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Abstract

Studies of polymer structures with their two ends anchored at a planar substrate can help to

provide insights into conformational properties of biologically active systems such as molec-

ular motors involved in cellular transport processes. In this dissertation, the conformational

phase behavior of a coarse-grained flexible homopolymer model is investigated. For this pur-

pose, extensive parallel tempering computer simulations were performed. Specific energetic

and structural quantities were measured and used as indicator functions for the characteri-

zation of the conformational phases. Based on these results, phase diagrams, characterized

by various temperatures, distances and substrate surface attraction strength values were

constructed. Unique conformational phases and phase transitions are analyzed in detail.
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Chapter 1

Introduction

Polymers have many valuable and irreplaceable uses in our modern world. They are of

great interest to both academia and industry. Polymeric products are everywhere, such as

plastic bags, Teflon-coated pans, synthetic fiber clothes, rubber polymers in automobiles,

polymers-based paints on spaceships, silicone heart valves, etc.

Polymers are chains with an unspecified number of monomeric units. Polymer molecules

can have a very high molecular weight (from 10 000 to 1 000 000 g/mol). A major genre of

natural polymers is biological polymers, which include polysaccharide, nucleic acid (DNA,

RNA) and proteins. There has been rapid development and research related to the properties

of biological polymers. One application is imprinting biological polymers on sensor chips for

surface plasmon resonance (SPR) to monitor low molecular weight analytes during real time

biological interactions [1]. The state-of-art experimental physical techniques are applied to

biological studies. For example, cryo-electron microscopy (cryo-EM) can determine complex

molecular structures at a resolution as high as 4.5 Å and can investigate molecular complexes

as small as 170 kilodaltons (kDa) [2].

Magnetic tweezers [3] and optical tweezers [4] can provide information of a single molecule

(macromolecule) in vitro manipulation. With a bead attached to a macromolecular chain
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such as nucleic acid (DNA, RNA) or proteins, the interaction between nucleic acid (DNA,

RNA) and proteins can be investigated. The force of such interaction can be measured and

the proteins and nucleic acid structures can be detected. Currently, experimental biophysi-

cists are working hard to develop high throughput and real time imaging and manipulating

techniques at single-molecule level [5, 6]. They are all state-of-the-art methods and valuable

for solving their specific problems. However, they can only provide detailed information of

either static structures or biological complex information of very specific structures in certain

surrounding environments.

In contrast, properly selected computational simulation methods can obtain more gen-

eral thermodynamic and structural properties of a biological polymer in a large variety of

environments [7]. Due to complex molecular structures and the huge amount of degrees of

freedom in bio-polymers, a coarse-grained model is chosen over an atomistic model [8]. Ap-

plying a properly selected polymer model is important for obtaining information to achieve

a more general understanding of its structural and biomolecular functions.

Several efficient and effective computational methods have been developed, such as the

microcanonical inflection point method [9, 10, 11], multicanonical Monte Carlo simulations

[12, 13, 14], Wang-Landau sampling [15, 16, 17, 18], parallel tempering [19, 20, 21, 22] etc.

In this dissertation, a flexible coarse-grained homopolymer with its two ends attached

to a homogeneous substrate is simulated using the replica-exchange (parallel tempering)

Monte Carlo method. Thermodynamic and structural quantities are measured during the

simulations. Considerable analysis was performed on these quantities and different confor-

mations of this system under different thermal conditions are studied and presented. The

phase diagram, parameterized by temperature and the substrate attraction strength of such

a polymer-substrate system with a fixed end-to-end distance, is created. Another phase

diagram, parameterized by temperature and the end-to-end distance of such a polymer-

2



substrate system with a fixed attraction strength, is also created. These phase diagrams

provide generic structural information of such a system.

The thermodynamic and statistical physics concepts used in this dissertation are intro-

duced in Chapter 2. The model used in this dissertation is presented in Chapter 3. Chapter

4 describes the simulation methods. Polymer-substrate systems with a fixed end-to-end

distance with various temperatures and various substrate surface attraction strengths are

studied in Chapter 5. Study of polymer-substrate systems with a fixed substrate surface

attraction strength with various temperatures and various end-to-end distances is presented

in Chapter 6. The summary of this dissertation is given in Chapter 7.
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Chapter 2

Essential Thermodynamics and

Statistical Mechanics

The thermodynamics and statistical mechanics concepts used in the dissertation are ex-

plained in this chapter. The connections and differences between the thermodynamics and

statistical mechanics concepts of the same studied system are clarified and the thermal

physics foundations are introduced in this chapter.

Thermodynamics studies temperature related questions of macroscopic systems. It is

used to handle quantities involving heat, work, internal energy, temperature and structural

properties of macroscopic systems. As an empirical theory, its four fundamental thermody-

namics laws describe the behaviors of these thermal quantities of a system macroscopically,

but not microscopically. These quantities are usually averaged at the thermal equilibrium of

a macroscopic system and explained theoretically in terms of microscopic states by statistical

mechanics, which will be introduced in Section 2.2.
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2.1 Essential Thermodynamics

The first law of Thermodynamics is the conservation of energy law in the field of thermody-

namic physics. For an adiabatic process1, the change of internal energy U is:

∆U = ∆W, (2.1)

where ∆U = Ufinal − Uinitial and ∆W is the work done to this system by other objects. The

work being done to this system will change the thermal state of such a system. Note that the

internal energy is a state variable to describe the current thermal state of the system, which

will not be dependent on the paths between the initial state with internal energy Uinitial and

the final state with internal energy Ufinal. For a non-adiabatic process, the heat obtained

from outside is: ∆Q = ∆U −∆W , or

∆U = ∆Q+ ∆W, (2.2)

which reflects the energy conservation nature of a general system. Note that heat and work

are not state variables and they are dependent on the paths. d̄Q denotes the infinitesimal

change in heat with respect to the change in temperature dT . The heat capacity CV = d̄Q/dT

describes how much heat needs to be added to the system to increase its temperature by an

infinitesimal amount dT when the volume of such a system remains unchanged, therefore no

work was done to the system. Then dU = d̄Q and CV = (∂U/∂T )V.

The second law introduces a new state variable called entropy S. For a closed system

connected with a heat bath 2, the entropy always tends to maximize itself, dS ≥ d̄Q/T ,

where “=” is for a reversible process, and “>” is for an irreversible process. T is both

1An adiabatic process is a type of thermodynamic process which occurs without heat exchange between
the system and its surroundings.

2The heat bath can only exchange heat with the closed system.
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the temperature of the system and the heat bath for a reversible process. However, for

an irreversible process, T is the temperature of the heat bath and does not have to be

the temperature of the system. The thermodynamic definition of entropy is an empirical

quantity, which can be used to measure the heat absorbed by a system connected to a heat

bath with temperature T . In a quasistatic, adiabatic process d̄Q = TdS 3. This leads to the

third law: a system will have its minimized entropy or zero entropy at a theoretical absolute

zero temperature which may never be achieved in practice.

Finally, the zeroth law defines the thermodynamic equilibrium between systems. This

postulate induces the “existence of temperature”.

2.1.1 Thermodynamics Temperature and Free Energy

Simulation of replicas of polymer-substrate system at a range of specific temperatures has

been performed. The temperature of each replica is not changed and equals an assigned

temperature. These systems can be considered as a set of systems connected to a heat bath

with a range of temperatures4. The expression of the 1st law of such a system is:

dU(S, V,N) = TdS − pdV + µdN , (2.3)

where

T =

(
∂U

∂S

)
N,V

, (2.4)

3The concept of entropy is the key to Thermodynamics. Its nature is not clear until its statistical
mechanics definition, S = kB ln Ω, is given. Ω is the total number of the microstates accessible to the closed
system. When S is large, the microstates of the system are large and each is in a disorder state. In contrast,
if S is small, the system is in an order state.

4The system is essentially a canonical ensemble in statistical mechanics and it will be discussed in Section
2.2.
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is the thermodynamics temperature, p = −(∂U/∂V )S,N and µ = (∂U/∂N)S,V . For a closed

system, there are no changes in V and N ; therefore the change of internal energy dU is only

related to TdS. This means the heat will be transferred from or to the heat bath.

According to the second law, T∆S ≥ Q ≥ 0. Therefore, for a closed system connected to

a heat bath, a new state variable can represent the energy which is able to be used for the work

of such a system. This function can be introduced by applying Legendre transformation5 to

TdS. Plug it into Equation 2.3, resulting in d(U − TS) = −SdT − pdV + µdN . Therefore,

the state variable is

F (T, V,N) = U(S(T, V,N), V,N)− TS(T, V,N) , (2.5)

which is called the Helmholtz free energy. It minimizes itself in a thermal equilibrium

while the entropy tries to be maximized. Since it is the only free energy considered in this

dissertation, we will use free energy to refer to the Helmholtz free energy.

Its differential form is

dF = −SdT − pdV + µdN . (2.6)

It has great uses for identifying phase transitions. Its statistical mechanics definition is also

important and will be introduced in Section 2.2.

2.1.2 Thermodynamics Phases, Conformational Phases and Phase

Transitions

When a system is under changes of external quantities, its macroscopic features could show

similarity and the changes of these features could be smooth; hence, the macrostates of the

system are in the same phase. When a system experiences a phase transition, a small change

5Legendre transformation: xdy ≡ d(xy)− ydx. Apply it to TdS, resulting in TdS = d(TS)− SdT .
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of the external quantities could lead to a dramatic change in the macrostates of such a system.

Usually CV can be used as a response parameter to identify phase transitions. For a polymer-

substrate system, its conformational parameters are usually used as response parameters to

identify its phase transitions [23, 24]. Therefore these conformational parameters can be

used to categorize the macrostates of the system into different conformational phases (e.g.,

gas-like random coils, liquid globule, crystalline). These conformational parameters will be

introduced in Chapter 3.

Traditionally, two types of phase transitions are identified, according to the continuity of

entropy of such a system at the phase transition temperatures. By taking a partial derivative

of the free energy over T in Equation 2.6, we have the entropy

S(T, V,N) = −
(
∂F

∂T

)
N,V

. (2.7)

If the entropy is also continuous, the second derivative of F can be taken with respect to T ,

resulting in (
∂2F

∂T 2

)
N,V

= −
(
∂S

∂T

)
N,V

= − 1

T
CV(T ) , (2.8)

where CV = T (∂S/∂T )N,V = (∂U/∂T )N,V is the heat capacity. It represents the capacity of

how a system responds to the heat with the amount, TdS, exchanged between such a system

and its surroundings while its temperature changes.

First Order Phase Transition

If the entropy is discontinuous, as shown in Figure 2.1, a gap shows up on the entropy curve

between the ordered and disordered phases. At temperature Ttr, the difference of the entropy

is related to latent heat

∆Qlat = Ttr∆S , (2.9)
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where Qlat is the energy released or absorbed by a chemical substance or a thermodynamic

system during a change of state that occurs without a change in temperature. Qlat can be

used to distinguish first- and second-order transitions. It is nonzero in first-order phase tran-

sitions and zero in second-order phase transitions. Traditionally, if entropy is discontinuous

and the latent heat is greater than zero, this type of phase transitions is classified as first-

order transitions. The temperature at which the transition happens is denoted as transition

temperature Ttr. In a first-order transition, from high temperature to low temperature, two

phases coexist, heat will be released and the entropy of the system will decrease. This is

equivalent to the Ehrenfest classification, which generally classifies the transitions by the

first non-analyticity in the derivatives of the Gibbs enthalpy [25].

Figure 2.1: First-order phase transition. (a) shows the discontinuity of the entropy and (b)
shows the singularity of the heat capacity.

Second-order Phase Transition

If entropy is continuous, but the derivative of entropy with respect to temperature is not

continuous, then the transition is a second-order phase transition. Figure 2.2 shows a typical
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second-order transition6. The transition temperature of a second-order phase transition is

denoted as critical temperature Tc. When approaching the critical temperature, important

quantities of the system such as heat capacity, correlation length, magnetic susceptibility

etc. could show a series of critical power law behaviors. These power law behaviors are valid

for many different physical systems. These series of critical power law behaviors shed light

on the theory of Universality, which is a hot topic in statistical physics.

Figure 2.2: Second-order phase transition. This figure shows a general case of a second-
order phase transition. (a) shows a smooth change of the entropy at Tc and (b) shows a
discontinuity of CV at Tc. When the system crosses over Tc, no heat is released, no two
phases coexist and phase transition will happen immediately.

We try to define different phases and phase transitions because we want to classify dif-

ferent systems and their generic properties. Therefore, we can study the similarities of them

and summarize the differences between them. Eventually we hope to find universal physics

laws of different systems.

6The shape of CV can be different, depending on the shape of entropy. There is also a λ type second-order
phase transition, for which its CV vs. T phase diagram looks like a λ shape, e.g., normal fluid helium (helium
I) transitions to superfluid helium II.
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Order Parameter

If a parameter is zero at one phase and not zero at another phase, it can be used to identify

different phases. The magnetization M of a 2D Ising model is a good example of such a

parameter because M = 0 when T > Tc and M 6= 0 when T < Tc. Such a parameter is

called an order parameter. It is an ideal case if an order parameter can be found to identify

different phases and phase transitions. Often an order parameter is not easy to identify. In

such cases, a comprehensive analysis of a set of energetic and conformational parameters7 is

necessary to identify different phases and phase transitions.

