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Abstract

The global population is predicted to reach 9 billion by 2050, which requires the current

food production to double to meet the global demand for food, feed, fiber, and bioenergy. This

is a tall order and brings challenges to plant breeders to find genotypes with high yield and

high-stress tolerance to adapt to the changing climate in the next 30 years. High-throughput

phenotyping that uses modern imaging and sensing technologies to accelerate the breeding of

specific crop genotypes is a promising way to solve the challenges. This dissertation focused

on developing ground and aerial robotic systems for field-based high-throughput phenotyping

and developing novel data processing methods to measure phenotypical traits.

In this study, an unmanned aerial system that integrated color, multispectral, thermal

cameras, and LiDAR sensor was developed to measure phenotypical traits at the plot level.

A data processing pipeline was developed to extract phenotypical traits from the raw data,



including canopy height, canopy cover, canopy volume, canopy vegetation index, and canopy

temperature. The aerial system was also used to detect and count cotton blooms using the

proposed novel bloom counting algorithm that uses Structure from Motion and Convolutional

Neural Network. The unmanned aerial system and data processing methods can be effective

and efficient tools for field-based high-throughput phenotyping.

A modular agricultural robotic system (MARS) was developed, which consists of several

modules. Different combinations of modules can form robot configurations for different

purposes. The software was developed based on the Robot Operating System (ROS). The

robot can auto navigate in the field, and several field tests showed the robot’s usefulness in

high throughput phenotyping. MARS robots can be easily adapted to different agricultural

tasks and affordable and effective platforms for researchers and growers.

The next generation Berry Impact Recording Device (BIRD Next) is an upgrade of

the previous design. The sensor was designed to measure the mechanical impacts of small

fruits and vegetables. The sensing range and frequency of the BIRD Next were significantly

improved than the previous design. It integrates wireless communication (Bluetooth) and

wireless charging, making the sensor waterproof and useable for produces whose processing

involves water.

Index words: High-throughput phenotyping, Unmanned aerial vehicle, Remote

sensing, Convolutional neural network, Agricultural robot, Berry impact

recording device
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Chapter 1

Introduction

1.1 Background

The global population is estimated to reach nearly 10 billion by 2050, which requires sus-

tainably doubling the agricultural output from 2005 to 2050 to fulfill the global need for

food, feed, fiber, and bioenergy in 2050 [1]. Consequently, global agricultural productivity

must grow by an average rate of 1.73% annually from 2010 to 2050 [2]. However, global

agricultural productivity has only been rising by an average annual rate of 1.63%, below its

target value. More seriously, modern agriculture also faces challenges from climate change,

resource depletion and labor shortage, making it even challenging to increase agricultural

productivity in a sustainable way.

Several potential solutions have been proposed and attempted to address these issues. The

first solution is precision agriculture, which aims to improve crop management by minimizing

the agricultural input (e.g., water, fertilizer and pesticide) and maximizing the output (e.g.,
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yield and quality). This requires continuously monitoring crop growth to support management

decisions. The second solution is plant genome engineering and phenotyping, which aims to

breed new crop cultivars that can naturally produce high yield, better quality and tolerate

various environments (e.g., saline soil and drought). Breeding such cultivars require measuring

plant phenotypical traits at a large scale to understand the interaction between the genotype

and phenotypes in dynamic environments, which is the primary goal of high-throughput

phenotyping. Both solutions need an automated way to evaluate crops in the field in a

high-throughput manner, which makes it is essential to develop innovative technologies for

such purposes.

Over the past decade, field-based high-throughput phenotyping (FHTP) has made consid-

erable progress in evaluating plant phenotypes in the field. Many field-based high-throughput

phenotyping platforms (FHTPPs) have been developed and used in breeding programs [3, 4].

However, one major limitation of those FHTPPs is that they require human intervention fully

or partially, and thus their throughput is limited and not practical for large fields. Therefore,

it is necessary to develop fully automated robotic systems for FHTP to further increase the

throughput.

1.2 Objectives

This dissertation aims to develop robotic systems and data analytical methods for field-based

high-throughput phenotyping, and to develop the next generation Berry Impact Recording

Device (BIRD Next). Specific objectives include:

2



1. Develop a multi-sensor unmanned aerial system for field-based high-throughput plant

phenotyping;

2. Develop a data processing pipeline to extract phenotypical traits at plot-level from

aerial data;

3. Develop an image processing method to count cotton blooms using aerial color images;

4. Develop a modular agricultural robotic system for ground data collection;

5. Develop the next generation Berry Impact Recording Device (BIRD Next) to integrate

wireless communication and wireless charging.

1.3 Overview of the Dissertation Chapters

This dissertation contains eight chapters, where chapters 3 to 6 represent four manuscripts

written individually and remain in a general manuscript format. Chapter 1 introduces the

significance of this study and defines the objectives of this dissertation. Chapter 2 reviews

the current development of ground phenotyping robots.

Chapter 3 describes the development of a multi-sensor unmanned aerial system for field-

based high-throughput plant phenotyping and a data processing pipeline to extract plot-

level phenotypical traits, including morphological traits (canopy height and volume), canopy

vegetation indices, and canopy temperature. The system was validated in the field.
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Chapter 4 explores the application of aerial multispectral imaging for cotton phenotyping.

A data processing algorithm was developed to extract cotton plant height, and a preliminary

study on cotton bloom detection using the multispectral image was conducted.

Chapter 5 develops a novel image processing algorithm to localize and count cotton blooms

from aerial color images. The algorithm uses a convolutional neural network for cotton bloom

detection.

Chapter 6 reports the development of a modular agricultural robotic system. A design

concept was proposed, and two types of robots were implemented based on the design concept.

The performance of the robots was tested in the field.

Chapter 7 introduces the hardware and software design of the BIRD Next.

Chapter 8 provides general conclusions and future research directions.
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Chapter 2

Review of Ground Field-Based

High-Throughput Phenotyping

Systems: Focus on

Phenotyping Robots

2.1 Introduction

Plant phenotyping is an emerging science that links genomics with plant ecophysiology

and agronomy. The assessment of plant phenotypes in the field can be labor-intensive and

inefficient. The emergence of Field-based High-throughput Phenotyping (FHTP) is to increase

the throughput through sensing technologies and data processing algorithms. The FHTP
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systems integrate sensors with mobile platforms to collect data in the field with minimal or

no human intervention.

Many FHTP systems have been developed so far, including aerial and ground systems.

While aerial systems can provide much higher efficiency and coverage than ground systems,

ground systems are used primarily to collect high-resolution data for measuring phenotypical

traits at fine levels, such as the plant and organ level. Early ground FHTP systems were

based on tractors, and later pushcarts were developed to replace tractors. The recent trend

is to use phenotyping robots to automate the data collection.

Most agricultural environments are unstructured that can change rapidly in time and

space; therefore, a phenotyping robot needs to be intelligent to operate by itself. A robot’s

intelligence follows a sensing-thinking-acting cycle where the robot needs to understand its

surrounding environment, make decisions based on the environment and its states in the

environment, and perform certain operations to achieve its goals. For phenotyping robots,

the intelligence mainly focuses on navigation in unstructured environments because the phe-

notyping robot’s primary mission is to collect data autonomously in the field. A typical

phenotyping robot primarily consists of the mobile platform, sensors including phenotyping

sensors for measuring phenotypical traits and perception sensors for navigation, and comput-

ing units for data collection and robot navigation (Figure 2.1). Manipulators, such as robotic

arms, are sometimes used in phenotyping robots to measure certain phenotypical traits.
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Mobile platform

Computing

unit

Phenotyping

sensor

Perception

sensor
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Navigation

Figure 2.1: Diagram of a phenotyping robot.

This chapter’s main objective is to review the existing ground phenotyping robots for

FHTP to provide readers with a general understanding of the current development progress

of the phenotyping robot. First, this chapter first provides a brief review of the ground pheno-

typing systems using nonrobotic systems and then a detailed review of ground phenotyping

robots from the view of the robot’s main components, including mobile platforms, sensors,

manipulators, computing units, and software. Second, it reviewed the navigation algorithms

and simulation tools developed for phenotyping robots and the applications of phenotyping

robot. Last, this chapter discusses current limitations and challenges and concludes with

directions for future research.

2.2 Ground Field-based Phenotyping Systems

The earliest developed ground FHTP systems developed were based primarily on tractors

because of their wide availability and ease in modification for mounting sensors. However,

the soil compaction created by tractors makes them unsuitable for frequent data collection.
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Therefore, a lightweight pushcart, or motorized cart, was developed to replace tractors. Since

tractors and pushcarts still need manual control, the gantry and cable-driven platforms were

developed to automate data collection fully. However, gantry and cable-driven platforms are

not mobile and can only cover certain fields, limiting the number of experimental plots. Their

high construction and maintenance costs also limit their usage. Table 2.1 lists the ground

FHTP systems in literature.

8



Table 2.1: Summary of the ground field-based high-throughput phenotyping systems

System Platform Sensors Crop Phenotypical traits
BreedVision [5] Tractor 3D camera

Light curtain
Laser distance sensor
Hyperspectral camera
Color camera

Triticale Plant height
Canopy reflectance

[6] Infrared temperature sensor
Ultrasonic sensor
Spectral reflectance sensor

Cotton Canopy height
Canopy temperature
NDVI

[7] Ultrasonic Sensor
Spectral reflectance sensor
Color camera
Infrared thermometer

Cotton Plant height
Ground cover fraction
NDVI
Canopy temperature

[8] Infrared thermometer
Ultrasonic sensor
Laser distance sensor
Spectral reflectance sensor

Soybean
Wheat

Canopy temperature
Canopy height
Vegetation index

Phenoliner [9] Color camera
NIR camera
Thermal camera
Hyperspectral camera

Grape Plant count

ProTractor [10] Color camera Brassica Seedling count
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System Platform Sensors Crop Phenotypical traits

GPhenoVision [11] RGBD camera
Thermal camera
Hyperspectral camera

Cotton Plant height
Projected leaf area
Canopy volume
Canopy temperature
Width in-row
Width across-row

[8] Pushcart Ultrasonic sensor
NDVI sensor
Infrared thermometer
Spectrometer
Color camera

Soybean
Wheat

Canopy height
NDVI
NDRE
Canopy temperature
Green pixel fraction

Phenocart [12] Spectral reflectance sensor
Color camera
Infrared thermometer

Wheat Canopy temperature
NDVI

Proximal Sensing Cart [13] Ultrasonic sensor
Infrared thermometer
Spectral reflectance sensor
Color camera

Cotton Canopy height
Canopy temperature
NDVI
Canopy cover
Crop water stress index
Leaf area index

Phenocart [14] RGB camerea
NIR camera

Wheat Biomass
NDVI

[15] Hypersecptral camera Tobacco
Professor [16] Motorized

pushcart
Not specified Wheat

Maize
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System Platform Sensors Crop Phenotypical traits
Field Scanalyzer [17] Gantry Thermal camera

Chlorophyll fluorescence imager
3D Laser Scanner
Color camera
Hyperspectral camera

Wheat Plant morphology
Canopy temperature
Spectral indices

PhénoField [18] LiDAR sensor
Spectroradiometer
Color camera

Wheat Green cover fractions
Green Area Index
Average Leaf Angle
Meris Terrestrial Chlorophyll Index
Plant height

Field Phenotyping
Platform [19]

Cable system Color camera
NIR camera
Laser scanner
Thermal camera
Ultrasonic sensor
Spectrometer
Multispectral camera

Wheat Enhanced NDVI
Canopy cover
Canopy height
Canopy temperature
Canopy spectral reflectance

NU-Spidercam [20] Multispectral camera
Thermal camera
Spectrometer
3D LiDAR

Maize
Soybean

Canopy cover
NDVI
Canopy temperature
Canopy height
Canopy reflectance
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2.2.1 Tractor based systems

Early tractor based FHTP systems were modified from high-clearance tractors mounted with

multiple sensors to measure plant phenotypical traits. One well-known system was developed

by USDA Maricopa Agricultural Center at Maricopa, Arizona. Their system had eight sets

of infrared-thermometer and ultrasonic sensors that measure the temperature and height of

the canopy of eight rows at a single pass [6]. An Real-time Kinematic Global Navigation

Satellite System (RTK-GNSS) was mounted onto the tractor to georeference measurements.

