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ABSTRACT 

 Increasing the accuracy of estimated breeding values (EBV) improves the rate of genetic 

gain, resulting in superior animals and greater profitability.  Accuracies of genomic EBV can be 

maximized if enough information is available in the reference population, and more importantly, 

the effects of the independent chromosome segments (Me) are explained. Commercial farm 

populations are typically highly related; hence, inheritance includes large chromosome segments. 

If the effects of the independent chromosome segments are well estimated, genetic predictions 

will have high accuracy. The persistence of accuracy for commercial populations will remain 

more stable over time as the available data increases. Livability and retained tag information can 

be included in growth trait evaluations; however, accuracy does not improve when these causes 

for missing measurements are included. The objective of this thesis was to analyze genetic 

parameters and accuracies of (G)EBV using varying traits, quantities of data, and effects of 

including the reasons for missing records on pig genetic evaluations. 
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

 

BREEDING PROGRAMS FOR COMMERCIAL PIG PRODUCTION 

 The goals of swine breeding are dependent on consumer demand and profitability, both 

of which vary widely around the world due to culture and available resources. The desired traits 

can be divided into meat quality characteristics, resource efficiency, and durability. All of which 

focus on maximizing economic gain. Geneticists optimize the economically valued traits by 

implementing a three-way crossbred pig as the commercial terminal product (Lutaaya et al., 

2001).  

Generally, commercial producers use an integrated production system to update genetics 

by generating estimated breeding values (EBV) to decide which animals to keep as breeders 

based on information collected from the nucleus and commercial herds. The integrated system 

involves each commercial terminal animal to transport from a farrowing farm, a nursery farm, 

and a finishing farm before harvest. A few reasons for this production method are more 

profitability for more farmers, efficient use of the barns (more space needed for finishing pigs 

than nursery pigs), and optimizing the animal’s living conditions and needs in each stage of life. 

While this method has been successful for decades, it is difficult for breeders to model the effects 

of each new environment, pen grouping changes, and transportation on production traits. Unlike 

the dairy industry, pork production is centered around optimizing crossbred performance and has 
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less emphasis on purebreds (Knol et al., 2016). Closed nucleus farms are used for breeding 

purebred sows and boars to be the parents and grandparents of the terminal animals. The best 

performing purebred animals remain in the nucleus herd as parents, and the others are culled. 

The animals selected from the most updated models are in the nucleus herd. The genetic effects 

from the selection decisions made in the nucleus herd take many generations to reach the 

commercial terminal animals.  

 The most economically important trait of the breeding sow is the number of piglets 

weaned per litter (Serenius et al., 2004). Culling a sow due to nonsufficient reproductive 

performance is a high cost for the producers (Serenius and Stalder, 2006). In the early 2000s, 

piglet mortality in a commercial setting was approximately 20% (Grandinson et al., 2002). Piglet 

mortality is often due to crushing, low birth weight, or lack of essential nutrients. Mortality is a 

heritable trait that can be selected. Roehe (1999) found that lighter piglets have a higher 

probability of mortality. For maximum production, survivability and birthweight models need to 

be improved to have more pigs surviving to harvest.  

 It is hypothesized that piglet mortality increased as breeders increased selection on litter 

size, consequently lowering birth weight per pig (Quiniou et al., 2002). Fix et al. (2010) found 

that animals with a heavier birth weight had a faster daily gain resulting in heavier body weight 

at harvest. The genetic correlation between birth weight and hot carcass weight was calculated as 

0.55 ± 0.15 in a crossbred commercial pig population (Dufrasne et al., 2013). With this positive 

correlation, it seems it would be of interest to directly select for birth weight to increase hot 

carcass weight and decrease piglet mortality; however, birth weight and litter size have a 

negative relationship, so it is difficult to select for more pigs and heavier pigs simultaneously.  
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 Previous studies have shown that it is possible to considerably improve several 

economically essential traits by incorporating an associative social interaction effect in the 

breeding program (Muir and Schinckel, 2002; Bijma et al., 2007a). The associative effects from 

group mates that alter an animal’s performance or phenotype are considered indirect genetic 

effects (IGE). Linear and moderately heritable traits (i.e., hot carcass weight) can also be affected 

by IGE and improved through social interaction models (Bergsma et al., 2008; Chen et al., 

2009). Bijma et al. (2007b) found that two-thirds of heritable variation in chicken morality is 

social interaction. Since, by definition, a phenotype is equal to the sum of the direct effect and all 

associative effects from group members, the heritable variation due to social effects is often 

hidden in classical analyses (Bijma et al., 2007a). Including IGE in the model improves response 

to selection for growth traits, and as a result, increases heritability (Bergsma et al., 2008). 

Selecting pigs that are not as aggressive or interactive will decrease injuries, which will improve 

animal welfare. Accounting for social interaction requires individual identification and group 

information. It is not common for producers to collect this data in a commercial setting. 

Moreover, to improve growth traits and consequential profitability, social interaction models 

should be implemented in commercial breeding programs. 

   

GENOMIC SELECTION 

The genomic estimated breeding values (GEBV) of animals are estimated by 

incorporating single nucleotide polymorphism (SNP) marker information in genomic models and 

are used widely across commercial livestock breeding programs (Meuwissen et al., 2001; de 

Roos et al., 2011). The initial excitement of genotyping began with the first draft of the human 

genome project in 2001 (Sachidanandam et al., 2001). Since then, the amount of genomic 
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information available for livestock populations is rapidly growing as the cost of genotyping is 

constantly reduced. Genotyping pigs began around 2009 when SNPs became commercially 

available. The most commonly used SNP chip in the pork industry is the Illumina PorcineSNP60 

v2 BeadChip (http://www.illumina.com). 

The most extensively adopted technique to incorporate genomic information in 

evaluations is single-step GBLUP (ssGBLUP), which allows incorporating information from  

SNP, pedigree relationships, and phenotypic data into a single model to obtain GEBV (Aguilar et 

al., 2010; Christensen and Lund, 2010). For ssGBLUP implementation, the inverse of H (H-1) is 

used instead of the inverse of A (A-1) in the mixed model equations, where A is the pedigree-

based relationship matrix, and H-1 is:  

𝐇!" = 𝐀!" + %0 0
0 𝐆!" − 𝐀##!"

), (1) 

  
where subscript 22 refers to genotyped animals, and G-1 is the inverse of the genomic 

relationship matrix (VanRaden, 2008). Since its development in 2009, many livestock breeding 

programs have implemented ssGBLUP into their routine evaluations (Lourenco et al., 2020).   

Genomic information is used in genomic evaluation for quantifying relationships between 

animals and estimating marker effects. The resulting GEBV from genomic evaluations explains 

each animal’s merit by the accumulated effects from SNP marker information, pedigree 

relationships, and phenotypic data (Schaeffer, 2006). Animal breeders use GEBV to select the 

next generations’ parents and increase the rate of genetic change over time. The incorporation of 

GEBV has increased accuracy, decreased generation intervals, and dramatically reduced cost and 

time for progeny testing (Schaeffer, 2006).  