Thermodynamics Limits and Phase Transitions in Finite Systems

All of the above discussions are based on an assumption that the system is at its thermo-

dynamic limit. However in nanotechnology and biological systems, the research subjects are

of finite sizes. For example, the surface plasmon resonance (SPR) sensing chips are covered

with polymers chains of limited length. The length of a protein is also limited, averaging

around 300 residues [26]. For example, Hemoglobin subunit beta consists of 147 amino acids

and has a molecular weight of 15,867 Da. Therefore, it is important to identify phases and

“phase” transitions of finite size polymers.

Figure 2.3 shows the finite size effect of a 2D L×L Ising model with L = 10, 20 and 40,

where L is the linear size of a square lattice. The peak widths of both CV/N and χ/N

become narrower and sharper as L increases, where N = L × L is the number of total

spins, CV is the heat capacity and χ is the thermal magnetic susceptibility. The locations

of the peaks indicate the transition temperatures of the corresponding quantities. As the

size increases, the transition temperatures indicated by the peaks of the CV/N and χ/N

curves approach the theoretical Tc ≈ 2.269 of the 2D infinite Ising model, which is a good

demonstration of the finite size effect. The discontinuities of response quantity curves at

7These parameters will be introduced in Chapter 3.
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Figure 2.3: The finite size effect of a 2D Ising model with L = 10, 20, and 40.

phase transitions can only be identified for infinite systems. For finite size systems, there

are no discontinuities on such curves. Sometimes the peak, valley or shoulder patterns of

response quantity curves could indicate a phase transition, as shown in [7]. Usually for finite

size systems, the indicated Ttr is not a single value but rather a range of the possible Ttr

values. In such cases, a transition temperature band can be obtained instead of a single

transition temperature at the thermodynamic limit.

Pseudophases

A notable pattern of finite polymer phase transitions is that these conformational transitions

are smooth processes comparing with dramatic thermodynamic phase transitions at infinite

scale. Therefore these conformational phase transitions do not behave like real thermody-

namic phase transitions, but are rather described as conformational pseudophase transitions

since the polymers simulated in this dissertation are finite sized. Similarly, these confor-

mational phases of a polymer are defined as pseudophases. In this dissertation, for short,

12



phases and phase transitions will be used as the pseudophases and pseudophase transitions

for finite length polymers.

2.2 Canonical Analysis

Section 2.1 gives the essential concepts of thermodynamics used in this dissertation. In this

section, essential statistical mechanics related to this dissertation is given. Statistical me-

chanics provides a microscopic perspective to the macroscopic properties of a thermodynamic

system and uses concepts of thermal fluctuations to analyze quantities of such a system. The

probability of a microstate of a macroscopic thermal system is the key to statistical mechan-

ics. Thermal systems can be studied using different ensembles, in which the microstates can

be interpreted with different probability distributions. Microcanonical ensembles, canonical

ensembles and grand canonical ensembles are the commonly used ones [7, 27].

2.2.1 Canonical Ensemble

The system, embedded into a heat bath at a specific temperature, is represented by a canon-

ical ensemble. This ensemble can be considered as a closed system connected to a large

heat bath with temperature T . The number of particles (N), the volume of the system (V )

and the temperature T of such a system do not change. The temperature of this system

is the temperature of the heat bath. Therefore it can be referred to as an NV T ensemble.

Energy could exchange between the system and the heat bath even in thermal equilibrium

via thermal fluctuation. The probability of a microstate s in the canonical ensemble is

ps =
1

Z
e−βEs , (2.10)
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where Es is the energy of the system at the microstate s, β = 1
kBT

is the inverse temperature

and kB is the Boltzmann constant. T is the canonical temperature, which is equal to the

temperature of the heat bath. Z is the partition function

Z(T ) =
∑
s

e−βEs , (2.11)

which is the summation over all the possible microstates of the system. Z can also be

obtained by summing over all the different energy,

Z(T ) =
∑
E

gEe
−βE , (2.12)

where gE is the number of microstates with energy E. In this way, the probability of a

canonical ensemble with energy E is

p(E) =
1

Z
gEe

−βE . (2.13)

In a simulation, an energy histogram can be obtained and an approximate energy probability

distribution can be calculated by normalizing the energy histogram. This energy histogram

can be used for thermodynamic studies. In the canonical ensemble, knowing Z and p(E),

the average energy 〈E〉 of the system at equilibrium with temperature T is

〈E〉 =
∑
E

Ep(E) =
1

Z

∑
E

EgEe
−βE = kBT

2

(
∂

∂T
lnZ

)
T,V,N

. (2.14)

The Helmholtz free energy is

F = −kBT lnZ . (2.15)
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From Equation 2.7 the entropy is

S(T, V,N) = −
(
∂F

∂T

)
N,V

= kB lnZ +
〈E〉
T

. (2.16)

2.2.2 Fluctuation

The thermal fluctuation is the derivative of an observable with respect to T . The heat

capacity can also be expressed as

CV =
d 〈E〉
dT

=
d

dT

(
kBT

2

(
∂

∂T
lnZ

))
=

1

kBT 2

[
1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2
]

=
1

kBT 2

 1

Z

∑
E

E2gEe
−βE −

(
1

Z

∑
E

EgEe
−βE

)2


=
1

kBT 2

[〈
E2
〉
− 〈E〉2

]
, (2.17)

which could also be considered as a responsive value of the system to its energetic fluctuation.

Similarly, for any observable O, its energetic fluctuation responding to a temperature change

is

d 〈O〉
dT

=
d

dT

1

Z

∑
E

OgEe
−βE

= − 1

kBT 2

[
1

Z

(
∂

∂β

(∑
E

OgEe
−βE

))
+

(
∂

∂β

(
1∑

E gEe
−βE

))∑
E

OgEe
−βE

]

=
1

kBT 2

[
1

Z

∑
E

OEgEe
−βE −

(
1

Z

∑
E

OgEe
−βE

)(
1

Z

∑
E

EgEe
−βE

)]
=

1

kBT 2
[〈OE〉 − 〈O〉 〈E〉] . (2.18)
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d 〈O〉/dT could be used to discern phase transitions. The observables used in this dissertation

will be introduced in Chapter 3.

(a) cV vs. T for a 40mer-substrate system. (b) d 〈Nm〉 /dT vs. T for a 40mer-substrate system.

Figure 2.4: The specific heat cV vs. T curve and the thermal fluctuation of the number of
monomer-monomer contacts d 〈Nm〉 /dT vs. T for a 40mer polymer-substrate system.

As discussed in Section 2.1.2 and shown in Figure 2.2, d 〈O〉/dT most likely will experience

a singularity and a power law behavior when approaching Ttr in the thermodynamic limit.

However for a finite system, the responsive quantities will never experience a singularity, as

shown in Figure 2.3. Sometimes a shoulder shape on a cV curve could also be a hint for

a phase transition. Other responsive quantities may show more apparent patterns on their

curves thus indicating the same phase transition to match with the specific heat cV = CV/N

curve as shown in Figure 2.4.

Since no singularity will be observed, it is difficult to distinguish between the first- and

second-order “phase” transitions. As mentioned in Section 2.1, at the transition temperature

Ttr of a first-order transition, two phases will coexist and Qlat will be released. Therefore we

can use the energy of the system as an order parameter to obtain an energetic histogram of

different temperatures. Equation 2.13 gives the normalized form of such a histogram, which

is proportional to e−βE and should only have one peak. One of the histograms represents
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one of the macroscopic phases. If two peaks are present, this means two macroscopic phases

coexist at the transition temperature. This two-peak pattern of a energy histogram indicates

a first-order phase transition. For a second-order phase transition, the energy histogram is

unimodal. The difference between the two energy peaks of the distribution is a measure for

the latent heat [28]. Figure 2.5 gives an example of such a transition. There are double

peaks at T = 0.31 and 0.316. Therefore, Ttr is in between them. Note that two peaks are

located approximately at E1 ≈ 231.5 and E2 ≈ 215.5, and the energy between E1 and E2 is

the latent heat.

Figure 2.5: Energy histograms of a 55mer free polymer at different temperatures.

2.2.3 Internal Energy U , Energy E, Free Energy F and Potential

Energy V

The internal energy U is a macroscopic quantity. It is the summation of all the energy of

the subsystems of a given system. According to Equation 2.3, it is constant and the entropy

is maximized in thermal equilibrium.
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For a given system, an energetic Hamilton operator Ĥ can be applied to its current

microstate and the corresponding value is the energy E. E can be separated into kinetic

energy Ek and potential energy V 8. Therefore E can be decoupled into the microstate of

the coordinates in the coordinate space X and momentum space P of such a system. E

is fluctuating even in thermal equilibrium. Therefore E always fluctuates and it is not a

constant. However in equilibrium the average of energy 〈E〉 satisfies 〈E〉 = U , which is

a connection between thermodynamics and the canonical ensembles. At equilibrium, the

average kinetic energy is

〈Ek〉 =
3NkBT

2
, (2.19)

where N is the number of particles in the system. The kinetic energy’s contribution to

CV is (CV)K.E. = 3NkB/2, which is a constant and will not be useful in identifying the

transition. Therefore we can discard the kinetic energy (Hamiltonian in P space) part of E

when identifying the phase transitions. This is also the reason that the phases are defined as

conformational phases. Therefore in this dissertation, the E in the following sections refers

to the potential energy related to the conformational X coordinate. Details of the decoupling

of Hamiltonian can be found in Section 2 of [29].

2.2.4 Limitation of Canonical Analysis on Finite Systems and the

Microcanonical Inflection Point Method

Canonical analysis is straight forward to apply to a simulation and provides an easy-to-follow

connection between thermodynamics and its statistical mechanics nature. As a result, its

effectiveness is limited in finite systems. It has the following limitations:

• patterns are not very noticeable;

• it is not easy to separate 1st and 2nd order “phase” transitions;

8Please notice that V here is not used for volume as before, it presents the potential energy here.
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• most importantly, the canonical can only provide a transition band, rather than a

transition point, for a given thermal condition.

In recent years, a method based on the microcanonical inflection point is proposed and

applied to finite systems such as Ising model, Potts model and polymers models [30, 31, 32,

33, 34, 35]. The essential idea is to define an microcanonical inverse temperature

βE =

(
dS(E)

dE

)
E=Etr

(2.20)

where S(E) = kB ln g(E) is the microcanonical entropy and g(E) is the density of states

with respect to energy E. By analyzing the pattern of β and the higher order derivatives of

S(E) with respect to E, the transition temperatures and different orders of transitions can

be identified.
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Chapter 3

Models

Polymers are linear structures connected via multiple similar chemical units and can form

complex spatial structures. One simple type is that all the similar chemical units are the

same. For example, polymerthylene is a long chain chemical structure only consisted of

methylene groups −CH2−. In contrast, complex biological polymers consist of different

chemical units with similar chemical structures. For example, DNA consists of 4 types of

phosphate groups and proteins contain 20 amino acid groups. The atomic model of the exact

representation of a polymer could have hundreds of thousands of degrees of freedom. There-

fore it is very difficult to simulate such a polymer with current computational resources1.

3.1 Coarse-Grained Model

Fortunately, polymer structures are not exclusively determined by the atomistic details of

each residue but rather are results of cooperative interactions. For example, the cooperative

interactions of a protein include interactions of its amino acid side chains and interactions

of the side chains and the surrounding solvent particles. The protein folding processes are

also highly cooperative processes and could follow many possible pathways [34, 38]. The

1Current developments of the atomic polymer model simulations can be found in [36, 37].
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protein folding processes are governed by the free energy of a set of generalized coordinates

and the native structures of proteins possess the minimum free energy among all possible

conformations [39]. Therefore, for studying the conformational phases and “phase” transi-

tions, the atomisic details can be omitted and a simplified coarse-grained model with fewer

macroscopic degrees of freedoms can be used. As discussed previously, we can introduce

united atoms, or monomers, to replace the atomistic details of a polymer. Then classical po-

tential interactions between the momomers can be used to replace the cooperative quantum

and electrical many-body interactions between atoms and their surrounding solvent particles

approximately. Note that a united monomer does not have to represent a single residual of

polymers. The representation of a united monomer depends on the potentials applied to it

and it could represent one residual, partial residual or several residuals. Mathematical details

of physics can be found in [7]. Applying the coarse-grained models can not only simulate a

polymer more efficiently but also give proper representations of the conformational phases

statistically and qualitatively [7].

The effective conformational potentials can be described by the free energy under a

relevant set of degrees of freedom [40, 39]. An example of such degrees of freedom is the

coordinates of the monomers of a polymer chain. Depending on the aspects of the research

problems, different models [7, 41] were developed such as lattice models, in which the polymer

can only move at fixed lattice vertices [42, 43, 44]; off-lattice models [45], in which the polymer

can move freely in a continuous space [46]; homopolymer models [7], which treat all amino

acid residues as identical united monomer; HP, HOP lattice models [47, 48] and AB off-lattice

model [49, 50, 51], all of which classify 20 amino acid residues into different groups.

