neural network is a multi-

layer feedforward network and its learning algorithm is an error back propagation algorithm. BP 

neural network is currently one of the most mature and widely used artificial neural network 

models. Because of its simple structure, strong operability, and good self-learning ability, it is 

widely used in automatic control, pattern recognition, image recognition, signal processing, 

function fitting, system simulation, and other disciplines and fields. BP neural network can learn 

and store a plethora of mapping relationships between input and output without revealing and 

describing a mathematical equation of the mapping relationship before learning. This advantage is 

more obvious when the input of the network is enormous number of different arrangements of the 

grid architectured structure, which does not translate well to traditional equation setups. 

Here, to thoroughly study how the arrangement of the grid architectured structure directs the 

mechanical properties of graphene kirigami molecular dynamics (MD) simulations, I use a BP 

neural network to approximate the tensile strength. To formulate this problem methodically, then 

setup the architectured graphene kirigami as a 3x3 grid sheet, I designed five different 4-node 

architectured structures to fit in the grid and perfectly connect to each other. The probability of 

occurrence for architectured structure unit cell in each grid region will be completely independent, 
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as shown schematically in Figure 3-1. I then applied the BP neural network for inverse design, 

where the goal is to maximize the tensile strength of the architectured graphene kirigami. By this 

inverse design method, my model is able to show the potential of finding the ideal solution by only 

screening over 2300 cases out of the full design space of 1,953,125. The findings can provide 

general guidelines to design an architectured graphene kirigami without any prior knowledge of 

the fundamental physics, which is of great importance when only experimental data are available, 

and an accurate physical model is unknown. 

3.2 Method and Validation 

3.2.1 Designed structures 

I introduce and set the focal investigation on five distinct four-node architectured structures with 

rationally designed architectures. From the geometric parameters shown in Figure 3-1, 𝑑 is the 

width of the structural ligands, which is fixed as 10 𝑎0 ; 𝐿 is the length of the bridges, which is 

fixed as 0.5 𝑎0 due to the limitation of the structural integrities. The base length unit termed 𝑎0 is 

equal to 2.5 nm. The size of these architectured structure unit cells are 200nm × 200nm. Then I 

randomly generate the 3x3 grid architectured graphene kirigami based on these five structures 

(Figure 3-1). Therefore, the final size of the models that I run by MD simulation is  

600nm × 600nm. All the models are designed using my in-house code written in MATLAB 

before being exported to LAMMPS for simulation (further details below).  
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Figure 3-1 Structure of input dataset. 

3.2.2 CGMD simulation 

Molecular dynamics uses force fields to calculate the potential energy of molecular systems. 

Different force fields use different potential energy functions. In terms of computing speed, the 

all-atom molecular simulation (AAMD) is much slower than the simplified coarse-grained 

molecular simulation (CGMD) due to the limitation of current computer performance. CGMD is 

a more simplified force field model. It considers a group of atoms as a unit, thereby greatly 

reducing the amount of calculations, so it is often used to process functional material systems. Due 

to the lack of details for molecular structure such as atoms and atomic bonds, the coarse-grained 

model has a different force field potential from the conventional atomistic molecular force field. 

Here, I develop a generic coarse-grained potential to simulate large-scale graphene. As opposed to 

common graphene coarse-grained models such as the Martini force field model which has 

hexagonal symmetry, my square coarse-grained lattice is a simple but generic model which can be 

tuned to well capture the mechanical anisotropy in not only graphene, but also other 2D materials. 
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The good transability of my coarse-grained model makes it easy to be used for similar research 

and further studies with other materials and structures. Specifically, I use a Morse potential for 

bonded interactions, a harmonic spring potential for 3-body (angle) interactions, a cosine potential 

for 4-body (dihedral) interactions, and a Lennard-Jones potential for non-bonded interaction. In 

total, I have 5 parameters (𝐷, 𝛼, 𝐾𝑎, 𝐾𝑑 , 𝜖)  that can be adjusted to make my CG model match the 

chosen mechanical properties of graphene, which are the in-plane Young’s modulus, the failure 

strain, and the tensile strength in the two in-plane different directions, armchair and zigzag. Detail 

can be found in the previous chapter. 

