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Abstract

Circadian clock oscillators in living organisms have been studied extensively for decades.

However, it is presently still not fully understood how the stochastic clock gene regulatory

processes in individual cells are getting organized to produce coherent, nearly periodic clock

oscillations observed at the level of large cell populations. To investigate the effects of intra-

cellular stochasticity, arising from the stochastic gene regulation at the multi-cell level, we

have developed a hybrid model, which combines the random clock gene flip processes with

a deterministic time evolution of resulting gene products and signaling agents, subject to a

quorum sensing-type inter-cellular coupling mechanism, for the microbial fungus Neurospora

crassa. The cell population, with sufficient coupling strength, can generate coherent and

nearly periodic average signals, whereas the dynamics of each single cells still remains irreg-

ular and incoherent. We introduce several novel non-linear time series analysis methods to

study the underlying mechanism of this paradoxical collective system behavior. By using the

relative signal amplitude as the synchronization order parameter, a continuous phase tran-

sition phenomenon can be observed in the system, from being non-oscillatory to oscillatory,

with the population size approaching infinity.
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Chapter 1

Introduction

Circadian clocks are biological oscillators that regulate many physiological behaviors of liv-

ing systems from cellular level to organismal level [1]. It can generate well self-sustained

oscillations with a period of around 24 h without outside drivers [2,3] or be entrained by en-

vironmental stimuli, such as light and temperature [4–8]. On the single-cell level, the system

dynamics of a circadian system is generally developed in the form of genetic networks, which

provides an explicit framework of gene, RNAs, proteins, and, more importantly, reactions

that connect them [9]. However, stochastic fluctuations, due to the low number of biolog-

ical molecules, are quite unavoidable in modeling clock oscillators. Gene expression noise,

which is mostly caused by random changes of genes’ transcriptional states and their low copy

numbers, becomes a significant part of noise source in the single-cell oscillator system [10].

My research mainly focuses on the circadian system in the filamentous fungus, Neurospora

crassa, which has been well studied, both experimentally and theoretically, for decades.

Figure 1.1 [11] shows a detailed genetic network of a single cell’s biological clock module

in Neurospora crassa. The system contains 26 reactions and 16 participating biomolecular

species, which involves genes of white-collar-1 (wc-1), white-collar-2 (wc-2), frequency (frq),

and clock controlled gene (ccg) and their associated products [12]. The central feature of the
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genetic network that permits oscillations is a closed-feedback loop of biomolecular reactions

which consists of protein complex White Collar Complex (WCC) formed by proteins WC-

1 and WC-2, frq-gene, which is transcriptionally regulated by WCC, and protein FRQ,

which catalyzes the destructive reaction of WCC. In addition, a positive feedback loop which

involves the activation of wc-1 mRNA at reaction C1 is predicted not to play a essential role

in the occurrence of oscillations, but it might help keep oscillations sustained by increasing

the lifetime of wc-1 mRNA with an as-yet-unexplained mechanism [11].

Figure 1.1: Genetic network for a single cell’s the biological clock of Neurospora crassa. Boxes
represent molecular species. Species which have superscripts 0 (1) and r0 (r1) indicate,
respectively, transcriptionally inactive (active) genes and translationally inactive (active)
mRNAs. Species with uppercase letters denote proteins. All biomolecular reactions are
represented by circles, labeled by their reaction rates. Reactants are identified by arrows
entering circles, products are identified by arrows leaving circles, and catalysts are identified
by bidirectional arrows. In addition, circles without leaving arrows represent decay reactions,
and nW and mF are Hill coefficients for reactions Af and P.

A deterministic kinetic rate equation system, which is well constructed on the basis of

the network shown above, has been successful in describing the biological clock dynamics at

the level of large cell populations [11]. The concentrations of all molecular species, including
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frq-gene and ccg-gene, in the deterministic model are taken as continuous variables, since

the large cell population size can considerably reduce the influences of stochastic fluctuations.

However, it is presently an open question how the stochastic gene regulation and expression

dynamics at the single-cell level can give rise to the coherent, periodic clock oscillations

observed at the multi-cellular level.

In Chapter 2, I will introduce a hybrid model which uses a generalization of Gillespie

kinetic Monte Carlo process to embed the stochastic gene flip events into the deterministic

kinetic rate equation system based on a simplified reaction network of a single-cell clock

in Neurospora crassa. A light-entrainment version of the hybrid model is described in this

section, as well. Chapter 3 contains a multi-cell hybrid model which uses a quorum sensing-

type signaling mechanism to couple cells in a population. In Chapter 4, several novel non-

linear time series analysis will be introduced to study the basic physics of the special collective

synchronization mechanism in the multi-cell hybrid model and its parametric robustness of

the oscillatory behavior of the system. Chapter 5 presents a brief summary and conclusion.
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Chapter 2

Hybrid model for the biological clock

module in single cells of Neurospora

crassa

2.1 The hybrid model with a simplified reaction net-

work

In this section, a hybrid model which combines stochastic gene regulation of frq-gene and

ccg-gen with deterministic time-evolution of the RNA and protein gene products is explicitly

described. Figure 2.1 shows a simplified single-cell system in the dark, which is modified on

the basis of the full genetic network for the deterministic model, shown in Figure 1.1. The

protein WC-2 in the original network is not considered as a key feature for oscillations of

the clock, and, therefore, species, wc-21, wc-2r1, and WC-2, are removed from the network.

Furthermore, wc-11 is also taken from the network, for the reason that the number of gene
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wc-1 keeps constant in the model. Consequently, the total number of species in this simplified

network is reduced to 12, and we used it as the framework for the hybrid model.

Figure 2.1: A simplified reaction network for the biological clock of Neurospora crassa

In the deterministic model, gene frq and ccg are described as continuous concentration

variables for both two transcriptional states. However, assuming that there is only one

copy of gene frq and ccg for each cell, their activation states should be binary variables

with appropriate non-dimensionalization. The corresponding values for them are 1 and 0

for being transcriptionally active and inactive, respectively. Therefore, instead of using

continuous variables for the four species, frq0, frq1, ccg0, and ccg1, we would like to replace

them with two binary variables, denoted, respectively, by gf,k and gc,k, where f and c in the

subscripts refer to gene frq and ccg and k in the subscripts means that the k-th gene flip has

occurred in the cell at time t
(gf)
k .
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In the hybrid model, the process of flipping gene frq or ccg states is fully controlled

by random WCC-binding and -unbinding events at the two genes’ activator binding sites.

Each time when a gene is randomly picked to be flipped in the cell, nW WCC protein

molecules are bound to or released from it. Obviously, these random gene flip events do cause

discontinuities in the time evolution of the system’s kinetic rate equations. The following

procedures show how a generalization of the Gillespie kinetic Monte Carlo (KMC) process [13,

14] is employed to incorporate this discrete, stochastic gene flipping dynamics into the hybrid

model, as follows:

(i) The time step, τ , between two successive gene flip events at t
(gf)
k and t

(gf)
k+1 = t

(gf)
k + τ is

randomly chosen by using a uniformly distributed random variable, u, ranging in (0,1]

in the Gillespie criterion,

Ψ(t = t
(gf)
k+1 | t0 = t

(gf)
k ) ≡

∫ t
(gf)
k +τ

t
(gf)
k

dt′
∑

x∈{f,c}

Γx(gx,k, t
′) = −ln(u) , (2.1)

where Ψ(t | t0 = t
(gf)
k ) is the integral of Γx(gx,k, t

′) from t0 = t
(gf)
k to t, and Γx(gx,k, t

′)

is the effective rate coefficient for flipping the transcriptional state of gene x ∈ {f, c}

from gx,k to gx,k+1 = 1− gx,k at time t′. The equation of Γx(gx,k, t) is shown below,

Γx(gx,k, t) = δgx,k,0 Ax([WCC]t)
nW + δgx,k,1 Bx , (2.2)

where δg,0 and δg,1 are Dirac delta functions, [WCC]t′ is the concentration of protein

WCC at time t′, and Ax and Bx are reaction rate coefficient with x ∈ {f, c}.

(ii) To draw the random τ -value, for taking the time step from t
(gf)
k to t

(gf)
k in our algo-

rithm, we therefore have to draw a uniform random number u from (0,1] and then

solve Eq. 2.1 for τ . To do so, we need to evaluate the time integral, Ψ(t, t
(gf)
k ), on the

left-hand side (LHS) of Eq. 2.1. We therefore need to know the flipping rate coeffs,
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Γx(gx,k, t), as functions of time, for times t ≥ t
(gf)
k . Because of Eq. 2.2, this requires

us to use a numerical ordinary differential equation (ODE) solver to solve the deter-

ministic rate equations, starting at t = t
(gf)
k , for all the continuous non-gene species

concentrations, including [WCC]t. This ODE solution proceeds in time until the so-

lution for τ in Eq. 2.1 is found. For numerical convenience, we include Ψ(t, t
(gf)
k ) as

one of the dynamical variables in the ODE system. We then use the ODE solver to

also evaluate Ψ(t, t
(gf)
k ), together with all the continuous non-gene species concentra-

tions. The complete rate equation system to be solved, starting at t = t
(gf)
k , is given

as follows:

d[wc -1r0]t
dt

= S1 −D1 · [wc -1r0]t − C1 · [wc -1r0]t · [FRQ]t (2.3)

d[wc -1r1]t
dt

= C1 · [wc -1r0]t · [FRQ]t −D7 · [wc -1r1]t (2.4)

d[WC -1]t
dt

= L1 · [wc -1r1]t − (D4 + C2) · [WC -1]t (2.5)

d[frqr1]t
dt

= S3 · (1− gf,k) + S4 · gf,k −D3 · [frqr1]t (2.6)

d[FRQ]t
dt

= L3 · [frqr1]t −D6 · [FRQ]t (2.7)

d[WCC]t
dt

= C2 · [WC -1]t − (D8 + P · [FRQ]t
mF) · [WCC]t (2.8)

d[ccgr1]t
dt

= Sc · gg,k −Dcr · [ccgr1]t (2.9)

d[CCG]t
dt

= Lc · [ccgr1]t −Dcp · [CCG]t (2.10)

dΨ(t | t0 = t
(gf)
k )

dt
=

∑
x∈{f,c}

(
δgx,k,0 Ax([WCC]t)

nW + δgx,k,1 Bx

)
(2.11)

Here, gf,k and gc,k are kept constant at the values assigned to them at the most recent

gene flipping event, at time t
(gf)
k . Likewise, the initial values for the continuous non-

gene species concentrations at t = t
(gf)
k are given by their final values, obtained by

ODE solution during the preceding time stepping interval, from t
(gf)
k−1 to t

(gf)
k , if k ≥ 1.
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At the beginning of the very first time step, at t = t
(gf)
0 = 0, all initial values must be

user-supplied: they are given in Table 2.2 below. From Equation 2.1 follows that the

initial value of Ψ(t, t
(gf)
k ) must always be reset to zero at the beginning of every new τ

step, i.e., Ψ(t = t
(gf)
k + 0+, t

(gf)
k ) = 0 for all k ≥ 0.