Another representative system is BreedVision, which used a tractor with an enclosure to carry

multiple sensors [5]. The BreedVision integrated a 3D time-of-flight camera, a light curtain

sensor, a laser distance sensor, a hyperspectral camera, and a color camera. As imaging

technologies advanced, the later developed FHTP platforms mainly used imaging sensors to

collect data. For example, the GPhenoVision is a tractor-based multi-sensor system that

integrated a hyperspectral, thermal, and RGBD camera [11]. The GPhenoVision system has

been used to measure morphological traits for cotton [21].

The high payload capacity of the tractor-based FHTP system eases the carrying of heavy

equipment, such as the imaging chamber, so that the environmental conditions can be

controlled partly for data collection. However, the tractor’s heavy weight can create soil com-

paction with frequent data collection, which could interrupt the crop’s growth. Additionally,

the data acquisition system can suffer from the tractor’s vibrations, which potentially could

damage the sensors and affect the data quality if the vibrations are not properly isolated. The

field soil conditions (such as muddy soil after rain) could limit the operation of the tractor.
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Because tractors need to be driven manually, the lack of precise controls for the tractor’s

speed and trajectory can affect specific sensors, such as the push-broom hyperspectral camera.

Furthermore, there is the potential risk for damaging the crops with manual driving, but this

is a common issue for manually-controlled, ground FHTP systems.

2.2.2 Pushcart and motorized cart

As an alternative to the tractor, pushcart can be assembled easily with low-cost materials. It

was developed to solve the soil compaction issue of the tractor. Most cart-type systems were

made of metal frames with bicycle wheels, which makes them low cost and lightweight [8,

12, 14, 13, 16, 15]. The frame structure eases the mounting of sensors. Since the pushcart is

activated manually, its position is easier to control than that of tractors such that it can stop

at any position and scan the entire field [15]. The motorized cart uses electronic motors to

move the cart, meaning it can be controlled remotely. Professor is a platform that uses two

DC motors for driving and two DC motors for steering [16]. Its frame is made of aluminum

extrusions and its width and height can be adjusted with an inner frame. It is manually-

controlled with a remote controller. The major drawback of the pushcart and motorized cart

is that they requires manual power and manual control, which is inefficient and not practical

for large field.

2.2.3 Gantry and cable-driven system

A gantry is an overhead, bridge-like structure that supports equipment such as a crane. The

gantry-based FHTP system uses a gantry to carry sensors and can move linearly on parallel
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rails. The camera can move along the gantry bridge as well as vertically, making the camera

move in XYZ axes. One well-known gantry-based system is the Field Scanalyzer that was

developed by LemnaTec [17]. The high payload (500 kg) enables the system to carry heavy

sensors, such as the chlorophyll fluorescence imager (120 kg). PhénoField is a gantry system

managed by the applied research institute ARVALIS in France that was used primary for

wheat breeding [18]. It has a mobile rainout shelter equipped with irrigation booms to control

the water stress for desired plots.

Like the gantry-based system, the cable-driven system is a fixed-site system where the

sensors were suspended from cables supported by towers at the outside corners of the field.

The movements of the sensors were driven by cable winches. Some representative systems

include the Field Phenotyping Platform (FIP) at the Swiss Federal Institute of Technology

in Zurich [19] and the NU-Spidercam from the University of Nebraska-Lincoln [20].

The advantages of gantry-based and cable-driven platforms are that they do not make

physical contact with the soil or plants in addition to being fully autonomous. The primary

disadvantage is high construction and maintenance cost, which can limit their usage in breed-

ing programs. Other disadvantages include limited field coverage and a fixed experimental

site.
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2.3 Phenotyping Robot

2.3.1 Mobile platform

The development of agricultural robots has advanced dramatically in the past decade to

address labor shortages in agricultural. The advantages of automation make the agricultural

robot a promising means for managing large farms with minimal human labor and make it

an ideal solution for FHTP. Thus, many phenotyping robots have been developed to replace

the tractor and pushcart (Figure 2.2).

A phenotyping robot can be classified into four categories based on the driving mechanism:

wheeled robot, tracked robot, legged robot, and wheel-legged robot. The wheeled robot uses

wheels to drive the robot while the tracked robot uses tracks. These are the two most used

forms. The legged robot uses articulated legs to provide locomotion, such as a hexapod robot

[22]. The wheel-legged robot combines the wheels with articulated legs, so it has more control

of locomotion. Table 2.2 summarizes some developed phenotyping robots mentioned in the

literature.
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(A) (B) (C) (D)

(E) (F) (G) (H) (I)

(J) (K)

(L) (M) (N) (O)

(P) (Q) (R)

Figure 2.2: Phenotyping robots. A) TerraSentia [23]. B) Vinobot [24]. C) RobHortic [25].
D) Shrimp [26]. E) Robotanist [27]. F) Ladybird [28]. G) A robot based on LT2 [29]. H)
VinBot [30]. I) MARIA [31]. J) Thorvald II [32]. K) AgBotII [33]. L) BoniRob [34]. M)
Armadillo Scout [35]. N) PHENObot [36]. O) Phenobot 3.0 [37]. P) Phenobot 1.0 [38]. Q)
TERRA-MEPP [39]. R) Flex-Ro [40]

.
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Table 2.2: Summary of phenotyping robots. 4WD4WS: four-wheel driving and four-wheel steering. 2WD2WS: two-wheel
driving and two-wheel steering.

Robot Drive
Mechanism

Phenotyping
Sensor

Perception
Sensor

Computing
Unit

Crop Study

VinBot [30] Skid steering RGBD camera
2D LiDAR

RTK-GNSS
IMU
2D LiDAR

Not specified Vineyard [41, 30]

Shrimp [26] 3D LiDAR
Color camera
Hyperspectral camera

RTK-GNSS
IMU

Not specified Orchard [26, 42, 43]

Robotanist [27] Stereo camera
Color camera

RTK-GNSS
IMU
2D LiDAR
Stereo camera

Intel NUC Sorghum [44]

Vinobot [24] Trinocular camera GPS
LiDAR

PC Maize
Sorghum

[45]

TerraSentia [23] Multispectral camera
2D LiDAR
Hyperspectral camera
Color camera
RGBD camera

GNSS
Gyroscope

Raspberry Pi
Jetson TX2

Maize [46, 47]
[48]

MARIA [31] 2D LiDAR

RGBD camera

RTK-GNSS
IMU

Jetson Nano Not specified [45]
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Robot Drive
Mechanism

Phenotyping
Sensor

Perception
Sensor

Computing
Unit

Crop Study

RobHortic [25] Differential
drive

Thermal camera
Multispectral camera
Color camera
NIR camera
Hyperspectral camera

RTK-GNSS PC Horticultural
crop

AgBotII [33] 2WD2WS Color camera RTK-GNSS PC Row crop [49]

Phenobot 1.0 [38] Stereo camera RTK-GNSS Laptop Sorghum [38, 50]

Phenobot 3.0 [37] Articulated
steering

Stereo camera RTK-GNSS Not specified Sorghum

Thorvald II [32] Configuration
depended

Application depended GPS
IMU
2D LiDAR

Computer Row crop
Orchard
Greenhouse

[32, 51]
[52, 53]

Ladybird [28] 4WD4WS Color camera
2D LiDAR
Hyperspectral camera
Stereo camera
Thermal camera

2D LiDAR
RTK-GNSS
IMU

Industrial computer Row crop [54]

AgRover [55] Not specified RTK-GNSS Not specified Row crop

Flex-Ro [40] Color camera
Ultrasonic sensor
Infrared thermometer
Spectrometer

GNSS
Obstacle detector

Laptop Row crop

Armadillo Scout [35] Tracked Application depended GNSS
2D LiDAR

Single board
computer

Not specified

PHENObot [36] Color camera RTK-GNSS Industrial computer Vineyard [56, 57]
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Robot Drive
Mechanism

Phenotyping
Sensor

Perception
Sensor

Computing
Unit

Crop Study

TERRA-MEPP [39] Stereo camera
Depth camera
Color camera

RTK-GNSS
Wheel encoder
Gyroscope

Intel NUC
MyRIO

Sorghum

[58] Color camera RTK-GNSS Raspberry Pi 3 Soybean

[29] Color camera Raspberry Pi 3

BoniRob [34] Wheel-legged Application depended RTK-GNSS
Inertical sensor
3D LiDAR

Embbed PC [59, 60]
[61, 62]
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Wheeled robot

The wheeled robot is the most common type of phenotyping robot. Wheeled robots can

be classified broadly into two categories: robots with locally-restricted mobility (such as

differential drive robots) and robots with full mobility (such as omnidirectional robots).

Differential drive robots, such as skid-steering robots, are the most common robots used for

phenotyping because of their simplicity in mechanical structure and motion control. For

example, the VinBot [30], Robotanist [27], Vinobot [24], RobHortic [25], Shrimp [26], and

TerraSentia [23] are differential drive robots. The locomotion of the differential drive robot

is controlled by the forward/backward and turning speeds of the wheels. It can achieve

in-place rotation. Commercial robotic platforms, such as Jackal and Husky from Clearpath,

are differential drive robots commonly used for FHTP [24].

Some wheeled robots use front wheels for steering and back wheels for driving. The

locomotion is controlled by the forward/backward speed and turning angle, similar to an

automobile. One example is the Phenobot 1.0, which was modified from a small tractor [50].

Its redesigned version, Phenobot 3.0, uses articulated steering [37]. The AgBotII robot is

also a front-wheel steering and back-wheel-driveing robot, but was designed mainly for weed

management [33].

Unlike the above-mentioned robots with restricted locomotion , omnidirectional robots

can move in any direction without restrictions, enabling extra maneuverability and terrain

adaptation. The Thorvald II [32] and Ladybird [28] are two representative four-wheel drive

and four-wheel steering (4WD4WS) robots. The Ladybird has a liftable cover with solar
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panels that extend the operation time. The Thorvald II is a modular robotic system that

consists of several robot modules that can be reconfigured into different robots other than

the 4WD4WS robot, such as a 2WD0WS robot. The Thorvald II robot also included a

suspension module that can make the robot run on rough terrain more stably. The Thorvald

II robots are commercially available through Saga Robotics and have been used for wheat

phenotyping, strawberry harvesting, polytunnel, and greenhouse applications [32, 51, 52, 53].