3.2.3 BP neural network 

The BP neural network is a multi-layer feedforward network trained by the backpropagation 

algorithm, referred to as the BP algorithm. It uses the steepest descent method to obtain 

information that continuously adjusts the weights and thresholds of each connection through 

backpropagation of the output error, and finally minimizes the mean square error of the neural 

network to meet the desired requirements. The BP neural network model is a three-layer network, 

and its topological structure can be divided into the input layer, output layer, and hidden layer. 

Each layer is composed of many simple neurons that can perform parallel operations. Since the 

BP neural network is a feed-forward network, it has the characteristics of a feed-forward network, 

which means all neurons between two adjacent layers are all connected to each other, but neurons 

in the same layer are not connected. 

The fundamental principle of the BP neural network is to pass an input vector through a series of 

transformations in the hidden layer, and then obtain an output vector, so as to get a mapping 

relationship between input data and output data82. The BP algorithm consists of two parts: forward 
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propagation and back propagation. The forward propagation of input information and the 

backward propagation of output errors constitute the information loop of the BP network. 

Specifically, in the forward propagation process, the input information is transmitted from the 

input layer to the output layer after being processed by the hidden layer unit82. The state of neurons 

in each layer only affects the state of neurons in the next layer. If the desired output cannot be 

obtained in the output layer, it will switch to back propagation, that is, return the error along the 

connection path, and modify the connection weight between the neurons in each layer to minimize 

the error82. Therefore, the BP network has a symmetric network structure, and each processing unit 

at the output basically has the same activation function. 

I used the BP neural network designed by TensorFlow in R. I use the mechanical property of each 

structure to code the arrangement of the grid architectured structure, which give me 9 features as 

predictor variables and using the tensile strength of the 3x3 grid architectured structures as the 

target variable. Specifically, these 9 features are the tensile strength of the single architectural 

structure in each cell (Figure 3-2). I applied four hidden layers with 40, 20, 10, and 5 neurons 

included for each of the layers, and the final output layer was used to evaluate the outcome, as 

shown in Figure 3-2. I added a rectified linear unit (ReLU) function as the activation function after 

each hidden layer. As a regression problem, the ReLU function will not appear at the final layer. I 

used 2,483 data sets in total for the learning process; 80% data was used for training and 20% for 

validation. I used mean square error as the loss function, which is shown below: 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑡

𝑖−𝑦𝑝
𝑖 )

2

𝑛𝑡

𝑛𝑡
𝑖=1                                                                                                                (3.1) 
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Here, 𝑛𝑡 is the number of training data, and 𝑦𝑡
𝑖 and 𝑦𝑝

𝑖  are the true mechanical properties obtained 

from previous discrete computational models and the predicted mechanical properties by the FNN 

model, respectively. By optimizing the number of layers and width of the layers, I minimized the 

root mean square error (RMSE) between the predictions and targets with the RMSprop optimizer, 

the math equations used in the RMSprop optimizer are show below: 

𝐸[𝑔2]𝑡 = 𝛽𝐸[𝑔2]𝑡−1 + (1 − 𝛽) (
𝛿𝐶

𝛿𝑤
)

2
                                                                                      (3.2) 

𝑤𝑡 = 𝑤𝑡−1 −
𝜂

√𝐸[𝑔2]𝑡

𝛿𝐶

𝛿𝑤
                                                                                                              (3.3) 

where 𝐸[𝑔2]𝑡 represents the moving average of squared gradients. 
𝛿𝐶

𝛿𝑤
 is the gradient of the cost 

function with respect to the weight. n is the learning rate83. 𝛽 is the moving average parameter. I 

retained the default values for these parameters at my model, where the learning rate n is 0.001, 

and 𝛽 𝑖𝑠 0.9, respectively.  

 

Figure 3-2 Overview of the method to train a grid architectured graphene kirigami using 

machine learning model. 
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3.3 Results 

3.3.1 Mechanical performance of grid architectured graphene kirigami  

In the current paper, I have proposed five cellular cutting different patterns for graphene kirigami 

as shown in Figure 3-1, namely octagon, fan, bent-cross, sinusoid, and star. Special combinations 

of cellular cutting patterns, namely those with homogeneous unit cell patterns for all 3 × 3 cells, 

are important benchmarks for understanding the structure-property relationship in graphene 

kirigami. Figure 3-3 shows the stress-strain curves of graphene kirigami with homogeneous cutting 

patterns. As it can be seen, graphene kirigami unit cell patterns are markedly different in terms of 

