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ABSTRACT 

 Current irrigation management zones (IMZs) for variable rate irrigation (VRI) systems 

are static. They are delineated in the beginning of the season and used thereafter. However, 

recent research has shown that IMZs boundaries are transient and change with time. Plant-based 

measurements such as leaf water potential (LWP) are being widely used on irrigation scheduling 

because of its accurate indication of when irrigation is needed. However, LWP is time 

consuming and scale limited. In this context, authors have explored the use of remote sensing to 

detect or estimate crop water status to overcome this limitation. Three studies were conducted in 

experimental and commercial cotton field in 2018, 2019 and 2020 to evaluate the use of remote 

sensing to develop dynamic irrigation management zones for variable rate irrigation in cotton. 

The first study was conducted in two experimental cotton fields located in Camilla, GA in the 

2018 and 2020 growing seasons. In this study, ground physiological measurements, and remotely 

sensed data from unmanned aerial vehicle (UAV) were collected weekly in 2018 and biweekly in 

2020. The second study was conducted in a commercial cotton field in South Georgia in 2019 

and 2020. UAV and satellite data were collected weekly in both seasons. Soil water tension and a 

variety of physiological parameters were also collected in the same day as the flights. Predicted 



plant height map was used to change IMZs boundaries during the cotton vegetative stage. The 

last study was conducted in 2019. Satellite images were downloaded from three different 

locations in Southern USA. Available coarse thermal images from MODIS were sharpened at 30, 

60, 120, and 240 m resolutions using NDVI developed from Sentinel-2 and VENµS. Results 

from the three studies indicated great potential in the use of remote sensing to delineate dynamic 

management zones. Based on results predicted LWP maps can be created based on UAV-based 

canopy temperature. Sharpening of coarse thermal satellite images also showed relevant results 

for field scale. Indirect indicators of water status such as plant height was shown to be a great 

alternative for management zones delineation during the initial stages of growth and 

development. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1.Introduction 

The overall goal of this dissertation was to evaluate the use of remote sensing tools to 

schedule irrigation in cotton. Both UAV and satellite platforms were used to obtain remotely 

sensed images in the visible, near infrared, and thermal infrared wave bands. These data were 

compared to physiological measurements of cotton that were made for three years. The work was 

conducted at the plot scale at the University of Georgia’s Stripling Irrigation Research Park, in a 

38 ha grower’s field in southwestern Georgia, and the regional scale that included Georgia and 

Mississippi.  

The dissertation research is described in three chapters (Chapters 2, 3, and 4) which 

follow this introductory chapter. Chapter 2 describes the research done at the plot scale, Chapter 

3 describes the research done at the field scale, and Chapter 4 describes the research done at the 

field and regional scale.  A short description of each of chapter follows below. Chapter 1 (this 

chapter) includes a comprehensive literature review of published research on canopy 

temperature, crop water stress, leaf water potential, cotton water requirements, the effects of 

water stress in the cotton plant, irrigation management approaches, management zones 

delineation, and remote sensing. 
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Chapter 2: Using UAV-based thermal and multispectral imagery to detect crop water status 

variability in cotton. 

 The goal of this study was to explore the potential of using UAV-based thermal and 

multispectral images to estimate crop water stress variability in cotton. Common indicators of 

crop water status such as predawn leaf water potential (LWPPD) are labor and time demanding 

and are limited to small-scale areas (Elsayed et al. 2011). To overcome this limitation, canopy 

temperature data were used to calculate the crop water stress index (CWSI) and a relationship 

between CWSI and LWPPD was developed. This study was conducted at the University of 

Georgia’s Stripling Irrigation Research Park near Camilla, GA during the 2018 and 2020 

growing seasons. A strong correlation between CWSI and LWPPD was found indicating that 

using UAV-based canopy temperature has the potential to predict LWPPD. The ability to predict 

LWPPD allows the frequent monitoring of crop stress patterns in the field throughout the season 

and can help improve irrigation efficiency. In addition, individual bands in the visible and near 

infrared regions of the electromagnetic spectrum were correlated with LWPPD and stomatal 

conductance as an alternative to canopy temperature to estimate crop water status indicators.  

 

Chapter 3: Correlation of UAV and satellite-derived vegetation indices with cotton 

physiological parameters and their use as a tool for scheduling variable rate irrigation in cotton. 

 The goal of this study was to evaluate whether remote sensing can be used to estimate 

LWP and use those estimates to delineate irrigation management zones (IMZs) in a large grower-

managed cotton field. Vegetation indices (VIs) developed from UAV and satellite images were 

correlated with cotton physiological parameters that are indicative of plant water stress to 

explore the potential of creating predicted LWP and height maps. In addition, predicted plant 
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height maps were used to delineate new in-season IMZ maps. The yield and irrigation water use 

efficiency (IWUE) of variable rate irrigation (VRI) and conventional irrigation were compared. 

To achieve this goal, a two-year study was conducted in a large cotton field in South Georgia. 

Spatial and temporal variability in soil water tension (SWT), plant height, LWP, photosynthetic 

assimilation rate and stomatal conductance between and within IMZs were measured. All 

parameters showed variability suggesting that IMZs boundaries were transient. VIs predicted 

plant height well. Correlations between vegetation indices and LWP need further evaluation. 

 

Chapter 4: Field scale assessment of the TsHARP technique for thermal sharpening of MODIS 

satellite images using VENµS and Sentinel-2 derived NDVI. 

 This study aimed to assess the use of the TsHARP technique to sharpen MODIS thermal 

images using VENµS and Sentinel-2 multispectral images. The technique was applied at the 

field scale in the southeastern USA. Canopy temperature is an important tool for in-season 

monitoring of crop water status. Although some satellite platforms offer thermal images with 

high temporal resolution, current thermal satellite images do not have the fine resolution needed 

to identify stress patterns at a field scale. Thermal sharpening techniques have been extensively 

explored at the scene scale, but little research has been published on their potential use at the 

field scale to aid in irrigation management decisions. Grower-managed cotton fields were 

selected in three separate locations in the states of Georgia and Mississippi to test the accuracy of 

field predicted surface temperatures during the 2019 growing season. Coarse resolution thermal 

images were sharpened to spatial resolutions of 30, 60, 120, and 240 m. We observed that images 

sharpened at the finer resolution of 60 and 120 m presented the most consistent results across all 

fields. 
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1.2. Literature Review 

1.2.1. Canopy Temperature 

 The canopy temperature is an important factor affecting cotton physiological processes. 

In many studies, 28°C (in a range of 25-31°C) was pointed as the optimum canopy temperature 

for cotton growth and development and used as the threshold for automated irrigation methods 

(Wanjura et al. 1992; O’Shaughnessy et al. 2010; Conaty et al. 2015). Temperatures above 28°C 

and below 25°C cause yield reductions and decreased fiber quality.  The peak in micronaire 

(indicator of fiber fineness and maturity) occurs around 28.8°C. Ideal leaf transpiration ratio and 

leaf water use efficiency can be observed at 30.8°C, while agronomic water use efficiency peaks 

at 29.5°C and 30.4°C (Conaty et al. 2015). Wanjura et al. (1992) stated that provided the crop is 

receiving the appropriate amount of water supply, the highest lint yields were reached at 28°C. 

When canopy temperature rises above the optimum fruit development is affected. An increase of 

2°C will cause fruit shed and the development of smaller bolls. This effect tends to be more 

severe as the temperature gets higher (Singh et al. 2007). These results were corroborated by 

Conaty et al. (2012), which showed that a decrease in yield occurred when canopy temperature 

exceeded 28°C (Figure 1.1). 

 Canopy and air temperatures have been extensively studied in cotton production. 

Although the terms are correlated, canopy temperature and ambient temperature have slightly 

different values and therefore cannot be used interchangeably (Conaty et al. 2012). The plant 

temperature in the middle of the day is usually lower than the temperature of the air around the 

canopy. This difference is attributed to different factors such as plant water status, air moisture 

content, wind, crop size and the diurnal cycle of canopy and air temperatures. The solar radiation 

energy flux increases and decreases throughout the day, which in turn causes the temperature to 
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rise and fall. This pattern affects both irrigated and water-stressed cotton plants, causing the gap 

in temperature between air and canopy to be higher or smaller depending on the dryness or 

humidity of the climate (Burke and Wanjura, 2010).  

 A study conducted by Ehrler (1973) showed that in an irrigated cotton field the difference 

between leaf and air temperatures decreased after irrigation and later increased as the soil water 

content decreased, causing water to become limited for plant uptake. In addition, a linear 

relationship was found between the leaf-air difference and vapor pressure deficit (VPD). VPD is 

defined as the difference between the existing water vapor in the air and the amount of vapor that 

the air can hold without condensation (Anderson 1936). 

1.2.2. Crop water stress  

 The distinction between air and canopy temperatures is also important for the concept of 

crop water stress monitoring. Many authors have identified leaf temperature as a good indicator 

of the water status in the plant (Idso 1982; Gonzalez-Dugo et al. 2006; Conaty et al. 2015). The 

Figure 1.1. Relationship between canopy temperature (Tc) 

and cotton yield (Conaty et al. 2012). 
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premise that canopy temperature can indicate water stressed plants is based on the assumption 

that in well-watered plants, transpiration is at its potential rate, and the water that is being 

transpired evaporates, cooling the crop. As water becomes limiting transpiration is decreased, 

causing the temperature to increase (Jackson et al. 1988). Hence, the measurement of plant 

temperature can be related to crop water stress, resulting in a more reliable measurement than 

environment variables such as air temperature (Gonzalez-Dugo et al. 2006). 

 In the 1980s, two effective methods of calculating crop water stress from canopy 

temperature were developed (Idso et al. 1981; Jackson et al. 1981). In the first method, Jackson 

et al. (1981) used canopy temperature collected by infrared thermometer and data derived from 

energy balance equations (wet and dry bulb, air temperature and estimate of net radiation) to 

calculate crop water stress index (CWSI), which is an index widely used to indicate crop water 

stress. Idso et al. (1981) on the other hand, performed experiments involving VPD and the 

measurement of leaf and air temperatures difference, which enabled the development of CWSI 

that was independent of environmental variability (Reginato 1983). The temperature base CWSI 

developed can be defined as (Idso et al. 1981; Jackson et al. 1981): 

CWSI = 
T1 - Twet

Tdry - Twet
 

(1) 

where T1 is leaf temperature, Twet is the lower canopy temperature limit (well-watered leaves), 

and Tdry is the higher canopy temperature limit (non-transpiring leaves).  

 Both methods worked well under sun and shade conditions and were effective in 

evidencing stress. Despite their effectiveness, a large-scale field application was not possible due 

to time-consuming measurements (Reginato 1983). To overcome this scalability problem current 

studies have adopted new procedures to calculate CWSI (Alchanatis et al. 2010; Cohen et al. 
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2005; Cohen et al. 2017; O’Shaughnessy et al. 2011), which will be discussed in detail in the 

irrigation scheduling by remotely sensed canopy temperature section.  

1.2.3. Leaf Water Potential (LWP) 

 The water movement through the plant is driven by the difference in water potential 

between the shoot and the roots. Inside the plant, the water encounters frictional resistance that 

must be overcome. The higher the resistance, the larger is the difference in potential required to 

move the water.  In optimal moisture conditions in which the water absorbed by the plants is 

equal to the water loss in the leaves, a difference between LWP (ψ1) and root water potential is 

still existent. However, in conditions wherein transpiration rate is higher this difference becomes 

larger (Jarvis 1976). Due to this response to changes in soil and atmospheric environments, LWP 

is a great indicator of plant water status. Based on the following equation, 

ψ1 =  ψs − Rs1Tf 

(2) 

(where ψs is the soil water potential, Rs1 is the combination of soil and leaf water flow resistance, 

and Tf is the transpirational flux) it can be assumed that LWP varies accordingly with the soil 

moisture, the resistance to the water flow from soil to leaf, and the leaf transpiration. Therefore, 

LWP can drastically decrease in dry soil conditions and unfavorable climatic, thus being a good 

indicator of stress (Grimes et al. 1987). 

 The water potential of cotton leaves is not constant, and although it presents stability in 

specific periods, it varies along the day. The water potential in the leaves is in its maximum 

during the predawn hours (04:00 to 06:00), after which it starts to rapidly decline until reaches 

afternoon hours (12:00 to 15:00) wherein the LWP reaches its minimum. Cotton growth is 

slower during this period of minimum water potential (Cutler et al. 1977).  
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 The variation in cotton LWP does not only affect growth rate but also the photosynthetic 

rate and leaf conductance (Turner et al. 1986), variation of sugar content (Cutler et al. 1977), and 

main stem elongation (Grimes and Yamada 1982). It has been observed that the photosynthetic 

rate measured in more than 12 leaves in the plant’s main stem presented a decrease of 273 µmol 

14CO2 m
-2s-1 with a decline of 0.2 MPa in the predawn leaf water potential during midday 

(Turner et al. 1986). Daily photosynthesis presented a decrease when LWP was approximately -

3.5 MPa. In addition, low predawn water potential during flowering and first boll affected 

number of bolls, lint yield, and number of fruiting sites. 

1.2.4. Cotton Water Requirements 

 The water requirement of cotton is not uniform throughout the growing season, and it 

changes according to different growth periods. In the initial stages, the water daily usage is lower 

compared to later stages, peaking in the middle of the season when the canopy is full and there is 

maximum boll load. After the first opened boll, the daily water usage starts to decline. In early 

stages of development, when crop water requirements may be less than 25.4 mm/week, the 

amount of water provided by rainfall is usually satisfactory in humid areas. In later stages of 

development, irrigation might be needed to help supply the water demand, which can exceed 

50.8 mm/week in the middle of the season during plant growth and boll development (Fisher 

2012). 

1.2.5. Effects of water stress in the cotton plant 

1.2.5.1. Brief Overview 

 Water stress is a condition in which a plant´s normal physiological processes are 

inhibited by a decrease in turgor pressure and water potential. The water deficit in the plant 

varies according to both air evaporative demand and water availability in the soil and can cause 
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changes in physiological and biochemical processes. The extent in which these processes are 

affected depend on duration and severity of drought, growth stage of the plant, and its genotype 

(Hsiao 1973; Loka et al. 2011). Usual effects on the plant are an increase in Reactive Oxygen 

Species (ROS), decrease in CO2 uptake, obstruction of ATP synthesis, increase in 

photorespiration and decline in photosynthesis (Ullah et al. 2017). Less severe droughts affect 

the expansive growth of cotton and reduce CO2 assimilation in the leaf (Turner et al. 1986; 

Mateos et al. 1991). Severe drought causes yield losses by drastically affecting boll retention 

(Grimes et al. 1970; Mateos et al. 1991), and significantly affects plant stature. Plants 

experiencing severe water shortage are shorter than well-watered plants due to a reduction in the 

number of main stem nodes (Pettigrew, 2004a). In addition to a lower number of main stem 

nodes, shorter plants also produce less Leaf Area Index (LAI), and therefore have a reduced 

vegetative growth. 

1.2.5.2. Early crop development and vegetative growth 

 During early crop development, water availability significantly affects shoot and root 

growth dynamics. In response to a potential drought episode, the cotton plant usually prioritizes 

its root system as an adaptive response to avoid water deficit, causing an increase in the 

root/shoot ratio. The depth and growth of roots can greatly influence the plant´s capacity to 

withstand drought. Higher LWP and water uptake can be maintained by a deeper and denser root 

system, thus raising the plant´s tolerance to drought (Malik et al. 1979).  However, this root 

elongation occurs at the expense of vegetative growth. The accumulation of photosynthate in the 

roots causes a reduction in shoot dry weight and a decrease in harvest index (Pace et al. 1999). 

Changes in shoot and root growth in early developed cotton plants were studied by Pace et al. 

(1999). Shoot growth was more affected and presented decreased leaf area, nodes, height, leaves 
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and stems’ dry weight. In addition, stressed plants showed increased taproot length. However, if 

the drought stress persists for an extensive period, the root activity will be negatively impacted as 

well (Ullah et al. 2017). 

 The vegetative growth in early stages of development is a determining factor in the 

plant´s response through the remainder of the growing season (Grimes et al. 1978).  In juvenile 

stages, the plant presents an exponential increase in the vegetative leaf growth, reaching a point 

at which leaf area may exceed the capacity of the roots to absorb and transport water. The high 

demand for water causes the plant to be very sensitive to water stress while producing new 

leaves (Mauney 1986). An eventual episode of moisture stress during this stage can cause a 

decrease in the number of flowers produced later in the reproductive stage. However, it has been 

suggested that exposure to water stress when the plants are 6 to 7 weeks old can be beneficial to 

cotton seed production (Kaur and Singh 1992). 

1.2.5.3. Reproductive growth 

 Water stress affects nearly all stages of cotton reproductive growth, leading to a reduction 

in the number of blooms per unit area and thus affecting flowering (Pettigrew 2004b). Although 

it has been suggested that cotton is most susceptible to water stress between square initiation and 

first flower (Krieg 1997), in a more recent work conducted by Snowden et al. (2014), early 

flowering was indicated as the most sensitive stage. Physiological changes in water stressed 

plants during flowering and boll-forming period were the focus of Wang et al. (2016a). During 

these critical periods, the plants showed increased leaf senescence due to damaged cellular 

components and metabolism caused by high levels of reactive oxygen species (ROS). The 

activity of enzymes responsible for scavenging ROS such as Superoxide dismutase (SOD) was 

drastically decreased by water stress, which resulted in failure to control ROS levels. Other 
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results included limited growth and inhibition of dry matter accumulation due to a limitation in 

the source capacity of leaves. In an additional study, Guinn and Mauney (1984) stated that water 

stress decreases flowering rate. Since the number of bolls produced on each plant is proportional 

to cotton yield, and it is directly affected by boll retention and flowering rate, the yield will also 

be decreased. However, if the plant begins to receive a sufficient amount of water again, this 

negative effect can be attenuated by an increase in the flowering rate after a couple weeks. 

1.2.5.4. Photosynthesis and photosynthetic apparatus 

 Photosynthesis is an important physiological process in the cotton plant, and it is highly 

affected by water stress. Despite the complexity of how this stress affects photosynthesis, it has 

been documented that photosynthetic rate can be reduced by inhibition of metabolic processes 

and by stomatal and non-stomatal limitations (Loka et al. 2011). Stomatal factors such as stomata 

closure and stomata conductance are two reaction mechanisms used by the plant that end up 

affecting photosynthesis in some way. Stomata closure is one of the first attempts of the plant to 

reduce water loss. However, while reducing water loss it unavoidably causes a decrease in 

intercellular CO2 concentration (Ci). Ci is also reduced by the decreased stomata conductance 

that occurs during stress. With reduced intercellular CO2 concentration, photosynthesis is limited. 

This limitation occurs mostly because the enzyme (Rubisco) responsible for the CO2 assimilation 

has low affinity for CO2 (Carmo-Silva et al. 2012).  

 During moderate drought, the decrease in Ci indicates that stomatal limitations to 

photosynthesis are dominant. As stomatal conductance (gs) drops (due to water limitation) below 

a threshold of 100 mmol H2O m-2 s-1 Rubisco shows a decrease in its activity. However, stomata 

closure is not the only mechanism occurring in the leaf. At a more severe drought, when g is at 

50 mmol H2O m-2 s-1
 (Ci inflexion point) the Ci shows an increase. This increase in intercellular 
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CO2 indicates that non-stomatal limitations to photosynthesis predominate at a more advanced 

stress stage (Flexas and Medrano, 2002). 

 There is ongoing discussion among the experts on whether photosynthesis is limited by 

drought primarily because of stomatal limitation (Carmo-Silva et al. 2012) or non-stomatal 

limitation (Ennahli and Earl 2005). One example of non-stomatal limitation is the decrease in 

ribulose bisphosphate (RuBP) that occurs due to inhibition of metabolic processes. Evidence 

suggests that this impairment in the plant´s metabolism begins at early stages of drought with 

damage to the adenosine triphosphate (ATP) synthesis. However, only when drought is severe it 

becomes the dominant limitation by inhibiting photosynthetic CO2 assimilation (Flexas and 

Medrano 2002). Ackerson and Hebert (1981) studied cotton plants with varied water deficit 

levels and found that in plants adapted to the stress photosynthesis was significantly limited by 

non-stomatal factors. Even though adapted and non-adapted leaves presented similar leaf 

conductance the photosynthetic rate of adapted leaves was lower, suggesting that the decreased 

rate was due to other factors such as physical changes in the chloroplast caused by accumulation 

of starch.  Corroborating with Flexas and Medrano results, Lokhande and Reddy (2014) 

observed that stomatal limitation was the main cause of decline in photosynthetic rate, but as the 

stress progressed and became more severe non-stomatal limitations played a role. 

1.2.5.5. Cotton lint yield 

 The effects of water stress in the cotton yield has been extensively studied by numerous 

authors (Gerik et al. 1996; McMichael and Hesketh 1982; Pettigrew 2004b; Wang et al. 2016b). 

However, the degree and intensity in which the yield is affected can vary considerably. Onder et 

al. (2009) documented the impact of different irrigation treatments ranging from severe stress to 

full irrigation (in which the plants did not experience water stress at any given point). Under 
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severe, mild, and slight stress treatments, decreased boll weight, lint percentage, seed yield, 

number of sympodial branches, and leaf area index were observed. Yield reduction was also 

documented by McMichael and Hesketh (1982). Severe drought had great effect in yield just 

after planting and 44 days after planting. Plants exposed to severe stress after 73 days did not 

show significant reduction in yield. In non-irrigated treatment, yield reduction occurred due to 

decrease in number of bolls, seed, and seed and lint index. Furthermore, no significant reduction 

in boll size was observed in plants that did not experience drought until 44 days after planting. A 

more recent study showed that overall lint yield was reduced and the distribution of yield within 

different fruiting branches was altered (Wang et al. 2016b). Higher fruiting branches of stressed 

plants showed significant decrease in the number and size of bolls, seed number per boll, and 

boll biomass distribution. 

1.2.6. Cotton water use efficiency (WUE) 

 Cotton water use efficiency (WUE) can be defined as the lint yield produced per unit of 

water received by the crop (Tennakoon and Milroy, 2003). WUE can vary according to different 

irrigation methods, varied water application rates, and other management practices. It can be 

calculated using the following equation suggested by Ibragimov et al. (2007): 

WUE = 
Y

ET
 

(3) 

where ET is the crop evapotranspiration, Y is the dry yield under irrigation condition, and WUE 

is expressed in kg m-3. An alternative way of expressing the crop water use efficiency is in 

kg/ha/mm, which is calculated as the total lint yield (kg/ha) produced per millimeter of water that 

was transpired by the crop during the growing season (Tennakoon and Milroy, 2003). 
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 Chastain et al. (2014) observed that as the growing season progressed cotton cultivated 

under drought conditions presented a decrease in water use efficiency. In another study, cotton 

was cultivated under three different irrigation conditions (fully irrigated, deficiently irrigated, and 

dryland) in two different years (Howell et al., 2004). In the first year WUE was higher for fully 

irrigated cotton (0.194 kg m-3), and the lowest efficiency (0.092 kg m-3) resulted from dryland 

cotton. In the following year plants under deficit irrigation presented the highest WUE (0.219 kg 

m-3), yet the lowest value (0.103 kg m-3) was again from dryland plants. Yazar et al. (2002) 

conducted an experiment with low-energy precision application (LEPA) and trickle-irrigation with 

4 (100, 75, 50, and 25%) and 3 (100, 67, and 33%) different levels of irrigation respectively. The 

highest efficiency (0.741 kg m-3) among all resulted from the treatment with a trickle irrigation 

system (67% of full irrigation) with a 6-day interval between irrigation events. For the LEPA 

system, the highest WUE was observed in plants that received 25% of full irrigation. For both 

systems, WUE decreased as water use increased.  

 New approaches to increase water use efficiency involve the use of deficit irrigation 

scheduling. Baker et al (2015) compared cotton WUE under CWSI and stress time (ST) irrigation 

triggering methods. Both representing stress indices based on canopy temperature. Overall, cotton 

lint yield was higher with increased water use by the plant, but water use efficiency peaked at 

lower water use for both CWSI (439mm) and ST (494mm) suggesting that irrigating cotton with 

less water than the amount needed for maximum yield can optimize WUE. 

1.2.7. Irrigation management approaches 

1.2.7.1. University of Georgia (UGA) checkbook method 

 Irrigation scheduling is a management practice used to avoid stress episodes in critical 

growth stages by determining irrigation timing and rate of water application (O’Shaughnessy and 
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Evett, 2010). The time in which the crop will be irrigated is determined by an environmental or 

plant-based factor that serves as a trigger. Conventionally, environmental triggers such as soil 

moisture status, presented in terms of water content or water potential, and soil water balance 

calculated using estimates of evapotranspiration and crop water requirements are more 

commonly used to schedule irrigation (Jones 2004). 

 The University of Georgia (UGA) checkbook is an irrigation method based on historical 

average evapotranspiration data collected over 16 years in the state of Georgia. The 

recommendations from UGA extension are based on the amount of water needed during each 

week of cotton’s life cycle (Table 1.1). This weekly target is met with rainfall and supplemental 

irrigation (Georgia Cotton Production Guide 2018; Vellidis et al. 2016b).  

 The checkbook method has been successfully used to achieve higher yields in Georgia, 

yet other methods have outperformed it in yield and water use efficiency (Chastain et al. 2016b). 

Vellidis et al. (2016b) observed higher yields and WUE using SmartIrrigation Cotton App, and 

in UGA Smart Sensor Array (SSA) plots than in plots irrigated by the checkbook approach in 

Table 1.1. Irrigation schedule suggested for cotton in Georgia (Cotton Production Guide 2018). 

Crop Stage Centimeters/Week Centimeters/Day 

Week beginning at 1st bloom 2.5 0.38 

2nd week after 1st bloom 3.8 0.56 

3rd week after 1st bloom 5.1 0.76 

4th week after 1st bloom 5.1 0.76 

5th week after 1st bloom 3.8 0.56 

6th week after 1st bloom 3.8 0.56 

7th week and beyond 2.5 0.38 
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both conventional and conservation tillage. Similar results were found by Vellidis et al. (2016a) 

whereas the checkbook method had lower yields than Cotton App and UGA SSA in three 

different years regardless of tillage method. Additionally, in two of the three years WUE of the 

checkbook method was lower than for the two other approaches.  

1.2.7.2. Predawn and minimum leaf water potential 

 Plant physiological responses are directly related to changes in water status in plant 

tissues, rather than changes in soil water potential. This places a potential limitation on some 

environmental triggers that depend on soil-water relationship, thus favoring the use of plant-

based approaches (Jones 2004). As previously noted, LWP is a good indicator of plant water 

need and has been often used for irrigation scheduling due to its relationship with many plant 

physiological processes. Minimum and predawn are two variations of LWP and were defined 

earlier. Because they represent two critical moments of the day (time in which LWP is minimum 

and drought stress is maximum, and time of maximum LWP respectively), their use can greatly 

affect irrigation management decisions (Snider et al. 2016).  

