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 Microorganisms harness biochemical energy from their surroundings and shuttle electrons 

out of cells to external terminal electron acceptors. Extracellular electron transport (EET) can take 

place via diffusive exchange of a dissolved electron donor (e.g., H2, formate, acetate) between 

microbes (i.e. mediated electron transfer) and direct electron transfer, which requires physical 

contact between microbes and the terminal electron acceptors. There is increasing evidence for the 

important role of direct EET in many microbial communities; yet the exact biophysical 

mechanisms remain not fully resolved. A primary goal of this dissertation is to investigate the 

mechanisms underlying EET in the process of anaerobic oxidation of methane as well as anode 

respiration carried out by Geobacter sulfurreducens biofilms. In light of high-resolution metabolic 

activity acquired using FISH and nanoSIMS, in this thesis I have developed reactive transport 

models that provide mechanistic understanding of the EET process that can be adapted to a broader 

microbial community. 
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CHAPTER 1 

INTRODUCTION 

Overview 

“Life is nothing but an electron looking for a place to rest,” said Albert Szent-Györgyi 

(Nobel Prize Laureate in Physiology or Medicine, 1937) (1). Although I would prefer using 

biology than life, electrons are produced and moved from place to place, and molecule to molecule, 

in all biological processes, from unicellular to intelligent life. Indeed, electrons are the essence of 

respiration - a process in which life forms pick up substrates, organic or inorganic, from the 

environment, and oxidize these substrates via redox reactions, aerobically or anaerobically, to 

acquire energy, maintain metabolic functions, generate biomass and eventually reproduce. These 

substrates are also referred to electron donors, ranging from most organic molecules such as 

methane and glucose to many inorganic matters such as hydrogen and ammonia. The redox 

potential -  a measure of the tendency to gain or lose electrons -  is often determining which 

chemicals a cell can use as electron acceptor to oxidize substrates in a redox reaction. That being 

said, energy generated from the redox reactions must be sufficient to at least create an 

electrochemical proton gradient (ΔpH) across a membrane that can drive the synthesis of 

adenosine triphosphate (ATP) to maintain cell metabolism (2). Humans and many other life forms, 

for example, use molecular oxygen as electron acceptors and oxidize glucose in form of aerobic 
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respiration, whereas many microorganisms must rely on other electron acceptors such as sulfate 

in the absence of oxygen. 

 However, resources in natural environments can be limited, including electron acceptors 

in anoxic environments. In a scenario of extracellular soluble electron acceptors are limited or even 

inaccessible to cells, electrons must be moved outside of cells in searching for terminal electron 

acceptors. Therefore, extracellular electron transfer (EET) may have acted as one of the most 

important players to carry out cell functions in early life forms emerged (3, 4). In this process, 

electrons are moved outside of cells in order to respire extracellular electron acceptors such as 

solid mineral oxides that are spatially distant (5-7), or alternatively supply electrons to its partners 

in multispecies community (7-9). The emergence of such EET strategies opens up vast 

opportunities for microbes to utilize extracellular electron acceptors and enable the formation of a 

spatially structured multicellular community sharing electron sources (10). The prevalence of EET 

via mobile redox shuttles has been recognized in a wide variety of environments ranging from 

deep-sea sediments and groundwater (11, 12) to anaerobic gut (13). More recent studies suggest 

that direct EET (as opposed to diffusive exchange) between the same or different microbial species 

takes place in a diverse group of microbes, including methanogens (14, 15), acetogens (16), 

anaerobically methane oxidizing consortia (17-19) and electroactive biofilms (20-25). Such direct 

EET overcomes limitations inherent in the diffusive exchange of electron carrying molecules that 

lead to the build-up of reaction products making the reaction energetically unfavorable, and the 

subsequent shut-down of metabolism (19, 26). Consequently, large microbial communities are 

able to form even under circumstances in which electron acceptors are found only at distances too 

large for efficient delivery by chemical diffusion. As a result, EET is increasingly being recognized 

as a critical step in a wide range of microbially-mediated processes in environmental and 
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geological settings (27), as well as in the performance of engineered electrochemical systems such 

as microbial fuel cells (28).  

History of EET Research 

Early discovery of chemicals that are involved in the EET can be traced back to 1930s-

1960s when rumen fermentation was extensively studied. Early studies on gas production by 

ruminants showed that there was a very low concentrations of hydrogen being observed produced, 

along with considerable amount of methane (29-31), suggesting hydrogen served as intermediate 

and important precursor of methane in the rumen (32, 33). Later investigations revealed a new 

concept of interspecies hydrogen transport, in which hydrogen was produced by fermenters (e.g. 

Rxn 1.1) and directly transferred to methanogens (Rxn 1.2) (34).  

glucose + 4 ADP + 4 Pi → 4 H2 + 2 acetate + 2 CO2 + 4 ATP    Rxn 1.1 

CO2 + 4H2 → CH4 + 2H2O        Rxn 1.2 

The redox coupling between the electron donor, electron shuttle and extracellular electron 

acceptor can be generalized as  

EDred + Box → EDox + Bred        Rxn 1.3 

EEAox + Bred → EEAred + Box        Rxn 1.4 

where EDred and EDox are reduced and oxidized electron donors (e.g. acetate/CO2 in Table 1.1), 

Bred and Box are reduced and oxidized electron shuttles (e.g. FMNH2/FMN in Table 1.1), and EEAox 

and EEAred are oxidized and reduced extracellular electron acceptors (e.g. Fe3+/Fe2+ in Table 1.1). 

Some other redox chemicals may also be involved in Rxn 1.3 and 1.4, for instance, NAD+/NADH, 

GSSG/GSH and membrane bound cytochromes (e.g. Cyt cox/Cyt cred in Table 1.1). Altogether, the 

complete reaction between electron donors and extracellular electron acceptors involves a series 

of redox reactions intracellularly and extracellularly.  
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Such a mechanism is referred to as mediated interspecies electron transfer (MIET), one of 

the EET pathways (Fig. 1.1A). Besides hydrogen, many small reduced molecules, including 

formate (35), acetate (36) and methyl compounds (37) have also been shown to be as intermediates 

shuttling electrons to methanogens in ruminants. Similar electron shuttling pathways were also 

found in methanogenic syntrophic microbial communities isolated from sewage sludge, freshwater 

and marine sediments (38). 

 

Fig. 1.1 Schematic representation of three types of extracellular electron transfer (EET). A. 

mediated EET. (B) direct EET: a. close contact, b. distant contact. 

 

In addition, studies on azo dye biodegradation were first to show flavin could act as 

extracellular electron shuttle (39, 40). In 1967, Roxon and coworkers (39) showed that soluble 

flavin were essential for reducing azo food coloring, tartrazine, in whole-cell suspensions of 

Proteus vulgaris. They isolated the cell-free extracts and demonstrated extracellular soluble flavin 

was nearly 60% of the total flavins in P. vulgaris that accounted for tartrazine reduction. In 1971, 

Gingell and Walker (40) further examined the role of soluble flavin in the reducing Red 2G in 

Streptococcus faecalis, and suggested that soluble flavin can act as an electron shuttle between the 

dye and a reducing enzyme produced by bacteria. A series of experimental exploration on soluble 

flavins further led to the proposed mechanism that extracellular electron shuttle mediates electron 
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transfer between microorganism and extracellular electron acceptors such as azo dyes in those 

studies (39-41). 

The study of extracellular electron shuttling was fueled by the discovery of Geobacter and 

Shewanella species. In 1987, it was reported that the bacterium Geobacter metallireducens can 

reduce ferric oxide extracellularly in anaerobic sediments (42). Later in 1994, G. sulfurreducens, 

a close relative of G. metallireducens, was isolated and shown to be able to reduce Fe(III) (43). In 

1988, it was reported that Alteromonas putrefaciens (Shewanella putrefaciens) was able to use 

minerals such as manganese and iron oxides as terminal electron acceptors (44). Initially, it was 

generally thought that these metal-respiring microorganisms must establish direct contact with the 

insoluble minerals (44-46) (Fig. 1.1B.a). Though it was also demonstrated that soluble chelated 

metal oxides (47, 48) and naturally occurring humic substances can act as electron shuttles (49, 

50) to facilitate metal reduction, it was not clear whether metal reduction can be realized via mobile 

electron shuttle produced by those bacteria. In 2000, Newman and Kolter (51) were the first to 

show that S. putrefaciens can produce menaquinone-related redox-active small molecules as 

extracellular electron shuttle to reduce AQDS, a humic substance analogue. Later in 2002, Nevin 

and Lovley (52) reported that S. alga strain BrY released some chemical(s) as electron shuttle that 

promoted electron transfer to iron oxides. Many new evidences have shown that Shewanella 

species can secrete flavin (53, 54) and ACNQ (2-amino-3-carboxyl-1,4-napthoquinone) (55) 

molecules as extracellular electron shuttles to extracellular electron acceptors. It was not until 2005 

that a completely new concept of direct EET via conductive pili was revealed in Fe(III) oxide 

reducing G. sulfurreducens (56) (Fig. 1.1B.b). Later, more biogenic conductive structures were 

also found in methanogens (14, 15), acetogens (16), anaerobically methane oxidizing consortia 
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(17-19) and electroactive biofilms (20-25), suggesting the potential ecological and physiological 

role of direct EET in nature.  

Newer data shows that microbial communities have developed the capability to harness 

energy from environment, in which mediated- and direct- EET may coexist (57). In a G. 

metallireducens and G. sulfurreducens coculture, riboflavin was secreted to 1) establish the 

syntrophic growth between Geobacter species prior to the formation of any direct conductive 

connections, and 2) provide additional EET alongside the DIET, though only at a minor fraction 

(57). Model simulation from Renslow and coworkers showed that dual EET pathways in S. 

oneidensis biofilms may have a metabolic advantage over biofilms that can use only a single 

mechanism (58). 

Current Knowledge on Mechanisms of EET 

From a thermodynamic point of view, the removal of product from electron donor 

oxidation must be fast enough to counter its accumulation. In an environmental setting without 

advection flow, diffusion is the dominant force for the removal of metabolite, and the distribution 

of  a metabolite (Bred) can be described by: 

!"#$%
!&

= ()*+,., + ∇ ∙ (2∇3)45)       Eq. (1.1) 

where reaction rate Rrxn1.1 is a function of reaction kinetics Fk and thermodynamics FT, 

()*+,., = 7879,         Eq. (1.2) 

In such a rate expression, Fk may, for example, be represented as product of a cell-specific rate 

constant k, the cell density B (cells per volume), and the abundance of substrate S using a Monod 

expression with half-saturation constant :;< :   

78 = =3 <

>?
@ A<

          Eq. (1.3) 
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Following Jin and Bethke (59, 60) FT may be expressed as a function of Gibbs free energy 

∆Grxn1.1 from reaction Rxn1.1, 

79 = max	(0, 1 − J
K
L∆N#OPQ.QL∆NRST

UVWXYS )       Eq. (1.4) 

where χ is the number of ATP synthesized per reaction, ∆GATP represents a minimum energy 

required for ATP synthesis. ∆Grxn1.1 is calculated as 

∆Z)*+,., = ∆Z)*+,.,
° + (\]^_`ab)*+,.,      Eq. (1.5) 

whereas Qrxn1.1 is the reaction quotient of Rxn 1.3 

b)*+,., =
]c#$%

d]efgO
h

]cgO
i]ef#$%

j        Eq. (1.6) 

where aBred, aEDox, aBox, aEDred are activity of each chemical, α, β, γ, δ are stoichiometric coefficient 

of each chemical and are set to 1 in Rxn 1.3 for demonstration purpose.  

Thermodynamic factor FT (0£FT£1) is an index that reflects that ∆Grxn1.1 must be 

sufficiently negative to counter the minimum energy requirement for cell metabolism ∆GATP. In 

other words, metabolite products must be consumed at a certain rate in order to keep the microbial 

metabolism thermodynamically favorable. Otherwise, a drastically declining metabolic activity 

may occur as the distance from the external electron acceptors increases. 
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Table 1.1 Reduction potential (E°¢) of common redox couples under standard conditions (pH = 7, 

T = 25 °C) (61-64) 

Redox pairs Half reaction E°¢ (mV) 
O2/H2O O2 + 4e- + 4H+ à 2H2O +820 

Fe3+/Fe2+ Fe3+ + e- à Fe2+ +771 

NO3
-/N2 NO3

- + 6e- + 6H+ à 0.5N2 + 3H2O +750 

MnO2/Mn2+ MnO2 + 2e- + 4H+ à /Mn2+ + 2H2O +600 

NO3
-/NO2

- NO3
- + 2e- + 2H+ à NO2

- + H2O +420 

NO3
-/NH4

- NO3
- + 6e- + 8H+ à NH4

- + H2O +360 

Cyt aox/Cyt ared Cyt aox+ e- à Cyt ared +290 

Cyt cox/Cyt cred Cyt cox+ e- à Cyt cred +250 

CH3OH/CH4 CH3OH + 2 + + 2e- à CH4 + H2O +170 

Cyt box/Cyt bred Cyt box+ e- à Cyt bred +80 

ubiquinol/ubiquinone ubiquinone + 2e- + 2H+ à ubiquinol +40 

fumarate/succinate fumarate + 2e- + 2H+ à succinate +30 

FAD/FADH2 FAD + 2e- + 2H+ à FADH2 +30 

H+/H2 (pH = 0) 2H+ + 2e- à H2O 0 

pyruvate/lactate pyruvate + 2e- + 2H+ à lactate -190 

acetaldehyde/ethanol acetaldehyde + 2 H+ + 2 e- à ethanol -197 

SO4
2-/HS- SO4

2- + 8e- + 9H+ à HS-
 + 4H2O -220 

GSSG/GSH GSSG + 2e- + 2H+ à 2GSH -240 

CO2/CH4 CO2 + 8e- + 8H+ à CH4 + 2H2O -240 

CO2/acetate 2CO2 + 8e- + 8H+ à acetate + 2H2O -290 

FMN/FMNH2 FMN + 2e- + 2H+ à FMNH2 -300 

NAD+/NADH NAD+ + 2e- + H+ à NADH -320 

NADP+/NADPH NADP+ + 2e- + H+ à NADPH -320 

Cystine/Cysteine Cystine + 2H+ +2e- à 2Cysteine -340 

H+/H2 (pH = 7) 2H+ + 2e- à H2O -420 
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To illustrate the potential buildup of reaction products in a diffusion dominated 

environment, we consider a simple geometry of two concentric spheres occupied by two distinct 

interacting groups of microorganisms. If the microbes inhabiting the volume represented by the 

inner sphere produce a metabolic intermediate at a constant rate and those occupying the 

surrounding sphere consume that intermediate at a constant rate, then the concentration dynamics 

are given by  

!k

!&
= l

)m
!

!)
nop !k

!)
q − r         Eq. (1.5) 

where C is the concentration of the intermediate, r is the radial distance, D is the diffusivity of the 

intermediate, and γ is the consumption rate of the intermediate. Solving for the steady state 

concentration of C, with a no-flux boundary condition at the outer edge of the larger sphere,  

!k

!)
|)t)gu = 0, and a constant value of Cin at the surface of the inner sphere gives 

v = 	vw+ +
x(p)yP)guzK){)yPzAp)guz|A)yP)z)

}l)yP)
      Eq. (1.6) 

where rin and rou are the inner and outer sphere radii respectively, and Cin is the concentration at 

the surface of the inner sphere. The concentration profiles for a wide range of γ and Cin are shown 

in Fig 1.2, showing that the delivery of the intermediate to the microbial community in the outer 

domain can be limited for molecular diffusion only. Considering effective diffusion coefficient in 

direct EET is much faster than that of mediated EET (21, 65), it is clear that for a given 

concentration Cin and consumption rate γ, direct EET allows microbes to reach out to resources at 

a much greater distance than mediated EET.  
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Fig. 1.2 Substrate concentration across the outer sphere (C/Cin) via mediated and direct EET, at 

various substrate concentration (Cin) and consumption rate of the intermediate (γ). In situ 

intermediate diffusivity (D) was set to 2.4×10-10 m2 s-1 considering typical diffusion coefficient 

(Daq) for small chemicals at 10-9 m2 s-1, a reducing factor (feps) at 0.6 and tortuosity factor (θ2) at 

2.5, giving D = fepsDaq/θ2 (26). Effective direct transfer diffusivity was set to 1×10-7 m2 s-1. 

 

Although many details have been unveiled in the past decade, the study of direct EET is 

still in its infancy. There are currently two main hypotheses proposed as fundamental mechanisms 

underlying direct EET: 1). Metal-like conduction and 2). Electron hopping. Metal conduction is 

characterized by the presence of free-moving valence electrons. Similarly, valence electrons are 

required for a polymer to be conductive. This is usually realized by forming a conjugated system 

in which π-orbitals overlap with one another in a chain of molecules (66). Thus, the conjugated π-

orbitals generally lower the overall energy of the molecule by lowering the HOMO-LUMO energy 

gap, thus making electrons mobile when it is partially emptied (67). The first highly conductive 
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polymer was reported in the 1950s, in which charge transfer complexes between polycyclic 

aromatic compounds and halogens showed electrical conductivity as low as 0.01 W m (i.e. 100 S 

m-1) (68). A half century later, metal-like conduction mechanism was firstly proposed in biogenic 

pili from G. sulfurreducens (69). Measurements on individual pili showed high conductivities 

approximately 50 mS cm−1 at pH 7 (70), showing a temperature and pH dependent conductivity 

response (69, 70). It was suggested that aromatic amino acids in conductive pili play a key role for 

its metal-like conductivity (71). A later study showed that aromatic amino acids in conductive G. 

sulfurreducens pili were closely packed within 3-4 Å, which may permit overlapping π-orbitals of 

aromatic amino acids and charge delocalization, and thus metal-like conductivity (72).  

On the other hand, electron hopping is a phenomenon where electrons are localized on a 

chain of redox active molecules, and are transferred to terminal electron acceptors via multistep 

bucket-brigade manner between adjacent redox centers (73). There has been a long history of 

developing electron hopping theory in electroactive redox polymers or biomolecules with localized 

redox sites (74, 75), since its initial introduction in 1979 (76). Earlier work showed that redox 

proteins such as Ru-modified azurin and cytochromes can have long-range electron hopping over 

20 Å (77, 78). Such multistep hopping mechanism has also been observed between aromatic side 

chains of peptides (79, 80), and suggested to be responsible for conductive biofilm through 

filament associated redox proteins such as OmcS (21) or multiheme c-type cytochromes (81). 

Studies on the outer membrane multiheme cytochromes in Shewanella species showed that all 

haems in decaheme cytochrome MtrC were tightly packed at a separation less than 7 Å (82). A 

recent report showed that G. sulfurreducens conductive filaments were assembled by hexaheme 

cytochrome OmcS, with a tight packing distance at 3.5–6 Å over a micrometer length (83), 

corroborated with interatomic distances between adjacent porphyrins of the hexaheme cytochrome 
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at 4.1 Å or less (84). At such short distance, multistep electron hopping along the conductive 

filaments is possible. In addition, many studies suggest that the development of redox gradient as 

the redox potential drops with increasing distance from the anode surface drives electron hopping 

in electroactive biofilms (21, 85-87).  

However, there is an ongoing debate over the exact mechanism underlying direct EET, e.g. 

(21, 88, 89) and (90-92). One of the key points debated is the molecular composition and structural 

packing of conductive filaments at atom resolution (Å). Metal-like conduction relies on the 

functioning of biogenic structures like pili as intrinsic metallic conductor. Conductive pili are often 

found to be as thin as 3 nm in diameter (93), comprised mainly by pilin protein monomers (72) 

with a N-terminal α-helix combined with a short and flexible C-terminal region (94). This was 

recently challenged by a report suggesting OmcS filaments, instead of pili, were the primary 

conduits for long-range electron transport in G. sulfurreducens (83). This study pointed out that 

those conductive pili may in fact be OmcS filaments, coinciding with earlier work that showed 

that the c-type cytochrome OmcS was associated with conductive pili of G. sulfurreducens (95). 

While only non-filamentous PilA was found in the G. sulfurreducens (83), it was concluded that 

PilA was mainly involved producing OmcS filaments (96), which may explain correlation between 

PilA and biofilm conductivity (92). This was soon addressed by a Cryo-EM study of a 4 nm 

cytochrome-based G. sulfurreducens filament, showing that it indeed consisted of hexaheme 

cytochrome OmcS, but lacked evidence for the 3 nm diameter filaments which were presumably 

composed of PilA (84). Nonetheless, the aromatic amino acids of G. sulfurreducens PilA can still 

allow EET via multistep hopping mechanism (94), as long as the packing between adjacent redox 

active centers are less than 20 Å (77, 78). 
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 Aim and Outline of This Dissertation 

 In this dissertation, reactive transport modeling was used as a synthesizing tool for 

fundamental microbiological research (97). It provides a means to apply fundamental physics and 

chemistry to natural systems that couple microbially mediated processes. Our approach resolves 

spatial variabilities in cell metabolism at the sub-mm scale, including variability in rates of 

nitrogen incorporation in syntrophic consortia and electroactive biofilms. A primary goal of this 

dissertation is to assess the effect of different reaction mechanisms and electron transfer 

capabilities on the process of anaerobic methane oxidation in Chapters 2 and 3. Chapter 2 addresses 

the mechanism underlying electron transport within AOM consortia. The goal is to provide insight 

into microbial interactions and reactions using process-based modeling. Chapter 3 aims to provide 

knowledge that may unveil electron transport mechanism for large AOM consortia and the 

potential size constraints.  Chapter 4 builds on the developments in Chapter 2 and Chapter 3, and 

aims to address the electron transport process in a Geobacter biofilm. Chapter 5 is a method 

development study for image processing in microbiology to automate the data processing used in 

Chapters 2 and 3. 
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MODEL SIMULATIONS CONSTRAINED BY PROCESS RATES AND ACTIVITY 

PATTERNS 1 

 

 
1 He, X., Chadwick, G., Kempes, C., Shi, Y., McGlynn, S., Orphan, V. and Meile, C., 2019. Microbial interactions 

in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns. 

Environmental Microbiology, 21(2), pp.631-647. 

 

Reprinted here with permission of the publisher. 



 26 
 

  
  

Abstract 

Proposed syntrophic interactions between the archaeal and bacterial cells mediating 

anaerobic oxidation of methane coupled with sulfate reduction include electron transfer through 

(a) the exchange of H2 or small organic molecules between methane-oxidizing archaea and sulfate-

reducing bacteria, (b) the delivery of disulfide from methane-oxidizing archaea to bacteria for 

disproportionation, and (c) direct interspecies electron transfer. Each of these mechanisms was 

implemented in a reactive transport model. The simulated activities across different arrangements 

of archaeal and bacterial cells and aggregate sizes were compared to empirical data for AOM rates 

and intra-aggregate spatial patterns of cell-specific anabolic activity determined by FISH-

nanoSIMS. Simulation results showed that rates for chemical diffusion by mechanism (a) were 

limited by the build-up of metabolites, while mechanisms (b) and (c) yielded cell specific rates 

and archaeal activity distributions that were consistent with observations from single cell resolved 

FISH-nanoSIMS analyses. The novel integration of both intra-aggregate and environmental data 

provided powerful constraints on the model results, but the similarities in model outcomes for 

mechanisms (b) and (c) highlight the need for additional observational data (e.g. genomic or 

physiological) on electron transfer and metabolic functioning of these globally important 

methanotrophic consortia. 

Introduction 

Anaerobic oxidation of methane (AOM) describes the conversion of methane to CO2 in 

the absence of oxygen, and in marine sediments is primarily coupled to the reduction of sulfate, 

following the general reaction: 

v~� + ÄÅ�
pK → ~vÅÉ

K + ~ÄK + ~pÅ     Rxn. (2.1) 
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Hinrichs et al. (1999) first identified groups of uncultured archaea hypothesized to be 

involved in anaerobic oxidation of methane from deep-sea methane seeps using archaeal 16S 

rRNA diversity surveys and stable isotope analysis of archaeal lipids. Subsequently anaerobic 

methanotrophic archaea (ANME) were visualized in sediments and shown to form multi-celled 

aggregations with deltaproteobacteria bacteria, spanning from micron-scale aggregates to mats 

covering meter-scale reef-like structures (1-3). Since then, our understanding of the diversity of 

ANME archaea and bacteria involved in this process has expanded along with a growing list of 

terminal electron acceptors coupled to methane oxidation, including nitrate (4, 5); iron and 

manganese (6-8); and humic acid analogs (9). 

AOM in marine sediments is estimated to consume about 382 Tg yr-1 of methane, which is 

about three-quarters of the global net methane emission to the atmosphere (10). AOM thus acts as 

a significant sink for methane, a greenhouse gas with a warming potential 25 times that of CO2 

over 100 years (11). However, the details of the physiological mechanism underlying AOM are 

still not completely understood, and it is possible multiple mechanisms are used depending on the 

specific microorganisms and environments (e.g., (12-14)). For microbial consortia consisting of 

archaea and bacteria, classical syntrophic electron transfer through the exchange of solutes 

(mediated interspecies electron transfer, MIET) was proposed early on, where H2, formate, acetate, 

methanol and methylsulfides have been considered as intermediates that diffuse from methane-

oxidizing archaea to sulfate-reducing bacteria (SRB-MIET; (15-20)). Alternatively, Milucka et al. 

(21) proposed the exchange of disulfide, produced by ANME archaea coupling methane oxidation 

to sulfate reduction directly, and consumed by associated sulfur disproportionating bacteria (HS2
-

-MIET). More recently, direct interspecies electron transfer (DIET) has been hypothesized as a 

principal mechanism responsible for electron transfer in ANME-SRB consortia (22, 23). It has 
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been shown that methane-oxidation by ANME-2 archaea in deep-sea sediments can be 

catabolically and anabolically decoupled from sulfate-reduction and the activity of their 

deltaproteobacterial partners using soluble oxidants, including anthraquinone-2,6-disulfonate 

(AQDS), humic acids, and iron(III)-citrate (9), consistent with a syntrophic electron exchange 

between Archaea and Bacteria in the consortia (22, 23). Moreover, large S-layer associated multi-

heme cytochromes were observed to be encoded by ANME-2 genomes, and appear to be related 

to electron transfer in ANME-2/SRB consortia as observed by transmission electron microscopy 

(TEM) (22, 24). TEM on thin sections of thermophilic AOM consortia further reported pili-like 

structures with diameters of 10 nm and apparent lengths of 100 nm to >1000 nm, which connect 

SRB HotSeep-1 and ANME-1 cells (23), suggestive of DIET. 

In this study, we simulate the activity of AOM in microbial consortia for mediated 

interspecies electron transfer, in which the bacteria reduce sulfate, disproportionate disulfide, or 

participate in direct electron transfer (Fig. 1.1). Earlier efforts by McGlynn et al. (22) employed 

an idealized set of models to compare the physical and physiological processes and consequences 

of direct electron exchange to a diffusive intermediate for syntrophic aggregates. This generalized 

approach suggested that at measured AOM rates, chemical diffusivities can result in strong 

gradients of cellular activity in multi-celled syntrophic aggregates, which is inconsistent with 

single-cell activity measurements from stable-isotope incorporation studies using fluorescence in 

situ hybridization coupled with nanoscale secondary ion mass spectrometry (FISH-nanoSIMS; 

(22)). The importance of efficient exchange mechanisms between microbial partners can be 

illustrated by considering the spatial variation in substrate concentrations within an active 

microbial consortium. Consider an aggregate of several µm radius, in which sulfate-reducing 

bacteria surround an inner sphere of methane-oxidizing archaea. Assuming a constant, typical rate 
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of substrate consumption on the order of 5 fmol cell-1 d-1, and transport by chemical diffusion, 

substrate concentrations can vary substantially across the aggregate. In contrast, faster conductive 

transport yields almost uniform substrate levels, and presumably, microbial activity, across the 

aggregate (see Supporting Information Appendix A3). This simple calculation illustrates the 

fundamental difference between MIET and DIET mechanisms, but it lacks feedbacks of local 

environmental conditions (e.g. chemical concentrations, pH, etc.) on microbial activity.  

Recent numerical modeling has shown the feasibility of direct electron transfer in single-

cell pairs (25) and microbial biofilms (26, 27). However, modeling efforts have not yet been 

applied to characterize the direct extracellular electron transfer behavior between methane-

oxidizing ANME archaea and its sulfate-reducing bacterial partner with feedbacks of local 

environmental conditions. Here, we build on the previous modeling efforts by (18, 22, 28), to 

evaluate the various hypotheses regarding the potential mechanisms of AOM within these 

uncultured archaeal-bacterial consortia. We compare the modeled methane oxidation rates and 

activity distribution patterns to observational data from methane seeps at Hydrate Ridge off the 

coast of Oregon, USA, and explore the effect of consortia size, the intra-aggregate spatial 

distribution of archaeal and bacterial cells, and pH variations. This allows for direct comparison 

of the different mechanisms. By assessing the sensitivity of model outputs towards poorly 

constrained model parameters (e.g. rate constants), in conjunction with comparison to data at both 

the macro and the micro scales, it is further possible to constrain model parameters for use in larger 

scale models.  

Modeling Procedure 

The model domain included a single spherical microbial aggregate. Several different 

spatial distributions of archaea and bacteria within an aggregate were investigated (Fig. A1), 
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reflecting distribution patterns observed in nature (see e.g. Fig 1a in (22)). Cell volumes assigned 

to archaea and bacteria were based on observed cell numbers and sizes reported (1, 29, 30). Cell 

radii were set to 0.4 µm for both archaea and bacteria, with a 1 archaea : 1 bacteria cell ratio.  

Governing equations  

The governing equations simulating the reaction and transport processes are of the form: 

!Ñky
!&

= ÖÜá + ∇ ∙ (Öàá∇vw),        Eq. (2.1) 

where Ö is the porosity and vw is the concentration of chemical species i. àw represents the in situ 

diffusion coefficient, adjusted for tortuosity and EPS as in Orcutt and Meile (2008), and Üw is the 

net reaction rate. 