(iii) Once a solution for τ has been found, to satisfy Eq. 2.1 for given u, one of the two genes,

either x = f or x = c, must be randomly chosen to be flipped at time t
(gf)
k+1 = t

(gf)
k + τ .

For the gene that is chosen to be flipped, we replace its current value, gx,k, by its new

value gx,k+1 = 1–gx,k. For the other gene, not chosen to be flipped, we set gx,k+1 = gx,k.

The probability for choosing gene x to be flipped is given by:

p
(gf)
x,k+1 = Γx(gx,k, t

(gf)
k+1)/

∑
x′∈{f,c}

Γx′(gx′,k, t
(gf)
k+1) . (2.12)

To make this random gene choice in our algorithm, we draw another uniform random

number, w, from (0,1]. If w < p
(gf)
x,k+1 for x = f , we flip the frq-gene; else, we flip

ccg-gene. After flipping the chosen gene, a new cycle of the time stepping process shall

be started by randomly choosing τ in the first step.

To derive the Gillespie criterion, Eq. 2.1 and Eq. 2.11 above, consider the conditional

probability, dP (τ, x|gx,k), for flipping gene x = frq or x = ccg during infinitesimal time

interval [t, t + dτ ] with t := t
(gf)
k + τ , given that gx,k has not flipped and kept its value

constant until time t, since last gene flip occurred at t
(gf)
k . This conditional gene flipping

probability is determined by the WCC-binding or WCC-unbinding rate, given by:

(i) Ax · ([WCC]t)
nW , for gx,k = 0→ gx,k+1 = 1 (WCC-binding);

(ii) Bx, for gx,k = 1→ gx,k+1 = 0 (WCC-unbinding).

Namely:

dP (τ, x|gx,k) =
(
Ax([WCC]t)

nW δgx,k,0 +Bxδgx,k,1

)
dτ (2.13)
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or, for short:

dP (τ, x|gx,k) = Γx(gx,k, t)dτ (2.14)

where Γx is defined in your Eq. 2.2.

Hence, the cumulative probability for flipping one of the genes, x = f = frq or x = c =

ccg, during [t
(gf)
k , t

(gf)
k + τ ] is

P (τ) = 1− exp[−
∫ τ

0

∑
x

Γx(gx,k, t
(gf)
k + τ ′)dτ ′] (2.15)

Also, the probability density function (PDF) for the flipping one of the genes at time,

t = t
(gf)
k + τ , is then given by

p(τ) = dP (τ)/dτ. (2.16)

To numerically generate a random τ -value that is drawn from any PDF p(τ), we simply

have to use the corresponding cumulative probability, i.e. P (τ) to solve the following equation

for τ :

P (τ) = u′ (2.17)

where u′ is a uniform random number, drawn from the interval (0,1). By general theorem, we

are then guaranteed that τ is randomly drawn from, i.e. is randomly distributed according

to, the PDF p(τ).

The foregoing Eq. 2.17 can be re-written as

∫ τ

0

∑
x

Γx(gx,k, t
(gf)
k + τ ′)dτ ′ = −ln(1− u′) (2.18)

Now change integration variable from τ ′ to t′ = t
(gf)
k + τ ′ and set u := 1 − u′. Notice that

u is a uniform random number, drawn from the interval (0,1), since u′ is. With these two
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substitutions, we then get Eq. 2.1, i.e.

∫ t
(gf)
k +τ

t
(gf)
k

∑
x

Γx(gx,k, t
′)dt′ = −ln(u) (2.19)

Once the random τ has been chosen by Eq. 2.1, the probability for flipping gene x is then

given by:

p
(gf)
x,k+1 = dP (τ, x|gx,k)/

(∑
x′

dP (τ, x′|gx′,k)
)

(2.20)

Using t
(gf)
k + τ = t

(gf)
k+1 and using Eq. 2.14 above, this can then be written in the form of Eq.

(2.12), i.e.,

p
(gf)
x,k+1 = Γx(gx,k, t

(gf)
k+1)/

(∑
x′

Γ′x(gx′,k, t
(gf)
k+1)

)
(2.21)

In conclusion, randomness mainly happens at two places in the hybrid model. One is

at the place where we want to choose the value of the time step, τ , by using Eq. 2.1. The

other one is at the place where a gene is randomly picked to be flipped with the probability

in Eq. 2.12. These two parts in the hybrid model are not only the major source of the

stochasticity, but, more importantly, the ultimate driver of the clock oscillations.

2.2 Simulation results of the single-cell hybrid model

Apart from all the kinetic rate equations and the KMC process for the system, effective

reaction rate parameters and species’s initial conditions are highly essential to perform the

simulation of the hybrid model as well. Table 2.1 and 2.2 provide the values and units of

all rate coefficients and species’ initial conditions for the hybrid model simulation in the

dark [15]. All concentrations in the simulation are in units of number of molecules per cell

(NPC). The amounts of cooperativities in reaction P , Af , and Ac, namely nW and mF = 4,

are from [11].
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Table 2.1: Values for reaction rate parameters of the hybrid model. All concentrations in
the simulation are in units of number of molecules per cell (NPC).

Parameter Value Unit Parameter Value Unit
Af 2.560E-10 NPC−nW · h−1 D6 0.1518 h−1

Bf 1.590 h−1 D7 0.1384 h−1

S1 83.71 NPC · h−1 D8 2.487E-3 h−1

S3 3.569 h−1 C2 0.1627 h−1

S4 5453 h−1 P 3.120E-11 NPC−mF · h−1
D1 0.7237 h−1 Ac 1.860E-08 NPC−nW · h−1
D3 0.2997 h−1 Bc 2.581 h−1

C1 4.810E-05 NPC−1 · h−1 Sc 73.80 h−1

L1 4.245 h−1 Lc 2.231 h−1

L3 0.4851 h−1 Dcr 0.2198 h−1

D4 3.233E-3 h−1 Dcp 0.6969 h−1

nW 4 mF 4

Table 2.2: Initial concentrations for all the species in the hybrid model. All concentrations
in the simulation are in units of number of molecules per cell (NPC).

Species Initial Concentration (NPC)
wc -1r0 113
wc -1r1 18
WC -1 459
frqr1 31
FRQ 345
WCC 101
ccgr1 26
CCG 102
gf,k=0 0
gc,k=0 0
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Programs for all simulation works in this dissertation are written in C++ for efficiency.

To generate the uniform random numbers, u and w, required for generating τ and choosing

the gene to be flipped, the random number generator, mt19937 [16], is used as the major

randomization source. To solve the rate equation system, Eqs. 2.4-2.11, I used the classic

Runge-Kutta method [17], also known as 4th order Runge-Kutta method, as the ODE solver,

where the simulation time step size of the ODE solver is τsim = 0.01h, and the observation

time step size of the output time series is τobs = 0.5h.

To estimate the rough systematic numerical error in the ODE solver, due to the simulation

step size, τsim = 0.01h, we ran the single-cell hybrid model twice for Ttest = 3h, within which

the gene flip event has not yet happened, with the same initial conditions and parameters but

different simulation time step sizes, τ1,sim = 0.01h and τ2,sim = 0.005h. Then we compared

their WCC concentration time series, [WCC]
(run1)
i and [WCC]

(run2)
j , corresponding to τ1,sim

and τ2,sim, respectively, by using the mean percentage difference,

diff% =
Ntest∑
i=1

[WCC]
(run1)
i − [WCC]

(run2)
2i

([WCC]
(run1)
i + [WCC]

(run2)
2i )/2

(2.22)

where Ntest = Ttest/τ1,sim. The mean percentage difference for systems with τ1,sim = 0.01h

and τ2,sim = 0.005h is diff% = 3× 10−11%, which indicates that the simulation step width,

τ1,sim = 0.01h, is small enough to get accurate results.

To generate a typical trajectory sample consisting of NR = 1000 single-cell trajectories

over a 240h physical simulation time interval, it takes about four minutes of single-processor

CPU time on the processor of AMD Ryzen 7 3700X, using the parameter values given in

Tables 2.1 and 2.2 below. The CPU time scales roughly linearly with the number of single-cell

trajectories and with the length of the physical simulation time interval.

In the simulation of the hybrid model, a specific time position for (k + 1)-th gene flip

event should be located by estimating the time when the Gillespie Criterion, Eq. 2.1, is met.
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Due to the discrete time step in the ODE solver, we can directly compare the integration

result, Ψ(t|t0 = t
(gf)
k ), of Equation 2.11 with −ln(uk), where the random number, uk, is

generated right after the most recent gene flip event at t
(gf)
k , at each simulation time step by

employing a binary search-type [18] method, as follows:

(i) We start right after the k-th gene flip event at t
(gf)
k , which happens within the i-th

simulation time step with a time interval [ti, ti+1], where ti+1 = ti + τsim and τsim =

0.01h.

(ii) After solving the ODE solver for the time interval [t
(gf)
k , ti+1], if Ψ(ti+1|t0 = t

(gf)
k ) <

−ln(uk), it means that the Gillespie criterion is not yet met, and the ODE solver can

continue to the (i+ 1)-th simulation time step without changing gx,k.

(iii) When the Gillespie criterion is met, Ψ(ti+l|t0 = t
(gf)
k ) ≥ −ln(uk), it indicates that the

(k + 1)-th gene flip event happens within the (i + l − 1)-th simulation time step, and

we set tleft = ti+l−1 or t
(gf)
k (l = 1) and tright = ti+l as the initial boundaries for the

binary search-type method.

(iv) Let tmid = 0.5 · (tleft + tright), and use the ODE solver to estimate Ψ(tmid|t0 = t
(gf)
k ). If

Ψ(tmid|t0 = t
(gf)
k ) > −ln(u), set tright = tmid; otherwise, set tleft = tmid.

(v) Repeat (iv) to find t
(gf)
k+1 until the system reaches either of the two converging thresholds,

|tleft − tright| ≤ 10−5 · (ti+1 − ti) or |Ψ(tmid|t0 = t
(gf)
k ) + ln(u)| ≤ 10−5 · |Ψ(ti+1|t0 =

t
(gf)
k )−Ψ(ti|t0 = t

(gf)
k )|.