 Minimum LWP is highly dependent on the weather, which presents a disadvantage in its 

use when compared to predawn. Variations in vapor pressure deficit, cloud cover, and changes in 

temperature are often followed by changes in minimum LWP (Jones 1900; Snider et al. 2016). 

Furthermore, minimum LWP in plants that show isohydric behavior such as cotton is not a very 

sensitive stress indicator, since these plants tend to maintain a constant water status even with 

changes in transpiration rate (Fernandez 2017). Nevertheless, in regions that do not present 

significant variation on day-to-day temperature and cloud cover minimum LWP was shown to be 

a reliable water stress indicator and thus effective for irrigation scheduling. In California, 

minimum leaf water potential showed a relationship with vegetative and fiber growth for cotton 



 

17 

grown in different soil types. Root extension and optimum yields were achieved when irrigation 

was scheduled at minimum LWP ranging from -1.8MPa to -2MPa (Grimes and Yamada 1982). 

 Differently from midday LWP, predawn measurements have been successfully used to 

control irrigation in different crops and regions. Predawn LWP measured with a Scholander-type 

pressure chamber was used in peach orchards in Portugal to determine irrigation using a deficit 

irrigation approach. A relationship between relative evapotranspiration and predawn LWP was 

developed, showing high relation during water stress conditions. This relationship allowed 

irrigation to be scheduled in different systems by using only predawn LWP measurements (Paço 

et al. 2013). Predawn LWP was also shown as a superior indicator for irrigation scheduling in 

plum trees. If used to modify irrigation rates, higher fruit weight could be observed since 

predawn LWP showed high relation with fruit weight in two different years, thus proving to be a 

great indicator of fruit weight during harvest (Intrigliolo and Castel, 2006). In cotton, a recent 

study conducted by Chastain et al. (2016b) tested effectiveness of predawn LWP to increase 

WUE in drip-irrigated cotton in the southeastern United States. By using a season-long irrigation 

threshold of -0.5MPa lint yield and water productivity were maximized, and irrigation applied 

was lower compared to other common methods such as checkbook. Additionally, a strong 

nonlinear relationship between predawn LWP and CWSI was developed (Figure 1.2), which can 

greatly aid in automated plant-based irrigation systems.  

1.2.7.3. Cotton Smart Irrigation App 

 Irrigation scheduling using smartphone apps are often based on evapotranspiration (ET). 

Numerous factors affect plant evapotranspiration including crop characteristics, management, 

weather parameters, and other environmental aspects. Because weather is a critical factor ET 

calculation is often based on meteorological data collected in real-time together with the FAO 
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Penman-Monteith equation (Migliaccio et al. 2015; Allen et al. 1998). To obtain crop-specific 

ET (ETc), crop coefficient (Kc) and reference ET (ETo) are used (eq. 3). However, Kc (Jensen 

1968) is not constant during all the plant’s life cycle. During the early phenological stages Kc 

values are small reaching 1.0 or more (when the water demand is at its maximum) and increases 

in the later stages when crop reaches maturity and starts to senesce (Vellidis et al. 2016a).  

𝐸𝑇𝑐 = 𝐸𝑇𝑜  × 𝐾𝑐 

(3) 

 The cotton app is an easy-to-use interface that outputs information to help in irrigation 

decisions rather than delivering irrigation recommendations like other irrigation apps (Migliaccio 

et al. 2015). To develop an initial Kc curve specific for cotton produced in southern Georgia and 

northern Florida, information from other studies were utilized. A posterior calibration of the 

curve was performed with plot and field experiments. To estimate the amount of water used by 

the crop a model was used to calculate ETc. Kc used in the model changed according to 

Figure 1.2. Relationship between predawn LWP and CWSI 

(Chastain et al. 2016b). 
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accumulated heat units, which can be expressed in terms of growing degree days (GDD). To 

account for these changes GDD was calculated using Eq. 4. In addition to ETc, other data such as 

meteorological data from weather stations, soil parameters, and crop phenology were used to 

estimate root zone soil water deficits (RZSWD) and percent of total available soil water. The 

users then receive notifications when RZSWD is 40 to 50% higher than total available water in 

the soil. This approach showed great performance when compared to other irrigation scheduling 

methods (Vellidis et al. 2014; Vellidis et al. 2016a). Yields resulting from cotton app irrigation 

recommendations were similar to scheduling tools that use soil moisture sensors and higher 

when compared to checkbook method yields (Vellidis et al. 2015). 

𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒 

(4) 

1.2.7.4. Variable rate irrigation (VRI) 

 Center pivot irrigation plays a major role in irrigation in the state of Georgia. However, 

conventional pivot systems are unable to apply varied water application rates, thus not meeting 

plant needs on different soil types. They are also not capable of avoiding application in non-

cropped areas. Due to aforementioned limitations problems of over and under application of 

water are commonly seen in pivot irrigation system and has become a concern for the public and 

researchers (Perry and Pocknee 2003). Since water is a major determinant of crop yield, 

irrigation uniformity has been a common interest amongst farmers (Yule et al. 2008). 

Furthermore, fields present high soil variability, slope variability, and water holding capacity and 

therefore site-specific irrigation can lead to significant water savings (Vellidis et al. 2013). 

 In 2001, researchers from the University of Georgia Precision Agriculture Team 

developed the VRI system (Vellidis et al. 2016c). The system’s principle lies in varying 
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application rates by controlling the pivot speed and by cycling the sprinklers on and off. The 

number of sprinkler groups is based on the level of resolution wanted by the farmer, varying 

from 3 to 10 groups. A grid with a 2 to 10-degree arc is represented by each group of sprinklers, 

in which the number of degrees also vary according to the desired resolution. The application 

rate respective to each grid is set as a percentage of normal application rate and can range from 

0% to 200% (Vellidis et al. 2013). 

 The VRI system requires a series of steps to perform. The field is first divided into 

management zones that are then used to create application maps defined using desktop computer 

software. The maps are loaded into the VRI controller. A GPS system is used to determine the 

pivot mainline angle and position. The sprinklers’ application rates are then set based on the 

control map (Perry and Pocknee 2003). Different approaches have been used to define control 

maps’ zones. Yule et al. (2008) mapped soil water availability using soil electrical conductivity 

(Ec) to calculate soil moisture status and schedule irrigation accordingly. A second approach 

presented by Liakos et al. (2015) delineated the zones by using aerial images, ground 

measurements of soil Ec, and the United States Department of Agriculture Natural Resources 

Conservation Service (NRCS) web soil survey.  

 The VRI system has definitely been an important improvement in irrigation scheduling 

methods. However, with static prescription maps the system is not able to respond to 

environmental variables that affect crop growth rate and soil moisture conditions. A new 

approach presented by Vellidis et al. (2016c) addressed this limitation by proposing a dynamic 

VRI system, in which the prescription maps would be based on a combined use of real-time soil 

moisture sensing network and an irrigation scheduling decision support tool (Liakos et al. 2015). 

Soil moisture sensors were installed in each management zone expressing results in terms of soil 



 

21 

water tension (SWT). The average SWT from the nodes was then used to calculate volume of 

irrigation. The VRI system results in a peanut field were promising. With a total amount of water 

applied (76 mm) much lower than the conventional irrigation (109 mm), and achieving similar 

yields (5543 Kg.ha-1, 5552 Kg.ha-1, VRI and conventional respectively), the VRI system resulted 

in WUE 43% higher than conventional methods. 

UGA Smart Sensor Array (SSA) 

 The first prototype of the UGA SSA node for irrigation scheduling was developed in 

2008. The node consists of three Watermark® granular resistive-type soil moisture sensors, 

thermocouples, circuit board, and an active radio frequency (RF) transmitter (Vellidis et al. 

2008). The depth of Watermark® sensors in the node varies according to the crop. For cotton, the 

sensors are installed at 20, 40, and 60 cm below soil surface. The radio transmitter used is a low-

power 2.4 GHz radio module that transmits the sensor data in hourly intervals to a base station 

located in the center of each field. The data is stored in a solar-powered netbook computer and is 

transmitted to an FTP server via cellular modem every hour. To avoid any problems in the data 

transmission process due to blocking of signal pathways or malfunctioning of nodes, a wireless 

mesh network is used for communication between the nodes. Data from one node to another is 

passed through an RF transmitter, which also plays the role of a repeater. In the face of a 

problem, the software reconfigures the signal route to maintain data acquisition from the network 

(Vellidis et al. 2016c).  

 As mentioned, the data from the sensors is sent by the base station to an FTP server. This 

server stores all the raw data from the soil moisture sensors. Additionally, a commercial server is 

used for visual representation of the data, wherein the data is manipulated, processed, classified 

and stored. The commercial server also serves as an interface with users through a dedicated 
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website (www.ugassa.org). This web-based interface enables the visualization of soil moisture 

data in two different ways (color-coded gauges and soil water tension curves) (Figure 1.3) that 

were created by using Personal Home Page (PHP) and Javascript programming languages 

(Liakos et al. 2015; Vellidis et al. 2016c). 

Decision support tool (DST) 

 One additional feature offered by the web-based user interface is irrigation 

recommendations for each IMZ. Liang et al. (2016) modified the original Van Genuchten model 

(van Ganuchten, 1980) to convert soil matric potential (or SWT) to volumetric water content 

(VWC) (Eq.5). The relationship between the two variables is characterized by soil water 

retention curves (SWRC). As the soil VWC decreases from water saturation to permanent 

wilting point (PWP), the SWT increases in different rates (Reynolds et al. 2009). At the 

beginning, larger pores dry out quickly (since the water is being weakly held by capillary forces) 

Figure 1.3. Two different ways of representing soil water tension in the web-based 

interface (Vellidis et al. 2016c). 

http://www.ugassa.org/
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and SWT shows a slow increase until it reaches the inflection point. At the inflection point 

smaller pores start to dry. Water in smaller pores is strongly held; therefore, the SWT will start to 

increase more rapidly (Figure 1.4). The inflection point will vary accordingly to soil texture, 

which strongly influences the Van Genuchten model. From the curve, it is also possible to 

estimate VWC at the PWP and at field capacity, which is extremely important for prescribing 

irrigation (Liang et al. 2016). 

Ө(ψ) = Ө𝑟 + [(Ө𝑠 − Ө𝑟)/[1 + (𝛼|ψ│𝑛)]1−1/𝑛 

(5) 

Where, Ө(ψ) is the water retention curve (131-3), |ψ| is suction pressure ([1]) or cm of water, Өs 

is the saturated water content (131-3), Өr is the residual water content (131-3), α is related to the 

inverse of the air entry suction, a>0 ([1-1]) or cm-1, and n is a measure of the pore size 

distribution.  

 

Figure 1.4. Identification of field capacity with the Van Genuchten 

model tangent lines (Liang et al. 2016). 
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 The modified Van Genuchten model has been used to prescribe irrigation needed to bring 

soil profile of IMZs to field capacity or percentage of field capacity (Vellidis et al. 2016c). 

Average SWT data measured hourly between 07:00 and 09:00 of all nodes within an IMZ is used 

in the model to calculate volume of irrigation. SWT of each node is a result of a weighted 

average between values measured in each one of the three Watermark® sensors. Weighted values 

for cotton are shown in Equation 7. Irrigation recommendation was successfully prescribed and 

readily available for farmers on a daily basis (Liakos et al. 2015). 

(0.5)(𝑘𝑃𝑎 𝑎𝑡 20 𝑐𝑚) + (03)(𝑘𝑃𝑎 𝑎𝑡 40 𝑐𝑚) + (0.2)(𝑘𝑃𝑎 𝑎𝑡 60 𝑐𝑚) 

(7) 

Remote sensed canopy temperature 

 Recent advances in thermal imagery enabled the collection of surface temperature for 

large areas (Cohen et al. 2005). This presents a potential solution to the scalability problem in the 

use of canopy temperature based CWSI to assess crop water status (Alchanatis et al. 2010). The 

ease in canopy temperature data collection at large scale made possible the direct and indirect 

employment of CWSI in irrigation scheduling. Shae et al. (1999) directly controlled irrigation 

using CWSI by establishing threshold values, while Rosenberg et al. (2014) explored an indirect 

approach by using the CWSI/LWP relationship. Additional advantages of remotely sensed 

images include its reliability and non-invasive nature (Alchanatis et al. 2010). 

 It has been demonstrated that thermal imaging can be successfully used to calculate LWP 

as an alternative to direct measurements. LWP maps estimated from CWSI were found adequate 

to represent crop water status. High variability in water potential was observed, and better 

distinction of different irrigation amounts was shown when compared to LWP derived from leaf 

temperature (Cohen et al. 2005). Moreover, LWP maps can be used in the delineation of LWP 
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based management zones. Despite all benefits of remotely sensed CWSI/LWP, farmers still rely 

on LWP point measurements to assess water status in large cotton fields. In this method, only a 

few leaves are sampled, and they do not always represent the spatial variability of the whole area 

(Cohen et al. 2005; Cohen et al. 2015). 

 Irrigation scheduling based on thermal images heavily relies on regression models of 

LWP against CWSI generated after extensive research on the CWSI/LWP relationship (Cohen et 

al. 2015; Chastain et al. 2016b; Cohen et al. 2017). Although different methodologies have been 

used in the conversion process of thermal images into LWP maps, the same premise is shared. 

The first step is to extract pixel canopy temperature. Afterwards, the pixel temperature is used in 

the equation suggested by Idso et al. (1981) and CWSI is calculated. LWP values are then 

estimated from CWSI values by pixel (Rosenberg et al. 2014). 

1) Canopy temperature extraction 

 An empirical methodology for temperature extraction that can be used for field crops was 

developed by Meron et al. (2010). This methodology is based in two assumptions. Assumption 1 

states that canopy and soil-related pixels in a thermal image are separated by upper and lower 

thresholds related to air temperature using Eq.8: 

(𝑇𝑎𝑖𝑟 − 10) < 𝑇𝑐𝑟 < (𝑇𝑎𝑖𝑟 + 7) 

(8) 

where Tair is air temperature (°C) and Tcr is the temperature of canopy-related pixels in a thermal 

image. The second assumption is that the canopy temperature is represented by an average 

temperature of the coldest 33% of canopy-related pixels. The image histogram ranged from 19°C 

to 45.5°C in 0.1°C intervals. Using the class conditional temperature histogram of the canopy-

related pixels 𝑓(T), Tcanopy can be calculated using Eq.9: 
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𝑇𝑐𝑎𝑛𝑜𝑝𝑦 =
∑ 𝑇𝑐𝑟 ∗ 𝑓0.33𝑛

𝑖=1

∑ 𝑓𝑖
0.33𝑛
𝑖=1

 

(9) 

where Tcanopy (°C) is the canopy temperature, 𝑓 is the number of pixels in each cr class of the 

histogram, and n is the number of canopy pixels resulted from Eq.8. 

2) Calculation of CWSI 

 Extracted canopy temperature, and two reference values are used to calculate CWSI, 

based on Eq.1. The two reference values represent the minimum temperature of a fully 

transpiring leaf (well-watered crop), and the maximum temperature of a non-transpiring leaf 

(stressed crop) (Cohen et al. 2015; Meron et al. 2010; Rosenberg et al. 2014). Various empirical, 

theoretical, and statistical forms of wet and dry baselines have been proposed, and a summary of 

them can be seen in Table 1.2. For small scale, all forms have been used to calculate both 

baselines, while for large scales dry baseline has been only empirically calculated and wet 

baseline empirically, theoretically and statistically (Cohen et al. 2017).  

Empirical baselines 

 Empirical wet baselines (non-water stressed) were found to be strongly related to specific 

climate conditions and crops. Alfalfa, soybean and squash presented linear relationships between 

TF (foliar temperature) minus Ta (air temperature) and VPD, yet the relationships were different 

and therefore unique to each crop. It was also observed that when a state of potential evaporation 

exists the air VPD was sufficient to specify the differential of foliar-air temperature (Idso et al. 

1981). Because empirical dry and wet baselines are so dependent on VPD several non-water 

stress baselines are required to determine CWSI values, as can be observed in Acala cotton 

(Jackson et al. 1981). 
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Irmak et al. (2000) calculated CWSI for corn using measured lower and upper baselines 

by following methodology suggested by Idso et al. (1981), in which the difference between 

canopy temperature (Tc) and Ta in degree Celsius was related to VPD (kPa) (Figure 1.5). The 

upper baseline represented Tc – Ta for plants that showed severe stress. Average Tc - Ta values 

Table 1.2. Wet and dry baselines used to calculate CWSI (modified from Cohen et al. 2017). 

Baseline type How is it calculated or 

measured? 

Used for small scale Used for large 

scale 

Wet Empirical Air temperature + X °C where X 

is an empirical estimate 

dependent on VPDa 

Irmak et al. (2000), 

Jackson (1991), 

Erdem et al. (2005) 

Bellvert et al. 

(2014) 

 Theoretical 1 Temperature calculation using 

energy balance equation 

(suggested by Jones 1992) 

Jones (1999), 

Alchanatis et al. 

(2010) 

 

 Theoretical 2 Temperature calculation using 

energy balance equation 

(suggested by Monteith and 

Unsworth 1990) 

Rud et al. (2014) O’Shaughnessy et 

al. (2011) 

 Measured: bio-

indicator 

Temperature measurement of a 

wet real leaf 

Jones (1999)  

 Measured: 

artificial surface 

Temperature measurement of a 

wet artificial reference surface 

Cohen et al. (2005), 

Alchanatis et al. 

(2010), Meron et al. 

(2010) 

 

 Statistical/bio-

indicator 

Average temperature of the 

coolest 5-10% of the canopy 

pixels and the like 

Alchanatis et al. 

(2010), Rud et al. 

(2014) 

Gonzalez-Dugo et 

al. (2013) 

Dry Empirical Air temperature + X °C where X 

is an empirical estimatea. The 

canopy-air difference is unique 

for each crop in each region 

Jackson (1991), Irmak 

et al. (2000), Cohen et 

al. (2005), Alchanatis 

et al. (2010) 

O’Shaughnessy et 

al. (2011), 

Gonzalez-Dugo 

(2013), Meron et 

al. (2010) 

 Theoretical Temperature calculation using 

energy balance equations 

(suggested by Jones 1992) 

Jones (1999)  

 Measured: bio 

indicator 

Temperature measurement of a 

real leaf covered with petroleum 

jelly 

Jones (1999)  
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were calculated to create the upper baseline. Although the upper baseline values varied between 

4 and 5.1°C, it was assumed relatively constant at about +4.6°C. Cohen et al. (2005) used results 

reported to estimate the upper boundary (Tdry) by adding 5°C to air temperature measured with a 

dry bulb. In a commercial fruit tree orchard Ta +2 was used for Prunus sp. and Ta+4 for Citrus 

sp. (Gonzalez-Dugo et al. 2013).  

 Similar to upper baseline, lower baseline has also been empirically estimated by adding 

measured canopy temperature to the air temperature measured with a wet bulb. Jackson et al. 

(1991) developed non-water-stressed baseline in two different cotton growth stages (early season 

and late season) by simultaneously measuring leaf temperature and wet bulb values over several 

days. Erdem et al. (2005) estimated wet baseline in potatoes with canopy temperature data 

collected with infrared thermometry in furrow and drip irrigated treatments one day after an 

irrigation event. At a larger scale, Bellvert et al. (2015) used infrared temperature sensor (IRTS) 

Figure 1.5. One day example of the relationship between Tc - Ta and 

VPD (Irmak et al., 2000). 
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connected to data loggers installed in well-watered grapevines and calculated average canopy 

temperature every 30 minutes. Non-water-stressed baselines were developed for four different 

phenological stages (from anthesis to fruit set, fruit to veraison, veraison until harvest and 

harvest until postharvest). 

Theoretical baselines 

 CWSI values that are gotten from a theoretical approach rely solely on meteorological 

measurements and calculation of both baselines, which requires advanced meteorological 

stations in close proximity to the point of measurement. The closer the station, the higher the 

chance of accurate input to the balance energy model suggested by Jones (1992). This 

dependence on meteorological measurements can present a limitation to this approach. 

Additional disadvantages are related to the energy balance model assumption that there is an 

equilibrium between a leaf and its surroundings, which may not hold true (Alchanatis et al. 

2010). Theoretical wet and dry baselines based on energy balance equation suggested by Jones 

(1992) and Jones (1999) respectively, were used by Alchanatis et al. (2010) and derived from the 

following equations: 

𝑇𝑤𝑒𝑡 = 𝑇𝑎 +
𝑟𝐻𝑅𝑟𝑎𝑊𝛾𝑅𝑛𝑖

𝜌𝑎𝑐𝑝[𝛾(𝑟𝑎𝑊) + 𝛥𝑟𝐻𝑅]
−

𝑟𝐻𝑅𝑉𝑃𝐷

𝛾𝑟𝑎𝑊 + 𝛥𝑟𝐻𝑅
 

(10) 

where Ta is air temperature, rHR is the resistance to radiative heat transfer that is based on leaf 

dimension of 0.1 m, raW is the water vapor boundary layer resistance, γ is the psychrometric 

constant, Rni is net radiation, ρa is the air density, cp is the specific heat of air and Δ is the 

saturation vapor pressure curve slope.  

𝑇𝑑𝑟𝑦 = 𝑇𝑎 +
𝑟𝐻𝑅𝑅𝑛𝑖

𝜌𝑎𝑐𝑝
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(11) 

 A second energy balance equation has been suggested by Monteith and Unsworth (1990). 

This approach has only been used to estimate wet baselines. In large scale, it was used in 

soybean and cotton (O’Shaughnessy et al. 2011) and in small scale in potato fields (Rud et al. 

2014). This alternative estimation of wet baselines can be estimated as follow: 

𝑇𝑊 ≈ 𝑇𝑎 −
𝑒𝑠(𝑇𝑎) − 𝑒𝑎

𝛥 + 𝛾
 

(12) 

where Ta is air temperature (°C), es is saturated vapor pressure (Pa) at the air temperature, ea is 

actual vapor pressure (Pa), Δ is slope (Pa °C-1) of the saturated vapor pressure vs the temperature 

curve evaluated at air temperature, and γ is the psychrometric constant (Pa°C-1). 

Statistical baselines 

 Lower baselines can also be estimated using a statistical or bio-indicator approach, which 

assumes that there are well or over irrigated areas in a field (Rud et al. 2014). The plant 

temperature measurements are made with a sensor such as a thermal camera, and the average of 

the coolest or lowest 5 or 10% of canopy pixels in the image are used as the wet baseline. This 

approach is regarded as farmer-friendly because of its minimum requirements, since a nearby 

meteorological station is needed only for air temperature measurement (Cohen et al. 2017). 

Although it was successfully used in commercial orchard fields (Gonzalez-Dugo et al. 2013) and 

recommended as a measure of wet baseline for cotton (Cohen et al. 2017) this methodology 

presents some weaknesses. Rud et al. (2014) observed that CWSI values originating from 

statistical methodology were lower in well-irrigated treatments when compared to empirical and 

theoretical. Later in the season (99 DAP) the difference in statistical and theoretical Twet was as 

high as 3.6°C. Results indicated that statistical methodology may be more suitable for large 
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fields rather than experimental plots. Higher chance of biased calculation of Twet is expected for 

small scale since the probability of having over-irrigated sub-areas is lower in smaller fields. 

3) Conversion of CWSI into LWP 

 Differences in climate conditions have led to the development of region-specific 

relationships between CWSI and LWP. A strong non-linear relationship in cotton for southern 

USA humid conditions was found between CWSI and predawn LWP measurements (Chastain et 

al. 2016b), whilst for Israeli conditions, Cohen et al (2015) observed a linear relationship 

between LWP and CWSI derived from high-resolution thermal images. Despite its specificities, 

all models exhibit the same inverse pattern in which CWSI increases as LWP decreases 

(Chastain et al. 2016b; Cohen et al. 2015). Although this association is stable, it can change in 

different growth stages of the plant (Jackson 1991). 

 In a recent study, a multi-year CWSI-LWP relationship was used to convert thermal 

images of cotton experimental plots into LWP maps (Cohen et al. 2017). The following equation 

was used: 

𝐿𝑊𝑃[𝑀𝑃𝑎] = −1.77𝐶𝑊𝑆𝐼 − 1.28 − 𝐾 

(13) 

where K represents a transformation constant between LWP measurement methodology and 

other methodologies. In this study the transformation constant of K=0.4 MPa was used. Pixel 

LWP values derived from the equation were assigned to one of four different water status classes 

(Table 2). Results showed high correlation between calculated and measured LWP. Although 

over-estimation was observed in calculated LWP values, methodology suggested by Meron et al. 

(2010), in which 33% of coldest canopy-related pixels were averaged attenuated soil effects and 

thus reduced the over-estimation problem.  



 

32 

 

1.2.8. Management zones (MZs) delineation 

 Dividing a large area in smaller homogenous subareas for site-specific management is the 

basic premise of precision agriculture (PA) (Brock et al. 2005). Despite its importance, 

management zones (MZs) delineation is still a challenge for PA applications due to the many 

factors (soil, biotic and climate) involved in determining crop yield. Dynamic interactions 

between these factors add even more complexity (Fridgen et al. 2004) causing significant field 

spatial variability within each year (Blackmore et al. 2003) and a year to year variation in the 

optimum number of MZs (Fraisse et al. 2001). In the process of MZ delineation, authors usually 

are led to respond to three basic questionings pertinent for identification of representative zones. 

The first question is what data should be used to delineate the zones within a field; the second is 

what classification method is the best to process this data into unique zones; and the final 

question concerns the appropriate number in which the field should be divided (Fridgen et al. 

2004). 

 

Table 1.3. Water status classes in cotton based on LWP values (Cohen et al. 2017). 
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1.2.8.1. Data sets 

 Management zones for variable rate application can be delineated based on a variety of 

data sets such as individual plant and soil properties, soil-plant relationship, and multiple 

properties simultaneously. Blackmore et al. (2003) created spatial and temporal trend maps of 

different grain crops’ yield data collected between the years of 1995 and 2000 for four different 

fields. Yield map patterns of different years were then used to predict yield of future years. 

Results showed that predicted yield did not correlate with actual yield, but the trend maps 

seemed to be a promising tool in identifying homogenous MZs. Crop performance was also used 

by Brock et al. (2005) to delineate zones for a corn-soybean rotation, and a spatial association 

comparison was made between yield-based MZs and published soil survey map units. It was 

found that MZs showing lower yield data were significantly associated with high sloping and 

eroded areas, while high yielding MZs were associated with wetter areas, thus showing great 

potential in identifying within field variability. 

 Morari et al. (2009) used association between soil electrical conductivity (EC) and 

physical soil properties to delineate potential MZs. Clay and silt particles showed a positive 

relationship with EC, while coarser particles such as sand and gravel were negatively associated 

aiding in the identification of soil patterns and its division in different zones. In a more recent 

work, Scudiero et al. (2013) combined geospatial apparent soil electrical conductivity (ECa) and 

reflectance measurements of bare soil to identify spatial variability of soil properties. Both 

variables combined can be used to identify areas of homogeneous soil fertility and help in site-

specific management. 