Young’s modulus, yield strain, and tensile strength.  Despite the significant differences in 

mechanical performance, all tested graphene kirigami shares the “J-shape” stress-strain responses 

under uniaxial tension as shown in Figure 3-3. The stress-strain responses can be roughly divided 

into two stages. In the first stage, the stress increases slowly with the increase of strain. During 

this stage, the deformation is mostly from rigid body motion of the ligands of the cutting patterns, 

which induces minor deformation of the material itself and thus achieves low stress. In the second 

stage, the stress increases intensively associated with the increase of strain. In this stage, the stress 

increases linearly with the strain while the deformation of the kirigami mainly comes from 

deformation of the material. Therefore, due to the linear elasticity of graphene, the graphene 

kirigami also shows linear elasticity in the second stage. At the end of the second stage, graphene 

kirigami experiences a huge stress drop due to tensile fracture. The ultimate tensile strength of 

“Octagon” is highest (4.5 𝐺𝑃𝑎) while that of “Bent-cross” is lowest (1.4 𝐺𝑃𝑎). The highest 

fracture strain is 0.45 (“Bent-cross”) while the lowest one is 0.18 (“Fan”). Interestingly, some 

patterns (“Fan”) are stiff, strong, and brittle, while some patterns (“Bent-cross”) are soft, weak, 

and ductile. Therefore, through combinations of different cutting patterns, it is possible to design 

graphene kirigami with tunable mechanical performance. 
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Figure 3-4 shows the snapshots of two grid graphene kirigami samples, “Octagon” and “Bent-

cross”, under uniaxial tension. As shown in Figure 3-3, the yield strain of “Octagon” is very close 

to that of “Bent-cross”, in the top tier of all the cutting patterns. However, the tensile strength of 

“Octagon” is much higher than that of “Bent-cross”. The above phenomena can be well explained 

by Figure 3-4. The good ability of rotation of the ligands in both “Octagon” and “Bent-cross” 

enables good ductility. It can be seen in Figure 3-4a that when the strain is 0.38 and 0.43, high 

stress indicated by the color red spreads throughout the model, meaning that the stress distribution 

is relatively uniform in “Octagon”. In contrast, for “Bent-cross”, only the ligands along the loading 

direction withstand high stress. Therefore, the percentage of materials used to resist high stress for 

“Bent-cross” is much lower than that of “Octagon”, resulting in the lower tensile strength.  

 

Figure 3-3 Stress-strain curve of a 3x3 homogeneous grid architectured graphene kirigami based 

on five different architectured structures. 
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Figure 3-4 (a) Snapshots of octagonal homogeneous grid architectured graphene kirigami under 

uniaxial tension. (b) Snapshots of bent-cross homogeneous grid architectured graphene kirigami 

under uniaxial tension. 

3.3.2 Structure-property relationship by machine learning 

In the section above, I have analyzed the stress-strain responses of graphene kirigami with 

homogeneous cutting patterns. To better understand structure-property relationship of graphene 

kirigami, heterogeneous cutting patterns are introduced in this section for graphene kirigami. 

Figure 3-5 shows stress-strain curves of graphene kirigami with heterogeneous cutting patterns 

during uniaxial tension. It can be seen that in Figure 3-5a, the stress-strain curve of “Mix 1” is very 

close to that of “Sinusoid” because “Sinusoid” patterns are prevalent (5 out of 9) in “Mix 1”. 

Interestingly, although patterns with high strength (“Octagon”) are included, “Mix 1” is slightly 
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weakened instead of enhanced in terms of strength when compared with “Sinusoid”. Note that, 

although the strength of “Octagon” is much higher than that of “Sinusoid”, the stiffness of 

“Octagon” is much lower than that of “Sinusoid”. Therefore, “Octagon” cannot enhance the 

strength because “Mix 1” experiences tensile before “Octagon” reaches its ultimate strength as 

shown in Figure 3-6a. Figure 3-5b shows the stress-strain curve of “Mix 2”, indicating the 

intermediate mechanical performance. Figure 3-6 shows the snapshots of “Mix 1” and “Mix 2” 

under uniaxial tension. Note that the tensile fracture of “Mix 1” initiates in the “Sinusoid” pattern 

while that of “Mix 2” initiates in the “Fan” pattern, indicating that the yield strain is mainly 

controlled by the one with lowest yield strain.  