AgRover [55] and Flex-Ro [40] are another two 4WD4WS robots. AgRover AgRover has

a three-point chassis design to ensure all the wheels can have traction on uneven terrain.

Flex-Ro is powered by hydraulic instead of electronic motors.

Tracked robot

Tracked robot uses tracks to increase the contact area with the ground, and thus its terrain

adaptability is better than the wheeled robot. It can operate on rough terrains and soil

conditions (e.g., muddy fields) that wheeled robots cannot. Armadillo and its improved

version, Armadillo Scout, are tracked robots featuring a modular design for the track module

and a robot computer platform FroboBox running the modular robot architecture, FroboMind,

based on ROS [35]. TERRA-MEPP is a tracked robot designed for phenotyping energy

sorghum [39]. It uses a tracked platform to carry a vertical, extendable mast (up to 4.88 m),

so the sensor can capture the top view of plants. Commercial tracked robot platforms, such

as LT2 from SuperDroid Robots, were used in some studies [58, 29].
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Legged robot

Legged robot has excellent terrain adaptability and can be used in a complex environment,

such as an agricultural field. However, not many legged robots have been developed for

agricultural purposes, which could be because of the complexity in controlling the robot’s

locomotion and its low efficiency working on large farms [63]. With the recent advances

in robotic technologies and the commercial success of legged robots, such as the Spot from

Boston Dynamics, the legged robot could be a useful platform for FHTP.

Wheel-legged robot

Wheel-legged robot combines the advantage of the wheeled and legged robot. It offers speeds

as high as the wheeled robot and the high terrain adaptability of the legged robot. Wheel-

legged robot can achieve high maneuverability and adjust the robot’s dimensions (width and

height) to adapt to different field layouts [64]. One well-known wheel-legged robot is the

BoniRob, which has four legs with steerable wheels [34]. This robot can adjust its width

and height by adjusting the legs’ posture and can achieve the same maneuverability as a

4WD4WS robot. BoniRob has a detachable module that reconfigures the robot to perform

different tasks by changing the module. The downside of the wheel-legged robot is that its

complexity increases the cost of the robot and makes it less robust than a wheeled robot.
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2.3.2 Sensors and manuipulators

The primary function of a phenotyping robot is to measure phenotypical traits, so the

robot usually carries multiple sensors to capture related information for phenotypical traits.

Furthermore, sensors enabling the robot to self-drive and avoid obstacles are necessary.

Manipulators are needed when making contact measurements and destructive measurements

for certain phenotypical traits, such as the stalk strength of sorghum [27].

Sensors

The sensors used in phenotyping robots include the phenotyping sensors for measuring phe-

notypical traits and perception sensors for robots sensing the environment to make decisions.

The phenotyping sensors and the perception sensors can interchangeable or be independent.

The phenotyping sensors include non-contact sensors, such as imaging sensors, and contact

sensors, such as a penetrometer. The most widely-used non-contact sensors are the color

camera, multispectral camera, hyperspectral camera, thermal camera, stereo camera, and

LiDAR sensor [65, 3]. For example, the Ladybird robot is equipped with a color camera,

a 2D LiDAR, a hyperspectral camera, a stereo camera, and a thermal camera [28]. Most

phenotyping robots provide mounting points to carry different sensors according to the tar-

geted phenotypical traits. Some phenotyping robots carry environmental sensors such as soil

sensors to measure environmental conditions, which are useful meta data for data processing

[24, 28, 31].
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In the context of the phenotyping robot, the perception sensors are used primarily for path

planning. The robot needs to sense the surrounding environment and estimate its position

within the environment to navigate itself to reach the targets. The Global Navigation Satellite

System (GNSS) and the Inertial Measurement Unit (IMU) are often used to obtain global

position and posing. Vision sensors and ranging sensors such as stereo cameras and LiDAR

sensors can be used for localization and obstacle detection using the simultaneous localization

and mapping (SLAM) algorithms [66]. Fusing sensory data from different sources can improve

localization accuracy.

Manipulators

Manipulators, primarily robotic arms, are used commonly in agricultural robots, such as

weeding and harvesting robots. However, manipulators are not very common in phenotyping

because most phenotypical traits can be measured remotely. Manipulators are useful for

phenotyping robots when the phenotypical traits need to be measured contactively or at a

specific location (e.g., certain leaf). For example, the Robotanist robot uses a three degree of

freedom robotic arm to measure the stalk strength of sorghum [27]. Sensors mounted on the

robotic arm can be used to change sensing position/pose actively, such as sensing individual

plants from multiple viewing angles [24, 67]. Other applications include collecting biological

samples [68], leaf probing [69], soil sampling [59, 31], digging plants for root phenotyping,

and fruit mapping [70].
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2.3.3 Computing unit and software

Computing unit

Both single-board computers and embedded systems are used commonly in robotic systems

because of their small size, low power usage, and light weight. As the brain of the robot, the

primary function of the computing unit is to process sensor’s data, make decisions, and control

the robot. Selection of a computing unit should consider power consumption, computing

performance, size, weight, interfaces, supported operating system, and available resources.

Multiple computing units can be used to distribute the computing load, for example, one to

perform path planning for the robot and another to process the phenotyping sensors’ data.

[27].

Software

The Robot Operating System (ROS) is a widely-used, middleware framework for developing

robotic software because it provides an integrated environment that can greatly accelerate

software development [71]. ROS has become an industrial standard for robotics and supports

a wide range of hardware and algorithms commonly used in robotics. FroboMind is a software

architecture built upon ROS and designed for agricultural robots [72]. Other robot software

architectures can be found in [72].
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2.3.4 Navigation

Navigation is an essential component of automation in robotics and includes three funda-

mental problems: localization, path planning, and map-building. A typical agricultural

environment includes many crop rows in straight lines, and the robot needs to travel along

the crop rows. Therefore, a phenotyping robot’s primary navigation objective is to follow the

crop row and switch between rows. GNSS, vision sensors, and LiDAR sensors are commonly

used for localization and path planning, and this chapter focuses on the navigation algorithms

based on these sensors in the agricultural environment.

GNSS-based navigation

As a global positioning technology, GNSS has been used widely to localize robots in field

applications. GNSS-based guidance systems have been developed for agricultural machinery

and robots [73]. The RTK-GNSS can provide positioning accuracy up to within a centimeter

but is not always adequate for localization when used as a single positioning sensor. The

positioning accuracy of GNSS can be affected by the obstruction of line-of-sight to satellites,

multipath issues, and interference from other RF sources. Therefore, it is typically used with

other sensors, such as the IMU and wheel encoder, to improve the localization accuracy.

The typical application of GNSS-based navigation is to make the robot follow preset paths

using path-following algorithms, such as pure pursuit controller and its variants [74]. The

path-following algorithm can be designed using conventional control theories, which require

the robot’s kinematic model [55]. Deep reinforcement learning can also be used for following
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paths, does not require the robot’s kinematic model, and can learn the kinematics implicitly

through training [75].

In agricultural environments such as orchards, the GNSS can be unreliable because

the robot frequently could move under a tree canopy blocking the satellite’s signals to the

GNSS receiver. The GNSS-based navigation is not suitable for dynamic environments with

unexpected changes or events in the environment because a lack of understanding of the

environments. In those cases, vision-based and LiDAR-based navigation algorithms can be

used.

Vision-based navigation

Vision-based guidance keeps the robot following crop rows using machine vision. Color

cameras typically are used to detect crop rows and calculate the robot’s orientation relative

to the crop row [76]. Stereo vision can provide depth information, which can help detect

cotton crop rows with different illumination conditions and weed pressure than a single camera

[77, 78]. Besides the traditional machine vision techniques, the deep learning methods can

obtain directly the crop row’s orientation from raw images [79].

Vision-based navigation relies on the image feature of the crop rows and can suffer from

illumination changes and low texture. Typically, it is used with GNSS guidance, for example,

fusing the vision guidance and GNSS guidance results or using the vision guidance for row

following and switch to GNSS guidance when the robot switches between rows.
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LiDAR-based navigation

LiDAR can measure the distance between objects. Like vision-based navigation, LiDAR-

based navigation relies on landmarks that can differentiate crop rows, such as the plant,

trunk, and poles in a polytunnel [80, 81, 82, 52]. The crop row measured by LiDAR sensors is

represented as points aligned with some noise. Because the LiDAR sensor is subject to noise,

it is difficult to detect crop rows from noisy points. A standard method is to detect the crop

row using line detection algorithms, such as Hough transform and random sample consensus

(RANSAC) [82, 81, 52]. Another method is to model the LiDAR measurements and noise

using a particle filter and estimate the robot’s heading and lateral deviation relative to the

crop row [83, 84].

Using the LiDAR sensor alone can make it challenging to understand the surrounding

environment because of the coarse data. The vision sensor can be used to provide comple-

mentary information to exclude the LiDAR points of no interest from data processing. For

example, image features were used to separate the LiDAR points of the trunk from other

objects in vineyards so that crop rows could be detected correctly [85]. The LiDAR sensor

also can be used for obstacle avoidance, but can falsely detect grass, weed, and plant leaves

as obstacles, so using vision sensors can help identify real obstacles.

2.3.5 Simulation

Simulation of the robotic system and its operating environment can accelerate the develop-

ment of robotic systems through quick and efficient tests and validation of the robot’s design
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without physically building the robots [34, 86, 87, 81]. Simulation is also useful for developing

and testing control algorithms, navigation algorithms, and data processing algorithms [87,

75, 52, 88]. It is easy to create repeatable testing conditions in simulations for the robot, a

process that can be difficult in a real environment.

There are many simulation platforms, and popular platforms include Player [89], Webots

[90], Gazebo [91], and V-REP [92]. A complete review of the simulation platforms can be

found in [93]. Some simulators and frameworks customized for agricultural robotics and

farm machinery have been designed based on professional simulation platforms, such as the

Agricultural Architecture (Agriture) [94] and AgROS [95].

2.4 Applications of Phenotyping Robot

2.4.1 Measuring plan traits

The primary mission of a phenotyping robot is to measure phenotypical traits for plants. The

phenotypical traits include but are not limited to plant architecture, biomass, and emergence

rate. The traits the robot can measure depend on the phenotyping sensors carried by the

robot, but the phenotyping sensors can be changed in most phenotyping robots. Robotanist

uses stereo imaging and deep learning to measure the stalk width of the sorghum [44]. Stalk

strength can be measured using the manipulator on the Robotanist. More plant architecture

traits of sorghum, such as plant height, width, volume, surface area, and stem diameter, were

measured using stereo vision on the Phenobot [38, 50]. The Vinobot can obtain detailed

3D models of the plants from the stereo images to extract phenotypical traits, such as plant
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height and leaf area index [24]. As a generic phenotyping robot, the Ladybird is equipped with

a stereo camera, color camera, hyperspectral camera, thermal camera, and LiDAR sensor,

which can be used for different crops and can extract phenotypical traits at the plot level

[28]. The Shrimp robot, mainly used in orchards, has a similar configuration of phenotyping

sensors as Ladybird to provide rich information for phenotyping, such as mapping canopy

volume, flowers, fruit, and yield for almond orchards [42]. The plant emergence rate can be

measured using image or LiDAR sensors. A mobile robot running over the crop row was used

to count maize at the early growth stage using the LiDAR sensor [96]. The maize can also

be counted through visual tracking using TerraSentia running between crop rows [97, 23].