Pedigree tracking is necessary for the use of ssGBLUP and is usually from recording 

visual or electronic animal identification information (such as ear tags or microchips), which is 
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prone to substantial human error. Genotyping can more accurately track parentage and save 

farmers time and labor costs on administering and reading the traditional identification methods, 

and in return, they will have more genotyped animals to include in genomic evaluations. Using 

pooled semen for swine breeding is commonly practiced and increases reproduction rates 

(Maiorano et al., 2019); however, the sires are unknown when this method is used. Through 

genotyping for parentage, producers will continue to have optimal reproduction rates and 

identify which boar sired each animal. As more animals are being genotyped and genomic 

prediction methodology is becoming more advanced, the rate of genetic gain is 

increasing (Misztal et al., 2020).  

 

ACCURACY OF PREDICITONS 

 Accuracy is one of the essential metrics in genetic evaluations. Validation metrics for 

models test how well the performance of future animals is predicted. The magnitude of accuracy 

is most often discussed when comparing methods. Traditionally the accuracy of (G)EBV is 

defined as the correlation between true and estimated BV or the variance of prediction error; 

however, true BV are not available for real data. As accuracy approaches one, associations 

between true BV and EBV become more substantial, and similarly, associations become weaker 

as accuracy values approach zero.  

The response to selection and rate of genetic change are functions of accuracy. Breeders 

want to use the model with the highest accuracy to observe selection results faster. Several 

methods of computing accuracy exist. Breeders choose the appropriate method based on the 

phenotype of interest, the heritability of the trait, or the dynamics of the breeding program for a 

specific species. Dairy cattle breeders typically use daughter yield deviations (DYD) or 
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deregressed proofs (DRP) (VanRaden et al., 2009). This method is necessary to obtain (G)EBV 

from bulls to produce females with high milk yield. Since bulls cannot obtain this phenotype, 

this method is necessary to select bulls and obtain an estimator of accuracy. This method is not 

necessary or useful for phenotypes that are not sex-limited. A commonly used measure of 

accuracy is predictive ability, which is computed by adjusting the phenotype by the fixed effects’ 

estimates and correlating with (G)EBV with phenotypes removed for the validation animals 

(Legarra et al., 2008). This method is challenging to use and does not output logical accuracies 

for models with multiple random effects or traits of low heritabilities. 

Legarra and Reverter (2018) have developed a method, the LR method, to calculate 

validation statistics for complex models and traits. This method uses a full and reduced dataset to 

estimate bias, dispersion, and accuracy. Bermann et al. (2021) tested the LR method on a lowly 

heritable binary trait and found consistent and logical accuracy estimates. The LR accuracy is 

computed by: ρ,$%&(()%*+,-./01.*) =	.
$%&(𝒖4!"#$%,𝒖4&'()*'$)

("!56)74+,
; where 𝒖089:;< 	 and 𝒖0=>?@A>; are the 

(G)EBV for the whole dataset and dataset with phenotypes removed from validation animals, F2 

is the average inbreeding for the validation animals, and 𝜎,B# is the additive genetic variance for 

the whole population. The LR method is promising for increasing the genetic gain of many 

economically important traits in the pig industry. With the elaborate breeding systems and 

objectives in the commercial swine industry, breeders hope to maximize accuracy and, 

consequently, genetic gain.  

The persistence of accuracy depends on the decay of linkage disequilibrium and the 

genetic relatedness among the animals (Habier et al., 2007). Due to the decay of linkage 

disequilibrium over time, the recent generations are more genetically different than the most 

ancestral generations. Previous studies conducted in mice show that distant relatives’ information 
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results in lower accuracies than closely related individuals (Legarra et al., 2008). Each parent can 

explain 50% of the genetic variation in their progeny, but this is continuously reduced by half as 

generations proceed.  

It is common to calculate accuracies by dividing the dataset into a training and validation 

set. The training set fits the model on the data, and the validation set has information removed to 

test the model. It is practicable to have old animals in the training set and young animals in the 

validation set to mimic population structures by resembling successive genetic evaluations. 

These two datasets are referred to as the “whole” and “partial” datasets in Legarra and Reverter 

(2018). This strategy resembles the real population scenarios in which young animals have 

pedigree information or are genotyped and do not have phenotypes.  

The additive genetic relationship between the reference and 

validation population affects the accuracy of GEBVs in the validation population (Habier et al., 

2007). A limited number of independent chromosome segments explains a population's additive 

genetic information (Pocrnic et al., 2016a). As the amount of additive information explained 

increases, accuracy increases. To accurately estimate the effects of the independent chromosome 

segments (Me), linkage disequilibrium (LD) must exist between single nucleotide 

polymorphisms (SNP) and quantitative trait loci (QTL), which is the basis of genomic selection 

(Meuwissen et al., 2001).  

Maximizing accuracy for genomic predictions is a function of optimizing the reference 

population’s size, which depends on the dimensionality of the genomic relationship matrix and 

the effective population size (Ne) (Pocrnic et al., 2016a). Therefore, if enough information exists 

to explain the effects of the independent chromosome segments, the additive genetic variance 

can be explained, and accuracies will be adequate (Misztal, 2016). The number of independent 
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chromosome segments can be estimated by finding the number of eigenvalues in the genomic 

relationship matrix that explain most of the variation (Pocrnic et al., 2016a). The number of 

eigenvalues that obtain most of the variation in the population insinuates if the population is too 

small or diverse or if there is redundant information in the genomic relationship matrix. 

Regarding commercial pig populations, Pocrnic et al. (2016b) found that approximately 5,000 

independent chromosome segments are a sufficient amount of information to obtain 98% of 

variance explained in the genomic relationship matrix. With more records and more independent 

chromosome segments explained, accuracy increases. 
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CHAPTER 2 

 

DETERMINING THE STABILITY OF ACCURACY OF GENOMIC ESTIMATED 

BREEDING VALUES IN FUTURE GENERATIONS IN COMMERCIAL PIG 

POPULATIONS 1 
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ABSTRACT 

Genomic information has a limited dimensionality (number of independent chromosome 

segments [Me]) related to the effective population size. Under the additive model, the persistence 

of genomic accuracies over generations should be high when the nongenomic information 

(pedigree and phenotypes) is equivalent to Me animals with high accuracy. The objective of this 

study was to evaluate the decay in accuracy over time and to compare the magnitude of decay 

with varying quantities of data, and with traits of low and moderate heritability. The dataset 

included 161,897 phenotypic records for a growth trait (GT) and 27,669 phenotypic records for a 

fitness trait related to prolificacy (FT) in a population with dimensionality around 5,000. The 

pedigree included 404,979 animals from 2008 to 2020, of which 55,118 were genotyped. Two 

single-trait models were used with all ancestral data and sliding subsets of 3-, 2-, and 1- 

generation intervals. Single-step genomic best linear unbiased prediction (ssGBLUP) was used to 

compute genomic estimated breeding values (GEBV). Estimated accuracies were calculated by 

the linear regression (LR) method. The validation population consisted of single generations 

succeeding the training population and continued forward for all generations available. The 

average accuracy for the first generation after training with all ancestral data was 0.69 and 0.46 

for GT and FT, respectively. The average decay in accuracy from the first generation after 

training to generation 9 was -0.13, and -0.19 for GT and FT, respectively. The persistence of 

accuracy improves with more data. Old data has a limited impact on predictions for young 

animals for a trait with a large amount of information but a bigger impact for a trait with less 

information. 
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INTRODUCTION 

The addition of genomic information to routine genetic evaluations reduced generation 

interval and increased the accuracy of genomic estimated breeding value (GEBV), defined as the 

correlation between true and estimated breeding values (VanRaden, 2009). These factors are the 

main forces driving the increase in the rate of genetic gain over time (VanRaden, 2008; García-