 The delineation of management zones for site-specific irrigation is highly affected by soil 

hydraulic and physical properties (Haghverdi et al., 2015). These properties control plant-
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available water, affecting irrigation scheduling, and therefore are often used to delineate IMZs. 

Zones for precision irrigation were reasonably delineated by using geostatistical analysis to 

correlate spatial variability of field moisture capacity, saturated moisture content, wilting point, 

and dry bulk density (Jiang et al. 2011a). A subsequent study highlighted the importance of soil 

properties for irrigation management even in leveled fields with 1% of slope (Longchamps et al. 

2015). Soil water content presented spatial variability with long ranges and temporal 

dependency, evidencing the need of unique zones delineation in a field that visually does not 

seem to have significant variability. 

 The most commonly used method to obtain soil and crop stage information is the 

selection of few random locations in the field to be sampled (Chiericati et al., 2007). This 

method requires intensive labor and is time consuming, which can become an expensive practice. 

Electromagnetic induction (EMI) scanner is a sensor equipped with a small transmitter coil 

capable of estimating large volumes of ECa data by measuring ratio between two different 

magnetic fields (magnetic field generated by EMI, and magnetic field generated by induced 

current) (James et al. 2003). The combination of EMI and vegetation indices derived from 

multispectral remote sensing data has been shown as a possible substitute method for IMZs 

delineation that is both more efficient and cost-effective than traditional field sampling 

(Chiericati et al. 2007). 

 All above-mentioned work focused on the delineation of static zones. MZs were 

delineated once and boundaries were static during the growing season, therefore not responding 

to within season changes in soil and plant water status. Recent work using wireless network of 

infrared thermometers developed dynamic prescription maps system for irrigation scheduling in 

cotton, in which IMZ boundaries changed according to plant feedback on crop water stress 
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(O’Shaughnessy et al. 2015). Further research has evidenced the need for irrigation management 

zones with dynamic boundaries (Cohen et al. 2017). LWP maps created from remotely sensed 

canopy temperature showed great variability throughout the season. Due to the unpredictable 

effect of different environmental factors in the water level in the plant, LWP change patterns 

cannot be predicted. Hence, dynamic prescription maps can greatly improve VRI systems.  

1.2.8.2. Methodology 

 Many authors have successfully delineated MZs that represented variability in the field, 

yet there is a lack of simple protocols on how to delineate zones in a practical way. This 

presented a barrier to the widespread adoption for this management approach (Brock et al. 2005). 

Procedures often involve statistical techniques that require time to learn and are not always well 

suited for producers. Although many software programs are equipped with tools capable of 

transforming spatial data into management zones, there was still a need for an easy-to-use 

software that could help in the decision-making process (Fridgen et al. 2004).  

 The most commonly used method to delineate MZs involves the application of 

unsupervised clustering techniques (Haghverdi et al. 2015). In unsupervised clustering, data is 

grouped into different classes based on their inherent structure. In methodology described by 

Fraisse et al. (2001), the principal component analysis (PCA) and ISODATA (Iterative Self-

Organizing Data Analysis Technique) clustering algorithms were used in combination with 

Unscrambler software to divide fields in different MZs. The most important variables were 

identified with the help of PCA and then used in the unsupervised classification method to divide 

fields into 2, 3, 4, 5 and 6 management zones. Recently, Haghverdi et al. (2015) compared three 

different unsupervised clustering techniques (k-means, ISODATA and gaussian mixture model) 

in combination with two other software tools (Matlab and ArcGIS) and a new zoning 
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methodology based on integer linear programming (ILP). ILP was designed for the center pivot 

system with limited speed control capability. Up to 40% of variance in water content in the field 

was explained by this new approach, while the clustering methods efficiently delineated 

homogenous zones based on soil hydraulic properties.   

Management Zone Analyst (MZA) 

 In 2004, a new software for management zone delineation was developed by Fridgen et 

al., and it has become vastly used (Brock et al. 2005; Jiang et al. 2011a; Jiang et al. 2011b). 

Different from other Geographic Information Systems (GIS) software, the MZA was designed 

specifically for spatial zoning, which makes it more user-friendly (Jiang et al. 2011a). Another 

advantage of this new software is its capability to not only assign field information into potential 

zones, but also output a range of cluster numbers that indicates the appropriate number of zones 

that should be delineated (Fridgen et al. 2004). This is a great advance from methodologies, 

because it does not require the user to decide the optimum number of zones. 

 The software uses an unsupervised clustering algorithm called fuzzy c-means (also 

known as fuzzy k-means) that is based on the sum of square distance of all data points in a 

cluster domain to its centroid (Fridgen et al. 2004). The algorithm assigns points to different 

clusters after an iterative process similar to ISODATA and controls the extent in which 

memberships are shared between classes. This algorithm, selected to meet the need for clustering 

inputs, is based on continuum soil and landscape information. Supervised clustering techniques 

were excluded from MZA because it requires the user to have prior knowledge of areas that will 

be selected to train the algorithm. 

 To determine the optimum number of zones based on descriptive statistics and 

unsupervised fuzzy classification, the MZA software provides users with two performance 
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indices (Jiang et al. 2011a). The first is the fuzziness performance index (FPI), which measures 

the degree of separation between data matrix fuzzy c-partitions and is defined as: 

𝐹𝑃𝐼 = 1 −
𝑐

(𝑐 − 1)
[1 − ∑ ∑(𝑢𝑖𝑘)2/𝑛]

𝑐

𝑖=1

𝑛

𝑘=1

 

(14) 

where uik (1≤i≤c, 1≤k≤n) is the membership value to the ith cluster center in the cluster centroid 

matrix for the kth observation in the data matrix, c is the cluster number and n is the number of 

observations.  

 The second performance index is the normalized classification entropy (NCE). The NCE 

models the disorganization of a fuzzy c-partition of the cluster centroid (Jiang et al. 2011b). The 

classification entropy (H) is defined as: 

𝐻(𝑈; 𝑐) = − ∑ ∑ 𝑢𝑖𝑘 log𝑎(𝑢𝑖𝑘) /𝑛

𝑐

𝑖−1

𝑛

𝑘=1

 

(15) 

where logarithmic base a is any positive integer and U is a fuzzy membership matrix. Therefore, 

NCE can be defined as: 

𝑁𝐶𝐸 = 𝐻(𝑈; 𝑐) [1 − (
𝑐

𝑛
)]⁄  

(16) 

FPI and NCE values close to 0 mean that there is a large partition component and small sharing 

between c-partitions, indicating good classification results. The best number of zones will be 

determined by the class in which FPI and NCE values are at their minimum.  
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1.2.9. Vegetation Indices 

Multispectral imagery is a tool that allows one to quickly obtain large amounts of data on 

varied crops. The amount of light being reflected by growing plants is associated with 

chlorophyll content and plant health. Green leaves with high chlorophyll content reflect more in 

the near infrared (NIR) and in the green wavelengths than in the red wavelength, while stressed 

leaves have low reflectance on wavelengths varying from 750 to 1100nm (Ortiz et al. 2011). Due 

to this difference in reflectance and absorption of light in the red and NIR bands, these two bands 

can be combined in many quantitative indices of vegetation conditions (Panda et al. 2010).  

Vegetation indices have been correlated with crop properties such as LAI, green biomass 

(Inman et al. 2008), LWP (Elsayed et al. 2011), stomatal conductance, non-photochemical 

quenching (NPQ) (Rapaport et al. 2015), and plant water content (PWC) (Liu et al. 2004). For 

instance, the Normalized Difference Vegetation Index (NDVI) has been reported to be highly 

correlated with LWP, LAI and lint yield in cotton (Wanjura and Upchurch 2004). The correlation 

between NDVI and the three cotton properties ranged between R2 = 0.7 and 0.75, which can be 

explained by the high association between LWP and individual red (750nm) and near infrared 

(880nm) wavelengths. 

Despite its widespread use, NDVI presents many problems such as saturation in dense 

vegetation canopies (Sellers 1985), insensitivity to LAI with increasing LAI values, and the 

effect of soil brightness (Carlson and Ripley 1997). In cotton, when canopy closure occurs, 

NDVI values are greater than 0.8 and a plateau in the relation between NDVI and crop water use 

is reached. Nevertheless, NDVI has a positive linear relationship with crop water use when 

NDVI values are between 0.15 and 0.80, enabling effective use of NDVI in the delineation of 

management zones prior to canopy closure (Hunsaker et al. 2003). 
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The use of remote sensing in crop water assessment has greatly improved with the 

development of new vegetation indices. In recent work, three normalized water indices (WABIs) 

were created by combining the crop reflectance in three different bands (Rapaport et al. 2015). 

Hyperspectral signatures of water stressed grapevine leaves were correlated to midday LWP and 

it was found that the reflectance trend at different spectral regions can efficiently detect water 

stress as it was also indicated by Elsayed et al. (2011). Water stressed leaves presented decreased 

reflectance in the green (530-550 nm) and red edge (700-750 nm) regions and higher reflectance 

in the shortwave infra-red region (1500 nm; SWIR) (Figure 1.6). The normalized water balanced 

water indices (WABIs) presented better correlation with LWP than many well-known indices 

including NDVI. The ratio between SWIR and green bands, which yielded WABI-2 was the best 

in detecting LWP, presenting a R2= 0.89 (Rapaport et al. 2015). 

 In 2002, a pioneer work funded by the NASA’s solar-powered Pathfinder-Plus unmanned 

aerial vehicle (UAV) showed the usefulness of using UAVs to detect irrigation anomalies in 

agricultural fields (Herwitz et al. 2004). Since then, many authors have explored different types 

Figure 1.6. Changes in canopy reflectance in different spectral bands 

(Rapaport et al. 2015). 
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of commercial off-the-shelf unmanned aerial vehicles to assess water stress in varied crops with 

higher resolution than satellite platforms. Bajula et al. (2012) used an UAV equipped with a 

multispectral sensor Multiple Camera Array (MCA-6, Tetracam Inc., California, USA) to collect 

data from vineyards and calculate different indices related to water status. Zarco-Tejada et al. 

(2013) proposed a normalized Photochemical Reflectance Index (PRI) calculated from images 

taken with a SixCam multispectral camera (QuantaLab-IAS-CSIC, Cordoba, Spain) mounted on 

a fixed wing UAV. Many other pieces of equipment and platforms have been studied, and new 

technologies continue to emerge (Gago et al. 2015). Additional work exploring these 

technologies can lead to new vegetation indices that can better represent crop traits and platforms 

that are more user-friendly and simpler to use.  
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Abstract  

Plant-based measurements such as leaf water potential (LWP) are used widely for 

irrigation scheduling because they are accurate at indicating when irrigation is needed. Despite 

being an efficient indicator, scheduling irrigation with LWP is time consuming and scale-limited. 

The work reported here explored the potential of using remote sensing to estimate cotton crop 

water status because this would allow the use of these techniques over large areas and on a more 

frequent basis. The study was conducted over two growing seasons (2018, 2020) in southwestern 

Georgia, USA using a complete randomized block design plot scheme with three irrigation 

treatments (rainfed, well-irrigated, and overirrigated). To monitor the irrigation treatment effects 

on cotton physiological response, predawn LWP (LWPPD), stomatal conductance (gs), mainstem 

height, leaf area index (LAI) and gas exchange measurements were taken in both growing 

seasons. UAV-based images collected in the green, red, red edge, near infrared, and thermal 

infrared wavebands were evaluated as predictors of plant water status indicators. Significant 

differences between the treatments were not observed in the 2018 growing season due to regular 

precipitation events. In 2020, the two irrigated treatments showed higher LWPPD, LAI and gs 

than the rainfed treatment. The study also compared the relationship between three crop water 

stress index (CWSI) calculation methodologies and LWPPD. CWSI was calculated from thermal 

infrared images collected with a UAV. Despite the somewhat narrow range of LWPPD, the 

different CWSIs showed a strong non-linear relationship indicating that UAV-based canopy 

reflectance has the potential to be used to create predictive LWP maps for the southeastern U.S. 

Despite the somewhat narrow range of LWPPD caused by regular precipitation events during the 

growing seasons, the different CWSIs showed a strong non-linear relationship. UAV-based 

multispectral images also showed significant correlation with LWPPD at specific dates. There 
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were differences in reflectance curves for different LWPPD classes in the red edge and NIR 

wavebands. Overall, the results showed the potential of using affordable UAV- thermal and 

multispectral systems to monitor crop water status variability across the field and throughout a 

growing season. 

2.1. Introduction 

 Cotton (Gossypium hirsutum L.) is an economically important crop in the United States 

(Chastain et al. 2014). In the commodity market, it is the number one trade product and the most 

important fiber crop. From a global perspective, cotton production is mostly concentrated in 

semi-arid and arid regions, often under irrigated conditions due to its negative response to 

excessive rainfall in certain morphological stages (Feike et al. 2017; Cetin and Basbag 2010), as 

well as its requirements for high solar radiation levels and high temperatures (Constable and 

Bange 2015). Even though its production is concentrated in arid areas, it can be cultivated under 

a variety of different water regimes (Hearn 1979; Turner et al. 1986). 

 In the southeastern United States, the average rainfall is approximately 1270 mm 

annually, which is enough water to supply crop needs for high yields (Bednarz et al. 2002). 

However, the distribution of rainfall during the growing season in this region may not align with 

the peak crop water requirements in some years. An eventual drought episode, even if short, at a 

critical stage of crop development can reduce the number of floral buds, boll retention (Turner et 

al. 1986), boll weight and distribution (Wang et al. 2016), and final yield (Hu et al. 2018). In 

addition, drought stress can cause reduction of photosynthetic rate caused by, among other 

factors, reduction in stomatal conductance (Loka et al. 2011). Overirrigation can also be a 

problem since it can result in low irrigation efficiency by creating drainage problems in the soil 

and resulting in depressed yields (Yazar et al. 2002). In addition, excessive irrigation can have a 
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severe impact on water resources, causing, in some cases, the depletion of surface and ground 

water (Soth et al. 1999; Vellidis et al. 2016b). 

 Because of the yield limitations imposed by water stress, a variety of irrigation 

scheduling techniques have been developed with the aim of improving the timing and amount of 

irrigation water applied with the end result of increasing irrigation water use efficiency (Vellidis 

et al. 2016a; Meeks et al. 2017; Li et al. 2019). Jones (2004) divided the most commonly used 

irrigation scheduling methods into three main classes; 1) irrigation based on soil water potential 

and soil water content, 2) soil water balance calculations, which involves estimating rainfall and 

evapotranspiration (ET), and 3) plant stress sensing, which is subdivided into tissue water status 

measurements and physiological responses. One direct plant stress indicator is leaf water 

potential (LWP). 

 Plant-based measurements such as LWP are an accurate indicator of the need for 

irrigation and can maximize water use efficiency in cotton (Grimes and Yamada 1982; Grimes et 

al. 1987; Chastain et al. 2016). Although there has been some controversy around the 

effectiveness of LWP as an irrigation indicator because of temporal fluctuations caused by 

environmental conditions (Jones, 2004), authors have found satisfactory results for different 

crops (Bellvert et al. 2016; Paço et al. 2013).  In cotton, Argyrokastritis et al. (2015) measured 

midday LWP under two different irrigation methods (full and deficit irrigation) and found that 

LWP for stressed plants was significantly lower than the fully irrigated plants. 

 Despite being a good indicator for irrigation scheduling, LWP measured with a 

Scholander pressure chamber is time consuming and scale limited (Jackson, 1982; Elsayed et al. 

2011) as each measurement in the field requires several minutes to perform with relatively 

cumbersome equipment. In this context, authors have explored the use of remote sensing to 
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detect or estimate crop water status as an alternative (Alchanatis et al. 2010; Rosenberg et al. 

2014; Cohen et al. 2005). One approach is to calculate crop water stress index (CWSI) from 

canopy temperature extracted from thermal infrared images and to establish a relationship 

between CWSI and LWP (Cohen et al. 2015). LWP predicted from this relationship showed high 

agreement with measured LWP and was used to map LWP variability (Cohen et al. 2015). 

 Electromagnetic energy reflected from crop canopies in the visible and near infrared 

(NIR) wavebands have also shown great potential to detect water stress (Elsayed et al. 2011). 

Leaf structure and composition is the major determinant for leaf reflectance in the NIR region 

(Liu et al. 2004). Reflectance in this waveband tends to increase with increased water content. 

The effects of water content in the leaf intercellular air spaces, and cell shape and size can be 

detected not only in the NIR wavelength range (740-790 nm) but also in the red edge (680-740 

nm) (Carter 1991). Vegetation indices (VIs) combining the percentage of light reflected in the 

NIR and visible wavebands such as the red band were also found to have high correlation with 

vegetation water content (Chen et al. 2005). 

 The overall goal of this study was to explore the potential of using UAV-based 

multispectral images and thermal images for measuring crop water stress in cotton in southern 

Georgia. Specific objectives were to use UAV-based multispectral images and thermal images to 

predict LWPPD and stomatal conductance (gs); and to compare the relationship between CWSI 

and LWPPD with three different CWSI methodologies. 

2.2. Materials and Methods 

2.2.1. Study site and management practices 

 A two-year study was conducted in 2018 and 2020 in two different experimental fields at 

the University of Georgia’s Stripling Irrigation Research Park (SIRP) in Camilla, GA (Figure 
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2.1). In 2018, 54 plots were established in a field of approximately 1 ha in size (31°16'43.33"N, 

84°17'48.17"W). Each plot consisted of 16 rows each 12.2 m in length. The center 4 rows of 

each plot were used for data collection. Three different cultivars were planted at 2.5 cm depth on 

May 2nd. The three cultivars used were PHY 330 and PHY 440 (PhytoGen, Dow AgroSciences 

LLC, IN), and ST 6182 (GLT – Bayer Stoneville). Irrigation treatments were rainfed, 100% of 

estimated crop ET (ETc) and 125% ETc. A randomized complete block design was used with six 

replicates of each treatment (3 varieties × 3 irrigation treatments × 6 replicates). 

In 2020, 27 plots were established in an experimental field approximately 3.6 ha in size. Plots 

had the same length and width as plots in 2018. Only the DP 1646 (Deltapine, Bayer) cultivar 

was used and was planted on May 13th. Irrigation treatments were the same as in 2018 ( 0% ETc, 

100% ETc, and 125% ETc). A randomized complete block design was used with three replicates 

of each treatment (3 irrigation treatments × 3 replicates). 

2.2.2. Irrigation treatments 

 The irrigation treatments were applied using a linear move system with overhead 

sprinkler irrigation equipped with variable rate irrigation (VRI) in 2018, and from three center 

pivot systems in 2020. ETc was estimated using the SmartIrrigation Cotton App (Vellidis et al., 

2016b). In the SmartIrrigation App, ETc is estimated daily from reference ET (ET0) using 

meteorological data from the Camilla University of Georgia Weather Station Network weather 

station at SIRP located within 300 m of both fields and a crop coefficient (Kc) extracted from a 

Kc curve that was validated for more than five years at SIRP (Vellidis et al., 2016b). Daily Kc 

was multiplied by daily ETo to estimate daily ETc. The 100% ETc treatment (well-watered) was 

based on the deficit between daily ETc and rainfall, which consisted of the well-watered 

treatment. The 125% ETc treatment (over-irrigated) irrigation amount was estimated by 

http://weather.uga.edu/
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multiplying daily ETc – precipitation by 1.25. The rainfed treatment received irrigation until the 

squaring stage to help with initial development and growth. No supplemental water was applied 

for the remaining of the season. Maximum irrigation rate per irrigation event was set at 19.05 

mm in 2018 and 20.3 mm in 2020. The irrigation thresholds were estimated to avoid runoff and 

were also based on the irrigation system capacity.  

2.2.3. Field data collection 

 To monitor the irrigation treatment effects cotton growth and physiological response, 

predawn LWP, mainstem height, LAI and gas exchange measurements were taken in both 

growing seasons. Measurements were collected weekly in 2018 and in two-week intervals in 

2020 from squaring until the last week of irrigation. Predawn LWP (LWPPD) was collected from 

04:00 to 06:00 h for the uppermost fully expanded leaf of two plants in each plot using a 

Scholander pressure chamber (Model 615; PMS Instruments, Albany, OR). Cotton leaves were 

cut at the base of the petiole and sealed inside the chamber where pressure was applied until 

xylem sap exuded from the petiole cut surface. In-field leaf area index (LAI) was collected using 

an AccuPAR LP-80 (Decagon Devices Inc., Pullman, WA) ceptometer. This equipment consists 

of two light probes connected to a datalogger. A small quantum sensor is placed on a tripod to 

collect above canopy photosynthetically intercepted radiation (PAR) while a long quantum probe 

is placed under the canopy to collect below canopy PAR values simultaneously. Two above and 

below measurements were taken in each plot with one measurement being taken with the long 

probe positioned parallel to the cotton rows, and one perpendicular to the rows. The two 

measurements were averaged for analysis. In addition, gas exchange measurements were taken 

from the uppermost fully expanded leaf on two plants in each plot. Gas exchange measurements 

(stomata conductance (gs)) were conducted from 12:00 to 14:00 h using an LI-6800 (LI-COR 
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Biosciences, Lincoln, NE) portable photosynthesis system. Leaf chamber settings included a 

flow rate of 600 µmol s-1, reference CO2 = 400 µmol mol-1, air temperature = ambient 

temperature, relative humidity = 60 ± 15%, and chamber light intensity = 1500 µmol m-2 s-1 

photosynthetically active radiation (PAR). The leaf was clamped into the chamber until steady-

state conditions were reached (60 to 120 seconds per sample). 

2.2.4. UAV sensors and data acquisition 

 Remotely sensed data were collected using two 3DR Solo quadcopters (3D Robotics, 

Berkeley, CA, United States), each equipped with a different sensor. To acquire thermal images, 

a FLIR Vue Pro R (Model 640, 69°FOV, 9mm, 30Hz; FLIR Systems, Inc., Wilsonville, OR) 

camera was adapted to the quadcopter using a fixed mount and a GPS geotagger (sUAS LLC, 

Beltsville, MD) to geotag images during flight. The FLIR Vue pro R uses an uncooled Vox 

microbolometer detector and collects 14-bit images (with embedded calibrated temperature 

values) in the 7.5 to 13.5 µm region of the electromagnetic spectrum. The second quadcopter 

was equipped with a Parrot Sequoia ( MicaSense, Seattle, WA) multispectral camera. This sensor 

acquires images in four narrow bands that included green (530-570 nm), red (640-680 nm), red 

edge (730-740 nm) and NIR (770-810 nm). The Parrot Sequoia was adapted to the UAV using a 

fixed mount and a power and data board that provided power to the camera and geographic 

coordinates to geotag images during the flight. 

 UAV flights in 2018 were performed at 50 m altitude at a flight speed of 4 m/s and 80% 

front and side lap for multispectral flights and 90% for thermal. The spatial resolution of the 

multispectral images was 5.6 cm and 10.5 cm for thermal images. In 2020, side and front laps for 

both flights were the same as in 2018, but flights were performed at a higher altitude of 90 m and 
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higher speed of 9 m/s. The spatial resolution of multispectral images was 8.5 cm and 16.5 cm for 

thermal images. 

2.2.5. Image processing 

 UAV flight images were stitched using Pix4Dmapper software (Pix4D SA, Lausanne, 

Switzerland). Processing templates were personalized to ensure the highest stitching quality. 

Ground control points (GCPs) were placed in the four corners of the field and used during 

stitching process to increase projection accuracy. The position of each GCP was taken with a 

GPS receiver in the field and then uploaded to Pix4Dmapper. GCPs were selected in at least 10 

images for calibration. In addition, radiometric calibration was also performed in the 

multispectral images by using images of a calibration panel taken before and after each flight. 

 Final thermal and multispectral reflectance maps generated in Pix4Dmapper were then 

uploaded into ArcMap (ESRI, Redlands, CA, USA) for data processing and extraction. Shapefile 

with plot boundaries were created based on the images from the first flight, that also served as a 

base for georeferencing for subsequent images throughout the season. In addition, a buffer area 

of 0.5 m was created between plot boundaries. Both measures were taken to avoid extraction of 

pixels from rows outside the plot area.  

 The isocluster unsupervised classification method was used to identify soil and canopy 

pixels in multispectral images. Once separated, soil pixels were deleted before average pixel 

values per plot were extracted. In thermal images a methodology developed by Meron et al. 

(2010) was used for canopy temperature extraction. Briefly, soil and canopy pixels are separated 

by an upper (air temperature + 7°C) and lower (air temperature – 10°C) threshold. Subsequently, 

a second step is performed to eliminate mixed pixels commonly seen in the edges of the rows. In 
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this step, a class conditional temperature histogram of canopy related pixels is used, and the 

canopy temperature (Tc) is extracted by calculating the 33% coolest pixels. 

2.2.6. Thermal camera accuracy  

 To test the accuracy of the FLIR Vue Pro R camera, a reference surface (RS) structure 

was constructed (Figure 2.2). The RS consisted of a 60 x 60 cm aluminum plate that was 2.2 cm 

thick.  The size of the RS ensured that they would be represented by more than one pixel in both 

the multispectral and thermal images. One side was painted with matte paint and electronic 

components that enabled the plate’s temperature to be measured in real time were attached to the 

other side. To measure the plate’s temperature four thin film platinum resistance temperature 

detectors (RTDs) with three conductors were used. These sensors are classified as type A with an 

accuracy of +/- 0.15°C. To enable the real time temperature readings, an Arduino Mega 

embedded system (Arduino LLC, Torino, Italy) powered by rechargeable lithium batteries was 

used (Figure 2.2a). The Arduino was programmed to take readings every 5 seconds. An RTD 

sensor amplifier with MAX31865 breakout (Adafruit Industries, NY, USA) was used to connect 

the RTD sensors to the Arduino board and to ensure accuracy. The four sensors were attached to 

the bottom of the plate and covered by a 25 mm layer of expanded polystyrene insulation foam 

(Figure 2.2b). The plates were then attached to a PVC frame (Figure 2.2b, c) 

 In 2018, three surfaces painted black were placed in the field during the thermal flights to 

assess accuracy of temperature data extracted from the images. To obtain a wider range of 

known temperatures, two surfaces were modified and painted white and gray in 2020 (Figure 

2.2c). Average temperatures measured by the four RTD sensors were calculated for comparison 

with the thermal camera. The ThermaCAM Researcher Pro 2.10 software (FLIR Systems, Inc., 

Wilsonville, OR) was used for individual image analysis. For each flight, at least one image in 
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which a RS appeared perpendicular to the camera was analyzed and the pixel temperature was 

extracted for comparison with averaged temperature measured from the four RTD sensors. To 

ensure temperature values from both platforms were from the same period, time stamps were 

checked. The sensor temperature was plotted versus the temperature measured from the FLIR 

camera and very good agreement between the two was observed (Figure 2.3). An error of 

approximately 2 °C was seen in 2018, and 2.77 °C in 2020. Error values were within the +/- 5 °C 

accuracy range claimed by the manufacturer. 