2.4.2 Counting fruits

In vineyards and orchards, automatic fruit counting is valuable for yield estimation and

production management. This method poses two technical challenges: correctly detecting

the fruits, and removing duplicated detections to get the correct count. The detection of

the fruit can be achieved through machine vision techniques. Images are collected using a

color camera on a mobile robot (Shrimp), and a Faster R-CNN model was used to detect the

mango fruits [26, 43]. The detections of the same fruit from different images were registered

using epipolar geometry to remove repeated count. The location of the detected fruits can

be calculated through triangulation, and the robotic system can provide both the count and

location of the fruits. The PHENObot uses artificial light to image grape trees in the night

to remove background trees [57]. The 3D model of the grape tree was constructed using

Structure from Motion (SfM) to count berries and measure berry size.

30



2.4.3 Collecting phenotyping dataset

Advances in deep learning show great potential for solving agricultural problems that could

not be solved easily before [98, 99]. Deep learning requires a large amount of data to train

reliable deep learning models that can be used in various agricultural environments. Therefore,

a phenotyping robot can be a useful tool for collecting agricultural datasets for deep learning

because it was designed to collect data in the field. An image dataset was collected using

BoniRob for weed detection [60]. BoniRob also was used to collect datasets containing

georeferenced multispectral images, and RGBD images and LiDAR data were collected for

plant classification, localization and mapping on sugar beet field [61]. The Ladybird was used

to collect a high-resolution multimodal dataset for Brassica with manual measurements of

phenotypic traits [100]. The dataset can be used to explore new data processing algorithms

for phenotyping.

2.5 Discussion

Despite the recent advances in phenotyping robots, there remain limitations. First, some

phenotyping robots have been designed for specific crops and field layouts, which limits their

use in other crops and field layouts. For example, robots designed for vineyards, such as

PHENObot, may not be suitable for row crops because the robots’ dimensions cannot fit

within the row spacing [36]. Reconfigurable robots with a modular design, such as Tharvold

II robotic system, might offer a promising solution for making the robot reusable for different

crops. Second, the cost of phenotyping robots can be prohibitively high. The mobile platform
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itself can cost tens of thousands of dollars, and the total cost of a phenotyping robot is even

higher with phenotyping sensors. Although some low-cost robots have been developed, such

as the TerraSentia, their use is limited because of their low payload and small size. Third, the

data collection efficiency of phenotyping robots remains too low for large fields with tens of

thousands of plots in practice. For example, a typical travel speed of a robot is 0.5 m/s, and

the length of a plot is 3 m. A single robot would take at least 1.7 hours to scan 1000 plots of

3 m length at a travel speed of 0.5 m/s. The lengthy scanning time can make time-sensitive

traits (e.g., canopy temperature) inconsistent across plots. The efficiency can be improved

by using robot swarms to scan the field simultaneously, which requires coordination of the

robots and can result in a higher operation costs. Fourth, although most phenotyping robots

can achieve autonomous navigation, they require human supervision to prevent damaging

plants if the navigation malfunctions.

Designing a phenotyping robot that can work in the unstructured and dynamically chang-

ing agricultural environment can be challenging. The robot’s design (e.g., the dimension of

the robot) is constrained by agronomic practices such as row spacing, which usually vary

crop by crop, making it challenging to design a robot to work under the constraints properly

without sacrificing the versatility. Navigation in cluttered environments is challenging, espe-

cially in GNSS-denied areas like sub-canopy. A complex navigation algorithm using vision

and LiDAR is needed for those environments.
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2.6 Conclusion

This chapter reviewed the existing phenotyping robots and their applications in row crops

and orchards. Several research directions were identified. The first direction is to develop

low-cost phenotyping robots that can be used in different crop and field layouts. The second

direction is to develop innovative control algorithms for robot swarms (including aerial robots)

to coordinate in large fields to improve data collection efficiency. The third direction is to

develop advanced navigation algorithms to enable robust navigation without damaging plants.

The fourth direction is to develop real-time data processing algorithms to extract phenotypical

traits that can be deployed on robots with edge computers.
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Chapter 3

Development of A

Multi-Sensor Unmanned

Aerial System for Field-Based

High-Throughput

Phenotyping1

1Rui Xu and Changying Li. To be submitted to Remote Sensing.
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Abstract

Unmanned aerial vehicles have been used widely in plant phenotyping. This

paper develops an unmanned aerial system that integrate a color, multispectral,

thermal camera and a LiDAR sensor. The acquisition software was designed based

on the Robot Operating System, which can visualize and record data. The design

of the unmanned aerial system was opensourced. A data processing pipeline was

proposed to preprocess the raw data and extract phenotypical traits at plot level,

including morphological traits (canopy height, canopy cover, and canopy volume),

canopy vegetation index, and canopy temperature. The multispectral, thermal

camera was calibrated in the lab and in the field. The system was validated

through field data collection in a cotton field. The temperature from the thermal

image had a mean absolute error of 1.02◦C and the canopy NDVI had a mean

relative error of 6.6% compared to the ground measurements. The maximum

canopy height had an error of 0.1 m compared to manual measurements. The

system demonstrated can be a useful platform for plant breeding and precision

management.

3.1 Introduction

High-throughput phenotyping is a method used to accelerate the breeding of certain genotypes

[101]. In the past, collecting field data required significant human labor, so designing an

automatic phenotyping platform to work in the field has attracted researchers’ attention in
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both plant science and engineering. The early solutions for such a platform is utilizing a

ground vehicle (either tractor or robotic platform) with sensors to acquire the desired data

[5, 6, 11]. The ground vehicle is driven either manually or automatically through each plot

and data are collected and stored into a computer. The ground vehicle has the advantage

of a large payload that can easily carry multiple sensors simultaneously. In addition, the

ground platform can control the data collection environment (such as light conditions) with

a well-designed enclosure, which guarantees data quality. However, the ground platform

also has several disadvantages. For example, the data scan speed is low, planting layout for

certain crops needs to be adjusted to accommodate the vehicle, frequent data collection can

cause soil compaction, and the platform is difficult for use in a wide range of crops once the

design is fixed.

The Unmanned Aerial Vehicle (UAV), an alternative platform, can address the disad-

vantages of the ground platform to some degree. Comparing to the ground platform, UAV

can provide quick data scan speed and cover a large field. Because there is no intervention

between the plants and UAV, it can be adapted easily for use in different types of crops

and at different growth stages. Furthermore, UAV can be controlled automatically by its

onboard autopilot systems, so it requires less human intervention during data collection.

However, UAV has limitations as well. The payload of UAV is much lower than the ground

vehicle, so it cannot carry heavy equipment. The data quality is more likely to be affected

by environments because of a lack of environmental controls. The spatial resolution of aerial

data is usually lower than that of ground systems.
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There have been many research projects on UAV-based high throughput phenotyping

published in recent years [102, 103]. Various sensors can be integrated with the UAV platform,

including a color camera, a thermal camera, a hyperspectral camera, a multispectral camera

and a Light Detection and Ranging sensor (LiDAR) [104]. Those sensors can provide spatial

and spectral information about the plant phonemics, which can be used to measure directly

or indirectly various phenotypic traits. Color images can be used to estimate leaf area index

(LAI), crop emergence, and count flowers [105, 106, 107]. With the Structure from Motion

(SfM) algorithm, color images can generate a Digital Surface Model (DSM), which can be

used to estimate plant height, predict biomass/yield, detect crop lodging, and measure canopy

structure [108, 109, 110, 111, 112]. Multispectral imaging can provide vegetation indices

(such as NDVI) which have proven to correlate with leaf area index, plant disease, yield,

and plant nutrient deficiency [113, 114, 115, 116, 117]. Thermal images have been used

frequently to measure canopy temperature, which is an indicator of stomatal conductance

and plants’ response to water stress [118, 119]. Therefore, thermal images can be used

to detect water stress [120, 121, 122]. Hyperspectral imaging can provide more spectral

information of vegetation compared to multispectral imaging, so it can be used to monitor

plants’ physiological conditions [123]. Some applications have shown that the photochemical

reflectance index from hyperspectral imaging can be used to access the water stress in maze

[124].

Besides the great potential to use UAV for high throughput phenotyping, several challenges

remain for future research. First, most of the UAV platforms were designed based on the

particular aerial vehicle and sensors; therefore, the design is difficult to reuse for other
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research. One solution is to design a multi-sensor data acquisition system that can be

deployed on different UAV platforms [125, 126]. Second, since certain sensors can be affected

by environmental conditions that potentially can cause inconsistent data between different

data collections, calibration methods need to be developed for different types of sensor. For

example, thermal imaging is affected by the atmosphere and needs to be calibrated properly

in the field to obtain accurate thermal readings [127] Last, converting the sensory data into

meaningful phenotypical traits for variety selection and plant growth requires a complex set of

data processing algorithms and tools. Therefore, designing a framework that can incorporate

existing and future algorithms remains a big task for researchers.

Although UAV has been used widely for plant phenotyping, it has remained a challenge

to develop a UAV system for researchers without an engineering background. Therefore, the

main objective of this paper is to design an unmanned aerial system that can be used by

other researchers. Specific objectives include: 1) designing a data acquisition system that can

be attached easily to different UAV platforms, 2) calibrating the sensors, and 3) designing a

data processing pipeline for extracting phenotypical traits from the raw data. The design of

the system will be open-sourced and available to all researchers.

3.2 System Design

The unmanned aerial system (UAS) adopted a modularized design that separated the system

into an aerial platform and a data acquisition system (DAS). In this way, the DAS can be

carried by different aerial platforms or even by ground platforms. We designed two versions of
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DAS over the past five years. The first version of DAS consists of a DSLR camera (Lumix G6,

Panasonic, Japan), a multispectral camera (RedEdge, MicaSense, WA, USA), and a thermal

camera (Tau 2, FLIR Systems, OR, USA) (Table 3.1). The multispectral camera has five

bands: Blue (475 nm), Green (560 nm), Red (668 nm), RedEdge (717 nm), and Near-Infrared

(NIR, 840 nm). The second version replaced the DSLR camera with an industrial camera

(GrassHopper3, FLIR Systems, OR, USA) and added a 3D LiDAR sensor (VLP-16, Velodyne

Lidar, CA, USA). The first version DAS was used from the year of 2015 to 2018 for data

collection and is introduced briefly in this paper. The second version is an improved version

and the focus of this paper. The second version has been used for data collection since 2019.

Table 3.1: Specification of the sensors.

Thermal
camera

Multispectral
camera

DSLR
color camera

Industrial
color camera

LiDAR

Manufacture FLIR MicaSense Panasonic FLR systems Velodyne
Model Tau 2 RedEdge Lumix G6 GrassHopper3 VLP-16

Size (mm3) 44.5× 44.5× 30 113× 65× 46 122× 85× 71 44× 29× 58 103× 103× 72
Weight (g) 112 150 390 90 830

Resolution 640× 512 1280× 800 4608× 3456 2448× 2048 Vertical: 1.33°
Horiz.: 0.1°–0.4°

Focal length (mm) 25 5.4 14-42 5 N/A
Max FPS (Hz) 30 1 1 75 20
Spectral range

(nm) 7.5–13.5 475, 560, 668,
717, 840 N/A N/A N/A

Accuracy (cm) N/A N/A N/A N/A Up to ±3

3.2.1 First version DAS

The first version of DAS consisted of the DSLR camera, multispectral camera, and thermal

camera. The cameras were controlled by a single-board computer (Raspberry Pi 3) (3.1A).