Ruiz et al., 2016). Genomic information helps to identify the best young animals accurately even 

before phenotypes are recorded; therefore, it is of interest to determine the accuracy of GEBV for 

generations without new data recording and the magnitude of decay of accuracy over time. The 

selection of novel traits and traits difficult to measure is mainly dependent on the accuracies of 

GEBV. For example, milking speed and temperament have shown promising genetic progress 

due to genomics (Chen et al., 2020). Initial studies in genomic selection showed great persistence 

in the accuracy of genomic predictions over time. Results from Meuwissen et al. (2001) showed 

marginal decay in accuracy with a decrease from 0.84 to 0.72 over five new generations without 

phenotypes. This created initial excitement for the potential of selection with genomic 

information; however, the parameters of the simulated population cannot be compared with 

present-day commercial livestock populations. In the simulation, there was no selection, and 

only a few major genes explained the additive genetic variance of the trait. Under strong 

selection, steep decay in accuracy occurs (Muir, 2007). In small, simulated populations, Muir 

(2007) found that the accuracy of GEBV decays more rapidly than expected when under strong 

selection compared to random selection.  

We hypothesize that the decay will be minimized even under selection if enough 

phenotypes and genotypes are available to represent the population structure. The reason is that a 
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limited number of independent chromosome segments (Me) theoretically explains the additive 

genetic variance in a population (Pocrnic et al., 2016a). Therefore, if enough information exists 

to precisely estimate the effects of Me, the additive genetic variance can be explained, and 

accuracies will be adequate and stable over time. The number of Me is dependent on the effective 

population size (Ne) and genome length (L) (Stam, 1980). Pocrnic et al. (2016a) showed that the 

optimal amount of Me can be estimated by computing the number of eigenvalues that explain a 

certain proportion of variation in the genomic relationship matrix (GRM), which is used in 

GBLUP (VanRaden, 2008) and ssGBLUP (Aguilar et al., 2010). This creates a threshold for the 

amount of information that is nonredundant, that is, information that can increase accuracy, and 

the amount of which new data no longer increases accuracy. Hence, the GRM has a limited 

dimension. Whereas NeL eigenvalues explain most information, no new information is added 

after 4NeL (Stam, 1980; Pocrnic et al., 2016a). Goddard (2009) showed that accuracy is 

inversely related to Ne. As Ne increases, accuracy decreases. It is estimated that genome lengths 

for pigs range from 18 – 23 Morgan (Rohrer et al., 1994; Archibald et al., 1995; Marklund et al., 

1996; Tortereau et al., 2012), and Ne range from 55 – 113 (Welsh CS, 2009; Uimari and Tapio, 

2011; Pocrnic et al., 2016b). Pocrnic et al. (2016b) found that 5000 segments explain 

approximately 98% of the variation in commercial pig populations. With enough data relative to 

the independent chromosome segments, high accuracy could be achieved. Additionally, if the 

segments are well estimated, there should be less decay of predictivity under the additive model 

even under selection.  

The inverse of the genomic relationship matrix can be obtained by recursion on a group 

of animals (Faux et al., 2012; Misztal, 2014), with the optimal group size equal to the 

dimensionality of the genomic information (Misztal, 2016). The recursion means that the 
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breeding value of any animal can be estimated with near-perfect accuracy from exact breeding 

values of 4NeL other animals. Bradford et al. (2017) showed by simulation that the accuracy of 

GEBV was the same whether the recursion was based on animals from the last generation or a 

distant generation.  Their results suggest that, under the additive model, the persistence of 

genomic evaluations is very high if the reference population includes 4NeL animals with high 

accuracy or equivalent.  

Although accuracy is dependent on the proportion of variance explained by the 

eigenvalues of the GRM, the distribution of eigenvalues is not consistent, and a small percentage 

of the largest eigenvalues explain the majority of the genetic variation (Pocrnic et al., 2019). 

Additionally, the animals necessary to explain the largest eigenvalues carry almost the same 

genomic information. Hence, selection by GBLUP-based models occurs on clusters of 

independent chromosome segments, not individual chromosome segments (Pocrnic et al., 2019). 

In pig populations, the segments can be well estimated if there are around 5000 animals available 

with very high accuracy (e.g., theoretical EBV accuracy based on prediction error variance) or an 

equivalent number of animals with less accuracy. Despite a large amount of data available, the 

decay will be more dramatic if genomic selection induces faster epistatic changes (Huang and 

Mackay, 2016). Epistatic interactions between genes may reduce the value of old data, and 

epistatic effects may be unstable across populations because of the fluctuation in allele 

frequencies (Varona et al., 2018).  

 With the commercial pig production systems and population structure, the Ne and the Me 

are small. The purpose of this study is to determine how accuracy and the decay in accuracy are 

affected by the quantity of data available, the heritability of the trait, and removing data from 
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ancestral generations. With genotypes now available for many generations in pigs, reliable 

predictions for generations without new phenotype recordings may be possible.  

 

MATERIALS AND METHODS 

DATA 

Data for animals born between 2008 to 2020 were provided by Smithfield Premium 

Genetics (Rose Hill, NC). The population consisted of 273,382 animals, of which 55,118 were 

genotyped or imputed to the 50k SNP panel for autosomal markers only. Quality control 

removed SNP with minor allele frequency lower than 0.05, SNP and animals with call rates 

lower than 0.9, SNP with the difference between expected and observed frequency of 

heterozygous greater than 0.15 (departure from the Hardy-Weinberg equilibrium), and animals 

with parent-progeny Mendelian conflicts. After quality control, 39,263 SNP remained for 53,147 

genotyped animals.  

The dataset consisted of 27,669 records for a repeated fitness trait related to prolificacy 

(FT) from 13,883 animals and 161,495 records for a single growth trait (GT). The population 

consisted of 11 generations. Generations were constructed by tracing the population back to the 

oldest animals with no recorded parents. These animals were considered generation 1, and their 

progeny, grand-progeny, great-grand-progeny, were placed in generations 2, 3, and 4, 

respectively, and continued until generation 11. The birth year of the animals without parent 

records was considered when joining the successions to be more precise and to account for the 

age variation of animals without parent records. Table 2.1 shows the number of animals with 

genotypes, phenotypes, and pedigree per generation.  
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MODEL AND ANALYSIS 

 Variance components were estimated using AIREMLF90 (Misztal, 2014) without 

genomic information. The heritabilities were 0.21 and 0.06 for GT and FT, respectively, with 

standard errors less than 0.01. GEBV were computed using single-step genomic BLUP 

(ssGBLUP) (Aguilar et al., 2010). Two single-trait models were used in the analyses: 

𝐲CD =	𝐗CD𝐛CD + 	𝐙𝒖CD +𝐖"𝒄𝒍CD +	𝒆CD (1) 

𝐲ED =	𝐗ED𝐛ED + 	𝐙𝒖ED +𝐖#𝒑𝒆ED +	𝒆ED 	,	 (2) 

where 𝐲CD is a vector of GT observations; 𝐛CD is a fixed vector of systematic effects including 

contemporary group (farm, year, and week of birth), sex, and age in days at recording; 𝒖CD and 

𝒄𝒍CD are random vectors of direct additive genetic and common litter effects, respectively. 