An example of various structural levels of a protein is given in Figure 3.1 and will be

explained below. The primary and secondary structures are created by PDBsum [52] and the

tertiary and quaternary structures are created by Pymol [53]. This example is fetched from

Protein Data Bank (PDB) with id: 6kyi, which is the rice ribulose bisphosphate carboxylase
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complex [54]. It is used for photosynthesis in rice. From left to right of Figure 3.1, the black

box of the left figure indicates the primary structure which is the sequence of a protein. The

red box of the left figure and the center figure indicate a secondary structure. The green

circles of the center figure and the right figure present a tertiary structure. Finally, the

quaternary structure consisted of multiple protein subunits is shown in the right figure. The

center figure shows the small chain of such a complex.

Figure 3.1: Different structure levels of a protein.

Primary structure is simply the order of the amino acid sequence of a protein. The amino

acids are connected by peptide bonds. A peptide bond is an amide type of covalent bond

formed between two amino acids when the carboxyl group of one molecule reacts with the

amino group of the other molecule, releasing a molecule of water.

It requires 8− 16 kJ/mol of Gibbs free energy to break a peptide in a water solvent [55].

In room temperature, Troom = 25 °C, the thermal fluctuation energy kBT is 2.479 kJ/mol.

Therefore, the peptide bonds of a protein in a water based solvent will not be broken by

thermal fluctuations around room temperature. Such a bonded potential will be introduced
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in Section 3.2. However, the bonded potential in a coarse-grained model is not necessarily

representing a covalent or peptid bond, but rather an unbreakable effective bond between

united monomers; since the interactions between bonded monomers are cooperative. There

are also non-bonded interactions such as volume exclusion effect and Coulomb interaction

(dipole moment and polarization effect), which can be represented by Lennard-Jones (LJ)

potential [56]. Such a potential will also be introduced in Section 3.2.

(a) (b)

Figure 3.2: The transition of a protein from a secondary random coil to a tertiary structure.
(a) shows a cartoon representation of the ribulose bisphosphate carboxylase small chain from
a secondary structure to a tertiary structure. (b) shows a coarse-grained model representation
of a 40mer homopolymer changing from a random coil to a compact structure with two local
helix bundles [57].

As discussed previously, the protein folding and its native structures are cooperative ef-

fects and primarily governed by their primary backbone structures. Therefore, a homopoly-

mer with proper potentials could give generic ideas of a protein folding process. An example

of such an idea is shown in Figure 3.2, (a) shows a cartoon representation of the ribulose

bisphosphate carboxylase small chain changing from a random coil structure to a tertiary

structure and (b) shows a coarse-grained model representation of a 40mer homopolymer

changing from a random coil to a compact structure with two local helix bundles. The

energy of this coarse-grained model can be calculated by E(X) = SFENE

∑
i VFENE(ri,i+1) +
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SLJ

∑
i>j+1 VLJ(ri,j) + Sτ

∑
l Vtor(τl) + Sθ

∑
k Vbend(θk), where X = {q1, . . . ,qN} is the con-

formational coordinates of the monomers of the polymer, VFENE is the FENE potential, VLJ

is the LJ potential, Vtor is the torsion potential and Vbend is the bending potential; SFENE,

SLJ, Sτ and Sθ are the co-factors of the corresponding potentials. Details of these potentials

can be found in reference [57, 58, 59]. Figure 3.2 shows that the coarse-grained model with

proper potentials is able to represent a protein-like polymer and can provide generic and

statistical information of its conformational phases. The tertiary structures are determined

by the potentials between the united monomers on the polymer backbones [7]. Depending

on the problems, different potentials can be switched on or off. For example, in Figure 3.2,

the Sτ
∑

l Vtor(τl) and Sθ
∑

k Vbend(θk) are switched on to show these local helix structures.

If exploring a fairly novel polymer structure, a minimalistic energy using less potentials is

desired. Figure 3.3 shows an example of a model with minimalistic energy of a polymer with

its two ends anchored into a homogeneous substrate. In this model, the essential problem is

how a polymer will behave with its two ends anchored into a substrate. Local details of such

a polymer are not primary considerations. Therefore, the Sτ
∑

l Vtor(τl) and Sθ
∑

k Vbend(θk)

are switched off and only the bonded and unbonded potentials are kept to study the phases

and phase transitions of a flexible polymer. The minimalistic energy will be introduced in

Section 3.2.
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Figure 3.3: Coarse-grained model representation of a process from random coil (disordered
structural phase) to a compact crystalline structure (ordered structural phase). Note that
the potentials used in Figure 3.2 (b) and the potentials used in this figure are different.

3.2 Potentials

The minimalistic energy of such a polymer is

E(X) =
∑
i>j+1

VNB(ri,j) +
∑
i

VB(ri,i+1) +
∑
i

VS(zi) (3.1)

where X represents the current conformation of the polymer with energy E, VNB(ri,j) is for

non-bonded monomers, VB(ri,i+1) is for bonded monomers and VS(zi) is for the monomer and

substrate potential. zi is the distance between the substrate surface to the i-th monomer and

z = 0 for grafted monomers. It is also the energy model used throughout this dissertation.

Figure 3.4 shows a general bead-stick representation of such a coarse-grained polymer with

its two ends grafted to a homogeneous substrate.
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Figure 3.4: Coarse-grained model representation with substrate potential. Bead-stick rep-
resentation of a coarse-grained polymer with two ends grafted to a homogeneous substrate.
The beads represent the monomers. The grafted monomers are colored in orange and the
others in green.

3.2.1 Non-Bonded Potential

The non-bonded potential VNB(ri,j) is essentially the Coulomb potential between atomic

or molecular units. The system is usually electric neutral but there could be dipole-dipole

interactions due to uneven distributions of electrons caused by thermal fluctuations in equi-

librium.

Assuming there are many charges in the system, its total charge is zero2. For a charge

qi, its radius vector is ri. The potential of the field created by all the charges at R is

V (R) =
∑
i

qi
|R− ri|

(3.2)

2The electric field is actually created by charge distributions. However for simplicity, only point charges
are considered.
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where R−ri are the distances between the i-th charge qi to where the potential is. Assuming

R � ri, e.g., R is much larger than the Bohr radius in a hydrogen atom [60], the potential

can be expanded in powers of ri/R using the vectorial Taylor expansion of a scalar function3.

Equation 3.2 becomes

V (R) =

∑
i qi
R
−
∑
i

qiri · ∇
1

R
+ . . . , (3.3)

where the first term is zero since the net charge is zero and the second term corresponds to the

dipole-dipole interactions. The higher-order terms which represent higher-order multipole

interactions could be omitted, because they are much smaller than the first and second terms.

Then Equation 3.3 becomes

V (R) =
(
∑

i qiri) ·R
R3

. (3.4)

For a pair of particles, Equation 3.4 becomes

V (R) =
q1q2

R3
(x1x2 + y1y2 − 2z1z2) . (3.5)

Equation 3.5 gives the perturbation part of the Hamiltonian of the two particles. The ground-

state wave function of a pair of non-interacting particles is U
(0)
0 = U

(0)
100(r1)U

(0)
100(r2), where

U
(0)
n l m(ri) is the wave function of the i-th particle at its 0-th energy state and n, l and m

are the quantum numbers. According to the Rayleigh-Schrödinger perturbation theory4, the

first-order perturbation energy correction value is approximately zero due to the spherical

symmetry of the ground state function; in other words, angular momentum (l) of the i-th

3f(R− r) = f(R)− r · ∇f(R) + . . . [7, 61]
4The perturbation eigenstate is |n

〉
λ

= |n(0)
〉
−λ∑k 6=n

δHkn

E0
k−E0

n
|k(0)

〉
+O(λ2) and the energy with pertur-

bation correction is En(λ) = E
(0)
n +λHnn+λ2

∑
k 6=n

|δHkn|2
E0

k−E0
n

+O(λ3) for the Hamiltonian H(λ) = H(0)+λδH,

where δHkn =
〈
k(0)|δH|n(0)

〉
[62].
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particle equals zero, li = 0. The second-order energy perturbation correction

E(2)(r) =
(q1q2)2

R6

(∑
k 6=0

|
〈
k(0)|x1x2 + y1y2 − 2z1z2|0(0)

〉
|2

E
(0)
0 − E(0)

k

)
(3.6)

will not be zero and E
(0)
0 < E

(0)
k . Equation 3.6 shows that the interaction5 between dipoles

and charges varies with a function of their distance as −1/R6.

Due to the excluded volumes of each particle, there must be a repulsive term of the

interaction between the two particles. For computational efficiency, 1/R12 has been com-

monly used, since it is the square of 1/R6. The repulsive part could be modified according

to different materials [63, 64]. This yields the well-known Lennard-Jones (LJ) potential [56]

VLJ(r) = 4εLJ

[(σ
r

)12

−
(σ
r

)6
]
, (3.7)

where σ is the van der Waals distance which sets the basic length scale and εLJ fixes the

energy scale of the interaction. LJ potential will converge towards 0 rapidly with the increase

in the distance, but it will never be 0 as shown in Figure 3.5a. For computational simplicity,

a cut-off distance rc of the LJ potential can be set, the LJ potential can then be shifted

accordingly. rc is indicated by the red dashed line in Figure 3.5a. Therefore, the non-bonded

potential can be written as the shifted Lennard-Jones (LJ) potential:

VNB(r) =

 VLJ(r)− VLJ(rc) , r < rc

0 , r ≥ rc

(3.8)

where the LJ potential is given in Equation 3.7. εLJ = 1 is the potential well depth, which

sets the energy scale in this simulation. σ = r0/2
1/6 is the van der Waals radius and r0 = 1,

5Notice this is derived for interactions between dipoles and charges. Interactions between dipoles and
dipoles also vary with a function of their distances as −1/R6 and the derivation is presented in Section 1.6.3
of [7].
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which fixes the distance scale between particles. VLJ(σ) = 0. rc = 2.5σ is the cut-off distance

and VLJ(r0) = −1 is the energy minimum. Notice that εLJ is the energy scale, which can be

changed and measured for different systems; r0 sets the length scale in this simulation. The

details of the units of r0 and εLJ are discussed in Section 5.1.1, where a specific simulation

is conducted and the parameters of this simulation are provided.

3.2.2 Bonded Potentials

Bonded potential including both LJ potential and FENE (Finitely Extensible Nonlinear

Elastic) potential [58, 65] is

VB(r) = VFENE(r) + VLJ(r)− VLJ(rc) , (3.9)

where the FENE potential is

VFENE(r) = −K
2
R2ln

[
1−

(
r − r0

R

)2
]

(3.10)

where r0 = 1, K = 98/5 and r ∈ [r0 − R, r0 + R] [66]. For r ≈ r0, Equation 3.10 can be

expanded via Taylor expansion6 and reduced to a harmonic oscillator potential as used in

[65]. Figure 3.5b shows a sketch of the FENE potential.

3.2.3 Monomer-Substrate Potential

Recall the sketch of the polymer-substrate system shown in Figure 3.4, the substrate is

considered as a homogeneous material with small monomer-type volume elements distributed

evenly. Therefore the small volume elements of the substrate can be considered as small

united monomers and will have the LJ potential with the monomers of the polymer. Figure

6ln (1 + x) = x− 1/2x2 + · · · = ∑∞n=1
(−1)n+1

n xn when x ∈ (−1, 1)
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Figure 3.5: LJ potential and FENE potential are used in the simulations, where r is the
monomer-monomer distance in the unit of r0.

Figure 3.6: Cylindrical coordinate representative of monomer-substrate volume element po-
tential.

3.6 shows this interaction between a volume element (grey cylinder) and a monomer (green

bead), where the red line gives the distance to the substrate surface. Therefore in a cylindrical

coordinate, which the z direction is perpendicular to the substrate surface and the the
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substrate-monomer potential is

VS(z) = 4n

∫ 2π

0

dφ

∫ z

−∞
dz′
∫ ∞

0

ρdρ
(
[(z′)2 + ρ2]−6 − [(z′)2 + ρ2]−3

)
=

2πn

3

(
2

15
z−9 − z−3

)
= εs

(
2

15
z−9 − z−3

)
(3.11)

where: εs = 2πn
3

is the substrate surface attraction strength and n is the effective “monomer”

density [11, 23, 67]. It is important to note that VS(z) only depends on the z component of

the monomer. The polymer-substrate potential can be obtained by summing up the VS(z)

for all monomers.

Finally, using Equation 3.1, the energy of the polymer-substrate system as shown in

Figure 3.4 can be calculated.

3.3 Canonical Quantities for Discerning Phase Transi-

tions

For a polymer in a canonical ensemble, its specific heat, end-to-end distance and other ther-

mal quantities are commonly studied for discerning phases and phase transitions [68, 69].

However in this model, since the two ends are anchored onto the substrate, the end-to-end

distance will be given as a controllable structural parameter. The radius of gyration repre-

senting the size of a polymer will be useful to calculate as a structural quantity. Moreover

x, y, z components of the radius of gyration will also be important because the two ends of

the polymer are set along the x direction and the z direction is along the vertical direction

from the substrate. Therefore, the system will exhibit unsymmetrical (anisotropic) proper-

ties along x, y, z directions. Since VS(z) is only related to z components of the monomer
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positions, the z component of the center of mass will be of great interest to use as a possible

order parameter.

When the system is in its ordered phases, the distances between monomers will be small

and they will be close to each other. If the distance between a pair of monomers is less

than a chosen value rm, the monomers will be referred to as having contact with each other.