The rate of a metabolic reaction X is expressed as (31, 32) 

(â = 78
â79

â,          Eq. (2.2) 

where 78
â represents the reaction kinetics. It is implemented as the product of a cell-specific rate 

constant k, the cell density B (cells per volume), and the abundance of substrate S using a Monod 

expression with half-saturation constant :;< :   

78
â = =3 <

>?
@ A<

          Eq. (2.3) 

The thermodynamic factor (0 ≤ 79
â ≤ 1) reflects that there must be sufficient free energy 

available from the reactions to fuel ATP synthesis and cell maintenance, which is given by 

79
â = 	ãåç	(0, 1	 − 	Jçé	 è− êë	

íìWXY9
î),      Eq. (2.4) 

where χ, the number of ATP synthesized per reaction, is set to 1 (18), Rgas is the universal gas 

constant (8.314 J K−1 mol−1) and T is temperature (281.15 K). fX represents the thermodynamic 

driving force, relating the free energy yield of that reaction to the energy required to synthesize 

ATP (31, 32), which is expressed as:  
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ïâ 	= 	−∆Zâ 	−	∆Zñ9ó,        Eq. (2.5) 

where ∆GATP represents a minimum energy required for ATP synthesis. Tran and Unden (33) 

demonstrated ADP phosphorylation proceeded at energies as low as 42 kJ mol−1. With a H+/ATP 

ratio of 4 (Pänke and Rumberg 1997) and ΔGADP→ATP=+42 kJ mol−1, this results in ∆GATP on the 

order of 10 kJ mol-1 H+ ((35); note that this minimum energy requirement of 10 instead of 1 kJ 

mol-1 used in Orcutt and Meile (2008) leads to maximum rates slightly lower than the one reported 

there). 

The Gibbs free energy of the reaction is computed as:  

∆Zâ = ∆Zâ
ò + (\]^_	`abâ        Eq. (2.6) 

with the reaction quotient b = ∏åw
öõ

, where v are stoichiometric coefficients and a denote 

activities, computed as the product of concentrations and activity coefficients as given in Orcutt 

and Meile (2008). 

Acid-base reactions of the DIC and borate system were accounted for using the kinetic 

formalism given in (36). To account for protonation/deprotonation on cell surfaces, surface site 

concentrations of 1 μmol (mg dry cell)-1 carboxy and 1 μmol (mg dry cell)-1 amino groups were 

considered (37), with an aggregate biomass of 0.12 (mg dry cell) m-3 (1). Kinetic constants were 

taken from the literature (38, 39), consistent with equilibrium constants given in (40, 41) and 

microscopic reversibility. See Supporting Information Appendix A5 for a detailed description.  

Three different mechanisms for the interaction between archaea and bacteria were 

implemented (Fig. 2.1), as described below. In the absence of known intermediates, we considered 

acetate and H2 (not shown) as representative dissolved intermediates in MIET; for DIET, we 

assumed that electrons from the oxidation of methane are captured by an electron acceptor (D) 

from which they are transferred onto a redox-active molecule (reduced: MH; oxidized: M) located 
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on conductive pili, embedded in a matrix of extracellular polymeric substances (EPS), or 

transferred by dissolved electron carriers through diffusive transport processes. We did not 

differentiate between conductive pili or a conductive matrix in this study, but note that microbes 

have been shown to utilize pili-like structures (23, 42-44), extracellular biofilm matrix (45, 46), 

and multi-heme cytochromes (22) for extracellular electron transport. 

 

Fig. 2.1. Model representation with three distinct mechanisms (top: SRB-MIET, middle: HS2
--

MIET pathway, bottom: DIET) for the electron transport within archaeal-bacterial consortia. D 

and DH represent a redox couple (e.g., H+/H2) which might operate in addition to DIET, M a 

localized redox molecule, X an intermediate species (acetate, H2, etc.) Solid arrows denote 

reactions, dashed arrows diffusional transport.  

Mediated interspecies electron transfer 

Methane is oxidized by the archaea, with the product, here acetate (Ac), serving as an 

electron donor for sulfate reducing bacteria (for reactions with H2 as intermediate see Orcutt and 

Meile 2008): 

v~� + ~vÅÉ
K → v~ÉvÅÅK + ~pÅ        Rxn. (2.2) 

with DGo =  14.8 kJ (mol CH4)-1   

ÄÅ�
pK + v~ÉvÅÅK → 2~vÅÉ

K + ~ÄK      Rxn. (2.3) 
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with DGo = -47.7 kJ (mol SO4)-1  

The kinetic factors are (see justification for multiple limiting substrate Monod kinetics in 

(47-50)): 

78
ìp = =ñ3ñ

kùû
>?
ü†ûAkùû

         Eq. (2.7) 
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        Eq. (2.8) 

Disulfide pathway  

In the disulfide pathway, the archaea oxide methane and reduce sulfate, with disulfide 

being disproportionated by the bacteria (21):  

v~� +	
•

¶
ÄÅ�

pK + ß

¶
~A → ~vÅÉ

K + �

¶
~Äp

K + ,,

¶
~pÅ     Rxn. (2.4) 

with ∆G0 = -62.6 kJ mol-1 CH4       

	�
¶
~Äp

K + �

¶
~pÅ →

,

¶
ÄÅ�

pK + ~ÄK + ß

¶
~A      Rxn. (2.5) 

with ∆G0 = 52 kJ mol-1 HS2
-       

The kinetic factors are	 

78
ì� = =ñ3ñ

kùû
>?
ü†ûAkùû

<°û
mL

>?
@¢ûA<°û

mL       Eq. (2.9) 

78
ìß = ="3"~Äp

K          Eq. (2.10) 

Direct interspecies electron transfer 

The archaea are considered responsible for methane oxidation and the bacteria for the 

reduction of sulfate. Direct electron transfer involves the loading of electrons from a primary 

electron acceptor (D) onto a redox-active molecule (e.g. cytochromes; reduced form: MH; 

oxidized form: M) located on conductive pili or matrix, the transfer from the archaea to the bacteria, 

and the offloading and use of electrons in sulfate reduction. The D molecule and its reduced form 

DH act as an ‘electron pool’ to temporally store electrons produced from methane oxidation. 
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Electrons are then moved from the archaea to the bacteria either via a DIET mechanism, or may 

be transferred onto solutes that are subject to diffusive exchange.  

H2 was modeled as the electron pool molecule (DH) in our models. This is highly idealized; 

it was chosen to minimize the level of model complexity in the light of our lack of knowledge on 

the actual mechanism, and because H2, with its fast turnover time, has been shown to be an 

important indicator for the energetics of methane production and consumption reactions (16). Thus,  

v~� + 3~pÅ + ï©™ → ~vÅÉ
K + ~A + ïl~p + ï©™~    Rxn. (2.6) 

ÄÅ�
pK + ~A + ïl~p + ï©™~ → ï©™ + ~ÄK + 4~pÅ    Rxn. (2.7) 

where 8 electrons released in the oxidation of methane to CO2 result in fM Î [0,8] with fD = (8-

fM)/2, and the thermodynamic factor (Eq. 4) was calculated accordingly (see Supplementary 

Information Appendix A4). The default values for fM and fD in this study were 7.2 and 0.4, 

respectively. The values for fM and fD were varied in Fig. 5C for sensitivity analysis. The kinetic 

factors are	 

78
ì} = =ñ3ñ

kùû
>?
ü†ûAkùû

™        Eq. (2.11) 

78
ì¶ = ="3"

<°û
mL

>?
@¢ûA<°û

mL ™~         Eq. (2.12) 

There is an ongoing debate over whether electrons transfer along the conductive 

pili/biofilms proceeds via electron superexchange (i.e. electron hopping; (26, 51)) or metallic-like 

conductivity (52, 53). Electron superexchange recently proposed by Strycharz-Glaven et al. (2011) 

is based on the abundance and prevalent role of multiple redox molecules located on conductive 

cell outer membranes, pili, or extracellular matrices (51). We modeled the direct electron transport 

via conjugated redox-active molecules building on recent evidence of the presence and expression 

of large multi-heme cytochrome genes in ANME-1 (54, 55) and ANME-2 (22, 55) genomes. It is 

described as (26): 
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(̈*) = =ê™~(*)™(*A≠) − =Æ™(*)™~(*A≠)      Eq. (2.13) 

where J is the electron flux in mol e- m-2 s-1, x is the location along the filament, δ is the distance 

between two redox molecules and kf and kb are forward and backward rate constants.  

Gradient-driven DIET 

In the case of concentration gradient-driven electron transport, the forward and backward 

electron transport rate constants are equal, kf = kb = k0, and the flux can be simplified into a 

diffusion-like expression: 

¨Ø,(*) = −∞©ù(
!©ù

!*
),         Eq. (2.14) 

where DMH = k0Mtotδ is the effective diffusion coefficient (see Strycharz-Glaven et al. 2011 for a 

derivation), where Mtot is the total concentration (=M+MH). Thus, the governing equation for MH 

can be expressed as: 

Ö !©ù

!&
= 	∇ ∙ (Ö∞©ù∇™~) +	()       Eq. (2.15) 

where DMH is set to a constant value within the aggregate (see above) and 0 outside and () is the 

net production rate.  

Electric field-driven DIET 

In the presence of an electric field, forward and backward electron transport rate 

constants differ and the current conducted can be expressed as  

¨±≤ = =ò™ ∙ ™~≥J
P¥nµ∂qh

mVWXYS − J
LP¥nµ∂qh

mVWXYS ∑,      Eq. (2.16) 

where V is the voltage between the archaea and bacteria, W is their distance, n is the number of 

electrons produced and F is the Faraday constant 96485.33 C mol-1. For a small n∏
π
q ∫ value, the 

flux can be approximated as 
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¨±≤ = =ò™ ∙ ™~ ª
+≤n

µ
∂
q≠

ìWXY9
º = α !æ

!*
,       Eq. (2.17) 

where α = =ò™ ∙ ™~( +≤≠

ìWXY9
), and	!æ

!*
= 	 ∏

π
  is the potential gradient or electric field E.  

Thus, electron hopping on conductive pili or matrix driven by an electric field yields  

Ö !©ù

!&
= 	Ö∇ ∙ ¨±≤ + 	Ö()        Eq. (2.18) 

Assuming that the electric potential is set by the reaction central to cell metabolism, 

øñ = øñ¿ −
ìWXY9	¡+¬R

+≤
         Eq. (2.19) 

ø" = ø"¿ −
ìWXY9	¡+¬c

+≤
         Eq. (2.20) 

where øñ¿ and ø"¿ are the standard potential for AOM and SR, respectively, n = 8 for electrons 

transported per reaction (Reaction 1), QA and QB are the corresponding reaction quotiennts. Then, 

the electric field E is computed from the gradient in the electric potential ø in Eqs. 2.19 &2.20, 

which in turn then drives electron transport. Such electron hopping driving by an electric field  can 

be expressed as  

Ö !©ù

!&
= 		Ö() + ∇ ∙ (Öà√ƒ∇™~) + Ö∇ ∙ ¨±≤     Eq. (2.21) 

where Rr the net rate of production and consumption, MH is the extracellular concentration of 

reduced redox molecules. 

Model implementation 

AOM consortia were represented as three-dimensional spheres with aggregate radii up to 

25 µm, comparable to observations (1, 22, 29, 56-59). The domain radius, which includes the 

surroundings of the consortia, was set to 2.5-times of the aggregate radius. In the model, the 3D 

spherical setting was represented by a circle, imposing rotational symmetry at the vertical axis. The 

observed distribution of archaea and bacteria in the aggregates varies from highly clustered to 
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interspersed (22). We thus modeled three distinct arrangements – ‘spherical layers’, in which 

archaea are surrounded by bacteria, ‘half-half’, consisting half spheres of bacteria and archaea, and 

two ‘enclosed hemispheres’ of archaea surrounded by bacteria (Fig. A1). 

All reaction mechanisms contained CH4, HCO3
-, CO2(aq), CO3

2-, SO4
2-, HS-, H+ as state 

variables, with SRB-MIET and HS2
--MIET pathways both also including a dissolved intermediate, 

and DIET containing H2 and M and MH as described above. At the outer domain boundary, the 

state variables were set to either fixed concentrations reflecting the environmental conditions, or a 

no flux condition is imposed (Table 2.1; Supporting Information Appendix A6). Initial conditions 

were set to the environmental conditions, or for intermediates to a sufficiently low concentration 

to allow for methane oxidation to take place within the aggregates. We assume the same cell 

density and cell-specific volume in all models, with cell numbers varying with aggregate size. All 

simulations were run to steady state. 

Cell-specific rate constants (kA and kB) are unknown, and hence simulations were carried 

out in which they were varied across a wide range (see Table 2.1). Similarly, simulations for a 

range of initial ratios of electron donors and acceptors involved in DIET were carried out, varying 

the values of fM, fD. Additionally, simulations with Mtot = 0.01 and 1 mmol L-1 and conductivity (σ) 

ranging from 10-4 to 104 S m-1, encompassing the 0.1-10 S m-1 determined by (60, 61), were 

performed. The main model parameters are defined in Table A1 (Supplementary Information 

Appendix A5).  
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Table	2.1.	Parameterization	of	reactions	
Symbol	 Value	(unit)	 Description	

!"#$%,	!"&'%	 37	mM,	1mM	 Half	saturation	constant	for	methane	in	AOM	and	SRB,	respectively	(18)	

rANME,	rSRB	 0.4	μm,	0.4	μm	 Radius	of	archaea,	bacteria	cell,	respectively	(1,	29-30)	

(),	(*	
	

10-18	to	10-8		
	

Archaea	and	bacteria	rate	constants:	
mol	cell-1	d-1	for	kA,	kB	in	SRB-MIET	
mol	cell-1	d-1	for	kA	,	m3	cell-1	d-1	for	kB	in	HS2—MIET	
m3	cell-1	d-1	for	kA,	kB	in	DIET,	except	for	1st	order	reactions	with	respect	to	D,	DH	and	
M,	MH,	for	which	kB	is	in	m6	cell-1	mol-1	d-1,	and	for	no	dependency	on	M,	MH,	for	which	
kA	and	kB	are	in	mol	cell-1	d-1.	

DIET	parameters	

[Mtot]	 10-5	-	10-3	M		 Concentration	of	redox	molecules	(see	section	Electron	transport).	Baseline	value:	
10-5	M	

k0	 1-104	m4	mol-1	s-1		 Rate	constant	of	electron	transport	on	conductive	pili	or	matrix.	Baseline	value:	104	
m4	mol-1	s-1		

δ	 0.7	nm	 Redox	molecules	spacing	width	(53)	

σ	 10-4	-	104	S	m-1		 Conductivity	of	conductive	pili	or	matrix	(52).	Baseline	value:	0.1	S	m-1	

Parameters	are	set	to	baseline	values	if	not	noted	otherwise.			Temperature	T	is	set	to	281.15K;	Aqueous	diffusion	coefficient:	DCO2	=	

1.91×10-9	m2	s-1,	DH2	=	6.31×10-8	m2	s-1	(71),	DCO3	=	1.19×10-9	m2	s-1,	DH+	=	6×10-9	m2	s-1,	DOH	=	5.27×10-9	m2	s-1	(72);	DB(OH)4	=	9.56×10-10	m2	

s-1	(73).	Fixed	concentration	boundary	conditions	are	imposed	for	all	chemical	species	at	the	outer	domain	boundary	except	for	HS2-	for	

which	a	no	flux	condition	is	imposed	at	the	outer	domain	boundary,	and	for	MH,	R-COOH,	R-NH2,	for	which	no	flux	condition	is	imposed	

at	the	aggregate	surface.		Boundary	conditions	are	set	to:	10-4	M	HS-,	10-3	M	HCO3-,	pH=8.2,	10-2	M	SO42-,	10-3	M	CH4,	10-7	mM	acetate	

Models were implemented in COMSOL Multiphysics (COMSOL 5.3, COMSOL Inc., 

Burlington, MA, USA). Postprocessing was carried out in MATLAB 2016b (MathWorks, Natick, 

MA, USA).  

Statistical analysis 

Increasing aggregate size can lead to differences in the distribution of activity within 

aggregates. In order to investigate whether the spatial variability differs between mechanisms, 

slopes (and variance) of (relative) activity vs. aggregate radius were calculated for individual 

aggregates with identical parameterization. For the observational data, slope and variance were 

computed for 41 archaeal aggregates paired with the specific Desulfobacteraceae lineage SEEP-

SRB1a (AS) and 21 archaeal aggregates paired with non-SEEP-SRB1a Deltaproteobacteria (AD) 

first, and then combined to represent the variability of activity vs. size for the observational data 

(22). Finally, a Student's t-test was performed to assess if the slopes between the three model 

mechanisms and the observations differed significantly. Values of p < 0.05 and p < 0.01 were 
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considered significant and highly significant, respectively. The statistical analyses were performed 

using MATLAB 2016b (MathWorks, Natick, MA, USA).  

Results and Discussion 

In this section we present our model simulations and compare them to observations. First, 

we examine the feasibility of different syntrophic reaction pathways (SRB-MIET, HS2
--MIET, and 

DIET) by comparing modeled to measured AOM rates. Then, the possibility of these pathways is 

further assessed by comparing the spatial variation of archaeal and bacterial activity with FISH-

nanoSIMS data of single-cell anabolic activity, across a range of aggregate radii and spatial 

arrangements of archaeal and bacterial cells in a consortium. Finally, we explore the variables that 

control the AOM rate and activity patterns in DIET pathway.  

Comparison of model simulations to measured sediment AOM rates 

We first estimated cell-specific AOM rates from data from Hydrate Ridge to compare 

model results to environmentally relevant dynamics.  To that end, cell-specific rates were 

calculated from measured AOM rates per volume of sediment, combined with reported cell 

densities. We used Boetius et al. (2000) reported cell densities of 9×107 consortia per gram dry 

sediment (gds) with each consortium containing ≈ 100 ANME-2 cells, corresponding to 9×109 

ANME cells gds−1. The consortia number and aggregate radius sampled during a subsequent cruise 

to the same area in August 2000 at the crest of the southern Hydrate Ridge (44°34’ N, 125°09’ W; 

780 m water depth) yielded similar values (56, 57, 62, 63).  Nauhaus et al. (2005) reported an 

AOM rate of 2.5 ± 0.3 µmol gds1 d-1, derived from measured sulfide accumulation and assuming 

a 1:1 ratio of methane oxidized to sulfate reduced, which results in a cell-specific rate of 0.28±0.03 

fmol cell-1 d-1, consistent with the estimate of Niemann et al. (64), who also estimated cell-specific 

rates of 0.13-0.21 fmol cell-1 d-1 for the sediment samples from the Hydrate Ridge (ANME-2) based 
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on studies by (1, 65). The 0.34±0.15 µmol gds-1 d-1 rate of AOM reported by (66) from the RV 

Sonne cruise SO165-2 in 2002, translate into a cell-specific rate of 3.8±1.7×10-2 fmol cell-1 d-1. 

Treude et al. (2003) reported 1.27×108 aggregates cm–3 and a slurry density of 0.2 gds cm–3 from 

Hydrate Ridge, resulting in an aggregate density of 6.35×108 gds–1. Taking 100 ANME cells per 

aggregate with the reported AOM rate of 0.58 µmol gds-1 d-1, this gives a cell density of 6.35×1010 

cells gds−1 and cell-specific AOM rate of 0.01 fmol cell-1 d-1. Finally, for a cell density of 9×109 

ANME cells gds−1, the AOM rates reported in Nauhaus et al. (2002), Nauhaus et al. (2007) and 

Holler et al. (2009) correspond to 1.7, 25.6, and 33.3 fmol cell-1 d-1, respectively.  

These cell-specific AOM rates, on the order of 10-2 to 102 fmol cell-1 d-1, were compared 

to those computed for the three different syntrophic reaction pathways considered. Because several 

parameters in the kinetic model formulations – most importantly the rate constants for archaeal 

and bacterial substrate utilization, kA and kB, respectively – are a priori poorly constrained, they 

were varied over a wide range to assess the sensitivity of the model (note also that unless specified 

otherwise, cell-specific rates reported here are consortia averages, to allow for a meaningful 

comparison across consortia of different sizes). Results from our model simulations suggest that 

all three modeled pathways can reach the cell-specific rates that approach, match, or even exceed 

the empirical AOM rate measurements (Fig. A2). But modeled AOM rates were considerably 

lower for SRB-MIET models (with an upper limit on the order of 3×10-2 fmol cell-1 d-1). At some 

point (kA ≥ 10-15 mol cell-1 d-1), AOM rates no longer increased with increasing maximum cell-

specific rates (kA, kB) for SRB-MIET models. This is caused by thermodynamic constraints that 

arise when diffusion is too slow to prevent local accumulation of reaction products, consistent with 

our previous findings (18). The maximum AOM rate for SRB-MIET of ~10-2 fmol cell-1 d-1 is 

achieved for the smallest aggregate considered (r = 1.5 µm), consistent with diffusion limiting the 
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removal of reaction products. Simulations of SRB-MIET with parameterizations that yield high 

methane oxidation rates result in unevenly distributed activity, with only cells close to the archaeal-

bacterial border being active. For a given spatial arrangement of archaea and bacteria, smaller 

aggregates can sustain higher average cell-specific rates of AOM if the reaction mechanism relies 

on diffusional exchange of metabolites, due to the closer proximity of archaeal and bacterial cells 

and hence shorter distances between the location of production and consumption of chemical 

intermediate species.  This high rate could also be achieved by distributing partner organisms such 

that every cell is in close contact with at least on cell of another type. 

The thermodynamic constraints on archaeal cells were much more pronounced for the 

SRB-MIET than the disulfide pathway because the Gibbs free energy of reaction at standard state 

for the archaea is more negative for the latter mechanism (note the difference in ∆G0 of reaction 

2.2 (DGo = 14.8 kJ (mol CH4)-1) and reaction 2.4 (DGo = -62.6 kJ (mol CH4)-1). Additionally, the 

reaction quotient for the HS2
--MIET pathway varies with the power of 4/7 for the reduced product 

per methane oxidized, while it is linear for acetate or varies with the power of 4 for H2 in SRB-

MIET, leading to less build-up of HS2
- (see discussion in Supplementary Information Appendix 

A3). Our simulation results are consistent with the findings of Sørensen et al. (17), in which they 

suggested that intermediate species such as hydrogen, acetate, and methanol are excluded from the 

possible electron shuttles for AOM consortia due to thermodynamic and kinetic constraints.  Thus, 

in the absence of mechanisms that enhance exchange beyond molecular diffusion in a three-

dimensional arrangement of bacterial and archaeal cells, SRB-MIET does not seem to be able to 

support commonly observed rates of AOM.  
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Comparison of simulations to intra-aggregate activity observations 

Models that yield AOM rates between 0.01 and 100 fmol cell-1 d-1, broadly consistent with 

field observations, were investigated further. We compared the outcome of these simulations with 

measurements from McGlynn et al. (2015), where anabolic activity was calculated for single cells, 

extracted from co-registered fluorescence in situ hybridization and nanoscale secondary ion mass 

spectrometry (FISH–nanoSIMS) combined with 15N stable isotope probing. It was assumed that 

in the experiments of McGlynn et al. (2015) the spatial distribution of N assimilation is 

proportional to the metabolic rates, and that the 15N incorporation reflects the activity associated 

with methane oxidation. For a growth yield YCH4 of 0.6 g cell dry weight per mol CH4 oxidized 

(57), a specific growth rate of μcell = 0.0068 d−1 (22), and a biomass density r of 4.8×105 g cell dry 

weight m−3 (22), the catabolic AOM rate (=μcell*r/YCH4) is 1.5 fmol cell-1 d−1. This falls well within 

the range of cell-specific environmental AOM rates, suggesting that the patterns of activity that 

have been observed by McGlynn et al. (2015) are comparable to those occurring under 

environmentally relevant conditions.  

McGlynn et al. (2015) showed that the average cell-specific N uptake does not vary 

significantly with aggregate radius (n = 62; slope = 0.02 and 0.006 for archaeal and bacterial cells, 

respectively; see Supporting Information Appendix A7 Fig. A4 A&B). Simulations for the SRB-

MIET pathway yielded AOM rate distributions that differ from the observed 15N assimilation 

patterns. Average cell-specific AOM rates for the SRB-MIET pathway significantly decrease 

when increasing the aggregate radius (Fig. 2.2). When the archaea and bacteria are spatially 

separated within a consortium, AOM by the SRB-MIET pathway becomes energetically less 

favorable as the aggregate radius increases and diffusion of intermediate species (e.g., H2, acetate) 

becomes limiting. As a consequence, the concentration of the product of methane oxidation (e.g., 
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acetate or H2) builds up, ultimately making the reaction energetically less favorable. In contrast, 

the HS2
--MIET pathway mediated by a sulfate-reducing methanotrophic archaeon shows AOM 

rate distributions that are comparable with the observed 15N assimilation patterns. This difference 

between SRB-MIET and HS2
--MIET reflects that archaea are less thermodynamically challenged 

in the HS2
--MIET pathway. Similar to the model predictions for HS2

--MIET, AOM rate distribution 

patterns for the hypothesized DIET pathway are also consistent with the experimental nanoSIMS 

data from McGlynn et al. (2015). Even for very large AOM consortia with a radius of 25 μm, the 

average cell-specific AOM rates in the model are within a few percent of the rates for a small 

aggregates with a  radius of 1 μm. Both of these models differ substantially from the SRB-MIET 

model, where cell-specific AOM rates in  aggregates of 6 μm radius are only ~10% of those in 1.5 

μm sized aggregates (Fig. 2.2).  

 

Fig. 2.2. Average cell-specific AOM rates, normalized to the value for the smallest aggregates vs. 

aggregate radius. The simulations shown were picked for rates that either lie within (HS2
--MIET 
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and DIET) or are close to (SRB-MIET) the observed range. Note that lines for HS2
--MIET overlay 

those for DIET. Cell-specific parameterizations: DIET: kA and kB 10-13 m3 cell-1 d-1; HS2
--MIET: kA 

10-14 mol cell-1 d-1 and kB 10-14 m3 cell-1 d-1; SRB-MIET: kA and kB 10-15 mol cell-1 d-1.  

In nature, spatial arrangements of archaea and bacteria within an aggregate vary from 

highly-segregated to well-mixed (22, 29, 58). Empirical analyses of cell-specific anabolic activity 

within AOM consortia in McGlynn et al. (2015) revealed that the spatial arrangement of the 

archaea and bacteria does not influence the observed activity of the entire consortia and that cell-

specific activity for individual archaea and bacteria is unrelated to the proximity to the nearest 

partner (see Fig 2b in McGlynn et al. 2015 and Fig. A5). These data contrast with the model 

simulations for the SRB-MIET pathway, where cell-specific rates varied with aggregate size and 

arrangement (Fig. 2.2).  

The observational data showed that cell-specific anabolic activity (15N incorporation) is 

rather uniformly distributed within an aggregate, regardless of the AOM consortium radius or the 

segregation of archaea and bacteria (see Supporting Information Appendix A7 Figs. S4 C&D and 

S5 C&D). For SRB-MIET, intra-aggregate variability of cell-specific rates of both archaea and 

bacteria is more pronounced, and grows as aggregate radius or the segregation of archaea and 

bacteria increases (Fig. 2.3 A&D). Variability was lower at low AOM rates, and while the spatial 

variation in bacterial activity can approach the observed ones (in small aggregates at rates on the 

order of ~ 3×10-2 fmol cell-1 d-1), the modeled spatial variability in archaeal activities clearly 

exceeded the observed values, even for the smallest aggregates, independent of arrangement (Fig. 

2.3 A). In contrast, DIET and HS2
--MIET model simulations showed little to no trend of the intra-

aggregate variation in archaeal cell-specific rates with aggregate size (Fig. 2.3 B&C), for all 

arrangements. The slight variation seen in the experimental data (see Supporting Information 
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Appendix A7 Figs. A4 C&D and A5 C&D) were not observed in DIET and HS2
--MIET model 

simulations, which we tentatively attribute to the fact that model simulations only reflect variations 

in a limited set of substrates, but do not reflect other factors that may be biologically relevant to 

AOM consortia activity in situ including, e.g., trace nutrients (74). However, DIET and HS2
--MIET 

model simulations showed some spatial intra-aggregate variation in bacterial cell-specific rates, 

which increases with aggregate size, separation between archaeal and bacterial cells, and an 

increase in kB (Fig. 2.3 E&F).  

 

Fig. 2.3. Intra-aggregate variation of archaeal (A-C) and bacterial (D-F) activity.  Spatial activity 

variation is calculated as n∫(ìKì
∆)m5∏

∏
q
,/p

(∆» , where R and V denote the rates and volumes of the 

archaeal and bacterial regions, respectively, and (∆  is the volume averaged reaction rate. Cell 
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activities are for model simulations that yield rates close to the estimated environmental rates, 

using SRB-MIET (A,D): kB in mol cell-1 d-1; HS2
--MIET (B,E): kB in m3 cell-1 d-1; DIET (C,F): kB 

in m3 cell-1 d-1. Statistical analysis shows that archaeal activity spatial variation of SRB-MIET 

(p<0.01) is significantly different than observations for archaeal activity spatial variation. Open 

circles are from observations and are the same for each archaeal and bacterial plot. 

The modeled spatial variability in bacterial activity depends on the relative kinetics of 

bacterial and archaeal metabolism. In simulations with bacterial kinetics being fast compared to 

the archaea (e.g., kB = 10-10 m3 cell-1 d-1, compared to kA = 10-14 mol cell-1 d-1, which corresponds 

to kB ~10-14 m3 cell-1 d-1 for HS2
--MIET; see Eqs. 2.9&2.10), all pathways showed an increase in 

the spatial variability of the bacterial cellular activity with increasing aggregate size (Fig. 2.3 D-

F). At lower values of kB, however, the cell-specific rates of the bacteria varied less for all modeled 

pathways, consistent with rather homogeneous activity distribution observed by McGlynn et al. 