After pinpointing the (k + 1)-th gene flip event, we can flip the gene randomly selected by

Equation 2.12.

Figure 2.2 shows simulation results of the concentration time series for four different

species in one cell. Smooth but aperiodic oscillations can be observed for each species in

Figure 2.2. If we start the cycle at the time where a black arrow points, the first thing to
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be seen is that the concentration time series of frqr1, [frqr1]t, rises right after the black

arrow. [FRQ]t follows the trace of [frqr1]t because the production of FRQ is only affected

by [frqr1]t. Then, due to the degrading of frqr1 and FRQ, [WCC]t start to rise after some

point, where consumption rate of WCC in reaction P is slower than the generation rate of

WCC in reaction C2. When [WCC]t rises, the random threshold of Ψ in Equation 2.11 will

be finally reached. As a result, frq-gene is, again, flipped to its active state, which brings

the system back to the start place of the cycle. In conclusion, we can see that the random

gene flip events drive the clock oscillations in the system.

In the following, I will frequently make use of power spectra, denoted S(f), to analyze

time species concentration series data, [X]t, that generated by the generalized Gillespie

algorithm described above. For a given physical simulation time interval [tini, tfin], these data

are given on a dense, discrete simulation time grid with grid points, t
(s)
j = (j−1) ·∆t(s) + tini

for j = 1, 2, ..., J + 1, where J + 1 is the number of grid points and ∆t(s) = (tfin–tini)/J . We

take the discrete Fourier transform [19] of [X]t on the time grid t
(s)
j ,

X̂(fν) =
1

J + 1

J+1∑
j=1

exp(−2πifνt
(s)
j ) · [X]t (2.23)

with grid of allowed frequencies is fν = ν/(tfin–tini) for ν = 0, 1, ...(J+1)/2. We then obtain

the power spectrum, S(fν), by

S(fν) = |X̂(fν)|2 (2.24)

Power spectra of the four species’ time series trajectories are displayed in Figure 2.3.

Means and error bars are obtained by using the Bootstrap sampling method [20]:

(i) Generate a base sample of NR = 100 different random trajectories from the hybrid

model, by the Gillespie KMC algorithm described above, using 100 different random

number sequences.
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Figure 2.2: Simulation results of the single-cell hybrid model in the dark for 10 days. All
signals in (a)-(d) are obtained from only one representative, randomly chosen single-cell
result. (a) frq mRNA concentration trajectory. Black arrows indicates the time, which has
an average duration of 1/Bf = 0.629h, when frq gene is in active state. (b) FRQ protein
concentration trajectory. (c) WCC protein concentration trajectory. (d) CCG protein
concentration trajectory.
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(ii) To generate a single bootstrap sample, randomly draw NR = 100 trajectories, with

replacement, from the base sample of NR = 100 trajectories generated in (i). To do so,

draw NR uniformly distributed random integer numbers, n1, ..., nNR , from the interval

[1, 100]. From the base sample, include in the bootstrap sample the trajectories that

are indexed n1 though nR in the base sample. In this process, some trajectories may be

included multiple times in the bootstrap sample, as many times their index, n, appears

in the random list n1, ..., nNR .

(iii) For each trajectory included in the bootstrap sample from (ii), calculate the power

spectrum, S(f), by Eqs. 2.23 and 2.24, from the concentration time series, [X]t, for

the species of interest, X. Then average S(f) over all trajectories in the bootstrap

sample and denote the result by S(f).

(iv) Repeat (ii)-(iii) for B = 1000 times with the power spectrum mean, Sb(f), for each

bootstrap sample b, where b = 1, 2, 3, ..., B. Then calculate the mean and standard

error of the mean (SEM), Sb(f), over B = 1000 bootstrap samples.

As shown in Figure 2.3, a sharp peak, indicating the intrinsic period of the clock, can be

observed in each power spectrum curve, together with the major period labeled next to it.

The major period of the single clock oscillator estimated by the hybrid model is within the

range from 24h to 27h, whereas the experiment results show that the circadian period of

N. crassa is within the range from 22h to 23h [7, 21–23]. There are two possible factors

of this period difference between simulation and experiment results: (i) the default initial

conditions and parameter set used in the single-cell hybrid model are not specifically obtained

from fitting experiment data to the single-cell hybrid model; (ii) the experiment results of

22-23h period are mainly obtained from strains of fungi, while the simulation result is only

for single isolated cells.
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Figure 2.3: Power spectra of the concentration trajectories, with (tini = 0h, tfin =
239.5h, J = 480), for four species, frqr1, FRQ, WCC, and CCG . Means and error bars with
±1 standard error of the mean (SEM) are obtained by bootstrapping a sample of NR = 1000
cell signals and B = 1000 bootstrap samples. The error bars of S(f) may be smaller than
the plotted line width and therefore not visible in the plot.
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2.3 Single-cell hybrid model with light entrainment

Light exposure is one of the essential factors that regulates the circadian rhythms of Neu-

rospora crassa [4–6]. To introduce the feature of responsiveness to visible light stimuli into

the hybrid model, a reaction C3, in which the production of WCC can be affected by the

interactions between photons and WC -1, is added to the network [24].

Figure 2.4 displays the genetic network of hybrid model with the light coupling part.

Because reaction C3 only relates to WC -1 and WCC, we can include it in Equation 2.5 and

2.8:

d[WC -1]t
dt

=L1 · [wc -1r1]t − (D4 + C2) · [WC -1]t − Phot · C3 · [WC -1]t (2.25)

d[WCC]t
dt

=C2 · [WC -1]t − (D8 + P · [FRQ]t
mF) · [WCC]t + Phot · C3 · [WC -1]t (2.26)

Figure 2.4: A simplified genetic network for the biological clock of Neurospora crassa with
light entrainment. The yellow box denotes a photon species.
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Phot in Equation 2.25 and 2.26 is a binary variable, with allowed values, Phot = 1, if

light is on, and Phot = 0, if light is off. Based on this modification to the hybrid model, the

system can now be easily entrained with artificial days of different light exposure periods,

like an 6+6h artificial day, which represents 6 hours with light exposure and 6 hours in the

dark. To determine the light status of the system in the simulation, we can simply use the

equation, shown below, at the beginning of each simulation time step.

Phot = (bti/tlightc+ Phot0) mod 2 (2.27)

where ti is the time step of the ODE solver, tlight is the light exposure period for each artificial

day, and Phot0 indicates the starting light status of the simulation.

Figure 2.5 shows WCC’s concentration time series, [WCC]t, of hybrid models entrained

with three artificial days, 6+6h, 12+12h, and 18+18h, while Figure 2.6 shows the power

spectra of WCC corresponding to those three artificial days. For simulations in both Fig-

ure 2.5 and Figure 2.6, the reaction rate C3 is equal to 2·C2, and the reaction rate parameters

and initial conditions are from Table 2.1 and 2.2. Means and error bars in Figure 2.6 and

Figure 2.7 are obtained from bootstrap method with a sample of NR = 1000 system trajec-

tories and B = 1000 bootstrap samples. The phasing of the light exposure for all simulations

in the section are L/D, which means that the system starts with light in a cycle, and then

in the dark for the other half of artificial day period later.

[WCC]t of three light exposure periods, in Figure 2.5, exhibit irregular oscillations, even

though each system is subject to the light exposure of a certain period. This result is

confirmed by the corresponding power spectra in Figure 2.6, where a dominant approximate

24-hour peak is exhibited in the each power spectrum curve despite the light exposure. In

Figure 2.6, frequencies caused by the light exposures can be easily found next to or on the
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24-h peak in panels (a) and (b), whereas the clock oscillator does not display very pronounced

response to the 18+18h light exposure in panel (c).

Figure 2.7 shows the power spectra of WCC’s concentration with different C3 values,

C3 = 0.5 ·C2, C2, and 2.0 ·C2. It is obvious to see that the power spectrum with C3 = 2 ·C2

have a larger peak at frequency, f = 1/12h−1, than those with smaller values of C3, which

indicates that the light strength is well embedded in the reaction C3 and can be easily

adjusted by changing the C3 value.

In summary, the simulation results show that our model does have response to light

stimuli, but with a limited extent. The randomness, which comes from the gene flip events,

still dominates the clock oscillations in the single-cell system, despite strong light exposures

to which the system is subject.

Figure 2.5: [WCC] trajectories entrained with different light-dark periods. Each signal in
(a)-(c) is obtained from only one representative, randomly chosen single-cell result. (a) Light
exposure period is 6+6h. (b) Light exposure period is 12+12h. (c) Light exposure period is
18+18h.
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Figure 2.6: Power spectra of [WCC] signals, with (tini = 0h, tfin = 239.5h, J = 480),
subject to three artificial days, 6+6h, 12+12h, and 18+18h. Means and ±1 SEM error
bars are obtained from bootstrap sampling method from a sample of NR = 1000 single-cell
trajectories and B = 1000 bootstrap samples. The error bars of S(f) may be smaller than
the plotted line width and therefore not visible in the plot.
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Figure 2.7: Power spectra of [WCC] trajectories, with (tini = 0h, tfin = 239.5h, J = 480),
for different C3 values. The light exposure period is 6+6h. Means and ±1 SEM error bars
are obtained from the bootstrap sampling method from a sample of NR = 1000 single-cell
trajectories and B = 1000 bootstrap samples. The error bars of S(f) may be smaller than
the plotted line width and therefore not visible in the plot. (a) C3 = 0.5·C2. (b) C3 = 1.0·C2.
(c) C3 = 2.0 · C2.
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Chapter 3

Hybrid model combined with a

quorum sensing coupling mechanism

for multi-cell system

3.1 The multi-cell hybrid model with quorum sensing

To study the clock synchronization in a population of stochastic coupled single-cell oscillators,

the hybrid model is then expanded to the multi-cellular level, with a quorum sensing-type

signaling interaction between cells [25, 26]. Fig. 3.1 presents the network of this multi-cell

hybrid model in dark.

A chemical signaling molecule, Si, is assumed to be produced in each cell by the protein

product of gene ccg. This signaling molecule is then both exported to and imported from

an extra-cellular medium, shared by all cells in the population, with a diffusion rate η.

Intra-cellular Si modulates clock oscillations by either suppressing or enhancing the rate of

WCC production in the reaction C2 and C4. To include this modulation in the kinetic rate

equations, the rate coefficient, C2, in both Equation 2.5 and 2.8 now is changed to Ceff with
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Figure 3.1: Multi-cell hybrid model

the equation,

Ceff ([Si]n,t) = X ·H(X), H(X) =


1 if X ≥ 0

0 if X < 0

(3.1)

where X := C2 − C4 · [Si]n,t, and [Si]n,t is the Si’s concentration in cell n at time t.