A quantity named as number of monomer-monomer contacts Nm can be defined and used

to describe this monomer-monomer contact. Similarly, the number of monomer-substrate

contacts Ns can also be defined as the following: if the z component of the monomer is less

than a chosen value rs, the monomer is considered to be in contact with the substrate.

Then these eight energetic and structural quantities are measured during the simulation

process, which will be introduced in Chapter 4. Their derivatives with respect to temperature

T will also be calculated using Equation 2.18 during simulations. These quantities and their

thermal fluctuation quantities are of great importance to identify the conformational phases

and phase transitions. The mathematical formulas for calculating them are listed below:

1. Energy and specific heat

E is calculated using Equation 3.1 and the CV is calculated using Equation 2.17. For

future comparisons between polymers with different length, the specific heat, cV =

1
N
CV, is calculated and presented.

2. The square of radius of gyration R2 is

R2 =
1

N

N∑
i=1

(ri − rc.m.)
2 , (3.12)

where

rc.m. =
1

N

N∑
i=1

ri , (3.13)

is the enter of mass of the polymer and N is the number of monomers of the polymer.
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3. x components of R2 is

R2
x =

1

N

N∑
i=1

(xi − xc.m.)
2 . (3.14)

4. y components of R2 is

R2
y =

1

N

N∑
i=1

(yi − yc.m.)
2 . (3.15)

5. z components of R2 is

R2
z =

1

N

N∑
i=1

(zi − zc.m.)
2 . (3.16)

6. z component of rc.m. is

z = |zc.m.| = |
1

N

N∑
i=1

zi| . (3.17)

7. The number of monomer-monomer contacts Nm is calculated by

Nm =


Nm + 1 , if ri,j ≤ rm

Nm , if ri,j > rm

, (3.18)

where i and j are different indices of the monomers of the polymer and rm is the

monomer-monomer contact distance. When ri,j ≤ rm, the i-th and j-th monomers are

considered as to be in contact. The number of monomer-monomer contacts is the total

number of all the contacted pairs. rm is selected according to the system. Different

values of rm, e.g., rm = 1.05, 1.1, 1.15, 1.2, 1.3, were tested to obtain a properly selected

value which makes sure that only nearest monomers (first layer of the icosahedral core)
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are counted. In this way Nm will be sensitive to possible “phase” transitions caused by

the monomer-monomer interactions. Finally rm = 1.1 is selected for this simulation.

8. The number of monomer-surface contacts Ns is calculated by

Ns =


Ns + 1 , if zi ≤ rs

Ns , if zi > rs

, (3.19)

where zi is the z component of the i-th monomer and rs is the monomer-surface contact

distance. When zi < rs, the i-th monomer is considered to be in contacted with

the surface; the number of monomer-surface contacts is the total number of all the

contacted monomers. Similarly, rs also needs to be selected accordingly. Different

values of rs, e.g., rs = 1.05, 1.1, 1.15, 1.2, were tested to obtain a proper value which

makes sure that only monomers of the nearest layer along the substrate are counted.

In this way Ns will be sensitive of possible phase transitions caused by the monomer-

substrate interactions. Finally rs = 1.05 is selected.

All these eight quantities and their thermal fluctuations are recorded to a data file every

100 Monte Carlo sweeps. The used Monte Carlo simulation methodologies will be discussed

in the next chapter.
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Chapter 4

Simulation Methods

As previously discussed in Chapter 2, to discern phase transitions, the macroscopic canonical

quantities will be measured in the thermal equilibrium. In a practical physical experiment,

an average of multiple measurements of an observable O will be carried out N times. The

average, 〈O〉 = 1/N
∑N

i Oi, will be considered as the expected value of that observable

O with an error σ/
√
N , where σ =

√
〈O2〉 − 〈O〉2 is the standard derivation and σ2 is

the variance. Because these measurements are independent, the measured values of the

observable are distributed according to a normal distribution.

Similar to Equation 2.14, if the probability distribution p(O) of O is known, then 〈O〉 =∑
O Op(O). If the probability of a microstate s is known and the value of the observable Os

can be measured, then

〈O〉 =
∑
O

Op(O) =
∑
s

Osps , (4.1)

where ps is given in Equation 2.10. Therefore, the key to successful simulations is to find the

probability distribution of all microstates of an ensemble. Given sufficient time1, methods

that can efficiently sample all the possible microstates, a property known as ergodicity, are

1The time is referring to real time process.
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of importance. In other words, the ergodic hypothesis has to be satisfied [70]. Markov Chain

Monte Carlo (MCMC) can provide such methods.

4.1 Markov Chain and Master Equation

During a Markov Chain Monte Carlo simulation, a set of microstates (s1, s2, s3, . . . ) can be

generated according to the probability distribution in the thermal equilibrium at the stochas-

tic simulation time steps (t1, t2, t3 . . . ). Due to ergodicity, the average of the observable 〈O〉

over a large number of stochastic time steps is

O =
1

N

N∑
i=1

O(si) ≈ 〈O〉 , (4.2)

where 〈O〉 is the statistical ensemble average in Equation 4.1 and N , the number of Monte

Carlo time steps, needs to be sufficiently large. Define pi(t) as the probability of the system

at the microstate si at simulation time step t. After a certain number of time steps ∆t,

the system could enter a new microstate sj. The temporal evolution of the probability of

microstate si to any another new microstate sj is

∆pi(t)

∆t
=
∑
j

pj(t)Tsj→si −
∑
j

pi(t)Tsi→sj , (4.3)

where pj(t) is the probability of the system at microstate sj at time t and Tsj→si is the

transition rate from microstate j to i. Equation 4.3 is the master equation that describes

the conservation of probability. In equilibrium, the ensemble probability distribution pi(t) is

stationary; in other words, ∆pi(t)/∆t = 0. Therefore Equation 4.3 yields

∑
j

pjTsj→si =
∑
j

piTsi→sj , (4.4)
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which is the global balance condition. To assure solutions in equilibrium, a stricter condition

can be introduced as

pjTsj→si = piTsi→sj , (4.5)

which ensures the probabilities of pairwise exchanges are equal.

Tsi→sj can be separated into

Tsi→sj = Ssi→sjAsi→sj , (4.6)

where Ssi→sj is the probability of proposing a trial move from si to sj and Asi→sj is the

probability of accepting this proposed update. Substituting Equation 4.6 into Equation 4.5

gives

Tsi→sj
Tsj→si

=
Ssi→sjAsi→sj
Ssj→siAsj→si

=
pj
pi
. (4.7)

The ratio of the forward and backward mutual selection probabilities Ssi→sj/Ssj→si depends

on the update schemes of the system in a Monte Carlo simulation. In most local displacement

update schemes, the ratio equals unity; for some global update schemes, the ratio may not

be unity [71].

The advantage of Markov Chain Monte Carlo is that only the information of the probabil-

ity distribution of the ensemble in equilibrium and the information of one previous microstate

is needed to generate the next microstate. During the temporal evolution, the more data are

collected as simulation time increases, the better estimations of the results can be obtained.

A long run of the simulation is needed to set the “correct” expected values of the problem

in equilibrium to remove the time correlation in Markov Chain data. Therefore, a good

balance between the total simulation runtime and data qualities can be well estimated for

future simulations.
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4.2 Single Displacement Update

The single displacement update scheme is carried out throughout this dissertation. It is

simple, satisfies ergodicity and has equal forward and backward mutual selection probabilities

between two microstates. This means Ssi→sj/Ssj→si = 1 and Equation 4.7 reduces to

pj
pi

=
Asi→sj
Asj→si

. (4.8)

Given a homopolymer with N monomers, its current conformation is X = {r1, r2,

. . . , ri, . . . , rN}. In a single displacement update, one of the monomers (the i-th monomer,

i ∈ [0, N ]) is selected randomly using a pseudo random number generator2. Then apply a

random displacement update to this i-th monomer with

ri = ri + ∆r , (4.9)

where ∆r = ∆x,∆y and ∆z. The updating lengths3 of ∆x,∆y and ∆z are selected uni-

formly from [−0.3, 0.3] throughout this dissertation. Recall that r is scaled by ro = 1, which

is defined in Equation 3.18. Therefore, the resultant updated conformation is Xupdated = {r1,

r2, . . . , r
updated
i , . . . , rN}.

4.3 Metropolis Sampling

All sampling schemes that satisfy detailed balance (Equation 4.8, in general Equation 4.7)

and the ergodicity are valid in an MCMC simulation. From Chapter 2, in thermal equilib-

2A nice discussion about the “art” of random number generator (RNG) can be found in [70] and the
RNG used in this simulation is a linear congruential generator (LCG) with an enormous multiplier [72].

3[−0.3, 0.3] is selected based on the balance between the computational efficiency and the acceptance
probability (around 35% at T = 0.1) at low and high temperatures. Various selections of ∆r for different
temperatures of Metropolis or Parallel tempering, and for different energy bins of Wang-Landau can be
found in [71].
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rium, the probability of a microstate si is pi = e−Ei/kBT/Z and the probability of a microstate

sj is pj = e−Ej/kBT/Z. Although the partition function Z is unknown, only the ratio of pi and

pj matters. Substitute pi and pj into Equation 4.9 and set one of the accepted probability

at to maximum value of 1 (unity), Equation 4.8 reduces to

Asi→sj = min

(
1, e
−

Ei−Ej
kBT

)
, (4.10)

where Ei and Ej correspond to the conformational potential energies given in Equation 3.1

[73, 7, 70]. The Metropolis implementation can be described in the following scheme:

Metropolis Sampling Simulation Scheme

1. start from a random conformation X of a microstate;

2. measure the desired energetic and structural quantities based on current conformation;

3. randomly choose the i-th monomer and propose a conformational update;

4. calculate the energy difference between the current conformation and the proposed

conformation;

5. generate a random number p ∈ (0, 1);

6. if p < e
−

Ei−Ej
kBT , accept the update; if not reverse the update;

7. repeat steps 2− 6.

The simulation time should be long enough so that O = 1
N

∑N
i=1O(si) ≈ 〈O〉 =

∑
s psOs can

be satisfied. At the beginning of the time series, the system will evolve towards the thermal

equilibrium [74]. Since none of the simulations runs infinitely long, O will scatter around
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the theoretical value of 〈O〉 with a standard deviation

σO =
√〈

[O −
〈
O
〉
]2
〉

=

√〈
O

2〉− 〈O〉2
, (4.11)

where σO can be obtained from the distribution of an individual measurement O. For all

uncorrelated measurements,

σ2
O

=
σ2
Oj

N
, (4.12)

where σ2
Oj

=
〈
Oj

2
〉
− 〈Oj〉2 is the population variance of the individual data Oj, which is

unknown for a practical calculation. Therefore the statistical error decreases by a factor of

1/
√
N .

Although the population variance cannot be obtained, the sampling variance can be

measured

σ̂2
O =

〈
(O −O)2

〉
= σO

2

(
1− 1

N

)
= σO

2

(
N − 1

N

)
. (4.13)

The sampling variance σ̂2
O is therefore systematically smaller than the real variance σO

2,

which is the systematic bias for uncorrelated measurements4 [75]. The bias corrected error

estimator for O is

err2
O

=
1

N(N − 1)

N∑
i=1

(Oi −O)2 . (4.14)

For a correlated data set, Equation 4.14 becomes

err2
O

=
1

N(Neff − 1)

N∑
i=1

(Oi −O)2 , (4.15)

where Neff is the number of uncorrelated measurements and Neff < N [7].

4Detailed discussions can be found in [7, 75].
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4.4 Jackknife Analysis

To reduce correlation of a Monte Carlo simulation, Jackknife (JK) binning analysis can be

used [76, 77]. The idea of Jackknife binning method is to divide the total data set into K

larger data bins, named the Jackknife bins. Instead of considering data only in one small data

bin, Jackknife method considers all the data from all the bins except for one bin. Therefore,

Jackknife method is also referred to as leave-one-out error cross validation in statistics [78].

The average of O of the k-th JK bin is

O
J

k =
NO −NkO

B

k

N −Nk

, (4.16)

where O
B

k is the average O of the k-th small bin which has Nk data points. The variance of

a JK average is

err2
OJK

=
K − 1

K

K∑
k=1

(O
J

k −O)2 . (4.17)

In such a process, the variance of a simulating time series data set can be reduced. Other

methods such as bootstrap method can also be used to remove the correlation [79].

4.5 Parallel Tempering

In a Metropolis Monte Carlo simulation, microstates of the tails of the probability of a

canonical system are rarely approached given a finite amount of simulation time. Due to

high rejection probability from Boltzmann factor at low temperatures, the sampling efficiency

may also decrease dramatically. At temperatures near a phase transition, on the other

hand, the sampling efficiency may be good but the correlations and fluctuations may grow.

At temperatures near a first-order phase transition, the samplings could be stuck in one

of the free energy local minimums; at temperatures near a second-order phase transition,
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Metropolis simulation may undergo a critical slowing down since the systems are globally

correlated near a second-order phase transition. These disadvantages require more efficient

simulation methods and parallel tempering is one such method.