(2015). For both MIET pathways (SRB-MIET and HS2
-MIET), lower bacterial rate constants led 

to higher substrate levels in the surroundings of the aggregates (see e.g. Supporting Information 

Appendix A7 Fig. A6). We also observed a slight decrease of the spatial variability of the archaeal 

cellular activity at faster bacterial kinetics kB (Fig. 2.3A), as a result of faster scavenging of 

methane oxidation products by bacterial cells. Such fast scavenging process by bacteria leads to a 

strong substrate gradient that is favorable for archaea, but unfavorable for bacteria.  

The combined macro- and micro-scale observations provide constraints on the microbial 

kinetics, because the rate of AOM strongly depends on kA, while the intra-aggregate activity 

patterns are dependent on the relative magnitude of kB. This is reflected in the finding that for a 

fixed value of archaeal cell specific rate constant kA, the rate of AOM remained relatively constant 

at the lower bacterial cell specific rate constants (Supporting Information Appendix A7 Fig. A7), 
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and then increased when kB reached a certain value for models with SRB-MIET pathway. Faster 

kB allowed depletion of electron exchange carriers produced by the archaea, preventing the build-

up of products. This pattern held until a point was reached in which spatial gradient of exchanging 

chemical concentration becomes too large to sustain the bacterial reactions (not shown).  For 

models simulating the DIET pathway, the rate of AOM slightly increased with an increase in kB 

and then reached a maximum rate (Supporting Information Appendix A7 Fig. A7), reflecting that 

in our implementation, the rates of AOM and SR depend on M and MH (Eqns. 2.11 and 2.12). As 

the HS2
- concentration reached in our simulations had a negligible impact on the energetics, the 

rate of AOM did not vary with kB in the HS2
--MIET simulations.  

Controls on the rate of AOM by direct interspecies electron transport  

At environmentally relevant rates of AOM, patterns in rates and intra-aggregate activity 

distributions across different aggregate sizes and archaeal-bacterial spatial arrangements are 

consistent with results from both DIET and HS2
--MIET simulations. However, recent genomic and 

microscopy evidence suggests DIET is taking place in these aggregates. For instance, 

metagenomic and transcriptomic analyses of ANME-1 dominated sample by Meyerdierks et al. 

(67) observed clustered genes annotated as secreted multi-heme c-type cytochromes that were 

expressed leading the authors to hypothesize that direct electron transfer may be a possible mode 

for the syntrophic association between ANME and their sulfate-reducing bacterial partner. More 

recently, McGlynn et al. (2015) and Wegener et al. (2015) provided further genomic, microscopy, 

and physiological evidence supporting the possibility of DIET as a syntrophic mechanism within 

various phylogenetic groups of methane-oxidizing ANME in partnership with sulfate-reducing 

bacteria. Below we explore factors that may control DIET, and assess the impact of process 

descriptions and parameters that are currently poorly constrained by observational data.  
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Rate expressions and acid-base dynamics 

The kinetic rate expressions used to describe syntrophic AOM reflect general controlling 

factors, but have not yet been established experimentally. To assess the effect of alternative rate 

laws, simulations in which the rate of AOM is independent of the concentration of the redox-active 

molecules fixed on conductive pili or matrix are compared to simulations that are dependent on M 

(oxidized) and MH (reduced; see Eqns. 2.11 and 2.12). Upon adjusting the values of kA and kB, our 

model simulations reveal the same increasing pattern in AOM rate (RA) with increasing kA and kB 

(Fig. 2.4).  Such increasing rates of AOM with increasing kA and kB were found for SR rate 

expressions linearly depending on H2, or independent of H2 (Eq. 2.12).  

 

Fig. 2.4. Average cell-specific AOM rate with varying kA and kB for DIET. Simulations are for a 

spatial arrangement with a sphere of ANME surrounded by bacteria. Group II represents results 
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with different driving forces (with or without electric field, EF) for electron transport on 

conductive pili or matrix, and simulations with dynamically calculated pH or pH fixed at 8.2. 

Group I shows the outcomes for rate expressions in which both RA and RB are independent of the 

concentrations of M and MH, respectively. For group III, RB depends linearly on H2 concentration, 

while for all other simulations it is independent of H2. 

We also tested the impact of intra-aggregate pH variation on AOM and model performance 

(see Supporting Information Appendix A5 for the calculation of pH). Simulations showed 

negligible difference between simulated pH and fixed pH models at small aggregate radii (1.5 µm 

- 12.5 µm) for simulated AOM rates less than ~10 fmol cell-1 d-1. However, at a larger aggregate 

radius (25 µm) and rates greater than 10 fmol cell-1 d-1, AOM rates with fixed pH simulations but 

otherwise identical parameterization were slightly higher than those of models with dynamic pH. 

For instance, with kA and kB at 10-11 m3 cell-1 d-1, modeled AOM rates with fixed pH exceeded the 

ones with pH simulated by approx. 10% for aggregates with r = 25 µm. Thus, our simulations 

suggest that intra-aggregate pH variations are unlikely the main control on AOM rates. The 

modeled pH remained similar to the imposed seawater value of 8.2, indicating that protons 

produced in the oxidation of methane (Reaction 2.6) are efficiently buffered at environmentally 

relevant rates. However, in direct extracellular electron transfer, the transfer of electron can be 

much faster than proton diffusion, which can lead to pH gradients (27, 68). Our modeled DIET 

simulations showed the establishment of such pH gradients, however these gradients only occurred 

at rates exceeding values reported from methane seep environments (> 103 fmol cell-1 d-1) at large 

aggregate size (25 µm). Our additional simulations with artificially accelerated proton diffusion 

allowed for higher rates, indicating the potential role of pH variations to limit AOM at high rates 

and large aggregate size. We note that in addition to the modeled thermodynamic impact here, a 
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decrease in pH at higher AOM rates may also impede proton transport across outer cell membranes, 

impacting extracellular electron transport as documented by Okamoto et al. (69) for Shewanella 

oneidensis MR-1.  

Electron transport 

The nature and description of electron transport between archaea and bacterial partners is 

a critical issue in AOM aggregates. Described in detail in section Direct interspecies electron 

transfer, we here explore the impact of several key factors that determine the electron transport 

rate and cell-specific activities.  

Concentration of redox molecules in cell-to-cell electron transport 

The transport coefficient for redox-active molecules (reduced: MH; oxidized: M) located 

on conductive pili or matrix was estimated to be on the order of 10-7 m2 s-1 (see Eq. 2.14 below, 

with Mtot = 0.01 mmol L-1; k0 = 104 m4 mol-1 s-1, δ = 0.7 nm), comparable to a value reported for a 

conductive filament network (charge diffusion coefficient of 3.5×10-7 m2 s-1; (54)).  This exceeds 

chemical diffusion by several orders of magnitude. Here, the concentration of redox molecules 

was varied across a range of 0.01-1 mmol L-1 to explore its impact on electron transport in our 

models. With the increase of Mtot, AOM rates increased linearly, as shown in Fig. 2.5 A. This is 

qualitatively consistent with the findings reported by Storck et al. (25), who showed that a 10-fold 

decrease of the amount of conductive pili or matrix (Nnw) from 100 to 10 per cell pair lead to 60% 

decrease of electron transport rate. The amount of conductive pili or matrix (Nnw) is directly related 

to the total redox molecule concentration (Mtot). However, simulations in which the reaction 

kinetics were independent of M and MH showed little impact of an increase in Mtot (and hence 

transport coefficient) on AOM, indicating that in our model, AOM is limited by the reaction, rather 

than electron transport processes. For instance, in model simulations with kinetic rate expressions 
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independent of M and MH, the AOM rate remained constant when Mtot increases from 0.01 to 1 

mmol L-1 (kA and kB at 10-15 mol cell-1 d-1, aggregate radius r = 25 µm).  

 

Fig. 2.5. Simulations of AOM by DIET (A) with varying redox molecule concentration (Mtot), kA 

and kB, an aggregate radius of 1.5 µm, a spatial arrangement with a sphere of ANME surrounded 

by bacteria. (B) AOM rates vary with electron transport rate constant k0. (C) Plot of AOM rates 
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with varying coupling strength (defined as fM/8×100, Reaction 6) between electron production and 

conduction. kA and kB are fixed at 10-12 m3 cell-1 d-1 for (B) and (C). Baseline values apply to all 

other parameters.  

Electrical field as an additional driving force  

Electron transport can be driven by a concentration gradient in electron carriers (M and 

MH) or an electric field (26). Considering the electrical field as a driving force for electron 

transport in addition to the gradient in oxidized cytochromes did not significantly impact on AOM 

rates (Fig. 2.4). Furthermore, there was no significant difference between simulations with electric 

field as sole driving force and simulations with redox gradient as driving force (not shown). This 

finding that electron transport between archaea and bacteria is not limiting is also supported by 

results showing that increasing electron transfer rate constant (k0) had little impact on AOM rate 

for k0 > 102 m4 mol-1 s-1, corresponding to a transport coefficient of >10-9 m2 s-1. However, the 

simulated AOM rate significantly decreased at k0 ≤ 102 m4 mol-1 s-1 (Fig. 2.5 B). Noticeably, the 

variation of intra-aggregate archaeal and bacterial activity also began to significantly increase and 

differ from observations at k0 < 102 m4 mol-1 s-1 (Supporting Information Appendix A7 Fig. A8). 

Storck et al. (2016) reported that doubling the electron transfer rate constant leads to a doubling of 

electron transfer rate, also implying a doubling of the oxidation rate. Our model simulations 

suggest that the finding from Storck et al. (2016) remains true at small k0 (≤ 102 m4 mol-1 s-1). 

Overall, the electron transfer rate constant is a critical factor controlling electron transfer by 

impacting the effective diffusion coefficient (DMH) of redox-active molecule (M and MH).  

Voltage loss 

Voltage losses can negatively affect transport efficiency in DIET, and ohmic losses (…)4^) 

and activation losses (…]£&) have been suggested to be dominant factors (25). Ohmic losses (…)4^) 
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and activation losses (…]£&) were calculated using the Ohm’s law and Butler–Volmer equation, 

respectively. Here we investigated the importance of these two voltage loss terms and compare 

them to the voltage available from the AOM reaction (Eq. 2.19).  

Ohmic loss (…)4^) is a result of electronic resistance and has been explored in some recent 

studies (44,52-53). It can be calculated as (25) 

…)4^ =  +À ∙ Ã+À ∙ Õ (Œ+À ∙ Œñœ©± ∙ –+À)⁄ ,       Eq. (2.22) 

where  +À is the electrical resistivity of a pilus, Lnw is the length of a single pilus, Anw is the cross-

sectional area of a single pilus, Œ+À	is the number of conductive pili per cell, I is the current 

generated as a result of methane oxidation and can be estimated as Õ = (ñ°© ∙ Œñœ©± ∙ a ∙ 7 , 

where (ñ°©  is the methane oxidation rate, Œñœ©±  is the number of archaeal cells and n the 

electrons transferred per reaction. We take conductive pili as an example to illustrate the factors 

that control voltage losses in DIET. With an electrical resistivity of a pilus ( +À) of 1 W·m (25), 

a cross-sectional area of a single pilus (Anw) of 1.26´10-17 m2 (25), length of a single pilus Lnw on 

the order of the aggregate size (10-6 m), a current I of 7´10-13 A (at (ñ°© = 10 fmol cell-1 d-1) and 

10 conductive pili (Œ+À)	per cell, …)4^	is 7´10-5 V. This is substantially smaller than the AOM 

potential obtained from our model simulations, which is on the order of 10-2 V, and suggests that 

ohmic loss is not a determining factor in our current model. 

Activation loss (…]£& ) is another factor that may influence DIET electron transport, 

accounting for the voltage losses when an electron is transferred from the cell to the conductive 

pili or vice versa, due to the activation energy needed for a redox reaction. According to Storck et 

al. (2016) and Strycharz-Glaven et al. (2011), the redox activation losses can be approximated as  

…]£& =
“∙ìWXY∙9∙”P‘

œP‘œR’÷e≠+m≤mñX§◊8ÿ(
÷◊g◊
m

)m
 when d∙ …]£&/W < 0.05,  Eq. (2.23) 
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where I is the current generated as a result of methane oxidation and is the same as described in 

the equation for ohmic loss (…)4^), Lnw is the length of a single pilus, Rgas is the universal gas 

constant (8.314 J K−1 mol−1), T is the temperature in K, Œ+À	is the number of conductive pili per 

cell, Œñœ©± is the number of archaeal cells, δ is the redox molecules spacing width, n the electrons 

transferred per reaction, F is the Faraday constant 96485.33 C mol-1, –]£& is the redox activation 

area per cell (equivalent to 10% of cell surface area), k0 is the electron transport rate constant, and 

Mtot is the total concentration (=M+MH) (25). With the same parameters and the current I estimated 

above, the maximum …]£& can be estimated to be 1´10-7 V at ™&¿&= 0.01 mmol L-1 and k0 = 104 

m4 mol-1 s-1, which is negligible. In contrast, a value of k0 = 1 m4 mol-1 s-1, a decrease by a factor 

of 104 from the default k0 discussed above would result in an activation loss at an order of 1´10-3 

V, suggesting activation loss becomes the dominating factor for voltage loss. This is consistent 

with the findings reported by Storck et al. (2016).  

Coupling strength between electron production and conduction  

To test how electron transport via the diffusion of dissolved electron carriers (DH = H2 in 

our model) and conduction of pili or matrix may impact AOM, the fraction of electrons transported 

via conductive pili or matrix was varied. This was implemented as factors fM and fD in reactions 

2.6 & 2.7, where higher values of fM imply lower production of the reduced electron pool molecules 

DH. Simulations suggested that higher loading percentage onto conductive pili or matrix leads to 

higher AOM rate in general (Fig. 2.5 C). AOM rates drastically declined at electron conduction 

coupling strengths (%, defined as fM/8×100, Reaction 2.6) below 50%. At coupling strength of less 

than 50%, AOM rates differed between simulations with different spatial arrangements. It is also 

noted that the variation of archaeal activity significantly (p <0.05) increases at lower coupling 

strengths (<40%, see Supporting Information Appendix A7 Fig. A9A). The declining AOM rates 
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and increasing intra-aggregate activity variation are due to the increasing thermodynamic 

constraints resulting from the build-up of H2, which increases the reaction quotient, bì} =

∏åw
öõ =

]†ü¢z]†]†m
Ÿf]÷†

Ÿ÷

]ü†û]÷
Ÿ÷

, and subsequently increases ∆Z and decreases FT to the point where FT 

for reaction R6 (Eq. 2.4) becomes 0. Our simulations indicated that under baseline 

parameterization electron transport of at least 50% by conduction gives AOM rates and intra-

aggregate activity spatial variation pattern consistent with observations.  

A decrease in AOM rates was observed when incubating ANME-1 consortia with H2 and 

methane (23), when considering H2 as the potential dissolved electron carriers (D and DH). This 

might be due to electron transport being limited by diffusion of DH (here H2), possibly in 

combination with syntrophic decoupling. Once electrons are loaded onto conductive pili or matrix 

over a certain percentage (≥ 50%), electron transfer does not limit AOM. At a slow effective 

diffusion of redox molecules with small electron transfer rate constant, AOM rates would have a 

higher dependency on the activation loss and resistance loss on conductive pili or matrix.  

Metabolic coupling in syntrophic communities 

The results of our 3D modeling simulations suggest good agreement between 

measurements (aggregate AOM rates and spatial activity patterns) and the DIET models. The 

comparison with cell-specific data from McGlynn et al. (2015) help constrain parameters such as 

kA, kB, Mtot, k0 and fM. Thus, the models developed here serve as predictive tools for assessing 

potential syntrophic relationships and major parameters that may influence sulfate-coupled AOM 

in situ. For example, if future measurements of AOM consortia yielded lower cell-specific AOM 

rates (<10-3 fmol cell-1 d-1) then the diffusion controlled SRB-MIET could be a possible mechanism 

for small aggregates (≤ 6μm). Yet it should be noted that the models presented here are not 

exhaustive for the range of metabolic possibilities. For example, we have not considered the 
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potential for metabolic switching behavior (70). Our modeling efforts could also be adapted and 

applied to AOM consortia using other terminal electron acceptors, including nitrate (4, 5) and 

metal oxides (6, 9). Ultimately the broad-scale mechanisms modeled here will need to be 

connected to more detailed perspectives of the entire physiology and metabolism of the cell, as for 

example informed by genome-enabled metabolic models. It is important to also stress that 

activation and ohmic losses are largely dependent on electron transport distance and abundance of 

conductive pili or matrix (here expressed by Lnw and Nnw). These are likely to vary spatially within 

an aggregate (23, 43), and thus require further observational studies that constrain these and other 

characteristics that impact electron conduction.  

Finally, it is noteworthy that not only do the small-scale observations help differentiate 

between mechanisms, but the combination of environmental rate estimates with intra-aggregate 

activity distribution helps constrain rate constants. Specifically, we find that kA is well constrained 

by cell specific AOM rates and is on the order of >10-15 m3 cell-1 d-1 for DIET and >10-17 mol cell-

1 d-1 for MIET pathways; kB is no more than 100-fold larger than kA to be consistent with the 

observed intra-aggregate activity patterns (Fig. 2.3 D-F). The product of Mtot and k0 determines the 

effective diffusion coefficient DMH, which has to exceed 10-9 m2 s-1 to be consistent with 

observations (compare, e.g., the simulated variation in activity in Fig. A8, where k0 has to exceed 

102 m4 mol-1 s-1 at Mtot = 0.01 mmol L-1, d=0.7 nm with the observed variability shown in Figs. A4 

C&D and A5 C&D; and the variation of AOM rates with aggregate size and cell arrangement 

shown in Fig. 2.2 and the corresponding 15N assimilation in Figs. A4 A and A5 A). fM determines 

the fraction of electron transport via conduction (see reactions 2.6&2.7) and is constrained to give 

electron conduction coupling strengths greater than 50% in order to be consistent with observed 

patterns in AOM rates with regard to aggregate size and arrangement, as well as intra-aggregate 
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activity. This connection between micro- and macro-scale observations can help us better 

understand the response of those microbial organisms to a small-scale environmental disturbance 

and ultimately how such changes would lead to large-scale variation.  

Conclusion 

We presented reactive transport models describing electron transfer within sulfate 

reduction-coupled AOM consortia of archaeal and bacterial cells. Microbial activities were 

simulated for diverse arrangements of archaeal and bacterial cells and consortium sizes. We 

excluded SRB-MIET as a viable pathway of electron transport in these consortia because the 

simulated microbial activities are unevenly distributed within each consortium and are limited by 

the build-up of metabolites. These predictions are inconsistent with experimental observations. 

Instead our models support DIET as a viable mechanism for extracellular electron transfer within 

sulfate-coupled AOM consortia. Our proposed DIET model yielded cell specific rates and archaeal 

activity distributions that were consistent with empirical observations, with little impact of the 

spatial distribution of bacterial and archaeal cells and consortium sizes. These modeling efforts 

can be used to guide further empirical and theoretical explorations into the identity and kinetics of 

extracellular redox-active components within AOM consortia with important environmental roles. 
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CHAPTER 3 

CONTROLS ON INTERSPECIES ELECTRON TRANSPORT AND SIZE LIMITATION OF 

ANAEROBICALLY METHANE OXIDIZING MICROBIAL CONSORTIA 2 

  

 
2 He, X., Chadwick, G., Kempes, C., Orphan, V. and Meile, C. (2020) Controls and size limitations of anaerobic 

methane oxidizing consortia metabolism. To be Submitted to mBio. 
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Abstract 

About 382 Tg yr−1 of methane rising through the seafloor is oxidized anaerobically (1), 

preventing it from reaching the atmosphere where at acts as a strong greenhouse gas. Microbial 

consortia composed of anaerobic methanotrophic archaea and sulfate-reducing bacteria couple the 

oxidation of methane to the reduction of sulfate under anaerobic conditions via a syntrophic 

process. Recent experimental studies and modeling efforts show that direct interspecies electron 

transfer (DIET) is involved in this syntrophy. Here we explore the physiological controls on this 

critical process through modeling combined with FISH-nanoSIMS isotopic analysis of large, 

segregated AOM consortia that reveal a decline in metabolic activity away from the archaea-

bacteria interface. Our simulations of metabolic interactions between the bacteria and archaea yield 

results consistent with our empirical FISH-nanoSIMS data of anabolic activity profiles and show 

that ohmic resistance and activation loss are the two main factors causing the declining metabolic 

activity, where activation loss dominated at distance < ~8 µm. The simulations indicated that 

sulfate-reducing bacterial cells remain metabolically active at distance up to ~30 µm from the 

archaea-bacteria interface, suggesting a maximum spatial distance between syntrophic partners 

organized in layered consortia where the partners are well separated.  Notably, our model 

simulations predict that a hybrid metabolism that combines DIET with a small contribution of 

diffusive exchange of electron donors offers energetic advantages for syntrophic consortia.  

Introduction 

Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is a globally 

important process commonly catalyzed by a consortium of anaerobic methanotrophic archaea 

(ANME) and sulfate-reducing bacteria (SRB) (2-5). AOM in marine sediments reduce emissions 

of the potent greenhouse gas methane (1) to the overlying water and the atmosphere. Due to the 
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role of methane in atmospheric radiative forcing (6), it is important to understand the processes 

and mechanisms involved in AOM. Recent studies suggest that direct extracellular electron 

transfer, observed in Geobacter biofilms (7, 8) and coculture aggregates (9, 10), also takes place 

in AOM consortia (11-13). Such direct interspecies electron transfer (DIET) between bacteria and 

archaea is an effective transport mechanism over long spatial distances (14). It overcomes 

limitations inherent in the diffusive exchange of dissolved electron carrying molecules (mediated 

interspecies electron transfer, MIET) that lead to the build-up of reaction products making the 

reaction energetically unfavorable, and the subsequent shut-down of metabolic activity (13, 15).  

DIET is proposed to occur through a variety of complementary mechanisms including 

direct contact between cells and its electron acceptors using outer surface c-type cytochromes (16), 

through electrically conductive pili (17) or within a matrix of conductive extracellular polymeric 

substances (18, 19). Genomic and transcriptomic data of enrichments with different types of AOM 

consortia (ANME-1a/HotSeep-1, ANME-1a/Seep-SRB2 and ANME-2c/Seep-SRB2) revealed 

that genes encoding for flagella or type IV pili, and/or surface bound or extracellular c-type 

cytochromes were highly expressed (20). Notably, ANME-2 genomes encode large multiheme 

cytochromes containing S-layer domains (11) thought to be analogous to the gram negative porin-

cytochrome conduits used for extracellular electron transfer (21). Observations using transmission 

electron microscopy (TEM) showed staining consistent with heme-rich areas and pili/wire-like 

structures in the intracellular space in AOM consortia (11, 12, 20). These features suggest that 

DIET may be the principal mechanism to sulfate-dependent AOM. While this hypothesis awaits 

direct experimental confirmation and is hampered by a lack of any pure cultures of microorganisms 

carrying out this metabolism, modeling efforts indicated that DIET can support cell specific AOM 
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rates and archaeal activity distributions that were consistent with observations from single cell 

resolved FISH-nanoSIMS analyses (13).  

Recently, the limitation of direct electron transfer to support metabolic activity of cells at 

large distances from their electron acceptor was demonstrated quantitatively in biofilms of 

Geobacter sulfurreducens (22).  These results suggest that even in a model system known for its 

propensity for extracellular electron transfer, the extent to which conductive biomolecules can 

support optimal cell growth away from the source of electron donors is limited.  The distances 

over which this metabolic limitation was observed in G. sulfurreducens were not previously 

observed in the McGlynn et al. (2015) study due to the limited size of AOM consortia analyzed, 

as well as the physical mixing of ANME and SRB cells to varying degrees which decrease the 

distance between the syntrophic partners (14).  To better understand the mechanism of metabolic 

coupling between syntrophic partners in AOM consortia in light of these previous results, we 

measured and analyzed the metabolic activity of individual cells in exceptionally large and 

segregated AOM aggregates (radius ~20 µm) using FISH-nanoSIMS. Measurements of 15NH4
+ 

incorporation as a proxy for cellular anabolic activity were then used to validate a reactive transport 

model across AOM aggregates of differing size. The results of these simulations were consistent 

with our empirical observations, forming a basis to explore the types of syntrophic mechanisms 

used in AOM and the factors that may ultimately limit aggregate size. We also investigate the 

potential for environmentally-sourced electron donors used by the SRB in the partial decoupling 

of archaeal methanotrophy and bacterial sulfate-reduction.  
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Materials and Methods 

Experimental data 

Sample collection 

  Methane seep sediments covered with white bacterial mats were collected from Jaco Scar 

off of Costa Rica at 1811m water depth, (Lat. 9.1163, Long.  -84.8372).  Samples were collected 

by push core (PC6) during dive number AD4912 on May 27, 2017 by DSV Alvin launched from 

R/V Atlantis on research cruise AT37-13. The sediment core was processed shipboard into depth 

horizons that were placed in separate Whirl-Pak bags, and stored under anoxic conditions in a large 

mylar bag filled with Ar.  These sediments were stored at 4°C until they were returned to lab, 

mixed with N2 sparged 0.2μm filtered seawater from above the sampling site, and incubated in 1L 

pyrex bottles with a secured butyl rubber stopper and provided with a 100% methane headspace 

(30 psi).   

Stable isotope probing incubation and sampling 

Stable isotope incubation experiments were conducted using slurried sediment from PC6 

corresponding to the 3-6cm depth horizon.  Sediment was mixed 1:3 with N2 sparged, 0.2μm 

filtered seawater from above the sampling site (28mM sulfate), and amended with 1mM NH4Cl 

with 99% 15N abundance supplied from Cambridge Isotope Laboratories, Inc and incubated at 4ºC.  

Headspace composition was 100% methane at 30psi. After 7 days, subsamples were collected for 

analysis, by first shaking the incubation bottle to resuspend the sediment slurry and then collecting 

an aliquot using an N2 flushed needle and syringe.  1mL of sediment was chemically fixed by 

mixing with 1mL of 4% paraformaldehyde in 3×PBS and incubated for one hour at room 

temperature.  Sediment containing AOM aggregates were washed three times with 3×PBS and 

finally resuspended in 50:50 PBS:EtOH and stored at -20°C. 
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Resin imbedding and FISH staining 

50μL of fixed sediment in 50:50 PBS:EtOH was mixed with 750μL PBS in a 2mL 

microcentrifuge tube and sonicated on ice with microtip sonication probe (Branson), 3x for ten 

seconds at setting 3.  Aggregates were separated from sediment particles by underlaying the 

sonicated liquid with 1mL of Percoll and spinning at max speed for 30 minutes in a tabletop 

microcentrifuge at 4°C.  The top aqueous layer containing concentrated aggregates were removed 

and pelleted by spinning at 10,000g at room temp for one minute.  The pellet was gently removed 

and immobilized in molten 3% noble agar in PBS.  Once solidified agar was trimmed to a small 

cube around the pellet and imbedded in glycol methacrylate (Technovit 8100) resin following the 

manufacturer’s protocol.  Semi-thin section (1-2μm thick) were cut using a microtome and 

deposited on water droplets on polylysine coated slides with Teflon-lined wells (Tekdon, Inc).  

FISH hybridization on thin sections was conducted as described previously (14).  ANME-2b 

specific probe ANME-2b-729 with a dual 3’/5’ Cy3 label and a universal bacterial probe 

EUB338mix (EUB338, -II, and -III) labeled with FITC were used at 35% FA concentration 

(supplied by Integrated DNA Technologies).  Sections were counterstained with DAPI (5 µg/mL) 

in CitiFluor mounting media and fluorescently imaged with a fluorescent microscope (Elyra 7, 

Zeiss) at 100x magnification (Plan-APOCHROMAT 100x objective). 

Nanoscale secondary ion mass spectrometry (nanoSIMS) 

Sections were rinsed with DI water to remove DAPI and mounting media then glass slides 

were scored with a diamond scribe, broken and filed to fit into the nanoSIMS sample holder.  

Sections and slide fragments were sputter coated with 40nm of gold (Cressington).  Areas 

containing aggregates of interest were pre-sputtered using a primary cesium ion beam at 90pA 

(D1=1) until 14N12C- ion counts stabilized (~5 minutes).  NanoSIMS images were acquired in 
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10μm x 10μm rasters with 128x128 pixels with 0.3pA (D1 = 3, ES = 3) Cs+ ion beam with 

12ms/pixel dwell time.  Between 20 to 30 10 µm x 10µm acquisitions were tiled across the 

aggregate with approximately 2μm overlap, and the data was manually stitched together post 

analysis to create final data products. In addition to the new FISH-nanoSIMS data generated for 

this study, we also incorporated select nanoSIMS data as a point of comparison from published 

studies with similar experimental designs(14, 23). Regions of interest (ROIs) consisting of 

individual archaeal and bacterial cells within a consortium were identified and segmented by hand 

using the nanoSIMS 14N12C- ion images. Phylogenetic identities for each cell were assigned based 

on comparison to the corresponding FISH image.  Distances between cells were calculated based 

on the centroid of each segmented cell in MATLAB. 

Cell-specific activity calculation 

Growth rates were calculated from nanoSIMS data by (24) 

⁄ =
K¤‹	(,K

¥ŸyPX›L¥PX◊
¥›Xfi$›L¥PX◊

)

9yP§ufi
          Eq. (3.1) 

where μ is the growth rate (encompassing both cell maintenance and generation of new 

cells), _w+£flÆ is the length of the incubation (7 days), Flabel  is the labeling strength of the nitrogen 

source provided, 
œùû

‡Q·

œùû
‡Qû A œùû

‡Q· , Ffinal is the nanoSIMS measurement, and Fnat = 0.0036 is the 

natural 15N abundance. The cell-specific metabolic rates (in mol CH4 cell-1 d-1) were calculated as 

(¿Æ^ = ⁄ ∙   ∙ 3£4¡¡/‚kù�         Eq. (3.2) 

where   is the g cell dry weight per m3, Bcell is the cell density in m3 per cell, YCH4 is the growth 

yield in g cell dry weight per mol CH4 oxidized. 

