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Chapter 1

Introduction

The study of generic smooth maps from four-manifolds to surfaces has greatly deepened our

understanding of the topology of smooth four-manifolds. A new tool in this field has recently

been introduced under the name of trisected Morse 2-functions (or trisections for short) by

Gay and Kirby [GK16]. The trisection theory has been shown to have rich connections

and applications to other aspects of four-manifold topology, including surface knots [MZ17;

MZ18], surgery operations such as the gluck twist and its variants [GM18; KM20], and to

symplectic geometry [LMS20; Lam19; LM18].

Equipped with a new tool with which to study four-manifolds, it is natural to demonstrate

connections to more familiar techniques and approaches. Given X, a smooth, oriented,

connected, compact 4-manifold with b+
2 (X) ≥ 2, our aim in this thesis is to demonstrate a

technique for computing the Ozsváth-Szabó four-manifold invariants which arise in Heegaard

Floer homology [OS04b; OS06]. To do so, we follow the usual Mayer-Vietoris strategy which

is common in Floer theories; namely, we decompose X into two pieces X = X1 ∪Y X2 where

each Xi has b+
2 (Xi) > 0 and Y = ∂X1 = −∂X2 is a separating three-manifold for which

δ : H1(Y ) → H2(X) is injective1. Viewing the punctured X1 as a cobordism from S3 to

1Such a three-manifold Y is referred to as an admissable cut [OS06, Definition 8.10]. Here, δ : H1(Y )→
H2(X) is the connecting homomorphism in the Mayer-Vietoris cohomology sequence associated to the de-
composition X = X1 ∪Y X2.
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Y , and the punctured X2 as a cobordism from Y to S3, we demonstrate how, starting with

the data of a trisection map on each of the Xi, to compute the induced cobordism maps of

Ozsváth and Szabó (see Theorem 4.9 for a precise statement).

Theorem 1.1. Fix a smooth, connected, oriented, compact four-manifold X with connected

boundary ∂X = Y , and let π : X → R2 be a (relative) trisection map. Using π as input

data, one can recover the induced cobordism maps in Heegaard Floer homology

F ◦X,s : HF ◦(S3)→ HF ◦(Y, s|Y ), (1.1)

where ◦ ∈ {+,−,∞,∧} are the variants defined in [OS04b].

Once we’ve established Theorem 1.1 in Section 4.3 the mixed invariants follow quickly in the

usual way [OS06], see Section 4.1 for more details.

A trisection map π : X → R2 on a four-manifold with boundary X contains more

information than simply a handle-decomposition. Indeed a result of [GK16] shows that

π induces an open book decomposition of its boundary three-manifold Y , and a theorem

of Giroux states that there is a one-to-one correspondence between contact structures up

to isotopy and open book decompositions up to positive stabilization [Gir02]. By [HKM09,

Theorem 3], one can associate to this open book decomposition a class c+(ξ) ∈ HF+(−Y, sξ),

known as the contact class originally defined by Ozsváth and Szabó [OS05] where it is proven

that c+(ξ) is an invariant of the contact isotopy class of ξ. In the process of proving Theorem

1.1, we also demonstrate:

Theorem 1.2. Let X be as above. Using the data of a (relative) trisection map π : X → R2,

one can compute the image of the contact class c+(ξ) under the cobordism map

F+

X,s
: HF+(−Y, s|Y )→ HF+(S3), (1.2)

where X is X ‘turned around’, and s is the conjugate Spinc-structure.
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See Theorem 4.11 for a precise statement. Theorem 1.2 has the potential for many new

applications. In [AK11; Won16], the authors exhibit the exotic behavior of 4-manifolds under

cork and G-cork twists by proving these diffeomorphisms act non-trivially on the contact

invariant of the boundary 3-manifold. Additionally, Juhász and Zemke [JZ18a] use a similar

idea to compute the effect of concordance surgery [Akb02], a generalization of Fintushel-Stern

knot surgery [FS98], in Heegaard Floer homology. The simplifications utilized in the papers

above, which amount to factoring the Heegaard Floer cobordism maps through the contact

element of 3-manifolds with small Heegaard Floer rank, should also expand the applicability

of Theorems 1.1 and 1.2. In particular, combining these simplifications with the symmetry

inherent in the trisection pictures gives hope to being able to perform new and interesting

computations.

Organization

The remainder of this thesis is organized as follows. In Sections 2 and 3, we review the

essential theorems and results arising in both the trisection theory and Heegaard Floer

homology. With these preliminaries in place, we demonstrate in Section 4 how to effectively

use the data of a relative trisection map to compute the Ozsváth-Szabó cobordism maps.
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Chapter 2

Trisections of four-manifolds

The literature is rich with helpful and insightful constructions of the trisection theory. For

this reason, we only briefly review its foundational material and point the interested reader

elsewhere for a less terse introduction. For a general overview of trisections and direct

comparisons with the more familiar description of four-manifolds via handle decompositions

and Kirby calculus, we recommend the original [GK16] and the more recent survey [Gay19].

For interesting examples of trisections and their diagrams, including descriptions for various

surgery operations such as the Gluck twist and its variants, we recommend [KM20; LM18;

GM18; AM19] and [Koe17]. For a broader perspective on stable maps from four-manifolds

to surfaces, including details about how to simplify the topology of such maps, we suggest

[GK15; GK12; BS17] and the references therein.

2.1 Trisections, connections, and parallel transport

Fix X to be a smooth, oriented, connected, closed four-manifold.

Definition 2.1. A (g; k)-trisection of X is a decomposition into three pieces X = Z1∪Z2∪Z3

such that the following conditions are satisfied
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(T1) Each Zi is diffeomorphic to \kiS1×D3 where k = (k1, k2, k3) is a tuple of non-negative

integers.

(T2) Each double intersection Ui := Zi ∩ Zi−1 is a three-dimensional handlebody of genus

g; and,

(T3) the triple intersection Σ := Z1 ∩ Z2 ∩ Z3 is a closed, oriented surface of genus g.

We refer to the union S = U1 ∪ U2 ∪ U3 as the spine of the trisection, and we call the

distinguished surface Σ the central surface. According to classic results of Laudenbach and

Poenaru [LP72], the data of a trisection can be completely recovered from its spine.

The theory of trisections arose from the study of generic smooth maps from four-manifolds

to surfaces [GK12; GK15; GK16]. We now explain this perspective and along the way

explain how the familiar notions of connection, parallel transport, and vanishing cycles can

be imported into this setting. To be clear, none of what’s presented in this section is original,

our main sources being the excellent work [Hay14; BH12; BH16; Beh14].

A (g, k)-trisection map π : X → R2 is a stable map whose critical image is shown in

Figure 2.1 below. The stability of π implies that its critical locus and critical image admit

standard local coordinate descriptions of the following three types:

1. Indefinite fold model : in local coordinates, π is equivalent to:

(t, x, y, z) 7→ (t, x2 + y2 − z2) (2.1)

2. Indefinite cusp model : in local coordinates, π is equivalent to

(t, x, y, z) 7→ (t, x3 + 3tx+ y2 − z2) (2.2)
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3. Definite fold model : in local coordinates, π is equivalent to:

(t, x, y, z) 7→ (t, x2 + y2 + z2) (2.3)

It is advantageous to view a (g, k)-trisection map π : X → R2 as being a type of singular

fibration, so that the preimage of a regular value is a closed, connected surface. We describe

how the topology of this fiber changes as one traverses across this critical image after we’ve

incorporated a suitable notion of parallel transport into this picture.

Figure 2.1: The critical image of a trisection map. Curves drawn in black denote indefinite
fold circles and indefinite cusps. The solid purple circle denotes a single definite fold.

From a (g, k)–trisection map π : X → D2 one can recover the decomposition described in

Definition 2.1. Clearly, the three dotted line segments in Figure 2.1 decompose the image of

π into three sectors D1, D2, and D3. Define Zi := π−1(Di), and note that the local models

described in equations (2.1)–(2.3) imply that

X = Z1 ∪ Z2 ∪ Z3

is naturally a (g, k)–trisection of X, where π−1(0, 0) = Σ is the central surface (see [GK16,

Section 3] for more details).
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In Section 4, we will need a tool for comparing different regular fibers of a given (g, k)-

trisection map. For this, we review some familiar notions.