The cameras and Raspberry Pi were mounted on a camera case and the camera case was

mounted on the drone (Figure 3.1B). The GNSS/IMU (VN200, VectorNav, TX, USA) was
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used to record the position and pose of the images. Two DC-DC converters were used to

power the thermal camera, multispectral camera, and Raspberry Pi from the power of the

drone. The DAS was carried by a high payload drone (S1000+, DJI, China). A customized

program running on the Raspberry Pi was developed to trigger the cameras and record

thermal images and geolocations onto the on-board memory.

Figure 3.1: System diagram (A) and mechanical structure (B) of the first version of the data
acquisition system.

3.2.2 Second version DAS

The second version of DAS consisted of three imaging sensors (thermal, color, and multispec-

tral cameras), a LiDAR sensor, and a single board computer. The single board computer

is a Manifold from DJI. Table 3.1 lists the information for the sensors. All the sensors

were connected mechanically by sensor brackets, which were designed in CAD software and

fabricated using 3D printer. All the 3D models were open sourced and can be downloaded

from our GitHub (https://github.com/asilan/UAS_sensor_mount).
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The brackets holding the sensors (blue parts in Figure 3.2) were printed in ASB plastic

using a 3D printer (uPrint SE Plus, Stratasys, USA). The connection brackets (green parts

in Figure 3.2) to connect the DAS with the aerial platform was printed in carbon fiber

using another 3D printer (Markforged Onyx Pro, Markforged, USA) to enhance the strength

of connection. The connection bracket has a slide slot which allows easy attachment and

detachment of the DAS to and from the aerial platform.

The imaging sensors were mounted to one bracket so they can be detached from the DAS

and used as an independent system. This is helpful for different use cases, such as when

only the images data are needed or only low-payload drones are available. The imaging

sensors can be configured as horizontal or vertical mounts (Figure 3.3). The imaging sensor

faces frontward on the horizontal mount, which is useful for applications such as imaging

the vineyard between rows. The vertical mount can be used to acquire data from above the

plant canopy.

Figure 3.2: Mechanical structure of the DAS. Left figure is the rendered 3D model and right
figure is the real system.
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Figure 3.3: Imaging sensors mounted on a low-payload drone (DJI Matrice 100). A) Vertical
mounting. B) Horizontal mounting.

Electronic design

The main power (18 V) of the DAS comes from the aerial system and directly powers the

single-board computer. A DC-DC converter is used to convert the main power to 12 V and

another DC-DC to convert 12 V to 5 V (Figure 3.4). The LiDAR is powered at 12 V, the

thermal and multispectral camera is powered at 5 V, and the color camera is powered at

5 V through the USB port from the single-board computer. The DAS can be powered with

voltage from 14 V and 26 V.
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Figure 3.4: Diagram of the electronic connection of the UAS.

The single board computer (Manifold, DJI, China), running Ubuntu 14.04 armhf, is used

to control the sensors and acquire data from the sensors (Figure 3.4). Controlling the thermal

camera and color camera is achieved through USB and the images were transmitted through

USB. The LiDAR data is transmitted to the single board computer through Ethernet. Since

the multispectral camera is an independent system that has its own image processing and

storing system, we only implemented the trigger function through a GPIO pin to synchronize

it with other cameras, although completely controlling the multispectral camera is possible

by using the serial and Ethernet interface on the camera. The single board computer can

interface with the UAV through a serial port to obtain real-time flight data (e.g. position

and posing of the drone). However, if the drone cannot output its flight data, additional posi-

tioning hardware (GPS and IMU) are needed for data post processing. The High-Definition
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Multimedia Interface (HDMI) port of the single board computer is connected to the HDMI

transmitter on the drone so the user can see the Ubuntu desktop in real-time.

The FLIR tau 2 camera originally only provided a 50-pin interface that includes a parallel

digital port to output digital data. We designed a circuit based on the cypress EZ-USB chip

(CY7C68013A, Cypress Semiconductor, USA) to convert the parallel digital output to a USB

protocol so it could interface with the single board computer through a USB port. This circuit

makes it possible to acquire raw digital radiometric data from the camera without using a

frame grabber. To assist the calibration of the thermal images, a ground weather station

was used to measure the temperature of the calibration target, air temperature, humidity,

air pressure and downwelling thermal radiation. Those data are transmitted to the single

board computer in real-time through xBee (xBee Pro S1, Digi International, USA).

Software design

The data acquisition software was implemented using the Robot Operating System (ROS) re-

lease indigo on the single-board computer (Figure 3.5). The flir_tau2 node was implemented

for the thermal camera to get raw digital images from the thermal camera. The redege node

was implemented to trigger the multispectral camera. The flea3 node was used to capture

color images. All the cameras are synchronized through the trigger topic. We used the ROS

package dji_sdk provided by DJI to get the drone’s location and pose, and the velodyne node

was used to get LiDAR data. The purpose of the weather_sensor node was to receive the

data from the weather station and publish the data as a ROS topic. The data recording was
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achieved by the rosbag node. The rosbag node saves the sensor data, drone flight data, and

weather data to a bag file.

Three data visualization nodes, thermal_display, color_display and pcl_visualization,

were implemented to visualize the color image, thermal image, and the LiDAR data. The

data visualization node creates a window on the Ubuntu desktop to display the sensor data,

which allows the user to monitor the data in real-time through radio transmission. The

user also can check the ROS topics on the computer on the ground if the computer and the

single-board computer connect to the same wireless network.

Figure 3.5: ROS computation graph. The oval indicates the node and the rectangle indicates
the topic.
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3.3 Camera Calibration

3.3.1 Geometric calibration

Geometric calibration is the process of estimating the camera’s parameters, which can be used

to correct for lens distortion. We used the Camera Calibrator from MATLAB (MATLAB

2018, MathWorks, USA) to find the parameters for each camera, including the parameters

for the camera’s intrinsic matrix, radial distortion model (Equation 3.1), and tangential

distortion model (Equation 3.2). The radial and tangential distortions are modeled as the

following equations. 
xradial

yradial

 = (1 +K1r
2 +K2r

4 +K3r
6)


x

y

 (3.1)


xtangential

ytangential

 =


2P1xy + P2(r2 + 2x2)

P1(r2 + 2y2) + 2P2xy

 (3.2)

where r =
√

(x− xp)2 + (y − yp)2 is the distance between the pixel (x, y) to the principle

point (xp, yp).

For the color and multispectral camera, we printed the chessboard on white paper. For

the thermal camera, the chessboard was printed using a post printer, and the difference in

the emissivity between the ink and paper creates a pattern in the thermal image. Four heat

lamps were used to heat the chessboard to make the pattern clearer. The grid size of the

chessboard is 21 mm× 21 mm for the color and multispectral camera and 110 mm× 110 mm
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for the thermal camera. A large chessboard was used because the thermal camera needs to

take images at a large distance to get focused images. Ten pictures from different angles were

taken for each camera. Two tungsten halogen lamps were used for the multispectral camera

to provide additional light sources for the NIR band.

3.3.2 Vignette calibration

Vignetting is an effect of the radial falloff of intensity from the center of the image, including

natural vignetting, pixel vignetting, optical vignetting, and mechanical vignetting [128].

There are two ways to model the vignette effect. The first way is to model the vignette

effect (V (x, y)) as a high order polynomial (Equation 3.3) and assumed zero vignette effect

(V (xv, yv) = 1) at vignette center (xv, yv).

V (x, y) = V (r) = 1 + α1r + α2r
2 + α3r

3 + α4r
4 + α5r

5 + α6r
6 (3.3)

r =
√

(x− xv)2 + (y − yv)2 (3.4)

where r is the distance of the pixel from the vignette center, and α1 to α6 are the model

parameters.

The second way is to model the vignette effect as a look up table that stores the correction

coefficients for each pixel. The second method can be more accurate that the first method

but requires multiple tables for different camera settings. Since the first method is simple to

implement and is effective, it was chosen to model the vignetting of the multispectral camera.
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One way to measure the vignette is using the camera to image a scene with uniform

luminance. For the multispectral camera, we used an integrating sphere to create such scene.

The setup of the integrating sphere is similar to [129], but we added a Teflon sheet to cover

the exit port so the light could be more evenly distributed after passing the Teflon sheet. A

black body was used for the same purpose for the thermal camera. We took 10 images for

each camera and used the mean image to find the model parameters. The model parameters

(xv, yv and α1 to α6) were estimated using least squares fitting. The value of V (x, y) for

fitting the model is the raw pixel intensity subtracting the black level and normalized against

the pixel intensity at the vignette center.

3.4 Data Processing

3.4.1 Overall pipeline

The data processing pipeline includes data preprocessing and phenotypical traits extraction

(Figure 3.6). The data preprocessing calibrates the images, generates georeferenced ortho-

mosaics, and constructs 3D models. With the preprocessed data, various phenotypical traits

can be extracted, such as canopy morphological traits, canopy vegetation index, and canopy

temperature. Some data preprocessing can be done in real-time by the onboard computer,

which helps with real-time actions such as coordination with the ground robots. We imple-

mented the online image geometric correction for the thermal and color images. We mainly

used Metashape (Metashape Professional 1.6.4, Agisoft, Russia) to process the image data

offline.
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Figure 3.6: Overall data processing pipeline.

3.4.2 Data preprocessing

Vignette correction

Vignette correction was done using the vignette model obtained from the vignette calibration.

The corrected image intensity (Icorrected) is calculated using equation 3.5 from the original
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image intensity (I) and the vignette correction factor (V ).

Icorrected(x, y) = I(x, y)−BL(x, y)
V (x, y) (3.5)

Geometric correction

The geometric correction was done using the coefficients of the lens distortion model obtained

from the geometric calibration. The geometric correction was done using the image_geometry

package and coded in the ROS nodes for the color camera and thermal camera. The calibrated

images were published as flir_tau2/rect_image and flea3/rect_image topics.

Multispectral camera calibration

The raw multispectral images needed to be calibrated to get reflectance off the ground

objects. The calibration included three steps: radiometric calibration, sunlight intensity

correction, and reflectance calculation. The radiometric calibration is used to convert the

raw digital value of the multispectral image to absolute spectral radiance values. The ra-

diometric calibration model provided by MicaSense (https://support.micasense.com/hc/en-

us/articles/115000351194-RedEdge-Camera-Radiometric-Calibration-Model) was used to com-

pensate for sensor black-level, the sensitivity of the sensor, sensor gain and exposure settings,

and optical vignette effects (equation 3.6).

L(x, y) = 1
V (x, y) ·

a1

g
· p(x, y)− pBL
te + a2y − a3tey

(3.6)
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where L is the absolute spectral radiance values in W m−2 sr−1 nm−1, V is the correction

factor from the vignette model, p is the normalized raw pixel value, pBL is the normalized

black level value, a1 to a3 are the radiometric calibration coefficients that can be get from

the image meta data, te is the image exposure time, g is the sensor gain setting, y is the row

number, and (x, y) is the pixel position.

After radiometric calibration, the radiance of each multipsectral image was corrected

against the sun light intensity to make the radiance reflects the same sunlight intensity.

The intensity of the sunlight was measured using the downwelling light sensor provided by

MicaSense.