2.2.7. Crop Water Stress Index 

 Canopy temperature data collected with the UAV-based thermal camera were used to 

calculate CWSI based on the following equation CWSI= (Tc – Twet)/( Tdry – Twet), where CWSI 

varies from 0 to 1, representing a crop without any water limitation and a non-transpiring crop 

(Idso, 1981), Twet represents the temperature of the lower baseline, and Tdry represents the 

temperature of the upper baseline. The wet and dry baselines were calculated using three 

different methodologies. The Jones 1 CWSI was calculated using theoretical dry and wet 

baselines based on the energy balance equation suggested by Jones (1999). The Jones 2 CWSI 

used the same theoretical wet baseline, but the dry baseline was calculated empirically by adding 

5°C to the air temperature. The Monteith CWSI was calculated using a theoretical wet baseline 

based on Monteith and Unsworth (1990) and the empirical dry baseline used on Jones 2. 

Meteorological data used for baseline calculations was collected from the Camilla weather 

station located at SIRP. Data was recorded every 15 minutes from 12:00 to 14:00 h was averaged 

and used in calculations. The average of the 33% coolest pixels of each plot was used as Tc in the 

CWSI equation. 
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2.2.8. Statistical Analysis 

 The experiment was arranged as a randomized complete block design with three cultivars 

and three irrigation treatments. A two-way ANOVA using standard least squares was used for 

analysis of effects using JMP Pro 14.1.0 (SAS Institute, 2013). Treatment average values were 

analyzed using Tukey test. Data from all irrigation and cultivar treatments were used for 2018 

and from all irrigation treatments for 2020 for the LAI, LWPPD, and gs analysis. A second-order 

polynomial regression was used to determine relationship between all three CWSIs calculated 

and LWPPD. A sigmoid curve was used to demonstrate the reflectance curves of LWPPD 

categories in the green, red, red edge, and NIR bands. The plot LWPPD averages used for the 

reflectance analysis were chosen only from selected plots that showed different levels of water 

status. Plots with similar biomass were chosen to mitigate the difference in reflectance levels 

caused by difference in biomass. A linear regression was used to determine relationship between 

the two most sensitive bands. 

2.3. Results and Discussion 

2.3.1. Weather and Irrigation 

 Minimum and maximum air temperatures and rainfall during both growing seasons are 

represented in Figure 2.4. Precipitation was high in 2018 with average monthly rainfall above 

100 mm in May and June and above 200 mm towards the middle of the season, while in 2020 

precipitation was lower at the beginning of the season and higher in August and September. 

Total water (rainfall + irrigation) per treatment in 2018 was more than 1.5 times the amount in 

2020 due to the high precipitation (Table 2.1). Cotton grown in Georgia requires approximately 

460 mm of water well distributed among the growth stages (Bednarz et al. 2002; Ritchie et al. 
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2009). In 2018, precipitation was well above the cotton water requirement while in the second-

year precipitation was approximately 113 mm lower than that required. 

 In 2018, precipitation was better distributed, and plants received enough water to supply 

its requirements in all growth stages. Approximate daily water requirement for cotton in humid 

regions from emergence to first square is around 2.54 mm (Bauer et al. 2012; Fisher 2004). This 

daily requirement ranges from 2.54 to 5.08 mm from first square to the first flower stage, and 

reaches its highest at early flowering until peak bloom with daily water use ranging from 5.08 to 

7.11 mm. Cotton plants are sensitive to water stress during squaring (Bauer et al. 2012) and 

drought during this period can limit growth and number of nodes (Snowden et al. 2014), but 

highest sensitivity is seen during early bloom. Episodic drought in this period is critical and can 

lead to lower yield and lower fiber quality. After peak bloom daily water use decreases, but 

cotton plants still have a moderate sensitivity to water stress. Contrary to 2018, in 2020 smaller 

and inconsistent precipitation events caused episodic drought in the rainfed plots. Several 

consecutive days without rain caused the daily average precipitation to be 0.86 mm for the 

squaring period, which is well below the cotton water needs for the same period. Similarly, in a 

period of 17 days during early bloom, precipitation was only 7.87 mm.  

2.3.2. Leaf area index (LAI) 

Leaf area is an important cotton morphological trait because of its influence on final yield 

(Saleem et al. 2016) and its importance in determining crop ET (Al-Khafaf et al. 1978). Leaf 

area is very sensitive to drought because water stress leads to reduced cell division and 

expansion (Alves and Setter, 2004, Koch et al. 2019). In addition, drought conditions accelerate 

leaf senescence and abscission leading to lower LAI. 
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 LAI treatment averages are presented in Figure 2.5.  In both seasons LAI seasonal trends 

were similar with small values during the initial stages of development with values close to 1 at 

around 40 to 50 days after planting (DAP), and a rapid increase in leaf area between 50 and 80 

DAP, and a subsequent decrease at the end of the season. During the first season, excessive 

rainfall resulted in similar LAI values between the different irrigation treatments (Figure 2.5a). 

Maximum treatment LAI values in the season were achieved at 99 DAP, with overirrigated plots 

showing an average LAI of 6.13, followed by 5.91 from well-watered plots and 5.7 in the rainfed 

plots. In contrast, a sharp difference in LAI trends between irrigation treatments can be seen in 

2020. The rainfed treatment had the overall lowest averages with the highest LAI of 3.6 achieved 

at 95 DAP. Well-watered and overirrigated treatments had similar trends. Differences between 

these two treatments were evident only in the last two measurements at 95 to 111 DAP. Highest 

LAI for the irrigated treatments was also achieved at 95 DAP with values of 6.2 and 5.3 for the 

overirrigated and well-watered treatments, respectively. Similar irrigation regime effects in 

cotton LAI were observed by Noreen et al. (2013). Highest LAI was achieved during the 

flowering stage in which the biggest effects of drought on the rainfed treatment can also be 

observed.  

 Figure 2.6 shows the season-long LAI average values per treatment. In 2018, no 

significant differences were observed between treatments. Conversely, in 2020 rainfed and 

irrigated treatments were significantly different. The average LAI for well-watered and 

overirrigated treatments were not statistically different from each other, but overirrigated 

treatment had a value 0.58 higher than the well-watered. The rainfed treatment presented the 

lowest LAI of 2.54, which was 34% lower than the average between the other two treatments. 
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2.3.3. Leaf water potential (LWPPD) and stomata conductance (gs) 

 Seasonal weekly LWPPD trends in 2018 were similar across all treatments (Figure 2.7a). 

Season-long averages ranged from -0.20 to -0.43 MPa, -0.24 to -0.41 MPa, and -0.22 to -0.38 

MPa for rainfed, 100% ETc and 125% ETc treatments, respectively. In 2020, treatments had 

different seasonal LWPPD trends (Figure 2.7b). The lowest average values for rainfed, well-

watered, and overirrigated treatments were -0.60, -0.56, and -0.57 MPa, respectively. The well-

watered and overirrigated treatments had the highest LWPPD values (-0.34 and -0.38 MPa, 

respectively). Season-long irrigation treatment averages of LWPPD were not significantly 

different in 2018 (Figure 2.8a). In contrast, season-long averages were significantly different 

(p<0.05) in 2020 (Figure 2.8b). The highest average LWPPD value was observed in the well-

watered treatment (-0.43 MPa) followed by the overirrigated treatment (-0.47). The rainfed plots 

had an average LWPPD value 8% lower than the 100% ETc treatment. The decreased LWPPD is a 

result of the anisohydric response of cotton plants ( Tardieu and Simonneau 1998; Chastain et al. 

2014) in which the water potential in the leaf decreases in response to a lower soil water 

potential. 

 As previously shown, canopy growth was substantially reduced in the rainfed plots 

displaying a lower LAI than irrigated treatments in 2020, which is evidence of obvious drought 

stress. Chastain et al. (2016) pointed out that plant growth inhibition was only observed when 

LWPPD reached values below -0.8 MPa. Although measured LWPPD values for the second season 

were higher than this previously noted threshold, a more severe drought occurred during the 

season in the weeks in between measurements. Although these periods of low precipitation did 

not coincide with LWPPD field sampling days, the drought effects were prominent in the rainfed 

plots and can be detected by the leaf area differences between rainfed and irrigation treatments. 
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 Stomatal conductance results for both seasons are shown in Figures 2.7c and d. In 2018, 

irrigation treatments seasonal averages were not statistically different from each other. The 

lowest average conductance values were 0.61, 0.69 and 0.57 mol m-2 s-1for rainfed, 100% ETc, 

and 125% ETc respectively. The highest averages were observed for 125% ETc treatment (1.79 

mol m-2 s-1) followed by rainfed (1.78 mol m-2 s-1) and 100% ETc (1.76 mol m-2 s-1). Similar to 

results seen for LWPPD, gs average values were frequently lower in the rainfed plots in 2020 

(Figure 2.7d). Well-watered and over-irrigated treatments had similar average gs throughout the 

season with the exception of one week in late August.  

 Season-long gs treatment averages were statistically similar in 2018 with all averages 

around 1.22 mol H2O m-2 s-1 (Figure 2.8c). In 2020, average gs values followed the trends 

observed for LWPPD (Figure 2.8d). The highest leaf gs was observed in the well-watered 

treatment with a value of 1.68 mol m-2 s-1. The rainfed treatment showed the lowest season-long 

average with a value of 1.47 mol m-2 s-1. The overirrigated treatment did not show any significant 

difference from the other two treatments.  

 The reduction in leaf stomatal conductance is a mechanism commonly seen in drought 

stressed plants to limit water loss (Li et al. 2020). A lower leaf water potential is observed when 

soil water availability is decreased, which triggers stomatal closure (Pilon et al. 2018). A 

substantial decrease in gs was detected three days after plants were exposed to drought. In a 

recent study it was observed that gs in rainfed plots was 72 and 58% lower than irrigated 

treatments in two consecutive years (Chastain et al. 2014). Pilon et al. (2018) observed even 

higher differences of 81% between well-watered and drought stressed cotton plants. 

 

 



 

65 

2.3.4. Relationship between crop water stress index (CWSI) and leaf water potential (LWP) 

 The CWSI values from the three different methods from all dates were shown in table 

2.2. All methods yielded similar values within treatments in the individual dates. The season-

long averages in both years were represented in Figure 2.9. There were no significant differences 

in the CWSI values between the irrigation treatments and within irrigation treatments in 2018. 

From the three methods used Jones 1 CWSI had the lowest values across all treatments, followed 

by Monteith and Jones 2. Overall CWSI values during the season were as high as 0.65 observed 

in the Jones 2 method and not lower than 0.48 in the Jones 1.  

In 2020, CWSI average values were not different within each water treatment but were 

statistically different across treatments used (p<0.05). Specifically, all three methods resulted in 

higher CWSI values for the rainfed treatment. Season-long averages for the rainfed treatment 

were 0.53, 0.63, and 0.58 for Jones 1, Jones 2, and Monteith, respectively. Well-watered and 

overirrigated averages were similar with values of 0.4, 0.5 and 0.4 for Jones 1, Jones 2, and 

Monteith, respectively. 

 Weekly CWSI treatment averages plotted against LWPPD for 2020 are shown in Figure 

2.10. All CWSIs had a strong non-linear relationship with LWPPD with all coefficients of 

determination equal to or higher than 0.61 (p<.0001). The strongest relationship was seen for the 

CWSI from Jones 1 and Jones 2 methods with values of 0.65 (p<.0001) and errors of 0.06 and 

0.10, respectively. The theoretical dry and wet baselines used to calculate CWSI from Jones 1 

resulted in overall lower values than when using the empirical baselines used for Jones 2 and 

Monteith. CWSI treatment averages plotted against LWPPD did not have a significant 

relationship in 2018 and are not shown.  
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The relationship between CWSI and LWPPD for the southern US was developed by 

Chastain et al. (2016) in a study conducted in the same region as the present study. A non-linear 

relationship between CWSI and LWPPD was also observed with a coefficient of determination of 

0.93. Results from their study showed a wider variation in LWPPD. However, canopy temperature 

for CWSI calculation was collected with proximal infrared sensors pointed directly at the canopy 

of individual plants. In the work reported here, the different CWSIs were calculated from UAV-

based canopy temperature over plot-sized area and still showed strong correlation despite the 

lower variation in LWPPD. Calculated CWSI values for plots with higher LWPPD were overall 

higher than observed by Chastain et al. (2016), indicating an overestimation of the canopy 

temperature measured from the UAV camera. 

The relationship between different CWSIs and LWPPD is region specific. Results from 

present work using empirical, and theoretical baselines and from Chastain et al. (2016) that used 

empirical wet and dry baselines from Idso (1981) indicated a non-linear relationship between the 

two variables in the humid southeast of the U.S. Alchanatis et al (2010) developed the 

CWSI/LWP relationship for cotton in Israel where there is a Mediterranean climate using 

empirical and theoretical baselines and found a strong linear relationship. Similar linear 

relationship was also observed in the arid environment of northwestern Texas, U.S. using an 

empirical CWSI (O’Shaugnassey et al. 2011).  

 Cohen et al. (2017) highlighted the usefulness of using the CWSI/LWP relationship to 

create estimated LWP maps throughout the season. The ability to monitor plant water status from 

canopy temperature can help improve irrigation management decisions based on crop water 

needs even in the southeastern U.S. where humidity and frequent cloud cover makes this 

methodology challenging (Jones 2004). 
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2.3.5. Relationship between individual bands, leaf water potential (LWPPD) and stomatal 

conductance (gs) 

 Weekly treatment reflectance averages in the green, red, red edge and NIR bands for the 

entire season in 2018 and 2020 are represented in Figure 2.11. During 2018, treatment average 

canopy reflectance was very similar (Figure 2.11 a-d). There was a substantial decrease in 

reflectance in the green and red wavebands from June (36 DAP) to mid-September (71 DAP) 

after which reflectance remained constant between 0.08 to 0.09 for the green band, and 0.03 and 

0.04 for the red band (Figure 2.11a, b). This is consistent with the increase in canopy cover and 

the overall increase in the presence of chlorophyll during this period. Chlorophyll is the pigment 

responsible for absorbing light in these wavebands as the light is the primary energy source for 

photosynthesis. Reflectance in the red edge band varied between 0.33 to 0.43 throughout the 

season (Figure 2.11c), while NIR reflectance showed an overall gradual increase despite the low 

value on the last sampling date in mid-September (Figure 2.11d). This is also consistent with 

increase in canopy cover as a well-watered, full-canopy crop will reflect the majority of the light 

in the NIR waveband. 

 During the 2020 growing season, there was a difference in canopy reflectance between 

treatments. This difference can be seen in the green, red, red edge and NIR bands, in which 

canopy in the rainfed plots had higher reflectance in the green and red wavebands (Figure 2.11e) 

and lower reflectance in the red edge (Figure 2.11g) and NIR wavebands (Figure 2.11h) than the 

irrigated treatments. The well-watered and overirrigated treatments had very similar reflectance 

across all wavebands.  

 The relationship between visible and NIR wavebands and plant water status indicators 

have been explored in a few studies (Ripple 1986; Bowman, 1989; Chen et al. 2012). Table 2.3 
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shows the weekly Pearson correlation between canopy reflection in the individual wavebands 

and LWPPD. Significant correlations at multiple wavebands were observed only at 50 DAP in 

2018, and at 59 and 74 DAP in 2020. Highest correlations were seen for the green waveband in 

2018 (0.53, p<.0001) and for the red band in 2020 (-0.73, p<.0001). Reflectance in the red edge 

and NIR wavebands were highly correlated with values of 0.67 (p<.001) and 0.58 (p<.001) 

respectively. 

 The representative canopy spectral response curves from 2020 in the four wavebands are 

represented in Figure 2.12. The canopy reflectance curve was created only for dates on which 

more than one waveband had correlation higher than 0.5. The response curves represent the 

average reflectance value extracted from the two middle rows in the 9 plots with widest LWPPD 

averages. The leaf reflectance curves were similar in the green and red wavebands and seemed to 

not be affected by different LWPPD. Differences in canopy reflectance were noticed in the red 

edge and NIR bands with the highest differences at the longest wavelength. Results show an 

overall tendency of  reflectance to decrease with lower LWPPD values when curves are grouped 

into two main groups. Curves with LWPPD
 higher than -0.51 MPa and lower than -0.55 were 

found to have the more distinguished differences. The lowest LWPPD curve (-0.65 MPa) had the 

lowest reflectance in these two bands. The more prominent differences between reflectance 

responses in plants with varied water potentials in the red edge and NIR wavebands are related to 

the changes in leaf internal structures caused by loss of turgor pressure inside the cells (Bowman 

1989). 

 Figure 2.13 shows the sensitivity of the different spectral bands to changes in LWPPD. 

Reflectance in the green waveband remained constant while red waveband reflectance increased 

slightly with decreasing LWPPD suggesting low sensitivity to changes in leaf water status. Both 
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the red edge and NIR wavebands exhibited decreasing reflectance with decreasing LWPPD. 

Average reflectance in the red edge band varied from 0.27 to 0.33, while in the NIR waveband it 

varied from 0.35 to 0.45 as LWPPD increased. The response of the green, red edge, and NIR 

wavebands is consistent to the changes in physiology that take place in the cotton canopy as 

water stress increases. 

 A linear regression was used to characterize the relationship between the red edge and 

NIR bands (Figure 2.14). A strong positive relationship between reflectance from these two 

wavebands was observed for treatments at all LWPPD values. The regression coefficient was 0.83 

(p<.0001).  

 The correlation between the reflectance in individual wavebands and stomatal 

conductance is shown in Table 2.4. In 2018, weekly canopy reflectance and gs values showed 

significant correlations only at 71 and 113 DAP. In 2020, significant correlations were observed 

only at 59 DAP. All significant correlations were weak to moderate with green and red 

wavebands showing the highest correlations at all three dates. The weak correlations observed 

for the red edge and NIR bands can be a result of the low variability in gs values throughout the 

season (see Figure 2.7c,d) . In addition, it has been pointed that stomatal conductance has a 

strong relationship with NIR and red edge wavebands when they are combined to calculate a VI 

(Carter 1998). Their study was pointed that individual wavebands such as NIR were not directly 

correlated with gs, rather the wavebands correlated with photosynthetic rate that in turn is 

strongly correlated with gs. In the current study, reflectance curves for different gs value classes 

was not developed due to weak correlations. A wider range of gs caused by a more severe 

drought can increase sensitivity of individual wavebands to different gs values. 
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2.4. Conclusions 

 The current study explored cotton physiological and morphological responses to different 

irrigation treatments and their correlation with spectral reflectance to different regions of the 

spectrum over two growing seasons (2018, 2020). Significant differences between the treatments 

were not observed in the 2018 growing season due to regular precipitation events. In 2020, 

irrigated treatments (well-irrigated, and overirrigated) showed higher LWPPD, LAI and gs than 

rainfed treatment. Rainfed plots experienced drought for a maximum of 14 days during 

flowering, however field measurement dates did not coincide with peak stress periods. Despite 

the somewhat narrow range of LWPPD, the different CWSIs showed a strong non-linear 

relationship indicating that UAV-based canopy reflectance has the potential to be used to create 

predicted LWP maps for the Southern US. Theoretical wet and dry baselines used to calculate 

Jones 1 CWSI had the strongest relationship (0.65, p<.0001) with LWPPD and had the lowest 

error (0.06 MPa).  

 UAV-based multispectral images also showed significant correlation with LWPPD at 

specific dates. There were differences in reflectance curves for different LWPPD classes in the 

red edge and NIR wavebands. Both wavebands showed a strong linear relationship with red edge 

reflectance increasing with increased NIR reflectance. Results showed that these two wavebands 

can be used to develop new VIs in the visible and NIR ranges as an alternative to canopy 

temperature. Correlations between individual waveband reflectance showed lower correlations 

with gs and are less promising for water status mapping.  

 Overall, the results showed a great potential of using affordable UAV- thermal and 

multispectral systems to monitor crop water status variability across the field and throughout a 

growing season. Further studies should test the UAV-based CWSI capacity to predict LWPPD 
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with high accuracy across different locations and cultivars. In addition, calibration methods for 

thermal infrared cameras should be developed to reduce temperature errors and mitigate the 

temperature overestimation. 
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TABLES AND FIGURES 

Table 2.1. Irrigation, rainfall, and total water applied in both fields in Camilla, GA during the 2018 

and 2020 growing seasons. 

Year Treatment Irrigation Precipitation Total Water 

  ------------------------ mm ------------------------ 

2018 

Rainfed 0 828 828 

100% ETc 220 828 1048 

125% ETc 251 828 1079 

     

2020 

Rainfed 36 347 383 

100% ETc 252 347 599 

125% ETc 309 347 656 

 

Table 2.2. Average treatment CWSI values calculated from the three different methods for all 

dates. 

Year Date Treatments CWSI (Jones 1) CWSI (Jones 2) CWSI (Monteith) 

2018 

07/12/18 

Rainfed 0.573 0.749 0.713 

100% ETc 0.534 0.702 0.659 

125% ETc 0.550 0.721 0.680 

07/27/18 

Rainfed 0.515 0.617 0.523 

100% ETc 0.498 0.597 0.499 

125% ETc 0.492 0.592 0.491 

08/09/18 

Rainfed 0.331 0.429 0.325 

100% ETc 0.318 0.412 0.305 

125% ETc 0.326 0.422 0.317 

08/23/18 

Rainfed 0.626 0.797 0.760 

100% ETc 0.586 0.748 0.702 

125% ETc 0.604 0.770 0.727 

      

2020 

07/26/20 

Rainfed 0.614 0.778 0.741 

100% ETc 0.406 0.525 0.448 

125% ETc 0.410 0.529 0.453 

08/16/20 

Rainfed 0.148 0.453 0.333 

100% ETc 0.385 0.418 0.291 

125% ETc 0.300 0.328 0.181 

09/01/20 

Rainfed 0.543 0.713 0.656 

100% ETc 0.422 0.561 0.475 

125% ETc 0.492 0.648 0.578 
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Table. 2.3. Pearson correlation between weekly average reflectance at individual wavebands and 

average LWPPD during both growing seasons from 44 DAP onwards. 

 

Table. 2.4. Pearson correlation between weekly average reflectance at individual bands and 

average gs during both growing seasons from 44 DAP onwards.  

 

 

 

 

 

 

Bands 

DAP 

2018 2020 

44 50 65 71 86 113 59 74 95 111 

Green  -0.10 0.53** 0.03 0.13 -0.02 -0.11 -0.40* -0.12 0.16 -0.39 

Red  -0.10 0.49* 0.05 0.29* 0.03 -0.09 -0.42* -0.73** 0.02 -0.49 

REg  -0.15 0.38* 0.12 -0.03 -0.21 -0.23 0.38* 0.67* 0.34 -0.07 

NIR 0.007 -0.05 -0.05 0.18 0.02 0.12 0.40* 0.58* 0.23 0.27 

Bands 

DAP 

2018 2020 

44 50 65 71 86 113 59 74 95 111 

Green  0.0005 0.29 -0.26 -0.42* 0.25 -0.35* -0.50* -0.04 0.32 0.27 

Red  0.04 0.27 -0.18 -0.35* 0.19 -0.36* -0.48* -0.29 -0.26 0.02 

REg  0.08 0.12 0.07 -0.28* -0.04 -0.34 0.27 0.35 0.38 0.25 

NIR 0.04 0.02 0.004 -0.32* -0.20 0.25 0.35 0.34 0.27 -0.10 
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Figure 2.1. . Layout of fields in 2018 and 2020. Irrigation treatments are shown in 

different colors.  Well-watered treatment is represented as 100% ETc, and overirrigated 

is represented as 125% Etc. 

  

a) b) 

c) 

Figure 2.2. Electronics for temperature sensing in real time (a), placement of 

RTDs in the aluminum plate (b) and white, gray, and black RS in the field (c). 
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Figure 2.3. Relationship between FLIR-based temperature and RTD sensor temperature in (a) 

2018, and (b) 2020. White, grey, and black points in 2020 refer to the different colored surfaces. 

 

Figure 2.4. Daily precipitation and maximum and minimum air temperature during the cotton-

growing season in 2018 (a) and 2020 (b). 
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Figure 2.5. Leaf area index (LAI) seasonal trends in Camila, GA in 2018 (a) and 2020 (b). 

Data represent means ± SE (2018; n = 18, 2020; n = 9). 

Figure 2.6. Season-long irrigation treatment leaf area index (LAI) averages for cotton grown 

in Camilla, GA in 2018 (a) and 2020 (b). Bars with the same letters are not significantly 

different (p<0.05). Data represent means ± SE (2018; n = 8, 2020; n = 5). 
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Figure 2.7. Predawn leaf water potential (LWPPD) (a,b) and stomata conductance (gs) (c-

d) seasonal trends in Camila, GA. The 2018 growing season is represented on the left panel 

and the 2020 in the right panel. Data represent means ± SE (2018; n = 18, 2020; n = 9). 
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Figure 2.8. Season-long irrigation treatment predawn leaf water potential (LWPPD) (a) and 

stomata conductance (gs) (b) averages for cotton grown in Camilla, GA. Left panel shows 

data from 2018, and right panel from 2020. Bars with the same letters are not significantly 

different (p<0.05). Data represent means ± SE (2018; n = 8, 2020; n = 5). 
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Figure 2.9. Season-long irrigation treatments crop water stress index (CWSI) averages for 

cotton grown in Camilla, GA. Left panel shows data from 2018, and right panel from 2020. 

Letters were used to compare treatment averages within each method. Bars with the same 

letters are not significantly different (p<0.05). Data represent means ± SE (2018; n = 12, 

2020; n = 9). 
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Figure 2.10. Relationship between season-long crop water stress index (CWSI) from 

Jones 1, Jones 2, and Monteith and predawn leaf water potential (LWPPD) during the 

2020 cotton growing season. Second-order polynomial was fitted between the variables 

(p< 0.05). 
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Figure 2.11. Individual band reflectance seasonal trends in Camila, GA. Bands included are 

green (530-570 nm) (a,e), red (640-680 nm)(b,f), red edge (730-740 nm)(c,g), and NIR (770-

810 nm)(d,h). The 2018 growing season is represented on the left panel and the 2020 in the 

right panel. Data represent means ± SE (2018; n = 18, 2020; n = 9). 

Figure 2.12. Representative average canopy reflectance with different 

LWPPD values in the four spectral bands. Data is from 2020 at 74 days 

after planting (DAP). Data represent means ± SE (n = 9). 
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Figure 2.13. Sigmoid curve of average reflectance in the green, red, red 

edge, and NIR wavebands versus LWPPD values.  