Definition 2.2. Let π : X → R2 be a (g, k)-trisection map. A π-compatible connection (or

π-connection for short) is a subset H ⊂ TX defined as the pointwise orthogonal complement

of ker(dπ) with respect to some Riemannian metric on X.

If we restrict a given π : X → R2 to a region which misses the critical locus, then we

recover the usual definition of a connection for a fiber bundle. To specify what happens as

we traverse the critical image, we establish some preliminary terminology.

Definition 2.3. Let π : X → R2 be a (g, k)-trisection map.

• A reference arc is an embedded arc η : [0, 1] → R2 such that both η(0) and η(1) are

regular values of π.

• Given a π-compatible connection H, an H-lift of the reference arc η : [0, 1]→ R2 is a

map η̃ : O → X which satisfies

–
(
π ◦ η̃

)
(t) = η(t) for all t ∈ O, where O ⊂ [0, 1] is a relatively open subinterval,

and

– the tangent vectors of η̃ are contained in H.

Next, we discuss parallel transport, for which we need the following crucial proposition.

See [Hay14] for a proof.

Proposition 2.4. Let π : X → R2 be a (g, k)-trisection map equipped with a π-connection

H, and let η : [0, 1]→ R2 be a reference arc for π and p ∈ Σt a regular point from some fixed

t ∈ [0, 1].

1. There exists a unique H-lift of η, denoted by

η̃Ht,p : Ot,p → X, Ot,p ⊂ [0, 1],
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where Ot,p is a relatively open interval containing t such that η̃Ht,p(t) = p and all other

H-lifts of γ with this property are restrictions of η̃Ht,p.

2. If H depends smoothly on some auxiliary parameters, then so does η̃Ht,p.

3. If each fiber of π along η contains at most finitely many critical points of π, then η̃Ht,p

limits to a critical point on each open end of Ot,p.

A reference arc η : [0, 1] → R2 for a given (g, k)-trisection map π : X → D2 is called a

fold reference arc if it transversely intersects the critical image of π in a single fold value.

Given a fold reference arc η : [0, 1] → D2 and a critical point q ∈ π−1(η) ∩ Crit(π), we say

that η̃Ht,p runs into q (or emerges from q) if its left (or right) limit is q. We can now define

what we call the vanishing sets of the triple (η,H; q) as

V0(η,H; q) = {p ∈ Σ0|η̃H0,p runs into q} ⊂ Σ0

V1(η,H; q) = {p ∈ Σ1|η̃H1,p emerges from q} ⊂ Σ1. (2.4)

We often write V0 ⊂ Σ0 and V1 ⊂ Σ1 for the unions Vi(η,H; q) over all q ∈ π−1(η) ∩ Crit(π).

We define parallel transport along η with respect to a fixed π-connection H by

ΠH
η : Σ0 \ V0 → Σ1 \ V1, p 7→ η̃H0,p(1) (2.5)

By the indefinite fold model (2.1), it follows that π−1(η) is a smooth three-manifold and

that η−1 ◦ π : π−1(η) → [0, 1] is a Morse function with a single critical point of index 1 or

2 depending on the direction in which η crosses the fold arc. If the index is 2, then the

vanishing sets with respect to any connection H consist of a simple closed curve c ⊂ Σ0 and

a pair of points {p, q} ⊂ Σ1. Due to its similarity with the theory of Lefschetz fibrations, c

is usually referred to as a vanishing cycle.
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Figure 2.2: A vanishing cycle for an indefinite fold.

Observe that parallel transport along η with respect to a given π-connection H yields a

preferred diffeomorphism

ΠHη : Σ0 \ c→ Σ1 \ {p, q}.

The above diffeomorphism is an identification of Σ1 with the surface obtained from Σ after

surgery along c as follows. The surgery of Σ along c can be identified with the endpoint

compactification of Σ0 \ c while the endpoint compactification of Σ1 \ {p, q} is canonically

identified with Σ1. Moreover, ΠHγ extends to a diffeomorphism of the endpoint compactifi-

cations. As a consequence, we see that the vanishing cycle c ⊂ Σ must be non-separating

and Σ1 has genus one lower than Σ0.

Note that the specific vanishing sets and parallel transport diffeomorphisms depend on

both η and H. It is therefore important to understand this dependence.

Lemma 2.5. Let π : X → R2 be a (g, k)-trisection map. For s ∈ [0, 1] we consider smooth

families of connections Hs and fold reference arcs ηs : [0, 1] → R2 with common endpoints.

Then the vanishing sets cs ⊂ Σ0 and {ps, qs} ⊂ Σ1 evolve by ambient isotopies. Moreover,

all ambient isotopies of c0 ⊂ Σ0 and {p0, q0} ⊂ Σ1 can be realized by changing each Hs in

an arbitrarily small neighborhood of π−1(ηs).
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Next, we extend our discussion to compact four-manifolds with non-empty boundary.

To this end, let X be a smooth, connected, compact, oriented 4-manifold with connected

boundary ∂X = Y . A relative (g, k; p, b)-trisection map f : X4 → D2 is a stable map with

critical image consisting of round indefinite folds and cusps, as in the closed case Figure 2.1,

but in addition we impose certain regularity conditions near the boundary of X.

1. The boundary of X decomposes as ∂X = ∂vX ∪ ∂hX, where ∂vX and ∂hX are codi-

mension zero submanifolds of ∂X and are glued along their respective boundaries.

2. X has corners exactly along ∂hX ∩ ∂vX.

3. π−1(∂D2) = ∂vX.

4. π|∂vX : ∂hX → ∂D2 and π|∂hX : ∂hX → D2 are both submersions.

5. Horizontality of ∂hX. If x lies in ∂hX, then the horizontal part of the tangent space

lies in Tx∂
hX.

In [GK16], Gay and Kirby show that such a stable map on a four-manifold with connected

boundary induces an open book decomposition.

Theorem 2.6. A relative (g, k; p, b)-trisection map π : X → D2 induces an open book

decomposition on the boundary three-manifold.

The above discussion of connections and parallel transport can be quickly adapted to

the case when X has nonempty boundary. For example, if η : [0, 1] → D2 is an embedded

arc in D2 which is transverse to the critical image of π, then η−1 ◦ π : π−1(η) → [0, 1] is a

Morse function. As π is a submersion on ∂vX, the fibers are compact surfaces with boundary

and this Morse function is a submersion on the closure of the boundary of π−1(η). So we

can choose a gradient-like vector field that is tangent to the boundary. This means that an

integral curve never hits the boundary (except along π−1(∂η)) as long as we start from an

interior point.
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2.2 Diagrammatic representations of manifolds

The theory of trisections of four-manifolds is analogous to that of Heegaard splittings of

three-manifolds, and since Heegaard diagrams are the diagrammatic input for Heegaard

Floer homology, it makes sense to introduce them along with trisection diagrams side-by-

side. This section closely follows [GM18, Section 2.2].

Definition 2.7. A cut system on a closed, connected, oriented, genus g surface Σ is a collec-

tion of g disjoint simple closed curves δ = {δ1, . . . , δg} ⊂ Σ which are linearly independent

in H1(Σg;Z). Two cut systems are slide-equivalent1 if they are related by a sequence of

handleslides. Two tuples (Σ, δ = {δ1, . . . , δg}) and (Σ′, δ′ = {δ′1, . . . , δ′g}), where δ and δ′ are

cut systems, are slide-diffeomorphic if there is a diffeomorphism φ : Σ → Σ′ such that φ(δ)

is slide-equivalent to δ′.

A cut system δ on Σ determines (up to diffeomorphism rel. boundary) a handlebody

Hδ with ∂Hδ = Σ, and every handlebody H with boundary the given surface Σ arises in

this way. Finally, Hδ and Hδ′ are diffeomorphic rel. boundary if and only if δ and δ′ are

slide-equivalent.