The reflectance panel was imaged before and after the flight and was used to convert the

radiance to reflectance. A scale factor was calculated between the mean radiance and the

reflectance of the reflectance panel. Since the calibration procedure was implemented in the

Metashape software, we directly used the reflectance calibration function to calculate the

reflectance.

Thermal camera calibration

Thermal image is affected by the environment. The accuracy of the temperature measurement

from the thermal image is largely depended upon how much the environmental effects were

compensated, especially when the object was far away from the camera. It is essential for

aerial thermal imaging to correct the atmospheric effects to acquire accurate temperature

reading.
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According to the Stefan-Boltzmann law, the total radiation emitted by the object is

expressed as Equation 3.7.

B(T ) = ε · σ · T 4 (3.7)

where ε is the emissivity and σ is the Stefan-Boltzmann constant (5.67× 10−8 W m−2 K−4),

T is the absolute temperature (K).

The total radiation received by the thermal camera (Wsensor) consists of emission of the

object (Eobj), the emission of the surroundings and reflected by the object (Erefl), and the

emission of the atmosphere (Eatm) (Equation 3.8) [130].

Wsensor = Eobj + Erefl + Eatm (3.8)

Wsensor can be expressed as

Wsensor = σ ·BT 4
sensor (3.9)

where BTsensor is the brightness temperature provided by the thermal camera by setting the

emissivity of the object to 1 and distance to 0.

Since the surface radiance is received partially by the camera and some is absorbed by

the atmosphere, Eobj can be expressed as Equation 3.10 as a function of the transmittance

of the atmosphere (τ) and the object’s temperature (Tobj).

Eobj = τ · ε · σ · T 4
obj (3.10)
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Erefl is of the reflected radiation of the surroundings (which is the downwelling atmosphere

radiation) and it is partly absorbed by the atmosphere. Thus, Erefl can be expressed as the

following equation,

Erefl = τ · (1− ε) · σ · T 4
refl (3.11)

Eatm is the emission of the atmosphere that reaches to the thermal camera, which is the

upwelling atmosphere radiation. It can be expressed as as the following equation,

Eatm = εatm · σ · T 4
atm = (1− τ) · σ · T 4

atm (3.12)

where Tatm is the temperature of the atmosphere (air temperature), and (1 − τ) is the

emissivity of the atmosphere.

Equation 3.13 can be obtained to retrieve the temperature of the object by combing

Equation 3.8, 3.9,3.10,3.11 and 3.12.

Tobj = 4

√
BT 4

sensor − τ · (1− ε) · T 4
refl − (1− τ) · T 4

atm

τ · ε
(3.13)

To solve the equation 3.13, the transmittance of the atmosphere, the emissivity of the

object, the air temperature, and the reflected temperature needs to be supplied. The air

temperature can be measured by a temperature sensor. The reflected temperature can be

indirectly measured by measuring the apparent temperature of an aluminum plate or directly

measured by measuring the sky’s apparent temperature using an infrared thermometer.
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The transmittance of the atmosphere (τ) is estimated using the water vapor content

(WVC) and flight height above the ground (distance) with the following equation [131].

τ = Katm · exp
[
−
√
d
(
α1 + β1

√
ω
)]

+ (1−Katm) · exp
[
−
√
d
(
α2 + β2

√
ω
)]

(3.14)

where d is the distance (m), and Katm = 1.9 is the scalling factor of atmospheric damping,

α1 = 0.0066 and α2 = 0.00126 are the attenuation of the atmosphere without water vapour,

and β1 = −0.0023 and β2 = −0.0067 are the attenuation of water vapour. The WVC can be

estimated using the air temperature and humidity using the following equation [131].

ω = ω% · exp
(
h1 · T 3

a + h2 · T 2
a + h3 · Ta + h4

)
(3.15)

where ω is the water vapour content (mm), ω% is the relative humidity (ranging from 0-1;

dimensionless), Ta is the air temperature (°C), h1 = 6.8455× 10−7, h2 = −2.7816× 10−4,

h3 = 6.939× 10−2 and h4 = 1.558 [131].

It was reported that the emissivity of vegetation ranges from 0.96 to 0.99, while the emis-

sivity of soil is around 0.98 [132, 133]. The inaccuracy in emissivity can lead to temperature

errors of up to several degree of Celsius [134]. In this study, we estimated the emissivity

of the canopy and soil from the Normalized Difference Vegetation Index (NDVI) using the

method proposed by [135].

To assist the thermal calibration and validate the thermal measurement, we made two

thermal calibration targets and a customized device to record atmospheric conditions, in-

cluding air temperature, air pressure, and humidity (Figure 3.7). Similar to other studies,
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the calibration target was made from a 0.6 m× 0.6 m aluminum plate whose top surface was

painted by flat paint and the back was covered by the polystyrene insulation foam [127]. The

edge of the plate was wrapped with aluminum tape to assist auto-detection of the target.

One target (cold target) was painted in white to create a low-temperature reference, and

the other (hot target) was painted in black to create a high-temperature reference. The top

surface temperature of the target was measured by a resistance temperature detector (RTD)

(700-102AAB-B00, Honeywell, NC, USA) attached to the back of the aluminum plate. The

emissivity of the white paint and black paint was measured to be 0.968 and 0.984 using the

reference temperature method [134]. A thermal camera pointing upward is used to measure

the reflected temperature. All the ground measurements can be transmitted to the DAS

through xBee in real-time.

Figure 3.7: Thermal calibration targets.

LiDAR data processing

LiDAR scans can be assembled into a point cloud using the scans’ position and pose in the

Easting Northing UP (ENU) frame. Therefore, RTK-GNSS and IMU should be used to
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measure the accurate position and posing so the LiDAR scans can be assembled accurately.

Since the current UAS does not have an RTK-GNSS and IMU, the LiDAR data was not

used in this study.

Orthomosaics and 3D model

The images from the same flight were stitched to generate the ortho-mosaic. In addition, a

3D point cloud and DSM can be generated using SfM. In this study, the Metashape software

was used to generate the DSM of the field from the color images.

Data registration

Data registration includes the registration of the orthomosaics from different cameras and

the registration of the orthomosaics and the LiDAR data. In this project, the registration of

the orthomosaics is based on the geoinformation of the orthomosaics. The accuracy of the

registration will depend on the accuracy of the geoinformation. Increasing the accuracy of

each image’s geolocation, such as using an RTK-GNSS and ground control points (GCPs),

will improve the overall accuracy of the geoinformation of the orthomosaic.

3.4.3 Extraction of phenotypical traits

With the information captured by the imaging sensors and LiDAR, multiple phenotypical

traits can be extracted. Some basic phenotypical traits can be extracted directly after data

preprocessing, which includes morphological traits, such as canopy height (CH), canopy cover

(CC) and canopy volume (CV), vegetation indices (VI) derived from the multispectral image,
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and canopy temperature derived from the thermal image. A program was created to extract

the phenotypical traits automatically using QGIS 3.10 and Python 3. The extracted traits

were saved to a csv file and visualized in QGIS.

Plot segmentation

The data of the entire field can be separated into each plot using the plot layout map. The

data of each plot contained the 2D images and 3D model of the plot. Because each plot

can be seen by several images, a plot can have multiple plot images, including the image

extracted from the orthomosaics. The plot images from different view angles could provide

more information about the plot, such as detecting cotton flowers [107].

The 3D model of the plot needed to be normalized against the ground level so the height

of the data points represented the height above the ground, namely the plot height model.

A 2D plane that represents the ground level can be found by fitting the plot model using

MLESAC [136]. If there are not enough ground points inside the plot model because of

canopy enclosure, the ground plane can be represented by the bare ground model, or Digital

Elevation Model (DEM), collected before the plant germinated [108]. However, this requires

additional data collection and accurate georegistration between the bare ground model and

the plot model. After finding the ground level, the plot model was subtracted by the ground

level so it represent the height above ground. In this study, both the plot model and the

bare ground model were used to get the plot height model and the results to calculate the

morphological traits were compared.
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Canopy segmentation

The canopy data needs to be segmented from the plot data to calculate phenotypical traits

for the plant canopy. The segmentation result is a canopy mask generated from the 2D plot

image or a canopy model generated from the plot height model. Color, spectral, and height

differences between the canopy and ground can be used for the segmentation [116]. In this

study, the thresholding method was used to segment the canopy using the color plot image

and 3D plot model. Using deep neural networks such as Mask R-CNN may generate better

results but is out of this paper’s scope.

Morphological traits

Morphological traits are important phenotypical traits that are often related to plant growth

status. For example, canopy height and volume can quantify the cotton biomass, which is

correlated with the yield. The morphological traits are calculated from the canopy model.

Canopy height The canopy height was calculated using the canopy model. Some studies

used an average or median canopy height to represent the canopy height, which is suitable for

crops whose canopy are evenly distributed, such as barley and wheat [108, 137, 112]. Some

studies have used a percentile of the canopy height to represent the height of the canopy,

which can reduce the effect of uneven distribution of the canopy [111, 138]. This study

calculated the average, maximum, median, and 50th to 99th percentiles with a 10th interval

for the canopy height.
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Canopy volume The canopy volume was calculated using the canopy model. The canopy

volume can be represented by the volume of the mesh that encloses the canopy model. The

mesh can be found using a convex hull algorithm. However, since the canopy model generated

by the aerial images or LiDAR usually lacks information under the canopy surface, the volume

directly from the mesh can underestimate the canopy. Instead, we proposed to calculate the

2.5D volume as the canopy volume. The canopy model was first converted to a depth image

whose intensity represented the height, and then the 2.5D volume of the depth image was

calculated using equation 3.16.

CV = ∆x∆y
∑
i

∑
j

di,j (3.16)

where ∆x and ∆y is the ground sample distance and di,j is the depth of the pixel.

Canopy cover Canopy cover is defined as the ratio of the vertical projected area of the

canopy to the area of the plot. After segmenting the canopy, the area of the canopy can be

calculated as the ratio of the pixel area of the canopy mask to the pixel area of the plot.

Vegetation index

Various vegetation index can be extracted from the multispectral images [139]. In this

paper, we calculated the Normalized Difference Vegetation Index (NDVI) and the Normalized

Difference Red Edge Index (NDRE), which are two commonly used indexes. The mean value

was calculated within the canopy as the vegetation index of the canopy.
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Canopy temperature

The canopy temperature is calculated using the plot image from the thermal orthomosaic.

Similar to the vegetation index, the canopy temperature is the average temperature within

the canopy.

3.5 Data Collection

3.5.1 Test field

The test field was a cotton field located on a research farm at The University of Georgia

located in Watkinsville, Georgia. The layout of the cotton field had 96 plots arranged in 8

columns and 12 rows (Figure 3.8). The length of each plot was about 3 m, and there was a

1.5 m long alley between the plots. The distance between the crop rows was 1.8 m.
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Figure 3.8: Field layout.