Elements of 𝐲CD are related to elements of 𝒄𝒍CD 	by the incidence matrix 𝐖". The 𝐲ED is a vector 

of FT observations; 𝐛ED is a fixed vector of systematic effects including contemporary group 

(farm, year, and month of birth) and parity; 𝒖ED and 𝒑𝒆ED are random vectors of direct additive 

genetic and permanent environmental effects, respectively. Elements of 𝐲ED are related to 

elements of 𝒑𝒆ED 	by the incidence matrix 𝐖#. In both models, 𝐗, 𝐙, are incidence matrices 

relating elements of 𝐲 to 𝐛, and 𝒖, respectively, and e is a vector of random residuals. The 

covariance matrices were assumed to be: 

𝑉𝑎𝑟 @
𝒖CD
𝒄𝒍CD
𝒆CD

A = B
𝐇𝜎BCD# 0 0
0 𝐈𝜎F;# 0
0 0 𝐈𝜎<CD#

D 
(3) 

	𝑉𝑎𝑟 @
𝒖ED
𝒑𝒆ED
𝒆ED

A = B
𝐇𝜎BED# 0 0
0 𝐈𝜎=<# 0
0 0 𝐈𝜎<ED#

D, 

 

(4) 
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where 𝜎BCD#  and 𝜎BED#  are variances for additive genetic effects for GT and FT, respectively; 𝜎F;#  

is the variance for the common litter effect; 𝜎=<#  is the variance for the permanent environmental 

effect; 𝜎<CD#  and 𝜎<ED#  are the variances for the residual effects for GT and FT, respectively; I is 

the identity matrix; 𝐇 is a matrix combining pedigree and genomic relationships among animals 

as applied in ssGBLUP (Aguilar et al., 2010). The inverse of the pedigree-based relationship 

matrix (𝐀!") is replaced by the inverse of 𝐇 (𝐇!") in the ssGBLUP mixed model equations, 

which is written as follows:  

𝐇!" =	𝐀!" +	%0 0
0 𝐆!" − 𝐀##!"

), (5) 

where G was constructed using the first method of VanRanden (2008), then 95% of G was 

blended with 5% of the pedigree relationship matrix for genotyped animals (A22), and finally 

tuned so the means of the diagonal and off-diagonal elements were similar to those of A22 (Chen 

et al., 2011). The allele frequencies used to compute G were calculated based on all genotyped 

animals in the dataset.  

In this study, the accuracy and dispersion of GEBV were estimated with the linear 

regression (LR) method (Legarra and Reverter, 2018). This method uses two datasets, namely 

the whole dataset and the partial dataset, hereinafter denoted with the subscripts w and p, 

respectively. The former contains all the available phenotypes up to a certain time t, whereas the 

latter contains phenotypes up to a time period before t. The focal individuals, that is, the 

individuals for whom the accuracy of GEBV will be estimated, are defined as the genotyped 

animals with phenotypes in the whole dataset but without in the partial dataset.  

To investigate the impact of the amount of data on the accuracy of GEBV for focal 

individuals, GEBV were sequentially estimated by changing the definition of focal individuals 
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and partial datasets using a sliding approach based on generation. Figure 2.1 shows four 

definitions of focal groups that included generations 5 to 9, 6 to 9, 7 to 9, and 8 to 9. Accuracy 

and dispersion were then calculated separately for each generation of focal individuals. 

Additionally, to investigate the impact of ancestral data, four partial datasets were created for 

each focal group: (i) the ancestral group: contained all the ancestors of the focal individuals, (ii) 

the 3-generation group: consisted of the ancestors up to the great-grandparents of the focal 

individuals, (iii) the 2-generation group: included the grandparents and parents of the focal 

individuals, and (iv) the 1-generation group: contained only the parents of the focal individuals. 

A total of 16 different combination of groups of focal individuals and partial datasets were 

created (Figure 2.1). 

The benchmark for each validation, i.e., GEBVw, remained unchanged, whereas GEBVp 

were updated as the partial datasets were modified. Due to the lack of phenotypes and genotypes 

in generations 10 and 11, these animals were removed from all analyses as they were 

incomparable with the other validation generations. Accuracies were estimated for each 

generation in each set of focal individuals using: ρ,$%&((,-) =	.
$%&(𝒖4𝒘,𝒖4𝒑)
("!56)74+,

  (Legarra and Reverter, 

2018; Macedo et al., 2020b), where F2 is the average inbreeding coefficient among focal 

individuals in a specific generation and 𝜎,B# is the estimated additive genetic variance of the 

population. Inbreeding coefficients for each animal were calculated with a recursive method 

based on pedigree using INBUPGF90 (Aguilar and Misztal, 2008). The slope of the regression of 

𝒖0𝒘 on 𝒖0𝒑, is used to assess the dispersion of partial GEBV and is equal to 𝑏8,= =	
F:I(𝒖4𝒘,𝒖4𝒑)
I>?(𝒖4𝒑)

. The 

primary purpose of this research was to compare accuracies over time with varying amounts of 

ancestral data for two traits of differing heritabilities; therefore, other statistical parameters were 
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not used. Accuracy and dispersion are well-researched and logical to use as a function over time 

(Macedo et al., 2020a). Additional statistics proposed by the LR method have not been widely 

tested as a function of time. Including those values would output uninterpretable comparisons 

and should be further researched.  

 

RESULTS AND DISCUSSION  

Figures 2.2 and 2.3 show the accuracy for GT and FT over time using the partial datasets 

belonging to each group. When comparing traits, GT had higher accuracy and less decay in 

accuracy over time compared with FT. For example, when considering the partial dataset 

composed of generations 1 to 4 from the ancestral group, the accuracy decreased from 0.55 in 

generation 5 to 0.42 in generation 9 for GT (Figure 2.2A), and from 0.46 to 0.22 for FT (Figure 

2.3A), respectively. These results are expected and agree with those from Muir (2007) since GT 

has higher heritability than FT, and low heritability traits require a large number of records to 

achieve high accuracy; FT had about 1/6th of the records compared to GT.  

Persistence for both traits can be inferred by observing the initial and final accuracy for 

each line in Figures 2.2 and 2.3. The slopes for FT are greater in magnitude than the slopes for 

GT, meaning that the latter showed more persistence. The differences in persistence between the 

two traits may be explained by the heritability and the amount of phenotypic information. 