Basically, Ceff is the combination of the reaction C2 and C4. If Si is greater than or

equal to C2/C4, the production of protein WCC would be immediately stopped. This gives
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another negative-feedback element to the system to control the production of WCC, and

then to adjust the oscillation phase of the clock.

In the inter-cellular medium, the concentration of the signaling molecule, Se, is mainly

affected by degradation and the diffusion towards/from cells. Its rate equation is given

below [25],

d[Se]t
dt

= −D10 · [Se]t + ηext ·
N∑
n=1

([Si]n,t − [Se]t), (3.2)

where ηext is the diffusion rate of Se across the cell membrane. Because all cells in the

population share the same medium, [Se]t does not need to have a subscript, n, to identify

which cell it belongs to.

Based on the quasi-steady-state approximation [25,27,28], we can derive the approxima-

tion of Se concentration at each time step, which is shown below [25], from simply setting

its rate equation, Equation 3.2, to zero.

[Se]t = Q · 1

N

N∑
n

[Si]n,t (3.3)

where Q [25] is

Q =
N · ηext

D10 +N · ηext
(3.4)

The diffusion rate of Se across the membrane has the form, ηext = σ · Asurface/Vext [25],

with σ being the membrane permeability, Asurface being the cell surface area, and Vext being

the inter-cellular medium volume. Based on the definition of Se’s diffusion rate, Equation 3.4

indicates that Q is a monotonic function of the cell density, N/Vext, within the range of [0,1].

As a result, we can directly use Q instead of cell density to control the coupling strength of

cells in the model.

Due to the expansion of the model to describe a system of multiple cells, we put a label

’n’ in the subscript of each species’ concentration variable to indicate which cell it belongs to,
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and integrate all cells’ effective rate coefficients for flipping genes’ states. Therefore, we now

use Eq. 3.5 to choose the random τ -step between successive gene flips by using the effective

rate coefficient defined in Eq. 3.6, and then use Eq. 3.7 to choose a random cell, n, and a

random gene x, to be flipped in that cell n.

Ψ(t = t
(gf)
k+1 | t0 = t

(gf)
k ) ≡

∫ t
(gf)
k +τ

t
(gf)
k

dt′
∑

x∈{f,c}

N∑
n=1

Γx,n(gx,n,k, t
′) = −ln(u) , (3.5)

Γx,n(gx,n,k, t) = δgx,n,k,0 Ax([WCC]t)
nW + δgx,n,k,1 Bx , (3.6)

p
(gf)
x,n,k+1 = Γx,n(gx,n,k, t

(gf)
k+1)/

∑
x′∈{f,c}

N∑
n′=1

Γx′,n′(gx′,n′,k, t
(gf)
k+1) . (3.7)

The kinetic rate equations of the multi-cell hybrid model are given as follows,

d[wc -1r0]n,t
dt

= S1 −D1 · [wc -1r0]n,t − C1 · [wc -1r0]n,t · [FRQ]n,t (3.8)

d[wc -1r1]n,t
dt

= C1 · [wc -1r0]n,t · [FRQ]n,t −D7 · [wc -1r1]n,t (3.9)

d[WC -1]n,t
dt

= L1 · [wc -1r1]n,t − (D4 + Ceff ([Si]n,t)) · [WC -1]n,t (3.10)

d[frqr1]n,t
dt

= S3 · (1− gf,n,k) + S4 · gf,n,k −D3 · [frqr1]n,t (3.11)

d[FRQ]n,t
dt

= L3 · [frqr1]n,t −D6 · [FRQ]n,t (3.12)

d[WCC]n,t
dt

= Ceff ([Si]n,t) · [WC -1]n,t −D8 · [WCC]n,t

− P · [FRQ]n,t
mF · [WCC]n,t

(3.13)

d[ccgr1]n,t
dt

= Sc · gg,n,k −Dcr · [ccgr1]n,t (3.14)

d[CCG]n,t
dt

= Lc · [ccgr1]n,t −Dcp · [CCG]n,t (3.15)

d[Si]n,t
dt

= K · [CCG]n,t −D9 · [Si]n,t + η · ([Se]t − [Si]n,t) (3.16)

dΨ(t | t0 = t
(gf)
k )

dt
=
∑

x∈{f,c}

N∑
n=1

(
δgx,n,k,0 Ax([WCC]n,t)

nW + δgx,n,k,1 Bx

)
(3.17)
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3.2 Simulation results of the multi-cell system

Before using the multi-cell hybrid model to simulate a population of coupled cells, we assume

that all cells share the same kinetics model parameter set and single-cell initial condition (IC)

from Table 2.1 and Table 2.2, respectively. For the part of modeling the quorum sensing, all

cells have the same IC of [Si]n,t, as [Si]n,t=0 = 1.0, and the same parameter set of quorum

sensing model, as shown in Table 3.1.

We use uniform ICs for cells because they are actually closer to the experimental sit-

uation, where cell populations are always “synchronized” by strong light exposure, before

experimental observations start, at t=0. With uniform ICs, cells completely randomize

themselves in very short time, within one diurnal cycle. Therefore, it makes no difference,

after one diurnal cycle, whether ICs of cells are randomized across population or uniform.

Table 3.1: Values for the parameters of quorum sensing model. All concentrations in the
simulation are in units of number of molecules per cell (NPC).

Parameter Value Unit Parameter Value Unit
K 0.05 h−1 C4 0.9 (NPC · h)−1

D9 26 h−1 η 100 h−1

Q 1.0

The same random number generator and ODE solver are used as in simulations of the

single-cell hybrid model. To generate a typical system trajectory of N=500 cells over a 250h

physical simulation time interval, it takes about fifteen minutes of single-processor CPU time

on the processor of AMD Ryzen 7 3700X, using the default parameter values and uniform

ICs given in Tables 2.1-2.2 and 3.1. The CPU time scales roughly quadratic with the number

of cells in a population.

Figures 3.2 - 3.5 compare the model simulation results of species FRQ, WCC, CCG,

and Si between concentration population average (PA) and intra-cell concentrations. The
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concentration population average of a species, X, is defined as

[X]PA,t =
1

N

N∑
n=1

[X]n,t, (3.18)

where [X]n,t is the intra-cell concentration of the species X. A single random time series of

the continuous non-gene concentrations and gene states of all cells in a N-cell population,

generated by the multi-cell hybrid model, will be referred to as a ”system trajectory” in the

following.

In Figures 3.2-3.5, the concentration PA, [X]PA,t, for one random system trajectory of

a N = 500-cell population is shown in each Panel (a). In the meantime, the intra-cell

concentrations, [X]n,t, of three random selected cells, which are from the corresponding

populations of Panel (a), are shown in Panels (b)-(d). The ×-symbols in Panels (a)-(d)

represent the local maxima in the curves. The vertical arrows in Panels (b)-(d) indicate

the short frq-gene bursts, where gf,n,k = 1, of average duration 1/Bf = 0.63h, interspersed

by transcriptional inactivity, gf,n,k = 1. Error bars in Panels (e) of Figures 3.2-3.5 are

±1 standard error of the mean (SEM), generated by the bootstrap sampling method for a

random sample of NR = 100 system trajectories.

When we compare PA and single-cell signals, which are belong to the same cell population,

in Figures 3.2-3.5, the differences of them are quite obvious, except for [Si]. On the one hand,

PA signals clearly show coherent and nearly periodic oscillations, but, on the other, single-cell

signals, which contribute to the PA signals, have highly irregular oscillations, exhibiting no

evidence to any periodicity or synchronization. This interesting contrast also can be observed

by comparing the power spectrum of the concentration PA to the PA of the concentration

power spectra of individual cells, shown in Panel (e) of Figures 3.2-3.5. The former exhibits a

series of strong, sharp peaks, reflecting the nearly periodic, coherent oscillations. The latter

only shows a very broad, featureless frequency continuum without any pronounced peak
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Figure 3.2: Simulation results of multi-cell hybrid model without light exposure. All signals
in (a)-(d) are obtained from only one representative, randomly chosen system trajectory.
The ×-symbols in panels (a)-(d) mark the dominant local maxima, defined in section 4.1.
(a) Concentration PA, [FRQ]PA,t. (b)-(d) [FRQ]n,t of three randomly chosen single cells,
n. (e) Power spectrum of the concentration PA, [FRQ]PA,t (purple line), and PA of the
power spectra of all single-cell concentrations, [FRQ]n,t (green line). All power spectra are
obtained from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and ±1 SEM error
bars are obtained by bootstrapping a sample of NR = 100 system trajectories and B = 1000
bootstrap samples. The error bars of S(f) may be smaller than the plotted line width and
therefore not visible in the plot.

features. This again suggests that a large fraction of the individual cells in the population

are neither close to oscillating coherently, nor in approximate synchrony with the PA signal.

As mentioned above, the difference between concentration PA, [Si]PA,t and [Si]n,t of

individual cells is much smaller than those of other species. In Figure 3.5, despite the fact

that single-cell signals are not so highly coherent and smooth as the PA signal, periodicity

can still be observed in their oscillations. Equation 3.16 shows that [Si]n,t mainly comes

from two sources: one is the generation reaction controlled by [CCG]n,t, and the other is the
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Figure 3.3: Simulation results of multi-cell hybrid model without light input. All signals
in (a)-(d) are obtained from only one representative, randomly chosen system trajectory.
The ×-symbols in panels (a)-(d) mark the dominant local maxima, defined in section 4.1.
(a) Concentration PA, [WCC]PA,t. (b)-(d) [WCC]n,t of three randomly chosen single cells,
n. (e) Power spectrum of the concentration PA, [WCC]PA,t (purple line), and PA of the
power spectra of all single-cell concentrations, [WCC]n,t (green line). All power spectra are
obtained from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and ±1 SEM error
bars are obtained by bootstrapping a sample of NR = 100 system trajectories and B = 1000
bootstrap samples. The error bars of S(f) may be smaller than the plotted line width and
therefore not visible in the plot.

diffusion process controlled by both [Si]n,t and [Se]t, which is equivalent to [Si]PA,t in our

simulation. The former source provides indispensable randomness for [Si]n,t, but the latter

one is the main factor that sets Si apart from others.