Figure 4.1: The energy distributions P (E) of a set of 48 temperatures in parallel tempering
of a 55-mer homopolymer. In this simulation, 48 temperature values are selected in the
range of [0.1, 3.1] and their overlaps are sufficiently good to allow efficient configuration
exchange attempts. For computational efficiency, the total number of selected temperatures
can be reduced, if the overlaps of the energy distribution curves of adjacent temperatures
are greater than 40%.

These disadvantages can be partially overcome by applying an artificially generalized

ensemble [7]. In parallel tempering, a set of canonical ensembles at various temperatures,

T1, T2, . . . , Tk, . . . , TK, is simulated in parallel with Metropolis sampling. The set of the

canonical ensembles constructs an aggregated canonical ensemble. The aggregated canon-

ical ensemble probability is ZPT(T1, . . . , TK) =
∏K

k=1 Zcan(Tk), where Zcan(Tk) is given in

Equation 2.11. The probability distributions of all ensembles at various temperatures in a

parallel tempering simulation are presented in Figure 4.1. Figure 4.1 is obtained from a

free elastic off-lattice polymer of length 55. Overlap of the probability distributions between
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adjacent replicas allows the possibility of configuration swaps. The sizes of the overlaps

between probability distributions determine the selections of the temperature set. In this

simulation 48 temperature values are selected in [0.1, 3.1]. When an overlap area is around

40%− 70%, the simulation will be able to sample data efficiently [7, 21].

after a certain number of Monte Carlo time steps, the conformational replicas will attempt

to exchange. The acceptance probability for each canonical ensemble is the Metropolis

acceptance criterion defined in Equation 4.10. The probability of the exchange between

neighboring temperatures Tk and Tk+1 is

P (Ek, Tk;Ek+1, Tk+1) = min

(
1, e

(Ek−Ek+1)

(
1

kBTk
− 1

kBTk+1

))
. (4.18)

The Parallel Tempering implementation [19, 20, 22] can be described in the following scheme.

Parallel Tempering Simulation Scheme

1. Select a set of temperatures Tk ∈ [T1, TK ] where k = 1, 2, . . . , K and K is the total

number of temperatures;

2. Replicas of a polymer-substrate system at different temperatures will be simulated in

parallel by the Metropolis method with the acceptance probability defined in Equation

4.10;

3. After a certain number of Monte Carlo sweeps NMCS, replicas would attempt to ex-

change between neighboring temperatures Tk and Tk+1 with the PT probability given

in Equation 4.18;

4. Repeat steps 2-3.

A flowchart describing the PT simulation scheme is also given in Figure 4.2.
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Figure 4.2: Sketch of parallel tempering, where Ti < Ti+1. The horizontal direction is the
simulation time and the vertical direction is the selected temperature.
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Chapter 5

Canonical Results for

Polymer-Substrate Systems with a

Fixed End-to-End Distance

5.1 Introduction

In previous chapters, the related physics background has been introduced, the coarse-grained

model is given and the PT simulation methods and the data analysis methods are described.

In this chapter, polymer-substrate systems with a fixed end-to-end distance of 25 with various

temperatures and various substrate surface attraction strengths are studied. This work is

inspired by the previous studies [67, 80, 81, 82] about polymer substrate interactions.

In the beginning of polymer research, the conformations of a polymer chain can be

represented as all the possible paths of a random walk with N steps in a lattice with a fixed

bond length [83, 84, 85, 86]. Later on, self-avoiding walk (SAW) has been applied to make the

polymer model more realistic [87, 88, 89]. Afterwards, a monomer-monomer interaction with

a short distance repulsive effect and a long range attractive effect has been used to represent
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the non-bonded monomer-monomer interactions [84, 85]. This idea has been applied in this

dissertation and the Lennard-Jones potential is used as the non-bonded potential.

Conventionally, the square of the radius of gyration 〈R2〉 has been used to analyze the

polymer phases instead of just the radius of gyration 〈R〉 [84, 85]. This is because 〈R2〉 ∝ N2ν ,

where ν = 0.588± 0.001 for a SAW polymer in 3 dimensions [90].

When a free polymer approaches an energetically attractive substrate, polymer adsorp-

tion will happen [23, 67, 91, 92]. Under the competition between the monomer-monomer

interactions and the monomer-surface interactions, a coil-to-globular transition in which

polymer change from random coil to globular (Θ transition) will occur, as the temperature

decreases.

As the temperature decreases further more, a freezing transition occurs, in which the

polymer becomes crystalline or whose exact shape is also influenced by the qualities of the

substrate e.g., the value of the attractive strength [93].

Polymers with one end grafted to a substrate are also studied [67, 94]. Similarly, one

end grafted polymers also could experience a Θ transition, then instead of an adsorption

transition, a wetting transition might occur for long chain polymers [24]; then again a freezing

transition could happen at low temperatures.

Previous studies of free polymer adsorption and the interactions between the one end

grafted polymer and the substrate motivate the study of the phases and phase transitions

of a finite size polymer with its two ends grafted into an attractive substrate. A sketch

of such a model is given in Figure 3.4. One of the ends is anchored at the origin and the

end-to-end distance is along the x axis. The substrate occupies the half space where z < 0.

The substrate surface attraction strength εs is defined in Equation 3.11. The energy of such

a system is given in Equation 3.1. The simulation scheme will follow the PT simulation

procedure given in Section 4.5.
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With both of the two ends attached, the conformational entropy will reduce noticeably

and the energy of the interactions between the polymer and the substrate/surface will in-

crease dramatically comparing with the polymer adsorption and the one end grafted polymer

models. With this new constraint that the two ends of a polymer are attached on the at-

tractive surface, the changes of the conformational phases of such a polymer are of great

interest. In this chapter, results of the canonical statistical analysis for such a system at

various T and εs will be presented, the conformational phases will be discussed and the T

vs. εs phase diagram will be constructed.

5.1.1 Specific Parameters of the Model and Simulations

The model parameters are:

1. N = 40 is the length of the homopolymer;

2. D = 25 is the distance of the two grafted ends 1;

3. εs
2 is the attraction strength and εs ∈ [0, 5] for D = 25;

4. T 3 is the temperature and T ∈ [0.1, 5.6].

1D is a unitless quantity, because it is measured by the unitless length scale r0, where r0 = 1 = r0−actual

r0−actual

and r0−actual = σactual
6√2

. σactual is the actual van del Waals radius, which can be measured for a specific

polymer. Therefore, the length scale r0 is a unitless quantity and the results of this simulation can be
applied to different practical systems if their σactual values are measured.

2εs is also a unitless quantity, since it is measured by the energy scale εLJ, where εLJ = 1 = εLJ−actual

εLJ−actual
and

εLJ−actual is the actual minimum value of the LJ potential, which can be measured for a specific polymer.
Therefore, the energy scale εLJ is a unitless quantity and the results of this simulation can be applied to
different practical systems if their εLJ−actual values are measured.

3T is also a unitless quantity, since it is defined as T = kBTactual

εLJ−actual
, where kB is the Boltzmann constant,

Tactual is the actual thermodynamic temperature of the system and εLJ−actual is the actual minimum energy
of the LJ potential, which can be measured for a specific polymer. Therefore, T is a unitless quantity and
the results of this simulation can be applied to different practical systems if their actual thermodynamic
temperatures are given and their εLJ−actual values are measured.
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The PT simulation schemes and parameters are:

1. K = 32 is the number of temperatures, where 32 is obtained by the criterion given in

Section 4.5;

2. Replicas are assigned to the K different temperatures;

3. In each simulation process, the seeds of the random number generator are assigned

differently;

4. Eight energetic and structural quantities are measured for identification of phases tran-

sitions;

5. Jackknife analysis is used for error estimation;

6. Various εs values within the range of [0, 5] are used for discerning phases and phase

transitions at different temperatures;

7. A simulated annealing method [95, 96] is used to find the lowest energy structures.

Here are the computational resources:

1. Programs written in C++, MPI Package was used for parallel tempering;

2. Environment: Red Hat Enterprise Linux Server release 6.10 (Santiago);

3. 32 computational cores, Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz;

4. 716.1 GB total memory;

5. Data analysis: Jupyter notebook via Python3;

6. Plot tool: Gnuplot 5.0;
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When conducting simulations using the above tools, the average runtime is around 2 ∼ 3

days and the data analysis procedures could also take days for a set of parameters. The

total number of the computational CPU core-years for implementing all the simulations in

this project is: 2 ∼ 3 (days)× 32 (cores)× 21 (different εs values) ≈ 3.7 ∼ 5.6 core-years, in

addition to the time for data analysis.

5.2 Results

In this section, a showcase result will be presented, followed by the thermodynamic and

structural results for the polymer-substrate systems. Finally a phase diagram parameterized

by temperature and the attractive strength is constructed.

5.2.1 Results of Polymer-Substrate Systems with D = 25 and εs = 0

with Various T : a Showcase

A showcase result of thermodynamic and structural properties for a polymer-substrate sys-

tems with D = 25 and εs = 0 with various T is represented in Figure 5.1. The top figure

shows the results of cV, the derivatives of the square radius of gyration R2 and its x com-

ponent R2
x. The x, y components of the derivatives of the square radius of gyration R2 and

the z component of the center of mass are presented in the middle figure. The bottom figure

illustrates the derivatives of the number of monomer-monomer contacts d 〈Nm〉 /dT and the

number of monomer-monomer surface contacts d 〈Ns〉 /dT .

The peaks of the cV curve at T ≈ 0.16 and 0.38 indicate dramatic energetic changes and

can be used to discern “phase” transitions. The peak at T ≈ 0.16 indicates the freezing

transition which can be found in both non-grafted and singly grafted polymers [67]. The

other peak at T ≈ 0.38 indicates a Θ transition in which the polymer will collapse from

a random coil structure into a globular structure. Such transitions are noticeable for non-
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Figure 5.1: Thermodynamic and structural properties for polymer-substrate systems with
D = 25 and εs = 0 with various T . Some error bars are within the size of the data points.
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grafted polymers but unnoticeable for singly grafted polymers [67]. However, the peaks

indicating the Θ transition of cV curves will reduce to a shoulder or even disappear as εs

increases. The different behaviors of these surface interactions are of interest among free

polymers, singly grafted and doubly grafted polymers.

Together with the observations of the peaks of other curves, these two phase transition

bands can be confirmed, e.g., the curves of the derivatives of the square radius of gyration

〈R2〉 and its x, y, z components. In this showcase example, since εs = 0, the surface of the

substrate only acts as a hard wall. Since the distance between the two grafted ends of the

polymer, D, is along the x axis as shown in Figure 3.4 and D is fairly large compared to the

polymer length N = 40, the change in 〈R2
x〉 dominates the change in the square radius of

gyration 〈R2〉 and leads to the changes along y and z axes. Since the peaks of the cV curve

match the peaks of the curves of 〈R2〉 and its x, y, z components, this indicates that the

conformational changes of the polymer leads to energy changes during the Θ and freezing

transitions.

There is also a “shoulder” pattern of the cV curve around T ≈ 0.33 if one observes

carefully. That shoulder-like signal matches a “corner” pattern of the fluctuation of the

〈Nm〉 curve. This means the topology of the monomers is restructured without changing

the energy dramatically. These signals indicate a conformational entropic transition around

T ≈ 0.33 without causing a dramatic energetic change. This transition is similar to the

adsorption transition of a free polymer and substrate system [11, 67]. It is also similar to a

wetting transition of a singly grafted polymer and substrate system [67, 93]. However, for

a doubly graft substrate system, the melting transition may be a better term to describe

this transition, because during this transition as T increases, the polymer transitions from

a globular chain with an spherical droplet-like structure to a pure 3D globular structure

without the droplet. In such a transition, the average distances between various monomer

pairs increase. It looks like the droplet is melted during this transition.

51



In summary, with information of these peak-like, valley-like, shoulder-like and corner-like

signals of the curves of energetic and structural quantities (and the curves of the fluctuations

of these quantities), structural transitions of the polymer-substrate systems at temperatures

around the interesting ranges are researched, three types of structural transitions are iden-

tified and four types of structures are found and attached in Figure 5.2, which shows three

transitions and four conformational phases. Note that, for simplicity, the prime notation is

used for the temperature derivative of an observable, e.g., d 〈R2〉 /dT = 〈R2〉′.
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Figure 5.2: cV, d 〈Ns〉 /dT and d 〈Nm〉 /dT curves of polymer-substrate systems with D = 25
and εs = 0 with four different conformational structures. See the text for an explanation.

In Figure 5.2, when T < 0.16, the dominating structures are compact structures of an

icosahedral core with two straight strands attached. Since εs = 0, this icosahedral core
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minimizes the energy of this system [97, 98, 99]. Such structures can be identified in many

viral coat protein structures [100]. On the other hand, if εs 6= 0, the minimum energy of the

polymer-substrate system could form an fcc crystalline structure [101]. At around T ≈ 0.16,

the polymer goes through the freezing transition. When 0.16 < T < 0.33, as temperature

increases, the energy also increases in the system; therefore, the dominating structures will

start to melt and the monomers will have more freedom to move in space. The polymer is in

its globular phase with an spherical droplet structure. The icosahedral core formed at low

temperatures is still present in this temperature range but becomes a droplet. The droplet

will oscillate forward and backward along the strands between the two anchored points. This

phase only occurs when εs is small and as εs increases, this phase becomes a globular polymer

chain with a semi-spherical droplet phase. At around T ≈ 0.33, the polymer goes through

the melting transition. As the temperature range slightly increases to 0.33 < T < 0.38, a

small amount energy increase can melt the spherical droplet. The energy increase will not

change the cV curve dramatically but will result in a strong signal of the fluctuation of 〈Nm〉

curve. This indicates that the conformational phase change is led by re-arrangement of the

monomer-monomer topology within the droplet. At around T ≈ 0.38, the polymer goes

through the Θ transition. When T > 0.38, the structure becomes a random coil gas-like

structure, which can move in space more actively than the globular liquid-like chain.