Roughly, the amount of information in this study can be approximated as accuracies of 

hypothetical 5000 (4NeL) sires with as many progeny as the number of animals with records, and 

with progeny equally distributed per sire. For a trait with 32 progeny per sire and heritability of 

0.21, the accuracy per sire would be approximately 0.80. For a trait with 5 progeny per sire and 

heritability of 0.06, the equivalent accuracy would be only 0.25.  
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 The distance between different lines in Figures 2.2 and 2.3 show the impact that the 

different sources of information, namely parents, grandparents, etc. have in the estimation of the 

accuracy of GEBV. This fact can be observed for the focal individuals in generation 8 (Figures 

2.2 and 2.3). In this case, the purple line includes the parents of the named focal individuals, 

whereas, for the blue line, the closest generation used to estimate their accuracies was that of 

their grandparents. When comparing the difference between both lines, it can be deduced that 

removing the parents drops the accuracy about 0.11, on average for GT, whereas the average 

drop for FT was about 0.04. To compare the two traits across time, the average decreases in 

accuracy for GT (FT) were 16.0% (10.1%) after removing parents and 79.3% (34.4%) after 

removing three generations (parents, grandparents, and great-grandparents).  

 The magnitude and slope of the regression of 𝒖0𝒘 on 𝒖0𝒑 overtime for both traits explains 

the effect of heritability and quantity of data on GEBV prediction. Regression coefficient less 

than one indicates the GEBV of the focal animals are over-dispersed (overestimated) compared 

to GEBV from the whole dataset. In Figure 2.4, the partial datasets include generations 1 through 

4 for both traits. The partial datasets are not updated over time; therefore, the focal animals 

become less related to the partial datasets as generations proceed. In relation to animals in 

generation 4, the GEBV for focal animals were overestimated for progeny, grand-progeny, great-

grand-progeny, great-great-grand-progeny, and great-great-great-grand-progeny, which are 

generations 5, 6, 7, 8, and 9, respectively. Analogously to accuracy, 𝑏8,= remained greater and 

more persistent over time for GT than FT. The 𝑏8,= decreased from 0.84 to 0.66 for GT from 

generations 5 and 9, respectively. Similarly, it decreased from 0.63 to 0.21 for FT. A steep 

negative trend for 𝑏8,= over time indicates there was not enough information available to predict 

the amount of dispersion in further generations. The differences in the persistence of accuracy 
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and dispersion confirm that for traits with low heritability, the impact of information from 

closely related individuals is less than traits with high heritability.  

Apparently, this is subject to the fact that all chromosome segments are represented in the 

population (Pocrnic et al., 2016a). Thus, with sufficient genotyped animals, it is expected that 

chromosome segments would be well represented in the population. Consequently, the gain in 

accuracy when adding information from individuals more closely related will be minimal if the 

corresponding trait has low heritability. It is important to highlight that in this study, the 

accumulation of ancestors was considered a new source of information, not the addition of 

progeny of the focal individuals. Logically, the accuracy of GEBV for focal individuals will 

largely depend on the incorporation of their progeny in the genetic evaluation, regardless of the 

heritability of the trait and the representation of the chromosome segments in the population. 

To maximize the accuracy of genomic predictions, an optimal size of the training 

population is necessary to capture most of the variation in the population. This optimal subset is 

theoretically related to a limited dimension of the genomic information. This limited dimension 

is a function of Ne and L. If ~ 4NeL largest eigenvalues are contained in the GRM, the Me is 

likely obtained, and ample information is provided to achieve high accuracies (Pocrnic et al., 

2016a). According to Misztal (2016), each independent chromosome segment has an additive 

effect, and the sum of the effects of the existing chromosome segments in individual animals 

composes the breeding values. If enough chromosome segment effects are captured in the 

population, more variation is explained in the population, and thus, it is expected that accuracies 

will also show more persistence over time.  

As explained in a study conducted by Hayes et al. (2009), the accuracy of genomic 

selection is crucially dependent on the number of phenotypic records available, and the 
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heritability of a trait. In their study, approximately 5000 phenotypes were required to achieve an 

accuracy of GEBV equal to 0.6 for a trait with a heritability of 0.2 in a population with an Ne of 

1000. In our study, for FT, generation 6 and 7 contained 4278 and 3348 records, respectively. 

Compared to GT that had 26,474 records for generation 6 and 28,260 for generation 7, it can be 

concluded that FT does not have enough information to achieve an accuracy as high as GT. This 

can explain the lack of persistency and low accuracy over time when analyzing FT with 1-

generation partial datasets. In every analysis for FT and GT, 2 or 3 generations of data seem 

sufficient enough to reach a comparable maximum accuracy to all ancestral data. As heritability 

decreases, the number of required phenotypic records to achieve the desired accuracy of GEBV 

increases (Hayes et al., 2009). 

 The selection pressure and complexity of a trait significantly affect the accuracy of 

GEBV over time (Muir, 2007; Gorjanc et al., 2015). In this study, different intensities and types 

of selection pressure were placed on the two separate traits. GT was heavily selected upon over 

time, and this trait was directly selected across all generations. FT, however, was only indirectly 

selected, meaning that the selection pressure on FT depended on the selection pressure of a 

different trait with a more favorable relationship with pre-weaning mortality. These differences 

in selection for both traits can be observed in Figure 2.5, where the genetic trends of GEBV 

across generations for both GT and FT are shown. To make both traits comparable, GEBV were 

standardized. As seen in the trends over time, GT increased at a steadier rate, whereas FT 

increased less directly, implying less selection. Also, FT is more challenging to select upon and 

predict its performance since it is a categorical trait, compared to the continuity of GT. 

 One important limitation of this is that the accuracy for generations that were distant from 

the reference populations was computed for preselected animals, and preselection decreases 
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realized accuracies (Bijma, 2012; Lourenco et al., 2015). Therefore, the future accuracies may be 

underestimated, although the LR method may partially account for the preselection.  

 The issue of persistence of GEBV is also important in the dairy industry where young 

bulls are selected from other young bulls only based on the genomic information. For Holsteins 

with a large amount of information and the genomic dimensionality around 15,000 (Pocrnic et 

al., 2016b), the reliability for production traits two generations ahead of the reference population 

was 90% of that of one generation ahead (VanRaden et al., 2010). If the persistence of the 

evaluations is high, the importance of phenotyping may be reduced. However, the persistence is 

likely to be lower for lower heritability traits, especially with fewer records, keeping 

phenotyping relevant. Additionally, in the long run, very strong selection and epistatic 

interactions may possibly reduce the persistence, keeping the need for phenotype recording.  

 

CONCLUSIONS 

When the reference population is large enough to accurately estimate the effects of the 

independent chromosome segments, GEBV can be persistent, with minimal decay of accuracy 

over generations. In such a case, the impact of old data is minimal. The decay is larger with less 

information, particularly for lower heritability traits, and with necessarily lower selection 

pressure, the impact of old data is likely larger. It would be desirable to estimate the decay as a 

function of many parameters analytically, however, the complexity of selection and side effects 

of faster selection (e.g., Bulmer effect and epistasis) are likely to make such a theory complex. 
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TABLES 

Table 2.1 Number of animals in the pedigree, genotyped animals, and records for GT and FT per 

generation. 