In Figures 3.6-3.11, we compared simulation results of different cell population sizes and

signal coupling parameters, Q and C4. Error bars are ±1 SEM, obtained by Bootstrapping

a sample of NR = 100 system trajectories.
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Figure 3.4: Simulation results of multi-cell hybrid model without light input. All signals
in (a)-(d) are obtained from only one representative, randomly chosen system trajectory.
The ×-symbols in panels (a)-(d) mark the dominant local maxima, defined in section 4.1.
(a) Concentration PA, [CCG]PA,t. (b)-(d) [CCG]n,t of three randomly chosen single cells,
n. (e) Power spectrum of the concentration PA, [CCG]PA,t (purple line), and PA of the
power spectra of all single-cell concentrations, [CCG]n,t (green line). All power spectra are
obtained from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and ±1 SEM error
bars are obtained by bootstrapping a sample of NR = 100 system trajectories and B = 1000
bootstrap samples. The error bars of S(f) may be smaller than the plotted line width and
therefore not visible in the plot.

Figures 3.6-3.7 show comparisons of [WCC]PA,t and power spectra between different

cell population sizes. It is obvious to see that the concentration PA, [WCC]PA,t, of a cell

population with smaller N exhibits more irregular oscillations than those of cell populations

with larger N . This result is confirmed by results of power spectra shown in Figure 3.7.

In Figures 3.8-3.9, we used three different values of the extra-cellular coupling parameter

Q for simulations of the multi-cell hybrid model without light input. The PA signals in

Figure 3.8(a)-(b) show coherent oscillations but with different periods. However, the PA
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Figure 3.5: Simulation results of multi-cell hybrid model without light input. All signals in
(a)-(d) are obtained from only one representative, randomly chosen system trajectory. The
×-symbols in panels (a)-(d) mark the dominant local maxima, defined in section 4.1. (a)
Concentration PA, [Si]PA,t. (b)-(d) [Si]n,t of three randomly chosen single cells, n. (e) Power
spectrum of the concentration PA, [Si]PA,t (purple line), and PA of the power spectra of all
single-cell concentrations, [Si]n,t (green line). All power spectra are obtained from signals
with (tini = 0h, tfin = 249.5h, J = 500). Means and ±1 SEM error bars are obtained by
bootstrapping a sample of NR = 100 system trajectories and B = 1000 bootstrap samples.
The error bars of S(f) may be smaller than the plotted line width and therefore not visible
in the plot.

signal in Figure 3.8(c), which has Q = 0.8, shows noisy fluctuations after cells becomes

totally random. The result is consistent with the power spectra results in Figure 3.9. As we

decrease Q value, sharp peaks in the power spectra of PA signals start to move to the right,

indicating the decrease of period width, and finally become several broad frequency continua.

This contrast of different Q values indicates that there might be a critical coupling strength,

Qcrit, within the range of [0.8, 1.0]. If Q ≥ Qcrit, cells in the population are strongly coupled
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Figure 3.6: [WCC]PA,t of different cell population sizes. Each WCC signal in (a)-(c) is
obtained from only one representative, randomly chosen system trajectory.

Figure 3.7: Comparisons between power spectra of the concentration PA, [WCC]PA,t (purple
line), with PA of the power spectra of all single-cell concentrations, [WCC]n,t (green line). All
power spectra are obtained from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and
±1 SEM error bars are obtained by bootstrapping a sample of NR = 100 system trajectories
and B = 1000 bootstrap samples. The error bars of S(f) may be smaller than the plotted
line width and therefore not visible in the plot. (a) N = 500. (b) N = 100. (c) N = 20.
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and build coherent and periodic PA signals. Otherwise, PA signals will become totally

irregular.

Figures 3.10-3.11 show very similar results to Figures 3.8-3.9. We may assume that there

is a critical coupling strength, C4,crit, above which PA signals can show coherent and periodic

oscillations, within the range of [0.3,0.6].

As shown in the comparisons between single-cell and PA signals, the collective behavior

in the hybrid model is quite different from the conventional synchronization process, like the

Kuramoto Model, in which most of coupled oscillators share the same frequency and phase

when they are in sync. From Figures 3.6-3.11, we can conclude that the cell population size,

Q, and C4 are all essential factors to the coupling strength of cells in the hybrid model.

3.3 Multi-cell system with light-entrainment

To include light in the multi-cell system, we did the same modifications to the kinetic rate

equations of [WC -1]n,t and [WCC]n,t as the single-cell hybrid model by introducing the

species, Phot, and the reaction, C3, into the formation process of WCC. Eqs. 2.25 and 2.26

are modified for every cell, n, in a population:

d[WC -1]n,t
dt

= L1 · [wc -1r1]n,t − (D4 + C2) · [WC -1]n,t − Phot · C3 · [WC -1]n,t (3.19)

d[WCC]n,t
dt

= C2 · [WC -1]n,t − (D8 + P · [FRQ]n,t
mF) · [WCC]n,t

+ Phot · C3 · [WC -1]n,t

(3.20)

Figures 3.12-3.2 display some of the simulation results of the multi-cell hybrid model with

a 12+12h light input, which is a 24h artificial day. Each Panel (a) shows the concentration

PA, [X]PA,t, of a random system trajectory of a N = 500-cell population. Panels (b)-(d) show

three randomly selected intra-cell concentrations, [X]n,t, which are from the corresponding
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Figure 3.8: [WCC]PA,t of different values of coupling parameter Q. Each WCC signal in
(a)-(c) is obtained from only one representative, randomly chosen system trajectory.

Figure 3.9: Comparisons between power spectra of the concentration PA, [WCC]PA,t (purple
line), with PA of the power spectra of all single-cell concentrations, [WCC]n,t (green line). All
power spectra are obtained from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and
±1 SEM error bars are obtained by bootstrapping a sample of NR = 100 system trajectories
and B = 1000 bootstrap samples. The error bars of S(f) may be smaller than the plotted
line width and therefore not visible in the plot. (a) Q = 1.0. (b) Q = 0.9. (c) Q = 0.8.
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Figure 3.10: [WCC]PA,t of different values of coupling parameter C4. Each WCC signal in
(a)-(c) is obtained from only one representative, randomly chosen system trajectory.

Figure 3.11: Comparisons between power spectra of the concentration PA, [WCC]PA,t (pur-
ple line), with PA of the power spectra of all single-cell concentrations, [WCC]n,t (green
line). All power spectra are obtained from signals with (tini = 0h, tfin = 249.5h, J = 500).
Means and ±1 SEM error bars are obtained by bootstrapping a sample of NR = 100 system
trajectories and B = 1000 bootstrap samples. The error bars of S(f) may be smaller than
the plotted line width and therefore not visible in the plot. (a) C4 = 0.9. (b) C4 = 0.6. (c)
C4 = 0.3.
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populations of Panel (a). The ×-symbols in Panels (a)-(d) represent the local maxima in the

curves. The vertical arrows in Panels (b)-(d) indicate the short frq-gene bursts. Error bars

in each Panel (e) are ±1 SEM, generated by the Bootstrap sampling method for a random

sample of NR = 100 system trajectories. The phasing of the light exposure for all simulations

in the section are L/D.

Figure 3.12: Simulation results of multi-cell hybrid model with a 12+12h light input. All
signals in (a)-(d) are obtained from only one representative, randomly chosen system trajec-
tory. The ×-symbols in panels (a)-(d) mark the dominant local maxima, defined in section
4.1. (a) Concentration PA, [FRQ]PA,t. (b)-(d) [FRQ]n,t of three randomly chosen single
cells, n. (e) Power spectrum of the concentration PA, [FRQ]PA,t (purple line), and PA of
the power spectra of all single-cell concentrations, [FRQ]n,t (green line). All power spectra
are obtained from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and ±1 SEM error
bars are obtained by bootstrapping a sample of NR = 100 system trajectories and B = 1000
bootstrap samples. The error bars of S(f) may be smaller than the plotted line width and
therefore not visible in the plot.

In Figures 3.12-3.15, it is obvious to see that most of cells have shown clear responses

to the 12+12h light input. The number of maxima for each intra-cell concentration, [X]n,t,

is nearly the same as the number of maxima in the PA concentration,[X]PA,t. In spite

of their incoherent amplitudes, single-cell signals show approximately periodic oscillations,
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Figure 3.13: Simulation results of multi-cell hybrid model with a 12+12h light input. All
signals in (a)-(d) are obtained from only one representative, randomly chosen system trajec-
tory. The ×-symbols in panels (a)-(d) mark the dominant local maxima, defined in section
4.1. (a) Concentration PA, [WCC]PA,t. (b)-(d) [WCC]n,t of three randomly chosen single
cells, n. (e) Power spectrum of the concentration PA, [WCC]PA,t (purple line), and PA of
the power spectra of all single-cell concentrations, [WCC]n,t (green line). All power spectra
are obtained from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and ±1 SEM error
bars are obtained by bootstrapping a sample of NR = 100 system trajectories and B = 1000
bootstrap samples. The error bars of S(f) may be smaller than the plotted line width and
therefore not visible in the plot.
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Figure 3.14: Simulation results of multi-cell hybrid model with a 12+12h light input. All
signals in (a)-(d) are obtained from only one representative, randomly chosen system trajec-
tory. The ×-symbols in panels (a)-(d) mark the dominant local maxima, defined in section
4.1. (a) Concentration PA, [CCG]PA,t. (b)-(d) [CCG]n,t of three randomly chosen single
cells, n. (e) Power spectrum of the concentration PA, [CCG]PA,t (purple line), and PA of
the power spectra of all single-cell concentrations, [CCG]n,t (green line). All power spectra
are obtained from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and ±1 SEM error
bars are obtained by bootstrapping a sample of NR = 100 system trajectories and B = 1000
bootstrap samples. The error bars of S(f) may be smaller than the plotted line width and
therefore not visible in the plot.
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Figure 3.15: Simulation results of multi-cell hybrid model with a 12+12h light input. All
signals in (a)-(d) are obtained from only one representative, randomly chosen system trajec-
tory. The ×-symbols in panels (a)-(d) mark the dominant local maxima, defined in section
4.1. (a) Concentration PA, [Si]PA,t. (b)-(d) [Si]n,t of three randomly chosen single cells, n.
(e) Power spectrum of the concentration PA, [Si]PA,t (purple line), and PA of the power
spectra of all single-cell concentrations, [Si]n,t (green line). All power spectra are obtained
from signals with (tini = 0h, tfin = 249.5h, J = 500). Means and ±1 SEM error bars are ob-
tained by bootstrapping a sample of NR = 100 system trajectories and B = 1000 bootstrap
samples. The error bars of S(f) may be smaller than the plotted line width and therefore
not visible in the plot.
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which are almost in sync with PA signals. This synchronization is also shown in the power

spectra results in Panels (e) of Figures 3.12-3.15, as both purple and green curves have their

fundamental frequencies at around f = 0.417h−1, which is exactly the frequency of the light

pulse.