Modeling approach 
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Electron transfer between archaea and bacteria was implemented as a mixed DIET-MIET 

mechanism where electrons from the oxidation of methane are captured by either redox-active 

molecules (M) that conductively connect archaeal and bacterial partners, or by formate (HCOO-), 

which can exchange between the syntrophic partners by diffusion. Although we chose formate as 

the intermediate between ANME and SRB in this study, other small molecules could also be 

considered as the putative intermediates for AOM (13, 15). This highly simplified description 

minimizes model complexity, reflecting the limited knowledge on the actual mechanism. These 

metabolic pathways are captured by  

v~� + (ïl − 1)~vÅÉ
K + ï©™ → ïl~vÅÅK + ï©™~ + ~A + (ïl − 3)~pÅ  Rxn. (3.1) 

ÄÅ�
pK + ~A + ïl~vÅÅK + ï©™~ → ï©™ + ~ÄK + ïl~vÅÉ

K + (4 − ïl)~pÅ  Rxn. (3.2) 

where fM and fD represent the fraction of electron conduction via MIET and DIET, respectively (fM 

Î [0,8] and fD = (8-fM)/2 Î [0,4], with fM = 8 and fD = 0 in the absence of MIET).  

Rate expression 

Cellular metabolic rate and response can be captured by  

(â = 78
â79

â (25, 26)        Eq. (3.3) 

where 78
â represents the reaction kinetics of reaction X and is the product of a cell-specific rate 

constant k, the cell density Bcell, and the dependence on substrate availability (13): 

78
ì, = =ñ3ñ
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™        Eq. (3.4) 
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™~         Eq. (3.5) 

The thermodynamic factor (0 ≤ 79
â ≤ 1) reflects that there must be sufficient free energy 

available from the reactions to fuel ATP synthesis and cell maintenance and is given by (13) 

79
â = ãåç	(0, 1	 − 	Jçé	 è−a7 „P$◊
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î)       Eq. (3.6) 
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where n is the number of electrons per reaction,  χ, the number of ATP synthesized per reaction, 

is set to 1 (15), Rgas is the universal gas constant (8.314 J K-1 mol-1) and T is temperature (277.15 

K), ηATP represents the potential related to the energy required to synthesize ATP by ηATP = -

∆GATP/nF where F is the Faraday constant and ∆GATP = -10 kJ mol-1 (25, 26). The net available 

potential is given by 

…+4&â = …)*+,â − …]£& − …¿;         Eq. (3.7) 

where ηrxn,X is calculated from the Gibbs free energy ∆GX of reaction for archaea (X=R(1)) and 

bacteria (X=R(2)), ηact and ηom are the voltage losses associated with activation and ohmic 

resistance, respectively. 

Activation loss describes the energetic loss occurring during the electron transfer between 

cell and conductive pili/matrix. The voltage drops associated with the electron conduction between 

M and MH can be described by the Butler-Volmer equation assuming a one-step, single-electron 

transfer process (27).  The activation loss ηact is related to the current density: 

“
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where I is the current produced by methane oxidation (I = fMR1NANMEF, where R1 is the methane 

oxidation rate in fmol cell-1 d-1, NANME is the number of archaeal cells and F is the Faraday constant), 

Aact is the redox active surface area in m2 per cell (27), kact is the activation loss associated constant 

in m s-1, β is the charge transfer coefficient, Mtot is the concentration of electron carrying molecules 

(Mtot = [M] + [MH]). Nnw is the total conductive connections within an AOM consortium and can 

be described as Nnw = MtotVaggknw, where Vagg is the volume of consortium, and knw is the constant 

associated with conductive network. Conductive network density can be described as Nnw,cell  = 

Nnw/NANME. 
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The ohmic loss results from electronic resistance to the flow of electrons through the 

conductive pili/matrix. The corresponding voltage drop is proportional to current density and is 

given by (27): 

…¿; = ìP‘“

œP‘
= 5

ÁñP‘

ê÷ìQœR’÷e≤

©◊g◊∏XWW8P‘
        Eq. (3.9)  

Here, Rnw is the electrical resistance (Ω) which can be further described as d/(σAnw), where 

σ is the electrical conductivity of pilus (S m-1), d is the distance from archaeal-bacterial interface, 

Anw is the cross-section area of a single pilus.  

Several of the above parameters are poorly constrained, including the characteristics and 

concentration of redox active molecules (Mtot), the conductive network density (Nnw,cell), its 

conductivity (σ) and the various constants (kA, kB, kD and kact). Other physiological parameters, 

such as Aact, are highly tunable by the cell (27). Thus, it should be noted that the same modeled 

activity levels and patterns can be achieved for different combinations of these parameters. For 

instance, decreasing Nnw,cell 10-fold can be counterbalanced by increasing conductivity σ and cell 

redox active factor kact×Aact by a factor of 10, as is evident from the expressions for activation loss 

(Eq. 3.10) and ohmic resistance (Eq. 3.11). To deal with these compensating effects we identified 

the key combined parameters of the system and varied those in our simulations. The above 

equations are sensitive to changes in the combined independent parameters the maximum 

metabolic activities kABA, and kBBB, the maximum cell-specific current FAactkactMtot, the resistance 

d/(σAnw), the effective concentrations 
kùû
>?
ü†û, and 

<°û
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@¢û where CH4 and SO4

2- should be interpreted as 

the background environmental concentrations, and the activation parameters 
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Implementation  
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A spherical AOM aggregate was implemented at the center of a domain that represents the 

surrounding environment with a radius of 2.5× that of the aggregate (ragg). The spatial distribution 

of archaea and bacteria in the aggregate (Fig. 3.1A) was set to reflect the distribution patterns 

observed in the nanoSIMS analysis (Fig. 3.1B). A specific cell ratio of 1:1 was set to archaea and 

bacteria, with same radii of 0.4 µm for both archaeal and bacterial cells (3, 28, 29). It is 

acknowledged that different AOM aggregates may have different cell radii and biovolumes (30), 

which would impact the estimates of cell-specific rates as which the model results are reported 

below. 

 

Fig. 3.1. Overview of AOM consortia structure, nanoSIMS data acquisition, analysis, and model 

geometry.  A)  Cartoon of AOM consortia structure based on FISH-nanoSIMS observations of 

five parallel sections corresponding to dashed lines.  B) Five parallel sections highlighted in A 

analyzed by nanoSIMS.  Top row: raw 14N12C- secondary ion counts illustrating the position of 

cells.  Bottom row: fractional abundance of 15N calculated as 15N12C-/(15N12C-+14N12C-), all scaled 

to same intensity.  Note SRB assimilate significantly more 15N on average than their ANME 

counterparts as has been previously shown (11).  C) Illustration of nanoSIMS data extraction and 
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modelled geometry.  From left to right: FISH image indicating phylogenetic identity of cells (green 

general bacterial probe [Eub338mix], red ANME-2b specific probe [ANME-2b-729], blue DNA 

stain [DAPI]); segmentation image showing SRB and ANME cells manually segmented based on 

observation of FISH and nanoSIMS data; individual segmented cells shaded by their total 15N 

fractional abundance; SRB and ANME cells scaled by minimum and maximum values within the 

population; illustration of modelled aggregate geometry, dashed line represents axis of rotation.  

Yellow X marks approximate minimum of ANME cell activity.  Note: additional sections were 

visually inspected to help verify aggregate structure, only those analyzed by nanoSIMS analysis 

are shown. 

The concentration fields of CH4, HCO3
-, CO2(aq), CO3

2-, SO4
2-, HS-, H+, OH-, HCOO-, 

HCOOH and B(OH)4
- were simulated subject to diffusive transport and reaction, with aqueous 

diffusion coefficients listed in Table 3.1. The concentrations at the outer domain boundary were 

set to fixed concentrations reflecting environmental conditions (Table 3.1), which were also used 

as initial conditions. The distribution of MH depends on metabolic rate and electron hopping on 

conductive pili or matrix. This can be expressed as (31, 32) 

!©ù

!&
= 		Öï©(â + ∇ ∙ (à√∇[™~]) + ∇ ∙ ¨±≤      Eq. (3.10) 

where DM=kDMtot δ is an effective diffusion coefficient (31, 32) that depends on electron 

conduction constant (kD), the distance between two redox-active molecules (δ) and the 

concentration of electron carrying molecules, and∇·JEF reflects the electron transfer rate driven by 

a local electric field adapted from (31, 32). This flux is given by ¨±≤ = =±≤[™][™~](J
j¥eh
VWXYS −

J
K
(QLj)¥eh
VWXYS ), where kEF is the electric field associated rate constant and E is the electric field strength 

(31, 32).  
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Acid-base reactions govern the speciation of cell surface-associated immobile carboxy (R-

COOH) and amino groups (R-NH2). We considered the dissolved inorganic carbon (DIC) and 

borate system (33) to quantitatively calculate the carbonate system and dynamically simulate acid-

base reactions, using the kinetic implementation described in (33, 34), with a total boron (TB) 

concentration of 0.427 mM and total DIC (TDIC) of 2.36 mM. Archaeal and bacterial cell density 

and cell size were held constant in all models, with cell numbers varying with AOM consortia 

radii. The model was implemented in COMSOL Multiphysics 5.4 (COMSOL Inc., Burlington, 

MA, USA) and simulations were run to steady state.  

Baseline simulations presented below use the parameterization shown in Table 3.1. It was 

constrained by literature values where available, and chosen to yield rates and rate distributions 

consistent with the observations.  

Table 3.1. Summary of parameters used in model implementation  

Symbol Value Units Description Baseline 
value 

Reference 
and note 

Kinetics and thermodynamics 
kA 10-13-10-17 m3 cell-1 d-1 Archaea rate constants 4×10-16 Estimated 

kB 10-13-10-17 m3 cell-1 d-1 Bacteria rate constants 4×10-16 

Km
CH4 1-20 mM Half saturation constant for methane  7 (35) 

Km
SO4 1-10 mM Half saturation constant for sulfate  5 (36) 

fD 0-4 - Fraction of electron conduction via 

MIET 

0.4 Estimated 

fM 0-8 - Fraction of electron conduction via 

DIET 

7.4 Estimated 

χ 1 - Number of ATP synthesized per 

reaction 

1 (15) 

ηATP 0.013 V Potential related to the energy required 

to synthesize ATP 

0.013 Calculated 

∆GATP -10 kJ mol-1 Energy required to synthesize ATP -10 (25, 26) 

Rgas 8.314 J K-1 mol-1 Gas constant 8.314  

F 96485.3 C mol-1 Faraday constant 96485.3  

T 277.15 K Incubation temperature 277.15 Measured 

n 8 - Electrons transferred per reaction 8 Calculated 

ko
H 0.0014  mol kg-1 bar-1 Henry's law constant for methane 

solubility in water at 298.15 K 

0.0014  (37) 

d(ln(kH)
)/d(1/T)  

1600 K Henry's law temperature dependence 

constant for methane 

1600 

kH(T) 0.0021 mol kg-1 bar-1 Henry's law constant for methane 

solubility in water at T = 277.15 K 

0.0021 Calculated 
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Aqueous diffusion coefficient: DCO2 =1.91×10-9 m2 s-1, DCO3 =1.19×10-9 m2 s-1, DH+ =6×10-9 m2 s-1, DOH = 5.27×10-

9 m2 s−1, DB(OH)4 = 9.56×10-10 m2 s-1, DHCOO- = 4.9 ×10-10 m2 s-1, DHCOOH = 1.516×10-9 m2 s-1, DHS = 1.19×10-9 m2 s-1, 
DCH4 = 9.95×10-9 m2 s-1, DSO4 = 6.37×10-10 m2 s-1. Fixed concentration boundary conditions are imposed for all 

chemical species at the outer domain boundary except for MH, for which no flux condition is imposed at the aggregate 

surface. Boundary conditions are set to: 0.1 mM HS-, 2.3 mM HCO3
-, pH = 8.2, 28 mM SO4

2-, 4.5 mM CH4, 10 µM 

HCOO-. Henry's law constant for methane solubility in water kH(T) is determined to be 0.0021(mol kg-1 bar-1) using  

kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K))), where k°H is Henry's law constant for solubility in water at 

ρSW 1.03×103  kg m-3 Density of seawater 1.03×103 (38) 

Geometry 
rA 0.4 µm Radius of archaea cell  0.4 (3, 28, 29) 

rB 0.4  µm Radius of bacteria cell 0.4  

ragg 5-200 µm Radius of AOM aggregate 20 Imposed 

renv 12.5-500  µm Radius of environment surrounding 

aggregate 

50 Imposed 

NANME varied cells Number of archaeal cells 2.68×106 Calculated 

Vagg varied m3 Volume of aggregate 3.35×10-14 Calculated 

Cell-specific activity 
μ varied d-1 Cell growth rate  Calculated 

from  

ρ 4.8×105  g cell dry 

weight per m3 

Biomass density of cells 4.8×105  (11) 

Bcell 2.68×10-19  m3 per cell Cell density 2.68×10-19  Calculated 

YCH4 0.2-0.72 g cell dry 

weight per 

mol CH4 
oxidized 

Growth yield for archaeal cells 0.65  (39) 

YSO4 0.1-1 g cell dry 

weight per 

mol SO4
2- 

reduced 

Growth yield for bacterial cells 0.55 Imposed 

Tincub 7 d Length of the incubation 7 Measured 

Flabel 1 - Labeling strength of 15N 1 Measured 

Fnat 0.0036 - Natural abundance of 15N 0.0036 (24) 

Ffinal varied - Single-cell nanoSIMS measurement - Measured 

Electron conduction 
Mtot 0.01-100  mM Concentration of redox molecules 10 Estimated 

kD 10-5-105 m4 mol s-1 Rate constant of electron transport on 

conductive pili or matrix 

105 Estimated 

kEF 10-9-105 m4 mol s-1 Electric field rate constant 10-5 Estimated 

kact 2.5×10-10-

10-7 

m s-1 Activation loss rate constant 2×10-9 Estimated 

knw 1017-1020 mol-1 Constant associated with conductive 

network 

1.2×1019 Estimated 

δ 0.7 nm Redox molecules spacing width 0.7 (40) 

σ 10-4-10-1 S m-1 Conductivity of conductive pili or 

matrix 

10-2 (10, 17, 41-

47) 

β 0.5 - Charge transfer coefficient 0.5 (27) 

Nnw 105-108 - Total conductive connections in an 

aggregate 

4×106 Estimated 

Nnw,cell 1-1000 - Number of connections per cell 64 Estimated 

dnw 4 nm Diameter of a single pilus 4 (17) 

Anw 1.26×10-17 m2 Cross-section area of a single pilus 1.26×10-17 Calculated 

Aact 10-14-10-12 m2 Redox active surface area per cell, 10% 

of the cell surface area 

2×10-13 Calculated 

(27) 
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298.15 K (mol kg-1 bar-1) and d(ln(kH))/d(1/T) is the temperature dependence constant (K) (37). The concentration of 

CH4 in incubation medium then can be derived using [CH4] = pCH4kH(T)ρSW, where pCH4 is the CH4 pressure (bar), ρSW 

is the density of incubation medium.  
 
Statistical analysis 

Data are represented as mean ± standard error. The statistical difference between the 

observed and simulated cell-specific activity patterns was assessed by one-way analysis of 

covariance (ANCOVA) of the slopes of the regression of cell-specific activity vs. distance from 

archaea-bacteria interface. Values of p < 0.05 were considered statistically significant, whereas 

values of p > 0.05 indicated no statistical significance for the slopes of the regression lines. The 

statistical analyses were performed using MATLAB 2018 (MathWorks, Natick, MA, USA). 

Results and Discussion 

Large, segregated aggregates display significant spatial variation in cellular activity  

Previous experimental work measuring the activity of individual cells in syntrophic 

ANME-SRB aggregates demonstrated a lack of significant correlation between cellular activity 

and distance to syntrophic partner over short distances (~ a few cell diameters; (11)).  These 

observations were sufficient to rule out molecular diffusion as the major mechanism of electron 

transfer between the two partners, but were limited in their spatial extent due to relatively small 

aggregate size, as well as the complex three-dimensional structure of many AOM consortia that 

made it difficult to confidently assign distances to nearest partner that may lie above and below 

the plane when analyzing single two-dimensional sections.  We have occasionally observed 

exceptionally large AOM consortia in nanoSIMS analyses where significant variations in activity 

appear to be related to distance from their nearest partner (for example Fig. B1).  While these 

previous observations suggested that cellular activity might be correlated with distance to nearest 

syntrophic partner over large distances, it was not possible to determine a precise magnitude of the 

activity gradients without additional information about the three-dimensional aggregate structure.   
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To overcome these challenges, we cut and analyzed parallel sections through a large well 

segregated ANME-2/SRB consortia after 15NH4
+ stable isotope probing allowing us to roughly 

reconstruct the spatial distribution of both partners across the entire consortia (Fig. 3.1A-B).  Two 

features of this >50 µm AOM consortia made it ideal to study.  First, the spatial organization of 

the syntrophic partnership is simple and well defined, with no incursions of bacteria into the 

ANME-dominated interior of the aggregate.  Second, the bacteria form a crescent around the 

archaeal core, instead of a complete shell.  Had the bacteria formed a complete shell there would 

be perfect correlation between ANME distance to nearest syntrophic partner, and distance to the 

surface of the aggregate, making these two potential controls on cellular activity difficult to 

disentangle.  With a crescent geometry however, some ANME can be found at the surface of the 

consortia closest to the surrounding environment and at great distance from the nearest SRB, 

allowing us to distinguish between the effect of syntrophic distance and distance to environment 

which supplies the growth substrates CH4, SO4
2- and the tracer 15NH4

+.  Since the minimum of 

ANME activity was observed to be near the aggregate surface, far from the SRB, we can conclude 

that distance to partner is more significant than substrate limitation due to distance from the 

aggregate surface (Fig. 3.1C).    

A unifying model across aggregate size 

Observations of 15N incorporation in single cells from a section cut approximately normal 

to the ANME-SRB interface revealed a decrease in the anabolic activity of both ANME and SRB 

with increasing distance to their nearest syntrophic partners (Fig. 3.2A).  This effect was highly 

significant and explained large portions of the variability of cellular activity in the two populations, 

with a slope of -0.0238±0.0009 fmol cell-1 d-1 µm-1 (R2 = 0.69) and -0.0594±0.0083 fmol cell-1 d-

1 µm-1(R2 = 0.27) for archaea and bacteria, respectively (Fig. 3.2A). Our base model in which 92.5% 
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of the electrons produced in the oxidation of CH4 are transferred to the bacteria via DIET and 7.5% 

of the electrons are transferred via MIET provides the best fit the activities observed in aggregates 

across a wide range of aggregate sizes (Fig. 3.2). Cell-specific activities decrease slightly with 

increasing distance from the nearest syntrophic partner in a simulated 20 µm radius aggregate, 

with slopes of  -0.0267±0.0004 fmol cell-1 d-1 µm-1 (R2 = 0.9954) and -0.0653±0.0017 fmol cell-1 

d-1 µm-1 (R2 = 0.9936), for archaea and bacteria activity, respectively (Fig. 3.2A). ANCOVA 

revealed that the slopes and intercepts of the regressions of model results and of observational data 

do not differ significantly, with p = 0.30 and 0.71 for archaea and bacteria, respectively. 

Simulations for a small aggregate with the identical model parameterization retained good 

agreement between observed and modeled metabolic activity pattern (Fig. 3.2B), with p = 0.96 for 

both archaea and bacteria comparing to observations. 

 

Fig. 3.2. Measured and modeled cell-specific activity in aggregates with a radius of 20 µm (A, this 

study) and 5 µm (B, (11)), plotted against their distance from the closest syntrophic partner 

(‘interface’). Data were fitted using linear regression with 95% confidence interval. Note that the 

cell specific rate constants were not re-tuned to match the activities in the small aggregate. 

How far apart can ANME and SRB cells be and remain active in AOM consortia? 
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The metabolic activity of syntrophic AOM aggregates can be limited by the availability of 

electron donors and acceptors, as reflected in the overall reactions (Rxn 3.1&3.2). Here we 

investigate the internal and external constraints that potentially limit the metabolic activity within 

the context of the observed aggregate arrangement. All archaeal and bacterial cells remained active 

over a wide range of aggregate sizes in our model simulations (Fig. 3), however the simulated 

activity of individual cells did decrease with increasing distance from their syntrophic partners. 

This effect is observed in model simulations for both archaea (Fig. 3A) and bacteria (Fig. 3B) and 

is slightly steeper for the latter. The shape and magnitude of the activity decrease curve was nearly 

identical between aggregates of different sizes, highly consistent with what we observed with 

anode-respiring G. sulfurreducens biofilms of different thicknesses under high and low anode 

potentials (22). We included in our model simulations segregated aggregates with radii up to 100 

µm (same spatial arrangement as shown in Fig. 1C). Cellular activities in strongly segregated large 

aggregates experienced a >70% drop in activity as separation distances increase to 15 µm and 30 

µm for bacteria and archaea, respectively (Fig. 3).  

Simulations including molecular diffusion (MIET) of potential syntrophic intermediates 

such as formate in addition to DIET revealed that metabolic activity could become severely limited 

with large separation distances between partners (aggregate size ragg = 60 µm, see Fig. A9), even 

though formate-based MIET only accounted for 7.5% of the electron transfer from archaea to 

bacteria. It is noted that even at this size extreme, the mass transport of substrates and metabolites 

including CH4, SO4
2-, HS-, H+, HCO3

- was not limiting due to the relatively high concentrations of 

methane and sulfate at the boundary, varying by a factor less than 1% except for HS-, which varies 

from 0.1 across the aggregate (data not shown). These results suggest that this distance dependent 

decrease in cellular activity may be a critical factor determining the size of mono-species clusters 
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within AOM consortia.  Larger aggregates thus would be expected to have a more interspersed 

distribution of archaeal and bacterial partners in order to maintain high levels of single cell activity, 

or once a segregated aggregate size limit is reached, larger consortia then separate into two or 

transform into a larger clustered morphology as bacteria grow into the archaeal core (39). 

 

Fig. 3.3 Cell-specific activity vs. distance from syntrophic partner for archaea (A) and bacteria (B). 

For a wide range of aggregate sizes (ragg = 5, 20, 40 and 100 µm), the simulated activity distribution 

is similar and depends on the distance from the interface between archaea and bacteria. At a 

distance of approx. 30 µm, the activity of the bacteria approaches 0 (B).  

What controls the spatial distribution of activity?  

The spatial variation of the cell metabolic activity was found to depend on the usable 

electric potential (…+4&), that is set by the available energy from the reaction (at approximately 

0.0357 V for archaea and bacteria), minus the effect of losses. The activation loss was the main 

limiting factor for loss at distances approximately ≤ 8 µm to the partner interface, while ohmic 

losses were important at larger distances (Fig. 3.4). This pattern was observed for both archaeal 

and bacterial cells. Activation loss was maximal at the archaea-bacteria interface, with a value of 

0.013 V and decreased away from the archaea-bacteria interface. In contrast, ohmic resistance loss 

increased from 0 to ~0.02V as the distance from archaea-bacteria interface increased, leading to a 
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maximum total potential loss at a value of ~0.023 V for archaea and bacteria. As the net available 

potential (…+4&) approaches the minimum potential required for ATP synthesis (~0.013 V; (25, 

26)), metabolic rates decrease due to energetic limitations, as indicated by the thermodynamic 

factor FT approaching 0 (Fig. 3.4).  

 

Fig. 3.4. Factors controlling cell activity as a function of the distance from the archaea-bacteria 

interface at aggregate radius of 60 µm for archaea (A) and bacteria (B). The left axis reflects 

electric potential for activation loss (ηact), ohmic resistance loss (ηom), net available potential 

(ηnet), potential from reaction (ηrxn), and minimum potential required for ATP synthesis (ηATP). 
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The right axis reflects thermodynamic factor FT. The shaded areas highlight the range of 

distances encountered in the observed aggregate with a 20 µm radius (Fig. 1). 

Voltage losses depend on a number of factors, including the concentration of redox active 

molecules (Mtot), conductive network density (Nnw,cell), their conductivity (σ), cell redox active 

factor (kact×Aact) and cell rate constants (kA, kB).  Activation loss was strongly impacted by kA, kB, 

Nnw,cell and kact×Aact, less so by Mtot and σ (Fig. 3.5A). Increasing  kact, Nnw,cell, kact×Aact by a factor 

two or kA, kB by 1.5-fold reduced the activation loss by 6.4±0.9 mV, 6.3±1.3 mV, 6.4±0.9 mV and 

3.9±1.6 mV, respectively, while increasing Mtot or σ by a factor of two led to an increase of 

activation loss by 1.0±1.1 mV and 0.4±0.7 mV, respectively. kA, kB and Nnw,cell showed similar 

effects on activation and ohmic resistance losses, but changes in kact×Aact, Mtot and σ had opposite 

impacts, with an increase by a factor two of kact×Aact, Mtot and σ leading to change in ohmic 

resistance losses by 0.5±0.7 mV, 2.4±1.9 mV and -1.6±1.1 mV, respectively (Fig. 3.5B). In total, 

kA, kB, kact×Aact and Nnw,cell exhibited substantial impact on net available potential, whereas Mtot 

and σ showed moderate effects, in part due to the counteracting effect on …]£& and …¿; for Mtot and 

σ (Fig. 3.5A&B). It should be noted that these results are insensitive to changes in kD and kEF (Figs. 

S14&S15). In agreement with results reported previously (13), we observed no significant 

difference between simulations with electric field as the sole driving force and simulations with 

redox gradient as the driving force. Note that changes in these parameters not only affect the 

overall energetics for the AOM consortium, but they can also affect how cell activity varies with 

distance from a syntrophic partner, where changes in Mtot, σ and kact×Aact alter the shape of the 

activity-separation distance pattern, while kA, kB and Nnw,cell mostly affect the slope of the linear 

relationship, but not the shape (Fig. B16).  
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Fig. 3.5. Changes of activation loss ∆ηact (A), ohmic resistance loss ∆ηom (B) and net available 

potential ∆ηnet (C) due to a change in total redox active molecules (Mtot), number of conductive 

connections (Nnw,cell), conductivity (σ), cell redox active factor (kact×Aact), cell rate constants (kA, 

kB). Error bars reflect that the impact is not exactly constant with distance for archaea-bacteria 

interface (see appendix Fig. B11-13).  

Because several poorly characterized model parameters impact the resulting magnitude of 

activity and spatial patterns of electric losses (Figs. 3.5, B11-B13), our work emphasizes important 
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targets for future study and observation, such as an assessment of the number of pili/wire-like 

structures recently observed to be involved in EET for some archaeal/ bacterial syntrophic 

consortia (12, 20). The accurate quantification of these connections is challenging, as not all such 

structures are necessarily conductive, and most observations are two-dimensional sections through 

a three-dimensional matrix of extracellular material. However, the extent to which archaeal and 

bacterial cell are connected is important, because variations in the extent of conductive connections 

can substantially alter the metabolic activity pattern by influencing both activation loss ηact (Fig. 

3.5A) and ohmic resistance loss ηom (Fig. 3.5B), and hence the net available potential ηnet (Fig. 

3.5C). Halving Nnw,cell  significantly limited the metabolic activity due to the reduced availability 

of ηnet (Fig. 3.5C), in agreement with Storck et al. (2016), who reported that decreasing conductive 

network density (Nnw,cell) by a factor of 10 led to a 60% decrease of electron transport rate. Doubling 

Nnw,cell resulted in a homogenous distribution of metabolic activity, similar to the finding in the 

study by Storck et al. (2016), in which electron transport rate increased slightly for a 10-fold 

increase in Nnw,cell, suggesting a plateau was reached. Furthermore, while no data on AOM 

consortia conductivity σ have been published yet, such measurements have been made in 

Geobacter biofilms (17, 41-44), Geobacter pilin nanofilaments (17, 45), Desulfovibrio 

desulfuricans nanofilaments (46), methanogenic aggregates from anaerobic wastewater reactor 

(10), granule from anaerobic bioreactors (47), among others. The conductivity σ has a significant 

impact, with a reduction by a factor of 10 to 10-3 S m-1 drastically reducing the metabolic activity 

(Fig. B16C). By increasing conductivity to 10-1 S m-1, metabolic activity reached a homogenous 

spatial distribution, owing to the increased ηnet at higher conductivity (Fig. 3.5C).  
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Type and strength of syntrophic coupling between archaea and bacteria  

A hybrid DIET-MIET mechanism as implemented in our baseline simulation can lead to a 

higher energy yield than electron transfer by DIET alone. The conditions for sulfate-reducing 

bacterial cells were slightly more energetically favorable with a 92.5% DIET / 7.5% MIET hybrid 

metabolism (Fig. 3.6 and Fig. B2), with ∆GR(2) of  -26.1 kJ mol-1 for 100% DIET vs. -27.3 kJ mol-

1 for a model with mixed DIET and MIET (specific parameters included: CH4 = 4.5 mM, SO4
2- = 

28 mM, HCO3
- = 2.3 mM, HS- = 0.1 mM, HCOO- = 1 μM, MH = M = 5 mM, pH = 8.2, and T = 

277.15K). As a consequence of this difference in reaction energetics, bacterial activity in the 100% 

DIET simulation decreases more rapidly with separation distance (Fig. B2) than our baseline 

92.5/7.5 hybrid model.  