In summary, the signals at T ≈ 0.16 indicate the freezing transition separating the

compact crystalline phase and the globular phase; the signals at T ≈ 0.33 indicate the melting

transition separating the globular phase with a droplet and the globular phase without a

droplet; the signals at T ≈ 0.38 indicate the Θ transition separating the globular phase and

the random coil phase.

Applying a similar data analysis procedure, the conformational phases and phase tran-

sitions of one simulation of a given set of D and εs values can be found. In the following

sections, the results of various εs values with different T values will be provided. Only inter-
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esting signals lead to critical changes in the phase diagram will be explained briefly in the

following section.

5.2.2 Canonical Results

In this section, canonical results of polymer-substrate systems with D = 25 and various εs

values with different T values will be given. A total of 21 different εs ∈ [0.0, 5.0] values are

used in simulations and their results are plotted in 8 figures.

Initially the εs values are chosen with an interval of 0.5, e.g., εs = 0.0, 0.5, 1.0, . . . , 5.0.

With those data, applying the methods given in Section 5.2.1, a primary phase diagram can

be constructed. According to the primary phase diagram, more εs values will need to be

selected to describe the phase diagram in more detail. With all the canonical results, the

primary phase diagram can be improved, and finally the conformational phase diagram of a

polymer-substrate system with D = 25 and various εs with different T can be constructed

in the end of the chapter.

The cV vs. T curves of the 21 various εs values are plotted in Figure 5.3. Two peaks

around T ≈ 0.16 and T ≈ 0.38 are notable, which identify the freezing and Θ transitions

accompanying with dramatic energetic changes. There are also less noticeable shoulders,

which could imply melting transitions with non-dramatic energetic changes. Those shoulder

patterns need to be compared with patterns of curves of other canonical quantities to obtain

credible information about possible phase transitions.

The transition temperature of the freezing phase transition (Tfr) is at around T ≈ 0.16

when εs = 0.0. It decreases slightly, as εs increases. This is understandable that the energy

of monomer-substrate interaction increases as εs increases.

The transition temperature of the melting transition (Tm) is at T ≈ 0.33 when εs = 0.0.

It decreases slightly, as εs increase; eventually, it disappears when εs ≈ 2.4. The reason is

that the energy of monomer-substrate is larger than the energy of the monomer-monomer

54



0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

c V

T

ǫs = 0.0
ǫs = 0.25
ǫs = 0.5
ǫs = 0.75
ǫs = 1.0
ǫs = 1.25
ǫs = 1.37
ǫs = 1.5
ǫs = 1.75
ǫs = 2.0
ǫs = 2.1

ǫs = 2.25
ǫs = 2.4
ǫs = 2.5
ǫs = 2.75
ǫs = 3.0
ǫs = 3.25
ǫs = 3.5
ǫs = 4.0
ǫs = 4.5
ǫs = 5.0

Figure 5.3: cV curves of polymer-substrate systems with D = 25 and various εs and T values.

interaction and the formations of an icosahedral core structure will be suppressed when

εs > 2.4. The 〈Nm〉′ and 〈Ns〉′ curves provide the competition between the tend of forming

an icosahedral core structure and adsorption along the substrate surface.

In Figure 5.3, when 0.25 ≤ εs ≤ 1.75, the location of peak, initially at T = 0.38, will keep

moving to the left as εs increases. There are also shoulders on these curves. The shoulders

will become less noticeable as εs increases. As εs is increased further, the shoulders disappear

and the peak moves towards T = 0.15, which indicates the phase transition between compact

crystalline phase and liquid-like globular phase.
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The d 〈R2〉 /dT vs. T curves of the 21 various εs values are plotted in Figure 5.4. Two

peaks around T = 0.15 and T = 0.42 of the curves are notable, which support the transition

temperatures found in the cV curves.
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Figure 5.4: d 〈R2〉 /dT vs. T curves of 21 various εs values.

Note that when εs 6= 0, the double peak patterns do not disappear. This gives more

noticeable signals for the two conformational phase transitions, Θ and freezing transitions,

comparing with the cV curves. However, as εs increases, the required energy needed for a

phase transition will decrease and there is no dramatic energy change. This causes the cV

curve to reduce to one peak as εs increases.
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The d 〈R2
x〉 /dT vs. T curves of 21 various εs values are plotted in Figure 5.5. Two peaks

around T = 0.15 and T = 0.42 of the curves are also noticeable, which support the phase

transitions found in the cV and d 〈R2〉 /dT curves.

−20

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

d
〈R

2 x
〉/
d
T

T

ǫs = 0.00
ǫs = 0.25
ǫs = 0.50
ǫs = 0.75
ǫs = 1.0
ǫs = 1.25
ǫs = 1.37
ǫs = 1.50
ǫs = 1.75
ǫs = 2.00
ǫs = 2.10

ǫs = 2.25
ǫs = 2.40
ǫs = 2.50
ǫs = 2.75
ǫs = 3.00
ǫs = 3.25
ǫs = 3.50
ǫs = 4.00
ǫs = 4.50
ǫs = 5.00

Figure 5.5: d 〈R2
x〉 /dT vs. T curves of 21 various εs values.

Note that the transition temperatures of the curves of d 〈R2
x〉 /dT correspond to the

transition temperatures in Figure 5.4, because D = 25 is a fairly large value compared to

the polymer length of 40.
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The d
〈
R2

y

〉
/dT vs. T curves of 21 various εs values are plotted in Figure 5.6.
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Figure 5.6: The d
〈
R2

y

〉
/dT vs. T curves of 21 various εs values.

Note that there are valleys instead of peaks at around T ≈ 0.15. This is because when

the compact crystalline phase with an icosahedral core transitions to the liquid-like globular

conformational phase, the radius of gyration along the y direction will decrease. This will

lead to the increase of 〈R2〉 along the x direction.
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The d 〈R2
z〉 /dT vs. T curves of 21 various εs values values are plotted in Figure 5.7. The

d 〈R2
z〉 /dT curves show more interesting changes than d 〈R2〉 /dT , d 〈R2

x〉 /dT and d
〈
R2

y

〉
/dT

curves as εs increases.

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

d
〈R

2 z
〉/
d
T

T

ǫs = 0.00
ǫs = 0.25
ǫs = 0.50
ǫs = 0.75
ǫs = 1.0
ǫs = 1.25
ǫs = 1.37
ǫs = 1.50
ǫs = 1.75
ǫs = 2.00
ǫs = 2.10

ǫs = 2.25
ǫs = 2.40
ǫs = 2.50
ǫs = 2.75
ǫs = 3.00
ǫs = 3.25
ǫs = 3.50
ǫs = 4.00
ǫs = 4.50
ǫs = 5.00

Figure 5.7: d 〈R2
z〉 /dT vs. T curves of 21 various εs values.

Note that when εs = 0, a shoulder occurs at T ≈ 0.16, a valley occurs at T ≈ 0.32

and a peak occurs at T ≈ 0.44. These signals are corresponding to the freezing transition,

the melting transitions and the adsorption transition. Note that also when the monomer-

substrate potential switches on, the d 〈R2
z〉 /dT curves change dramatically. The d 〈R2

z〉 /dT

curves are also very sensitive to the change of εs. When εs = 0.25, the shoulder of the curve

of εs = 0 at T ≈ 0.16 becomes a peak. This is because when the εs 6= 0.0, there will be a

minimum distance between the monomers and the substrate since the essential nature of the
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monomer-substrate interaction is a Lennard-Jones potential. When 0.25 < εs < 2, ground

structures are not single layer structures and the curves behave similarly (double peaks) since

the energy between the monomer-monomer interactions and energy between the monomer-

substrate interactions are comparable. When 2 ≤ εs ≤ 2.5, the curves show noticeable dips

at the freezing transition. This implies that the monomer-monomer interaction is stronger

than the monomer-substrate interaction. When a little energy is added to the ground state

structures, then the structures will “melt” on the substrate. Fewer signals of the curves

mean fewer changes on structures.

The d 〈z〉 /dT vs. T curves of the 21 various εs values are plotted in Figure 5.8 and the

minimum energy structures at temperature T = 0.1 for various εs are presented in Figure

5.9. The signals of the d 〈z〉 /dT curves are very similar to those of the d 〈R2
z〉 /dT curves

shown in Figure 5.7, The signals of the d 〈z〉 /dT curves are very similar to those of the
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Figure 5.8: d 〈z〉 /dT vs. T curves of 21 various εs values.

Figure 5.9: Structures at
low temperature with vari-
ous εs.

d 〈R2
z〉 /dT curves shown in Figure 5.7, because they both reflect the same conformational

changes along the z direction. Therefore, d 〈R2
z〉 /dT and d 〈z〉 /dT could be used as order
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parameters for the freezing and Θ transitions. With the information provided in Figure 5.8,

a deeper understanding for the minimum energy structures in Figure 5.9 for various εs can be

gained. When εs = 0, the signal (peak at T ≈ 0.16) indicated the freezing transition of the

d 〈z〉 /dT curve is noticeable. This is because there is not monomer-substrate interaction, a

little energy input could lead to a huge increase of the center of mass along the z direction.

When εs > 0, the freezing transition peak signal of the d 〈z〉 /dT curve becomes flatten and

much less noticeable. This is because even a small amount of monomer-substrate interaction

will prevent 〈z〉 increases as T increases. When εs increases further and 1.25 < εs < 2.5, the

minimum energy structure becomes a two layered crystalline structure due to the increase of

εs value. This results in that the freezing transition peak signal of the d 〈z〉 /dT curve, when

εs = 0, becomes valleys and the valley signal becomes more noticeable as εs increases. This

is because the monomer-substrate interaction gets stronger. When εs increases further more

and εs > 2.5, the minimum energy structure becomes a single layer crystalline structure due

to strong monomer-substrate interactions. This results in that the freezing transition signal

of the d 〈z〉 /dT curve becomes unnoticeable since the monomer-substrate interactions are so

strength then the polymer will hardly extend in the z direction and will mainly extend in

the x, y directions. In summary, d 〈z〉 /dT curve can help to obtain better understanding of

the minimum energy structures at low temperatures as εs varies. This section gives an idea

about how to understand the conformational changes by the interpretations the signals of

the energetic and structural quantities (and their thermal fluctuations). For other quantities

and their thermal calculations, similar approaches can be applied to gain understanding of

the conformational structures in Thermodynamics.

The d 〈Nm〉 /dT vs. T curves of the 21 various εs values are plotted in Figure 5.10.

The valleys of these curves indicate “phase” transitions, because 〈Nm〉 will decrease with

the increase of temperature and energy. These signals are corresponding to those of the

d 〈R2
z〉 /dT and d 〈z〉 /dT curves.
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Figure 5.10: d 〈Nm〉 /dT vs. T curves of 21 various εs values.

The d 〈Ns〉 /dT vs. T curves of the 21 various εs values are plotted in Figure 5.11. When

εs is small, the valleys of these curves indicate freezing transitions and the values of the

transitions temperatures are comparable to those of the d 〈Nm〉 /dT curves in Figure 5.10.

However, when εs is larger, the transitions from the crystalline phase to the globular phase

are indicated by peaks of the d 〈Ns〉 /dT curves. This is because the change of the contact

number of monomer-surface leads to dramatic energy changes.
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Figure 5.11: d 〈Ns〉 /dT vs. T curves of 21 various εs values.

Rearrange Data for Discerning Phase Transitions Vertically

With the canonical results from the previous section, horizontal transition bands (phase

transitions caused by the changes of T ) can be obtained and are shown in Figure 5.16. To

obtain the phase transitions vertically (phase transitions caused by the changes of εs), the

data can be rearranged according to the same T values with different εs values and the cV

vs. εs curves at various temperatures can be plotted. These curves are presented in Figures

5.12 - 5.15.
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Figure 5.12: cV vs. εs curves at various temperatures T ∈ [0.1, 0.18].
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Figure 5.13: cV vs. εs curves at various temperatures T ∈ [0.198, 0.356].

Figure 5.12 shows that there are three possible transitions at εs ≈ 0.2, 1.2 and 2.4 at

low temperatures. Figure 5.12, 5.13 and 5.14 show three possible transition strips which are

changing with the increase of temperature and εs. From the observations from these figures,
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Figure 5.14: cV vs. εs curves at various temperatures T ∈ [0.392, 0.639].
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Figure 5.15: cV vs. εs curves at various temperatures T ∈ [0.704, 5.464].

three transitions can be discovered, the three transitions are corresponding to the transition

between the globular phase with an icosahedral core to the semi-spherical droplet globular

phase; the transition between the semi-spherical droplet globular phase to a 2D globular
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phase and the transition between the 3D globular phase with local adsorption clusters and

the 3D globular phase.