Generation Pedigree Genotypes GT FT 
1 758 214 658 1,991 
2 12,513 384 4,767 2,098 
3 15,190 831 7,697 3,447 
4 29,017 1,929 16,491 3,753 
5 38,316 2,775 23,211 4,302 
6 42,476 6,158 26,474 4,278 
7 44,363 10,769 28,260 3,348 
8 39,082 11,345 25,002 2,290 
9 27,445 8,636 16,989 1,435 
10 17,084 6,149 8,762 570 
11 7,138 3,957 3,184 157 
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FIGURES 

2.1 Scheme for partial datasets and focal animals. The four partial dataset groups include 

ancestral, 3-, 2-, and 1-generation subsets. In each scenario, the genomic and pedigree 

information is included for all animals and remain unchanged, but only phenotypes exist for 

animals in the partial dataset. Generations are not grouped for the focal animals, and accuracies 

are calculated for each generation separately. 
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2.2 Accuracy over time with four partial dataset groups for GT. The partial datasets are updated 

over time, increasing a generation of data for the ancestral groups (A) and adding a recent 

generation of data while removing the oldest generation of data for 3-, 2-, and 1- generation 

subsets (B, C, and D, respectively). Accuracy is calculated for each generation separately, 

beginning with the first generation following the partial dataset and ending at generation 9. 
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2.3 Accuracy over time with four partial dataset groups for FT. The methods are the same as in 

Figure 2.2. 
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2.4 Dispersion trends over time for GT and FT. The partial datasets include ancestral data from 

generations 1-4 and are not updated over time. Each generation beyond generation 4 is a 

generation of focal animals becoming less related to the partial dataset animals. The slope of the 

regression of GEBV whole on GEBV partial (𝑏8,=) was used to estimate dispersion. Dispersion 

was calculated for each generation separately, beginning with generation 5 and ending at 

generation 9. 
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2.5 Genetic trends for GT and FT with average standardized GEBV. Generation 1 was excluded 

from the trend due to the lack of animals with phenotypic records. 
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CHAPTER 3 

 

IMPACT OF INCLUDING THE CAUSE OF MISSING RECORDS ON GENETIC 

EVALUATIONS FOR GROWTH IN COMMERCIAL PIGS 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Hollifield M. K., D. Lourenco, S. Tsuruta, M. Bermann, J. T. Howard, I. Misztal. Submitted to 
Journal of Animal Science, 04/23/2021. 
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ABSTRACT 

It is of interest to evaluate crossbred pigs for hot carcass weight (HCW) and birth weight 

(BW); however, obtaining a HCW record is dependent on livability (LIV) and retained tag (RT). 

The purpose of this study is to analyze how HCW evaluations are affected when herd removal 

and missing identification are included in the model and examine if accounting for the reasons 

for missing traits improves the accuracy of predicting breeding values. Pedigree information was 

available for 1,965,077 purebred and crossbred animals. Records for 503,716 commercial three-

way crossbred terminal animals from 2014 to 2019 were provided by Smithfield Premium 

Genetics. Two pedigree-based models were compared; model 1 (M1) was a threshold-linear 

model with all four traits (BW, HCW, RT, and LIV), and model 2 (M2) was a linear model 

including only BW and HCW. The fixed effects used in the model were contemporary group, 

sex, age at harvest (for HCW only), and dam parity. The random effects included direct additive 

genetic and random litter effects. Accuracy, dispersion, bias, and Pearson correlations were 

estimated using the linear regression method. The heritabilities were 0.11, 0.07, 0.02, and 0.04 

for BW, HCW, RT, and LIV, respectively, with standard errors less than 0.01. No difference was 

observed in heritabilities or accuracies for BW and HCW between M1 and M2. Accuracies were 

0.33, 0.37, 0.19, and 0.23 for BW, HCW, RT, and LIV respectively. The genetic correlation 

between BW and RT was 0.34 ± 0.03, and between BW and LIV was 0.56 ± 0.03. Similarly, the 

genetic correlation between HCW and RT was 0.26 ± 0.04, and between HCW and LIV was 0.09 

± 0.05, respectively. The positive and moderate genetic correlations between BW and other traits 

imply a heavier BW resulted in a higher probability of surviving to harvest. Genetic correlations 
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between HCW were lower due to the effects of the large quantity of missing records. Despite the 

heritable and correlated aspects of RT and LIV, results imply no major differences between M1 

and M2; hence, it is unnecessary to include these traits in classical models for BW and HCW.  

 

INTRODUCTION 

Profitability for commercial pig breeding is contingent on optimizing all traits 

contributing to the economic value of the terminal line. Mortality and culling of animals are the 

most detrimental to financial gain. Many of the high economically valued traits, such as livability 

(LIV), have low heritabilities, resulting in a lengthy genetic progress. The occurrence of an 

animal not living to harvest can be accounted for in the evaluations by including a censored trait 

if death records are available (Arango et al., 2005b). If an animal dies or is removed from the 

herd, then its survivability record becomes uncensored. Active animals in the herd have censored 

survivability records (Schaeffer, 2019). Harvested animals that obtain a HCW measurement then 

have an uncensored record for survivability and HCW. To incorporate censored data in the 

analysis, the reason for death and the stage of life when the animal died must be recorded.  

The growth and carcass traits are economically important, and breeders are continuously 

working to improve these rates of genetic gain. Because the rate of genetic process is slow at the 

commercial level in swine breeding, improving the model and individual identification methods 

will ultimately improve performance (Arango et al., 2005a). Selection for heavier birth weight 

(BW) is essential for commercial pig models as it leads to greater chances of LIV and faster 

growth rates (Grandinson et al., 2002; Arango et al., 2006). Previous studies have shown that it is 

possible to considerably improve several economically important traits by incorporating an 
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associative social interaction effect in the breeding program (Muir and Schinckel, 2002; Bijma et 

al., 2007; Bergsma et al., 2008).  

Individual identification is essential for traceability, phenotype tracking, and advancing 

breeding programs. The identification device must be retained and readable throughout the entire 

process to record measurements from birth to slaughter. A feasible identification method would 

accommodate the systematic processes at commercial harvest and provide a logical cost-benefit 

return. Efforts for social interaction models require a reliable animal identification method and 

group information, so group mates and their indirect genetic effects can be identified. However, 

group information is not usually attained in most commercial pig operations, and the percentage 

of animals that lose the identification tag can be as high as 30%. Accounting for the reason 

animals were unable to obtain a HCW measurement may help overcome this issue and provide 

better estimates of hot carcass weight (HCW), given data were not available for some animals 

because of mortality and missing tags.  

The objective of this study was to compare genetic parameters, correlations, and breeding 

values for BW and HCW in a two-trait model or a four-trait model that also accounted for 

retained tag (RT) and LIV records.  

 

MATERIALS AND METHODS 

DATA 

 Data were recorded from two farms for animals born between 2014 to 2019 and were 

provided by Smithfield Premium Genetics (Rose Hill, NC). The pedigree included 1,965,077 

animals; however, phenotypes were only available for 503,716 commercial three-breed cross 

terminal animals. The phenotyped animal’s dams were crossbred Landrace and Large White, and 
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sires were purebred Duroc. The traits included BW, HCW, and two binary traits, RT and LIV. 