Definition 2.8. A Heegaard diagram is a triple (Σ,α,β) where Σ is a surface and each of

α = {α1, . . . , αg} and β = {β1, . . . , βg} are cut systems on Σ. A Heegaard triple is a 4-tuple

(Σ,α,β,γ) where Σ is a surface and each of α,β, and γ are cut systems on Σ. A (g, k)-

trisection diagram is a Heegaard triple (Σ,α,β,γ) where each tuple (Σ,α,β), (Σ,β,γ),

and (Σ,γ,α) are each slide-diffeomorphic to the standard genus g Heegaard splitting of

#kS1 × S2.

It is well-known that Heegaard diagrams and Heegaard triples determine smooth 3- and

4-manifolds, up to diffeomorphism. We review the construction for Heegaard triples, and

make comments about the special case of a trisection diagram.

1In the Heegaard Floer literature, it is common to use the term strongly equivalent.
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Let H = (Σ,α,β,γ) be a Heegaard triple. In [OS04b, Section 8], Ozsváth and Szabó

associate to H a four-manifold Xα,β,γ via

Xα,β,γ :=
(

(Σ×∆) ∪ (Uα × eα) ∪ (Uβ × eβ) ∪ (Uγ × eγ)
)
/ ∼ (2.1)

where ∆ is a triangle with edges labeled eα, eβ, and eγ clockwise, and ∼ is the relation

determined by gluing Uτ ×eτ to Σ×∆ along Σ×eτ for each τ ∈ {α,β,γ} using the natural

identification.

We note that if H = (Σ,α,β,γ) is a general Heegaard triple, with no conditions on the

pairwise cut systems, then the four-manifold Xα,β,γ constructed in equation (2.1) has three

boundary components

∂Xα,β,γ = −Yα,β t −Yβ,γ t Yα,γ (2.2)

given by the three Heegaard splittings (Σ,α,β), (Σ,β,γ), and (Σ,γ,α).

However, if H = (Σ,α,β,γ) is required to be a trisection diagram, so that we have

(Σ,α,β) ∼= (Σ,β,γ) ∼= (Σ,γ,α) ∼= #kS1 × S2,

then it follows (again from Laudenbach-Poenaru [LP72]) that we can fill in these three

boundary components and obtain a closed four-manifold.

Now, we move on to reviewing the diagrammatics of compact four-manifolds with con-

nected boundary.

Definition 2.9. A genus p cut system on a compact, connected, orientable genus g surface

Σ with b boundary components is a collection of g − p disjoint simple closed curves on Σ

which collectively cut Σ into a connected genus p surface. The notions of slide-equivalence

carry over.

12



In this more general setting, a genus p cut system on a genus g surface Σ with b boundary

components determines (up to diffeomorphism rel. boundary) a compression body Cδ with

∂Cδ = Σ ∪ (I × ∂Σ) ∪ Σδ, where Σδ is the result of surgering Σ along δ.

Definition 2.10. A (g,k; p, b)-relative-trisection diagram is a 4-tuple (Σ,α,β,γ) where Σ

is a genus g compact, connected surface with b boundary components, α, β, and γ are genus

p cut systems on Σ, and each of (Σ,α,β), (Σ,β,γ), and (Σ,γ,α) is slide-diffeomorphic to

the trivial (g, ki; p, b)-diagram shown below.

Recall from Section 2.1 that a trisection on a four-manifold induces an open book de-

composition of its boundary. By decorating the central surface Σ with additional arcs, we

can access this information diagrammatically.

Definition 2.11. Given a genus p cut system τ on Σ, an arc system relative to τ is a

collection t of 2p + b − 1 properly embedded arcs in Σ, disjoint from τ , such that cutting

along t and surgering along τ turns Σ into a disk. If t and t′ are arc systems relative to cut

systems τ and τ ′, respectively, we say that (τ , t) is slide-equivalent to (τ ′, t′) if the one can

be transformed to the other by ordinary handleslides on the cut systems and by sliding arcs

from the arc system over curves from the cut system.

Remark 1. Note that we do not allow the sliding of arcs over arcs, nor isotopies that move

points on ∂Σ.

Definition 2.12. An arced relative trisection diagram is a tuple (Σ,α,β,γ; a, b, c) such that

(Σ,α,β,γ) is a relative trisection diagram, a (resp. b, resp. c) is an arc system relative to

α (resp. β, resp. γ) and such that we have the following pairwise standardness conditions

1. (Σ,α,β, a, b) is slide-equivalent to some (Σ,α′,β′, a′, b′) such that (Σ,α′,β′) is diffeo-

morphic to the trivial (g, ki; p, b)-diagram and a′ = b′.

2. (Σ,β,γ, b, c) is slide-equivalent to some (Σ,β′,γ ′, b′, c′) such that (Σ,β′,γ ′) is diffeo-

morphic to the trivial (g, ki; p, b)-diagram and b′ = c′.

13



Observe that ∂a = ∂b = ∂c.

Definition 2.13. A completed arced relative trisection diagram is a tuple (Σ,α,β,γ; a, b, c, a∗)

such that (Σ,α,β,γ; a, b, c) is an arced diagram and such that (Σ,γ,α, c, a∗) is slide-

equivalent to some (Σ,γ ′,α′′, c′, a′) such that (Σ,γ ′,α′) is diffeomorphic to the trivial (g, k; p, b)-

diagram.

Using the above data, the authors of [CGP18] show that every relative trisection diagram

determines uniquely, up to diffeomorphism, the following data:

• a relatively trisected 4-manifold X with non-empty connected boundary, and

• the open book decomposition on ∂X induced by the trisection. Moreover, the page

and the monodromy of the open book on ∂X is determined completely by the relative

trisection diagram by an explicit algorithm.

Theorem 2.14 ([CGP18]). For any relative trisection diagram (Σ,α,β,γ) and any arc sys-

tem a relative to α on Σ, there exist cut systems b, c, and a∗ such that D∗ = (Σ,α,β,γ; a, b, c, a∗)

is a completed arced diagram. Furthermore, the open book decomposition is uniquely deter-

mined (up to isotopy) by the original relative trisection diagram D.
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Chapter 3

Background on Heegaard Floer

homology

This sections provides a brief review of the aspects of Heegaard Floer homology that will

be most important to us. We assume the reader is familiar with the Heegaard Floer canon

[OS04b; OS06; Lip06]. However, we start by reviewing a few concepts in order to fix notation,

and to emphasize important differences between trisections, especially relative trisections,

and the more common ‘Heegaard triples’.

3.1 Heegaard Floer chain complexes

Fix a closed, connected, oriented three-manifold Y , and denote by Spinc(Y ) the space of

Spinc structures on Y . Consider a fixed s ∈ Spinc(Y ). In [OS04b], Ozsváth and Szabó use

a pointed Heegaard diagram H = (Σ,α,β, w) depicting Y to construct Lagrangian Floer

cohomology groups associated to the two tori

Tα = α1 × · · · × αg Tβ = β1 × · · · × βg
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inside the symmetric product Symg(Σg). There is a natural map sw : Tα ∩ Tβ → Spinc(Y ),

and we will focus on those intersection points x which satisfy sw(x) = s. The definition of

the Floer groups requires H to satisfy an admissability condition which depends on s. We

also need to choose a suitable (generic) family J of almost complex structures on Symg(Σg).

We will write H for the data (H, J), which we call a Heegaard pair.

Given such a pair H, the Heegaard Floer chain complex CF∞(H, s) is freely generated

over F2 by pairs [x, i] with x ∈ Tα ∩ Tβ and i ∈ Z, such that sw(x) = s. The differential is

given by

∂[x, i] =
∑

y∈Tα∩Tβ

sz(y)=s

∑
φ∈π2(x,y)
µ(φ)=1

#M(φ) · [y, i− nz(φ)]. (3.1)

Here, π2(x,y) is the space of homotopy classes of Whitney disks connecting x to y, µ(φ) is

the Maslov index, M(φ) is the moduli space of J-holomorphic disks in the class φ (modulo

the action of R), and nz(φ) is the algebraic intersection number of φ with the divisor {z} ×

Symg−1(Σ) There is an action of F2[U,U−1] on CF∞, where U acts by U · [x, i] = [x, i − 1]

and decreases relative grading by 2. The other complexes CF+, CF−, and ĈF are obtained

from CF∞ by considering only pairs [x, i] with i ≥ 0, i < 0, and i = 0. All three complexes

have an induced F2[U ]-action, which is trivial in the case of ĈF .