Subsequently, I have conducted machine learning simulations to predict the structure-property 

relationship for graphene kirigami. Three thousand samples with different combinations of cutting 

patterns are simulated to determine their mechanical performance. An additional six thousand 

datasets are obtained through the geometrical symmetry of the sample. Figure 3-7 a-b shows the 

comparison between labels and predictions for tensile strength. The R2 values for “Train” and 

“Test” are 0.45 and 0.43, respectively. Figure 3-7(c-d) shows the loss and absolute error for the 

program versus number of epochs, in which both variables drops intensively at the beginning and 

reaches a plateau by the end. Therefore, the machine learning algorithm reaches a final answer for 

the problem. The low accuracy of the prediction may come from the incomplete information from 

the input. Only the tensile strength of the 3 × 3 cellular cutting patterns are given for predicting 

the ultimate strength of the kirigami. However, as discussed before, the tensile strength of graphene 

kirigami is not only related to the tensile strength of each cellular cutting patterns but also related 

to the evolving stiffness and strain of those patterns. Therefore, it is necessary to find a way to 
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include the evolving stiffness of cellular cutting patterns in the input to predict the overall tensile 

strength of graphene kirigami. 

 

Figure 3-5 (a) Stress-strain curve comparison between 3x3 homogeneous grid architectured 

graphene kirigami and heterogeneous grid architectured graphene kirigami sample 1. (b) Stress-

strain curve comparison between 3x3 homogeneous grid architectured graphene kirigami and 

heterogeneous grid architectured graphene kirigami sample 2. Dashed lines represent 

homogeneous grid graphene kirigami. Solid lines represent heterogeneous grid graphene kirigami. 
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Figure 3-6 (a) Snapshots of heterogeneous grid architectured graphene kirigami Mix 1 under 

uniaxial tension. (b) Snapshots of heterogeneous grid architectured graphene kirigami Mix 2 under 

uniaxial tension. 
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Figure 3-7 (a) Comparison of the training tensile strength predicted by ML and directly obtained 

from MD simulation. (b) Comparison of the test tensile strength predicted by ML and directly 

obtained from MD simulation. (c) The loss error (mean square error) for ML versus number of 

epochs. (d) The mean absolute error for ML versus number of epochs. 

3.4 Conclusions 

In this chapter, coarse-grained molecular dynamics simulations and BP neural network algorithms 

have been combined to explore the structure-property relationship of graphene kirigami. Five 

different cutting patterns have been introduced, namely octagon, fan-shape, sinusoid, bent-cross, 

and star-shape, while 3 × 3  cells have been adopted to construct computational models for 

graphene kirigami. First, five graphene kirigami samples with homogeneous cutting patterns are 

tested for their mechanical performance which can be good benchmarks to understand different 

mechanical characteristics of those cutting patterns. Results indicate that all those cutting patterns 

share “J-shape” stress-strain curves under uniaxial tension, which can be roughly divided into two 

stages. In the first stage, the stress increases slowly due to the rigid body motion of the ligands. In 

the second stage, the stress increases intensively and linearly with strain due to the deformation of 
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the material itself and the linear elasticity of the material. The mechanical performance of those 

cutting patterns varies in a wide range, with tensile strength from 1.4 𝐺𝑃𝑎 to 4.5 𝐺𝑃𝑎 and yield 

strain ranging from 0.18  to 0.48 . With those cutting patterns with different mechanical 

characteristics, graphene kirigami samples with heterogenous cutting patterns are tested for their 

mechanical performance. Results indicate that the mechanical performance, tensile strength, of 

graphene kirigami is not necessarily enhanced by introducing strong cutting patterns with high 

tensile strength. Instead, the tensile strength of graphene kirigami is a result of competition 

between tensile strength and evolving stiffness with strain of cellular cutting patterns. BP neural 

network algorithms have been utilized to predict the tensile strength of graphene kirigami with 

heterogeneous cutting patterns, with tensile strength of cellular patterns as input and tensile 

strength of graphene kirigami as output. However, the accuracy of the resultant predictions is not 

good, in which the R2 is around 0.4. The poor prediction of the BP neural network can be probably 

attributed to the incomplete information of the input. Including evolving stiffness of cellular 

cutting patterns could possibly lead to prediction of tensile strength with high precision. Overall, 

the results of this paper could help deepen the understanding of structure-property relationship of 

graphene kirigami, providing guidelines for designing and fabricating graphene kirigami with 

exceptional and tunable mechanical performance. 
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CHAPTER4 CONCLUSION AND FUTURE WORK 

Recent years have witnessed the explosive researches about metamaterials, such as 2D material 

kirigami, due to their exceptional mechanical performance such as negative Poisson’s ratio, 

negative stiffness, and outstanding stretchability. In addition to the material itself, the outstanding 

mechanical properties of 2D material kirigami can be attributed to the unique architected structures. 