All 503,716 animals used in the dataset had a BW record. There were 237,041 animals with a 

HCW measurement. Each farm brought their animals to a different harvest site, in which the 

instrumentation used to measure HCW may differ between sites. However, this potential 

difference is accounted for by including farms in the contemporary group.  

RT and LIV traits consisted of reasons for the animals’ inability to obtain a HCW record 

and were included in the model to analyze their effects on HCW evaluation. The RT categories 

were retained tag and non-retained tag and coded as 1 and 2, respectively. If an animal was 

missing its ear tag, the HCW trait was unobtainable, and death information was not recorded; 

thus, it is unknown if the animal was harvested.  RT is treated as a success or failure based on if 

the animal retained its tag. Once an animal loses its tag, phenotypes can no longer be recorded 

for the remainder of its life. There were no data available indicating at which life stage an animal 

lost its tag. 

 LIV evaluates if the animal lived to be a full-value pig and was harvested or if the animal 

failed to live until harvest. A missing ear tag is considered a missing record for LIV since it is 

unknown if the animal made it to harvest or was removed from the herd before harvest, and the 

animal could not obtain a HCW record. A total of 11,013 animals survived to harvest, retained 

their ear tag, but did not have a HCW measurement. This could be due to scale malfunction, 

errors in pig identification after initial processing, etc. Table 1 includes the number and 

proportion of animals that have each trait and level. 

 The dataset included 471,360 animals after editing. Summary statistics for all continuous 

traits and effects after editing are in Table 2. Records were discarded for all animals born in 2014 

due to the lack of LIV phenotypes. Animals in contemporary groups containing less than ten 
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animals were also excluded from the dataset. Contemporary groups were composed of farm, 

week, and year of birth. Group or pen information was not recorded and cannot be included in 

the contemporary groups. All animals were identified by a unique identification number on a 

plastic ear tag administered at birth. 

MODEL AND ANALYSES  

 Pedigree-based analyses were performed using a four-trait threshold-linear model (BW-

HCW-RT-LIV) and a two-trait linear model (BW-HCW) defined as M1 and M2, respectively. 

M1 was considered to be the full model and compared with the reduced M2. The equation for 

both models can be expressed as:   

𝐲 = 𝐗𝐛 + 𝐙𝐮 + 	𝐖𝐜 + 𝐞	, (1) 

where y is the vector of phenotypes; b is the fixed vector of systematic effects; 𝐮 is the vector of 

random additive genetic effects; 𝐜 is the vector of random litter effects; 𝐞 is the vector for 

random residual effects; X, Z, and W are incidence matrices relating elements of y to b, 𝐮, and 𝐜, 

respectively. The systematic effects included in vector b were contemporary group (farm, year, 

and week of birth), sex, age at harvest (only for HCW), and dam parity.  

 The (co)variance component analyses were run as a single Gibbs chain of 50,000 rounds, 

with 1 in every 10 samples stored. The prior distributions were assumed to be uniform for fixed 

effects. The vectors u, 𝐜, and e were assumed to be distributed as MVN with mean zero and the 

following covariance structure: 

𝑉𝑎𝑟 I
𝐮
𝐜
𝐞
J = B

𝐀⨂𝐆𝟎 0 0
𝐈⨂𝐋𝟎 0

𝑠𝑦𝑚𝑚 𝐈⨂𝐑𝟎
D. 

 

(2) 
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Estimates of (co)variance components and EBV were obtained using THRGIBBS1F90 for both 

models (Tsuruta and Misztal, 2006). After discarding the first 15,000 sampled as burn-in, 3,500 

samples were kept to calculate the means and standard deviations of the posterior distributions of 

variance components. Posterior means and standard deviations were used as estimations of 

(co)variances and their errors for the remainder of the analyses. Breeding values were obtained 

based on a Gibbs chain of 50,000 rounds with a burn-in of 15,000. 

 Validation metrics were estimated with the linear regression (LR) method to compare 

both models (Legarra and Reverter, 2018). The validation dataset consisted of 73,617 animals 

born in 2019. EBV were calculated for the animals in the validation set with all data available 

(𝒖089:;<) and with phenotypes removed for the validation animals (𝒖0=>?@A>;).	The validation 

measurements obtained were accuracy, dispersion, bias, and Pearson correlations. These 

measures were obtained to compare the estimability of HCW for both models. Accuracy was 

calculated for the focal animals using: ρ,$%&(()%*+,-./01.*) =	.
$%&(𝒖4!"#$%,𝒖4&'()*'$)

("!EK)74+,
  (Legarra and 

Reverter, 2018), where F2 is the average inbreeding coefficient for animals born in 2019, and 𝜎,B# 

is the estimated additive genetic variance of the whole dataset. INBUPGF90 was used to 

calculate inbreeding coefficients for each animal by a recursive method based on pedigree 

(Aguilar and Misztal, 2008). Dispersion (𝑏")	was measured as the regression coefficient of the 

regression of 𝒖089:;< on 𝒖0=>?@A>;: 𝑏" =
F:I(𝒖4!"#$%,𝒖4&'()*'$)

I>?(𝒖4&'()*'$)
. The bias is defined as the difference in 

the average EBV from partial and whole datasets. Lastly, Pearson correlations were calculated 

between 𝒖089:;< and 𝒖0=>?@A>;. 
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RESULTS AND DISCUSSION 

VARIANCE COMPONENTS 

 Variances for the direct additive genetic, litter and residual effects for both models are 

shown in Table 3. The estimated BW variances were the same for both models (M1 and M2) and 

were 0.09, 0.24, and 0.48 for the direct additive genetic, litter, and residual effects, respectively. 

The estimated HCW variances for M1 (M2) were 26.4 ± 1.32 (25.9 ± 1.24), 45.1 ± 0.85 (43.6 ± 

0.83), and 285.6 ± 2.25 (273.8 ± 1.13) for additive genetic, litter, and residual effects, 

respectively. For the binary traits, the residual variances were set to 1.00. There was no 

difference in variance estimates for BW and HCW between M1 and M2 in agreement with the 

lowly heritable aspects of RT and LIV. The variance estimates for RT (LIV) were 0.02 (0.05) 

and 0.10 (0.18) for the additive genetic and litter effects, respectively.  

Table 4 shows the heritability and genetic correlations for both models and between all 

traits. Genetic correlations between traits were either weak or moderate. The genetic correlation 

between BW and RT was 0.34 ± 0.03, and between BW and LIV was 0.56 ± 0.03. These 

positive, moderate genetic correlations are logical with the code used for RT and LIV (Table 1). 

Previous studies have shown that piglets with a heavier BW have greater survival chances 

(Arango et al., 2006). As BW increases, the probability of an animal to live to harvest increases. 

Similarly, piglets with a lighter BW have a higher probability of early death, culling, or not 

retaining their ear tag. HCW had similar genetic correlations between the two binary traits as 

BW but to a lesser degree, which can be explained by the impact of the inability of 53% of this 

population to obtain HCW records. The heritability of HCW was less than BW, which explains 

the more significant impact of HCW between RT and LIV.  
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It should be noted that no information was given on the number of animals in each pen or 

if animals were removed from the pen at different times. If the larger animals were removed 

from the pen first, and the smaller animals had more time and pen space available to grow, this 

could impact the predictions for HCW.  The genetic correlations between BW and HCW also 

showed no significant difference between models and were 0.31 ± 0.03 and 0.32 ± 0.03 for M1 

and M2.  