Simulations with chemical conditions that vary spatially at rates matching those observed 

in the 15N FISH-nanoSIMS experiments show that at < 90% DIET, methane oxidation shut down 

due to the buildup of formate, leading to a net energy gain (∆GR(1) - ∆Gloss) less than the minimum 

requirement for ATP production (∆GATP). At 100% electron conduction by DIET, archaea were 

generally active and not limited by the accumulation of reaction products, but the bacteria become 

susceptible to limitation from voltage losses. Consistent with the simplified thermodynamic 

calculations (Fig. 3.6), the model simulations showed a narrow window with approximately 90-

100% DIET that enabled energetically favorable conditions for both bacterial and archaeal cells 

(Fig. 3.6). Importantly, a hybrid mechanism can affect the balance of energy gains between the 

syntrophic partners, which results in improved energetic conditions for the partner most 

energetically constrained, thereby benefitting both archaea and bacteria (Fig. 3.6). 
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Fig. 3.6. The Gibbs free energy change (∆G) against the change of electron conduction via DIET, 

while circles and triangles represent bacteria and archaea respectively. Simulations were run at 

aggregate radius of 20 µm with baseline parameters. The estimated ∆GR(1) and ∆GR(2) were 

calculated with CH4 = 4.5 mM, SO4
2- = 28 mM, HCO3

- = 2.3 mM, HS- = 0.1 mM, MH = M = 5 

mM, pH = 8.2, and T = 277.15K, with HCOO- varying between 0.1-100 μM to reflect different 

intra-aggregate and/or environmental conditions. The light and dark grey shaded areas represent 

the resulting 95% confidence interval for the Archaea and Bacteria, respectively.  

Potential for decoupling of archaea and bacteria metabolisms 

We considered metabolic decoupling between the ANME and SRB partners, where the bacteria 

may use electron donors derived from the external environment rather than be provided the 

syntrophic partner. We explored the impact of externally-sourced formate on bacterial metabolism 

by loosening the coupling between archaeal and bacterial metabolism (see Appendix A2). Formate 

concentrations in marine sediments range from below detection limit (0.37 μM) to 10.38 μM in 
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Baltic Sea sediments (48), 2-18 μM in northern Gulf of Mexico sediments (49), up to 59.5 μM in 

Hydrate Ridge sediments (50), 12.1 μM in Aarhus Bay sediments (51), and 36-158 μmol/kg in the 

fluid from Lost City hydrothermal field (52). Thus, simulations were carried out for 1-100 µM 

formate in the environment. Increasing formate from 1 µM to 15 µM led to a significant increase 

of bacterial activity at the aggregate surface, while showing nearly no impact on archaeal cells 

(Fig. B8A). At a lower HCOO- concentration (1 µM), bacterial cells exhibited a slight shortage of 

HCOO- supply away from the archaea-bacteria interface (Fig. B8B). At high formate (> 15 µM), 

carrying out archaeal CH4 oxidation could become thermodynamically unfavorable due to the 

accumulation of HCOO- (not shown). Noticeably, the Gibbs free energy change for sulfate 

reduction (∆GR(2)) significantly decreased from ~-27.5 kJ mol-1 to -30.05 kJ mol-1  when changing 

formate from 1 µM to 15 µM (Fig. B8C), leading to a significant increase of bacterial 

thermodynamic constraint FT from 0.35 to 0.7 at the aggregate surface, while no significant 

changes were observed for archaea (Fig. B8D). Notably, the increased formate from 1 µM to 15 

µM did not significantly impact the total flux of HCOO-, though an increase of HCOO- 

concentration within consortium was observed (Fig. B8B). 

Conclusions 

We report on the metabolic activity distribution of individual cells in a large AOM 

consortium using FISH-nanoSIMS. A decline in cell activity with the increasing distance from 

archaea-bacteria interface was observed in a section through the center of the aggregate, cut 

approximately normal to the ANME-SRB interface.  These results provide the first quantitative 

assessment of the growth penalty that exists over large separation distances between these 

syntrophic partners, an effect which is not apparent in small or well-mixed aggregates as we have 

reported earlier (11, 13). A reactive transport model accounting for thermodynamic limitations on 
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cell metabolism, as well as activation and ohmic resistance losses in the exchange of electrons 

between syntrophic microorganisms successfully reproduced these observations.  Ohmic 

resistance is shown to limit activity for electron transport over at further distance (> 8 µm in our 

model), with the abundance of redox active molecules (Mtot), conductive network density (Nnw,cell), 

cell redox active factor (kact×Aact), their conductivity (σ) and associated cell rate constants (kA, kB) 

having a strong impact on magnitude and distribution of metabolic activity within microbial 

aggregates. Within the context of a strongly segregated AOM aggregate, cell activity decreases 

with distance to the syntrophic partner even with electron transfer via DIET over sufficiently long 

distances. This decrease in activity is expected to constrain the maximal size of mono-species 

clusters within AOM consortia. It has been long speculated that close cooperation and 

rearrangement between microbial clusters might be necessary to form a large syntrophic aggregate 

with efficient metabolite transfer between partners (53). While the general trend remains true, 

DIET allows for much bigger clusters than can be supported with MIET alone. Our model also 

revealed advantages of a hybrid DIET-MIET mechanism, allowing for balanced microbial 

energetics for both syntrophic partners, but opening up the potential for decoupling of the sulfate-

reducing bacterial partner from the methanotrophic archaea by utilizing electron donors from 

environment. This decoupling has been observed in thermophilic AOM consortia where it has been 

shown that the ANME-1 sulfate-reducing bacterial partner ‘HotSeep-1’ can utilize H2 and grow 

independently of ANME.  The addition of H2 to incubations can be used to decouple and 

specifically culture HotSeep-1, even though MIET using H2 is not thought to be an important form 

of syntrophic electron transfer (12), as  detectible hydrogenases are lacking in ANME (54) and 

SRB (55) genomes recovered from cold seeps, and experimental data demonstrated that excess 

hydrogen addition does not inhibit AOM activity in sediment incubations and enrichment cultures 
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(56-58). However, while we have modeled the MIET intermediate as formate in this study, other 

small redox active molecules, for example flavins, may act as electron shuttles.  Future work will 

help understand these mechanistic questions by a careful comparison of ANME and SRB genomic 

potential and expression with their cellular activity patterns. 
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CHAPTER 4 

SPATIALLY RESOLVED ELECTRON TRANSPORT THROUGH ANODE-RESPIRING 

GEOBACTER BIOFILMS: CONTROLS AND CONSTRAINTS 3 

 
3 He, X., Chadwick, G., Jiménez Otero, F., Orphan, V. and Meile, C. (2020) Spatially Resolved Electron Transport 

through Anode-Respiring Geobacter Biofilms: Controls and Constraints. To be Submitted to ChemSusChem. 
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Abstract 

Microbial fuel cells (MFCs) harness the electricity produced in the microbial 

oxidation of organic molecules, with applications in renewable energy production, 

environmental remediation or for powering remote sensors. MFCs with anode-respiring 

Geobacter sulfurreducens have been shown to produce high current densities; however 

electron transport in G. sulfurreducens biofilms is not fully understood. Here, we utilize a 

spatially resolved numerical model describing this electron transfer to constrain 

mechanisms and controls on metabolic activity. Our model reproduces the metabolic 

activity profile obtained using stable isotope probing with nanoSIMS under high (+0.24V) 

and low (-0.1V) anode potentials. The simulations indicate that the distribution of the 

electric potential and pH both control cellular metabolism: Activation loss and ohmic 

resistance loss are responsible for the observed general declining trend of metabolic 

activity with distance from the anode, while low pH (approximately 6.15) is implicated in 

the lower microbial activity near the anode surface that was observed at high anode 

potential. Model simulations reproducing the experimentally determined activity patterns 

also support the presence of both high and low-potential modes of activity in G. 

sulfurreducens biofilms, with a shift from a redox-active molecule with a mid-potential of 

-0.07 V to one with a mid-potential of -0.15 V at an electric potential of -0.15 V. In addition 

to reproducing the observed activity distribution patterns, the model further reproduces 

independent data on currents maintained after disconnecting the electrode, supported by 

electrons temporarily stored in reduced redox-active molecules. Our model thus provides 

valuable insights into the fundamental mechanisms of electron transfer at micro-scale in 

conductive biofilms. It can be used to inform MFCs designs that maximize current 
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production by minimizing the impact of inhibitory factors, such as low pH near the 

electrode and substantially decreased electric potential at the farther distance away from 

electrode in G. sulfurreducens biofilms.  

Introduction 

Extracellular electron transfer (EET) can be carried out through the transport of 

chemical substances (mediated electron transfer) or by electron flow (direct electron 

transfer, DET) via physical contact using outer surface c-type cytochromes,(1) electrically 

conductive pili(2) or a matrix of extracellular polymeric substances.(3-5) DET is 

potentially much more efficient than MET, and effective over long distances(6). As such, 

microorganisms capable of DET have attracted attention in the fields of microbial 

physiology, microbial ecology, and biotechnology over the last decade(7-9). Particularly, 

understanding the EET mechanisms in current generating biofilms on electrodes in 

microbial fuel cells (MFCs) and the factors controlling their metabolic rates is important 

for the optimization of practical applications and a better understanding of natural and/or 

industrial systems.(10) 

Geobacter sulfurreducens, one of the best studied model organisms carrying out 

DET, has been demonstrated to grow in thick biofilms that produce high current densities 

in MFCs in which the anode serves as the sole terminal electron acceptor(11, 12). Anode 

potential regulates metabolism, electrochemical respiration and anabolic activity in G. 

sulfurreducens biofilms.(13-18) However, despite many novel experimental findings in the 

past decade, a major challenge still exists to understand the fundamental EET mechanisms 

in G. sulfurreducens biofilms.(19-22) Recent studies of anode-respiring G. sulfurreducens 

biofilms have revealed that redox-active molecules such as outer membrane and/or 
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extracellular multi-heme c-type cytochromes(7, 23-26) and Fe-containing proteins(27), 

rather than chemical intermediates,(28-31) play important roles in the electron transfer 

from G. sulfurreducens to the electrode. Several studies suggest conductive filaments (pili) 

may play a key role in the long-range EET of G. sulfurreducens(32-37), while other studies 

show conductive pili may not be necessary.(38, 39) 

Understanding how G. sulfurreducens produces such high current densities, and 

what ultimately is responsible for limiting this process motivates the development of a 

reactive transport model. Such models account for the fundamental physics and chemistry 

in natural systems and can quantitatively integrate microbiological insights into an 

environmental context(40). For example, Marcus et al. (2007)(41) and Torres et al. 

(2008)(42) showed that EET in G. sulfurreducens biofilms can be limited by biofilm 

conductivity, electron donor flux and local potential. Our own earlier efforts have 

successfully developed reactive transport modeling framework accounting for sulfate-

coupled anaerobic oxidation of methane mediated by syntrophic associations between 

anaerobic methanotrophic archaea and sulfate-reducing bacteria across a range of 

aggregate geometries and sizes. These models were validated with empirical data from 

methane-oxidizing aggregates using fluorescence in situ hybridization (FISH) coupled 

with nanoscale secondary ion mass spectrometry (nanoSIMS) to measure cell-specific 

spatial patterns in 15NH4
+ incorporation (a proxy for anabolic activity) in archaea and 

sulfate-reducing bacteria (43, 44). Here, we adopt a similar approach to study the spatially 

resolved electrochemical activity and metabolic activity in G. sulfurreducens biofilms. 

Earlier studies suggest that both pH(45-47) and electric potential dependencies(13-18, 48) 

shape cell activity within biofilms, yet no robust cell activity data was available. Recent 
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data collected using stable isotope probing coupled to nanoSIMS revealed distinct 

metabolic activity stratifications in anode-respiring G. sulfurreducens biofilms under two 

different anode redox potentials(49). These unique experimental results provide significant 

constraints on reaction transport models of EET, enabling us to identify the controls on 

current production with relevance to the functioning of MFCs.  

Materials and Methods 

Experimental data 

The experimental data used in this study are described in Chadwick et al. (2019). 

In brief, the anabolic activity of G. sulfurreducens biofilms was measured by 15N fractional 

abundance using nanoSIMS.(49) G. sulfurreducens biofilms were incubated with 15NH4
+ 

as the nitrogen in an anaerobic chamber with graphite electrodes (3 cm2) serving as the 

electron acceptor. The electrode was poised at anode electric potentials of -0.1 V or +0.24 

V vs. standard hydrogen electrode. Acetate (20 mM) was provided as the electron donor. 

After incubation for 6h (the duration of one doubling time), the intact G. sulfurreducens 

biofilms on the electrode were chemically fixed, embedded in resin, and thin sectioned. 

Spatial patterns of anabolic activity (cellular 15N incorporation) in the electrode-attached 

biofilm were then measured on a CAMECA nanoSIMS 50L instrument. Using cellular 15N 

enrichment data, the growth rate (μ in d-1) of G. sulfurreducens was calculated as 

⁄ =
K¤‹	(,K

¥ŸyPX›L¥PX◊
¥›Xfi$›L¥PX◊

)

9yP§ufi
         Eq. (4.1) 

where Tincub is the length of the incubation (d), Flabel is the labeling strength of the nitrogen 

source provided (15NH4/(14NH4+15NH4) = 0.06), Ffinal is the 15N fractional abundance 

measured in the biofilm using nanoSIMS, and Fnat = 0.0036 is the natural 15N fractional 

abundance. The observed N assimilation is related to modeled metabolic rates through the 
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growth yield (YAc in grams dry weight per mol Ac oxidized), and cell-specific metabolic 

rates (Robs in fmol-Ac cell-1 d-1) were calculated as 

(¿Æ^ = ⁄ ∙  /‚ñ£         Eq. (4.2) 

where ρ is biomass density (Table 1). Following King et al. (2009),(50) YAc was calculated 

as a function of acetate uptake (UAc, see Eq 4)  

‚ñ£ = max n0, å ÍR§K£

Æ	AÍ
q       Eq. (4.3) 

where the constants a, b and c are set to 5 grams dry weight (gdw) mol-Ac-1, 2 mM-Ac 

gdw-1 h-1, and 1 mM-Ac gdw-1 h-1, respectively (Fig. C1B). For the experimental 

conditions, this resulted in a growth yield YAc of 4.32 gdw mol-Ac-1, consistent with values 

reported in earlier experimental studies (ranging from 1 to 11 gdw mol-Ac-1).(51, 52) 

Model Description 

The model describes acetate oxidation, with the produced electrons being 

transported to the anode via electron conduction. The rate of acetate oxidation is set to 

depend on both the acetate concentration, the availability of the extracellular electron 

acceptor, pH and the redox potential in the biofilm.  

Metabolic Reactions 

We model the EET in G. sulfurreducens biofilms with by representing three central 

processes: acetate uptake and oxidation with electron transfer to reduced redox-active 

molecules Cytred(Fe2+), electron transport in conductive biofilm, and finally electron off-

loading onto the anode. 

Acetate uptake  

The uptake of acetate (UAc in mM-Ac gdw-1 h-1) can be described as a function of 

acetate availability(50) using  
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Îñ£ = Ï;]*
[ñ£]

>?,R§	A[ñ£]
	       Eq. (4.4) 

where vmax and Km,Ac are set to 20 mM-Ac gdw-1 h-1 and 10 µM, respectively, reflecting the 

relationships established in King et al. 2009 (Fig. C1A). 

Electron transfer to Cytred by acetate oxidation 

Eight electrons are produced per mol Ac oxidized, in which a fraction (fc) goes to 

catabolic reactions that produce CO2, and the remainder is used in anabolic reactions (fa, 

with fa + fc = 1) that produce biomass, which is represented by CH1.8O0.5N0.2.(20) With that, 

the fraction of carbon that goes to biomass synthesis (fa) from acetate oxidation is  

ï] =
ÌR§

p�.}	[\	;¿¡LQ]×p
         Eq. (4.5) 

where the factor of 2 represents 2 mol carbon goes to biomass (CH1.8O0.5N0.2) per mol 

acetate oxidized. 

The electron transfer from acetate oxidation to reduced redox-active molecules 

Cytred(Fe2+) and CO2 is given as 

v~ÉvÅÅK + ï]
ò.p

ò.ßpß
Œ~�

A + n4ï£ − ï]
ò.�

ò.ßpß
q~pÅ + 8ï£vÒ¿*{≤4z‡|) 	→ n2ï£ +

ï]
ò.òß

ò.ßpß
q~vÅÉ

K + êX
ò.ßpß

v~,.•Åò.ßŒò.p + n9ï£ − ï]
ò.p¶ß

ò.ßpß
q~A + 8ï£vÒ)45(≤4m‡)Rxn. (4.1) 

For convenience, we refer to Cytox(Fe3+) and Cytred(Fe2+) as Cytox and Cytred, 

respectively. We estimate the metabolic rate Rgeo as a function of the availability of acetate 

and oxidized redox molecule Cytox, as well as external constraints including an electric 

potential dependency (Fө) and a pH dependency (FpH):  

(\4¿ = =£4¡¡3\4¿
[ñ£]

>?,R§A[ñ£]
[vÒ¿*] ∙ 7Û ∙ 7Ùù     Eq. (4.6) 
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where kcell is the cell-specific rate constant, Bgeo is the cell density, Km,Ac is the half-

saturation constant for acetate. The electric potential dependency (Fө) is formulated as a 

function of the electric potential in the biofilm, ϕnet (see Eq 10),(41, 42, 53) leading to(42) 

7Û =
,

4
L¥(∅P$◊L∅¢O/V$%

ÿˆ )

VS A,

        Eq. (4.7) 

where ∅°*/ì45
ò˜  is the mid-potential of the redox-active center. The pH dependency (FpH) is 

expressed as  

7Ùù =
\

\A4LW(¯†Lü¯†)
         Eq. (4.8) 

where g = 20 and CpH is varied in the simulation with a default value of 6.15. Eq (8) 

represents the pH impact on cell metabolism of G. sulfurreducens, which grow optimally 

at near-neutral pH(49). Torres et al. (2009) showed that anode-respiring bacteria could be 

completely inhibited at pH values less than 6,(45) agreeing with the 99% decrease of 

metabolic rate at pH 5.9 reflected in Eq (8). This observation is further corroborated by 

findings of Franks et al. (2009) that indicate severe inhibition of G. sulfurreducens growth 

and 50% drop in current production by changing bulk pH from 6.9 to 6.15, and is consistent 

with the observed decrease in growth of G. sulfurreducens from 0.21 ± 0.1 h-1 to nearly 

zero (0.04 ± 0.02 h-1) on the soluble electron acceptor fumarate when the pH decreased 

from 7 to 6.(46)  

Electron conduction in G. sulfurreducens biofilms  

Early studies indicated metallic-like conductive EET in G. sulfurreducens(12, 23, 

34, 54, 55), where electrons are delocalized along a chain of molecules and are free to move 

throughout the material.(56) In contrast, electron hopping allows the electron transport 

between localized sites on a network of redox-active molecules (e.g. hemes) via tunneling 
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or overcoming potential barriers, (19, 25, 57-60)  similar to electron conduction in other 

known organic molecules.(56, 61) This mechanism, which is explored here, is supported 

by experimental findings that reveal small spatial distances (a few Å) between those 

subunits(38) and the presence of heme redox gradient(25). The electron hopping process 

in the presence of redox gradients (here the concentration gradient of Cytred) is commonly 

modeled as analogous to a random walk (second term on the right-hand side of Eq (9)), 

and the observed exponential dependence of the current on the electric potential 

gradient(62, 63) is represented by last term in Eq (4.9). Thus, electron conduction via 

electron hopping driven by redox gradient and electric field(62, 64) results in: 

![k˘&#$%]

!&
= 		8ï£(\4¿ + ∇ ∙ (à˙˚¸∇[vÒ)45]) + ∇ ∙ (=±≤[vÒ¿*][vÒ)45] èexp è

Ê≤≠˝

ìWXY9
î −

exp è−
(,KÊ)≤≠˝

ìWXY9
îî)         Eq. (4.9) 

where the first term on the right-hand side represents the loading of electrons onto Cytox at 

the location of acetate oxidation. Dcyt = kDCyttotδ is an effective diffusion coefficient, kD is 

the electron transfer rate constant, Cyttot is the total concentration (= [Cytox] + [Cytred]), δ 

is the spatial distance between adjacent redox-active molecules, E is the local electric field, 

and β is the charge transfer coefficient (see Table 4.1). The electric potential in the biofilm 

(ϕnet) is described by 

∅+4& = 	∅]+¿54 − ∅¿; − ∅]£&      Eq. (4.10) 

where ϕanode is the poised anode potential, ϕom and ϕact are the ohmic and activation voltage 

losses, respectively.  ϕom is expressed as (65) 

∅¿; = ìP‘“

œP‘
= 5

ÁñP‘

•ê§ìW$gœW$g≤

k˘&◊g◊∏fiyg8P‘
      Eq. (4.11) 
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where I is the current produced by acetate oxidation (I = 8fcRgeoNgeoF), Ngeo is the number 

of G. sulfurreducens cells, Rnw is the electrical resistance (Ω) which can be further 

described as d/(σAnw), σ is the biofilm conductivity, d is the distance from the anode surface, 

Anw is the cross-section area of a single connecting filament, Nnw is the total conductive 

connections and can be described as Nnw = CyttotVbioknw, where Vbio is the volume of biofilm 

dependent on biofilm thickness (Lbio) and electrode surface area (Aanode), and knw is the 

converting factor associated with conductive biofilm. ϕact is described using Butler-Volmer 

equation by(65) 

Õ	 = 	Œ+À7–]£&=]£&[vÒ&¿&](exp è
(,KÊ)≤

ìWXY9
Ö]£&î − exp è

KÊ≤

ìWXY9
Ö]£&î)  Eq. (4.12) 

where Aact is the redox molecule surface area per cell in m2 and kact
 is the redox molecule 

electron transport rate constant (m s-1). Note that the modeled ohmic loss and activation 

loss depend on the value of Nnwσ and NnwAactkact, respectively, where Nnw is the product of 

cell-specific connection numbers (Nnw,cell) and the cell density (Ngeo). 

At the anode, electrons are transferred from Cytred to the electrode: 

Cytred|anode à Cytox|anode + e-|anodeàcathode      Rxn. (4.2) 

The flux of electrons to the anode can be described using the Butler–Volmer equation 

£̈ = =]+¿54([vÒ)45]exp	(
Ê≤

ìWXY9
{Ö]+¿54 − Ö°*/ì45

òˆ |) − [vÒ¿*]exp	(
K(,KÊ)≤

ìWXY9
{Ö]+¿54 −

Ö°*/ì45
òˆ |))          Eq. (4.13) 

where kanode is electron off-loading constant that varies with the imposed electrode 

potential. The difference in kanode at high (+0.24V) and low potential (-0.1V) reflects the 

observation that when biofilms grown at low potential were switched to high potential for 

the short duration of the isotope labeling experiment, the activity pattern appeared to retain 
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that of a low potential biofilm, suggesting that some features of the biofilm matrix or cell 

metabolic systems were different between the two conditions (Fig 5F in reference (49)). 

Notably, the value of kanode did not affect the shape of the metabolic profile in the low 

potential simulations, but was necessary to match the maximum observed in the cell 

activity in the experimental data.  

Shift of redox pair mid-potential as a function of external potential 

Experimental studies have shown that redox-active molecule mid-potential in G. 

sulfurreducens biofilms can be regulated by the anode electric potential,(13-18) with at 

least two different types of redox-active molecule pairs with mid-potentials near -0.07 V 

and -0.15 V, respectively(14, 15). It has been noted that the low mid-potential redox centers 

(-0.15 V) are required for cells to function under low electrode potential, while the redox 

centers poised at -0.07 V only operate at high electrode potential.(17, 18) In our model, 

this is represented by a switch function that shifts the mid-potential from -0.07 V to -0.15 

V at a critical potential ϕc. In order to mimic the response of the change of external potential 

we implement the redox pair mid-potential as a continuous function (see Fig. C2): 

∅°*/ì45
ò˜ = *

4˛(∅P$◊L∅§)A,
+ ˇ	       Eq. (4.14) 

where constants x, y, and z are set to 0.08 V, -90 [1/V], and -0.15 V, respectively. ϕc is the 

critical shifting potential for mid-potential of redox-active center with a default value of -

0.15 V. 

Model implementation 

Reflecting the observations of Chadwick et al. (2019), which showed that the 

variation in 15N uptake is predominantly in the direction perpendicular to the electrode 

surface, a one-dimensional dynamic model was implemented in COMSOL Multiphysics 



 113 
 

  
  

5.4 (COMSOL Inc., Burlington, MA, USA). Batch simulations exploring the parameter 

space were executed using MATLAB 2018 (MathWorks, Natick, MA, USA), and 

simulations were run to steady state. Matching the observational data, the thickness of the 

biofilm was set to 20 µm and 15 µm for simulations under high (+0.24 V) and low (-0.1 

V) anode potentials, respectively, with a 1.8 mm bulk-liquid environment beyond the 

biofilm surface. The concentration fields of acetate, HCO3
-, CO2(aq), CO3

2-, H+, and OH- 

were simulated subject to diffusive transport and reaction, with aqueous diffusion 

coefficients listed in Table 4.1. Acid-base reactions govern the dynamic carbonate system 

and the speciation of cell surface-associated immobile carboxy (R-COOH), phosphate (R-

PO4H2) and amino groups (R-NH2) are simulated using the kinetic implementation 

described previously (66). The concentrations at the outer domain boundary were set to 

fixed concentrations reflecting environmental conditions (Table 4.1), which were also used 

as initial conditions. No flux conditions were imposed at the anode surface, where Cytred 

was converted to Cytox at a rate set by Jc, representing the off-loading of electrons to 

electrode.  

Table 4.1. Model parameter and description  

Symbol Units Value (baseline 
value) Description Reference 

Constants 
F C mol-1 96485 Faraday constant  

Rgas J K−1 mol−1 8.314 Gas constant  

Geometry 

Lbio µm 
15 Growth at low anode potential 

(49) 20 Growth at high anode potential 

Aanode cm2 3 Anode surface area 

Vbio m3 
4.5×10-9 Volume of biofilm at low anode potential 

Calculated 
6×10-9 Volume of biofilm at high anode potential 

Cell growth and Kinetics 
fa - 0.08 Fraction of Ac oxidation goes toward anabolism Estimated 

fc - 0.92 Fraction of Ac oxidation goes toward catabolism 1-fa 

T K 303.15 Temperature (49) 

kcell 
mol cell-1 d-

1 

10-14 -10-16 (6×10-

15) 
Cell-specific acetate consumption rate constant Estimated 

Ngeo - 9.2×109 Number of cells at low anode potential Calculated 
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1.2×1010 Number of cells at high anode potential 

Bgeo cell m-³ 2.04×1018 Cell density Calculated 

μ d-1 varied Cell growth rate Calculated 

Tincub h 6.2 Incubation time (49) 

Flabel - 0.06 Labeling strength of the 15N source (49) 

Ffinal - varied 
Labeling strength at the end of the incubations 

(nanoSIMS measurement) 
(49) 

Fnat - 0.0036 Natural 15N abundance  

Robs 
fmol-Ac 

cell-1 d-1 
varied Observed cell-specific metabolic rate Calculated 

Rgeo 
fmol-Ac 

cell-1 d-1 
varied Modeled cell-specific metabolic rate Simulated 

ρ gdw cell-1 9.5×10-14 Biomass density 
Estimated 

from(67) 

YAc 
gdw mol-

Ac-1 
4.32 Growth yield Calculated 

UAc 
mM-Ac 
gdw-1 h-1 

 Uptake of acetate 

Estimated from 

(50) vmax 
mM-Ac 

gdw-1 h-1 
20 Maximum uptake rate of acetate 

Km,Ac µM 10 Half-saturation concentration of acetate 

[R-
COOH]T 

µmol mg-1 0.25 
Total concentration of cell surface carboxy 

groups 

(68-71) [R-NH2]T µmol mg-1 0.25 Total concentration of cell surface amino groups 

[R-
PO4H2]T 

µmol mg-1 0.25 
Total concentration of cell surface phosphate 

groups 

Electron conduction 

Cytred mM varied Reduced redox-active molecules Calculated 

Cytox mM varied Oxidized redox-active molecules Calculated 

Cyttot mM 1-100 (10) 
Total redox-active molecules (Cyttot = Cytox + 
Cytred) 

Estimated 

Dcyt m2 s-1 
10-5-10-10 (7×10-

7) 
Effective diffusion coefficient Calculated 

kD m4 mol s-1 10-5-105 (100) Electron transfer rate constant Estimated 

δ nm 0.7 
Spatial distance between adjacent redox-active 

molecules 
(72) 

σ S m-1 
10-4-10-2 (1.5×10-

3) 
Biofilm conductivity (12, 73-75) 

d µm varied Distance from anode surface Estimated 

Anw m2 1.26×10-17 Cross-section area of a single pilus Calculated 

dnw nm 4 Diameter of a single pilus (2) 

Aact m2 10-14-10-13 Redox active surface area (65) 

β - 0.5 Charge transfer coefficient (65) 

kEF m4 mol s-1 10-5-105 (10) Electric field rate constant Estimated 

kact m s-1 10-11-10-8 (1×10-9) Activation loss rate constant Estimated 

knw mol-1 
1017-1020 

(1×1019) 
Constant associated with conductive biofilm Estimated 

kanode m s-1 10-5-10-10 Electron off-loading constant at electrode Estimated 

Fө - varied Electric potential dependency Calculated 

FpH - varied pH dependency Calculated 

ϕanode V 
-0.1 Poised low anode potential 

(49) 
+0.24 Poised high anode potential 

ϕox/red
0’ V -0.07, -0.15 Redox-active center mid-potential (14, 15) 

ϕact V varied Activation voltage loss Calculated 
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ϕom V varied Ohmic voltage loss Calculated 

ϕnet V varied External electric potential Calculated 

Jc mol m-2 s-1 varied Flux of electrons to the anode Calculated 

I A varied Current in biofilms Calculated 

Nnw,cell - 1-200 (49) Number of connections per cell Estimated 

Nnw - 
1010-1012 

(6×1011) 
Total number of connections Estimated 

CpH - 6-6.4 (6.15) 
Critical pH value at which metabolism is 

moderately inhibited 
Estimated 

ϕc V -0.15-0.1 (-0.15) 
Critical potential at which redox molecule mid-

potential is shifted 
Estimated 

Aqueous diffusion coefficient: DCO2 =1.91×10-9 m2 s-1, DCO3 =1.19×10-9 m2 s-1, DH+ =6×10-9 m2 s-1, DOH- = 

5.27×10-9 m2 s−1, Dacetate = 6.4 ×10-10 m2 s-1, DNH4 = 4×10-9 m2 s-1, diffusion coefficients are modified for 

tortuosity (76) and for the presence of organic molecules (77). Fixed concentration boundary conditions 

were imposed for all chemical species at the outer domain boundary except for CO2, CO3
2-, Cytred, R-

COOH, R-NH2, R-PO4H2. No flux conditions were imposed at the bulk-biofilm interface and anode surface 

for CO2, CO3
2-, Cytred. Fixed concentration boundary conditions were imposed for all chemical species at 

anode surface except for Cytred, in which a flux Jc (Eq. 13) was imposed to represent the electron discharge 

onto electrode. Boundary conditions are set to: 20 mM acetate, 23.8 mM HCO3
-, pH = 6.8. 