We will write CF ◦(H, s) for any of the four flavors of the Heegaard Floer chain complex,

and HF ◦(H, s) for the homology groups.

By construction, there is a short exact sequence of F2[U ]-modules

0 −→ CF−(H, s) ι−→ CF∞(H, s) π−→ CF+(H, s) −→ 0 (3.2)

which yields a long exact sequence on homology. We let

δ : HF+(Y, s)→ HF−(Y, s) (3.3)
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denote the connecting homomorphism. Finally, we define the reduced Heegaard Floer homol-

ogy groups HF±red(Y, s) to be

HF−red(Y, s) := ker
(
ι∗ : HF−(Y, s)→ HF∞(Y, s)

)
(3.4)

and

HF+
red(Y, s) := coker

(
π∗ : HF∞(Y, s)→ HF+(Y, s)

)
. (3.5)

The connecting homomorphism δ induces an isomorphism from HF+
red(Y, s) to HF−red(Y, s).

It is perhaps worth remarking that, unlike HF±, the modules HF±red(Y, s) are always finite-

dimensional over F2.

3.2 Maps associated to cobordisms

Fix a four-dimensional cobordism W from Y0 to Y3, and let s be a Spinc-structure on W .

Choose a self-indexing Morse function f on W . Then f decomposes W into a sequence

of one-handle additions which taken together form a cobordism W1, followed by some two-

handle additions forming a cobordism W2, and three-handle additions forming a cobordism

W3, in this order. Let Y1 and Y2 be the intermediate three-manifolds, so that

W = W1 ∪Y1 W2 ∪Y2 W3.

Given this data, Ozsváth and Szabó [OS06] associate to (W, s) an induced map F ◦W,s :

HF ◦(Y0, sY0)→ HF ◦(Y3, sY3) between the Floer homologies of Y0 and Y3 via the composition

F ◦W,s := F ◦W3,s|W3
◦ F ◦W2,s|W2

◦ F ◦W1,s|W1
(3.1)
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of maps associated to each of the pieces W1, W2, and W3. We now review the definitions of

these three maps.

One- and three-handle maps

Suppose that W1 is a cobordism from Y0 to Y1 which consists entirely of 1-handle additions,

and let s be a Spinc-structure on W1. The map

F ◦W1,s
: HF ◦(Y0, sY0)→ HF ◦(Y1, sY1)

is constructed in the following way. Denote the 1-handles by h1, . . . , hn, and for each i =

1, . . . , n pick a path ηi in Y0, which joins the two feet of the handle hi. A choice of the ηi

induces a connected sum decomposition Y1
∼= Y0#(S1 × S2)#n where the first homology of

each S1×S2 factor is generated by the union of ηi with the core of the corresponding handle.

Further, the restriction of s to the (S1 × S2)-summands in Y1 is torsion. It follows that

HF ◦(Y1, sY1)
∼= HF ◦(Y0, sY0)⊗ Λ∗(H1(S1 × S2))

Let Θ+ be the generator of the top-graded part of Λ∗(H1(S1 × S2)). Then the Heegaard

Floer map induced by W1 is given by

F ◦W1,s
([x, i]) = [x⊗Θ+, i] (3.2)

It is proved in [OS06, Section 4.3] that, up to composition with canonical isomorphisms,

F ◦W1,s
does not depend on the choices made in its construction. For brevity, we will usually

denote the 1-handle map by F1.
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Next, if W3 is cobordism which can be built using only 3-handles, then for s ∈ Spinc(W )

the map

F ◦W3,s
: HF ◦(Y2, sY2)→ HF ◦(Y3, sY3)

is constructed in the following manner. After reversing W3, we can view it as attaching

1-handles on Y3 to get Y2. Again, choose a collection of paths {ηi} between the feet of these

1-handles in Y3. Such a choice yields a decomposition Y2
∼= Y3#(#mS1 × S2), where m is

the number of 3-handles of W3. Further, the restriction of s to the (S1 × S2)-summands in

Y2 is torsion. It follows that

HF ◦(Y2, sY2)
∼= HF ◦(Y3, sY3)⊗ Λ∗(H1(S1 × S2))

Let Θ− be the generator of the lowest-graded part of Λ∗(H1×S2). Then the Heegaard Floer

map induced by W3 is given by

F ◦W3,s
([x⊗Θ−, i]) = [x, i] (3.3)

and

F ◦W3,s
([x⊗ ξ, i]) = 0

for any homogeneous generator ξ of Λ∗H1(S1× S2) not lying in the minimal degree. Again,

the map is independent of the choices made in its construction.

Two-handle maps

In [OS06, Definition 4.2] Ozsváth and Szabó associate to a four-dimensional cobordism W

consisting of two-handle additions certain kinds of triple Heegaard diagrams. The cobordism

W from Y1 to Y2 corresponds to surgery on some framed link L ⊂ Y1. Denote by ` the number

of components of L. Fix a basepoint in Y1. Let B(L) be the union of L with a path from
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each component to the basepoint. The boundary of a regular neighborhood of B(L) is a

genus ` surface, which has a subset identified with ` punctured tori Fi, one for each link

component.

Definition 3.1. A Heegaard triple (Σ,α,β,γ, w) is called subordinate to a bouqet B(L) if

(B1) (Σ, {α1, . . . , αg}, {β1, . . . , βg−`}) describes the complement of B(L).

(B2) {γ1, . . . , γg−`}, are small isotopic translates of {β1, . . . , βg−`}

(B3) After surgering out the {β1, . . . , βg−`}, the induced curves βi and γi, for i = g − ` +

1, . . . , g, lie on the punctured torus Fi.

(B4) For i = g − ` + 1, . . . , g, the curves βi represent meridians for the link components,

disjoint from all γj for i 6= j, and meeting γi in a single transverse point.

(B5) for i = g − ` + 1, . . . , g, the homology classes of the γi correspond to the framings of

the link components.

The following lemma shows that one can represent the cobordism W (L) via a Heegaard

triple subordinate to a bouquet for the framed link L. For a proof, see for example [Zem15,

Lemma 9.4] or [OS06, Proposition 4.3].

Lemma 3.2. Suppose (Σ, α,β,γ, w) is subordinate to a bouquet for a framed link L in Y .

After filling in the boundary component Yβ,γ with 3- and 4-handles, we obtain the handle

cobordism W (Y,L).

We now define the cobordism maps for 2-handle cobordisms. Suppose L ⊂ Y is a framed

link in Y , and B(L) is a bouquet. Let (Σ,α,β,γ, w) be a Heegaard triple subordinate to

B(L). Let Θ ∈ Tβ ∩ Tγ denote the intersection point in top Maslov grading [OS06, Section

2.4].
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If s ∈ Spinc(W (Y,L)), the 2-handle map

F−L,s : CF−(Σ,α,β, w, s|Y )→ CF−(Σ,β,γ, w, s|Y (L))

is defined as a count of holomorphic triangles

F−L,s([x, i]) :=
∑

y∈Tα∩Tγ

∑
ψ∈π2(x,Θβ,γ,y

µ(ψ)=0
sw(ψ)=s

#M(ψ) · [i− nw(ψ)], (3.4)

where π2(x,Θ,y) is the set of homotopy classes of Whitney triangles with vertices x,Θ,y,

and M(ϕ) is the moduli space of holomorphic representatives of ϕ.

Throughout Section 4, we will be interested in studying the holomorphic triangle map

(3.4) for diagrams which are not a priori subordinate to a bouquet for a framed link. We

address this issue there.
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Chapter 4

Trisections and Ozsváth-Szabó

four-manifold invariants

In this section we demonstrate how one can use the data of a relative trisection map π :

X4 → R2 to compute the cobordism maps of Ozsváth and Szabó.

4.1 A Mayer-Vietoris strategy

For a closed 4-manifold X with b+
2 (X) ≥ 2 Ozsváth and Szabó defined a map

ΦX : Spinc(X)→ F2

It is common to write ΦX,s for the value of ΦX on s. The map ΦX is referred to as the mixed

invariant of X, because it intertwines HF+ and HF−.