In Figures 3.16-3.17, simulations with three different light inputs, 6+6h, 12+12h, and

18+18h were performed. The model shows very clear responses to different lengths of light

inputs, for both PA and single-cell signals. Figure 3.17 presents a quite different results com-

paring with results shown in Figure 2.6, where we may assume that the coupling mechanism

enhances the system’s responsiveness to light stimuli.

Figure 3.16: [WCC]PA,t of different light inputs. Each WCC signal in (a)-(c) is obtained
from only one representative, randomly chosen system trajectory. (a) 6+6h. (b) 12+12h.
(c) 18+18h.
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Figure 3.17: Comparisons between power spectra of the concentration PA, [WCC]PA,t (pur-
ple line), with PA of the power spectra of all single-cell concentrations, [WCC]n,t (green
line). All power spectra are obtained from signals with (tini = 0h, tfin = 249.5h, J = 500).
Means and ±1 SEM error bars are obtained by bootstrapping a sample of NR = 100 system
trajectories and B = 1000 bootstrap samples. (a) 6+6h. (b) 12+12h. (c) 18+18h. The
error bars may be smaller than the plotted line width and therefore not visible in the plot.
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Chapter 4

Synchronization measures for

stochastic coupled clock oscillators

4.1 Statistics for the collective behavior of coupled os-

cillators in hybrid model

4.1.1 Window maximization filter

As the simulation results shown in the Chapter 3, the concentration population average (PA)

presents smooth and nearly periodic oscillations, while most of the single-cell oscillators in

the population are actually out of phase. To study this distinctive collective behavior, we

want to introduce several methods to characterize some of the statistical traits caused by

the interactions between the coupled oscillators in the hybrid model.

The first approach, which is fundamental to the rest of the methods, is called window

maximization (WinMax) filter. It, basically, uses a non-linear time-domain low-pass signal

filter to completely remove all short-time fluctuations from a noisy curve, like our highly

stochastic single-cell concentration time series. When applying this approach, we continu-
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ously slide a short-time window, whose size is TW, from the beginning of the trajectory to its

end with the same interval as the one of the concentration time series. At each step of the

sliding process, a maximum value within the window’s range is chosen as the new filtered

signal for the time point of the window’s head.

As a result, local maxima or minima, which are referred to as TW-dominant local (DL)

maxima or minima, of the original concentration time series can be accurately extracted by

simply searching for plateaus or basins in the filtered output signal. In other words, suppose

a local maximum of the concentration time series, y(t), is occurring at some time tm. Such

a maximum will be called, by definition, a dominant local (DL) maximum if it satisfies the

condition y(tm) ≥ y(t) for all times t within a distance of TW from tm, i.e., for all t obeying

|t−tM | < TW . DL minima are defined analogously, with the foregoing inequality replaced by

y(tm) ≤ y(t). These DL maxima and minima are then used to characterize how individual

cells contribute - or not - to the coherent diurnal PA signal. Panels (a)-(d) in Figures. 3.2-3.5

and 3.12-3.15 above illustrate DL maxima, shown as×−symbolsmarkingthetimeseriesdata.

In the foregoing figures in Chapter 3, and also for all other DL maximum or DL minimum

calculations below, we have consistently used a short-time cut-off value of TW = 5h for models

in the dark, which is comparable to about one quarter of the lesser max-to-max spacings seen

in those figures for PA time series, and TW = 6h for models with a 12+12h light exposure.

In contrast to more conventional linear filtering methods [29], the location, tm, of the DL

maxima and DL minima identified with the WinMax approach does not change when TW is

varied over some range of values, since every DL maximum, tm, is a local maximum of y(t):

as long as WinMax identifies tm as a DL maximum, the value of tm does not vary when TW

is varied. For example, over some range, say, from TW = 4h to TW = 8h, in the case of the

hybrid model discussed here, the WinMax-based results hardly change at all with TW . In

general, the locations, tm, identified as DL maxima or DL minima, do not vary significantly,

as long as TW is less than about one half of the lesser DL max-to-max or, respectively, DL
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min-to-min spacings, and larger the short time scales of the rapid random fluctuations to

be suppressed by the WinMax. The any variations that occur with changing TW are either

tm-values that are disqualified as DL extrema, if TW is made too large, or else, tm-values

that are admitted as additional DL extrema, when TW is made too small.

4.1.2 Clock-readout

In Figure 3.2-3.5, most single-cell signals without any input light show that the timing of

their DL maxima is quite random and irregular, but PA signals, in contrast, have coherently

timed DL maxima. To explicitly analyze the difference between the clock running speeds

reflected in the two different signals, we introduced a curve, referred to as the clock-readout,

tm, to exhibit the timings of consecutive DL maxima as a function of the ascending maxima

number, m.

Figure 4.1 provides the comparisons of the clock-readouts of the multi-cell hybrid model

with dark between single-cell signals and PA signals of [FRQ], [WCC], [CCG], and [Si].

The single-cell DL maxima of [FRQ] and [WCC], on average, are spaced about twice further

apart than their PA maxima, which indicates that the single-cell clocks of [FRQ] and [WCC]

run much slower than the PA diurnal clocks of [FRQ] and [WCC]. By contrast, the single-

cell clocks of [CCG] and [Si] run almost as fast as their PA diurnal clocks. However, the

standard deviations (SDs) of all the 4 species’ single-cell clock-readouts are much larger than

those of PA clock-readouts, which strongly proves that the oscillations of single-cell signals

are much more irregular than PA signals’ oscillations. The presence of linearity and small

SD values in the PA clock-readout curves show that the cell population as a whole is a more

stable and reliable clock than the individual cells within the population. The slopes and

intercepts of linear fitted lines [30] to the PA clock-readout data in Figure 4.1 from m = 1 to

m = 10 are listed in Table 4.1. Slopes in Table 4.1 provide estimates of the clock oscillation
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periods, which are consistent with experimentally observed periods, around 23h [7, 21–23],

seen in dark-running N. crassa clocks.

The clock-readouts of the multi-cell hybrid model with a light input of 12+12h artificial

day is shown in Figure 4.2. The phasing of the light exposure for all simulations in the section

are L/D. Due to the influence of light input, the individual cell DL maxima of all the four

species are spaced quite close to the PA maxima. In addition, SDs of both the individual cell

and PA clock-readouts of the four species are considerably reduced, comparing with those

in Figure 4.1. A nearly constant max-to-max spacing is exhibited in the PA curve of each

species, along with the straight fitted line, which is right on the top of the PA curve of each

species. The slopes of the straight fitted lines are shown in Table 4.2, which are almost the

same as the period of the artificial day.

By bootstrapping the base samples of NR = 100 random trajectories into B = 1000

bootstrap samples, we find that the SEM values of the mean tm results for both single-cell

signals and PA signals are less than 5h and 1h for Figures 4.1 and 4.2, respectively.
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Figure 4.1: The clock-readout, tm, of DL maxima is plotted vs the index, m, of DL maxima
for 4 species of the multi-cell hybrid model in the dark. All DL maxima of both single-cell
signals and PA signals are extracted by the WinMax filter with TW = 5h. The purple and
green lines are the means of single-cell and PA tm, respectively. Shading is ±1 SD. Means
and SDs of tm are calculated by from a random sample of NR = 100 system trajectories of
a N = 500-cell population, generated by using the default uniform initial conditions and
reaction rate parameter set from Table 2.2, 2.1, and 3.1. The yellow dots indicates the linear
fitted lines for the means of PA signals’ DL maxima.

Table 4.1: Slopes and intercepts of fitted curves to the means of PA clock-readouts for
the multi-cell hybrid model in the dark. Only the tm-data points from m = 1 to m =
10 in Figure. 4.1 were included in the straight line fit. Means and SEMs are obtained
from bootstrapping B = 1000 bootstrap samples from a base sample of NR = 100 system
trajectories.

FRQ WCC CCG Si
Mean SEM Mean SEM Mean SEM Mean SEM

Slope 21.96 0.15 22.57 0.11 22.37 0.10 22.37 0.11
Intercept 29.86 0.98 36.28 0.37 35.28 0.36 35.27 0.37
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Figure 4.2: The clock-readout, tm, of DL maxima is plotted vs the index, m, of DL maxima
for 4 species of the multi-cell hybrid model with a 12+12h light exposure. All DL maxima
of both single-cell signals and PA signals are extracted by the WinMax filter with TW = 6h.
The purple and green lines are the means of single-cell and PA tm, respectively. Shading
is ±1 SD. Means and SDs of tm are calculated from a random sample of NR = 100 system
trajectories of a N = 500-cell population, generated by using the default uniform initial
conditions and reaction rate parameter set from Table 2.2, 2.1, and 3.1. The yellow dots
indicates the linear fitted lines for the means of PA signals’ DL maxima.

Table 4.2: Slopes and intercepts of fitted curves to the means of PA clock-readouts for the
multi-cell hybrid model with a 12+12h light exposure. Only the tm-data points from m = 1
to m = 10 in Figure 4.2 were included in the straight line fit. Means and SEMs are obtained
from bootstrapping B = 1000 bootstrap samples from a base sample of NR = 100 system
trajectories.

FRQ WCC CCG Si
Mean SEM Mean SEM Mean SEM Mean SEM

Slope 23.985 0.003 23.95 0.01 24.000 0.001 24.001 0.001
Intercept -2.54 0.03 -1.65 0.27 -2.04 0.01 -0.001 0.003
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4.1.3 Beat-skip probability

To study the relation between an individual cell’ participation in two successive DL maxima

of the PA signal of a molecular species, X, we tried to measure the probability, named ”beat-

skip” probability, for a cell n to skip the (m+j)-th DL maximum at tm+j,PA in [X]PA,t, given

that it has a contribution to the m-th DL maximum at tm,PA in[X]PA,t. With the help of the

WinMax filter introduced above, all maxima in both single-cell and PA signals can be easily

located. To determine whether a cell n has contributed to the DL maximum at tm,PA in

[X]PA,t, we used a participation time range, TP, to see if the cell n has a maximum in [X]n,t

at tm′,n, which obeys |tm′,n− tm,PA| ≤ TP. If so, the cell is counted as one contribution to the

m-th DL maximum in [X]PA,t. The 2-dimensional beat-skip probability, which is conditional,

is shown below:

p
(2D)
BS (m+ j|m) =

N(m+ j|m)

N(m)
, (4.1)

where N(m+ j,m) is the number of cells which contribute to the m-th DL maximum of the

PA signal but not to the (m + j)-th DL maximum, and N(m) is the number of cells which

contribute to the m-th DL maximum of the PA signal.