3.5.2 Field preparation

To facilitate the data collection throughout the season, some preparation had to be done

before the live data collection. First, to improve the accuracy of the georeferencing of the

orthomosaic, ground control points (GCP) had to be deployed in the field. The GCP is

a ground target with a known geolocation. The GCP usually has a distinct pattern that

can be identified easily in the images. Photogrammetry software, uch as Agisoft Metashape

provides GCP patterns that can be identified automatically by the software. In this study,

we made two sets of GCPs: color GCPs for color and multispectral cameras, and thermal

GCPs for thermal camera. We used the 12 bit circular barcode generated by the Metashape

as the pattern of the color GCP (Figure 3.9). The pattern was made from a black vinyl

sheet and pasted onto a white acrylic panel. The size of the acrylic panel was 0.6 m× 0.6 m
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and the center point radius of the circular barcode was 30 mm. The thermal GCP was made

of a wood panel with a size of 0.8 m× 0.8 m, and the wood panel was evenly divided into

four quadrants with two opposite quadrants painted in black and two covered by aluminum

tape (Figure 3.9). With the distinct emissivity of the black paint and aluminum, the thermal

GCPs could be seen easily in the thermal images. The Metashape software recommends

using at least 8 GCPs. We used nine color GCPs and six thermal GCPs. The color GCPs

were fixed in the field throughout the season. The thermal GCPs were deployed in the field

when collecting data because the thermal GCPs were not weather proof. The geolocation

of the color GCPs were measured periodically using a RTK-GNSS throughout the season to

correct the movement of the GCPs during the season. The geolocation of thermal GCPs was

obtained from the georeferenced color orthomosaic.

Another important preparation step is to map the field at the beginning of the plant

season. The field mapping serves two purposes. The first purpose is to generate a plot layout

map to be used for plot segmentation. The second purpose is to generate the bare ground

model. In this study, the field mapping was done one week after planting.

Figure 3.9: Color GCP (left) and thermal GCP (right) in the field.
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3.5.3 Flight path planning

Most drones can fly automatically on a preset flight path using autopilot. Two primary factors,

flight height above ground and image overlap, needed to be considered when planning the

flight path. The flight height affects the ground resolution of the aerial data. The image

overlap affects the quality of image stitching and 3D reconstruction. The image overlap

is affected by the flight speed, flight height, image recording frequency, and flight path.

Within the same flight path, lower flight height, faster flight speed, and lower image recording

frequency resulted in a lower overlap. Increasing the flight height, reducing the flight speed,

and increasing image recording frequency can increase forward overlap. Increasing the flight

height and reducing the distance between flight lines can increase the side overlap. Another

way to increase the overlap is to change the flight path pattern with more flight lines, such

as the cross-stitch flight path [140].

On the one hand, lower flight height and higher image overlap can effectively increase

the image resolution and quality of the image stitching and 3D reconstruction. On the other

hand, it increases the overall flight time and collected more images to process, which increases

the data processing time. Therefore, the balance between flight height, flight speed, and

image overlap had to be considered. We herein proposed a general decision-making process.

The first step is to select the appropriate flight height based on the desired ground image

resolution. The second step is to decide the image side overlap. [141] suggested that a

minimum of a 67% side overlap should be used to get complete 3D reconstruction. Based

on our experience, a good range of side overlap is 70% to 80% considering the flight time,
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area coverage, and processing time. Once the flight height and side overlap is decided, the

flight path can be generated. The final step is to decide the forward overlap and flight speed.

Higher forward overlap can create better and completer 3D reconstruction results [141]. It

is noteworthy that the camera should not move larger than half of the Ground Sampling

Distance (GSD) during exposure to get a sharp image. In this case, the flight speed should

be smaller than dh
2Tef

, where d is the pixel pitch, h is the flight height, Te is the exposure time

and f is the focal length.

3.5.4 Flight campaign

The DJI Matrice 600 and the second version of the DAS were used for data collection. The

Pixel4D mapper was used to generate the flight path and control the drone. The flight path

was generated using a 25 m flight height above the ground with 70% side overlap and 90%

forward overlap (Figure 3.10). The speed of the drone was set at 1 m/s. The flight path was

calculated based on the parameters of the thermal camera because it has the smallest field

of view among all the cameras. For the color and multispectral cameras, the actual image

overlap was higher in practice. Because of the DJI manifold’s limited data saving speed, the

camera triggering frequency was set to a 0.5 Hz frequency to avoid data loss, although the

color and thermal cameras support much higher frequency. The LiDAR sensor was configured

to output data at 20 Hz. The scanning range of the LiDAR sensor was configured to ±70°

to remove unwanted data.

The flight campaign was performed on October 1st, 2020 at 2:30 p.m. The weather was

sunny, with an average wind speed of 1.5 m/s. The reflectance target for the multispectral
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camera was imaged before and after the flight. The thermal calibration targets were mounted

on a mobile robot that moved along the border of the field so that the thermal calibration

targets could be imaged multiple times by the thermal camera during the flight (Figure 3.10).

The thermal calibration targets were imaged nine times in total.

Figure 3.10: Flight path recorded by the drone. Distance between flight line is 3.3 m.

3.5.5 Ground data collection

Ground data were manually collected for one crop row in the field on the same time as the

flight campaign, and were used as references to validate the extracted traits from images. For

each plot, the height of each plant was manually measured using a ruler. The average height

and maximum height was calculated as the average canopy height and maximum canopy

height. The NDVI of each plot was measured using a handheld NDVI sensor (GreenSeeker,
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Trimble, CA, USA). Each plot was measured four times at different locations, and the average

value was used as the reference of the canopy NDVI. The thermal calibration targets were

used as references for validating the thermal images. The temperature measured by the RTD

sensor on the thermal calibration targets was used as ground truth of the targets’ surface

temperature and was compared with the temperature measured by the thermal camera. The

extracted canopy height and canopy NDVI were compared with the manual measurements.

The mean absolute error (MAE) (Equation 3.17) and mean relative error (MRE) (Equation

3.18) were used to evaluate the error.

MAE = 1
N

N∑
i=1
|measuredi − truthi| (3.17)

MRE = 1
N

N∑
i=1

|measuredi − truthi|
truthi

(3.18)

3.6 Results

3.6.1 Camera calibration

Camera geometric distortion

Table 3.2 shows the cameras’ intrinsic parameters and the parameters of the distortion models.

The multispectral camera’s nominal focal length is 5.4 mm, but the focal lengths over the

five bands ranged from 5.469 mm in the Red band to 5.513 mm in the Green band. The color

camera’s and thermal camera’s focal lengths are very close to their nominal focal length, which

is 5 mm and 25 mm, respectively. The NIR band has the largest offset of the principal point
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from the origin (central pixel) in the multispectral camera. The thermal camera’s principal

point also has a large offset from the origin in the y-axis. The total distortion (combining

the radial and tangential distortion) of the three cameras is visualized by Figure 3.11 and

Figure 3.12. The three cameras have low distortion, and the distortion is only noticeable in

the border of the image.

In practice, camera distortion optimization is usually part of the bulk bundle adjustment

of the photogrammetry process for image stitching and 3D reconstruction, so it is unnecessary

to perform the correction separately. However, the model parameters in Table 3.2 can be used

as the initial values for the camera distortion optimization in the photogrammetry process.

Table 3.2: Camera calibration parameters for the color, multispectral, and thermal camera.

Color
camera

Multispectral camera Thermal
cameraBlue Green Red RedEdge NIR

Focal length (mm) 5.004 5.470 5.513 5.469 5.477 5.499 25.099
yp (mm) 0.072 0.036 0.041 0.023 0.028 0.049 -0.049
yp (mm) 0.020 0.061 0.000 -0.045 -0.015 0.098 -0.240

Skew angle (rad) 8.26E-04 -1.00E-03 -1.87E-03 -7.75E-04 -1.14E-03 -5.82E-04 -3.12E-03
K1 -5.42E-02 -9.78E-03 -9.85E-03 -2.61E-02 -8.10E-03 -1.09E-02 -3.27E-01
K2 1.08E-01 -1.57E-01 -1.27E-01 -5.42E-02 -2.61E-01 -7.20E-02 1.77E+00
K3 -4.44E-02 -4.38E-01 -3.90E-01 -4.66E-01 1.71E-01 -8.09E-01 -3.61E+01
P1 -1.34E-03 2.08E-03 5.72E-04 -1.55E-03 -2.10E-03 6.55E-05 8.50E-03
P2 1.25E-03 5.86E-05 2.76E-03 1.95E-03 7.78E-04 1.64E-03 6.73E-04
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Figure 3.11: Geometric distortion of the five bands of the multispectral camera. The cross
indicate the image center. The orange circle indicates the principal point. The contour lines
indicate distortion in pixel.

Figure 3.12: Geometric distortion of the color and thermal camera. The cross indicate the
image center. The orange circle indicates the principal point. The contour lines indicate
distortion in pixel.
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Camera vignetting

Figure 3.13 showed the multispectral camera has vignetting that the image is brighter than the

border, which is mainly caused by the lens. Each band has different vignetting and should

be corrected differently. The vignette effect can be removed after applying the vignette

correction model.

Figure 3.13: Vignette effect of the multispectral camera.

The vignette effect of the thermal camera showed a similar pattern to that of the multi-

spectral camera (Figure 3.14). The pixel’s temperature can have up to 3 °C difference without

vignette correction. Unlike the multispectral camera, whose vignetting mainly results from

the lens, the vignetting of an uncooled thermal camera can be caused by the differences in

each pixel’s response to the irradiance, which depends on the detector’s temperature and is

affected by the ambient temperature. In this case, multiple vignetting correction models need

to be created for different ambient temperatures. In this study, we did not perform vignette
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correction for the thermal camera. Instead, we only used the central portion of the image

to measure the temperature since the vignette effect in the central portion is not significant.

A more thorough study in the thermal camera’s vignette correction was planned for future

work.

Figure 3.14: Vignette effect of the thermal camera. The color bar indicates the temperature
in degree of Celsius.

3.6.2 Data preprocessing

Accuracy of the thermal camera calibration

During the flight, the air temperature and humidity were relatively stable but varied from

28 3°C to 31 7°C and from 35.7% to 40.5%, respectively (Figure 3.15). The transmittance of

the atmosphere has a mean value of 0.9249, with a standard deviation of 0.0011. Because

the transmittance is close to 1, the upwelling atmosphere radiation has little impact on the

thermal image. After calibration, the temperature of the two calibration targets from the

thermal image is highly correlated with the temperature measured by the RTD sensor with
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a MAE of 1 02°C (Figure 3.16). The MAE was significantly reduced comparing to the MAE

of 6.62 °C before calibration.
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Figure 3.15: Atmospheric condition during the flight. The transmittance of the atmosphere
is estimated using Equation 3.14.
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Figure 3.16: Correlation of the image measured temperature (Timage) and RTD measured
temperature (TRTD) for the thermal calibration targets.

Results of orthomosaic generation

With GCPs and image locations provided by the drone, the Metashape successfully gener-

ated georeferenced orthomosaics for color, multispectral, and thermal images 3.17. All the

orthomosaics and DEM were registered based on the geoinformation. Although each camera

has a different field of view and image resolution, the resulted GSD is about 0.016 m for all
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of the cameras. Because the color camera has the largest FOV, followed by the multispectral

camera and thermal camera, the color orthomosaic had the largest coverage, which covered

area outside of the cotton field. Therefore, the FOV of the color camera can be reduced (by

increasing the focal distance) to increase the GSD without reducing the coverage of the field.