The map ΦX is defined by picking a connected, codimension one submanifold N ⊂ X

that cuts X into two pieces, W1 and W2, such that b+
2 (Wi) > 0, and such that the restriction

map

H2(X)→ H2(W1)⊕H2(W2)
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is an injection. Such a three-manifold N is called an admissible cut. If we view W1 as a

cobordism from S3 to N , and W2 as a cobordism from N to S3 the maps F∞W1,s|W1
and F∞W2,s|W2

vanish [OS06, Lemma 8.2]. Consequently, the image of F−W1,s|W1
lands in HF−red(N, s|N) and

the map F+
W2,s|W2

factors through HF+
red(N, s|N). Finally, using the isomorphism between

HF−red(N, s|N) and HF+
red(N, s|N) via δ, one arrives at the following diagram

HF−(S3)

HF+(N, s|N) HF+
red(N, s|N) HF−red(N, s|N) HF−(N, s|N)

HF+(S3)

F−
W1,s|W1

F+
W2,s|W2

δ

Recall that the Floer homology groups of S3 can be computed as

HF−k (S3) =


F2 if k is even and k ≤ −2

0 else

HF+
k (S3) =


F2 if k is even and k ≥ 0

0 else

The invariant ΦX,s is defined as the coefficient of the bottom-graded generator Θ+ ofHF+
(0)(S

3)

in the expression (
F+
W2,s|W2

◦ δ−1 ◦ F−W1,s|W1

)
(Θ−) (4.1)

where Θ− denotes the top-graded generator of HF−(−2)(S
3) ∼= F2. Ozsváth and Szabó prove

that this is independent of the choices made (for example, the choice of admissable cut).

An equivalent formulation is to utilize the pairing on Heegaard Floer homology defined

on CF∞(Y,w, s) via

〈·, ·〉 : CF∞(Y,w, s)⊗CF∞(−Y,w, s)→ F2 〈[x, i], [y, j]〉 =


1 if i+ j = −1 and x = y

0 else

(4.2)
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This pairing descends to one on 〈·, ·〉 : HF+
red(Y,w, s) ⊗ HF−red(−Y,w, s) → F2 [OS06,

Section 5.1]. Using this pairing, we can alternatively define ΦX,s via the duality properties of

Heegaard Floer homology. Namely, instead of viewing W2 as a cobordism from N to S3, we

can ‘turn W2 around’, and view it as a cobordism W 2 : −S3 → −N , where −N denotes the

three-manifold N with its orientation reversed. In [OS06, Section 5.1], Ozsváth and Szabó

show that the maps

F−
W 2,s

and F+
W2,s

are adjoint to each other with respect to 〈·, ·〉.

Following [JM08], we make the following definition.

Definition 4.1. For a smooth, compact, connected, oriented Spinc four-manifold (W, s)

with connected boundary ∂W = Y , we define the relative invariant of (W, s) to be the

image of Θ− ∈ HF−(−2)(S
3) under the cobordism map where we view W as a cobordism from

HF−(S3) HF−(Y, s|Y )

Θ− ΨW,s

F−W,s

S3 to Y after removing a small four-ball from W .

It follows from the discussion above that if X is a four-manifold with b+
2 (X) ≥ 2 and is

decomposed into two pieces as above, then the mixed invariants can be recovered as

ΦX,s = 〈δ−1ΨW1,s|W1 ,ΨW 2,s|W2

〉 (4.3)

With this strategy in mind, our main focus in the upcoming sections will be on computing

the relative invariants from a (relative) trisection.
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4.2 Constructing Heegaard triples from relative trisec-

tion diagrams

Fix X4 to be a compact, oriented, connected, smooth 4-manifold. The input data we require

is a tuple (π, g,H) consisting of a (g, k; p, b)-trisection map π : X → R2, a Riemannian metric

g on X, and a π-compatible connection H. Equipped with such data, we may choose three

reference arcs ηα, ηβ, ηγ : [0, 1] → R2 as in Figure 4.1 below. Associated to these reference

Figure 4.1: For τ ∈ {α,β,γ}, we have reference arcs ητ : [0, 1] → R2 for which fτ : Uτ →
[0, 3] is a Morse function.

arcs are three Morse functions fα, fβ, fγ defined on the compression bodies Uα, Uβ, and Uγ

respectively. For τ ∈ {α,β,γ}, these Morse functions satisfy:

• fτ : Uτ → [0, 3] is a Morse function with f−1
τ (0) = Σ and f−1

τ (3) = Στ the surface

obtained by doing surgery on Σ along the τ -curves; and,

• fτ has g − p index two critical points whose descending manifolds intersect Σ along

the τ curves.

We define the surface Σα to be the fiber f−1
α (3) and fix an identification Σα

∼= Σp,b. Next,

endow Σα with a model collection of pairwise disjoint arcs {a1, . . . , an} which constitute a

basis for H1(Σα; ∂Σα), as in Figure 4.2 below. We call such a collection the standard arc

basis, and note that n can be computed as n = 2p+ b− 1.
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a1a2a2p−1a2p

a2p+1a2p+b−1

Figure 4.2: The standard arc basis of H1(Σα, ∂ΣαlZ).

Now define {b1, . . . , bn} ⊂ Σα and {c1, . . . , cn} ⊂ Σα to be two additional arc bases which

satisfy the following conditions:

1. The arc bases {a1, . . . , an}, {b1, . . . , bn} and {c1, . . . , cn} are isotopic (not relative to

the endpoints) by a small isotopy;

2. For each i = 1, . . . , n, ai has a single positive transverse intersection with bi, where the

orientation of bi is inherited from ai.

3. For each i = 1, . . . , n, bi has a single positive transverse intersection with ci, where the

orientation of the ci is inherited from the bi.

4. For each i = 1, . . . , n, ai has a single positive intersection with ci.

Figure 4.3: A zoomed in picture near the boundary of Σα.

Next, we can flow the arcs {a1, . . . , an} ⊂ Σα onto Σ using the gradient flow of fα. We’ll

denote the images of {a1, . . . , an} under this flow by {a1, . . . , an} ⊂ Σ. Note that generic

choices ensure that the ai are pairwise disjoint form each other and from the original α-curves
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{α1, . . . ,αg−p} ⊂ Σ. Note, however, that the images {a1, . . . , an} are only well-defined up

to handle-slides over the original α-curves.

Now, perform a sequence of handle-slides of a arcs over α curves until a ∩ β = ∅, and

denote the resulting collection of arcs by b = {b1, . . . , bn}. Note that this construction of

the collection b is equivalent to the following. According to [CGP18, Corollary 14], there

exists an ‘identity’ map idαβ : Σα → Σβ for which the following diagram commutes

Σα

Σβ Σ

idα,β
∇fα

∇fβ

Finally, perform another sequence of arcslides of b arcs over β curves until b ∩ γ = ∅,

and denote the resulting collection of arcs by c = {c1, . . . , cn}. By construction, the data

D = (Σ,α,β,γ; a, b, c) constitute an arced trisection diagram of X.

We now describe how to glue together the above data to construct a Heegaard triple

which encodes the cobordism X : ∅ → Y . Let Σ be the surface obtained by identifying the

boundaries of Σ and −Σα via an orientation reversing diffeomorphism

Σ := Σ ∪∂ −Σα. (4.1)

Note that the genus of Σ is g(Σ) = g + p+ b− 1.

Next, we define three new handlebodies Uα, Uβ, and Uγ , each bounded by Σ, by specifying

their attaching curves. The Uα handlebody is determined by the curves {α1, . . . ,αg+p+b−1}

where

αi =


αi 1 ≤ i ≤ |α|

ai ∪∂ ai |α|+ 1 ≤ i ≤ g(Σ)

(4.2)
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For the β-handlebody Uβ, we define

β
i

=


βi 1 ≤ i ≤ |β|

bi ∪∂ bi |β|+ 1 ≤ i ≤ g(Σ)

(4.3)

Finally, the γ-handlebody Uγ is determined by

γ
i

=


γi 1 ≤ i ≤ |γ|

ci ∪∂ ci |γ|+ 1 ≤ i ≤ g(Σ)

(4.4)

Example 4.2. Consider for example the standard relative trisection diagram for B4. After

this procedure, the resulting Heegaard triple looks like Figure below.

Figure 4.4: A Heegaard triple constructed from the relative trisection diagram for B4.