Results and Discussion 

Spatial resolution on metabolic activity 

Our simulations reproduced the distinct metabolic profiles in G. sulfurreducens 

biofilms under two different anode electric potentials (Fig. 4.1). The model shows that G. 

sulfurreducens were most active close to the electrode surface for both high and low anode 

electric potentials, with maximum cell-specific activity approximately at 30 fmol 

cell−1 day−1 near the electrode, comparable to the value reported in literature with similar 

conditions(78). At high anode electric potential (+0.24 V), two metabolic activity peaks 

were observed at a distance ~2 µm and ~12 µm away from the anode surface, respectively. 

Metabolic activity was slightly inhibited at the anode surface, whereas no such effect was 

observed for simulations under low anode potential (-0.1V). In agreement with 

experimental data, model simulations with low anode potential yield metabolic activity in 
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G. sulfurreducens biofilms approaching zero at a distance >10 μm from the electrode, with 

no secondary peak in activity.  

 

Fig. 4.1. Model validation with 15N observations using nanoSIMS at high (+0.24V) and 

low (-0.1V) anode potentials. Average 15N incorporation values for three biological 

replicates for the high potential condition and two biological replicates for low potential 

conditions.  Experimental data is binned in half-micron increments from the electrode 

surface and recast into metabolic rates using Eq.(2).  Modeling results (blue lines) are 

binned in a similar way for direct comparison.  Inset: a characteristic nanoSIMS image 

from a biofilm grown at +0.24V oriented with anode on the left side, bulk media on the 

right. The 14N12C image shows the extent of the biofilm, while 15F fractional abundance of 

15N (15F = 15N12C/(14N12C+15N12C)) reveals both a major peak of isotope incorporation at 

the biofilm-anode interface and a secondary peak in activity near the biofilm surface.  The 

horizontal white scale bar corresponds to 5µm. 
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Potential losses are the dominant factor shaping the distribution of metabolic 

activity 

In the model, two controlling factors - the electric potential dependency (Fө) and 

the pH dependency (FpH) - contribute to the observed metabolic activity profiles (Fig. C5).  

Reduced microbial activity with increasing distance from the anode surface is the dominant 

trend in both experimental data and modeling results (Fig. 4.1), and this pattern is driven 

by the decreasing electric potential (ϕnet) (Fig. 4.2A&B). Two factors, activation loss (ϕact) 

and ohmic resistance loss (ϕom), contribute in different ways to this potential loss, 

preventing G. sulfurreducens from experiencing the poised anode potential (ϕanode) 

throughout the biofilm. Activation losses occur in order to overcome the activation energy 

barrier of a redox reaction(19, 79), such as the transfer of electrons on the conductive 

biofilms (Cytred ⇌ Cytox+ e-), and from the biofilm onto the electrode (Rxn 4.2). The ohmic 

loss results from the electronic resistance on biofilms and at the electrode surface. The 

combined effect of these losses is that at the anode surface, G. sulfurreducens cells 

experienced an electric potential ~0 V and ~-0.17 V for simulations with the anode poised 

at +0.24V and -0.1V, respectively. Activation loss dominated in the first 6 µm away from 

the electrode surface, while ohmic resistance was the main loss term at a farther distance 

at high anode potential (Fig. 4.2). Together these losses reduce the electric potential 

experienced by cells in a linear fashion with distance from the anode.  This causes the 

decrease in metabolic activity away from the electrode surface as quantified by the 

potential constraint (Fө) (Fig. 4.2).  Compared to this potential constraint, the pH 

dependency plays a relatively minor role in this overall activity pattern (Fig. C3), but can 
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become important under certain incubation conditions and at high anode potentials, as 

described below. 

 

Fig. 4.2. The modeled effects of activation (ϕact) and ohmic resistance (ϕom) losses on net 

effective electric potential (ϕnet) through the biofilm, and the resulting potential constraints 

on metabolic activity (Fө) in red.  A and B represent model results for high (+0.24V) and 

low (-0.1V) anode potentials, respectively.  

A secondary metabolic peak arises from redox centers with different midpoint 

potentials 

A secondary metabolic peak at a distance > 10 µm from the electrode surface was 

consistently observed for G. sulfurreducens biofilms under high anode potential (49). Our 

model reproduced this feature of the metabolic activity profile (Fig. 4.1), and the pattern 

arises from the potential constraint Fө (Fig. 4.2A). This second peak observed in the model 

is caused by switch in the redox center mid-potential ∅°*/ì45
ò˜  from -0.07 V to -0.15 V, 

which occurs at a distance of ~10 µm from the electrode where the effective electrical 

potential (ϕnet) crosses the critical potential (ϕc). No secondary peak occurs in biofilms 

simulated at low anode potential (Fig. 4.2B), because ϕnet at the anode surface is already 

below ϕc, and therefore the entire biofilm is utilizing the lower potential redox center.  
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To further explore the effect the shifting mechanism had on the metabolic activity 

profiles, we varied the critical switching potential ϕc from -0.15 V to +0.05 V (Fig. C2). As 

expected, increasing the critical potential ϕc from -0.15V shifted the second activity peak 

towards the anode surface because ϕnet crosses the critical threshold more rapidly as ϕc 

increases (Fig. C3). Eventually only one activity peak remained at critical potentials of -

0.05V and above. This is because under these conditions, when ϕnet < ϕc even at the anode 

surface the effective potential and the pH inhibition. Furthermore, the critical potential can 

increase the pH dependency, which exerts its effect primarily at the anode surface (Fig. C4, 

and discussed below).  

pH effects on metabolic activity near the anode surface 

A feature of the metabolic activity pattern not explained by potential losses and 

redox center switching is the slight decrease in activity observed at the anode surface in G. 

sulfurreducens biofilms grown at +0.24V (Fig. 4.1).  Simulations show that G. 

sulfurreducens grown at high anode potentials experienced a stronger pH gradient than 

those at low potential, with pH values at the anode of ~6.15 and ~6.45 at high and low 

anode potential, respectively (Fig. C3). The decrease of the simulated metabolic activity 

near the anode surface at high anode potential is attributed to this difference in pH, and is 

reflected in the model by the decrease in FpH as pH approaches and falls below the threshold 

CpH (Fig. C3A & B).  

To better understand the role of pH in shaping biofilm activity we numerically 

examined the effect of varying experimental conditions and biological model parameters. 

Examination of the pH threshold shows that CpH values below 6.15 eliminate the decrease 

in metabolic activity at the anode surface (see Fig. C6). Conversely, increasing CpH causes 
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a more intense drop in FpH that begins further out in the biofilm, leading to more severe 

growth inhibition at the anode surface and shifting the first metabolic activity peak farther 

away from the anode (Fig. C6). We can exclude the possibility that the low metabolic 

activity was caused by the limited diffusion of substrate to the biofilm, as demonstrated by 

the high simulated acetate concentrations throughout the biofilm (Fig. C7) and the 

previously acquired experimental data from thick G. sulfurreducens biofilms.(49) 

pH inhibition depends on both the pH buffering capacity and the level of metabolic 

activity. A reduced pH buffering capacity, modeled here by lowering the solution HCO3
- 

concentration, can significantly limit the removal of H+ and subsequently inhibit the 

metabolic activity on the inner biofilm layer, while a high buffering capacity can diminish 

the pH inhibition at anode surface (Fig. 4.3 and Fig. C8). These results agree with a recent 

study showing that lowering phosphate buffer from 100 mM to 12.5 mM resulted in a > 

80% decrease of the current production in an anode-respiring bacteria community, owing 

to the reduced H+ transport capacity.(45) As a consequence, anode-respiring G. 

sulfurreducens biofilms may have an active outer-layer and an inactive inner layer if a low 

pH region develops within the inner layer due to poor buffering capacity of the media.  
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Fig. 4.3. The impact of bicarbonate buffering capacity on activity patterns at high anode 

potential for the early activity peak near electrode. The shaded area represents 95% 

confidence interval for the observations. 

Electron conduction and storage within the G. sulfurreducens biofilms 

Cell-specific electron transfer rate (e− cell−1 s−1) and current (fA cell-1) were 

estimated using the modeled activity data shown in Fig. 4.1. Model simulation results show 

maximum cell specific currents of approximately 200-250 fA cell-1 (1.25×106-

1.5×106 e− cell−1 s−1) and 130 fA cell-1 (0.8×106 e− cell−1 s−1) near the electrode at high and 

low anode potential, respectively (Fig. C9A). The cell-specific current in our model is on 

the same order of magnitude as earlier reports on G. sulfurreducens DL-1 (~100 fA cell-

1)(31), Shewanella oneidensis MR-1 (75-200 fA cell-1)(80), and S. loihica PV‐4 (100-400 

fA cell-1)(81). Furthermore, the simulated current densities (3.8 A m-2 and 1.3 A m-2 at high 

and low anode potential, respectively) compare favorably to those observed in the 

experiments modeled here (3-4 A m-2) (49) and fall within the range of several reported 

microbial fuel cells using G. sulfurreducens(12, 82). 

Many studies suggest that the development of redox gradients as a result of the drop 

in redox potential with distance from the anode surface is essential for electron hopping in 



 122 
 

  
  

electroactive biofilms.(19, 48, 83, 84) Our model simulations show redox potentials 

comparable to observations(84) (see Fig. C9C). The redox gradient was the dominant 

driving force for electron transport in the system with low anode potential (Fig. C9C), with 

a linear increase of Cytox concentrations from about 10% of the Cyttot at the anode surface 

to approximately 70% at the outer edge of the biofilm at low anode potential (Fig. C9D). 

This redox gradient leads to the reduction of redox-active centers coupled to acetate 

oxidation (Rxn 4.1) by G. sulfurreducens cells and the oxidation of redox-active centers at 

anode surface (Eq 4.13). Additionally, the electric field (i.e. the voltage gradient) can also 

act as driving force for electron hopping, both when the electro-inactive counterions are 

immobilized(62, 63, 85) and mobile(86-88). Our model, however, suggests that electric 

field can be, but not necessarily is, an important additional driving force for electron 

transport towards the electrode (Fig. C10A). Without the electric field as additional driving 

force, the cell specific activity pattern remains unaffected at effective diffusion coefficient 

Dcyt > 10-10 m2 s-1 (Fig. C10A&C), comparable to diffusion coefficients in dilute aqueous 

solution. At slower diffusion, the cell specific activity was significantly impacted due to 

the limited transport of Cytred (Fig. C10B).  

Our simulations reveal that cytochrome-associated electrons in Cytred are 

concentrated at the bulk-biofilm interface and decrease linearly towards the anode surface. 

Similar observations on the distribution of Cytred in G. sulfurreducens biofilms have been 

reported earlier.(19, 25, 26, 35, 48, 89) This distribution determines the redox potential in 

the biofilms, 

∅°*/ì45 = ∅°*/ì45
ò˜ +

ìWXY9

≤
`a	(

[k˘&gO]

[k˘&#$%]
)      Eq. (15) 
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which reflects the tendency of redox-active centers to accept or release electrons. The 

increasing Cytred concentration towards the bulk-biofilm interface inevitably leads to a 

decreasing ϕOx/Red farther away from the anode surface (Fig. C9D). Indeed, an earlier study 

directly observed that redox potential decreases significantly with increasing distance from 

the anode surface. Direct measurement of redox-active center-dependent redox potential 

may be difficult, as cytochromes are typically inaccessible to equilibrium electrodes in the 

biofilm matrix.(84) However, the overall oxidation status of redox-active centers can be 

estimated by electrochemical impedance and adsorption spectroscopy.(13, 24, 90) Those 

redox titration studies showed that G. sulfurreducens biofilms or cytochromes were 

predominantly reduced at lower potentials,(13, 24, 90) agreeing with our simulation result 

overall (Fig. C9E). However, those studies suggest that cytochrome would be substantially 

oxidized above +0.1V. The difference between the experimental observations and our 

simulations are likely attributed to the experimental procedure in which the cytochrome 

sample was purified(91, 92) or that G. sulfurreducens cells were starved and no acetate 

was provided prior and during the electrochemical titration(13, 24). Noticeably, electron 

stored in reduced Cytred can be recovered as current when the electric potential is sufficient 

to transport electrons toward electrode.(25, 93) Assuming each Cytred holds one electron, 

under our modeled conditions the stored electrons in Cytred at steady state are estimated to 

be ~1.84-1.99×10-18 mol e- cell-1 and 0.8-3.4×10-18 mol e- cell-1 at high and low anode 

potential setting respectively, with more stored electrons in Cytred at the biofilm surface. 

Assuming minimum maintenance requirement at 1.9×10-2 mol e- gdw-1 h-1 (51) and 

biomass density ρ at 9.5×10-14 gdw cell-1 (Table 4.1), then the stored electrons in Cytred at 

steady state would be sufficient to support such a basic rate for approximately 7 min and 
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11 min at high and low anode potential setting, respectively, even when electrode is 

disconnected. This is similar to reported value (8 min) from Esteve-Núñez et al. (2008)(94). 

Sensitivity analysis 

Nine model parameters that are poorly constrained were considered in a sensitivity 

analysis. This included the cell-specific rate constant (kcell), the activation constant (kact), 

the electron transport rate constant (kD), the electric field driven rate constant (kEF), the 

electrode discharge constant (kanode), the abundance of redox-active molecules (Cyttot), the 

density of conductive network connections (Nnw,cell), biofilm conductivity (σ), and the 

redox-active cell surface area (Aact). Our results show that kcell influenced the magnitude 

and location of both first and second metabolic peak, while kact primarily influenced the 

location of first and second metabolic peak, kanode mainly affected the magnitude of both 

first and second metabolic peak, kD and kEF showed negligible impact (Fig. 4.4A-E). 

Although the relative magnitude of impact on potential losses and pH was limited (Fig. 

C11), a reduction in kcell and kanode led to lower metabolic rates and diminished the first 

metabolic peak (Fig. 4.4A&E) as a result of slightly increased pH (Fig. C11D). Noticeably, 

the model results became less sensitive to kanode at high values. For instance, increasing 

kanode from 2.8×10-8 m s-1 to 1.12×10-7 m s-1 had little impact on the metabolic pattern (Fig. 

4.4E). 

In contrast, electrochemical properties of the G. sulfurreducens biofilm had a 

significantly greater impact on the metabolic activity (Fig. 4.4F-H). Simulations show that 

Cyttot significantly influenced the magnitude and location of both first and second 

metabolic peak, while Nnw,cell, σ, and Aact primarily influenced the location of first and 

second metabolic peak. Increasing Cyttot, Nnw,cell, σ and Aact increased the metabolic activity 
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(Fig. 4.4F-H), but also decreased the activity near the electrode by substantially lowering 

pH (Fig. C11D). Our model simulations showed that increasing biofilm conductivity four-

fold to 0.06 S m-1 diminished the ohmic resistance loss (Fig. C11A) in the G. 

sulfurreducens biofilms, while activation loss (Fig. C11B) substantially increased and pH 

was significantly lowered (Fig. C12D) near the electrode, thus making the electric potential 

more positive (Fig. C11C). This is in line with an earlier study showing that biofilms with 

a relatively high conductivity (≥ 0.05 S m-1 (42) or ~ 0.1 S m−1 (95)) had negligible potential 

losses, with only proton transport being a limiting factor (42). 

Close examination of the anodic current density suggests that increasing those 

model parameters, except the electron conduction rate constant (kD) and electric field 

transport constant (kEF), lead to an increase of current density at the anode (Fig. 4.4). Earlier 

studies found that current density of G. sulfurreducens was correlated with biomass density 

(cells per unit anode surface area) on the anode (78). Under conditions were growth 

efficiency remains relatively constant (see Figs. S1&S4), higher cell-specific activity 

implies higher biomass density assuming constant biofilm thickness. Noticeably, 

electrochemical properties of the G. sulfurreducens biofilms such as the abundance of 

redox-active molecules (Cyttot), the density of conductive network connections (Nnw,cell), 

biofilm conductivity (σ) showed relatively higher impact on the anodic current density than 

the rest of parameters shown in Fig. 4.4. A significant increase of current density by a 

factor of 43%, 29% and 25% was observed by increasing Cyttot, Nnw,cell and σ four-fold (Fig. 

4.4). Our simulation results suggest anodic current density can be increased even though 

the cell metabolism at the anode surface is limited by the accumulation of protons (Fig. 4.4 

and Fig. C12).  
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Analyzing model parameter sensitivities also allowed us to assess the controversy 

over the stratification of cell activity in G. sulfurreducens biofilms, with reports of peak 

activities near(35, 82, 96-98) and away from the anode surface(99, 100). Anode-respiring 

G. sulfurreducens biofilms may show a stratified biofilm structure with a live outer-layer 

and dead inner layer if a low pH region develops within the inner layer. As indicated by 

the metabolic activity profiles in Fig. 4.4, the location of the peak cell-specific activity 

depends on the distinct electrochemical properties of the biofilm, which in turn affects 

current densities (Fig. 4.4). It is possible that these electrochemical properties and 

metabolic activity can be regulated and optimized under different environment 

conditions.(101-105) As a consequence, different incubation conditions can lead to 

biofilms that have different abilities to control potential losses and H+ transport yielding 

observations that differ in active cell layer stratification in G. sulfurreducens biofilms. (99, 

100) (35, 82, 96-98). 
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Fig. 4.4. Sensitivity analysis of model parameters and their impact on cell specific activity 

and current density (inset): (A) cell-specific rate constant; (B) activation constant; (C) 

electron transport rate constant; (D) electric field driven rate constant; (E) electrode 

discharge constant; (F) the abundance of redox-active molecules; (G) the density of 

conductive network connections; (H) conductive biofilm conductivity; (I) redox-active cell 

surface area. Shaded area represents 95% confidence interval for observations. 

Implications 

This model synthesizes existing knowledge and establishes a quantitative 

framework of the extracellular electron transfer in anode-respiring G. sulfurreducens 

biofilms that can further guide experimental studies on kinetic and electrochemical 

properties of G. sulfurreducens biofilms under different growth conditions. We have 

identified experimentally tunable parameters such as media buffering capacity that can lead 
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to markedly different metabolic activity patterns, which can serve as valuable future 

experimental tests of the validity our modeling framework. Additionally, biofilms grown 

with mutant strains of G. sulfurreducens lacking the low potential redox-active system 

CbcL could test our prediction that the second activity peak is due to a switch in redox 

centers(106), providing a connection between genetically encoded metabolic proteins and 

cellular activity in biofilms. This approach of combining spatially resolved metabolic 

modeling with high resolution quantitative activity imaging provides much greater ability 

to constrain models, as compared to those only considering bulk processes such as the 

concentration of chemical species in the media and total current density.  Finally, our model 

provides a foundation for optimizing MFCs design for higher current densities. High 

buffering capacity is needed to maintain a healthy pH condition particularly near the 

electrode, but efforts to reduce potential losses by increasing conductivity, the abundance 

of redox-active centers and conductive network density through genetic engineering will 

likely have the greatest positive impact on overall metabolic activity and current production. 
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CHAPTER 5 

REGISTERING FISH IMAGES TO NANOSIMS IMAGES USING 

CONVOLUTIONAL NEURAL NETWORK MODELS 4 

  

 
4 He, X., Meile, C. and Bhandarkar, S. (2020) Registering FISH images to nanoSIMS images using CNN. 

To be Submitted to Imaging Science Journal. 
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Abstract 

The use of nanoscale secondary ion mass spectrometry (nanoSIMS) and 

fluorescence in situ hybridization (FISH) microscopy provides a high-resolution, 

multimodal representation of the identity and cell activity of the targeted microbial 

communities in microbiological researches. Registering FISH images and nanoSIMS 

images is of great interest to many microbiologists. However, it is a challenging task to 

register or overlay FISH images and nanoSIMS images considering the morphological 

distortion and substantial amount of background noise in both images. In this study we 

apply convolutional neural network (CNN) models to extract features at different layers or 

scales. All images were preprocessed using image segmentation and binarization to remove 

background noise. The extracted features were filtered by applying match thresholding in 

order to obtain the most significant feature point sets. Next, we used shape context to 

minimize the transformation cost for feature matching. Lastly, we employed the thin-plate 

spline (TPS) model to register FISH images and nanoSIMS images. Among the six tested 

CNN models, VGG (VGG16 and VGG19), GoogLeNet and ShuffleNet produced the best 

registration results even for highly deformed FISH images. ResNet (ResNet18 and 

ResNet101) performed relatively well on a more sophisticated image with multiple 

components. Notably, image preprocessing with segmentation and binarization 

significantly improved the registration results. Our study demonstrated that CNNs coupled 

with image preprocessing can be useful in the registration or alignment of multimodal 

images with significant background noise and morphology distortion. This paper is one of 

the first to use and evaluate deep-learned CNN features for this specific multimodal image 

registration problem. 
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Introduction 

Nanoscale secondary ion mass spectrometry (nanoSIMS) is a powerful tool for 

revealing element distribution at nanometer-scale resolution, and is used in many fields (1). 

Combining nanoSIMS imaging technique with fluorescence in situ hybridization (FISH) 

microscopy allows us to study microbial activities at a sub-cellular level (2). In our 

experimental scenario, nanoSIMS and FISH images of anaerobic methane-oxidizing 

archaea and sulfate-reducing bacteria aggregates were acquired from deep-sea sediments 

(12), where FISH images identify the different organisms using different colored probes, 

whereas nanoSIMS images provide isotope maps of the same aggregate.  By combining 

these two image modalities, we can identify cellular activities and correlate them with the 

identity and location of cells within an aggregate. 

However, there exists unequal magnification and distortion between the nanoSIMS 

and FISH images since they have different modalities. The thickness of the sample required 

for nanoSIMS analysis, and the penetration characteristics of the X-ray beam, result in the 

distortion of the nanoSIMS images (3). There are several registration algorithms that utilize 

geometrical information to align the input images (4). Noticeably, feature-based 

registration methods rely on point or shape correspondences between two images. The 

features can either be derived automatically from the underlying image characteristics, 

such as corners or contours of anatomical structures, or from markers with known positions. 

Once the corresponding points have been automatically or manually selected, their 

locations in the two images can be used to reconstruct a spatial transformation (5). This 

transformation is then applied to one of the two images so that the differences, e.g. in 
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scaling, rotation, translation or distortion, between the two images, are minimized (6). In 

contrast, intensity-based methods treat the images or image volumes as whole entities. 

Instead of specific features, only pixel intensity values are considered in order to determine 

the transformation of interest. Suitably defined similarity measures are crucial for a 

meaningful intensity-based comparison of two images. 

Currently, there are several software packages available to process nanoSIMS data, 

including WinImage software (http://www.winimage.com), L’Image software 

(http://limagesoftware.net), the OpenMIMS plugin for ImageJ 

(http://nano.bwh.harvard.edu/MIMSsoftware), and Look @ NanoSIMS  

(http://nanosims.geo.uu.nl/nanosims-wiki/doku.php/nanosims:lans) (7). Notably, 

Look@NanoSIMS offers a way to align FISH images with nanoSIMS images manually. 

However, the process is time-consuming and tedious especially when dealing with a large 

number of images. 

Here, we propose an automated program that registers FISH images and nanoSIMS 

images using convolutional neural network (CNN) models. Six CNN models include 

ShuffleNet (8), GoogLeNet (9), ResNet-18 and ResNet-101 (10), VGG16 and VGG19 (11) 

are selected to test and evaluate the registration performance. The FISH and nanoSIMS 

images that were provided were acquired using methods previously published by McGlynn 

et al. (12). The convolutional feature map is extracted at various resolutions and used for 

feature point selection. Shape context is then applied to identify matched features and the 

thin-plate spline (TPS) model is employed to register the FISH images to nanoSIMS 

images using the obtained transformation matrix. 
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Review of Related Work 

Deep learning has been increasingly recognized as a powerful toolbox for 

multimodal image registration, primarily in the fields of medical imaging (e.g. CT and MR 

images) (13-16) and remote sensing (17-19). The convolutional neural network (CNN) is 

one of the most widely used deep neural network (DNN) with well-defined convolutional 

layers, max pooling layers and softmax layer, in addition to a number of other specifically 

designed layers. The CNN has been exploited for feature extraction in image classification 

(20-23), image segmentation (24-27) and image registration (28-31) tasks. Over the past 

decade, many variants of the CNN have been developed for multimodal image registration. 

Recently, Uzunova et al. (32) proposed a statistical appearance model obtained from the 

FlowNet, a CNN variant that models the optical flow estimation problem as a supervised 

learning task (33), that can be applied to multimodal medical image registration. Hermessi 

et al. (13) developed a fully convolutional Siamese architecture for feature extraction and 

cross-correlation-based similarity metric learning. The high-frequency subbands extracted 

from the decomposed input images via the shearlet transform were then used for 

multimodal image registration by computing a weighted normalized cross-correlation 

between feature maps extracted using a CNN. Ferrante et al. (34) employed unsupervised 

CNN-based registration models for multimodal image registration of different human 

organs. They showed that CNN models trained in a different domain can be transferred to 

perform unsupervised CNN-based registration in a given domain. Training a CNN from 

scratch for each multimodal image registration problem is time-consuming and 

computationally intensive. By employing a CNN architecture that is pretrained on a rich 

image database of several million images, one can easily transfer the pre-learned weights 
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to solve a specific image registration problem without further training (see selected 

examples in Table 5.1). In this work, we expand upon these earlier works (35)-(44), and 

apply six well-known CNN architectures, i.e., ShuffleNet (8), GoogLeNet (9), ResNet-18 

and ResNet-101 (10), VGG16 and VGG19 (11) with pretrained model weights on the 

ImageNet data set to extract features and register multimodal microbiological images. 

Table 5.1. Selected examples using pretrained CNN architecture for image registration  

 
CNN architecture Target image Pretrained Dataset Reference 

Alexnet, VGG-16, VGG-

19, GoogLeNet, 

Inception-v3, 

ResNet-50, ResNet-101 

Medical image ImageNet (35) 

2-channel CNN Medical image benchmark dataset consists images of 

Yosemite, Notre Dame, and Liberty 

(36) 

FlowNet Medical image Flying Chair dataset (37) 

NeurReg Medical image Hippocampus dataset (38) 

AlexNet Daily life images ImageNet (39) 

VGG19 Remote sensing ImageNet (40) 

VGG19 Medical image ImageNet (41) 

VGG16 Medical image ImageNet (42) 

VGG16 Remote sensing ImageNet (43) 

VGG16 Remote sensing ImageNet (44) 
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Methods 

Workflow 

 

Fig. 5.1. Workflow of registering FISH images to nanoSIMS images. M×M×N represents 

feature map height × feature map width × feature map channels in CNN layers. 

Representative shape contexts for two closely related points are shown in the feature 

matching process. Note that darker color in shape context indicates larger value. 

 

Preprocessing 

FISH images are intensity measurements represented in their respective coordinate 

systems in (R,G,B) channels (Fig. 5.2A), whereas nanoSIMS images are stored as ion 

counts at each location (Fig. 5.2F). Multiple thresholding methods, including automatic 
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thresholding, iterative thresholding, adaptive thresholding, global thresholding using 

Otsu's method and dual thresholding with region growing were evaluated; global threshold 

using Otsu's method (45) was chosen for final thresholding based on tested performance 

(Fig. 5.2B&G). A global threshold was first generated using Otsu's method to minimize 

the intra-class variance (weighted sum of variances of black and white pixels in a binary 

image), and was modified manually based on trial and error to preserve aggregate 

morphology. Region-based segmentation (e.g. watershed segmentation) and edge-based 

segmentation were used for image segmentation. Aggregate(s) from the FISH image were 

then chosen and cropped to best match the nanoSIMS image (Fig. 5.2C-E and H-J). The 

multi-scale Laplacian of Gaussian (LoG) operator was implemented to detect the edges in 

the images by finding zero-crossings in the second derivative of the image intensity 

function (46). The LoG operator highlights regions of rapid intensity change by measuring 

the second spatial derivative of an image I(x,y) for a given standard deviation σ: 

∇p[Õ(ç, ) ∗ Z(ç, )] = ∇pZ(ç, ) ∗ Õ(ç, ) 

where the LoG kernel can be written as 

∇pZ(ç, ) = Ã#Z(ç, ) = −
1
$%�

(1 −
çp + p

2%p
)JK

*mA˘m

pÁm  

 

Fig. 5.2 Preprocessing FISH (A-E) and nanoSIMS (F-J) images. (A, F) Raw images. (B, 

G) Adaptive thresholding. (C, H) ROI selection. (D, I) Selected aggregate. (E, J) Multi-

scale LoG edge detection (Initial σ = 2, final σ = 0.5, step size = 0.1). 