The heritabilities for BW (0.11) and HCW (0.07) showed no difference between models. 

Heritability estimates for RT and LIV were 0.02 and 0.04. Currently, there is no published 

research in estimating the heritability of RT for any species. As the genetic correlations are 

moderate between RT and LIV and the weight traits, as well as h2 for weight traits, the indirect 

selection for weight may take care of RT and LIV. Accounting for RT and LIV gives no 

additional benefits for variance component estimations of HCW and BW evaluations. 

VALIDATION 

 The validation measures give a further justification of the insignificant differences 

between the models (Table 5). Bermann et al. (2021) showed that the LR method is suitable for 

binary traits and yields consistent accuracy measures (Legarra and Reverter, 2018). The 

accuracy, dispersion, and correlations for HCW were higher than BW (Table 5). The EBV for 

HCW and BW were more biased in M1 than M2. Bias was less than 0.01 for BW and -0.01 for 

HCW in M1. In M2, bias was 0.01 for BW and 0.06 for HCW. Biases were less than 0.01 for RT 

and LIV. The dispersion for HCW was less than for LIV and BW. The greatest dispersion was 

for RT (b1 = 0.65). The binary traits had lower accuracy and correlations than both linear traits, 

indicating the difficulty modeling binary traits of low heritability.  
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 We hypothesized that by including the reasons for missing records, RT, and LIV 

information, HCW evaluations would have better predictions. However, no performance 

distinctions were observed when this information was accounted for in the model. Bias was 

marginally less in M1 compared to M2 for both BW and HCW. The dispersion was 0.02 greater 

for HCW and 0.01 less for BW when missing record information was included in the analyses. It 

is logical that including the missing trait information does not benefit models for BW evaluations 

since RT and LIV are traits measured after BW is recorded and can cause extra noise in the 

model. Despite subtle differences between the models, the inconsistencies are negligible, and the 

prediction performance is the same for both models. As in Arango et al. (2005b), censoring 

models could not be implemented with this dataset since there were no records of in which life 

stage each animal lost its ear tag. An alternative would be to link animals with missing tags back 

to the data by using parentage tests based on SNP (Maiorano et al., 2019); however, this would 

require much cheaper genotyping platforms because the crossbreds are terminal animals that do 

not become breeders. 

 

CONCLUSIONS 

 HCW and BW accuracies were unchanged when the causes of missing records were 

included in the model. Positive genetic correlations were observed between BW and HCW and 

the binary traits indicating relationships exist between these traits. Low genetic correlations 

between HCW can be attributed to this trait’s high percentage of missing records. Results imply 

a higher survival probability with heavier BW, shown in the moderate and positive genetic 

correlations between BW and RT and LIV. The low heritabilities of RT and LIV potentially 

explain the small impact of including animal removal reasons on HCW evaluations. An 
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alternative option would be to implement a social interaction model; however, group information 

and a more reliable identification method are needed. A low-density, inexpensive parentage SNP 

panel could possibly help with the latter. This study shows no major differences in results when 

accounting for causes of missing records, and RT and LIV traits are not necessary to include in 

HCW evaluations. 
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TABLES 

 

Table 3.1: Number of animals with records for each trait and level. 

 

 

 

 

 

 

 

 

 

1Birth weight 

2Hot carcass weight 

3Retained tag 

4Livability 

 

 

 

Trait Code Level N % 

BW1   471360 100.0 

HCW2   221311 47.0 

RT3 

1 Missing Tag 134523 28.5 

2 Retained Tag 336837 71.5 

LIV4 

0 Missing Tag 134523 28.5 

1 Died/Culled 104513 22.2 

2 Harvested 232324 49.3 
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Table 3.2: Summary statistics for continuous traits and effects. 

Trait Min Max Mean SD 

BW, kg 0.24 2.70 1.42 0.41 

HCW, kg 51.3 153.8 100.2 9.9 

Age at Harvest, d 150.0 210.0 182.4 12.5 

 

 

 

Table 3.3: Variances for direct additive genetic, litter, and residual effects for both models and 

all traits. Standard deviations are shown for HCW. All standard deviations for BW, RT, and LIV 

were less than 0.01. 

 

 

 

 

 𝜎B# 𝜎F# 𝜎<# 

 M1 M2 M1 M2 M1 M2 

BW 0.09 0.09 0.24 0.24 0.48 0.48 

HCW 26.4 ± 1.32 25.9 ± 1.24 45.1 ± 0.85 43.6 ± 0.83 285.6 ± 2.25 273.8 ± 1.13 

RT 0.02  0.10  1.00  

LIV 0.05  0.18  1.00  
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Table 3.4: Estimates of heritability (diagonal) and genetic correlations (off-diagonal) for both 

models. 

 BW HCW RT LIV 

Model 1 

BW 0.11 ± 0.00 0.31 ± 0.03 0.34 ± 0.03 0.56 ± 0.03 

HCW  0.07 ± 0.00 0.26 ± 0.04 0.09 ± 0.05 

RT   0.02 ± 0.00 0.00 ± 0.06 

LIV    0.04 ± 0.00 

Model 2 

BW 0.11 ± 0.00 0.32 ± 0.03   

HCW  0.07 ± 0.00   
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Table 3.5: Validation statistics for both models. 

Trait Model 𝑎𝑐𝑐LM1 𝑏"2	 Bias3 𝑐𝑜𝑟(𝑢,89:;< , 𝑢,=>?@A>;)4	

BW 
M1 0.33 0.74 0.00 0.59 

M2 0.33 0.75 0.01 0.59 

HCW 
M1 0.37 0.93 -0.01 0.74 

M2 0.37 0.91 0.06 0.74 

RT M1 0.19 0.65 0.00 0.56 

LIV M1 0.23 0.78 0.00 0.56 

1Accuracy as defined in the LR method 

2Dispersion: the coefficient of the regression of 𝒖0=>?@A>; on 𝒖089:;< 

3The difference in the average of 𝒖089:;< 	and 𝒖0=>?@A>; in terms of genetic standard deviation  

4Pearson correlation between 𝒖089:;< 	and 𝒖0=>?@A>; 
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CHAPTER 4 

 

CONCLUSIONS 

 

The magnitude and persistence of accuracy are high for moderately heritable traits, 

populations with enough data available to estimate the effects of the independent chromosome 

segments, and less selection pressure. Genotyping more animals can improve accuracy by adding 

more information to the evaluation and generating accurate animal relationships and 

identification. As genotyping becomes more inexpensive, commercial producers will be able to 

reap more benefits from this technology.  

 The proportion of animals that do not survive to harvest is a concerning animal welfare 

issue and a major cost to producers. With more genotyping and improvement in accuracy, 

commercial pig breeding can be more efficient and sustainable. It will be possible to improve 

complex and costly traits easily with more accurate models. As genotype data becomes more 

available, commercial pig breeders will have the ability to select for more specific traits, 

continue to meet the consumer’s demand, and create happier and healthier animals. 

 