Thus far, we have described how, given a relative trisection diagram D = (Σ,α,β,γ)

which is compatible with a given (g, k; p, b)-trisection map f : X → D2, to construct a new

Heegaard triple D = (Σ,α,β,γ). However, it is not at all clear how the original 4-manifold

X, as described by the diagram D, and the potentially new 4-manifold X, as described by

the diagram D, are related. The remainder of this section clarifies this relationship via a

technique which we call a trisector’s cut.
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Our strategy for relating X and X involves a series of intermediate manifolds which

we now describe. Starting with X, which comes equipped with the decomposition X =

X1 ∪X2 ∪X3, consider a collar neighborhood of the boundary of X3, denoted ν(∂X3). After

rounding corners we parametrize this collar neighborhood via

ϕ : [0, 1]×#k3S1 × S2 → ν(∂X3),

where ∂X3 is embedded in ν(∂X3) as {0}×#k3S1×S2. For a chosen basepoint z ∈ f−1(1) ∼=

P , let

η : [0, 1]→ ν(∂X3)

be a short arc connecting z to its image in {1}×f−1(1). This being done, delete from X3 the

complement of ν(∂X3) union a tubular neighborhood of η. In symbols, delete the following

subset from X3: (
X3 \ ν(∂X3)

)
∪ ν(η) (4.5)

We give the resulting 4-manifold a name, X#, and its importance is demonstrated in Propo-

sition 4.3 below.

Proposition 4.3. The 4-manifolds X# and X are diffeomorphic, where X is the result of

filling in Xα,β,γ with k2 + 2p+ b− 1 3-handles and a single 4-handle.

Remark 2. The author would like to warmly thank David Gay and Juanita Pinzón-Caicedo

for helpful suggestions during the development of this proof.

Proof. The essential point of the argument is showing how to embed the spine of X into

X#. To do so, we need to identify the central surface Σ and the corresponding handlebodies

Uα, Uβ, and Uγ as submanifolds of X#. The result then follows after filling in the resulting

#`iS1 × S2 with \`iS1 ×B3 where `i, i = 1, 2, 3, are parameters to be determined.
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Observe that, after removing \k3S1×B3 from X3 ⊂ X, the base diagram is now reminis-

cent of the familiar keyhole contour which we parametrize as B = [π/6, 11π/6]× [0, 1] where

θ ∈ [π/6, 11π/6] and t ∈ [0, 1] are coordinates.

We say that a parametrization κ : B → [π/6, 11π/6] × [0, 1] is compatible with f if the

critical image Cκ := κ ◦ f(Crit(f)) is in the following standard position:

• All cusps point to the right (i.e. in the positive t-direction).

• Each Rθ := {θ}× [0, 1] meets Cκ in exactly g−p points, and each intersection is either

at a cusp or meets transversely in a fold point.

• For a fixed small ε > 0, there exists a 2ε-neighborhood N2ε of ∂θB := [π/6, 11π/6] ×

{0, 1} such that κ ◦ f(Crit(f)) ∩N2ε = ∅.

Figure 4.5: The trisector’s cut.

30



Fix an f -compatible parametrization κ : B → [π/6, 11π/6] × [0, 1] of the base, and

consider the reference arcs Rα := {−π/3}×[0, 1], Rβ := {π}×[0, 1], and Rγ := {π/3}×[0, 1].

Observe that

Hα := f−1(Rα)

Hβ := f−1(Rβ)

Hγ := f−1(Rγ)

are each sutured compression bodies. Next, we’ll round the corners of these compression

bodies and obtain honest 3-dimensional handlebodies. For a proof, see [JZ18b, Lemma 8.4].

Lemma 4.4. Let Hα be the sutured compression body formed by attaching 3-dimensional

2-handles to I × Σ along the curves {0} ×α. After rounding corners, we can view Uα as a

(non-sutured) handlebody of genus |α| − χ(Rα) + 1 and boundary

(
{1} × Σ

)
∪∂ Σα.

Furthermore, a set of compressing disks for Uα can be obtained by taking |α| compressing

disks Dα with boundary {1} × α for α ∈ α, as well as disks of the form Dc∗i
:= I × c∗i for

pairwise disjoint, embedded arcs c∗1, . . . , c
∗
b1Σα

in Σ that avoid the α curves, and form a basis

of H1(Σα, ∂Σα). These cut Uα into a single 3-ball.
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Figure 4.6: The process of rounding corners.

Applying Lemma 4.4 to the three sutured compression bodies Hα, Hβ, and Hγ above,

we obtain 3 three-dimensional handlebodies with ∂Hτ = Στ for each τ ∈ {α,β,γ}. We

take as the central surface in our spine-decomposition of X# to be Σ := ∂Σα. Clearly, Σ

bounds the Uα handle-body described in equation (4.2). Notice, however, that the Hβ and

Hγ handlebodies are completely disjoint from Σ. To remedy this, we isotope the attaching

circles for the β- and γ-handlebodies onto Σ, and it is via this isotopy that we see how

the monodromy of the open book decomposition of Y naturally arises. After isotoping the

attaching curves onto the same central surface Σ, we will have completed the proof that the

spine of Xα,β,γ embeds into X#.

Now, we’ll construct an isotopy for the attaching circles for the handlebodies Uβ and Uγ .

To do so, choose a connection H for the trisection map f , and thicken the surface Σβ to

Σβ× [0, 2ε] using the inward pointing normal direction coming from the boundary. Since we

have an f -compatible parametrization of the base, the attaching circles on Σβ × {2ε} are

isotopic to those of Σβ = Σβ×{0}. Next, we use H to flow the attaching circles on Σβ×{2ε}

onto to Σα × {2ε}. Finally, we see that the attaching curves for Hβ, appropriately isotoped

over to Σ, are precisely those for Uβ. With the attaching circles for Uβ pushed slightly in, it

follows by the horizontality condition that the attaching circles for Hγ , after flowing along
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the horizontal distribution, agree with that of Uγ . Thus, we have shown that the spine of

Xα,β,γ embeds into X#.

It remains only to show that after filling in the caverns, one gets X# back, but this

follows from uniqueness of [LP72].

Remark 3. The boundary of X# is Y#(#k3S1× S2), and after filling in the #k3S1× S2, we

recover the original 4-manifold X.

Corollary 4.5. In the Heegaard triple (Σ,α,β,γ, w) constructed above, we have that (Σ,α,β),

(Σ,β,γ) and (Σ,α,γ) are Heegaard diagrams for the three-manifolds #`1S1×S2, #`2S1×S2,

and Y#(#k3S1 × S2) where `i = ki + 2p+ b− 1.

Proof. The statements for (Σ,α,β) and (Σ,β,γ) follow from a combination of two facts;

the first being that (Σ,α,β,γ) is a relative trisection, so that to begin with the pairwise

tuples yield connect sums of S1×S2; and the second being that the monodromy of the open

book can be trivialized over one sector at a time.

4.3 Holomorphic triangles and cobordism maps

Fix X to be a smooth, oriented, compact four-manifold with connected boundary, and equip

X with a (g, k; p.b)-trisection map π : X → D2. Given a diagram (Σ,α,β,γ) associated to

π, we show in this section how the holomorphic triangle map (3.4) computes the induced

cobordism map of Ozsváth and Szabó.

Proposition 4.6. If H = (Σ,α,β,γ, w) is a pointed Heegaard triple constructed using the

prescription described in subsection 4.2 above, then H is slide-equivalent to one which is

subordinate to a bouquet for a framed link L ⊂ #`1S1×S2 for which the 2-handle cobordism

W (#`1S1 × S2,L) is diffeomorphic to X as cobordisms from #`1S1 × S2 to Y #, where X is

the result of filling in Xα,β,γ with \`2S1 ×B3 and a 4-handle.
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Proof. Consider again the singular fibration π# : X# → D2 shown in Figure 4.5 along with

the three reference arcs ηα, ηβ, and ηγ shown there. Choose an isotopy of the ηα and ηβ

reference arcs, relative to the endpoints, so that they appear as in Figure 4.7 below.

Figure 4.7: An isotopy of the ηα and ηβ reference arcs keeping the endpoints fixed.