A B
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Non-rigid registration using CNN 

The convolutional neural network (CNN) has recently emerged as a promising 

framework for image classification and registration. Among many CNN architectures, 

ShuffleNet (8), GoogLeNet (9), ResNet-18 and ResNet-101 (10), VGG16 and VGG19 (11) 

are well known for their high accuracy and speed in image classification, with pretrained 

weights derived from the several million training images in the ImageNet database 

(http://www.image-net.org). Although images of neither microorganisms nor microbial 

aggregates are available in the ImageNet database, deep CNN architectures that are pre-

trained on ImageNet are excellent at general image feature extraction. To the best of our 

knowledge, this is the first documented application of deep CNN models to extract features 

from and subsequently register multimodal microbial images. Input images are either raw 

RGB images or preprocessed binary FISH and nanoSIMS images. All input images are 

rescaled to a size of 224 x 224 pixels and fed through the convolutional layers. Feature 

points are extracted from the FISH and nanoSIMS images at multiple CNN layers, and 

further used to register the FISH images and nanoSIMS images using TPS interpolation. 

 

VGG16 and VGG19 

VGG16 is the runner-up of the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) 2014 (11). VGG16 has 5 convolutional layers and 3 fully connected 

layers, whereas VGG19 has one extra convolutional layer in layers 3-5, as shown in Fig. 

5.3 and Fig. 5.4, consisting of 138 and 144 million parameters respectively. Feature points 

are extracted from the FISH and nanoSIMS images at layers pool3, pool4 and pool5. 
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Fig. 5.3. Schematic representation of the non-rigid image registration using the VGG16 

CNN. Parallelograms denote convolutional layers. ReLU is an activation function defined 

as f(x) = max(0,x). 

 

Fig. 5.4. Schematic representation of the non-rigid image registration using the VGG19 

CNN. Parallelograms denote convolutional layers.  
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GoogLeNet 

The GoogLeNet proposed by He et al. (10) is the winner of ILSVRC 2014 and its 

main structure is shown in Fig. 5.5. The GoogLeNet CNN is inspired by LeNet with the 

inclusion of an inception module. The inception module comprises of a 1×1 convolutional 

layer, 3×3 convolutional layer, 5×5 convolutional layer, and 3×3 max pooling layer stacked 

together at the output to extract the image features. The goal is to convolve the image with 

operators of different sizes starting with the smallest 1×1 convolutional layer and ending 

with the largest 5×5 convolutional layer, permitting the network to go deeper but with much 

fewer parameters via implementation of a 1×1 convolutional layer (4 million parameters 

vs. 138 million parameters in the VGG16 network). Feature points are extracted from the 

FISH and nanoSIMS images at layers pool2, pool3 and pool4. 
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Fig. 5.5. Schematic representation of the non-rigid image registration using CNN with 

GoogLeNet. The details of inception modules are omitted in this schematic drawing.  

Parallelograms denote convolutional layers.  

 

ShuffleNet 

ShuffleNet is specifically designed for mobile devices, utilizing elementwise group 

convolution and channel shuffle to require significantly less computational power while 

maintaining high accuracy (8). Feature points are extracted from FISH and nanoSIMS 

images at each ReLU layer after depth concatenation or elementwise addition, as shown in 

Fig. 5.6. 

 

Fig. 5.6. Schematic representation of the non-rigid image registration using CNN with 

ShuffleNet. Parallelograms denote convolutional layers.  

 

ResNet18 and ResNet101 
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Residual neural networks (ResNet) utilizes skip connections (double- or triple- 

layer skips) to jump over some layers. ResNet18 is 18 layers deep and ResNet101 is 101 

layers deep (10), as shown in Fig. 5.7 and Fig. 5.8, respectively. Skipping over some layers 

can help avoid vanishing gradients, by using activations from a previous layer. Feature 

points are extracted from FISH and nanoSIMS images at each ReLU layer after 

elementwise addition. 

 

 

Fig. 5.7. Schematic representation of the non-rigid image registration using CNN with 

ResNet18. Parallelograms denote convolutional layers. ReLU is an activation function 

defined as f(x) = max(0,x). 
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Fig. 5.8. Schematic representation of the non-rigid image registration using CNN with 

ResNet101. Parallelograms denote convolutional layers.  

 

Feature points extraction and matching 

After feeding both FISH and nanoSIMS images using raw images or the 

preprocessed images into each CNN model following the workflow in Fig. 5.1, we collect 

features from the final layer of each individual module in the CNN architecture starting 

with layer size of 28´28 and ending with layer size of 7´7, as indicated in Figs. 5.3 - 5.8. 

The selection of convolutional layers aims to include both high- and low-level features and 

was based on heuristics. After obtaining each feature layer, we normalized the feature maps 

by applying the transformation z = (x - µ)/σ, where x are the feature points in each feature 

map, µ and σ are the mean and standard deviation of feature points x. Exhaustive search 
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was used to implement the point matching procedure as shown in Fig. 5.9. Next, we 

computed the feature distance map by calculating the symmetric matrix of pairwise feature 

distance values and concatenated the processed feature distance maps into a single feature 

distance map. We then compare the concatenated feature distance map from each FISH 

and nanoSIMS image by selecting the smallest value from each row. Next, we use the 

match threshold for selecting the top 20% matched points.  

 

Fig. 5.9. Workflow of feature matching and inlier selection after extracting features from 

CNN models. M×M×N represents feature map height × feature map width × feature map 

channels in CNN layers. 

 

Shape context 

After selecting preliminary matching features, shape context is used to find the 

matching that minimizes the transformation cost by directly measuring shape similarity 

and recovering the neighborhood structure of a point (47). Given n feature points on a shape 

contour, the shape context at point pi is defined as a histogram hi of the relative coordinates 

of the remaining n-1 points 
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ℎw(=) = #{) ≠ éw: () − éw) ∈ -.a(=)} 

where the bins uniformly divide the log-polar space. To obtain a shape context descriptor, 

we first calculate the distance between points in the matched feature map as previously 

described and normalize by the mean. Next we compute log-distance for normalized 

distances and create a distance histogram. We also compute and normalize the angles 

between the selected points. We then can have the shape context descriptor by directly 

counting points in each radius and angle region as previously assigned.  

After obtaining shape context descriptor for the matched feature points of FISH and 

nanoSIMS images, we calculate the cost matrix (C) between those two shape context 

descriptors using Pearson’s chi-squared test (12): 

vw,0 = 1/21
(ℎw(=) − ℎ0(=))p

ℎw(=) + ℎ0(=)

>

8t,

 

where hi and hj are the obtained shape context descriptor (normalized k-bin histograms as 

previously described) for the matched feature points pi on FISH and qj nanoSIMS images.  

Bipartite graph matching 

Now consider minimizing the total cost of matching by 

~($) =1v(éw, )2(w))
w

 

where π is a permutation. This is a problem of weighted bipartite matching that can be done 

in O(N3) time using the Hungarian method (48). In this paper, a more efficient algorithm 

called Jonker-Volgenant algorithm (49) was used to solve the linear sum assignment 

problem to find point-to-point matching in H(π).  
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Finally, we calculated the Euclidian distance of each matched feature pair and only 

keep the ones that falls between 25% and 75% quantile of the distance population for inlier 

selection. The values of matching threshold were chosen based on trial and error. 

Transformation and Registration 

Transformation is a process to map source space S(u,v) and destination space D(x,y) 

(5). Typically, image warping is performed by applying a set of reference points [P(u1,v1), 

P(u2,v2),…,P(un,vn)] and [P’(x1,y1), P’(x2,y2),…,P’(xn,yn)] in both S(u,v) and D(x,y), 

respectively (6). Then, a set of geometric transformations (5) or parametric transformations 

(50) can calculated that minimize the cost to warp S(u,v) onto D(x,y). Given a finite set of 

point correspondences between two shapes, image transformation and registration _: ℝp →

ℝp can be realized by applying TPS model (51). TPS registration as non-rigid registration 

aligns images with deformations applied globally. The underlying transformation is 

considered to be the radial-basis function where the foreground pixels of the moving image 

deform under the influence of the control points pi, where i = 1, . . . n.  TPS transformation 

may be written as a radial basis function 

ï(ç, ) = å, + åpç + åÉ +14wø(‖(ç, ) − éw‖)

+

wt,

 

where, i = 1, . . . n and φ(r) is the radial-basis kernel as φ(r) = r2log r, where r is the 

Euclidean distance (denoted by ||•||) between two control points. wi are the non-linear TPS 

mapping coefficients for the control points, a1, a2, a3 are linear coefficients which define a 

flat plane that best matches all control points, and those coefficients can be defined by  

ÃK,‚ = (6|å,åpåÉ)9 
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where W = wi, i = 1, . . . n, is a vector of all wi, L is composed of the matrices K, P, PT and 

filled with zeros on its bottom-right corner as 

Ã = 7
:
89

8
Å
9 

where O is a 3x3 matrix of zeros, and K is matrix of φ(r)  

: =

⎣
⎢
⎢
⎢
⎡ 0
ø(op,,)
⋮

ø(o+,,)

ø(o,,p)
0
⋮

ø(o+,p)

⋯
⋯
⋱
⋯

ø(o,,+)
ø(op,+)

⋮
0 ⎦

⎥
⎥
⎥
⎤

 

With the 0 in the diagonal reflecting that the distance between control points in the 

corresponding images (ri,i) is 0. 

Given a set of control points, we define P are the positions of all points pi as  

8 = C

1
1
⋮
1

ç,
çp
⋮
ç+

,
p
⋮
+

D 

where n is the number of points. 

Y is a matrix include a vector V with any n-vector form (v1,v2,…,vn) and padded 

with zeros  

‚ = (E|0	0	0)9 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Ï,
Ïp
⋯
Ï+
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

The unknown coefficients matrix (W | a1 a2 a3) can be solved through finding the 

inverse L-1 using lower–upper (LU) factorization (52). 

 

Similarity registration 



 161 
 

  
  

Alternatively, similarity registration was used as a comparison to our proposed non-

rigid registration using CNN. Similarity registration allows scaling images by applying a 

combination of translation (a, b), rotation (F), and scaling (S): 

G
çp
p
1
H = I

ÄJ#KF
ÄK.aF
0

−ÄK.aF
ÄJ#KF
0

å
-
1
L G
ç,
,
1
H 

Quantitative image registration assessment  

Registered images were directly compared to images that were registered manually. 

Three different error metrics were employed to assess the registration accuracy at the pixel 

and structural level: root mean squared error (RMSE), structural similarity index (SSIM), 

and average absolute intensity difference (AAID). RMSE is one of the most popular 

evaluation methods for quantifying the image registration difference (53), simply 

calculating the square root of the mean square error of pixels between two images 

(™ÄM =	N
∑ (Pw − w)pœ
wt,

Œ
 

SSIM is a popular method to evaluate the perceived similarity in structural 

information between two images (54), by computing a weighted combination of the 

luminance index, the contrast index and the structural index as 

ÄÄÕ™ = 	 [`(P, )]Q[J(P, )]Ê[K(P, )]x 

where luminance index `(P, ) =
pRS̨R˛A£Q

RS̨mAR˛mA£Q
, contrast index 	J(P, ) =

pÁS̨Á˛A£m

ÁS̨mAÁ˛mA£m
, and 

structural index K(P, ) =
ÁS̨˛A£z

ÁS̨Á˛A£z
, and ⁄ P̆ , μy, %P̆ ,σy, and %P̆˘ are the local means, standard 

deviations, and cross-covariance for images P, y. Weights α, β and γ are set to 1. 

AAID evaluates the intensity difference between two images by calculating (55) 
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where M, N, and Q represent the dimension of images. 

RMSE and AAID is smaller when the registration result is better, whereas SSIM is 

higher for a better aligned image. 

 

Results and Discussion 

We applied six different CNN models to extract the image features and used these 

features to align FISH images to nanoSIMS images. As shown in Fig. 5.2, identifying the 

regions of interest (ROIs) is critical to align the FISH and nanoSIMS images by filtering 

out background noise. To test the impact of preprocessing images on the feature 

recognition and final registration, we used optimal thresholding to convert the raw RGB 

images to binary images. Results indicate that preprocessing with binary thresholding 

significantly improved the accuracy of image registration (upper two panels in Figs. 5.10, 

5.15 and 5.20) by extracting most important features (Figs. 5.11, 5.16 and 5.21) identifying 

the feature points more accurately (Figs. 5.12-5.13, 5.17-5.18, and 5.22-5.23). The 

background noise in raw RGB images negatively influenced the feature extraction. 

Converting images to binary mode removes most of the background noise meanwhile 

keeping the main components. It is paramount to identify the suitable thresholding value 

so that the components left behind in the FISH and nanoSIMS images are the same. It is a 

rare outcome of thresholding procedure that the remaining components in the FISH and 

nanoSIMS are the same especially for an image with multiple objects. The residual 

components in the FISH and nanoSIMS images did not match well even after exhaustive 
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trial and error iterations. This caused misalignment in some CNN models due to the less 

accurate feature extraction and less successful feature matching.  

Overall, our results show that TPS-based registration is better than registration 

based on similarity metrics (Figs. 5.14, 5.19 and 5.24). Our results indicate that VGG 

(VGG16 and VGG19), GoogLeNet, ShuffleNet, and ResNet101 registered images with a 

relatively high accuracy at both pixel and structure level (Figs. 5.10, 5.15 and 5.20). We 

examined the performance of those CNN networks on three different types of images: a 

deformed and misplaced image (Figs. 5.10-5.14), a significantly deformed image (Figs. 

5.15-5.19), and a deformed image with multiple components (Figs. 5.20-5.24). Learned 

features from each convolutional layers were visualized by using a multi-resolution image 

pyramid and Laplacian Pyramid Gradient Normalization (56). In general, features 

identified by ResNet and ShuffleNet were more complex than VGG and GoogLeNet 

models (Figs. 5.11, 5.16 and 5.20). The complexity of featured learned by the CNN models 

can be critical for registering images with different level of composition complexity. For 

instance, for images with a single component as shown in Fig. 5.10 and Fig. 5.15, VGG 

and GoogLeNet models showed a better registration result, though it is not accurately 

reflected in Fig. 5.14 due to the presence of artifacts introduced during the transformation 

and registration procedures. These artifacts did not affect the alignment of targeting 

aggregate, but negatively affected the calculation of image registration accuracy. 

Nevertheless, our proposed models were able to identify features with a relatively high 

accuracy of feature matching (Figs. 5.13, 5.18, 5.23).  

 

Case study 1: Moderately deformed FISH image 
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We first examine the registration for a modestly deformed FISH image. Although 

the aggregate in the image is relatively simple, binarization of nanoSIMS images could not 

remove some background noise in close proximity of the target aggregate (red rectangles 

in Fig. 5.10). As a result, some artifacts may be introduced during the image registration 

(Fig. 5.10), and thus negatively affect the quantification of image registration accuracy (Fig. 

5.14). It is clear that registration using RGB images as input produced unsatisfactory 

registration results (Fig. 5.10). Among the six CNN models, VGG, GoogLeNet, and 

ShuffleNet registered the target aggregate at a higher accuracy than ResNet models (Fig. 

5.14). It is likely that the learned features from ResNet were too deep and sophisticated for 

an image in this study (Fig. 5.11), which is also reflected in the feature matching shown in 

Figs. 5.12 and 5.13. 

 

Fig. 5.10. Image registration results for a moderately deformed FISH image and nanoSIMS 

image using binary (left) and RGB (right) as input with TPS- (upper two panels) and 

similarity-based (lower two panels) registration. Red rectangles indicate background noise 

that was carried over into the binarized image, whereas white rectangles indicate artifacts 
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produced along with image registration as a result of background noise in the nanoSIMS 

image. 

 

Fig. 5.11. Feature extraction results during registration of a moderately deformed FISH 

image and nanoSIMS image using binary- (upper panel) and RGB-based registration 

(lower panel). 
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Fig. 5.12. Feature mapping before final thresholding during registration of a moderately 

deformed FISH image and nanoSIMS image using binary- (upper two panels) and RGB-

based  registration (lower two panels). 

 

Fig. 5.13. Feature mapping after final thresholding during registration of a moderately  

deformed FISH image and nanoSIMS image using binary- (upper two panels) and RGB-

based  registration (lower two panels). 
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Fig. 5.14. Image registration accuracy for a moderately deformed FISH image: RMSE 

(upper panel), AAID (middle panel), and SSIM (lower panel). RMSE and AAID are 

smaller when the registration result is better, whereas SSIM is higher for a better aligned 

image. 

 

Case study 2: Significantly deformed FISH image 

Next we examine the registration results for a significantly deformed FISH image. 

It is noted that the morphology of binary FISH and nanoSIMS images had significant 

difference based on human visual perception (Fig. 5.15). Our registration results show that 

all six CNN models performed relatively well with TPS-based registration (Figs. 5.15 and 

5.19). The pixel differences in RMSE and AAID were very small (Fig. 5.19). The SSIM 



 168 
 

  
  

index was also close to 1 for all six models (Fig. 5.19). However, registration results of the 

ResNet models were still worse than those of other models, likely due to the depth of the 

features the ResNet learned for a less sophisticated target aggregate in the image (Fig. 5.16), 

in a manner similar to case study 1 (Fig. 5.11).  

 

Fig. 5.15. Image registration for a significantly deformed FISH image onto nanoSIMS 

image using binary (left) and RGB (right) as input with TPS (upper two panels) and 

similarity (lower two panels) registration.  

 

 

Fig. 5.16. Feature extraction results for a significantly deformed FISH image and  

nanoSIMS image using binary- (upper panel) and RGB-based registration (lower panel). 
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Fig. 5.17. Feature mapping before final thresholding for a significantly deformed FISH 

image and nanoSIMS image using binary- (upper two panels) and RGB-based registration 

(lower two panels). 
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Fig. 5.18. Feature mapping after final thresholding during registration of a significantly 

deformed FISH image and nanoSIMS image using binary- (upper two panels) and RGB-

based registration (lower two panels). 
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Fig. 5.19. Image registration accuracy for a significantly deformed FISH image: RMSE 

(upper panel), AAID (middle panel), and SSIM (lower panel). RMSE and AAID is smaller 

when the registration result is better, whereas SSIM is higher for a better aligned image. 

 

Case study 3: Deformed FISH image with multiple components 

Finally, we examine the registration results for a more complicated scenario 

comprising of a deformed FISH image with multiple components. A dominant aggregate 

exists in the image and was chosen as the ROI (Fig. 5.20). All six of our examined models 

still performed well in this study (Fig. 5.20), showing small pixel difference and high 

structural similarity (Fig. 5.24). ResNet performed noticeably better than in less 

complicated cases. As we hypothesized earlier in case study 1 and 2, this may be largely 

owing to the fact that ResNet was good at recognizing deep and sophisticated features (Fig. 

5.21). Nonetheless, higher-level features extracted by other CNN models (VGG, 
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GoogLeNet and ShuffleNet) were also able to register FISH images reliably in this study. 

The differences between the CNN models chosen for this study in identifying matched 

features were minor (Figs. 5.22 and 5.23), and so were the final registration results (Figs. 

5.20 and 5.24) when using binary images as input. It is noted that feature matching quality 

for the target aggregate is what matters for the final registration. The presence of 

mismatches between small components (Fig. 5.23) due to the binarization preprocessing 

(Fig. 5.20) did not impact the registration of target aggregate. Although a dominant object 

exists in the image examined here, it noted that there is no need to first remove other smaller 

components in the two images before proceeding to register or align the corresponding 

components in this study. This is largely due to the features extracted using the CNN 

models were mostly found to be from the dominant object in the image (Figs. 5.22 and 

5.23). 

 

Fig. 5.20. Feature extraction results for registration of a deformed FISH image with 

multiple components and a nanoSIMS image using binary- (upper panel) and RGB-based 

registration (lower panel). 
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Fig. 5.21. Feature extraction results for registration of a deformed FISH image with 

multiple components and a nanoSIMS image using binary- (upper panel) and RGB-based 

registration (lower panel). 
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Fig. 5.22. Feature mapping before final thresholding for a deformed FISH image with 

multiple components onto nanoSIMS image using binary (upper two panels) and RGB 

registration (lower two panels). 
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Fig. 5.23. Feature mapping after final thresholding for registration of a deformed FISH 

image with multiple components and nanoSIMS image using binary- (upper two panels) 

and RGB-based registration (lower two panels). 
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Fig. 5.24. Image registration accuracy for a deformed FISH image with multiple 

components and nanoSIMS image: RMSE (upper panel), AAID (middle panel), and SSIM 

(lower panel). RMSE and AAID is smaller when the registration result is better, whereas 

SSIM is higher for a better aligned image. 

 

Conclusion 

We tested six CNN models using TPS-based non-rigid registration for different 

FISH and nanoSIMS images. VGG (VGG16 and VGG19), GoogLeNet and ShuffleNet 

performed best for distorted FISH images with a single aggregate in case studies 1 and 2, 

whereas ResNet (ResNet18 and ResNet101) did well in a more complicated scenario in 

case study 3. VGG, GoogLeNet and ShuffleNet models were able to accurately extract the 

most significant convolutional features and therefore perform accurate feature point 

matching, whereas the ResNet models extracted more complicated features at a deeper 

layer. We demonstrated that image preprocessing with segmentation and binarization are 
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critical for final image registration. It is also noted that images with significant background 

noise that cannot be easily removed via simple thresholding and binarization procedures 

still pose a significant challenge.  Our future work will focus on preserving the single 

aggregate morphology and reducing background noise in images with multiple aggregates. 

Additionally, it will also be of general interest in microbiology to improve the image 

resolution by using more sophisticated image processing algorithms in the future.  
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CHAPTER 6  

CONCLUSIONS 

 In this thesis, I developed reactive transport models that provides mechanistic 

understanding of EET in two sets of microbial communities: 1). anaerobic methane oxidizing 

consortia and 2). G. sulfurrenducens biofilms grown on electrode in setting of microbial 

fuel cells. Our models produces metabolic activity patterns matching those observed in the 

15N FISH-nanoSIMS experiments. We have shown that direct EET is a viable pathway for 

interspecies electron transport between archaea and bacteria within AOM consortia. It is 

evident that diret EET provides bioenergetic advantages over the mediated EET. Our work 

also highlighted that there are inevitable cost associated with direct EET with increasing 

spatial distance between the electron donating microbe and electron accepting partners. We 

have identified critical factors include total redox active molecules (Mtot), number of 

conductive connections (Nnw,cell), conductivity (σ) and cell redox active factor (kact×Aact). 

Our work on large-size AOM aggregate also revealed advantages of a hybrid DIET-MIET 

mechanism, allowing for balanced microbial energetics for both syntrophic partners, but 

opening up the potential for decoupling of the sulfate-reducing bacterial partner from the 

methanotrophic archaea by utilizing electron donors from environment. 

In our work on electroactive G. sulfurreducens biofilm we showed that our 

model is able to reproduce high-resolution activity measurements of biofilms grown 

under high (+0.24 V) and low (-0.1 V) anode potentials. Three major features of the 

metabolic activity patterns in the experimental data are captured in our model: 1) the 

maximum activity occurs near the anode surface in both high and low potential 
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simulations, 2) at high potential a second activity peak occurs near the surface of the 

biofilm, and 3) a slight decrease in metabolic activity occurs right at the surface of 

the high potential anode. Central to these model results are potential losses and the 

accumulation of protons that in concert regulate the observed metabolic 

stratifications. Potential losses cause cells to experience lower effective potential 

than the value at which the anode is poised. These effects become more significant 

the further cells are from the anode surface causing the maximum metabolic activity 

to occur near the anode in both high and low potential simulations. Shifting between 

two redox-active systems allows G. sulfurreducens cells to respond to the decreasing 

external electric potential, leading to the secondary metabolic peak at ~12 µm from 

the electrode. No such secondary peak appears when the anode is poised at low 

potential because under these conditions the low potential redox-active system is the 

only one operative throughout the entire biofilm.  At high anode potential our model 

reveals that H+ accumulation close to the electrode limited G. sulfurreducens 

metabolism, leading to a slight decrease in metabolic activity at the electrode 

surface. This effect is not observed at low anodic potentials because the pH does not 

fall to values low enough to inhibit metabolic activity. Our model simulations also 

demonstrate how the redox gradients and electric fields that developed within G. 

sulfurreducens biofilms drive extracellular electron transfer through the biofilms to 

the electrode. Further analysis of simulation results shows that electrons can be 

temporarily stored as reduced redox-active molecules (i.e. Cytred) with a higher 

fraction of Cytred at locations farther away from the electrode, suggesting that for a 

short time, G. sulfurreducens cells may take advantage of the developed direct 

electron transport network even without external electron acceptors.  
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Our work reveals some fundamental connections underlying interspecies 

EET within syntrophic AOM consortia and EET between G. sulfurreducens biofilm 

and electrode. Although our implementation for EET within AOM consortia is 

different from anode-respiring G. sulfurreducens biofilm in many ways, both of our 

models show direct EET is viable for long-range electron transport over a spatial 

distance greater than 10 µm beyond diffusion limit. Both models show significant 

loss of metabolic activity may occur with increasing spatial distance from the 

electron-donating cells due to the existence of ohmic resistance loss and activation 

loss associated with direct EET. In another words, there is a spatial limitation on 

how large active biofilms or microbial consortia can grow. Moving forward there is 

a need to synthesize direct EET models across broader microbial communities. Our 

efforts have shown that reactive transport modeling can be powerful tool to capture 

the physical, chemical and biological aspects of the EET phenomenon with a 

systematic, careful evaluation of model parameters, and with single-cell resolved 

experimental validations. 
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APPENDIX A 

CHAPTER 2 SUPPLEMENTARY MATERIAL	

A1. Model schematic 

 

Fig. A1. Schematic of the spatial distribution of archaea (green) and bacteria (red) with 

open-view (225o) 3D mesh representation in COMSOL. From left to right: two 

hemispheres enclosed archaea surrounded by bacteria (hemispheres enclosed), a sphere of 

archaea surrounded by bacteria (spherical layer), and a half sphere of bacteria and archaea 

each (half-half).  

  



 189 
 

  
  

A2. AOM rate simulation and patterns 

 

Fig. A2: Simulation results for DIET (o), HS2
--MIET (+) and SRB-MIET (×) models. Each 

symbol indicates an individual model realization, differing in size, arrangement or rate 

parameterization. The estimated range of environmental cell-specific rates is indicated by 

the gray shaded area. Estimated environmental cell-specific AOM rates are indicated by 

the filled black symbols (see section 3.3 and Table 3.1). 
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A3. Reduced model estimations 

In order to assess the spatial gradients in resource concentration (and by extension 

the likelihood of spatially varying cellular activities) we consider a simple geometry of two 

concentric spheres each composed of either archaea or bacteria. If the inner sphere 

produces a metabolic intermediate at a constant rate and the outer sphere consumes that 

intermediate at a constant rate, then the concentration dynamics are given by  

Uv
UÒ

=
∞
op

U
Uo
èop

Uv
Uo
î − r 

where C is the concentration of the intermediate, r is the radial distance, D is the diffusivity 

of the intermediate, and γ is the consumption rate of the intermediate. Solving for the steady 

state concentration of C, with a no-flux boundary condition at the outer boundary,  

!k

!)
|)t)gu = 0, and a constant value of Cin at the surface of the inner sphere gives 

v = 	vw+ +
r(2ow+o¿flÉ − o(ow+É + 2o¿flÉ) + ow+oÉ)

6∞ow+o
 

where rin and rou are the inner and outer sphere radii respectively, and Cin is the 

concentration at the surface of the inner sphere.  

We solved for the concentration profile using typical AOM rates for γ (5 fmol cell-

1 d-1), diffusivities of 2.4×10-10 m2 s-1 and 1×10-7 m2 s-1 for chemical diffusion and electron 

conduction, respectively, and an aggregate radius of 3 µm (Fig. A3) to illustrate the impact 

of transport constraints on substrate distribution. Same substrate concentration (Fig. A3A: 

H2; Fig. A3B: HS2
-) at the edge of inner sphere (r = rin) and different diffusivities are used 

to calculate the substrate concentration across the outer sphere (C/Cin). The steady state 

concentration of HS2
- at the edge of inner sphere (r = rin) is set to be 0.055 mol m-3 (faster 

AOM rates allow higher producing rate and thus higher concentration of HS2
-) based on 
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the simulation results from HS2
--MIET models with no gradient boundary condition. The 

concentration of H2 at the steady state at the edge of inner sphere (r = rin) is set to be 2.4×10-

4 mol m-3) based on the simulation results from DIET models with no gradient boundary 

condition. 

 

Fig. A3. Substrate concentration across the outer sphere (C/Cin). (A). Transportation of H2 

via chemical diffusion vs conductive transport. (B). Transportation of HS2
- via chemical 
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diffusion vs conductive transport. Note the difference in scale of the y-axes in the two 

panels.  

A4. Standard Gibbs Free Energy of Reaction 

The standard Gibbs Free Energies of reaction for are given as follows: 

The energetics of reactions 6 and 7 involving methane, water, bicarbonate, sulfate, 

sulfide, hydrogen, and considering the oxidized and reduced form of cytochrome c as redox 

molecules M, MH (Korth et al. 2015), are: 

ΔG0 (reaction 6) = GHCO3
0 + GH+

0 + fD GH2
0 + fM GMH

0 - GCH4
0 - 3GH2O

0 - fM GM
0  

with ∆G0 = 36.8 kJ mol-1 CH4 for fD and fM equal to 0.4 and 7.2 

ΔG0 (reaction 7)= GHS-
0 + 4GH2O

0 + fM GM
0 - GSO4

0 - GH+
0 - fM GMH

0 

with ∆G0 = -69.7 kJ mol-1 SO4
2- for fD and fM equal to 0.4 and 7.2    

A5. Acid-base reactions   

We consider the dissolved inorganic carbon and borate system, using the kinetic 

implementation described in Zeebe and Wolf-Gladrow (2005) and DOE (1994), involving 

the following acid-base reactions: 

CO2 + H2O    ßà HCO3
- + H+ 

HCO3
-     ßà CO3

2- + H+ 

CO2 + OH-    ßà HCO3
- 

HCO3
- + OH-    ßà CO3

2- + H2O 

CO3
2- + B(OH)3 + H2O  ßà B(OH)4

- + HCO3
- 

H2O     ßà H+ + OH- 

B(OH)3 + OH-   ßà B(OH)4
- 
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 The effect of cell surface acid-base reactions is approximated as: 

R-COOH ßà R-COO- + H+ 

R-NH2 + H+ ßà  R-NH3
+  

 Equilibrium constants were estimated for carboxy and amino surface groups from 

Phoenix et al. (2002), Voet and Voet (2004). The protonation rate constant is set to 109 m3 

s-1 mol-1 (Burgess et al. 2006) and the deprotonation rate constant is set to 1 s-1 for carboxy. 