5.2.3 Phase Diagrams and Conformational Structures

Considering all the results provided in Section 5.2.2 and verifying the structures of all possible

corresponding phases, a T vs. εs conformational phase diagram can finally be constructed

and presented in Figure 5.16.

Figure 5.16: T vs. εs conformational pseudophase diagram of polymer-substrate systems
with D = 25. See the text for an explanation.

The different phases are distinguished by their colors. The representative structures are

also presented. The information about the phases and the corresponding structures are listed

in Table 5.1, in a counter-clockwise order starting at the structure at the lower left hand

corner of Figure 5.16.
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Table 5.1: Different phases and their representative structures.

Phases Structures εs T

1) compact icosahedral
structure with straight strands

0.0 0.1

2) compact icosahedral
structure with parallel strands

0.3 0.1

3) two-layer compact
crystalline structure

1.4 0.1

4) single layer compact
crystalline structure

3.2 0.1
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5) 2D globule 3.0 0.432

6) 3D globule with local
adsorption clusters

3.0 1.694

7) 3D random coil 1.1 2.05

8) 3D globule 0.5 0.579
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9) 3D globule with
a spherical droplet

0.0 0.293

10) 2D globule with
a semi-spherical droplet

1.1 0.323

When constructing the phase diagram, the cV curves play important roles, can be a po-

tential order parameter. Other order parameter candidates could be the thermal fluctuations

of 〈Nm〉 and 〈Ns〉. However none of them can be used as the only order parameter and a

comprehensive understanding of all of them has to be used for the construction of the phase

diagram.

5.3 Summary

In this chapter, canonical quantities of doubly grafted polymer-and-substrate systems with

a fixed end-to-end distance D = 25 are studied. Previously studies of free polymer-and-

substrate systems and singly grafted polymer-and-substrate systems are summarized in Sec-

tion 5.1. A showcase data analysis process is introduced in detail and the conformational

phases and phase transitions of this showcase data set are also discussed in detail presented.

Ideas about how to understand the conformational changes by the interpretations the signals

of the energetic and structural quantities (and their thermal fluctuations) is given by using
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the examples of analyzing the d 〈z〉 /dT curves with different εs values. The conformational

phases transition as εs varies are also studied by rearranging the data obtained from the PT

simulations according to the same T values with different εs values.

Finally, the T vs. εs phase diagram is constructed and the representative structures for

different phases are listed.

Due to the nature of the canonical analysis, for finite systems, only transition strips can

be obtained. To reduce the size of the transition bands, the microcanonical analysis method

introduced in Chapter 2 can be used. The conformational analysis is time consuming and

labor intensive. Machine learning methods for classifying the conformations automatically

are preferred for efficiency in the future [102, 103, 104].
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Chapter 6

Computer Simulation Results for

Polymer-Substrate Systems with a

Fixed Substrate Surface Attraction

Strength

6.1 Introduction

In the previous chapter, the results for doubly grafted polymer-substrate systems with a

fixed end-to-end distance D at various temperatures and various substrate surface attraction

strengths were discussed. With both ends grafted, the polymers have stronger monomer-

substrate interactions compared to the free and singly grafted polymers when they have the

same εs values. For the doubly grafted polymer-substrate systems, their monomer-substrate

interactions become stronger as the D value increases. For free and singly grafted polymers,

since no constraints are along the x, y directions, they are isotropic in the xy-plane that is

parallel to the substrate surface. Therefore, when they interact with the substrate, structures
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with an axial symmetry tend to be formed, e.g., compact icosahedral structures, compact

dish-like layered crystalline structures at low temperatures with various εs values [67] and

“mushroom-like” structures [105]. However, for doubly grafted polymers, since both ends of

the polymers are grafted and the two ends are located along the x direction, they are not

isotropic in the xy-plane that is parallel to the substrate surface. Therefore, the constraint of

the two grafted ends breaks the isotropic properties of the free and singly grafted polymers

and the conformational structures will be affected by the end-to-end distance D values. The

conformational structures depend on the potentials in the energy model and the D value

affects the number of the monomers involved in the monomer-substrate interactions and the

monomer-monomer interactions. Hence, the conformational phases and phase transitions of

doubly grafted polymers with different D values are of interest.

In this chapter, the conformational phase and conformational transitions of the doubly

grafted polymer-and-substrate systems with a fixed substrate surface attraction strength

εs = 1.0 at various temperatures and various end-to-end distances D are studied. The D

values vary from 1 to 38 with an interval of 1. The physics, the model and the simulation

methods are similar to those used in Chapter 5. However, some specific parameters of the

model and the simulation procedures will be different and given below.

6.1.1 Specific Parameters of the Model and Simulations

The modeling parameters for the doubly grafted polymer-and-substrate systems with a fixed

substrate surface attraction strength εs = 1.0 at various temperatures and various end-to-end

distances D are:

1. N = 40 is the length of the homopolymer;

2. εs = 1.0 is the attraction strength;

3. D is the distance between the two grafted ends and D ∈ [1, 38];
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4. T is the temperature and T ∈ [0.1, 5.6].

The PT simulation schemes and parameters are:

1. K = 32 is the number of temperatures, where 32 is obtained by the criterion given in

Section 4.5;

2. Replicas are assigned to the K different temperatures;

3. In each simulation process, the seeds of the random number generator are assigned

differently;

4. Eight energetic and structural quantities are measured for identification of phases tran-

sitions;

5. Jackknife analysis is used for error estimation;

6. Various D values within the range of [1, 38] are used for discerning phases and “phase”

transitions at different temperatures;

7. Simulated annealing method is used to find the lowest energy structures.

The computational resources used are the same as mentioned in Section 5.1.1. The average

runtime for most D values is again around 2 ∼ 3 days, but there could be longer runtimes

for certain D values, e.g., for D = 11, the replica exchange rate of the parallel tempering

simulation is lower compared to the rates of other D values. Therefore, the runtime for

D = 11 is 5 times longer than the average runtime. The proper modeling parameters of

simulations with different D values have to be tried in small-scale trial runs before the

full-scale simulations are conducted.

If only considering the average runtime of simulations with different D values, the approx-

imate total number of the computational CPU core-years for implementing all the simulations
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in this chapter is 2 ∼ 3 (days)× 32 (cores)× 38 (different D values) ≈ 6.7 ∼ 10.0 core-years,

in addition to the time for data analysis.

6.2 Results

In this section, the results of the doubly grafted polymer-and-substrate systems with a fixed

substrate surface attraction strength εs = 1.0 at various temperatures and various end-to-

end distances D are presented. The result analysis methods are similar to those used in

Chapter 5, therefore the detailed explanation of the analysis methods will not be repeated.

The results will be explained by comparing with the results presented in Chapter 5. This

section begins with three sets of example results of polymer-substrate systems with εs = 1.0

and D = 5, 15 and 30. They will be presented by comparing with the results of systems

with εs = 1.0 and D = 25 given in Chapter 5. Then all of the canonical quantities of different

D values will be presented in eight groups of figures.

6.2.1 Results for Polymer-Substrate Systems with εs = 1.0 and

D = 5, 15, 30

Examples of thermodynamic and structural properties for doubly grafted polymer-substrate

systems with εs = 1.0, D = 5, 15 and 30 and various T values are presented in Figure 6.1.

Since D = 30 is close to D = 25, the results of D = 30 will be discussed first, by comparing

with the results of the previous chapter.

When D = 30, in the last column of Figure 6.1, one peak indicates the “melting” tran-

sition at T ≈ 0.275 in the sub-figure (g), and a shoulder indicates the “freezing” transition

at T ≈ 0.2. This similar “one shoulder and one peak” pattern can also be spotted in the cV

vs. T curve of polymer-substrate systems for D = 25 in Figure 5.3. Similarly, in the high

temperature range, no obvious signal for the Θ transition can be spotted at the cV curve
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for D = 30. However, the signal at T ≈ 1.2 for the Θ transition can be discerned in the

d 〈R2
z〉 /dT and d 〈z〉 /dT curves shown in the sub-figure (h). Note that the wide “bumps” at

T ≈ 1.2 of the d 〈R2
z〉 /dT and d 〈z〉 /dT curves are wide “peaks” actually; if the temperature

range increases, the “bumps” will become peaks and they indicate that the polymers extend

slowly along the z direction as T increases. Notice that the peak signals of the d 〈R2
x〉 /dT

and d
〈
R2
y

〉
/dT curves always appear before the peak signals of the d 〈R2

z〉 /dT and d 〈z〉 /dT

curves. This is because when the attraction strength εs = 1.0, the monomer-substrate in-

teractions are only related to the z component of a monomer. Therefore, the polymer’s

extension along the z direction needs more energy than the extensions in the x, y directions.

This is also true for D = 5 and 15 by comparing the d 〈R2
x〉 /dT and d

〈
R2
y

〉
/dT curves with

the d 〈R2
z〉 /dT and d 〈z〉 /dT curves. It seems that d 〈R2〉 /dT and d 〈R2

x〉 /dT curves show

strong correlations for larger D values, e.g., D = 25, 30. Note that the shoulder signal in-

dicating the freezing transition of the cV curve matches the valley signal of the d 〈Ns〉 /dT

curve, which is also similar to what has been observed for D = 25 in the previous chapter.

Therefore, d 〈Ns〉 /dT curves are important to study for identifying various conformational

structures at low temperatures because they are more sensitive to the changes of the compact

structures compared to other quantities. Together with the contact map method [41, 34]

and z component distribution method [106], these signals discussed above could be used

comprehensively to detect the icosahedral core and the fcc crystalline conformations at low

temperatures.

For a stronger contrast, results for D = 5 will be discussed. When D = 5, in the

first column of Figure 6.1, two peaks can be found at T ≈ 0.2 (freezing transition) and 0.4

(“melting” transition), and a shoulder at T ≈ 1.35 (Θ transition) for the cV curve. Compared

to the results for D = 30, it seems that systems with smaller D values are more sensitive

to the energy changes and behave similarly to free and singly grafted polymer-and-substrate

systems. These peaks signals match the valleys signals on the d 〈Nm〉 /dT curves. Therefore,
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Figure 6.1: Thermodynamic and structural quantities for polymer-substrate systems with
εs = 1.0, D = 5, 15 and 30 and various T . Some error bars are within the size of the data
points.

d 〈Nm〉 /dT could be used to indicate various transitions for smaller D values. When D = 5,

note that the Θ transition signal (T ≈ 1.4) of the d 〈R2〉 /dT curve is located in between those

of d 〈R2
x〉 /dT , d

〈
R2
y

〉
/dT and d 〈R2

z〉 /dT curves. The Θ transition signal of the d 〈R2
x〉 /dT

curve matches that of the d
〈
R2
y

〉
/dT curve but not that of the d 〈R2

z〉 /dT curve. This is a

good example of the finite size effect. One possible reason can be that when energy is added

to the system, the polymer is expected to extend in the x and y directions first, since the

polymer-substrate potential only exists in the z direction. As the energy increases further,
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the polymer will finally extend in z direction. For an infinitely long polymer, these different

peak signal locations should reduce to a single value.

When D = 15, the patterns indicating various transitions of the quantities fall between

the patterns with D = 5 and D = 30. For simplicity, detailed explanations will be omitted

for D = 15. To understand how the minimum energy structures may change as D changes,

Figure 6.2 presents the minimum energy structures for D = 8 and D = 12. When D < 11,

the minimum energy structures are fcc crystalline structures and when 11 < D < 21, the

minimum energy structures become compact imperfect icosahedral core structures. This

reflects the competition between the monomer-monomer interactions and the monomer-

substrate interactions as D changes.

Figure 6.2: Top view, side view and 45° top view of the minimum energy structures for
D = 8 (left) and D = 12 (right). Detailed explanations are in the text.

6.2.2 Canonical Results

In this section, all results of the canonical quantities for different D values will be presented.

Since the amount of data is larger than those of the previous chapter, the data are split into
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four intervals, which are D ∈ [1, 10], D ∈ [11, 20], D ∈ [21, 30] and D ∈ [31, 38]. When D

is large, there are fewer conformational varieties. Therefore, some data with larger D values

are omitted. Since all of the data are analyzed in a similar manner as those in the previous

chapter, for simplicity, not all of the results will be discussed in detail; only unusual results

that may trigger some interesting findings in physics will be discussed.

The cV vs. T curves of various D values are plotted in Figures 6.3 - 6.6. Note that when

D ∈ [1, 11], the transition temperatures of the “melting” transitions are almost unchanged

at around 0.36. The peak signal indicating the freezing transition, initially at T = 0.23 when

D = 1, will keep moving to the left as D increases and will disappear when D > 11. At low

temperatures, an fcc compact crystalline phase can be discerned when D ∈ [1, 11) as shown

in Figure 6.35. There are also shoulder signals indicating the Θ transitions on these curves.