During the chosen isotopy of ηα and ηβ the cut systems α and β will evolve via a sequence

of handleslides and the resulting diagram will have α′ and β′ be in standard position with

respect to on another.

Recall from [MSZ16, Definition 4.5] that a disk Dγ properly embedded in Uγ is primitive

in Uγ with respect to Uβ′ if there exists a compression disk Dβ′i
satisfying the condition

|Dγ∩Dβ′i
| = 1. Since (Σ,β′,γ) is a genus g = g+p+b−1 Heegaard diagram for #`2S1×S2,

it follows from [MSZ16, Theorem 2.7] that Uγ admits an ordered collection of compression

disks {Dγ′
i
} where the corresponding attaching circles γ ′

i
= ∂Dγ′

i
satisfy

1. For i = 1, . . . , g − k − p, γ ′
i

satisfies |γ ′
i
∩ β′

i
| = 1 and |γ ′

i
∩ β

j
| = 0 for i 6= j.

2. For i = g − k − p+ 1, . . . , g + p+ b− 1, γ ′
i

is parallel to β′
i
.

We remark that since γ ′ and γ are cut systems for the same handlebody Uγ , it follows from

[Joh06] that γ ∼ γ ′.

This being done, it follows from [KM20, p.5] (see, in particular [KM20, Figure 2]) that

for i = 1, . . . , g − k − p, γ ′
i

can be interpreted as the framed attaching sphere for a 2-handle

cobordism, where each γ ′
i

is given the surface framing.
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Finally, we exhibit a bouquet for the framed attaching link L = {γ ′
1
, . . . ,γ ′

g−p−k} and

check that (Σ,α′,β′,γ ′) is subordinate to it. For each γ ′
i
∈ {γ ′

1
, . . . ,γ ′

g−k−p}, choose a

properly embedded arc ηi ⊂ Uβ which has one endpoint on γ ′
i

and the other on w, the

fixed basepoint. Then the union of ηi comprise a bouquet for the link L. Furthermore,

(Σ, {α1, . . . ,α
′
g+p+b−1}, {β

′
g−p−k+1

, . . . ,β′
g+p+b−1

} is a Heegaard diagram for the complement

of L in #`1S1 × S2. Next, taking a thin tubular neighborhood of β′
i
∪ γ ′

i
constitutes a

punctured torus for each i = 1, . . . , g − k − p. Last, the conditions that β′
i

constitute a

meridian and that γ ′
i

constitute a longitude are self evident after using the surface framing

to push γ ′
i

into Uβ handlebody. Thus, the conditions (B1) – (B5) are satisfied.

Definition 4.7. Let (Σ,α,β,γ) be an admissable triple diagram. If β ∼ γ, then we’ll write

Ψα
β→γ for the map

F ◦α,β,γ(−⊗Θβ,γ) : HF ◦(Σ,α,β)→ HF ◦(Σ,α,γ) (4.1)

Similarly, if α ∼ β, then let Ψα→β
γ denote the map

F ◦β,α,γ(Θβ,α ⊗−) : HF ◦(Σ,α,γ)→ HF ◦(Σ,β,γ) (4.2)

We take a moment to compare Spinc-structures on X to those on X#. Observe that

there is a natural restriction map

r : Spinc(X)→ Spinc(X#) (4.3)

The restriction map r is surjective, and conversely, a Spinc-structure s# on X# admits

a unique extension to X if it is isomorphic to the unique torsion Spinc-structure s0 in a

neighborhood of #k3S1 × S2.
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Proposition 4.8. Fix a Spinc-structure s ∈ Spinc(X#). Let H = (Σ,α,β,γ, w) be the

pointed s-admissable Heegaard triple constructed as above, and let H′ = (Σ,α′,β′,γ ′, w) be

a Heegaard triple which is strongly equivalent to H and which is subordinate to a bouquet for

a framed link L as above. Then in the diagram below

HF ◦(Σ,α,β, s0) HF ◦(Σ,α,γ, sα,γ)

HF ◦(Σ,α′,β′, s0) HF ◦(Σ,α′,γ ′, sα′,γ′)

Ψ
α→α′

β→β′

F ◦α,β,γ,s

Ψ
α→α′

γ→γ′

F ◦L,s

we have the following equality

F ◦L,s ◦Ψα→α′

β→β′
(Θα,β) = Ψα→α′

γ→γ′ ◦ Fα,β,γ,s(Θα,β) (4.4)

Proof. Similar results are common in the literature, so we’ll be brief (cf. [OS06, p.360]).

By assumption, the cut systems α ∼ α′, β ∼ β′, and γ ∼ γ ′ are related by sequences

of isotopies and handleslides. Start by considering the sequence α ∼ α′, which yields the

following diagram:

HF ◦(Σ,α,β, s0) HF ◦(Σ,α,γ, sα,γ)

HF ◦(Σ,α′,β, s0) HF ◦(Σ,α′,γ, sα′,γ)

F ◦α,β,γ,s

Ψ
α→α′
β Ψ

α→α′
γ

F ◦
α′,β,γ,s

Figure 4.8: The commutative square associated to the sequence of isotopies and handle slides
connecting α to α′.

By [JTZ12, Proposition 9.10] we have that both Ψα→α′

β and Ψα→α′
γ are isomorphisms, and by

[JTZ12, Lemma 9.4] we have that HF ◦top(Σ,α,β, s0) ∼= F2〈Θα,β〉 and HF ◦top(Σ,α′,β, s0) ∼=

F2〈Θα′,β〉. It is now immediate that Ψα→α′

β (Θα,β) = Θα′,β.

Using [JTZ12, Lemma 9.5], we may assume that (Σ,α′,α,β,γ, w) has also been made

admissable, so we can apply the associativity theorem for holomorphic triangles [OS04b,
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Theorem 8.16] and conclude that

F ◦α′,α,γ
(
Θα′,α ⊗ F ◦α,β,γ,s(Θα,β ⊗Θβ,γ)

)
= F ◦α′,β,γ,s

(
F ◦α′,α,β(Θα′,α ⊗Θα,β)⊗Θβ,γ

)
(4.5)

Clearly, equation (4.5) shows that the diagram in Figure 4.8 commutes for the generator

Θα,β.

Having handled the sequence α ∼ α′, we consider next the sequence of isotopies and

handleslides amongst the β-curves. In a similar fashion, we consider the following diagram

HF ◦(Σ,α′,β, s0) HF ◦(Σ,α′,γ, sα′,γ)

HF ◦(Σ,α′,β′, s0) HF ◦(Σ,α′,γ, sα′,γ)

F ◦
α′,β,γ,s

Ψ
α′

β→β′

F ◦
α′,β′,γ,s

Figure 4.9: The commutative square associated to the sequence of isotopies and handle slides
connecting β to β′.

The proof that Figure 4.9 is commutative, however, is slightly different than that for

Figure 4.8, so we include the proof here. As before, we apply [JTZ12, Lemma 9.5] to justify

that (Σ,α′,β,β′,γ, w) is admissable. Applying the associativity theorem for holomorphic

triangles, we see that

F ◦α′,β′,γ
(
F ◦α′,β,β′(Θα′,β ⊗Θβ,β′)⊗Θβ′,γ

)
= F ◦α′,β,γ

(
Θα′,β ⊗ F ◦β,β′,γ(Θβ′,β ⊗Θβ′,γ)

)
(4.6)

By again applying [JTZ12, Proposition 9.10] and [JTZ12, Lemma 9.4], we observe that

F ◦β,β′,γ(Θβ,β′ ⊗Θβ′,γ) = Θβ,γ (4.7)

which turns equation (4.7) into

F ◦α′,β′,γ
(
F ◦α′,β,β′(Θα′,β ⊗Θβ,β′)⊗Θβ′,γ

)
= F ◦α′,β,γ(Θα′,β ⊗Θβ,γ) (4.8)
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It is immediate from equation (4.8) that Figure 4.9 commutes for the generator Θα′,β.

Having studied the sequences α ∼ α′ and β ∼ β′, we leave it to the reader to build an

analogous commutative diagram for the sequence γ ∼ γ ′ and top generator Θα′,γ . The proof

that it is commutative follows as for the sequence β ∼ β′.