Combining coarse-grained molecular dynamics simulations and machine learning algorithms, I 

have conducted systematic and comprehensive research to explore the structure-property 

relationship of graphene kirigami in this thesis. My results deepen the understanding of the 

relationship between mechanical performance and cutting patterns of graphene kirigami, providing 

useful guidelines for designing graphene kirigami with exceptional and tunable mechanical 

performance. 

In Chapter 2, my topic mainly focused on how to enhance the mechanical properties and unit cell 

parameters of 2D materials. I designed different kirigami structures to study the relationship 

between the geometry of kirigami structures and the mechanical properties of 2D materials, so as 

to achieve the purpose of enhancing the mechanical properties of 2D materials. I developed a 

highly transferable CG model to study other 2D materials (graphene, silicene, phosphorene, 

borophene, and molybdenum disulfide), which further investigated the mechanical properties of 

different 2D materials under same kirigami structures. The results show two stress-strain behavior 

patterns, namely J-shaped nonlinearity and linear elasticity, which are dominated by the density of 

the 2D material kirigami. Specifically, it shows a negative correlation between the width of the 

kirigami structure and the rotation ability of the ligand, which cause the two different stress-strain 
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patterns. Based on the results of the five representative kirigami structures that I designed, the 

ductility (free-stress strain and yield strain) of 2D materials are related to whether the kirigami 

structure has an inner hole. The kirigami structures with an inner hole show better ductility, notably, 

and the larger the relative area proportion of inner holes, the better the ductility of the 2D material. 

The investigation of the mechanical properties of different 2D materials under same kirigami 

structures show that graphene exhibits higher tensile strength and fracture energy than other 

materials due to its excellent mechanical properties. In general, my research has broadened the 

understanding of the relationship between the mechanical performance and structure pattern as 

well as component material properties for 2D material based cellular kirigami structures, which 

can provide useful guidance for designing and manufacture of metamaterials with excellent 

mechanical properties. 

In Chapter 3, I further revealed the relationship between the gird architectured kirigami and the 

mechanical property of 2D materials, I particularly picked graphene as the representative material 

due to its astonishing mechanical property and studied tensile strength as its representative 

mechanical property. I still focused on the five architectured kirigami structures that I proposed 

from Chapter 2 (Octagon, Sinusoid, Bent-cross, Star-shape, Fan-shape) to randomly generate 3 by 

3 grid graphene kirigami sheet, and obtained their tensile strength through coarse-grained 

molecular dynamics simulation. Then, I generated a dataset based on the results, which contain 9 

features as predictor variables, in preparation for training the machine learning model. Specifically, 

I first tested the mechanical properties of five architectured graphene kirigami structures with 

homogeneous kirigami sheets, which can be used as a good benchmark for understanding the 

different mechanical characteristics of heterogeneous gird architectured graphene kirigami. 

Results show that all those homogeneous grid graphene kirigami sheets share “J-shape” stress-
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strain curves under uniaxial tension as Chapter 2 observed. The stress increases slowly due to the 

rigid body motion of the ligands at the beginning, then the stress increases intensively and linearly 

with strain due to the deformation of the material itself and the linear elasticity of the material. The 

tensile strength of those homogeneous grid graphene kirigami sheets varies from 1.4 𝐺𝑃𝑎 to 4.5 

𝐺𝑃𝑎 and yield strain varies from 0.18 to 0.48. The wide range of their mechanical properties 

demonstrate the necessity of learning the heterogeneous gird architectured graphene kirigami, 

which is subsequently tested.  