Figure 2.14. Linear regression between reflectance in the NIR (790 

nm) and red edge (735 nm) bands.  
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CHAPTER 3 

CORRELATION OF UAV AND SATELLITE-DERIVED VEGETATION INDICES WITH 

COTTON PHYSIOLOGICAL PARAMETERS AND THEIR USE AS A TOOL FOR 

SCHEDULING VARIABLE RATE IRRIGATION IN COTTON2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 Lacerda, LN., Snider, J., Cohen, Y, Liakos, V., Levi, M., and Vellidis, G. To be submitted to the Precision 

Agriculture Journal. 
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Abstract  

Current irrigation management zones (IMZs) for variable rate irrigation (VRI) systems are static. 

They are delineated in the beginning of the season and used thereafter. However, recent research 

has shown that IMZ boundaries are transient and change with time during the growing season. 

The goals of this study were to explore the potential of using vegetation indices (VIs) developed 

from UAV and satellite images to predict cotton physiological parameters that are indicative of 

plant water status, to delineate dynamic boundaries of IMZs based on predicted maps, and to 

compare performance of VRI to conventional irrigation. A two-year study was conducted in a 38 

ha commercial cotton field in southern Georgia, USA. The field was divided into alternating 

parallel strips (conventional, and VRI). The conventional strips were irrigated using the farmer’s 

standard method and the VRI strips were irrigated based on soil water tension. IMZs were 

created based on soil texture, apparent soil electrical conductivity, and yield maps and satellite 

images from previous years. Throughout the growing season, VIs were calculated from UAV, 

PlanetScope and Sentinel-2 images. Pre-dawn Leaf water potential (LWPPD) and plant height 

were measured at 37 locations in the field on the same day as the flights and correlated with 

UAV and satellite based-VIs. GNDVI (Green normalized difference vegetation index) was the 

best predictor of plant height with correlation values of 0.7 (p<.0001) and 0.84 (p<.0001) for 

2019 and 2020, respectively. In 2019, the VRI system prescribed an average irrigation amount of 

50.76 mm while the conventional irrigation applied and average of 58.42 mm. Average yield for 

VRI and conventional was 1247.82 and 1191.2 kg ha-1, respectively. In 2020, the VRI system 

resulted in average yield 4.64% higher than conventional irrigation, while applying 14.03% less 

water. 
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3.1. Introduction 

Cotton is an economically important fiber crop in the United States (Chastain et al., 

2014). Cotton is originally a tropical crop and therefore adapted to higher temperatures, and it is 

often considered drought tolerant. Nevertheless, drought negatively affects seed germination and 

seedling establishment (Bradow and Bauer, 2010), root system growth (McMichael et al., 2010), 

plant height and node development (Marani et al., 1985; Wells et al., 2010), and lint yield 

(Wanjura et al., 2002). These negative effects are observed even in regions where average 

precipitation during the growing season meets crop demands (Bednarz et al., 2002). Episodic 

drought caused by irregular distribution of precipitation can lead to slower crop development and 

lower yield and water use efficiency (WUE) (Bednarz et al., 2002, Chastain et al., 2014). 

Additionally, crop water requirements can vary within a field due to different soil characteristics 

such as soil texture, moisture, and slope (Vellidis et al., 2016). 

Precision irrigation consists of site-specific application of irrigation water to crops and 

soils based on the conditions of irrigation management zones (IMZs) (Jiang et al., 2011). In this 

context, variable rate irrigation (VRI) is an important practice that aims to optimize WUE in 

crops by applying varied rates of water in a timely manner to individual IMZs. VRI can help 

mitigate the effects of the spatial variability in soils and drought stress, increasing yield and 

maximizing WUE. In most cases, the application rates assigned to individual IMZs do not 

change during the growing season and therefore, do not take into account environmental changes 

and differences in crop growth rates. Dynamic VRI is the process of using real-time data from 

individual IMZs to determine the amount of irrigation water that should be applied to that zone 

rather than applying a constant, predetermined amount. Liakos et al. (2017) developed and 

demonstrated a soil moisture sensor-based dynamic VRI system. Their system installed a soil 
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moisture sensor node with sensors at three depths within each IMZ and used the data from the 

sensors to drive an irrigation scheduling decision support tool (DST) (Liakos et al., 2015; Liang 

et al., 2016). Thus, each IMZ received a unique prescription based on the soil moisture in that 

zone. Their system resulted in WUE gains ranging from 15% to 40% and yield gains of up to 4% 

in peanut when compared to farmer standard methods (Liakos et al., 2017). Currently, the 

boundaries of IMZs used for VRI systems are static. They are usually delineated when a VRI 

system is installed and used thereafter, ignoring temporal changes in crop water requirements 

during the growing season caused by the interaction between soil, plant, and environment 

(O’Shaughnessy et al., 2015).  

Recent research has shown that it may be possible to adjust in-season IMZ boundaries 

using crop water status data (O’Shaughnessy et al., 2015, Cohen et al., 2017). Leaf water 

potential (LWP) has been identified as a reliable indicator of plant water stress (Bellvert et al., 

2016; Paço et al., 2013; Argyrokastritis et al., 2015). A season-long LWP threshold of -0.5 MPa 

was shown to increase water productivity and yield (Chastain et al., 2016) for cotton in the 

southeastern US. In addition, LWP has been reported to directly affect other cotton physiological 

parameters that affect growth and yield such as photosynthetic assimilation rate, leaf 

conductance (Turner et al. 1986), and mainstem height (Chastain et al. 2016), and these 

parameters can in turn be used to indicate field variability in water stress. Collecting LWP data 

in large fields at a scale that can characterize spatial variability and be used to implement VRI is 

time consuming and has high labor costs. The goal of this study was to evaluate whether remote 

sensing can be used to estimate LWP and use those estimates to delineate irrigation management 

zones (IMZs).  Specific objectives were to 1) explore the potential of using vegetation indices 

(VIs) developed from UAV and satellite images to predict cotton physiological parameters that 
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are indicative of plant water status, 2) delineate dynamic boundaries of IMZs based on plant 

parameters that addresses in-season temporal variability, and 3) compare performance of 

dynamic VRI to conventional irrigation.  

3.2. Materials and Methods 

3.2.1. Study Area 

The study was conducted during the 2019 and 2020 growing seasons in a 38 ha 

commercial cotton field located in Miller County, Georgia, USA (31°11’21”N, 84°45’42”W). 

The state of Georgia has a humid subtropical climate (Kottek et al., 2006) with an average 

temperature ranging from 7.8°C in January to 26.5°C in July (Knox and Mogil, 2020). 

Precipitation is well distributed year-round with the driest months (April and October) receiving 

85.3 mm and 86.6 mm, respectively, and the wettest months (July and March) receiving 133.9 

mm and 122.2 mm, respectively. In Miller County, the 20-year minimum and maximum average 

temperatures between April and November were 17.3°C and 29.7°C, respectively (NOAA, 

2021).  

The field was irrigated by a center pivot system equipped with FarmScan (Advanced Ag 

Systems, Dothan, AL, USA) VRI controls. In both years, the field was divided into four parallel 

strips with two strips irrigated uniformly (conventional) and two irrigated using the dynamic VRI 

system described earlier (Figure 3.1). The conventional strips were irrigated using the farmer’s 

standard irrigation method which was to apply 15 mm at each irrigation event. The strips that 

were irrigated using dynamic VRI in 2019 were irrigated uniformly in 2020, and the strips 

irrigated uniformly in 2019 were irrigated using dynamic VRI in 2020 (Figure 3.1). 

Cotton was planted on May 31st in 2019 and on June 2nd in 2020. UGA Smart Sensor 

Array (UGA SSA) nodes were installed in 37 different locations in the field approximately 30 
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days after planting. The UGA SSA is a smart, wireless soil moisture sensing system that 

measures soil moisture at three depths that vary depending on the crop (Vellidis et al., 2013). A 

UGA SSA node consists of the probe used to soil moisture and the electronics package used to 

transmit the data to a cloud server. In this study, sensors were at depths of 15, 30 and 45 cm on 

the soil moisture probe. Soil moisture was measured in terms of soil water tension (SWT), which 

is an indicator of the energy a plant must expend to extract water from the soil matrix. Each IMZ 

had at least one UGA SSA node, with a total of 31 nodes installed in the VRI strips. For 

monitoring purposes, three UGA SSA nodes were installed in each of the two conventional 

strips. Nodes were installed within the row between plants about two weeks after emergence. 

Nodes were removed from the field a few days before harvest (Figure 3.2). SWT data were 

collected hourly for the duration of the growing season. 

Irrigation thresholds of 50 kPa prior to first flower and 40 kPa after first flower were used 

to initiate irrigation (Chastain et al. 2016, Meeks et al. 2017). The daily weighted average SWT 

of the three sensors at each node at 07:00 AM was used to determine if an IMZ required 

irrigation. The weighting factors used to calculate the weighted average SWT characterize the 

estimated distribution of roots at the three sensor depths.  Eq. 1 shows the weighting factors used 

after canopy closure (ACC). The dynamic VRI DST was used to determine the amount of 

irrigation water needed to bring the soil profile in that IMZ back to the desired soil moisture 
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condition using the weighted average SWT. In this study, the desired soil moisture condition was 

80% of field capacity which leaves “room” for the soil profile to absorb precipitation events. 

 

Weighted avg SWT = (0.5 × SWT at 0.15 m) + (0.2 × SWT at 0.3 m) + (0.3 × SWT at 0.45 m)  

(1) 

3.2.2. Irrigation Management Zones delineation 

 The VRI strips were divided into 25 IMZs in 2019 and 29 in 2020. The IMZ 

delineation was based on five data layers that included apparent soil electrical conductivity 

(ECa), elevation, NDVI, yield maps from previous years, and soil texture data (Figure 3.3). ECa 

was measured at 0-0.3 m (shallow) and 0-0.9 m (deep) using the Veris 3100 instrument (Veris, 

Salinas, KS, USA). Because deep ECa measurements integrate the entire root zone, deep ECa 

data were used to create an ECa map of the whole field and used as a layer for IMZ delineation in 

both years. A digital elevation model (DEM) of the field was developed from elevation data 

collected from a tractor equipped with RTK GPS with approximately 2 cm x, y, and z accuracy. 

In 2019, 75 soil core samples were collected from the field and analyzed. Each core sample was 

divided into one superficial layer of 7.6 cm and three additional layers of approximately 15 cm. 

Percent clay content from 38 to 53 cm was used to create a percent clay content map of the field 

that was used in both years to delineate IMZs. Kriging was used to interpolate between sampling 

locations. Yield and NDVI maps from 2017 were used as data layers in 2019, while in 2020, 

yield and NDVI maps from 2019 were used. PlanetScope CubeSat (Planet Labs, San Francisco, 

CA, USA) satellite images from July 2017 and July 2019 were used to develop the NDVI maps.  

The IMZ delineation process was done manually using ArcGIS (ESRI, Redlands, CA, 

USA) after visual analysis of all data layers to identify areas of variability. A manual process 
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was performed with the aim to capture as much variability as possible in the field within 

individual IMZs – something that was not achievable when using common statistical methods for 

IMZ delineation. The larger numbers of zones resulted in the installation of a dense network of 

sensor nodes in the VRI strips.  In 2020, a second IMZ map was delineated mid-season based on 

plant development maps generated before the flowering stage. 

3.2.3. Field measurements 

 Physiological measurements of cotton plants were carried out weekly from July until the 

last week of irrigation in late September in both years at the location of the UGA SSA nodes. 

There were 9 sampling days in 2019 and 10 in 2020.  Predawn LWP (LWPPD) was collected 

using a model 615 Scholander pressure chamber (PMS Instruments, Albany, OR) from two 

plants at 31 node locations in in 2019, and in all 37 nodes in 2020. Measurements were taken 

between 03:00 AM and 06:00 AM. A leaf including the petiole was cut from two plants and 

LWPPD was measured for each leaf. Selected plants were adjacent to the UGA SSA node. The 

dates of field measurements and the number of each measurement made are shown in Table 1.1. 

Plant height measured from the ground to the apical meristem was collected from five 

plants adjacent to the UGA SSA nodes. The same five plants were used throughout the growing 

season. A LI-6800 portable photosynthesis system (LI-COR, Lincoln, NE, USA) was used to 

collect midday photosynthetic assimilation rate (An) and stomata conductance to H2O (gs). Leaf 

chamber settings included a flow rate of 600 µmol s-1, reference CO2 = 400 µmol mol-1, air 

temperature = ambient temperature, relative humidity = 60 ± 15%, and chamber light intensity = 

1500 µmol m-2 s-1 photosynthetically active radiation (PAR). The leaf was clamped into the 

chamber until steady-state conditions were reached (60 to 120 seconds per sample). Midday 

measurements were performed from 11:30 AM to 2:30 PM on the fourth mainstem node below 
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the terminal for two plants adjacent to the sensor node. Because of the time needed to make these 

measurements, they were limited to the two southern strips (Figure 3.1). Measurements were 

made at 18 sensor node locations in 2019 and at 15 sensor node locations in 2020. Yield data 

was collected at the time of harvest in the whole field with a cotton picker equipped with a yield 

monitor. Yield data was cleaned and processed using ArcGIS (ESRI, Redlands, CA, USA) to 

create yield maps for both years. 

3.2.4. UAV and satellite imagery acquisition and processing 

Remote sensing data was collected in two ways. An UAV equipped with a multispectral 

camera was flown weekly on the same days as field data collection. Satellite images acquired 

from the day field data were collected and three days before and after field data were collected 

were downloaded from two different satellite system platforms. The additional days were 

downloaded to ensure the availability of a cloud-free image. Images were used to calculate a 

variety of vegetation indices (VIs). The PlanetScope satellite constellation is one of the three 

constellations operated by Planet Labs (San Francisco, CA, USA). It currently has approximately 

130 satellites imaging the earth’s land surface daily at a spatial resolution of 3.7 m and a 

temporal resolution of less than one day (Planet labs, 2020). The second satellite platform used 

was Sentinel-2 operated by the European Space Agency (ESA). Sentinel-2 is a two-satellite 

platform operating in the same orbit 180° apart providing data in 13 spectral bands with 

bandwidths ranging from 490 nm to 1375 nm. Sentinel-2 has a revisit time of 5 days and spatial 

resolution of 10, 30, and 60 m.  

PlanetScope images provide data in the blue (455-515 nm), green (500-590 nm), red 

(590-670 nm) and NIR (780-860 nm) regions of the spectrum. Surface reflectance data were 

downloaded directly from the Planet Labs website (https://www.planet.com) and a factor 

https://www.planet.com/
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(10,000) was applied to obtain correct reflectance data (Planet Labs, 2019). Sentinel-2 images 

were downloaded from the United States geological Survey (USGS) Earth Explorer website 

(https://earthexplorer.usgs.gov/) and bands 2 (490 nm), 3 (560 nm), 4 (665 nm) and 8 (842 nm) 

at 10 m spatial resolution, and 11 (1,610 nm), and 12 (2,190 nm) at 20 m resolution were used to 

calculate VIs. The Semi-Automatic Classification Plugin (SCP) in QGIS 3.14.0 (QGIS 

Development Team, 2020) was used to perform atmospheric correction on all Sentinel-2 images. 

The UAV was a 3DR Solo quadcopter (3D Robotics, Berkeley, CA, USA) equipped with 

a Parrot Sequoia (MicaSense, Seattle, WA, USA) camera that acquires images in four spectral 

bands: Green (530-570 nm), Red (640-680 nm), NIR (770-810 nm) and Red Edge (730-740 nm). 

UAV flights were performed at 120 m altitude with 75% front and side lap resulting in a 

resolution of approximately 12.5 cm per pixel. UAV image processing was performed using 

Pix4Dmapper software (Pix4D SA, Lausanne, Switzerland) version 4.4.12. Single images were 

stitched to create reflectance map mosaics of all four bands. During the stitching process, 

geographic correction was performed using six ground control points with known coordinates 

distributed around the perimeter of the field. Calibration panel images taken after each flight 

were used to perform radiometric calibration of the final reflectance maps. 

ArcGIS (ESRI, Redlands, CA, USA) software was used for remote sensing data 

extraction. Images from the UAV and satellite platforms were used to calculate the VIs shown in 

Table 3.2 that were selected based on their ability to quantify specific plant growth parameters. 

The VIs used were also a function of the spectral bands available. Average VI values were 

extracted from the 10 m radius area around each soil moisture sensor node and from the 

delineated IMZs. A 5 m buffer was created between zones, and images from all 3 platforms were 

overlapped to minimize potential data extraction errors due to geographic accuracy.  Pearson 

https://earthexplorer.usgs.gov/
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correlation (p<.0001) was used to study correlation between VIs and LWP and plant height, and 

a sigmoid curve with 4 parameters was used to explore VIs response to changes in plant height 

during the whole season.  

3.3. Results and Discussion 

3.3.1. Meteorological data 

The two growing seasons that were included in this study presented sharply differing 

weather conditions (Figure 3.4). Precipitation during the 2019 growing season was 485 mm and 

skewed towards the beginning of the growing season. Precipitation was higher and more evenly 

distributed during the 2020 growing season with 699 mm received. In 2020, the field received 

180 mm of precipitation from planting to first flower, 394 mm from first flower to first open 

boll, and 125 mm from first open boll to harvest. In 2019, precipitation was similar from planting 

to first flower (165 mm), 206 mm from first flower to first open boll, and an extended period 

without any precipitation in September and October. In the last weeks before harvest, 114 mm of 

precipitation were observed. Cotton plants’ sensitivity to water stress increases during squaring 

(Wrona et al., 1999) and reaches its maximum during the flowering stage (Snowden et al., 2014). 

Consequently, without irrigation, cotton would have experienced significant stress during the 

latter part of the 2019 growing season. 

Minimum and maximum temperatures were similar during the first three months of the 

season in both years. Maximum temperatures from June to September in 2019 were 33.6 °C with 

the highest average temperatures in September (34.4 °C). During 2020, maximum temperature 

for the same period averaged 32.3 °C with the warmest temperatures observed in August. 

October was the coolest month in both years with minimum and maximum temperatures of 16.9 

and 29.4 °C in 2019 and 12.1 and 24.7 °C in 2020.  
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3.3.2. Spatial and temporal variability in SWT and crop parameters 

Figure 3.5 shows the season-long SWT, LWPPD, An, and gs distributions among the IMZs 

delineated in 2019 and 2020. Data analysis was divided into before canopy closure (BCC) and 

after canopy closure (ACC) due to saturation of the NIR-based indices at full canopy (Hunsaker 

et al. 2003) and the differences in the cotton plant physiological responses between the 

vegetative and reproductive stages.  

3.3.2.1. 2019 

In 2019, five field-measurement days took place during the BCC period and four during 

the ACC period (Figure 3.5a). Canopy closure was achieved approximately 100 days after 

planting (DAP) between the last week of August and first week of September. All four 

measurements exhibited within-season and within- and between-zone variability. SWT was 

significantly higher ACC than BCC. During early plant development, the soil profile in IMZs 1, 

4, 6, 7, 10, 12, 15, 17, 20 and 25 maintained adequate soil moisture from precipitation alone with 

SWT values averaging 33 kPa. As indicated earlier, the pre-bloom irrigation scheduling 

threshold was 50 kPa. Zone 7 was drier with an average SWT of approximately 70 kPa despite 

irrigation. The highest within-zone variability in soil moisture was observed in zones 3, 5, 8, 18, 

23 and 24. The SWT in these zones varied by more than 80 kPa suggesting that for one or more 

days during pre-bloom, rainfall and irrigation together were not sufficient to keep the soil profile 

within the desirable SWT range. This is indicative of sandier soils where SWT can increase 

sharply because of the soil’s low water holding capacity. SWT greater than 70 kPa at the pre-

bloom stage may result in slower plant growth and significant yield loss (Collins et al., 2011; 

Meeks et al. 2017). The remaining IMZs exhibited moderate variability with SWT values all 

below 70 kPa, indicating that in these zones soil moisture was adequate to ensure good growth.  
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With the onset of the reproductive stage, cotton slows its vegetative growth but increases 

its water requirements. As indicated earlier, the irrigation threshold during the reproductive stage 

is 40 kPa. Increased water demand coupled with decreased rainfall from September onwards 

should have resulted in more irrigation. Instead, the grower who managed this field decreased the 

frequency of irrigation because of disease pressure caused by the frequent rains earlier in the 

season. As a result, during the latter half of the reproductive period, soils were drier and higher 

SWT was recorded in most of the field. Of the 25 IMZs, only zones 4 and 25 had average SWT 

below 40 kPa ACC. There was high soil moisture variability between these zones at this stage, 

and high within zone variability in at least 12 IMZs with SWT values varying from 40 to 60 kPa. 

Spatial and temporal variability was also seen in the plant’s physiological indicators. 

There was a significant decrease in LWPPD inverse of the trend shown by the SWT data with a 

strong negative correlation between these two variables. Prior to bloom, LWPPD in all zones 

varied between 0 and -0.6 MPa which is above the threshold (-0.8 MPa) for mainstem growth 

inhibition (Chastain et al. 2016). ACC, LWPPD values decreased significantly below -0.6 MPa 

displaying varied levels of stress. The same trends were observed in stomatal conductance and 

photosynthetic assimilation rate. The water stress observed after bloom caused a decrease in gs 

that in turn affected the An. The largest difference in average assimilation rate was observed 

between zones 20 and 23 with values of 30.8 and 14.5 µmol m-2s-1, respectively. Turner et al. 

(1986) observed a decrease in photosynthetic rates of 20 µmol m-2s-1 when LWP decreased from 

-0.4 to -1.6 MPa. The changes in photosynthetic rates were associated with decreased leaf 

conductance. 
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3.3.2.2. 2020 

In 2020, new IMZ boundaries were delineated at the end of the vegetative stage based on 

predicted plant height map. At the ACC stage IMZ boundaries followed map 2 (Figure 3.5 (b)). 

Soil moisture was consistently higher during 2020 growing season than the 2019 growing season 

(Figure 3.5b).  This was especially true for ACC. In contrast to 2019, SWT between- and within-

zone variability was higher BCC with zones 1, 3, 6, 7, 9, 14, 17 22, and 24 showing values at 

field capacity or below with little change over time, and zones 23, 27 and 28 showing a greater 

range of values from wet soil (< 33 kPa) to very dry soil (>100 kPa). During September and 

October 2020, there were frequent precipitation events associated with tropical storms which led 

to very low SWT values in all IMZs (Figure 3.5b). This was reflected in the physiological 

measurements. LWP, gs and An were similar to 2019 BCC but much higher ACC. Although the 

measurements were higher ACC in 2020 than in 2019, in some areas of the field, the plants were 

damaged from the high winds associated with the tropical storms and this likely depressed the 

photosynthetic rate.    

3.3.3. Relationships among yield, plant height, SWT and physiological parameters  

Regression analyses were used to evaluate the relationship between soil moisture and 

plant water status and how the water status related to leaf stomatal conductance and assimilation 

rate of CO2 in both years. Second-order polynomial regressions were developed between SWT, 

LWPPD, An, and gs (Figure 3.6). Average values of the measurements taken at each sensor node 

at each sampling date were used in all regressions. Measurements were taken at 31 nodes on 9 

dates in 2019 and 37 nodes on 10 dates in 2020. A strong non-linear relationship (R2= 0.7, 

p<.0001) between SWT and LWPPD was observed in 2019. A strong non-linear relationship was 

also observed between LWPPD and An (R
2= 0.62, p<.0001) and gs (R

2= 0.60, p<.0001). In 2020, 
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relationships between SWT and LWPPD, LWPPD and An, and LWPPD and gs were all weak with 

coefficients of determination of 0.07, 0.18 and 0.12, respectively.  This is primarily because the 

measurements were relatively consistent in 2020 because the soil moisture did not vary as much 

as in 2019. The data point cluster observed in the regression between SWT and LWPPD when 

SWT values were low may be related to the inability of the soil moisture sensors used in the 

UGA SSA probes to accurately measure SWT at near saturation conditions. 

The difference in the relationship between LWPPD and the other two physiological 

parameters indicated a limiting effect of varying degrees of water stress in the cotton 

photosynthetic rate in 2019. The absence of water stress in 2020 indicated that the variability in 

gs and An were caused by other factors. In addition, most data points furthest from the curve in 

2019 were from plots 22, and 23 that were located in the lower eroded parts of the field where 

plant growth was limited.  

Higher average plant growth was generally observed in IMZs that received a higher total 

amount of water during the growing season except for IMZs located in eroded areas of the field 

(see Figure 3.1). In these areas, plant growth was limited irrespective of the amount of water 

received. In 2019, IMZs that received less than 700 mm of precipitation and irrigation presented 

an average height of 1.07 m, while IMZs that received more than 700 mm of water had an 

average height of 1.14 m. In 2020, all IMZs received a total water amount higher than 700 mm. 

IMZs with average total water between 700 and 750 had an average height of 0.87 m, and IMZs 

that received more than 750 mm had an average height of 0.99 m.  

Plant height averages from each IMZ for the entire growing season were plotted against 

final yield (Figure 3.7) to determine the relationship between the two variables. In 2019, a strong 

relationship between height and yield was observed (R2 = 0.65, p<.0001) with taller plants 
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achieving higher yields. A weaker relationship was observed in 2020 (R2 = 0.56, p<.0001) due to 

a decreased yield observed in plants taller than 1 m. The decrease in yield can be attributed to the 

damage caused in the plants during the tropical storms. Taller plants suffered from strong winds 

were blown over and lodging was observed in these areas of the field.  As a result, these plants 

were not harvested as efficiently. High soil moisture may also have resulted in additional 

vegetative growth. In spite of a weaker relationship in 2020, results from this study were similar 

to those of Sui et al. (2013) in which they observed higher plant heights and yield in plots with 

more available water (irrigated) when compared to dryland.  

3.3.4. Comparison of VIs, plant height and LWPPD 

Pearson’s correlation was used to compare the response of VIs developed from UAV 

imagery to plant height for 2019 and 2020 (Table 3.3). The overall correlation of the entire 

season indicated that all VIs showed high positive correlation with plant height during both 

years. GNDVI had the strongest overall correlation with values of 0.72 (p<.0001) and 0.84 

(p<.0001) for 2019 and 2020, respectively, followed by CIgreen with values of 0.72 (p<.0001) 

for 2019, and 0.82 (p<.0001) for 2020. The lowest overall correlation observed in both years was 

between plant height and GRVI with values of 0.51 (p<.0001) in 2019, and 0.70 (p<.0001) in 

2020. Within-season correlations from 60 to 77 days after planting (DAP) in 2019, and from 64 

to 71 DAP were the highest with all values above 0.7 (p<.0001). VIs developed from 

PlanetScope images showed similar correlations to plant height as VIs from the UAV. However, 

due to lower spatial resolution UAV results were preferred.   