To demonstrate the assertion made in the proposition, we observe that after stacking

Figures 4.8 and 4.9 on top of the appropriate diagram for the γ ∼ γ ′ sequence, we arrive

at a new commutative diagram which is equivalent to equation (4.4). This is so for two

reasons: first, by Definition the maps F ◦α′,β′,γ′,s and F ◦L,s are equivalent, and second, by

[JTZ12, Proposition 9.10] we have

Ψα→α′

β→β′
= Ψα′

β→β′
◦Ψα→α′

β and Ψα→α′

γ→γ′ = Ψα′

γ→γ′ ◦Ψα→α′

γ .

Theorem 4.9. In the diagram below,

HF ◦(S3) HF ◦(Y, s)

HF ◦(Σ,α,β, s0) HF ◦(Σ,α,γ, sα,γ)

F1

F ◦X,s

F ◦α,β,γ,sα,β,γ

F3

the following equality holds

F3 ◦ F ◦α,β,γ,sα,β,γ ◦ F1(Θ) = F ◦X,s(Θ) (4.9)

Proof. This follows immediately after combining the construction of X# with Proposition

4.8, the definitions of the 1- and 3-handle cobordism maps, and the classic results of [OS06]

which show that FX,s is independent of the handle decomposition of X.
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4.4 The image of the contact class

Fix X to be a smooth, oriented, compact four-manifold with connected boundary ∂X = Y .

As discussed in Section 2.2, a (g, k; p, b)-trisection map π : X → D2 induces an open book

decomposition on its boundary 3-manifold Y . Given the data of such an open book, Honda-

Kazez-Matic [HKM09] define a class c(ξ) ∈ HF+(−Y, sξ) and show that c+(ξ) agrees with the

Ozsváth-Szabó contact invariant [OS05] associated to (Y, ξ), where ξ is a contact structure

supported by the given open book. In this section, we initiate a study of the relationship

between c+(ξ) and relative trisection maps π inducing an open book which supports ξ.

To begin, fix a (g, k; p.b)-trisection map π : X → D2, and let (Σ,α,β,γ) be its associated

diagram. Next, construct the associated diagram1 (Σ,β,γ,α, w) as in Subsection 4.2 above.

For each i = g − p+ 1, . . . , g(Σ) = g + p+ b− 1, let θi, xi, and yi be the unique intersection

point shown in Figure 4.10 below,

θi = βi ∩ γi ∩ Σα

xi = γi ∩αi ∩ Σα (4.1)

yi = βi ∩αi ∩ Σα

and let Θ, x, and y be the corresponding intersection points

Θ = {Θ(1)
β,γ , . . . ,Θ

(g−p)
β,γ , θg−p+1, . . . , θg+p+b−1} ∈ Tβ ∩ Tγ

x = {Θ(1)
γ,α, . . . ,Θ

(g−p)
γ,α , xg−p+1, . . . , xg+p+b−1} ∈ Tγ ∩ Tα (4.2)

y = {Θ(1)
β,α, . . . ,Θ

(g−p)
β,α , yg−p+1, . . . , yg+p+b−1} ∈ Tβ ∩ Tα

1We have intentionally flipped the roles of α, β, and γ in this construction, as will be apparent momen-
tarily.
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To describe the symbols Θ
(i)
ξ,ζ, for i = 1, . . . , g − p and ξ, ζ ∈ {α,β,γ}, recall that by the

connect sum formula [OS04a] and Corollary 4.5, it follows that

HF+(Σ,β,α, s0) ∼= HF+(Σ,γ,β, s0) ∼= Λ∗(H1(#k+2p+b−1S1 × S2))⊗ F2[U,U−1]/U · F2[U ]

(4.3)

and

HF+(Σ,γ,α, s#s0) ∼= HF+(Y, s)⊗HF+(#kS1 × S2; s0) (4.4)

With these observations in mind, we choose the Θ
(i)
ξ,ζ so that they represent the top-degree

homology class in these decompositions.

w

xi

yi

θi

A
B

C

D

C

E

F

Σα

Σ

Figure 4.10: A local picture of the intersection points θi, xi, and yi.

Proposition 4.10. The generator [x, 0] is a cycle in CF+(Σ,γ,α, w), and its image in

homology is mapped to c+(Y, ξ) ∈ HF+(−Y, sξ) under the 3-handle cobordism map. That is,

HF+(−Y #, sξ#s0) HF+(−Y, sξ)

[x, 0] c+(ξ)

F3

Proof. Let α = {α1, . . . , αg−p} ⊂ α and γ = {γ1, . . . , γg−p} ⊂ γ denote the original cut

systems arising from π : X → D2. By assumption, there exists sequences of isotopies and
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handleslides after which (Σ,γ,α) is a standard diagram. Observe that these sequences can

be chosen so as to not interact with the new α and γ curves.

Thus, (Σ,γ,α, w) is slide-equivalent to a stabilized diagram for Y#(S1×S2)#k3 obtained

via the Honda-Kazez-Matic procedure after adding two-dimensional 1-handles to the page

Σα and extending the monodromy across them by the identity. In particular, [HKM09,

Theorem 3] implies that [x, 0] is a cycle whose image in homology represents the contact

class for (Y #, ξ#). Finally, that [x, 0] is sent to c+(ξ) follows from the definition of the

three-handle map.

Theorem 4.11. The image of c+(ξ) under F+

X,s
coincides with the image of [x, 0] in homology

under the map F+
β,γ,α(Θβ,γ ⊗−).

Proof. This statement follows quickly from the work done in Subsections 4.2 and 4.3. Namely,

the combination of Proposition 4.8 and Proposition 4.10 implies that the following diagram

commutes:

HF+(−Y, sξ) HF+(S3)

HF+(−Y #, sξ#s0)

F+

X,s

F3
F+
γ,β,α,s(Θβ,γ⊗−)

Next, we show how the diagram constructed in subsection above allows us to exhibit

some control over the holomorphic triangles which appear in our count. The following is

only a slight adaptation of [Bal13, Proposition 2.3] to our current setting.

Proposition 4.12. Suppose that (Σ,β,γ,α, w) has been made weakly admissable, and let ψ

be a homotopy class of Whitney triangles connecting Θ, x, and any other point w ∈ Tβ∩Tα.

If ψ admits a holomorphic representative and satisfies nw(ψ) = 0, then w must be of the

form

w = {w(1), . . . , w(g−p)} ∪ {yg−p+1, . . . , yg+p+b−1}, (4.5)
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and D(ψ) =
∑g−p

i=1 ∆′i + ∆g−p+1 + · · · + ∆g+p+b−1 where ∆′i are triangles entirely contained

in Σ.

Proof. Suppose that ψ has a holomorphic representative and satisfies nw(ψ) = 0. It follows

that every coefficient in the domain D(ψ) is non-negative, and that D(ψ) must have mul-

tiplicity 0 in the region containing the basepoint w. Moreover, the oriented boundary of

D(ψ) consists of arcs along the β curves from the points wg−p+1, . . . , wg+p+b−1 to the points

θg−p+1, . . . , θg+p+b−1; arcs along the γ curves from the points θg−p+1, . . . , θg+p+b−1 to the

points xg−p+1, . . . , xg+p+b−1; and arcs along the α curves from the points xg−p+1, . . . , xg+p+b−1

to the points wg−p+1, . . . , wg+p+b−1.

Denote by a, b, c, d, e and f the multiplicities of D(ψ) in the regions A,B,C,D,E and

F shown in Figure 4.10 above. Observe that c = 0. The boundary constraints on D then

imply that

a+ d− b = 1 (4.6)

d = b+ e+ 1 (4.7)

After subtracting (4.6) from (4.7), we determine that a = −e. However, since all coeffi-

cients of D(ψ) must be non-negative, it must be that a = e = 0. If wi 6= yi, the constraints

on ∂D(ψ) near yi force f+d = 0, which implies that f = d = 0. However, plugging this back

into (4.6), together with a = 0, implies that −b = 1, which is a contradiction. Thus, it must

be that wi = yi. Next, the constraints on ∂D(ψ) (together with the fact that e = c = 0)

near yi require that d+ f = 1. Substituting this into (4.7) implies that d = 1 and f = b = 0.

Thus we conclude that d = 1 and a = b = c = e = f = 0.
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