Equation 4.1 can be condensed into a one dimensional form,

pBS(j) =
1

nmax − j

nmax−j∑
m=1

p
(2D)
BS (m+ j,m), (4.2)

where nmax is the total number of DL maxima in the PA signal.

Figure 4.3 displays the means and error bars for the beat-skip probabilities of species

FRQ, WCC, CCG, and Si of the multi-cell hybrid model with dark. Here, we choose

TP = 5h, which is almost the diurnal quarter period. Most of the species, except for Si,

have shown large values of pBS(j), which means that an individual cell always has large

probabilities, mostly more than 40%, to skip the following PA maxima, when it contributes
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to a certain PA maximum in the first place. This is consistent with the result of clock-

readouts that individual cells’ clock runs much slower than the PA maxima, since the PA

signal always has more number of maxima than single-cell signals it contains.

Figure 4.3: The beat-skip probability, pBS(j), is plotted vs the time lag index j for 4 species
of the multi-cell hybrid model in the dark. Means and ±1 SEM error bars of PBS(j) are
calculated by bootstrapping a random sample of NR = 100 system trajectories and B = 1000
bootstrap samples. The error bars may be smaller than the plotted line width and therefore
not visible in the plot.

When we apply the light input to the multi-cell hybrid model, the beat-skip probability

results are displayed in Figure 4.4. The phasing of the light exposure for all simulations in

the section are L/D. The participation time range is a quarter of the artificial day period,

i.e. TP = 6h. Because of the influence of the input light, the values of pBS(j) for FRQ,

WCC, and CCG are considerably reduced, which means that an individual cell has much

lower probabilities to skip subsequent PA maxima after it contributes one, when comparing

with the dark hybrid model.
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Figure 4.4: The beat-skip probability, pBS(j), is plotted vs the time lag index j for 4 species
of the multi-cell hybrid model with a 12+12h light exposure. All DL maxima of both single-
cell signals and PA signals were extracted by the WinMax filter with TW = 6h. Means and
±1 SEM error bars of pBS(j) are calculated by Bootstrapping a random sample of NR = 100
system trajectories and B = 1000 bootstrap samples. The error bars may be smaller than
the plotted line width and therefore not visible in the plot.

4.1.4 Pearson correlation

Another way to analyze the relation between an individual cell’s participation to two suc-

cessive PA maxima is to measure the Pearson correlation of them. First, we define a par-

ticipation score, sm,n, for a cell n relative to the m-th DL maximum, at tm,PA, in the PA

signal of a molecular species, XPA,t. If the cell n has a maximum occurs at the time that is

within the participation range TP, as described in the definition of the beat-skip probability,

from tm,PA, we can set sm,n = 1. Otherwise we set sm,n = 0. With the definition of the
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participation scores, we can calculate the Pearson correlation [31] of sm,n and sm+j,n:

C
(2D)
PC (m,m+ j) =

∑N
n=1 ∆sm,n ·∆sm+j,n√

(
∑N

n=1 (∆sm,n)2 ·
∑N

n′=1 (∆sm+j,n′)2
, (4.3)

where ∆sm,n = sm,n − 1
N

∑N
n′=1 sm,n′ , and N is the total number of cells in the population.

The 1-dimensional Pearson correlation, as a function of j, is presented below:

CPC(j) =
1

nmax − j

nmax−j∑
m=1

C
(2D)
PC (m+ j,m), (4.4)

where nmax is the total number of DL maxima in the PA signal.

Figure 4.5 shows the means, denoted by pP(m), and error bars of participation scores,

with TP = 5h, for species FRQ, WCC, CCG, and Si of the multi-cell hybrid model in the

dark environment. It is easily to see that the participation rates almost stay at very small

values for FRQ (≤ 20%), WCC (≤ 50%), and CCG (≤ 50%), with m ≥ 2 or 4, despite the

fact that all cells started with the same initial conditions at the beginning.

Figure 4.6 shows the corresponding means and error bars of Pearson correlation CPC(j)

to Figure 4.5. The small values of CPC(j) for FRQ, WCC, and CCG indicate that the

contributing sub-populations for the PA maxima are quite unstable. In other words, the

cells which contribute to the DL maxima of a PA signal keep changing from the start of the

oscillation to its end. The results of pP(m) and CPC, along with pBS(j), are consistent with

the what are shown in the plots of clock-readouts.

Figures 4.7 and 4.8 are results of pP(m) and CPC(j), respectively, by using the multi-cell

hybrid model with a 12+12h light input. The phasing of the light exposure for all simulations

in the section are L/D. The participation period is TP = 6h. Due to the regular light input,

the participation rates of all species are around or more than 80%. In addition, the Pearson

correlation of sm,n and sm+j,n goes to zero with m ≥ 3, which indicates that the large values
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Figure 4.5: Mean participation score, pP(m), vs. DL maximum index, m, of concentration
PA for 4 species of the multi-cell hybrid model in the dark. Means and ±1 SEM error bars
of pBS(j) are calculated by bootstrapping a random sample of NR = 100 system trajectories
and B = 1000 bootstrap samples. The error bars may be smaller than the plotted line width
and therefore not visible in the plot.

of contributing sub-populations are mostly driven by the light input, and they have little to

do with the PA maxima in the vicinity.
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Figure 4.6: Pearson correlation, CPC, vs. the time lag index j for 4 species of the multi-
cell hybrid model in the dark. Means and ±1 SEM error bars of CPC(j) are calculated by
bootstrapping a random sample of NR = 100 system trajectories and B = 1000 bootstrap
samples. The error bars may be smaller than the plotted line width and therefore not visible
in the plot.
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Figure 4.7: Mean participation score, pP(m), vs. DL maximum index, m, of concentration
PA for 4 species of the multi-cell hybrid model with a 12+12h light exposure. Means and
±1 SEM error bars of pBS(j) are calculated by bootstrapping a random sample of NR = 100
system trajectories and B = 1000 bootstrap samples. The error bars may be smaller than
the plotted line width and therefore not visible in the plot.
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Figure 4.8: Pearson correlation, CPC, vs. the time lag index j for 4 species of the multi-cell
hybrid model with a 12+12h light exposure. Means and ±1 SEM error bars of CPC(j) are
calculated by bootstrapping a random sample of NR = 100 system trajectories and B = 1000
bootstrap samples. The error bars may be smaller than the plotted line width and therefore
not visible in the plot.
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4.2 Definition of the synchronization order parameter

The analyses in the preceding section indicate that the cell population as a whole utilizes

the single-cell stochasticity as a foundation for self-organization of coherent PA oscillations,

instead of working against it. Moreover, the clock system presents a high level of robustness

for its oscillatory behavior at a substantial coupling strength, where Q = 1.0 and C4 = 0.9.

To quantify this oscillatory behavior and see if it can still be observed with different coupling

parameters, we introduce a synchronization order parameter, FX , to measure the amplitude

of the PA oscillations relative to the overall strength of the PA signal, for any species X.

Unlike traditional synchronization measures, e.g. Kuramoto model order parameter [32]

and phase locking value [33], which mainly uses the phase-coherence of oscillators in the

population to represent the extent of synchronization, we only focus on the PA signal in

the calculation of FX . To clearly define FX , the whole process is split into several steps, as

shown below:

First, the WinMax filter is used to locate all DL maxima at t+m and DL minima at

t−m,immediately following t+m, within a finite time interval [0, Tobs], where Tobs is 500h in our

simulation.

Second, we want to find maxima, mini and mfin, which are the first maxima in the time

ranges of [Tini, Tfin) and [Tfin, Tobs], respectively, by using

mini :=


min(m|Tini ≤ t+m < Tfin) (m|Tini ≤ t+m < Tfin) is not empty

−1 otherwise

(4.5)

mfin :=


min(m|Tfin ≤ t+m ≤ Tobs) (m|Tfin ≤ t+m ≤ Tobs) is not empty

−1 otherwise

(4.6)
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where Tini = 125h and Tfin = 250h in the simulation. Based on the locations of maxima

mini and mfin, we can define tini = t+mini and tfin = t+mfin . In this step, a signal segment

within the time range of [tini, tfin], which has MT + 1 maxima, is extracted from PA signal,

[X]PA,t, for later analysis.

Third, a variable transformation from time, t, to pseudo-phase variable, φ, is introduced

for t ∈ [tini, tfin], by

φ(t) :=


π · (2m− 2mini) + π · t− t

+
m

t−m − t+m
if t ∈ [t+m, t

−
m]

π · (2m− 2mini + 1) + π · t− t−m
t+m+1 − t−m

if t ∈ [t−m, t
+
m+1]

(4.7)

where m = mini,mini + 1, ...,mfin − 1. The variable transformation of this step sets the

segment signal’s max-to-max distance to a constant value, 2π, in φ space.

Fourth, by using the inverse transformation t(φ), which can be derived from Equation 4.7,

we can define the φ-transformed concentration PA, [X]PA,φ := Z(φ), in the φ-space. Because

the signal data are discretely collected in time space, an equidistant φ-grid with Nφ = MT ·Mφ

grid intervals can be introduced to evaluate discrete signal data, Z(φj), in the φ space by

means of linear interpolation from underlying equidistant t-grid to the non-equidistant grid

t(φj). In the simulation, the number of grid intervals between two adjacent maxima is

Mφ = 256.

Fifth, the Fourier transform can be calculated from Z(φj) by

Ẑ(νk) =
1

Nφ

Nφ∑
j=0

e−iνkφj · Z(φj) (4.8)

where νk =
2πk

φfin − φini
=

k

MT

. Then, the pseudo-spectral function of concentration PA,

Z(φj), is

SZ(νk) = |Ẑ(νk)|
2
. (4.9)
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Last, as we change the space from time t to pseudo-phase φ with a constant max-to-max

spacing of 2π, the fundamental angular frequency of this φ-transformed concentration PA

is νMT
= 1.0. By summing up the pseudo-spectral at the fundamental angular frequency

and all its ”overtones”, which are positive integer multiples of the fundamental angular

frequency, we can get a quantity that is proportional to the square of the signal’s amplitude.

Consequently, the synchronization order parameter is

FX =

√√√√ 1

SZ(0)

Mφ/2∑
n=1

SZ(νMT ·n). (4.10)

where νMT ·n, with n = 1, 2, ...,Mφ/2, represents the fundamental angular frequency and all

its ”overtones”, and SZ(0) is the pseudo-spectrum for the signal background.

Figure 4.9 provides a clear demonstration of the major process, from the second step to

fifth step, for the generation of the synchronization order parameter, FX . In summary, the

basic idea of the synchronization order parameter is to extract the amplitude information

from the PA signal by transforming the selected signal segment from the time space to a

pseudo-phase space, where the max-to-max spacing is constant. As a result, the amplitude

information of the PA signal can be easily accessed through its pseudo-spectral by using the

built-in max-to-max frequency.