Overall VI values calculated from UAV, PlanetScope and Sentinel-2 were correlated with 

LWPPD measurements in both years (Table 3.4). The majority of VIs had significant correlation 

with LWPPD except GRVI, OSAVI and NLI calculated from UAV images in 2019 and CIgreen 
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and GNDVI calculated from Sentinel-2 images in 2020. Although significant, correlations were 

weak to moderate for the majority of indices from the three remote sensing platforms. The 

strongest correlations were observed in 2019 for CIgreen and GNDVI (-0.63 and -0.61, p<.0001, 

respectively) calculated from Sentinel-2 images, followed by GBNI (-0.56, p<.0001) calculated 

from Planet Scope, NDVI (-0.55, p<.0001), OSAVI and NLI (-0.52, p<.0001), NDWI (-0.49) 

and NMDI (-0.47, p<.0001) from Sentinel- 2. In 2020 only OSAVI (-0.49, p<.0001) calculated 

from PlanetScope and GBNI (0.42, p<.0001) calculated from Sentinel-2 showed moderate 

correlation with LWPPD.  

 In contrast to the results from this study, Beeri et al. (2018) found that GBNI, NDWI and 

NMDI were strongly correlated with LWP (R 2 = 0.71, 0.71, 0.53 p<.0001, respectively) in 

cotton fields in Israel and Australia. The higher correlations in the Beeri et al. (2018) study can 

be attributed to the fact that LWP values were collected from the wettest and driest parts of the 

field, while in the current study, LWP data from the whole field were used independently of the 

level of stress. The low LWPPD can also explain why correlations were low in 2020 across 

almost all VIs analyzed. Additional results from Beeri et al. (2018) reported strong correlations 

between LWP and vigor VIs such as NDVI (R 2 = 0.69), which corroborates present results. The 

correlations observed in this study were not strong enough to develop LWP prediction models 

with high accuracy.  This is likely because the range of LWPPD measured was small compared to 

studies conducted in semiarid or arid environments. 

3.3.5. Plant height prediction 

A strong positive relationship between plant height and GNDVI was observed in both 

years, with GNDVI values increasing with increased plant growth. A logistic model was used to 

quantify this relationship (Figure 3.8). Plant height prediction using GNDVI was better in 2020 
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with an R2 value of 0.72 and RMSE of 15.27. In 2019, the weaker relationship between the two 

variables was most likely caused by the higher number of dates collected at the end of the season 

when increased assimilate demands by the fruit causes vegetative growth to significantly 

decrease or to cease completely (Wells et al., 2010). Therefore, changes in the VI values at this 

stage are not associated with plant growth. 

Lower and upper asymptote parameters in 2019 ranged from 40.07 to 147.48 and from 

44.08 to 123.72 in 2020, while the inflection point in both years was at 0.74 in 2019, and 0.72 in 

2020. The similar lower asymptote indicated that GNDVI and plant height have a weak 

relationship when the crop is in the initial development stage and would not result in a high 

accuracy prediction model, once changes in plant growth at this stage are not detected by 

GNDVI. Similar analysis can be made when plant height was higher than 147.48 in 2019, and 

123.72 in 2020. The upper asymptote represented the point of saturation, in which the VI was not 

able to sense the small changes in height. The range between lower and upper asymptotes 

represents the period in which it would be more suitable to predict plant height using UAV. The 

point of highest increase in growth is represented by the inflection point when GNDVI values 

were around 0.74 and 0.72 in 2019 and 2020, respectively. Based on results, the most indicated 

period to the development of height prediction models for IMZ delineation would be between 60 

and 80 days after planting. Similar results were observed by Raper & Varco (2015). NDVI and 

GNDVI showed a strong relationship with plant height during the period from bud formation to 

first flower, which commonly occurs around 60 to 70 days after planting (Robertson et al., 

2007). 

In 2020, a predicted plant height map was created using a linear model fitted between 

GNDVI and measured plant height at 64 DAP (Figure 3.9). A strong relationship between the 
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two variables (R2 =0.72, p<.0001) was observed in this period, as indicated by the logistic model 

(see Figure 3.8), with a root mean square error (RMSE) of 11.2 cm. The predicted map (Figure 

3.10a) shows great similarity to the final yield map (Figure 3.10b). A strong non-linear 

relationship (R2 =0.58, p<.0001) was observed between zones height and yield averages. This 

relationship increases to 0.77 when zones 15, 19 and 23, that did not follow the same 

relationship, are excluded from the regression.  

The correlation between plant growth and LWPPD and between plant growth and cotton 

yield can serve as an indicator of plant status at the beginning of the season during the vegetative 

stage and enable the delineation of new IMZs that address temporal changes caused by the 

interaction of plant, soil, and environment. 

3.3.6. Comparison between irrigation methods 

The precipitation difference between the two growing seasons can be illustrated by the 

difference in irrigation applied and irrigation events (Table 3.5). A total of 7 irrigation events 

occurred in 2019 to compliment the 485 mm of precipitation. Irrigation was triggered mainly 

during September when precipitation was low. The VRI strips received an average of 86 mm of 

water from irrigation and an average of 87 mm was prescribed to the uniform strips. As 

described earlier, in 2019, the crop experienced water stress in September and October as the 

grower reduced the frequency of irrigation because of disease pressure (see Figure 4). Although 

there were no significant differences in the overall water applied across the field, the amount of 

water applied to individual IMZs differed at every irrigation event and was determined by the 

dynamic VRI DST. The average yield for the conventional strips was 1890 kg ha-1 while yield of 

the VRI strips averaged 1794 kg ha-1 which is a 5.21% difference in yield. IWUE for the VRI 

strips was 20.74 kg/mm and 21.67 for the conventional. This finding contradicts other dynamic 
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VRI studies conducted in southern Georgia where applying the UGA SSA-based dynamic VRI 

system to peanut resulted in yield increases of up to 4% and IWUE gains of up to 40% (Liakos et 

al., 2017). The lower dynamic VRI yields may have been affected by the IMZs the included a 

highly eroded area of the field (Figure 1) and where yields in 2019 were very low (Figure 2). 

Because there were regular precipitation events throughout the 2020 growing season, the 

field was irrigated only four times, three of which took place in October. The dynamic VRI 

system prescribed an average irrigation amount of 51 mm while the conventional irrigation 

applied and average of 58 mm. Average yield for VRI and conventional was 1,248 and 1,191 kg 

ha-1, respectively. In 2020, the VRI system resulted in an average yield 4.6% higher than 

conventional irrigation, while applying 14.0% less water. IWUE was 24.57 kg/mm in the VRI 

and 20.39 kg/mm in the conventional strips. As in 2019, the average yields may be affected by 

the highly eroded area in the field. 

3.4. Conclusion 

Results from this study show that management zones change spatially and temporarily 

(within and between growing seasons). This temporal variation within a growing season caused 

by the interaction of soil, plant and environment can be addressed by monitoring plant growth 

patterns and physiological responses. Remotely sensed data in the visible and NIR regions of the 

spectrum can be used in the form of VIs to estimate plant height in cotton with high accuracy 

between 50 and 80 days after planting when cotton plants are close to the flowering stage. The 

ability to predict plant height for the whole field at high spatial resolution facilitates the 

identification of cotton growing patterns in the field during crop development. IMZ boundaries 

can then be adjusted according to within season plant feedback during the vegetative stage. 
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Results showed that VIs were also significantly correlated with LWP however, the correlations 

observed were not strong enough to develop LWP prediction models with high accuracy.  

The 2019 and 2020 growing seasons were used to evaluate the potential advantages for 

Georgia cotton growers to irrigate using variable rates that respond in real time to crop 

requirements. The second year of the study (2020) was used to evaluate the feasibility of using 

multispectral images to delineate dynamic IMZs if and when needed. Although in this field, soil 

and landscape variability play a major role in affecting yield, results from the second year 

suggest that VRI can help reduce the amount of water applied without decreasing yield and 

consequently increasing irrigation water use efficiency.  

Further research is needed to explore the advantages of VRI and the delineation of IMZs 

that change during the season. The relationship between visible and Infrared-based VIs and water 

status needs to be further evaluated. A larger data set from different fields exposed to different 

conditions can help test stability of these correlations. The potential of estimating LWP from 

remotely sensed multispectral data can make dynamic IMZ delineation feasible provided that 

images are available at low cost for use by farm consultants.  
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TABLES AND FIGURES 

 

Table 3.1. Sampling dates and number of physiological parameter measurements made per 

date. 

Sampling 

Date 

DAP Canopy 

Status 

Number of Measurements per Sampling Date 

LWPPD Plant Height An gs 

2019      

30 Jul 60 BCC 31 31 18 18 

07 Aug 68 BCC 31 31 18 18 

16 Aug 77 BCC 31 31 18 18 

21 Aug 82 BCC 31 31 18 18 

28 Aug 89 BCC 31 31 18 18 

05 Sept 99 ACC 31 31 18 18 

11 Sept 103 ACC 31 31 18 18 

19 Sept 111 ACC 31 31 18 18 

27 Sept 119 ACC 31 31 18 18 

       

2020       

15 Jul 43 BCC 37 37 15 15 

22 Jul 50 BCC 37 37 15 15 

31 Jul 59 BCC 37 36 0 0 

05 Aug 64 BCC 37 37 15 15 

12 Aug 71 BCC 37 37 15 15 

26 Aug 85 BCC 37 37 15 15 

02 Sept 92 ACC 37 37 15 15 

09 Sept 99 ACC 37 37 15 15 

23 Sept 113 ACC 37 36 15 15 

30 Sept 120 ACC 37 37 15 15 
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Table 3.2. Vegetation indices calculated from UAV, PlanetScope and Sentinel-2 images. 

VI Formula Reference 

UAV, PlanetScope and Sentinel-2 

CIgreen (NIR / Green) -1 Gitelson et al. (2003) 

GNDVI (NIR – Green) / (NIR + Green) Gitelson et al. (1996) 

GRVI (Green - Red) / (Green + Red) Tucker (1979) 

NDVI (NIR – Red) / (NIR + Red) Rouse et al. (1974) 

OSAVI (1 + 0.16) (NIR – Red) / (NIR + Red +0.16) Rondeaux et al. (1996) 

NLI (NIR2 – Red) / (NIR2 + Red) Goel and Qin (1994) 

PlanetScope and Sentinel-2 

GBNI ( Green – Blue) / ( Green + Blue) Beeri et al. (2018) 

Sentinel-2 

NDWI (NIR – SWIR 11)/(NIR+SWIR 11) Gao et al.( 1996) 

NMDI 
NIR – (SWIR 11 - SWIR 12) / NIR + (SWIR 11 - 

SWIR 12) 
Wang and Qu (2007) 

 

Table 3.3. Pearson (p<.0001) correlation between plant height and VIs developed from UAV 

imagery.  

 ----- 2019-----  

VI 
DAP  

60 68 77 82 89 99 103 - 119 Overall 

CIgreen 0.85 0.80 0.72 0.62 0.55 0.59 0.39 - 0.64 0.72 

GNDVI 0.86 0.80 0.72 0.62 0.53 0.62 0.43 - 0.65 0.72 

GRVI 0.79 0.80 0.83 0.77 0.65 0.73 0.59 - 0.78 0.51 

NDVI 0.87 0.82 0.81 0.73 0.60 0.70 0.49 - 0.72 0.70 

OSAVI 0.87 0.82 0.78 0.71 0.67 0.72 0.44 - 0.71 0.61 

NLI 0.87 0.82 0.79 0.72 0.66 0.73 0.46 - 0.71 0.61 

 ----- 2020 -----  

VI 
DAP  

43 50 64 71 85 92 - 113 120 Overall 

CIgreen 0.59 0.65 0.72 0.74 0.57 0.49 - 0.73 0.79 0.82 

GNDVI 0.60 0.66 0.75 0.76 0.61 0.56 - 0.74 0.65 0.84 

GRVI 0.44 0.45 0.78 0.79 0.36 0.71 - 0.55 0.71 0.70 

NDVI 0.71 0.60 0.80 0.75 0.58 0.58 - 0.68 0.65 0.80 

OSAVI 0.70 0.64 0.76 0.78 0.50 0.53 - 0.63 0.66 0.77 

NLI 0.67 0.64 0.79 0.79 0.55 0.59 - 0.66 0.72 0.80 
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Table 3.4. Pearson correlation (p<.0001) between UAV and satellite-based VIs and 

predawn LWPPD. 

VI 
--UAV-- --PlanetScope-- --Sentinel-2-- 

2019 2020 2019 2020 2019 2020 

CIgreen -0.26 -0.24 -0.37 -0.46 -0.63    -0.07ns 

GNDVI -0.30 -0.24 -0.40 -0.37 -0.61    -0.12ns 

GRVI 0.11ns -0.30 -0.29 -0.45 -0.38 -0.21 

NDVI -0.19 -0.25 -0.40 -0.41 -0.55 -0.15 

OSAVI 0.02ns -0.28 -0.37 -0.49 -0.52 -0.23 

NLI -0.01ns -0.28 -0.37 -0.46 -0.52 -0.20 

GBNI - - 0.26 -0.56  0.37  0.42 

NDWI - - - - -0.49 -0.22 

NMDI - - - - -0.47 -0.25 
ns not significant  

Table 3.5. Irrigation amounts, final cotton yield and irrigation water use efficiency for VRI and conventional 

irrigation treatment in 2019 and 2020.  

Irrigation 

2019 2020 

Yield 

(kg ha-1) 

Irrigation 

(mm) 

IWUE 

(kg/mm) 

Irrigation 

events 

Yield 

(kg ha-1) 

Irrigation 

(mm) 

IWUE 

(kg/mm) 

Irrigation 

events 

VRI 1,794 86.5 20.74 
7 

1,248 50.8 24.57 
4 

Conventional 1,890 87.2 21.67 1,191 58.4 20.39 
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Zones Height (cm) Zones 
Yield 

(kg/ha) 

25 82.9 9 869.0 

7 85.6 25 873.0 

9 85.7 15 956.9 

14 87.5 7 1041.0 

4 88.1 14 1068.5 

1 88.4 16 1106.2 

24 88.7 1 1131.9 

19 89.1 24 1160.2 

28 90.2 5 1192.4 

15 90.2 4 1200.6 

23 91.0 29 1208.5 

27 91.1 27 1213.3 

16 91.4 28 1221.7 

17 91.7 2 1256.1 

29 91.8 13 1280.5 

22 91.8 17 1325.5 

21 92.0 21 1332.2 

20 92.0 20 1333.6 

26 92.2 6 1355.3 

5 92.2 11 1360.3 

8 92.4 3 1360.7 

13 92.6 8 1372.2 

18 92.7 10 1381.9 

2 93.4 18 1382.4 

12 93.6 12 1403.6 

11 94.0 26 1408.9 

3 94.5 19 1417.3 

6 95.2 22 1452.1 

10 95.7 23 1521.5 

Table 3.6. Irrigation management zones (IMZs) average plant 

height and yield. IMZs are listed in order of lowest to highest 

for both variables.  
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Figure 3.1. Field location and conventional and VRI 

strips layout in 2019 and 2020. Location of soil moisture 

sensors, IMZs delineated and 10 m radius circle plots 

around sensor  location. In 2019 and 2020, IMZ maps 

shown are the initial IMZ developed. Second IMZ map 

created in 2020 is shown in the results section. 
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Figure 3.2. Field installation of UGA Soil Sensor Array (SSA) node.  
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Figure 3.4. Weather conditions in the field during the growing seasons. Precipitation data and 

minimum and maximum temperature from (a) 2019 and (b) 2020.  

Figure 3.3. Data layers used for IMZ delineation in (a) 2019 and (b) 2020.  
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Figure 3.5. SWT and physiological parameters distribution in two different stages (BCC and 

ACC) among the IMZs delineated in (a) 2019, and (b) 2020. In 2020, data at the ACC stage 

refers to IMZ map 2, when IMZ boundaries was adjusted based on predicted crop height map. 
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Figure 3.6. Relationship between plot SWT, and LWPPD (2019; n = 279, 2020; n = 370), 

LWPPD (2019; n = 162, 2020; n = 135) and An, and LWPPD and gs (2019; n = 162, 2020; n = 

135) for cotton grown in (a) 2019 and (b) 2020. 

Figure 3.7. Relationship between plant height plot averages and end of the season yield for 

a) 2019 and b) 2020. 

a)                  b) 
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Figure 3.8. Logistic (sigmoid) curve of plant height response to GNDVI in 2019 and 2020. 

Plant height plot measurements and GNDVI plot averages were used to build model (2019; n 

=229, 2020;n = 290). 

Figure 3.9. Development of predicted plant height using linear 

regression model between GDNVI and measured plant height. 
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Figure 3.10. Second IMZ map delineated based on b) predicted height and IMZs boundaries 

over c) final cotton yield map. Quantile classification method was used in both maps. 

a)                b) 
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CHAPTER 4 

FIELD SCALE ASSESSMENT OF THE TsHARP TECHNIQUE FOR THERMAL 

SHARPENING OF MODIS SATELLITE IMAGES USING VENµS AND SENTINEL-2 

DERIVED NDVI3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3 Lacerda, L., Cohen, Y., Snider, J., Huryna, H., Liakos, V., and Vellidis, G. To be submitted to Remote Sensing 

MDPI. 
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Abstract 

Remotely sensed-based surface temperature is an important tool for crop monitoring and has 

great potential for improving irrigation management. However, current thermal satellite 

platforms do not display the fine spatial resolution required for identifying crop water status 

patterns at the field scale. The thermal sharpening (TsHARP) utility provides a technique for 

downscaling coarse thermal images to match the finer resolution of images acquired in the 

visible and near infrared bandwidths. This sharpening method is based on the inverse linear 

relationship between vegetation fraction calculated from the normalized difference vegetation 

index (NDVI) and land surface temperature (LST). The current study used the TsHARP method 

to sharpen low-resolution thermal data from the Moderate Resolution Imaging Spectrometer 

MODIS (1 km) to the finer resolution of Sentinel-2 (10 m) and Vegetation and Environment 

New micro-Spacecraft (VENµS) (5 m) visible-near infrared images. The sharpening 

methodology was evaluated at scene and field scales in southern Georgia and northern 

Mississippi, USA. A comparison of sharpened temperature was made with reference 

temperatures from Landsat-8 Operational Land Imager (OLI) in four different spatial resolutions 

(30, 60, 120, and 240 m) for method validation. Coarse resolution comparison on the dates in 

which imagery from both sensors were acquired on the same day resulted in average observed 

mean absolute error (MAE) of 1.63 °C, and R2 variation from 0.34 to 0.74. Temperature errors at 

the field scale ranged from 0.25 to 3.11 °C using both Sentinel-2 and VENµS. Sharpened maps 

at 120 and 60 m resolution showed the highest consistency for all fields and dates. Maps 

sharpened using VENµS images showed comparable or higher accuracy than maps sharpened 

using Sentinel-2. The superior performance coupled with the better revisit time indicates that the 

VENµS platform has high potential for frequent in-season crop monitoring. Further research 



 

123 

with ground data collection is needed to explore field use limitations of this methodology, but 

these results give useful insights of potential benefits of implementing the TsHARP technique as 

a tool for crop stress monitoring.  

4.1. Introduction 

 Thermal remote sensing uses thermal infrared (TIR) bands in the 8 to 14 µm region of the 

electromagnetic spectrum in which atmospheric absorption effects are attenuated (Ishimwe et al. 

2014). At the molecular level, plant absorption in the TIR bands is influenced by the absorption 

properties of leaf tissues driven by molecular vibration (Ribeiro da Luz et al. 2006). At the 

physiological level, absorption is directly influenced by the transpiration rate (Hsiao 1973). In 

drought conditions, plants that exhibit isohydric behavior tend to close their stomata to maintain 

leaf water potential (LWP). This decreases their transpiration rate significantly, leading to an 

increase in leaf temperature (Bodner et al. 2015). The direct relationship between changes in leaf 

temperature resulting from changes in LWP makes TIR bands more sensitive to detecting water 

stress than other regions of the electromagnetic spectrum. Because of this, thermal imagery has 

become increasingly important in monitoring of water status for irrigation management 

(Falkenberg et al. 2007) in crops such as coffee (Costa et al. 2020), cereals (Panigada et al 2014), 

Elsayed et al. 2017), and soybean and cotton (O’Shaughnessy et al. 2011). 

 Thermal infrared temperature maps can be used to estimate LWP and create LWP maps 

at the field scale. In turn, the LWP maps may be used to delineate LWP-based irrigation 

management zones (IMZs) for site-specific irrigation (Cohen et al. 2017b). The spatial resolution 

of currently available satellite-based thermal imagery is not fine enough to identify crop water 

status patterns at the field scale. Satellite platforms such as Terra MODIS (Moderate Resolution 

Imaging Spectroradiometer) and NOAA-AVHRR (National Oceanic and Atmospheric 
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Administration–Advanced Very High-Resolution Radiometer) have a very high temporal 

resolution (1 day), but a coarse spatial resolution of 1 km (Agam et al. 2007b). Conversely, 

Landsat Thematic Mapper—TM, Landsat Enhanced Thematic Mapper Plus—ETM+, and 

Landsat Operational Land Imager—OLI, have higher spatial resolution of 120, 60, and 100 m 

respectively, but a low revisit time of 16 days. While Landsat datasets have a finer resolution, its 

low temporal resolution is not adequate for frequent monitoring required during the growing 

season for irrigation decisions. The occurrence of clouds can further decrease the availability of 

usable images. 

 To address this tradeoff problem between low-resolution images with high revisit time 

and high-resolution images with low revisit time, sharpening methodologies to downscale TIR 

coarse resolution have been proposed (Cohen et al. 2017a). These techniques to disaggregate 

land surface temperature (LST) are found in the literature under a variety of terms, such as 

thermal sharpening, subpixel temperature estimation, downscaling LST, component temperature 

retrieval, spatial enhancement of LST, and others (Zhan et al., 2013), but they can be classified 

into two main categories, called temperature unmixing and thermal sharpening. The main 

difference between these two groups is that in temperature unmixing, the goal is to decompose 

the coarse mixed pixel temperature into its existing elements through temporal, spatial, and 

spectral observations, while thermal sharpening aims to enhance the thermal image by exploring 

the correlation between LST and auxiliary data such as vegetation cover (Bisquert et al. 2016). 

 Thermal sharpening is the category most frequently used for downscaling thermal 

images. One of the earliest works using spatial sharpening dates back to 1985, wherein Landsat-4 

Thematic Mapper (TM) thermal imagery was sharpened to 30 m resolution using a multiband 

least squares method (Tom et al. 1985). This approach was possible due to the high correlation 
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between the TM bands in agricultural scenes. A thermal image estimate was created using a 

coefficient predicted from Landsat-4 TM visible and infrared bands that was then used to 

enhance the spatial resolution on the original thermal band. 

 Over the last 30 years, a variety of new sharpening algorithms have been suggested 

including the thermal sharpening (TsHARP) technique that was improved from the 

Disaggregation procedure for radiometric surface temperature (DisTrad) algorithm developed by 

Kustas et al. (2003). The DisTrad method uses the relationship between radiometric surface 

temperature and the Normalized Difference Vegetation Index (NDVI) to disaggregate 

temperature data at the NDVI finer image resolution. The NDVI resolution is first aggregated to 

the coarser resolution of the brightness temperature (BT) image and a second degree polynomial 

least-squares regression is fitted between the two variables. In this study, airborne images were 

used to estimate temperatures over the southern Great Plains by sharpening MODIS images to 

200 m and provided temperature errors of ~1.5 °C. Agam et al. (2007b) proposed an 

improvement from the DisTrad algorithm by using vegetation fraction as the dependent variable 

instead of NDVI. Different types of land cover in a scene can cause increased number of outliers 

in the two ends of NDVI values. 

 A summary study published in 2013 (Zhan et al. 2013) indicated that Landsat TM and 

Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were the 

satellite platforms most frequently used for LST disaggregation. At the time, MODIS was a 

much younger platform, and since then has become widely utilized in downscaling approaches 

due to the high temporal frequency in which images are made available. With MODIS images 

collected on a daily basis, the availability of datasets for sharpening during the growing season 

depends on the satellite platforms used to derive visual and NIR (VNIR) data. Landsat 7 ETM+ 
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(Bisquert et al. 2016, Bindhu et al. 2013) and Landsat-8 OLI (Wang et al. 2020) ] are commonly 

used to build the LST-NDVI regression and can generate roughly two sharpened images. 

Sentinel-2 has a higher revisit time and offers the potential of more sharpened images during the 

season. Clouds may greatly reduce the availability of useable images, especially in areas with 

frequent cloud cover. 

 Sentinel-2 is a two-satellite platform operated by the European Space Agency (ESA) as 

part of the Copernicus earth observation program which became operational (Huryna et al. 2019) 

in 2015. The two satellites are in the same orbit but spaced 180° apart. They provide data in 13 

different spectral bands (443–2190 nm) with spatial resolutions of 10, 30, and 60 m and a revisit 

time of 5 days. Sanchez et al. (2020) used Sentinel-2 VNIR data to sharpen MODIS images to a 

10 m resolution over experimental fields in southeastern Spain. Over a period of 2 months, they 

sharpened LST images on 6 different days. 

 In 2017, a super-spectral micro-satellite resulting from a partnership between the Israel 

Space Agency (ISA) and the French National Centre for Space Studies (CNES) was launched 

(Ferrier et al. 2010, VENµS, 2020). The Vegetation and Environment New micro-Spacecraft 

(VENµS) was intended to increase land data acquisition to, among other purposes, improve 

modeling of vegetation processes. This minisatellite has a revisit time of 2 days, a spatial 

resolution of 5.3 m, and a spectral resolution of 12 bands (420–910 nm). Although the unique 

features of this low-orbit satellite show great potential for increased dataset frequency, to our 

knowledge, no studies have explored the use of VENµS in thermal sharpening methodologies. 

 The majority of sharpening studies cited above explored the use of sharpening for large 

scene scales. However, very few studies have been conducted exploring the feasibility of using 

this technique in crop fields to aid in management decisions. In this context, the main goal of this 
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work was to assess the use of the TsHARP technique to sharpen MODIS images using Sentinel-2 

and VENµS in the southeastern USA at field scale and to assess if sharpened images have the 

potential to be used at the field scale for delineating irrigation management zones (IMZs) for 

variable rate irrigation in cotton. Applying this technique to this region is especially challenging 

because of frequent cloud cover during the growing season. The TsHARP use at scene scale was 

also assessed. Specific objectives were to compare the performance of the TsHARP technique 

using data from the two satellite platforms on overlapping dates. 