Results also indicate that the tensile strength of graphene kirigami is a result of competition 

between tensile strength and evolving stiffness with strain of cellular cutting patterns, which means 

that the architectured structures with high tensile strength do not play the leading role in the tensile 

strength of the whole heterogeneous gird architectured graphene kirigami. I next performed a 

machine learning model through BP neural network algorithm to predict the tensile strength of 

heterogeneous gird architectured graphene kirigami. The dataset can be divided to two parts: one 

is the input, which contains tensile strength of cellular patterns as predictor, another part is the 

tensile strength of heterogeneous gird architectured graphene kirigami as output. However, due to 

the incomplete information of the input and the lack of the training data points, the accuracy of the 

resultant predictions still needs to be improved. Result shows the R2 increased up to 0.4 by 

improving the structural details of the input dataset, which provide a possible way to improve the 

precision of the prediction by evolving stiffness of cellular cutting pattern. Overall, the results of 

this paper could help expand the understanding of structure-property relationship of architectured 

graphene kirigami, providing guidelines for designing and predicting architectured graphene 

kirigami. 

With respect to future research, the following hypotheses will be tested: 
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Hypothesis #1: Compared with back propagation neural networks, convolution neural networks 

are a robust and accurate tool to predict the relationship between cutting patterns and mechanical 

performance of 2D material kirigami. 

Hypothesis #2: Genetic algorithms can be combined with machine learning algorithms to optimize 

the cutting patterns of graphene kirigami to achieve exceptional mechanical performance. 

To test those two hypotheses, convolutional neural network algorithms will be adopted to predict 

the mechanical performance of graphene kirigami based on initial architected structures of 

graphene kirigami. Binary pictures of graphene kirigami will be used as input while the mechanical 

performance of graphene kirigami will be used as output. Datasets above will be used to train the 

convolutional neural network to obtain the structure-property relationship with high precision for 

graphene kirigami. Moreover, combined with genetic algorithms, convolutional neural network 

algorithms will be further utilized to optimize cutting patterns of graphene kirigami to achieve 

outstanding mechanical performance. The genetic algorithms are a stochastic search-based 

metaheuristic method for searching optimal solution by mimicking the processing of biological 

reproduction and the theory of evolution. Genetic algorithms can identify the optimal design for 

tessellating materials with a small amount of sampling size by using fitness ranking and diversity. 

The method proposed here can also easily be extended to study larger systems or a hierarchical 

structural material system. 
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APPENDIX A 

Supplemental Materials for Chapter 2 

MECHANICS OF 2D MATERIALS BASED CELLULAR KIRIGAMI STRUCTURES: A 

COMPUTATIONAL STUDY1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Shaoheng Li*, Ning Liu, Matthew Becton, Nicholas Winter, Ramana M. Pidaparti, Xianqiao Wang, 2020, 

“Mechanics of 2D materials based cellular kirigami structures: A computational study”, JOM. Reprinted 

here with permission of publisher.   
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Figure A-1 Comparison of stress-strain responses of a graphene sheet from all-atom molecular 

dynamics (AAMD) simulations and coarse-grained molecular dynamics (CGMD) simulations. 

 

 
Figure A-2 Comparison of stress-strain responses of graphene-based octagonal cell deformation 

from all-atom molecular dynamics (AAMD) simulations and coarse-grained molecular dynamics 

(CGMD) simulations. 
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Figure A-3 (a)Snapshots of graphene-based AAMD octagonal cell deformation. (b)Snapshots of 

graphene-based CGMD graphene based octagonal cell deformation. 
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Figure A-4 Stress-strain curve of different numbers of octagonal unit cell tiles (1×1; 2×2; 3×3). 
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Figure A-5 Stress-strain curve of bent-cross, fan, and star patterns. 
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Figure A-6 Stress-strain curve of octagonal cells made of four different materials, namely 

Borophene, BP, MoS2, and Silicene. 
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Figure A-7 (a)Snapshot of octagonal cell out-of-plane deformation. (b)Snapshot of bent-cross cell 

out-of-plane deformation. (c)Snapshot of fan cell out-of-plane deformation. (d)Snapshot of star 

cell out-of-plane deformation. (e)Snapshot of sinusoidal cell out-of-plane deformation. (The 

snapshots are picked out in the same manner as described in Figure 2-3) 
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Figure A-8 The normalized mechanical properties as a function of density: (a) normalized tensile 

strength; (b) normalized fracture energy; (c) normalized yield strain. 
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