When D is small, the Θ transition signals of the curves are unnoticeable. However, the same

transition can be hinted by the signals of the d 〈R2〉 /dT curves. The Θ transition signals

will move to the left and become more notable as D increases. The cV vs. T curve will

eventually reduce to a simple one peak curve as D increases further, because the number of

monomers that can be used to construct various conformational structures decreases as D

increases. Notice the unusual signals for D = 11 and recall that the replica exchange rate

is also small for D = 11. The possible reason could be, when D = 11, the energy of the fcc

crystalline structures and the energy of the imperfect icosahedral core structures are very

similar to each other and the energy distributions around the transition temperatures are

unimodal, which could indicate that this may be a second-order transition. This could be

interesting to compare with previous studies [98, 107].
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Figure 6.3: cV vs. T curves for D ∈ [1, 10].
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Figure 6.4: cV vs. T curves for D ∈ [11, 20].
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Figure 6.5: cV vs. T curves for D ∈ [21, 30].
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Figure 6.6: cV vs. T curves for D ∈ [31, 38].
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The d 〈R2〉 /dT vs. T curves at various D values are presented in Figures 6.7 - 6.10.

These signals of the curves are comparable to those of the cV curves.
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Figure 6.7: d 〈R2〉 /dT vs. T curves for D ∈ [1, 10].
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Figure 6.8: d 〈R2〉 /dT vs. T curves for D ∈ [11, 20].
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Figure 6.9: d 〈R2〉 /dT vs. T curves for D ∈ [21, 30].
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Figure 6.10: d 〈R2〉 /dT vs. T curves for D ∈ [31, 38].
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The d 〈R2
x〉 /dT vs. T curves at various D values are given in Figures 6.11 - 6.14. Note

that the signals of these curves are comparable to those of the cV and d 〈R2〉 /dT curves.
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Figure 6.11: d 〈R2
x〉 /dT vs. T curves for D ∈ [1, 10].
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Figure 6.12: d 〈R2
x〉 /dT vs. T curves for D ∈ [11, 20].

83



−5

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

d
〈R

2 x
〉/
d
T

T

D = 21
D = 22
D = 23
D = 24
D = 25
D = 26
D = 27
D = 28
D = 29
D = 30

Figure 6.13: d 〈R2
x〉 /dT vs. T curves for D ∈ [21, 30].
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Figure 6.14: d 〈R2
x〉 /dT vs. T curves for D ∈ [31, 38].
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The d
〈
R2
y

〉
/dT vs. T curves at various D values are given in Figures 6.15 - 6.18. Note

that the signals of these curves are comparable to those of the cV, d 〈R2〉 /dT and d 〈R2
x〉 /dT

curves. Note the unusual signals when D = 10, 11.
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Figure 6.15: d
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/dT vs. T curves for D ∈ [1, 10].
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/dT vs. T curves for D ∈ [11, 20].

85



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

d
〈R

2 y
〉/
d
T

T

D = 21
D = 22
D = 23
D = 24
D = 25
D = 26
D = 27
D = 28
D = 29
D = 30

Figure 6.17: d
〈
R2
y

〉
/dT vs. T curves for D ∈ [21, 30].
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〈
R2
y

〉
/dT vs. T curves for D ∈ [31, 38].
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The d 〈R2
z〉 /dT vs. T curves at various D values are given in Figures 6.19 - 6.22. Note

that the signals of these curves are comparable to those of the cV, d 〈R2〉 /dT , d 〈R2
x〉 /dT

and
〈
R2
y

〉
/dT curves.
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Figure 6.19: d 〈R2
z〉 /dT vs. T curves for D ∈ [1, 10].
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Figure 6.20: d 〈R2
z〉 /dT vs. T curves for D ∈ [11, 20].

87



−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

d
〈R

2 z
〉/
d
T

T

D = 21
D = 22
D = 23
D = 24
D = 25
D = 26
D = 27
D = 28
D = 29
D = 30

Figure 6.21: d 〈R2
z〉 /dT vs. T curves for D ∈ [21, 30].
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Figure 6.22: d 〈R2
z〉 /dT vs. T curves for D ∈ [31, 38].

88



The d 〈z〉 /dT vs. T curves at various D values are given in Figures 6.23 - 6.26. The

patterns of these curves should match those of the d 〈R2
z〉 /dT curves. The differences between

them are the systematic error.
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Figure 6.23: d 〈z〉 /dT vs. T curves for D ∈ [1, 10].
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Figure 6.24: d 〈z〉 /dT vs. T curves for D ∈ [11, 20].
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Figure 6.25: d 〈z〉 /dT vs. T curves for D ∈ [21, 30].
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Figure 6.26: d 〈z〉 /dT vs. T curves for D ∈ [31, 38].
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The d 〈Nm〉 /dT vs. T curves at various D values are given in Figures 6.27 - 6.30. The

patterns of these curves should match those of previous curves. The signals of the d 〈Nm〉 /dT

curves can be used to identify the “melting” transitions.
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Figure 6.27: d 〈Nm〉 /dT vs. T curves for D ∈ [1, 10].
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Figure 6.28: d 〈Nm〉 /dT vs. T curves for D ∈ [11, 20].
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Figure 6.29: d 〈Nm〉 /dT vs. T curves for D ∈ [21, 30].
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Figure 6.30: d 〈Nm〉 /dT vs. T curves for D ∈ [31, 38].

92



The d 〈Ns〉 /dT vs. T curves at various D values are given in Figures 6.31 - 6.34. The sig-

nals of the d 〈Ns〉 /dT curves can provide important supportive information for the previous

curves.
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Figure 6.31: d 〈Ns〉 /dT vs. T curves for D ∈ [1, 10].
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Figure 6.32: d 〈Ns〉 /dT vs. T curves for D ∈ [11, 20].
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Figure 6.33: d 〈Ns〉 /dT vs. T curves for D ∈ [21, 30].
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Figure 6.34: d 〈Ns〉 /dT vs. T curves for D ∈ [31, 38].
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6.2.3 Phase Diagrams and Conformational Structures

Comprehensively considering all the results provided and verifying the structures of all pos-

sible corresponding phases, a T vs. D conformational phase diagram can finally be created

and presented in Figure 6.35.

Figure 6.35: T vs. D conformational pseudophase diagram of polymer-substrate systems
when εs = 1.0.

Different phases are distinguished by different colors in Figure 6.35. The representative

structures are also presented. The phases are:

1. CC: Compact Crystalline phase (layered structures);

2. CI: Compact Icosahedral phase (structures with an icosahedral core);

3. CM: Compact Mixed (mixed phase of layered and icosahedral structures);
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4. R2D: 2D Random coil phase (structures of the polymer fluctuate mainly in a 2D plane

paralleling to the substrate surface);

5. R3D: 3D Random coil phase;

6. DG: Droplet-like Globule phase (note that monomers of the polymer in this phase

move less actively than those in the R2D phase);

The explanation of the phase diagram Figure 6.35 starts from the lower left corner and con-

tinues counterclockwise. When T is low (0 < T < 0.2) and D is small (D < 11), the doubly

grafted polymer-and-substrate system is in its frozen compact crystalline phase, where the

monomer-substrate interactions are dominant. Keep the temperature low and increase the

end-to-end distance D, the minimum energy crystalline structures become compact struc-

tures with an icosahedral core. As D increases further (22 < D < 39), more monomers

form the strand which is parallel to the x axis. Therefore, the number of the monomers

forming complex structures reduces; so that competition between the monomer-monomer

interactions and the monomer-substrate interactions becomes more sensible to the number

of monomers forming complex structures. As D changes, the crystalline structures and

structures with an imperfect icosahedral core occur alternately. Hence, this phase is named

as compact mixed phase. When D is large (22 < D < 39), as temperature increases, the

frozen compact structure “sublimes”; the polymer enters its 2D random coil phase, where

the structures of the polymer fluctuate actively in a 2D plane paralleling to the substrate

surface. This is due to the monomer-substrate interactions, since εs = 1. As temperature

increases, the polymer enters its 3D random coil phase. Then, keeping the temperature fairly

high and decreasing the end-to-end distance D significantly, the polymer goes through the

Θ transition and the gas-like random coil structures become droplet-like globular structures.

Finally, as the temperature decreases further, the polymer returns to its frozen compact

conformational phase.
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6.3 Summary

In this chapter, canonical quantities of polymer-substrate systems with attraction strength

εs = 1.0 are studied. The conformational phases and phase transitions are presented. The

T vs. D phase diagram is constructed. Canonical analysis provides a simple and efficient

approach to study the doubly grafted polymer-and-substrate systems. To reduce the size

of the transition bands caused by finite size effect, microcanonical analysis method can be

applied.

The D values are selected by an interval of 1 in this simulation. In the future, for a

specific interested area on the phase diagram, higher resolutions of the D values can be

selected to obtain more detailed information.
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Chapter 7

Summary

The work presented in this dissertation has focused on the research of the conformational

and thermodynamic properties of a finite-size doubly grafted polymer-substrate system using

advanced parallel replica-exchange Monte Carlo method together with sophisticated canon-

ical analysis methods. This doubly grafted polymer-substrate system is mimicking a short

polymer with its both ends attached to an attractive substrate in surrounding solvents im-

plicitly, e.g., a motor protein (Kinesin) walking on a microtubule, such a system could be

spotted commonly in nanotechnology and biological systems. The polymer chain is simulated

by a coarse-grained model such as a chain of monomers connected by unbreakable elastic

bonds (FENE potential), with monomer-monomer interactions (Lennard-Jones potential)

and monomer-substrate interactions (Lennard-Jones based interaction between monomers

and substrate). The conditions of the surrounding solvents are simulated by the tempera-

ture values T . The strength of the interactions between monomers and substrate of different

materials is simulated by the attraction strength εs. The coarse-grained models are not

only able to simulate such systems efficiently but also can provide generic and statistical

information about them. The results obtained for the coarse-grained models can be applied

98



to a broad range of physical systems if the energy and length scales of a Lennard-Jones

interactions of such a system are measured.

In Chapter 5, canonical quantities of doubly grafted polymer-and-substrate systems with

a fixed end-to-end distance D = 25 are studied and presented. Previously, others have

studied the conformational structures for the free polymer-and-substrate systems and singly

grafted polymer-and-substrate systems. Their results are summarized and compared with

this work. The T vs. εs phase diagram is constructed and the representative structures

for different phases are presented. The results obtained for the doubly grafted polymer-

and-substrate systems in this work, in combination with previous studies for free and singly

grafted polymer-and-systems, could provide an overall picture of the conformational studies

of polymer substrate interactions. Based on the analysis of the energetic and structure

quantities (and their thermal fluctuations), various conformational phases can be discerned,

such as compact icosahedral structures (with different strand directions), compact crystalline

structures (with different layer numbers), globular structures (2D and 3D), droplet structures

(semispherical and spherical) and random coil structures.

Throughout this work, the geometric constraint of a polymer with its both ends fixed

along the x direction breaks the isotropic properties of the free and singly grafted polymers

and leads to different conformational structures. The potentials in the energy model and

the D values affect the number of the monomers involved in the monomer-substrate interac-

tions and the monomer-monomer interactions. Hence, the conformational phases and phase

transitions of doubly grafted polymers with different D values are of interest.

In Chapter 6, canonical quantities of polymer-substrate systems with attraction strength

εs = 1.0 are studied. The conformational phases and phase transitions are presented. The T

vs. D phase diagram is constructed. Based on the analysis of the energetic and structural

quantities (and their thermal fluctuations), various conformational phases can be discerned

for various D values. When T is low, the doubly grafted polymer-and-substrate system is
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in its frozen compact phases, e.g., compact crystalline phase (D < 11), compact icosahedral

phase (11 < D < 22) and compact mixed phase (22 < D < 39). As temperature increases,

its frozen compact structures could become droplet-like globular structures for smaller D

values; or become 2D random coil structures for larger D values. As temperature increases

further, the polymer enters its 3D Random coil phase. The conformational transitions of the

minimum energy structures reflect the competition between the monomer-monomer interac-

tions and the monomer-substrate interactions as D changes. The results of this work could

provide a thermodynamic perspective for understanding the native end-to-end distances of

certain doubly grafted polymers in nanotechnology and biological systems, e.g., the step

length of a protein walker.

Based on the procedures constructed in this dissertation, conformational phases and

phase transitions of doubly grafted polymer-and-substrate systems with various D, εs and

T values can be obtained. For related future work, the research could be further improved:

1) Microcanonical analysis method can be used to reduce the size of the transition bands.

Therefore, more accurate phase diagrams can be obtained and the understanding of the

phases and the phase transitions will be more clear. 2) The conformational analysis is

time consuming and labor intensive. Automatic computerized methods for classifying the

conformations are highly desired, e.g., machine learning classification methods. 3) If applying

some modifications to such a model, more real world applications can be simulated. For

example, if applying random walk processes to the positions of the polymer ends which are

anchored onto the substrate and allowing the ends to move in the substrate surface, a walking

protein motor can be simulated.
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[23] M. Möddel, M. Bachmann, and W. Janke, “Conformational mechanics of polymer

adsorption transitions at attractive substrates,” The Journal of Physical Chemistry B,

vol. 113, no. 11, pp. 3314–3323, 2009.

[24] K. Binder, J. Baschnagel, M. Müller, W. Paul, and F. Rampf, “Simulation of phase

transitions of single polymer chains: Recent advances,” in Macromolecular Symposia,

vol. 237, pp. 128–138, Wiley Online Library, 2006.

103



[25] G. Jaeger, “The ehrenfest classification of phase transitions: introduction and evolu-

tion,” Archive for History of Exact Sciences, vol. 53, no. 1, pp. 51–81, 1998.
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