4.3 Phase transition

The foregoing results in Figures 3.8-3.11 show a rough idea that the qualitative behavior

of the system can be changed from being oscillatory to non-oscillatory, by either keeping

C4 = 0.9 and decreasing Q, or keeping Q = 1.0 and decreasing C4. With the help of the

order parameter, FX , we can quantitatively estimate the oscillatory behavior of the clock

system as a function of the coupling parameters Q and C4.
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Figure 4.9: The generation process, from the second step to the fifth step, of synchronization
order parameter, FX . (a) A segment of [WCC]PA,t from a single random system trajectory,
with green × representing DL maxima, t+m, and red × representing DL minima, t−m. (b) The
selected [WCC]PA,t segment in the domain of pseudo-phase, φ (c) The pseudo-spectrum of
the signal shown in (b).

Figures 4.10-4.11 show FX of 4 species plotted vs. the coupling parameters Q and C4,

for finite population sizes N , along with N → ∞ extrapolation, F
(∞)
X . The mean and ±1

SEM of each data point in the finite-N curves are estimated by bootstrapping a sample of

NR = (8× 105)/N system trajectories.

To extrapolate [34] finite-N results to F
(∞)
X , we first assume that the concentration PA,

[X]PA,N,t, for a population of N cells, is averaged over N signals, each of which contains

noise, Zi ∼ N (0, σ). Thus [X]PA,N,t can be taken as a zero-mean variable with a standard

deviation of σ/
√
N . Based on the definition of FX , described in 4.2, both the signal relative

amplitude information and noise information are able to be extracted from the pseudo-
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spectra of [X]PA,N,t. As a result, the relation between the signal relative amplitude and

signal noise is shown below,

FX(N) ∼ F
(∞)
X + g(

1√
N

), (4.11)

where g(
1√
N

) = 0 as N →∞.

In Figures 4.10-4.11, the purple lines show the quadratic extrapolation [34] of N = ∞,

where each point of F
(∞)
X is extrapolated from results of 5 different population sizes, by

fitting them into Equation 4.11 with

g(
1√
N

) = A · ( 1√
N

)
2

+B · 1√
N
. (4.12)

Figures 4.12-4.13 clearly show the well fitted lines for FX of Q- and C4-dependence, respec-

tively, vs. 1/
√
N .

From the definition of FX , it is evident that when the coupling strength is not strong

enough to regiment all cells’ randomness, the PA signal of N =∞ will become non-oscillatory

and, consequently, F
(∞)
X will approach zero. This assertion can be observed in Figures 4.10-

4.11, where F
(∞)
N is approximate equal to zero, for the four species, with either Q ≤ 0.86 or

C4 ≤ 0.4. These two figures also suggest a continuous phase transition from non-oscillatory

(F
(∞)
X = 0 to oscillatory dynamics (F

(∞)
X ), as a function of either Q or C4.

To estimate the critical coupling strengths, Qcrit and C4,crit, of these Q- and C4-driven

transitions, we fit the standard power law dependence to the F
(∞)
X -data near the transition,

in the form,

F
(∞)
X = f · |θ|β ·H(θ), with H(θ) =


1, for θ ≥ 0

0, for θ < 0

(4.13)

where θ := Q/Qcrit − 1 or θ := C4/C4,crit − 1. The comparisons of F
(∞)
X -data and their

non-linear fitted lines within ranges of [0.852,0.865] and [0.4, 0.5] for Q and C4, respec-
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tively, are shown in Figure 4.12 and Figure 4.13. The tabulated results in Tables 4.3-4.4

display agreements on the critical coupling strengths, Qcritic and C4,critic, within statistical

uncertainties, across four analyzed species, X ≡ FRQ,WCC,CCG, Si. Finally, it is very

easy to observe that the critical coupling strengths, Qcrit and C4,crit, are estimated within

the range of [0.856,0.86] and [0.43,0.45], respectively, which agree with what are shown in

Figures 4.10-4.11.
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Figure 4.10: Synchronization order parameter, FX , vs. extra-cell signal coupling parameter,
Q, in population, with C4 = 0.9, from N = 250 − 4000 and extrapolated to N = ∞. The
population sizes of yellow lines, from top to bottom, are N = 250, 500, 1000, 2000, 4000 for
Q ≤ 0.88. The mean and ±1 SEM of each data point in the finite-N curves are estimated
by bootstrapping B = 1000 bootstrap samples from a base sample of NR = (8 × 105)/N
system trajectories for a N -cell population. The error bars may be smaller than the plotted
line width and therefore not visible in the plot.
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Figure 4.11: Synchronization order parameter, FX , vs. extra-cell signal coupling parameter,
C4, in population, with Q = 1.0, from N = 250 − 4000 and extrapolated to N = ∞. The
population sizes of yellow lines, from top to bottom, are N = 250, 500, 1000, 2000, 4000 for
C4 ≤ 0.5. The mean and ±1 SEM of each data point in the finite-N curves are estimated
by bootstrapping B = 1000 bootstrap samples from a base sample of NR = (8 × 105)/N
system trajectories of a N -cell population. The error bars may be smaller than the plotted
line width and therefore not visible in the plot.

64



Figure 4.12: Synchronization order parameter, FX , with C4 = 0.9 and Q = 0.85 − 0.9,
vs. 1/

√
N . Red dots are simulation results of FX with different Q and N . Purple lines

are quadratic fitted lines for different values of Q, which, from top to bottom, are Q =
0.85 − 0.9. Means and ±1 SEM error bars for both FX-data and fitted lines are estimated
by bootstrapping B = 1000 bootstrap samples from base samples of NR = (8 × 105)/N
system trajectories for N -cell populations. The error bars may be smaller than the plotted
line width and therefore not visible in the plot.
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Figure 4.13: Synchronization order parameter, FX , with Q = 1.0 and C4 = 0.3 − 0.8,
vs. 1/

√
N . Red dots are simulation results of FX with different C4 and N . Purple lines

are quadratic fitted lines for different values of C4, which, from bottom to top, are C4 =
0.3 − 0.8. Means and ±1 SEM error bars for both FX-data and fitted lines are estimated
by bootstrapping B = 1000 bootstrap samples from base samples of NR = (8 × 105)/N
system trajectories for N -cell populations. The error bars may be smaller than the plotted
line width and therefore not visible in the plot.
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Figure 4.14: Synchronization order parameter, F
(∞)
X , vs. Q in the vicinity of critical coupling

strength, Qcrit. Yellow curves are the extrapolated F
(∞)
N -data. Purple lines are standard

power law dependence fitted lines for F
(∞)
X -data. Means and ±1 SEM error bars for both

F
(∞)
X -data and fitted lines are estimated by bootstrapping B = 1000 bootstrap samples from

base samples of NR = (1.6× 106)/N system trajectories for N -cell populations.

Table 4.3: Results for parameters of fitted curves to the F
(∞)
X -data, with X ≡ FRQ, WCC,

CCG, Si, around the Q-driven transition. Means and SEMs are obtained from bootstrapping
B = 1000 bootstrap samples from a base sample of NR = (1.6× 106)/N system trajectories
for N-cell populations.

FRQ WCC CCG Si
Mean SEM Mean SEM Mean SEM Mean SEM

Qcrit 0.8588 0.0014 0.8592 0.0010 0.8570 0.0009 0.8568 0.0009
β 0.9 1.3 1.26 0.78 0.80 0.24 0.82 0.25
f 0.2e+14 4.5e+14 0.04e+8 1.10e+8 0.08 0.11 0.2 1.3
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Figure 4.15: Synchronization order parameter, F
(∞)
X , vs. C4 in the vicinity of critical coupling

strength, C4,crit. Yellow curves are the extrapolated F
(∞)
N -data. Purple lines are standard

power law dependence fitted lines for F
(∞)
X -data. Means and ±1 SEM error bars for both

F
(∞)
X -data and fitted lines are estimated by bootstrapping B = 1000 bootstrap samples from

base samples of NR = (1.6 × 106)/N system trajectories for N -cell population. Some error
bars may be smaller than the plotted line width and therefore not visible in the plot.

Table 4.4: Results for parameters of fitted curves to the F
(∞)
X -data, with X ≡ FRQ, WCC,

CCG, Si, around the C4-driven transition. Means and SEMs are obtained from boot-
strapping B = 1000 bootstrap samples from base samples of NR = (1.6 × 106)/N system
trajectories for N -cell populations.

FRQ WCC CCG Si
Mean SEM Mean SEM Mean SEM Mean SEM

C4,crit 0.4463 0.0062 0.4415 0.0005 0.4361 0.0014 0.4362 0.0016
β 2.9 1.3 0.98 0.02 1.01 0.05 1.01 0.05
f 0.6e2 6e2 0.58 0.02 0.111 0.007 0.110 0.008
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Chapter 5

Conclusion

In the work of this dissertation, we have presented a detailed investigation of a hybrid model,

wherein stochastic gene regulations are combined with deterministic time evolution of species

in a population of cells, for biological clock oscillators of the microbial fungus N. crassa. The

quorum sensing-type coupling mechanism, used by the model for communication of cells, is

based upon a mean field assumption that all signaling molecules can be instantaneously and

uniformly distributed over the medium shared by the population. The simulation results

of the multi-cell hybrid model present a seemingly paradoxical phenomenon that the cell

population as a whole exhibits a coherent and approximately periodic oscillations, whereas

individual cells in the population show completely irregular dynamics. The result remains

almost the same for model with light exposures, except for increased number of gene flip

events in each single-cell oscillator.

By means of the foregoing non-linear time series analysis methods, we can clearly describe

the underlying physics for the paradoxical collective behavior of this model. We first use

the WinMax filter approach to extract all the DL maxima from both PA and single-cell

signals. Clock-readout results prove that single-cell clock oscillators, represented by four

species, have either much slower running speeds or less stable period lengths, comparing
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with PA signals. From the results of beat skip probability and Pearson correlation, we can

draw the conclusion that the quorum sensing signal randomly recruits only a small fraction

of cells from the population as a sub-population to form each of the DL maxima in the PA

signals. Furthermore, the membership of cells in these sub-populations are temporarily and

changed rapidly on the time scales of typical oscillation periods of PA signals.

The robustness of system behaviors for the synchronization mechanism is explicitly ex-

hibited by employing the synchronization order parameter, Fx, as a function of either the

intra-cellular coupling parameter C4 or the extra-cellular one, Q. Our results also suggest

that a continuous phase transition exists in the infinite population limit, N → ∞, as a

function of C4 or Q.
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