4.2. Materials and Methods  

4.2.1. Study Sites 

 This study was conducted in three different locations of the southeastern USA in which 

cotton is an important crop (Figure 4.1) using imagery from the 2019 growing season. The first 

and second study sites are located in southwestern Georgia and centered around 84°44′28 W, 

31°11′28″ N, and 84°33′7″ W, 31°26′42″ N. The third study site is located in northeastern 

Mississippi centered around 88°51′42″ W, 34°31′58″ N. The Miller County scene (hereafter 

referred as to scene 1) is mostly composed of cotton fields, followed by woody wetlands, pine 

forest, and peanut fields. Land cover in scene 2, located in Baker County, Georgia, was 40% 

woody wetlands followed by pine forest, and cotton and peanut fields. The land cover in scene 3, 

located around Union County, Mississippi, was composed mostly of various types of forest, 

followed by pasture and soybean fields. All locations have similar subtropical climates with high 

humidity and hot summers, with the average air temperature of the hottest month (July) being 

equal to or greater than 22 °C (Kottek et al. 2006, Beck et al. 2018). The minimum and 

maximum average temperatures from July to November in the last 20 years were 15.6 and 

27.4°C (NOAA, 2020). 
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 The United States Department of Agriculture (USDA) National Agricultural Statistics 

Service’s (NASS) Cropland Data Layer (CDL) hosted by CropScape 

(https://nassgeodata.gmu.edu/CropScape/ (accessed on July 9th, 2020)) was used to identify 

fields that were planted with cotton during the 2019 growing season. Extensive agricultural 

ground truth data acquired from the Common Land Unit (CLU) data from the USDA Farm 

Services Agency (FSA) is coupled with moderate resolution satellite images to create yearly 

crop-specific land cover maps of the whole continental United States (Boryan et al. 2011). A 

total of 22 cotton fields were identified for this study, with field sizes ranging from 14 ha to 164 

ha (Table 4.1). 

4.2.2. Satellite images acquisition and processing 

 Thermal images from MODIS and Landsat-8 Operational Land Imager (OLI) were 

acquired in all three locations on dates within the cotton growing period ranging from August to 

November 2019 (Table 4.2). The MODIS product used was MODIS/Thermal Bands Daily L2B-

Lite Global (MODTBGA), and it was download from the National Aeronautics and Space 

Administration (NASA) Earth Data Search website (https://search.earthdata.nasa.gov/search 

(accessed on April 15th, 2020)). MODTBGA version 6 is available daily with a spatial resolution 

of 1 km (km) with sinusoidal projection, and it consists of brightness temperature data from three 

MODIS bands (bands 20, 31, and 32) (USGS, 2020). After download, MODIS images were pre-

processed using ArcGIS (Esri, Redlands, CA, USA). In ArcMap version 10.2.2 (Esri, Redlands, 

CA, USA), MODIS band 31 was re-projected to the World Geodetic System (WGS) 1984 zone 

16, and a scale factor of 0.01 was used to obtain brightness temperature values. Landsat-8 OLI 

images were downloaded directly from the United States Geological Survey (USGS) Earth 

Explorer website (https://earthexplorer.usgs.gov/ (accessed on April 20th, 2020)). Landsat-8 

https://nassgeodata.gmu.edu/CropScape/
https://search.earthdata.nasa.gov/search
https://earthexplorer.usgs.gov/
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provides images with 15 (panchromatic), 30, and 100 m (thermal) spatial resolution. However, 

thermal bands are disaggregated to 30 m resolution images by the Landsat Science team and are 

made publicly available. Landsat-8 pre-processing was performed by using the Semi-Automatic 

Classification Plugin (SCP) in QGIS 3.14.0 (QGIS Development Team, 2020) (QGIS, 2020). 

SCP offers pre-processing and post-processing tools for a variety of satellite images (Leroux et 

al. 2018). Radiometric calibration was performed on Landsat-8 thermal infrared band 10 (10.6–

11.19 μm), where the DOS1 (Dark Object Subtraction) atmospheric correction technique was 

used to convert data to Top of Atmosphere (TOA), and correct for solar irradiance effects. SCP 

was also used to convert values to brightness temperature in Celsius. 

 Visual-near infrared (VNIR) data from Sentinel-2 was used for sharpening in all three 

locations. Images were downloaded from the USGS Earth Explorer website. SCP was used to 

perform atmospheric correction in all Sentinel-2A images. The SCP used DOS1 atmospheric 

correction for Sentinel-2 images as well. Band 8 (842 nm) and band 4 (665 nm) were used to 

calculate NDVI. VNIR images from VENµS were also utilized for thermal sharpening of 

MODIS. VENµS data were only available for the scenes in Georgia (Miller and Baker counties). 

Images were download from the Theia Data and Services Center for continental surfaces 

(https://www.theia-land.fr/en/data-and-services-for-the-land/ (accessed on April 20th, 2020)). 

VENµS-based NDVI was calculated using bands 11 (865 nm) and 5 (620 nm) from the level 2 

product. VENµS level 2 product provides fine cloud and shadow mask, and it is already 

atmospherically corrected. 

 Due to the differences in satellite temporal resolution, and frequent cloud coverage 

during the summer in the study areas, the difference in acquisition date among the satellites used 

https://www.theia-land.fr/en/data-and-services-for-the-land/
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for TsHARP implementation (MODIS, Sentinel-2, and VENµS) was up to one day and up to five 

days for validation (MODIS and Landsat-8). 

4.2.3. TsHARP methodology 

 As described previously, the TsHARP technique is based on the inverse relationship 

between LST and vegetation cover. The fractional vegetation cover (fc) is estimated from NDVI 

using Equation (1) (Choudhury et al. 1994)  

𝑓c = 1 − (
NDVImax − NDVI

NDVImax − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

0.625

 (1) 

where NDVImax and NDVImin are the maximum and minimum NDVI values in the scene and 

NDVI is the index value in an individual pixel. 

The fc image is aggregated to a coarser resolution to match with the coarse resolution of the LST 

image, and an empirical linear regression model is fitted as shown by Equation(2).  

𝐿𝑆𝑇𝑐𝑜𝑎𝑟𝑠𝑒 = a + b𝑓c𝑐𝑜𝑎𝑟𝑠𝑒 (2) 

where a and b are the intercept and slope resulting from the linear regression between LST and fc 

at coarse resolution. 

 Coefficients a and b are then applied to the fine resolution fc data (fc fine) and fine 

resolution NDVI to predict LST at a finer resolution (Equation (3)) (Huryna et al. 2019). 

Coefficients a and b are also applied to the fc image at coarse resolution to derive a new LST 

image. The difference between the original LST image and the newly derived image is used to 

calculate the residual error image at coarse resolution. The residual error image is then 

disaggregated to a fine resolution and applied to the LST at finer resolution to increase the 

prediction accuracy (Equation (4)). A detailed explanation of the TsHARP algorithm was 

provided by Agam et al. (2007b). 
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𝐿𝑆𝑇𝑓𝑖𝑛𝑒 = a + b𝑓c𝑓𝑖𝑛𝑒 (3) 

𝐿𝑆𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝐿𝑆𝑇𝑓𝑖𝑛𝑒 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 (4) 

4.2.4. TsHARP validation and assessment 

 The complete workflow of the TsHARP technique can be divided into two steps (Figure 

4.3). The first step is the sharpening of MODIS images using Sentinel-2- and VENµS-derived 

NDVI to finer resolutions. The second step is the validation of the method by comparing the 

sharpened temperature with a reference temperature from Landsat-8 images at 30, 60, 120, and 

240 m spatial resolution. The TsHARP validation was performed by fitting a linear regression 

model to MODIS BT and Landsat-8 BT images in the coarse and finer resolutions. The 

validation was performed at the scene scale for all dates for which images were downloaded and 

for selected dates at the field scale (See Table 4.2). 

 The methodology performance assessment was estimated using different quantitative 

statistics approaches (Willmott et al. 1982). Coefficient of determination (R2), root mean square 

error (RMSE), mean absolute error (MAE) and bias (Equations (5)-(8)) were calculated to 

estimate the level of agreement between predicted and reference temperatures.  

𝑅2 = 1 −
∑(𝑇𝑠ℎ𝑎𝑟𝑝 − 𝑇𝑟𝑒𝑓 )

2

∑(𝑇𝑠ℎ𝑎𝑟𝑝 − 𝑇𝑟𝑒𝑓_𝑚𝑒𝑎𝑛 )
2 (5) 

𝑅𝑀𝑆𝐸 =  ⌊𝑛−1 ∑(𝑇𝑠ℎ𝑎𝑟𝑝 − 𝑇𝑟𝑒𝑓)
2

𝑛

𝑖=1

⌋

1/2

 (6) 

𝑀𝐴𝐸 =  ⌊𝑛−1 ∑(𝑇𝑠ℎ𝑎𝑟𝑝 − 𝑇𝑟𝑒𝑓)

𝑛

𝑖=1

⌋ (7) 

𝑏𝑖𝑎𝑠 =  
∑ 1(𝑇𝑠ℎ𝑎𝑟𝑝 − 𝑇𝑟𝑒𝑓)𝑛

𝑖

𝑛
 (8) 
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4.3. Results and Discussion 

4.3.1. Scene Scale 

 The thermal sharpening validation was performed for a total of 14 dates using the 

MODIS/Sentinel-2 and MODIS/VENµS BT-NDVI regressions (Table 4.2). 

4.3.1.1. Sensors Comparison at Coarse Resolution 

 The correlations between MODIS brightness temperature (BT) and aggregated Landsat-8 

BT at coarse resolution are shown in Figure 4.4. Results showed that the correlations between 

the BT of the two sensors were similar towards the end of the season (end of October and 

beginning of November) when average temperatures were in the low 20 °C or below, with 

coefficients of determination (R2) ranging from 0.68 in scene 1 to 0.74 in scene 3. The regression 

model coefficients, however, were different. Despite having the highest R2 among the three 

scenes, the sensor comparison of scene 3 presented the highest RMS error and positive bias of 

3.54 °C. In scenes 1 and 2, the RMS errors in this period were below 1.25 °C, with a negative 

bias lower than 0.95. 

 In the months of August and September, correlations were overall lower, and varied with 

location. The lowest R2 values were observed in scene 1 (0.31) followed by the third date in 

scene 3 (0.41) and first date in scene 2 (0.44). The low relationship in these three dates can be 

attributed to cloud coverage in one or more images. Parts of the respective scenes were cropped 

to exclude areas affected by the clouds, substantially decreasing the number of pixels. In 

addition, methods utilized to mask clouds were not effective in removing areas under the clouds’ 

shadow. The combination of reduced number of pixels and BT values affected by cloud shadow 

led to a weaker relationship between sensor responses. 
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 A negative bias was observed in 7 out of 9 dates and indicates that temperatures extracted 

from MODIS scene were cooler when compared to Landsat-8. The comparison between these 

two sensors yielded RMS errors no higher than 1.92 °C in 6 out of 9 dates. In the second date of 

scene 2, and the first and last dates in scene 3, the RMSE values observed were higher, with 

errors ranging from 2.75 to 3.45 °C. In 2 out of these 3 dates, the bias was positive and not 

negative like in most of the dates. No clear factors were found that can explain these deviations. 

 Similar results were observed in the selected dates for VENµS analysis (Figure 4.5). As 

mentioned earlier, VENµS images were only available for the two scenes in Georgia. The 

relationship between MODIS BT and Landsat BT was strong at the end of October when 

temperatures were lower, and weaker in the months of August and September. In the remaining 

dates, R2 values in scene 2 were again stronger than the ones observed in scene 1. The RMS 

errors varied between 1.03 to 2.14 °C in both locations. Similar to MODIS/Sentinel-2 

sharpening, a negative bias was observed for 3 out of 5 dates, while a positive bias was obtained 

for the other 2 dates. 

 A study conducted in 2014 (Weng et al. 2014) reported differences between MODIS and 

Landsat satellite LST spatial distribution. Maximum temperatures showed a difference of about 

15 °C. The range between minimum and maximum temperatures from Landsat were always 

wider than observed in MODIS (Table 4.3). In the study described here, towards the end of 

October, most of the crops were already harvested and fields had exposed soil, causing a more 

evident BT difference between dense vegetation and exposed soil, which could be more easily 

detected by the coarse spatial resolution from MODIS. During the months of August, September, 

and mid-October, most fields in the scenes still had vegetation cover from the crops, thus 

temperature changes were more subtle across different land covers. These subtle changes were 
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depicted in the finer resolution from Landsat, leading to a wider range of temperature values 

compared to the smaller range from MODIS, resulting in a lower R2. 

 Coarse resolution sensor comparison showed that the BT range values of Landsat were 

always wider than observed in MODIS (Table 4.3). At one date (8/29), the Landsat BT range 

was double the MODIS BT and the max difference was as high as 6.4 °C. Similar results were 

observed by Weng et al. (2014) when comparing Landsat TM LST to MODIS. In the two dates 

used in their study, similarities were observed only between minimum surface temperatures. 

Landsat TM maximum temperatures were considerably higher than in MODIS, causing great 

discrepancies in LST spatial patterns. Essa et al. (2017) stated that surface temperature from 

MODIS were substantially lower than Landsat 7 ETM+ temperatures. A 5 °C mean temperature 

difference between the two sensors was achieved on six occasions. The results from 10 out of 14 

dates examined in this paper showed a similar trend, where a negative bias was found between 

the two sensors. This consistently lower temperature presented by MODIS when comparing with 

Landsat sensors can be described as a systematic bias. Yet, the fact that some occasions showed 

different trends casts a shadow over this determination. The concept of systematic bias was 

discussed by Liu et al. (2006). A consistent bias between two satellites could be introduced by 

sensor measurement errors such as random noise. Satellite sensor-specific characteristics such as 

bandwidth, acquisition time, and orbit parameters are further causes of bias (Weng et al. 2014). 

4.3.1.2. TsHARP validation 

 Landsat-8 thermal images were aggregated to 60, 120, and 240 m to perform validation at 

the four spatial resolutions proposed, including Landsat’s original resolution of 30 m. Tables 4.4 

and 4.5 show the statistics of sharpened images compared to reference maps in all the scenes 

studied using both VENµS- and Sentinel-2-based NDVI, respectively. Validation of thermal 
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sharpening resulted in an overall higher R2 than only comparing sensor brightness temperatures 

at coarse resolution. Sharpened accuracy was higher in coarser resolutions (120 and 240 m) in 10 

of the 14 dates analyzed. In most remaining dates in which accuracy at 240 m was slightly lower 

than finer resolutions, portions of the scene had to be excluded prior to the analysis due to cloud 

cover. The decrease in the number of pixels in the 240 m resolution could have affected the 

sharpening accuracy. Based on the results, sharpening efficiency tended to decrease with 

increased targeted resolution. These findings are corroborated by results observed by Huryna et 

al. (2019). In their study, Landsat-8 and Sentinel-3 thermal imagery were resampled and then 

sharpened to 240, 120, and 60 m resolutions using Landsat-8 and Sentinel-2, respectively. In 

both cases, R2 values decreased and temperature uncertainty values increased as resolution 

increased, with highest error values of 1.17 and 1.45 °C for Landsat and Sentinel-3, respectively. 

 The coefficient of determination for Sentinel-2 validation dates in scene 1 ranged from 

0.55 at 30 m resolution to 0.76 at 240 m, with highest values occurring on 28 October, while for 

VENµS dates, the lowest value was 0.48 at 30 m, and the highest value was 0.8 at 240 m (Table 

4.5). In scene 2, the method’s accuracy in dates available tended to be higher than achieved in 

scene 1 for both Sentinel-2 and VENµS dates, with only three R2 values below 0.6. Remaining 

values for Sentinel-2 varied from 0.6 to 0.8 and for VENµS, from 0.63 to 0.79. In this scene 

(scene 1), the three weakest relationships were observed at the finer resolutions of 30 and 60 m. 

Scene 3 displayed a similar performance as the two previous scenes, with values ranging from 

0.50 to 0.77, except on 3 October, wherein the Landsat-8 image had large areas in the middle of 

the scene covered by clouds and cloud shadow that were difficult to remove. The remaining 

affected pixels that were not excluded by the masking process affected the accuracy of 

validation. A 3 days difference in acquisition time between sharpened and reference images was 
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observed and could have also been a cause of higher error, although no trend between error 

magnitude and time lag between satellites was observed. 

 Validation of sharpened maps had slightly higher RMS errors than the sensors’ BT 

comparison at coarse resolution, with uncertainty increasing as the aimed resolution became 

finer. The highest errors were observed in the first and third dates of scene 3, with error values 

around 3.04 and 3.78 °C. It is worth emphasizing that MODIS and Landsat had a 1-day 

difference in acquisition time when the highest error of almost 4 °C was observed. Lowest 

overall errors were observed in the last date of scene 2 for both Sentinel-2 and VENµS selected 

dates, with uncertainty around 1 °C at 240 m spatial resolution. Although MAE values also 

tended to increase with increased resolution, its response was not the same as RMSE. Images 

sharpened to 120 and 240 m resulted in MAEs similar or even lower than the mean errors from 

the temperature comparison at coarse resolution. 

 Figure 4.6 shows the temperature error (sharpened T (°C) − reference T (°C)) maps at 60 

m resolution at the three individual scenes and their respective land cover types. Error maps were 

created from MODIS/Sentinel-2 from 27 October in scene 1, 28 October in scene 2, and 29 

August in scene 3. Error maps were selected from dates in which there was a maximum of 1-day 

lag between images. In general, the sharpened BT was lower than the reference temperature. 

This corresponds with the systematic bias found with the sensor comparison in this paper. Scene 

3 is composed in its majority by various types of forests with a lower percentage of grassland 

and small areas of sparse vegetation (crop fields) (Figure 4.6 (g)). The low variability in land 

cover type in this scene led to a more homogeneous temperature error distribution (Figure 

4.6(h)). Brightness temperatures were underestimated across the whole scene, with forest areas 

presenting the biggest differences in temperature between sharpened and reference maps. The 
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land cover distribution in scenes 1 and 2 are more varied between dense and sparse vegetation 

(Figure 4.6 (a),(d)). Differently from scene 3, sharpened temperatures in scenes 1 and 2 were 

frequently overestimated in woody wetlands and underestimated in cultivated fields with sparse 

vegetation and/or exposed soil. The higher variability in temperature errors across different land 

covers resulted in a lower accuracy of sharpening in these two scenes in Georgia when compared 

to the scene in Mississippi. 

 Highest errors were observed in areas covered by wetland and bare soil. Huryna et al. 

(2019) achieved conflicting results when sharpening Sentinel-3 images, with temperatures being 

underestimated over dense vegetation and overestimated over agricultural fields, with errors of 

1.5 to 3 °C in riparian areas. The bias between original MODIS and Landsat-8 images at coarse 

resolution were similar to errors seen at finer resolution and might help explain the conflicting 

results between the two studies. 

 Great variability in the TsHARP performance was observed among the scenes and dates. 

LST–NDVI relationships were higher in the scenes with more homogenous land cover, resulting 

in overall higher accuracy. A high-temperature sharpening performance can be achieved when 

there is a good correlation between LST and vegetation cover (Chen et al. 2014). Nevertheless, 

the linear relationship expected between LST and vegetation fraction does not always hold, 

leading to increased sharpening errors. Factors such as albedo and soil moisture can cause great 

variations in LST in areas with low NDVI (Agam et al. 2007b). The different moisture levels in 

these areas cause great variability in evaporation that drives surface temperatures to be lower or 

higher (Chen et al. 2014, Sandholt et al. 2002). This temperature variation is hardly detected by 

the vegetation index, resulting in a triangular shape in the NDVI–LST feature space. Further 

causes of error can be associated to situations that do not follow the LST–NDVI inverse 
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relationship. When in high air temperature and sunlight conditions with limited water 

availability, low LST values are expected in high NDVI areas such as dense vegetation due to 

high transpiration (Anderson et al. 2012, Karnieli et al. 2010). However, in a scenario in which 

energy is the limiting factor, transpiration and evaporation are decreased, leading to an often-

positive correlation between NDVI and LST. These findings suggest that the LST–NDVI 

relationship is geographically variable. The use of geographically weighted regression-based 

algorithms might be beneficial to address local variations in LST–NDVI correlation (Li et al. 

2017). 

4.3.1.3. TsHARP Validation comparison between VENµS and Sentinel-2 

 The validation results of MODIS coarse images’ thermal sharpening using VENµS VNIR 

was compared to results from sharpening using Setninel-2 on 28 October at scenes 1 and 2 

(Figure 4.7). The sharpening performance using both satellites was comparable for both scenes, 

yielding similar temperature errors, accuracy, and bias. The relationship between sharpened and 

reference temperatures was strong in all instances with values ranging from 0.68 to 0.80, and 

temperature uncertainty ranging from 1 to 1.47 °C. Although similar, MODIS/Sentinel-2 

performance was slightly higher at 120 and 240 m in scene 2 when compared to scene 1, with R2 

values of 0.77 and 0.8, while VENµS sharpening showed higher accuracy in scene 1 at all four 

different spatial resolutions. MODIS/VENµS was also slightly more accurate than 

MODIS/Sentinel-2 in scene 1 in all spatial resolutions, with R2 values of 0.71 and 0.69 at 30 m, 

0.75 and 0.72 at 60 m, 0.78 and 0.75 at 120 m, and 0.80 and 0.76 at 240 m resolutions for 

MODIS/VENµS and MODIS/Sentinel-2 respectively, while in scene 2, both models had the 

same R2 at 30 and 60 m, with Sentinel-2 achieving higher R2 at 120 and 240 m. Overall, scene 2 
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showed lower RMSE, MAE, and bias than scene 1 in both models, with highest values of 1.16, 

0.93, and −0.80 for VENµS, and 1.18, 0.96, and −0.80 for Sentinel-2, respectively. 

4.3.2. Field Scale 

 Field boundaries were extracted from sharpened and reference images at 30, 60, 120 and 

240 m to perform validation at a field scale for each individual field. The field selection criteria 

relied solely on the crop cultivated. Cotton fields were identified using USDA-NASS CropScape 

data layer from 2019. 

4.3.2.1. MODIS/Sentinel-2 TsHARP validation  

 The validation of the sharpening algorithm in scene 2 was performed in eight fields on 9 

September (Figure 4.8). An overall strong relationship between sharpened and reference 

temperatures was observed in fields 1 and 3 across all spatial resolutions, with R2 values ranging 

from 0.60 at 30 m to 0.94 at 240 m, and 0.64 at 30 m to 0.88 at 120 m, respectively. The weakest 

relationships were observed for fields 8 and 4, wherein the model’s accuracy was below 0.5 in all 

resolutions. Remaining fields showed strong relationships at 60, 120, and 240 m, with the 

exception of field 5, in which higher accuracy was obtained only at coarser resolutions of 120 

and 240 m. Only three fields showed moderate to strong relationships at the finest targeted 

resolution, while for the other resolutions, temperature estimation results were more reliable, 

with most fields having higher accuracy maps. Temperature uncertainty of higher than 2 °C was 

obtained for fields 1, 2, and 5, while field 6 resulted in errors lower than 1 °C (Figure 4.8 (b)). 

 The negative bias shown in all areas indicated an underestimation of BT when compared 

to reference data and it is consistent with the results obtained for the scene scale. The residual 

errors resulted from the linear regression between BT and NDVI showed errors ranging from 

−0.5 to 1 °C in the areas that fields were located. Nevertheless, temperature underestimation in 
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sharpened maps was as high as 2.5 °C in some fields, likely due to a discrepancy in temperatures 

collected by both thermal sensors in these specific areas, rather than due to a weak relationship 

between BT and NDVI. This temperature difference can be a result of biases caused by sensor 

parameters such as bandwidth, acquisition time, and geolocation errors (Weng et al. 2014). 

 The field scale validation results for scene 3 are shown in Figure 4.9. Due to the lower 

number of cotton fields in this scene and their smaller size, only five fields were selected for 

analysis. Nevertheless, a higher number of dates throughout the growing season were available 

for validation.  High performances were observed in September (Figure 4.9 (b),(e)) and October 

(Figure 4.9 (c),(f)), in which most fields showed a strong relationship between sharpened and 

reference temperatures coupled with the low-temperature errors. A positive bias in September 

indicates that temperatures were overestimated at an average of 0.95 °C in all fields. Despite the 

high agreement between sharpened and reference temperatures observed for all fields in August, 

in one or more resolutions, temperature error was higher than in subsequent months (Figure 4.9 

(a),(d)). Spatial resolutions of 60 and 120 m displayed the most consistent results along the three 

dates, with strong relationships in most fields. High R2 values were observed in four out of five 

fields at 60 m resolution on the second and third dates, and two fields on the first date, while at 

120 m, all five fields had strong relationships on the first date, four on the third, and three on the 

second. Sharpened maps at 30 m had the weakest performance, with a maximum of 2 fields 

presenting moderate relationships and overall temperature errors higher than coarser resolutions. 

Maps at 240 m had weaker performance in this scene due to the low or insufficient number of 

pixels for correlation caused by the smaller field sizes. 

 The resulting statistics indicated that the thermal sharpening of coarse MODIS images at 

the four finer resolutions are field-specific. The accuracy of sharpened temperatures in field 5 
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was high at all resolutions on the first date and was consistently high at 60 and 120 m in 

subsequent months. High-temperature maps’ accuracy was observed in at least three resolutions 

at fields 2 and 3 in September and October, and at 240 m in the first month. The weakest 

performance was observed in field 4, in which sharpened maps had very low accuracy among all 

dates in most spatial resolutions when compared to Landsat reference temperatures. The fields 

that showed the strongest (field 5) and the weakest performances (field 4) were located side by 

side in the scene, suggesting that the sharpening results might be affected by field individual 

characteristics, planting date, and management practices. 

 High agreement between sharpened and reference maps at 60 m resolution was observed 

in field 1 for all three dates (Figure 4.10). Despite the higher temperature difference between 

sharpened and reference maps in August, the BT distribution patterns still showed great 

similarities. A high correlation between sharpened and reference maps was also shown on the 

subsequent dates. The high agreement between sharpened and reference maps shown in the 

validation process evidences great consistency in the TsHARP results. The robust results from 

the use of Sentinel-2 VNIR for sharpening presented in this study are corroborated by studies 

previously mentioned (Huryna et al. 2019, Sánchez et al. 2020). 

4.3.2.2. MODIS/VENµS TsHARP validation  

 Figure 4.11 shows the quantitative statistics for TsHARP validation at two different dates 

in scene 1. The algorithm’s performance presented variability between dates and areas, as 

previously observed. The model’s accuracy was consistent across three out of the nine fields 

selected, with strong relationships in all resolutions in field 6 at both dates, and at the second 

date for fields 2 and 5. On 29 August, high-accuracy sharpened maps for fields 2 and 5 were 

observed at 60 and 120 m only. Fields 7 and 8 showed high R2 values between sharpened and 



 

142 

reference temperatures only at the coarser resolutions of 120 and 240 m, while in remaining 

fields, the overall accuracy was low either on all or one of the dates. Disaggregated maps at 120, 

240, and 60 m resolutions were the most consistent in terms of correlation with reference 

temperature maps. Temperature uncertainty was relatively low in most fields at both dates, with 

values ranging from 1.25 to 2.17 °C in August and 0.66 to 2.13 °C in September. An 

overestimation of sharpened temperatures was observed in August with a positive bias of 2.17 

°C, while in September, sharpened temperatures were up to 2.01 °C lower than reference 

temperatures. On this date, temperature overestimation was observed only in field 4, in which 

sharpened temperatures were on average 0.66 °C higher than the reference. 

 In scene 2, the MODIS images’ sharpening using VENµS NDVI was validated on one 

date in the beginning of September, with three days difference from the MODIS/Sentinel-2-

derived sharpened image (Figure 4.12). A field scale comparison between these two sharpened 

maps was not performed because of the time difference, however similarities in the results were 

observed. Fields 8 and 4 had weak relationships between sharpened and reference temperatures 

in all spatial resolutions, repeating the weak performance seen in the MODIS/Sentinel-2 scene. 