This gives equilibrium constant for carboxy surface groups to be 10-5 M (pKa = 5), 

consistent with equilibrium constants given in Phoenix et al. (2002) and Voet and Voet 

(2004). In addition, protonation constant for amino groups is set to 106 m3 s-1 mol-1 and 

deprotonation rate constant is set to 1 s-1. The second-order rate constant for reaction of the 

unprotonated amino group was estimated based on values reported in Kaplan et al. (1971). 

This results in equilibrium constant for amino surface groups to be 10-9 M (pKa = 9), 

consistent with equilibrium constants given in Phoenix et al. (2002) and Voet and Voet 

(2004).  

The reaction rates (mol/(m3*s)) for each species involved in these acid-base 

reactions then are (see Table A1 for rate constants): 

dCO2/dt =  k1-HCO3
- . H+  - k1+CO2 + k3-HCO3

- - k3+CO2 
. OH- 

dHCO3
-/dt =  -dCO2/dt + k2-CO3

2- . H+ - k2+HCO3
- + k4+CO3

2- - k4-HCO3
-. OH-  - k5-BOH4

- . 

HCO3
- + k5+CO3

2- . B(OH)3 

K4a: Forward Equilibrium Rate constant for HCO3 + OH -> CO3 + H2O 

dH+/dt =  -k1-HCO3
- . H+ + k1+CO2 - k2-CO3

2- . H+ + k2+HCO3
- - kw-H+ . OH- + kw+ - 

kCOOH-RCOO- . H+ + kCOOH+RCOOH + kNH2-RNH3
+ - kNH2+RNH2 . H+ 

dR-NH2/dt =  kNH2-RNH3
+ - kNH2+RNH2 . H+ 
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dR-COOH/dt = k COOH-R-COO- . H+ - k COOH+R-COOH 

dOH-/dt =  k3-HCO3
- - k3+CO2 . OH- + kB-BOH4

- - kB+B(OH)3 . OH- + k4+CO3
2- . OH- - 

k4-HCO3
- - kw-H+ . OH- + kw+ 

dCO3
2-/dt =  -k2-CO3

2- . H+ + k2+HCO3
- - k4-CO3

2- + k4+HCO3
- . OH- + k5-B(OH)4

- . HCO3
- 

- k5+CO3
2- . B(OH)3 

dBOH4
-/dt =  -k5-B(OH)4

- . HCO3
- + k5+CO3

2- . B(OH)3 - kB-B(OH)4
- + kB+B(OH)3 . OH- 
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Table A1. Parameter list for acid-base reactions 1 
Symbol Value at T=8°C, S= 35 Description Reactions References 

Environmental conditions 
pH 8.2 Initial pH  

(DOE 1994) TB 0.427 mol m-3 Total Boron  
TDIC 2.36 mol m-3 Total DIC  
rSW 1.03×103 kg m-3 Density of seawater. Calculated  (Chester and Jickells 2012) 
[RCOOH]
T 10-3 mol (g dry cell)-1 Concentration of total surface carboxy 

groups  (Konhauser 2006) 
[RNH2]T 10-3 mol (g dry cell)-1 Concentration of total surface amino groups  
Kinetic reactions 
K1 9.9×10-4 mol m-3 Equilibrium constant CO2 + H2O  

à HCO3- + H+ 

(DOE 1994) 
k1+ 6.07×10-3 s-1 Forward rate constant (Zeebe and Wolf-Gladrow 2005) k1- 6.13 m3 s-1 mol-1 Backward rate constant 
K2 2.17×10-7 mol m-3 Equilibrium constant 

HCO3- à CO32-  + H+ 
(DOE 1994) 

k2+ 10.5 s-1 Forward rate constant (Zeebe and Wolf-Gladrow 2005) k2-    4.87×107 m3 s-1 mol-1 Backward rate constant 
K3 7.99×104 m3 mol-1 Equilibrium constant 

CO2 + OH- à HCO3- 
(DOE 1994) 

k3+ 2.24 m3 s-1 mol-1 Forward rate constant (Zeebe and Wolf-Gladrow 2005) k3- 2.8×10-5 s-1 Backward rate constant 
K4 17.9 m3 mol-1 Equilibrium constant HCO3- + OH-  

à CO32- + H2O 

(DOE 1994) 
k4+ 5.84×106 m3 s-1 mol-1 Forward rate constant (Zeebe and Wolf-Gladrow 2005) k4- 3.34×105 s-1 Backward rate constant 
K5 7.43 Equilibrium constant CO32- + B(OH)3 + 

H2O  
à B(OH)4- + HCO3- 

(DOE 1994) 
k5+ 4.06×103 m3 s-1 mol-1 Forward rate constant (Zeebe and Wolf-Gladrow 2005) k5- 5.46×102 m3 s-1 mol-1 Backward rate constant 
Kw 1.24×10-8 mol2 m-6 Equilibrium constant 

H2O à H+ + OH- 
(DOE 1994) 

kw+ 1.44 mol m-3 s-1 Forward rate constant (Zeebe and Wolf-Gladrow 2005) kw- 1.16×108 m3 s-1 mol-1 Backward rate constant 
KB 1.61×10-6 mol m-3 Equilibrium constant B(OH)3 +H2O  

à H+ + B(OH)4- 

(DOE 1994) 
kB+ 6.09×103 m3 s-1 mol-1 Forward rate constant (Zeebe and Wolf-Gladrow 2005) 
kB- 46.9 s-1 Backward rate constant. Calculated  
KNH2 106 m3 mol-1 Equilibrium constant R-NH2 + H+ à  R-

NH3+ 

(Kaplan et al. 1971, Voet and Voet 2004) 
kNH2+ 106 m3 s-1 mol-1 Forward rate constant (Kaplan et al. 1971) 
kNH2- 1 s-1 Backward rate constant. Calculated.  
KCOOH 10-8 mol m-3 Equilibrium constant 

R-COOH  
à R-COO- + H+ 

(Phoenix et al. 2002, Voet and Voet 2004) 
kCOOH+ 1 s-1 Forward rate constant. Calculated.  
kCOOH- 109 m3 s-1 mol-1 Backward rate constant (Burgess et al. 2006) 

2 
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A6. Model governing equations 

Fixed concentration boundary conditions are imposed for all chemical species at the outer 

domain boundary except for HS2- for which a no flux condition is imposed at the outer domain 

boundary, and for MH, R-COOH, R-NH2, for which no flux condition is imposed at the aggregate 

surface. Boundary conditions are set to: 10-4 M HS-, 10-3 M HCO3-, pH=8.2, 10-2 M SO42-, 10-3 M 

CH4, 10-7 mM acetate. The acid-base reactions for HCO3-, H+, CO2, CO32-, OH-, BOH4-, R-NH2, 

and R-COOH, as described in Supporting Information Appendix A5.  

A6.1 Mediated interspecies electron transfer 

!"#$%
!&

= −")* + ∇ ∙ ("/012∇#$%) 
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47

= ")* − ")8 + ∇ ∙ ("/9:∇;<)  

!"=>%?@
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45FGBH
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!"$=@
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where BA, BB are the cell densities of archaea and bacteria as a function of space, respectively,  

∆p*q=14.8 kJ (mol CH4)-1,  ∆p8q=-47.7 kJ (mol SO4)-1, r* =
s^n

sOPCsPOmH
,  r8 =

sPlsPOmHD

s^nslmC
, with a 

denoting activities, computed as the product of concentrations and activity coefficients as given 

in Orcutt and Meile (2008). 
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A6.2 Disulfide pathway 
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where BA, BB are the cell densities of archaea and bacteria as a function of space, respectively,  

∆p*q=-62.6 kJ rxn-1, ∆p8q=29.7 kJ rxn-1, r* =
sPlDC/zsPOmH

sOPCslmC{/zsP|/z
,  r8 =

sPlDslmC}/zsP|/z

sPlDC/z
, with a 

denoting activities, computed as the product of concentrations and activity coefficients as given in 

Orcutt and Meile (2008). 

A6.3 Direct interspecies electron transfer 
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In the case where RA and RB are independent of the concentration of the redox-active 

molecules fixed on conductive pili or matrix (reduced: MH; oxidized: M):  
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In the case where RA and RB are dependent on M and MH (see Eqns. 11 and 12): 
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where BA, BB are the cell densities of archaea and bacteria as a function of space, respectively.   

∆p*q  and ∆p8q  vary with fD and fM (see Supporting Information Appendix A3), r* =

sPDáàsPOmHsâPáàsPw
sOPCsâáà

,  r8 =
sPlsâáà

sPDáàslmCsâPáàsPw
, with a denoting activities, computed as the 

product of concentrations and activity coefficients as given in Orcutt and Meile (2008). Note also 

that the diffusion term for MH results from electron hopping, rather than diffusion of the molecule 

(see section 2.1.3).  
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Model implementations are available on bitbucket at 

https://bitbucket.org/MeileLab/xiaojia_em/src 

A7. Intra-aggregate cell-specific activity distribution and sensitivity analysis 

 

Fig. A4. Average cell-specific activity for archaeal cells (A) and bacterial cells (B) vs. aggregate 

radius. Intra-aggregate variation in cell-specific activity for archaeal cells (C) and bacterial cells 

(D) vs. aggregate radius. Dotted lines are for 95% confidence interval (CI) for the regression line. 

Spatial activity variation is calculated as ä∫(`@
å̀)Dçé
é

è
v/?

)åê , where R and V denote the rates and 

volumes, of the archaeal and bacterial regions, respectively, and )å is the volume averaged reaction 

rate. 
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Fig. A5. Average cell-specific activity for archaeal cells (A) and bacterial cells (B) vs. archaea-

bacteria segregation index (J) within an aggregate as defined in McGlynn et al. (2015). Intra-

aggregate variation in cell-specific activity for archaeal cells (C) and bacterial cells (D) vs. 

archaea-bacteria segregation index (J) within an aggregate. Dotted lines are for 95% confidence 

interval (CI) for the regression line. Spatial activity variation is calculated as ä∫(`@
å̀)Dçé
é

è
v/?

)åê , 

where R and V denote the rates and volumes of the archaeal and bacterial regions, respectively, 

and )å is the volume averaged reaction rate. 
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Fig. A6. Average concentration of HS2- in environment vs. bacterial cell specific rate constant kB. 

Archaeal cell specific rate constant kA is fixed at 10-14 mol cell-1 d-1.  
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Fig. A7. AOM rate vs. bacterial cell-specific rate constant (kB). The archaeal cell specific rate 

constants are fixed at A) kA = 10-15 mol cell-1 d-1, SRB-MIET; B) kA = 10-14 mol cell-1 d-1, HS2--

MIET; and C) kA = 10-12 m3 cell-1 d-1, DIET.  
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Fig. A8. Intra-aggregate variation in archaeal (A) and bacterial (B) activity vs. electron transport 

rate constant for models with DIET pathway. Simulation parameters: kA and kB = 10-12 m3 cell-1 d-

1. Spatial activity variation is calculated as ä∫(`@
å̀)Dçé
é

è
v/?

)åê , where R and V denote the rates and 

volumes, of the archaeal and bacterial regions, respectively, and )å is the volume averaged reaction 

rate. 
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Fig. A9. Intra-aggregate variation in archaeal (A) and bacterial (B) activity vs. electron conduction 

coupling strength (%, defined as fM/8×100, Reaction 6) for models with DIET pathway. Simulation 

parameters: kA and kB = 10-12 m3 cell-1 d-1. Spatial activity variation is calculated as 

ä∫(`@
å̀)Dçé
é

è
v/?

)åê , where R and V denote the rates and volumes of the archaeal and bacterial 
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regions, respectively, and )å is the volume averaged reaction rate. 
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APPENDIX B 

CHAPTER 3 SUPPLEMENTARY MATERIAL	

 

Fig. B1.  Previous observations of significant correlations between the activity of cells and their 

distances to their syntrophic partners.  This exceptionally large ANME-SRB aggregate was 

observed in the 15N ammonium incubation of a previous study (see Scheller et al 2016 for details).  

A) Fluorescent microscopy image showing overview of aggregate structure.  B) 15N fractional 
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abundance image.  Boxes represent selected areas where 15N incorporation data was quantified 

(average value of each pixel column in the box).  C-D) Average values for SRB and ANME 15N 

incorporation values at one pixel increments away from the ANME-SRB interface (each pixel 

corresponds to 50nm).  The magnitude of these correlations varies based on the location in the 

aggregate, likely due to our uncertainty about the true distances to the ANME-SRB interface in 

this aggregate’s complex three-dimensional structure.   

 

Fig. B2. Cell-specific activity with varying DIET to MIET ratio for an aggregate radius of 20 µm 

(base model parameter). (A) 100% DIET, (B) 98.75% DIET, (C) 97.5% DIET, (D) 96.25% DIET, 

(E) 95% DIET, (F) 93.75% DIET, (G) 92.5% DIET, (H) 91.25% DIET, (I) 90% DIET. ANCOVA: 
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p values for the statistical significance of the difference between the slopes and intercepts of the 

two regressions, with blue and red for Archaea and Bacteria respectively.  
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B2. Partial decoupling of archaeal methanotrophy and bacterial sulfate-reduction 

A hybrid DIET-MIET mechanism would require additional metabolic capabilities, and 

hence carries a cost, but it also provides an opportunity for support externally supported bacterial 

metabolism decoupled from archaeal activity. It is noteworthy to mention that the addition of 

MIET mechanism that allows for the uptake of an external electron donor largely relieves the 

energetic constraint in DIET for bacteria (Fig. 3.6 and Fig. B4). Recently, several studies have 

shown that the HotSeep-1 cluster (Desulfosarcina/Desulfococcus) can grow solely on external 

source (H2) without ANME partner (Wegener et al. 2015; Krukenberg et al. 2016).  

To investigate the relative contribution of decoupled bacterial metabolisms we separate 

Rxn(2) in our model into  

=>%?@ + $Q + 8Ç$ → 8Ç + $=@ + 4$?>      Rxn(3.2a) 

=>%?@ + $Q + 4$#>>@ → $=@ + 4$#>J@      Rxn(3.2b) 

where Rxn(3.2a) and Rxn(3.2b) represent the decoupled DIET and MIET mechanism for bacteria, 

respectively. Reaction rates for Rxn(3.2a) and Rxn(3.2b) are described by 

)`Üf(?s) = K8,�îïdL8
ABC

MNlmCQABC
Ç$ ∙ ñd

`Üf(?s)     Eq (3.11) 

)`Üf(?ó) = K8,ÄîïdL8
ABC

MNlmCQABC
$#>>@ ∙ ñd

`Üf(?ó)     Eq (3.12) 

where kB,MIET and kB,DIET represent the bacterial cell specific constant, respectively. ñd
`Üf(?s) and 

ñd
`Üf(?ó)  represent the thermodynamic constraint for bacteria under each reaction condition. 

Without changing kB,MIET and kB,DIET from the default value given by kB, model simulations (Fig. 

B3 and Fig. B4A) show that bacteria suffer from energetic constraints as discussed earlier (Fig. 

3.6). It is noted that the fraction of the formate reaching the bacteria that originates from the 

environment drastically changed from 100% at pure DIET (i.e. no formate is generated within the 
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aggregate, and any formate used by the bacteria is obtained from the environment) to a flux from 

the aggregate to the environment with decreasing archaeal DIET/MIET ratio (Fig. B4C), due to 

the increased production but relatively constant consumption of formate (Fig. B4B).  

Considering that cell-specific rate constants may differ for different electron donors, a 100-

fold increase of kB,MIET could eventually lead to rates of Rxn(3.2b) on the same magnitude as those 

of Rxn(3.2a), with higher activity at the outer aggregate surface (Fig. B5) where the formate supply 

to bacteria was 100% from environment. Corresponding fluxes and formate levels are shown in 

Fig. B6.  With formate supply from environment alone (simulated by deactivating the ANME and 

Rxn(1) and hence any DIET-driven bacterial activity), bacteria could potentially be very active 

near the aggregate surface (first 2 µm), but completely inactive farther away (Fig. B7A). Responses 

to different formate level in the environment are shown in Fig. B8, with the effect of aggregate 

size illustrated in Figs. B9 and B10. Figs. B11-B15 show the patterns of factors that potentially 

control cell activity.  

Cell activity increases as cell-specific rate constant kA and kB increases, as reflected in Eqs. 

3.1-3.3. As shown in Fig. B16E, cell activity is relatively homogenous at smaller kA and kB, and 

changes more drastically at higher kA and kB. The change of kA and kB has a dominant impact on 

activation loss (Fig. 3.5A), which subsequently led to a sharper decrease of metabolic activity at 

the distance close to the archaea-bacteria interface (Fig. 3.4). Lastly, activation loss constant kact 

exhibits a significant impact on the metabolic activity at the distance close to the archaea-bacteria 

interface as well. With increasing kact, cell activity is more homogenous at the distance closer to 

archaea-bacteria interface due to a smaller activation loss (Fig. 3.5A).   
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Fig. B3. Decoupled bacterial metabolism that utilizes DIET and MIET independently. (A) to (F) 

show cell-specific activity with varying archaeal DIET to MIET ratio for an aggregate with a 20 

µm radius (base model parameter). (A) 100% DIET, (B) 98.75% DIET, (C) 97.5% DIET, (D) 

96.25% DIET, (E) 95% DIET, (F) 93.75% DIET. 
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Fig. B4. Decoupled bacterial metabolism that utilizes DIET and MIET independently, with varying 

archaeal DIET to MIET ratio for an aggregate with a 20 µm radius (baseline parameters). (A) 

thermodynamic constraint, (B) HCOO- concentration field, (C) fraction of the total HCOO- flux 

metabolized by the bacteria obtained from the external environment and (D) HCOO- flux at various 

environmental HCOO- concentrations.  
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Fig. B5. Decoupled bacterial metabolism that utilizes DIET and MIET independently. (A) to (D) 

show cell-specific activity with varying bacterial rate constant associated with MIET (kB,MIET). (A) 

kB,MIET = 2x10-16 m3 cell-1 d-1, (B) kB,MIET = 4x10-16 m3 cell-1 d-1, (C) kB,MIET = 4x10-15 m3 cell-1 d-1, 

(D) kB,MIET = 4x10-14 m3 cell-1 d-1. These are simulations for an aggregate with a 20 µm radius with 

92.5% DIET and baseline parameters. 
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Fig. B6. Decoupled bacterial metabolism that utilizes DIET and MIET independently, with varying 

bacterial rate constant associated with MIET (kB,MIET) for an aggregate with a 20 µm radius 

(baseline parameters). (A) thermodynamic constraint, (B) HCOO- concentration field, (C) fraction 

of the total HCOO- flux metabolized by the bacteria obtained from the external environment and 

(D) HCOO- flux at various environmental HCOO- concentrations.  
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Fig. B7. Decoupled bacterial metabolism that utilizes MIET only, with inactive archaeal 

metabolism for an aggregate with a 20 µm radius (baseline parameters). (A) bacterial cell-specific 

activity, (B) thermodynamic constraints, (C) HCOO- concentration field and (D) HCOO- flux at 

various cell-specific rate constants (kB).  
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Fig. B8. (A) Impact of intermediate species on archaeal and bacterial activities; (B) HCOO- 

concentration at various environmental HCOO- concentrations; (C) Gibbs free energy of bacterial 

reaction and (D) thermodynamic constraint at various environmental HCOO- concentrations. 

These are simulations for an aggregate with a 20 µm radius with baseline parameters. 
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Fig. B9. Simulation with aggregate size at 60µm radius, showing the transport of formate can limit 

bacterial activity (A), as reflected by the thermodynamic factor (B), Gibbs free energy change of 

reaction (C), and concentration of HCOO- (D). These are simulation results with 92.5% DIET and 

base model parameters.  
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Fig. B10. After a specific aggregate size is reached (~60 µm), the diffusion of formate started to 

limit bacterial activity, as reflected by the thermodynamic factor (A), concentration of HCOO- in 

archaea (B) and bacteria (C).  
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Fig. B11. Activation loss profile for archaea and bacteria with various parameter values. (A) 

concentration of redox active molecules (Mtot), (B) conductive network density (Nnw,cell), (C) their 

conductivity (σ), (D) cell redox active factor (kact×Aact) and (E) associated cell-specific constants 

(kA, kB). These are simulations at aggregate radius of 20 µm with baseline parameters unless 

otherwise noted. 
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Fig. B12. Ohmic resistance loss profile for archaea and bacteria with various parameter values. (A) 

concentration of redox active molecules (Mtot), (B) conductive network density (Nnw,cell), (C) their 

conductivity (σ), (D) cell redox active factor (kact×Aact) and (E) associated cell-specific constants 

(kA, kB). These are simulations at aggregate radius of 20 µm with baseline parameters unless 

otherwise noted. 
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Fig. B13. Net available potential profile for archaea and bacteria with various parameter values. 

(A) concentration of redox active molecules (Mtot), (B) conductive network density (Nnw,cell), (C) 

their conductivity (σ), (D) cell redox active factor (kact×Aact) and (E) associated cell-specific 

constants (kA, kB). These are simulations at aggregate radius of 20 µm with baseline parameters 

unless otherwise noted. 
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Fig. B14. Thermodynamic factor (A) and consortia redox potential (B) started to change at kD < 1 

m4 mol s-1. The transport of redox molecules MH is not limited at kD ≥ 1 m4 mol s-1 (C). These are 

simulations at aggregate radius of 20 µm with baseline parameters unless otherwise noted. 
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Fig. B15. Electric field does not impact cell-specific activity at fast kD (default value of 105 m4 mol 

s-1) (A). Electric field driven flux of MH linearly changes along with electric field constant kEF (B). 

These are simulations at aggregate radius of 20 µm with baseline parameters unless otherwise 

noted. 
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Fig. B16. Sensitivity towards key model parameters, including (A) concentration of redox active 

molecules (Mtot), (B) conductive network density (Nnw,cell), (C) their conductivity (σ), (D) cell 

redox active factor (kact×Aact) and (E) associated cell-specific constants (kA, kB). These are 

simulations at aggregate radius of 20 µm with baseline parameters unless otherwise noted. 
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APPENDIX C 

CHAPTER 4 SUPPLEMENTARY MATERIAL	

C1. Acetate uptake, growth yield and metabolism 

 

Fig. C1. Acetate (Ac) uptake (A) and growth yield (B) used in our simulations. Curves are based 

on fitting the relationships developed in King et al. 2009. The fraction of acetate oxidation goes 

to anabolism and catabolism is derived from the growth yield and acetate uptake (C). 

 

Here we can give a simple example to show how the fraction of Ac oxidation used for 

anabolism fa is calculated in Fig. C1C. First, the total biomass was converted in mole using a 
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molecular formula of CH1.8O0.5N0.2 (24.6 g/mol). Assuming 4 gdw (YAc) biomass synthesis per mol 

Ac oxidized, resulting in 0.163 mol CH1.8O0.5N0.2. Therefore ~0.08 mol carbon goes to biomass 

(CH1.8O0.5N0.2) per mol C assimilated, which gives anabolism fraction fa ~8%. This is close to the 

value reported for acetate-oxidizing Geobacter sulfurreducens growth with Fe(III)-citrate, in 

which 93.6% acetate transported into the cell was utilized for oxidation and ATP generation via 

the TCA (Mahadevan et al., 2006). 

C2. Shift of redox-active center mid-potential and Impact of critical shift potentials on 

metabolic activity and pH 

 

 

Fig. C2. Impact of critical shifting potential (ϕc) on mid-potential of redox-active center. 
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Fig. C3. The impact of critical shifting potential (ϕc) on metabolic activity patterns in simulated G. 

sulfurreducens biofilms. The shaded area represents the 95% confidence interval for the 

observations. 

 

 

Fig. C4. The change of pH and pH constraint (FpH) for different critical shift potentials. 

 

C3. External constraints on acetate oxidation rate 
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Fig. C5. External constraints on acetate oxidation rate (Rgeo) at high anode potential (A) and low 

anode potential (B): external potential constraint (Fө) and pH constraint (FpH). FpH and Fө 

control the first and second cell-specific activity shown in (A), respectively. (C) shows the 

simulated pH at high anode potential and low anode potential. 

C4. Simulated acetate concentration and acetate uptake 
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Fig. C6. Simulated acetate concentrations within biofilms at high anode potential with baseline 

parameters: A-10 mM acetate, B-15 mM acetate, C-20 mM acetate, D-40 mM acetate, E-100 

mM acetate. (F) shows the pH and its impact on activity (FpH). 

C5. Impact of critical pH (CpH) on metabolic activity 

 

Fig. C7. The impact of critical pH (CpH) on activity patterns at high anode potential for the early 

activity peak near electrode. Shaded area represents 95% confidence interval for observations. 

C6. Impact of bicarbonate buffering capacity on pH  
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Fig. C8. Impact of bicarbonate buffering capacity on pH and the pH dependency FpH. Solid and 

dash lines represent pH and FpH, respectively. 

C8. Cell-specific current, redox potential, and fraction of Cytred in biofilms  

 

Fig. C9. (A) Cell-specific current, (B) current density, (C) ϕOx/Red, and (D,E) fraction of Cytred vs. 

distance to anode (D) and electric potential (E) at high and low anode potential. Filled circles and 

triangles in (C) show observations from Babauta et al. (2012). 

C9. Impact of effective diffusion coefficient and electric field on electron conduction  
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Fig. C10. Impact of electron transfer rate constant kD without electric field as additional driving 

force. (A) cell-specific activity; (B) Cytred; (C) effective diffusion coefficient Dcyt. 

C10. Sensitivity analysis of model parameters 

 

Fig. C11. Sensitivity analysis of model parameters and its effects on ohmic resistance loss (A), 

activation loss (B), net electric potential (C), and pH (D). 
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Fig. C12. pH and pH constraint (FpH) for different (A) cell-specific rate constant; (B) activation 

constant; (C) electron transport rate constant; (D) electric field driven rate constant; (E) electrode 

discharge constant; (F) the abundance of redox-active molecules; (G) the density of conductive 

network connections; (H) conductive biofilm conductivity; (I) redox-active cell surface area. 
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APPENDIX D 

CHAPTER 5 SUPPLEMENTARY MATERIAL	

D1. Impact of fine-tuning on final registration 

Fine-tuning is a technique by taking weights of a pretrained convolutional neural network 

(CNN) and applying it as initialization for a new CNN model being trained on new data (Tajbakhsh 

et al. 2016). Registration using fine-tuned CNN produced almost the same registration results using 

binary images as input (Fig. D1-D4). It did improve a little for registration using raw (RGB) images 

as input; however, registration results were still far from satisfactory. Moreover, fine-tuning 

process consumes significantly more computing power and takes substantially longer to finish. 

Examples are given here using VGG16 and VGG19 networks.  
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Fig. D1. Image registration for a modestly deformed (case 1, upper panel), a significantly deformed 

(case 2, middle panel), and a deformed FISH image with multiple components (case 3, lower panel) 

onto nanoSIMS image.  

VGG16 VGG19
Fine tuned

VGG16 VGG19
Pretrained

VGG16 VGG19
Fine tuned

VGG16 VGG19
Pretrained

Binary registration RGB registration
Ca

se
 1

Ca
se

 2
Ca

se
 3



 237 
 

  
  

 

Fig. D2. Image registration accuracy for modestly deformed FISH images (case 1): RMSE (upper 

panel), AAID (middle panel), and SSIM (lower panel).  
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Fig. D3. Image registration accuracy for significantly deformed FISH images (case 2): RMSE 

(upper panel), AAID (middle panel), and SSIM (lower panel).  
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Fig. D4. Image registration accuracy for a deformed FISH image with multiple components (case 

3): RMSE (upper panel), AAID (middle panel), and SSIM (lower panel).  

 

D2. Using standard features other than CNN for registration 

We also tested on registration using standard features. Examples are given here for SURF 

(Speeded Up Robust Features, Bay et al. 2008), KAZE (Alcantarilla et al. 2012), BRISK (Binary 

Robust Invariant Scalable Keypoints, Leutenegger et al. 2011), Harris (Harris et al. 1988), and 

FAST (Features from Accelerated Segment Test, Rosten et al. 2005) features (Fig. D5 and Fig. 

D6). SURF is a similarity invariant, fast and robust algorithm for local feature extraction (Bay et 

al. 2008). KAZE is a scale and rotation invariant, fast multiscale feature detection and description 

approach for nonlinear scale spaces (Alcantarilla et al. 2012). BRISK is also a scale and rotation 

invariant,fast feature point extraction algorithm (Leutenegger et al. 2011). Instead, Harris (Harris 
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et al. 1988) and FAST (Rosten et al. 2005) are corner detection algorithmn that is commonly used 

to extract corners and infer features of an image. None of them produced satisfactory results in our 

tests. Using RGB images as input all failed to register FISH images due to insufficient feature 

extracted and matched.  

 

Fig. D5. Image registration for a modestly deformed (upper panel), a significantly deformed 

(middle panel), and a deformed FISH image with multiple components (lower panel) onto 

nanoSIMS image. Binary images were used as input. Colored symbols indicate failed registration. 

 

HarrisKAZE BRISKSURF FAST
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Fig. D6. Image registration accuracy for three FISH images (case 1: modestly deformed; case 2: 

significantly deformed; case 3: deformed FISH image with multiple components): RMSE (upper 

panel), AAID (middle panel), and SSIM (lower panel). Colored symbols indicate failed 

registration.  
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