These results suggest that the poor accuracy of the sharpened maps was caused by subfield land 

cover variability that was not depicted in the coarse MODIS pixel resolution, such as a mix of 

exposed soil and canopy cover. The possible effects of different field conditions will be 

discussed in the next subsection. 

 Overall, sharpening accuracy was high at 60, 120, and 240 m, with at least half of the 

fields showing R2 values higher than 0.62. Only three fields had moderate to strong relationship 

at 30 m, with the highest value of 0.68. Overall, RMS errors were below 1.73 at all four 

resolutions. Temperature uncertainty as low as 0.25 °C was achieved at 240 m in field 2 and as 
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low as 0.38 °C at 30 m. Bias indicated that sharpened temperatures were overestimated in all 

fields (Figure 4.12 (b)). High-accuracy sharpened maps were achieved for all resolutions in field 

3 (Figure 4.13). Sharpened map with 30 m pixel size provided the most detailed insight in the BT 

distribution in the field (Figure 4.13 (a)). The same BT patterns were maintained when pixel size 

was doubled, and sharpening accuracy increased from 0.68 to 0.8 (Figure 4.13 (e),(f)). The two 

coarser maps presented even higher accuracy of 0.89 and 0.86, but temperature distribution 

patterns in the field became harder to identify (Figure 4.13 (c),(d)). Exposed soil at the northern 

part and in the middle of the lower half of the field, most likely caused by erosion processes over 

the years, resulted in an overestimation of sharpened temperatures in those pixels. In these areas, 

sharpened temperatures were around 30.8 °C, while in the reference image, the same pixels 

varied from 28 to 29 °C, causing a decrease in the overall accuracy at 30 m. Background soil 

reflectance can also affect the sharpening performance throughout the season, once the low 

vegetation cover in the first stages of crop development can lead to high amounts of mixed pixel 

reflectance and consequently, an overestimation of canopy sharpened temperatures. 

 Disaggregation methods are often studied in large scene scales. Few authors have 

attempted to use this methodology for small agricultural areas. Sánchez et al. (2020) used 

Sentinel-2 to sharpen MODIS coarse thermal images to 10 m resolutions over a semi-arid 

agricultural area in southeast Spain. An average temperature uncertainty of 2 °C was observed. 

Temperature errors between 2 and 3 °C were observed by Bisquert et al. (2016). In a simulated 

experiment, Landsat 7 thermal images were aggregated to coarse resolution and then sharpened, 

achieving temperature uncertainty of ~1 °C (Agam et al. 2007a). In the present study, 

temperature errors for field scale ranged from 0.25 to 3.11 °C using both Sentinel-2 and VENµS, 

following results found by the other authors. Furthermore, it has been reported that absolute 
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temperature errors of up to 1.5 °K are suitable for agricultural management decisions (Sobrino et 

al. 2016, Ghent et al. 2017, Sánchez et al. 2020). Results from this paper are encouraging. A 

great number of fields presented low errors at 240 and 120 m, and at the finer resolutions of 60 m 

and in lesser cases of 30 m. The high-accuracy maps generated from this methodology with 

relatively low errors show a great potential in the use of TsHARP in MODIS/Sentinel-2 and 

MODIS/VENµS combinations for field scale. 

 Figure 4.14 shows field 3 sharpened temperature distribution in relation to air 

temperature on 5 days throughout the growing season from June to September at 60 m 

resolution. Air-canopy temperature difference is a well-recognized indicator of water stress in 

cotton (Jackson et al. 1981, Wanjura et al. 2000). Field canopy temperatures in June were less 

than 3 °C below air temperature, while in August and September, this difference was as high as 5 

°C. Air-canopy temperature distribution was very similar throughout the field in the first and last 

dates. In the dates from mid-June to early September, a slight variability in air-canopy 

temperature distribution is observed. The use of a high spatial resolution satellite such as VENµS 

with high revisit time to sharpen coarse thermal images presents great potential to enable a more 

frequent monitoring of canopy temperature changes across the field throughout the growing 

season, with a fine resolution with the aim to identify crop water stress patterns in the field for 

management zone delineation. It is important to note that for a better estimation of plant water 

status, the sharpened BT values should be converted to LST. 

4.3.2.3. Effects of in-field land cover variability on TsHARP performance 

 Two fields from scene 1 in Miller county were selected to demonstrate how different 

field conditions can positively or negatively affect the accuracy of resulting sharpened maps in a 

field scale. Figure 4.15 shows an example of the comparison between before and after exclusion 
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of selected areas within fields 3 and 9. Land patches covered by vegetation other than the 

cultivated crop, roads, flow channels caused by erosion, exposed soil, and waterlogged areas 

were extracted from the field boundaries for validation (Figure 4.15(e)-(h)). These areas were 

usually responsible for decreasing the level of accuracy between reference (Figure 4.15(a),(c)) 

and sharpened (Figure 4.15(b),(d)) maps. This difference was likely caused by the sharpening 

technique reliance on the BT–NDVI relationship, once many of these land cover types 

mentioned have low NDVI values resulting in high sharpened temperatures, while reference 

images are dependent on the temperature variability itself and not on the NDVI patterns 

throughout the area. 

 Reference and sharpened maps after the pixel removal process of fields 3 and 9 are 

shown in Figure 4.15(i)-(l). Note that the temperature distribution at sharpened and reference 

maps appear to become more alike in field 3 after removal of unwanted pixels. A circular area 

around the pivot, a narrow road, and a waterlogged area were excluded in this field, increasing 

the sharpening accuracy. This stronger relationship between the two maps was likely due to two 

factors: (1) exposed soil pixels from the road had low NDVI values, resulting in finer pixels with 

overestimated temperature at the sharpened map, and (2) the two remaining excluded areas had 

high moisture, which explains the lower temperature relative to the rest of the field in the 

reference map, while in the sharpened map, pixel temperatures were higher in these areas than in 

the remaining field due to the low NDVI values of water patches and wet soil. Conversely, the 

extraction process did not yield the same results for field 9 once BT pattern differences were still 

evident in the remainder of the field. Based on the temperature range in the reference image and 

on the premise that stressed cotton plants are usually up to 5 °C above air temperature (Idso et al. 

1981, Cohen et al. 2005), it is possible to infer that the whole field was well-watered either due 
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to rain or irrigation events. The TsHARP algorithm may not detect the moisture variability 

caused by irrigation, since it accounts for the subpixel temperature variability related to the 

vegetation fraction, thus making irrigation events a common source of error (Agam et al. 2007a). 

 Although little information about most of the fields studied is known, it can be assumed 

that field-specific conditions are a determinant factor in the accuracy of sharpened temperatures. 

For instance, different authors have pointed out the limitations of thermal disaggregation in 

irrigated fields (Bisquert et al. 2016, Merlin et al. 2010). Surface temperature can rapidly respond 

to water stress, while NDVI has a slower response after initial stress (Sandholt et al. 2002). 

Agam et al. (2007a) discussed the importance of excluding selected pixels that do not conform to 

the inverse linear relationship between LST and vegetation fraction, such as water bodies that 

present both low NDVI and surface temperature. Furthermore, areas that have high NDVI 

variability may be a source of errors once this variability cannot be depicted by the coarse 

resolution pixels of MODIS images. 

 Temperature data from field 9 collected with Landsat resulted in higher temperature 

along the entire west edge of the field, potentially due to a mixed pixel response between the 

crop and the grassed area adjacent to the field. However, vegetation cover in the same area was 

high, leading to an opposing result in the sharpened image. The observations on the effect of 

undesirable pixels’ removal on the thermal pixel disaggregation performance are reinforced by 

statistics shown in Figure 4.16. A higher level of agreement between the sharpened and reference 

temperatures was displayed after pixel extraction in field 3 on both dates, as well as a decrease in 

temperature errors, whereas in field 9, the accuracy decreased at 30 and 120 m, despite slightly 

lower errors being achieved. 
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4.4. Conclusions 

 Corroborating findings found in the literature, results from this study highlighted the 

differences in coarse-resolution BT between MODIS and Landsat. For the five dates for which 

imagery from both sensors were acquired on the same day, observed average MAE was 1.63 °C. 

Coefficient of determination within the same dates varied from 0.34 to 0.74, with scene MODIS 

BT frequently being cooler than Landsat-8. Further research can benefit from implementation of 

intercalibration between MODIS and Landsat-8 before sharpening validation to attenuate errors 

caused by the sensors’ individual characteristics. Despite the inconsistent correlations in coarse 

resolution caused by these differences and the presence of clouds in one or both images, 

relationships between sharpened MODIS and Landsat were stronger at all finer resolutions. 

Field-scale agreement between sharpened and reference temperatures showed some level of 

independence from the scene scale. Agricultural fields located in regions of the scene with 

smaller residual errors or not affected by cloud cover can show higher temperature accuracy than 

other areas. These findings suggest that sharpened maps can be used with caution for small 

scales even if coarse comparison between sensors in the scene scale shows weaker relationships. 

Sharpened maps at 120 and 60 m resolution showed the highest consistency within all fields 

and dates using both VENµS and Sentinel-2. Maps sharpened to 240 m showed high accuracy, 

but greatly depended on the field size because of the lack of pixels available in smaller areas. 

Resolutions finer than 60 m presented the least consistent relationships, with accurate maps 

being very field-specific. 

Very few studies have explored the performance of thermal sharpening in field scales, and 

the use of VENµS multispectral data. Findings from this research show that considering the 

combination of pixel size, and temperature estimation accuracy and error, sharpened MODIS at 
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60 m are the most reliable for season-long cotton monitoring. The comparison between 

sharpened images using VENµS and Sentinel-2 was performed to evaluate a potential agreement 

between results, due to the lack of information available in the use of VENµS for thermal 

disaggregation. VENµS results showed comparable or higher accuracy than Sentinel-2. The 

superior performance coupled with the better revisit time evidences the great potential of using 

VENµS for frequent in-season crop monitoring for IMZ delineation. 

This work is the first to report the use of VENµS images for thermal sharpening. Nevertheless, 

only an initial study was performed to explore the possibility of using sharpening at field scale 

for monitoring purposes. Further research with ground data collection is needed to explore field 

use limitations of this methodology, but these results give useful insights of potential benefits of 

implementing the TsHARP technique as a tool for crop stress monitoring. 
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TABLES AND FIGURES 

 

 

 

 

Location Field ID Coordinates Area (ha) 

Miller County, 

Georgia 

(scene 1) 

1 31°11’53” N, 84°45’45” W 63.03 

2 31°13’3” N, 84°35’2” W 26.21 

3 31°05’55” N, 84°43’27” W 164.40 

4 31°06’37” N, 84°43’35” W 78.93 

5 31°08’31” N, 84°36’01” W 88.44 

6 31°07’06” N, 84°45’34” W 33.14 

7 31°07’50” N, 84°52’26” W 32.30 

8 31°06’21” N, 84°51’45” W 35.68 

9 31°11’20” N, 84°45’41” W 38.20 

-------------------- 

Baker County, 

Georgia 

(scene 2) 

1 31°26’17” N, 84°36’02” W 66.80 

2 31°28’38” N, 84°39’46” W 59.07 

3 31°26’17” N, 84°36’38” W 63.11 

4 31°26’27” N, 84°34’34” W 48.30 

5 31°23’55” N, 84°32’53” W 58.45 

6 31°27’51” N, 84°28’08” W 56.74 

7 31°28’46” N, 84°29’30” W 33.47 

8 31°28’01” N, 84°33’24” W 90.91 

-------------------- 

Union County, 

Mississippi 

(scene 3) 

1 34°21’40” N, 89°08’10” W 89.91 

2 34°48’05” N, 88°56’42” W 14.05 

3 34°24’07” N, 88°45’16” W 84.44 

4 34°20’04” N, 89°01’27” W 34.36 

5 34°19’57” N, 89°01’12” W 16.97 

Table 4.1. List of study sites and cotton fields for all three locations. 
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Location 
Landsat-8 MODIS Sentinel-2 VENµS 

Acquisition Date 

Miller County 24 Aug -19 29 Aug-19 - 29 Aug-19 

Georgia 09 Sept-19 10 Sept-19 - 10 Sept-19 

(scene 1) 25 Sept-19 24 Sept-19 24 Sept-19 - 

 27 Oct-19 28 Oct-19 27 Oct-19 28 Oct-19 

-------------------- 

Baker County 09 Sept-19 6 Sept-19 - 6 Sept-19 

Georgia 09 Sept-19 09 Sept-19 09 Sept-19 - 

(scene 2) 25 Sept-19 24 Sept-19 24 Sept-19 - 

 27 Oct-19 28 Oct-19 27 Oct-19 28 Oct-19 

-------------------- 

Union, County 29 Aug-19 29 Aug-19 29 Aug-19 - 

Mississippi 14 Sept-19 15 Sept-19 15 Sept-19 - 

(scene 3) 30 Sept-19 3 Oct-19 3 Oct-19 - 

 1 Nov-19 2 Nov-19 2 Nov-19 - 

Table 4.2. Satellites’ data acquisition dates for all three locations and selected dates 

for field scale validation of the Moderate Resolution Imaging Spectrometer 

MODIS for both Sentinel-2 and VENµS (gray). 
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Landsat-8 acquisition time-scenes 1 and 2: 16:13 h, scene 3: 16:31 h; MODIS acquisition time: 100:05 h. 

 

 

 

 

 

 

 

 

 

 

 

Satellite Location 

MODIS  Landsat-8 

Date Min max Range 
Lag 

(days) 
Date min max Range 

Sentinel-2 

Scene 1 
24 Sept 27.0 31.9 4.9 +1 25 Sept 27.6 35.9 8.3 

28 Oct 21.0 27.2 6.2 -1 27 Oct 21.0 29.5 8.5 

-------------------- 

Scene 2 

9 Sept 23.8 27.7 3.9 0 9 Sept 25.3 30.7 5.4 

24 Sept 24.5 32.4 7.9 +1 25 Sept 28.3 36.4 8.1 

28 Oct 20.1 25.0 4.9 -1 27 Oct 20.9 28.2 7.3 

-------------------- 

Scene 3 

29 Aug 21.7 26.0 4.3 0 29 Aug 23.6 32.4 8.8 

15 Sept 24.2 30.5 6.3 -1 14 Sept 21.9 29.9 8 

3 Oct 24.1 28.8 4.7 -3 30 Sept 23.0 30.9 7.9 

2 Nov 11.2 17.2 6.0 -1 1 Nov 7.3 14.5 7.2 

 -------------------- 

VENµS 

Scene 1 

29 Aug 24.9 27.5 2.6 -5 24 Aug 23.0 26.5 3.5 

10 Sept 24.9 29.9 5.0 -1 9 Sept 26.3 33.6 7.3 

28 Oct 21.0 27.4 6.4 0 27 Oct 21.0 29.5 8.5 

-------------------- 

Scene 2 
06 Sept 27.3 31.3 4.0 +3 09 Sept 26.0 30.9 4.9 

28 Oct 20.1 25.0 4.9 -1 27 Oct 20.9 28.0 7.1 

Table 4.3. Scene minimum, maximum, and temperature ranges for MODIS (1 km) and Landsat-8 (30 m) 

original images. 
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Scene Date Lag Resolution 
VENµS 

R2 RMSE MAE bias 

1 

29 Aug-19 -5 

30 0.48 1.70 1.57 1.48 

60 0.51 1.69 1.57 1.48 

120 0.52 1.67 1.56 1.48 

240 0.49 1.63 1.53 1.47 

10 Sept-19* -1 

30 0.52 2.37 2.12 -2.09 

60 0.54 2.31 2.07 -2.03 

120 0.53 2.26 2.02 -1.98 

240 0.49 2.20 1.98 -1.94 

28 Oct-19 0 

30 0.71 1.43 1.13 -0.82 

60 0.75 1.36 1.07 -0.82 

120 0.78 1.29 1.01 -0.83 

240 0.80 1.23 0.98 -0.85 

 -------------------- 

2 

6 Sept-19* +3 

30 0.59 1.46 1.22 1.14 

60 0.63 1.41 1.20 1.14 

120 0.66 1.37 1.19 1.14 

240 0.67 1.32 1.17 1.13 

28 Oct-19 -1 

30 0.68 1.16 0.93 -0.78 

60 0.72 1.11 0.90 -0.78 

120 0.76 1.06 0.87 -0.79 

240 0.79 1.01 0.85 -0.80 

Table 4.4. Quantitative analysis of sharpened thermal maps using VENµS-derived 

normalized difference vegetation index (NDVI) in comparison to reference images from 

Landsat. Lag shows the difference in days between sharpened and Landsat-8 images. 
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Scene Date Lag Resolution 
Sentinel-2 

R2 RMSE MAE bias 

1 

24 Sept-19* +1 

30 0.55 2.14 1.71 -1.44 

60 0.57 2.11 1.69 -1.45 

120 0.58 2.07 1.66 -1.45 

240 0.55 2.01 1.63 -1.48 

28 Oct-19 -1 

30 0.69 1.47 1.15 -0.82 

60 0.72 1.41 1.10 -0.82 

120 0.75 1.35 1.05 -0.83 

240 0.76 1.29 1.02 -0.86 

 -------------------- 

2 

9 Sept-19* 0 

30 0.60 1.96 1.78 -1.77 

60 0.64 1.94 1.77 -1.77 

120 0.64 1.93 1.77 -1.77 

240 0.63 1.91 1.78 -1.77 

24 Sept-19 +1 

30 0.56 2.81 2.49 -2.43 

60 0.59 2.77 2.49 -2.43 

120 0.61 2.74 2.48 -2.44 

240 0.61 2.71 2.48 -2.46 

28 Oct-19 -1 

30 0.68 1.18 0.96 -0.78 

60 0.72 1.12 0.91 -0.79 

120 0.77 1.05 0.87 -0.79 

240 0.80 1.00 0.85 -0.80 

 -------------------- 

3 

29 Aug-19 0 

30 0.50 3.06 2.79 -2.79 

60 0.55 3.05 2.79 -2.79 

120 0.59 3.03 2.79 -2.79 

240 0.60 3.02 2.81 -2.81 

15 Sept-19* -1 

30 0.57 1.96 1.71 1.67 

60 0.62 1.92 1.70 1.67 

120 0.64 1.87 1.68 1.65 

240 0.66 1.81 1.65 1.62 

3 Oct-19* -3 

30 0.45 1.45 1.15 -0.52 

60 0.48 1.43 1.13 -0.50 

120 0.49 1.40 1.12 -0.48 

240 0.48 1.35 1.09 -0.45 

2 Nov-19 -1 

30 0.64 3.85 3.67 3.67 

60 0.69 3.82 3.66 3.66 

120 0.74 3.76 3.65 3.65 

240 0.77 3.71 3.61 3.61 

 

Table 4.5. Quantitative analysis of sharpened thermal maps using Sentinel-2 derived NDVI 

in comparison to reference images from Landsat. Lag shows the difference in days between 

sharpened and Landsat-8 images. 
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Figure 4.1. Study locations for (a) the polygons used to define the satellite scenes 

and Sentinel-2 false color composite of scenes used for thermal sharpening for 

study sites in (b) Miller County, Georgia (Scene 1) (c) Baker County, Georgia 

(Scene 2) and (d) Union County, Mississippi (Scene 3). 

Figure 4.2. Individual fields assessed in (a) scene 1, 

(b) scene 2 and (c) scene 3. Field boundaries are 

overlaid on a Sentinel-2 false color composition from 

Sept. 9th, July 4th and Oct. 29th, 2019, respectively. 
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Figure 4.3. Flowchart of TsHARP methodology, including inputs, outputs and 

processing steps, and methodology validation using Landsat-8 images (modified after 

Huryna et al. (2019)). 
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Figure 4.4. Relationship between MODIS BT and Landsat-8 BT at coarse resolution 

(930 m) in selected periods for Sentinel-2 at (a) scene 1 (Miller County, GA, USA), 

(b) scene 2 (Baker County, GA, USA), and (c) scene 3 (Union County, MS, USA). 

MODIS acquisition dates were used as the reference date. 
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Figure 4.5. Relationship between MODIS BT and Landsat-8 BT at coarse 

resolution (930 m) in selected periods for VENµS at (a) scene 1 and (b) scene 

2. MODIS acquisition dates were used as the reference date. 
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Figure 4.6. Land cover maps of (a) scene 1, (d) scene 2, and (g) scene 3, (b, e, h) 

are the respective temperature error maps (sharpened T (°C) − reference T (°C)) at 

60 m resolution, and (c, f, i) are the respective error histograms. Error 

maps/histograms presented were created from MODIS/Sentinel-2 sharpening from 

the last date of scenes 1 and 2, and first date of scene 3. 
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Figure 4.7. Quantitative statistics of TsHARP validation yielded by MODIS sharpening using 

(a) Sentinel-2 and (b) VENµS at scenes 1 and 2. 

 

Figure 4.8. Quantitative statistics between sharpened and reference temperatures at 

field scale for fields selected in scene 2, including (a) coefficient of determination (b) 

RMSE, and bias. 
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Figure 4.9. Quantitative statistics between sharpened and reference 

temperatures at field scale for fields selected in scene 3 on three different dates, 

including coefficient of determination on (a) 29 August (b) 15 September and 

(c) 3 October, and (d–f) RMSE and bias for the same dates, respectively. 
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Figure 4.10. Field 1 sharpened temperature maps at 60 m resolution in 

Mississippi on (a) 29 August (b) 15 September and (c) 3 October, in 

comparison with respective (d–f) reference temperature maps. (g-i) 

Temperature error maps (sharpened T (°C) − reference T (°C)) for each 

date at 60 m resolution. Quantile method was used for classification. 
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Figure 4.11. Quantitative statistics between sharpened and reference temperatures 

at field scale for fields selected in scene 1 including coefficient of determination, 

(a) 29 August and (b) 10 September, and (c–d) RMSE and bias for respective dates. 
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Figure 4.12. Quantitative statistics between sharpened and reference temperatures at 

field scale for fields selected in scene 2 including (a) coefficient of determination 

and (b) RMSE and bias. 

Figure 4.13. Field 3 sharpening maps of MODIS images using VENµS at (a) 30 (b) 

60 (c) 120 and (d) 240 m resolution, and (e–h) the respective validation regressions. 
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Figure 4.14. Field 3 time series of canopy temperature (Tc) - air temperature (Tair) 

distribution throughout the season. Canopy temperature used was extracted from the 

sharpened temperature maps. 

Figure 4.15. Field map comparison between reference and sharpened 

(MODIS/VENµS) maps before and after pixel removal. (a–d) Reference and 

sharpened maps of the whole area within fields 3 and 9. (e–h) Visual imagery 

and field boundary for both fields. (i–l) Reference and sharpened maps after 

pixel extraction for fields 3 and 9. 
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Figure 4.16. Fields 3 and 9 comparison statistics between sharpened and 

reference temperatures before and after pixel removal on 29 August and 10 

September, including (a) coefficient of determination and (b) RMSE. 
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CHAPTER 5 

CONCLUSIONS 

 The three studies conducted during the years of 2018, 2019 and 2020 approached how the 

use of remote sensing can improve precision irrigation practices in cotton. Remote sensing 

platforms such as UAVs and satellites provide an advantage to common field sampling tools 

which is the opportunity to collect data in large scale at a high frequency. Predawn LWP is 

regarded as a direct indicator of crop water status and recently it has been often used as a 

threshold for irrigation scheduling. Stomatal conductance is another physiological indicator of 

water stress in cotton. Cotton plants exposed to drought conditions close their stomata in an 

attempt to reduce water loss through transpiration leading to decreased stomatal conductance. 

Furthermore, stressed plants show increased leaf temperature because of the low transpiration 

rate. 

 In the study conducted in the 2018 and 2020 growing seasons in Camilla, GA the 

correlation between CWSI and cotton physiological parameters were explored. It was observed a 

strong relationship between predawn LWP and CWSI from all three different methodologies 

used to calculate CWSI using UAV-based canopy temperature. This strong relationship was in 

agreement with previous studies in the southern Georgia region. These results are important 

because it enables the creation of predicted LWP maps from remotely sensed canopy 

temperature data. In addition, individual bands in the visible and NIR regions of the spectrum 

were correlated with predawn LWP and stomatal conductance as a possible alternative method to 

using canopy temperature data. Bands red edge, and red showed high correlations with LWP 
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indicating that these two bands can be possibly combined in new vegetation indices as an 

alternative to the use of canopy temperature data. 

 One crucial technology to enable site-specific irrigation is VRI, in which water is applied 

in varied rates in a timely manner to meet crop water requirements. To enable different 

application rates to be applied areas of similar soil and landscape properties called IMZs are 

delineated. Currently, IMZs are delineated in the beginning of the season and used thereafter. 

However, results from our study (chapter 3) showed that there was high soil water tension and 

leaf water potential variability. The variability within individual IMZs evidenced the need to a 

dynamic IMZ delineation in which the zones can respond to in-field pattern changes during the 

season caused by the interaction of soil, plant, and environment. 

 In addition to the physiological parameters, mainstem height was found to be an indirect 

indicator of water stress because of the limited growth shown in water stressed plants. In chapter 

3 the use of predicted plant height map to delineated in-season IMZ map during the vegetative 

stage of cotton was explored. IMZs boundaries changes once during this stage following plant 

height patterns. Average plant heights showed a strong linear relationship with cotton yield. The 

predicted plant height map also showed high similarity with final yield. 

 Extending the research in the use of remotely sensed canopy temperature, the sharpening 

of satellite thermal images at field scale was assessed. MODIS thermal images are available for 

free in a daily basis. However, because of its coarse resolution these images are not useful for 

field scale application. The TsHARP technique was used to sharpen MODIS surface 

temperatures to 30, 60, 120, and 240 m spatial resolution using NDVI developed from Sentinel-2 

and VENµS. Images sharpened to 240 m showed the highest temperature accuracy during 

validation. Nevertheless, the accuracy was highly dependent on field size, once smaller fields did 
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not have enough pixels. In this context, images sharpened to 120 and 60 m were the most 

consistent for both Sentinel-2 and VENµS due to its finer pixels size. Results from this study are 

relevant to the use of satellite thermal images. Very few studies have explored the use of thermal 

disaggregation for field scale, and no studies have been published on the use of VENµS. 

 The results achieved from the three studies discussed showed great relevance in the use 

of remote sensing to delineate dynamic IMZs for VRI in cotton. Although the southern region of 

the USA has a humid climate with rainy summer season, episodic droughts during the cotton 

growing season are common and can decrease final yields. The use of site-specific irrigation to 

apply water to meet the crop needs at a timely manner can help mitigate the damaging effects of 

drought and increase irrigation water use efficiency. Further research needs to be conducted to 

further evaluate the benefits of applying the methodologies discussed, but remote sensing shows 

great promise in the frequent monitoring of crop status during the season.  