Figure 3.17: The orthomosaic overlays of color (left), temperature (middle), and NDVI (right).
A zoom-in image of the thermal GCP and calibration targets were shown on the right.
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3.6.3 Phenotypical traits extraction

Results of the canopy segmentation

Since the canopy’s color is different from that of the soil, a simple thresholding method can

segment the canopy very efficiently (Figure 3.18). For crops with a large canopy such as cotton,

the plot height model can be used to remove weeds that are lower than a threshold (0.2 m

for this study). Incorrect canopy segmentation can affect the accuracy of the phenotypical

traits because the calculation of canopy phenotypical traits rely on the canopy segmentation.
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Figure 3.18: Illustration of the canopy segmentation result. The plot DSM was first subtracted
by the ground plant to get the plot height model, and then the canopy mask was generated
using the plot color image and the plot height model.
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Accuracy of the canopy height

The canopy height extracted from the color images has a high correlation with the manual

measurement. The image extracted maximum canopy height has an MAE of 0.1 m and lower

value compared with the manual measurement, which is consistent with other studies in which

the error of the canopy height is within the range of 0.07 m to 0.1 m using the photogrammetric

method (Figure 3.19) [116, 111, 112]. The error of the canopy height largely depends on the

accuracy of the DSM, which is affected by the GSD. Incorrect detection of the ground plane

can also lead to large errors in generating the plot height model, which usually occurs at the

enclosed canopy with little ground. In this case, the bare ground model should be used to

detect the ground plane. Other environmental factors such as plant movement because of

wind also contribute to the error.

The 99th percentile canopy height had the smallest MAE compared with the manually

measured average canopy height (Table 3.3), but the median canopy height had the largest

coefficient determination. It is hard to conclude which statistical metrics can better represent

the true average canopy height with such a small validation dataset. The choice of statistic

metric can be dependent on the type of crop and should be determined experimentally by

collecting the validation dataset in the field.
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Figure 3.19: Correlation of the image measured maximum canopy height and the manually
measured maximum canopy height.

Table 3.3: Comparing the manually measured average canopy height and extracted canopy
height from images. Hmean: mean canopy height. Hmedian: median canopy height. Hmax:
maxminum canopy height. Hnp: n-th percentile canopy height MAE: mean absolute error.
R2: coefficient of determination using linear model.

Hmean Hmedian Hmax H50p H60p H70p H80p H90p H99p

MAE (m) 0.501 0.531 0.100 0.531 0.462 0.395 0.308 0.196 0.060
R2 0.742 0.799 0.691 0.799 0.651 0.543 0.481 0.619 0.766

Accuracy of the canopy vegetation index

The image extracted canopy NDVI had an MAE of 0.0518 with an MRA of 6.6% compared

with the ground measured NDVI, which means the multispectral image can measure the

vegetation index of the canopy accurately. Other studies have shown that the MicaSense

Redege camera could provide accurate NDVI measurement compared to the GreenSeeker

sensor [142]. The multispectral image can reveal the variations within the canopy, which is

an advantage over a point-based sensor.
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Data visualization

The extracted phenotypical were visualized in QGIS (Figure 3.20). The color represents the

value, and the polygon outlines the canopy. The visualization is helpful for researchers to

examine the data and present the results to general audiences. It is also helpful to visualize

the variation between plots.

Figure 3.20: Visualization of the extracted phenotypical traits. The 99th percentile canopy
height was used to represent the canopy height.

3.7 Discussion

UAV has been used widely for plant phenotyping, and color, thermal, and multispectral are

the most commonly used sensors in the literature. The advantage of using a multi-sensor
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system is that the sensors’ rich information can measure more complex phenotypical traits

than a single sensor. For example, the cotton yield can be estimated more accurately using

multiple image features extracted from color, multispectral, and thermal images than a single

image feature extracted from a single camera [126]. Different types of sensors can provide

complementary information to improve the accuracy of the phenotypical traits. For example,

a high-resolution color image can segment the canopy more accurately, and can be used to

calculate the canopy temperature from the low-resolution thermal images more accurately.

The downside of the multi-sensor system is the relatively high payload requirement of the

UAV to carry multiple sensors simultaneously. Therefore, our DAS was designed so that each

sensor can be attached/detached to the DAS, so a low-payload drone can be used when only

certain sensors are used. In this way, the UAS can be customized to save cost on the sensor

and drone.

The data processing pipeline proposed in this study can extract basic phenotypical traits

from color, multispectral, and thermal camera, and can be used to inference more complicated

phenotypical traits. For example, the morphological traits can be used to monitor the growth

of the crop and estimate the yield. The vegetation index and canopy temperature can be

used to evaluate the water status of the plant. The data processing pipeline used to extract

phenotypical traits was implemented in Python and QGIS, in which it is easy to integrate

other methods and visualize the results.
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3.8 Conclusions

This paper designed a multi-sensor unmanned aerial system that can be used for plant

phenotyping. Field data were collected in a cotton field using the system, and phenotypical

traits at the plot level, including canopy height, canopy cover, canopy volume, canopy

vegetation index, and canopy temperature, were extracted using the proposed data processing

pipeline. The thermal camera and multispectral camera were calibrated in the lab and field.

The temperature from the thermal image had a MAE of 1 02°C after field calibration. The

canopy NDVI measured by the multispectral image had a MRE of 6.6% comparing to the

ground measurement. The maximum canopy height had an error of 0.1 m compared to

manual measurement, similar to other studies.

The design of the UAS was open-sourced and can be used by other researchers. We will

continue to improve the system by adding an RTK-GNSS and IMU to the system so the

LiDAR scans can be correctly stitched. A data management system that integrates data

storing, data processing, and data visualization was planned for future work.
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Chapter 4

Multispectral Imaging and

Unmanned Aerial Systems for

Cotton Plant Phenotyping1

1Xu, Rui, Changying Li, and Andrew H. Paterson. "Multispectral imaging and unmanned aerial systems
for cotton plant phenotyping." PloS one 14, no. 2 (2019): e0205083. Reprinted here with permission of the
publisher.
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Abstract

This paper demonstrates the application of aerial multispectral images in

cotton plant phenotyping. Four phenotypic traits (plant height, canopy cover,

vegetation index, and flower) were measured from multispectral images captured

by a multispectral camera on an unmanned aerial system. Data were collected on

eight different days from two fields. Ortho-mosaic and digital elevation models

(DEM) were constructed from the raw images using the structure from motion

(SfM) algorithm. A data processing pipeline was developed to calculate plant

height using the ortho-mosaic and DEM. Six ground calibration targets (GCTs)

were used to correct the error of the calculated plant height caused by the geo-

referencing error of the DEM. Plant heights were measured manually to validate

the heights predicted from the imaging method. The error in estimation of the

maximum height of each plot ranged from -40.4 to 13.5 cm among six datasets,

all of which showed strong linear relationships with the manual measurement

(R2 > 0.89). Plot canopy was separated from the soil based on the DEM and

normalized differential vegetation index (NDVI). Canopy cover and mean canopy

NDVI were calculated to show canopy growth over time and the correlation be-

tween the two indices was investigated. The spectral responses of the ground,

leaves, cotton flower, and ground shade were analyzed and detection of cotton

flowers was satisfactory using a support vector machine (SVM). This study

demonstrated the potential of using aerial multispectral images for high through-

put phenotyping of important cotton phenotypic traits in the field.
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4.1 Introduction

To meet the demands of the predicted global population of 9 billion by the year 2050, the crop

production must double from 2010 to 2050 [1]. This is a tall order, challenging plant breeders

to find genotypes with high yield, as well as high-stress tolerance to adapt to the changing

climate in the next 30 years. Recent technological advances in molecular biology have offered

tools that can significantly accelerate the breeding process [143]. However, phenotyping has

become the bottleneck to using these new technologies to their full potential. Screening

genotypes — in order to select those with the most desirable traits — heavily relies on the

ability to characterize and measure traits [144]. Therefore, many plant breeders and engineers

recognize the need for a high-throughput phenotyping (HTP) system capable of efficiently

and accurately measuring phenotypic traits [144, 101].

The development of an HTP system is challenging in both the platform design and

the associated data processing methods. Development of a field-based high-throughput

phenotyping system (FHTPS) is even more challenging due to heterogeneous field conditions

and uncontrolled environments, which can affect the data quality and make results difficult

to interpret [101]. Some FHTPSs utilize ground vehicles (either tractors or robotic platforms)

equipped with sensors to acquire data [5, 145, 11]. Ground vehicles have the advantage

of carrying large payloads and can easily include multiple sensors at a time. In addition,

ground platforms can control the data collection environment (such as light conditions) to

some degree with well-designed enclosures, thus guaranteeing data quality. However, ground

platforms also have several disadvantages: the data collection speed is low, frequent data

81



collection can cause soil compaction, the wheels can damage the crop, and the platform is

difficult to adjust for a wide range of crops once the design is fixed. As an alternative to

ground platforms, unmanned aerial systems (UAS) can address the disadvantages of ground

platforms to some degree. Compared to ground platforms, UAS can provide superior data

acquisition speed and larger spatial coverage [103]. Since no interaction exists between the

plots and the UAS, UAS can be easily adapted to different types of crops and different growth

stages [140]. Furthermore, UAS can be automatically controlled by its onboard autopilot

system, and therefore requires less human intervention during data collection.

Traditional precision agriculture and remote sensing studies have shown the broad ap-

plications of satellite or airborne images for crop management, stress detection, and yield

estimation [146]. The general research methodology and data analysis techniques from remote

sensing can be readily used for aerial images with high spatial and temporal resolutions taken

by UAS, which can significantly benefit high-throughput phenotyping research. Simple traits

such as plant height and canopy cover can be measured using aerial imaging to monitor crop

growth and estimate the final yield. Plant height measured from crop surface model gener-

ated by aerial color images was used to develop regression models to predict the biomass for

barley and the best model achieved a relative error of 54 04% [108]. The regression model was

improved by combining vegetation indices from ground-based hyperspectral reflectance data,

achieving 44 43% relative error on biomass prediction [109]. Spectral response of the canopy

— measured using aerial hyperspectral or multispectral imaging — can be used to detect

biotic and abiotic stress of the plant [147]. It was shown that Huanglongbing-infected citrus

trees can be detected using various vegetation indices with 85% classification accuracy [148].
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Tomato spot wilt disease in peanuts was best detected by normalized difference red edge

(NDRE) using multispectral imaging [115]. Previous studies showed that aerial hyperspectral

or multispectral imaging was useful to detect water stress [149, 150]. Normalized difference

vegetation index (NDVI) showed highest correlation (R2 = 0.68) with water potential in

grape vineyard among seventeen vegetation indices, which showed NDVI could be a good

indicator for long-term water deficits [151]. NDVI can also be used to separate olive tree

crown from the soil in aerial images [110]. Canopy temperature is an indicator of water

stress, but it is extremely sensitive to small changes in the environment, making the ability

of the UAS to quickly and repeatedly measure many plots preferable to ground platforms

for measuring this trait [119, 152]. Traits that require continuous measurements, such as

flowering time, are also well suited to aerial imaging.

Although applications of UAS in agriculture have been studied for a wide range of crops,

only a few applications of aerial imaging for cotton have been reported despite the importance

of cotton as an industrial crop for producing natural fibers. One study used low-altitude aerial

color images to estimate plant height and yield and they found that the cotton unit coverage

can be better correlated with yield than plant height [153]. Another study used aerial color

images to monitor cotton growth by measuring plant height and canopy cover and estimate

the yield from them using various regression models [154]. The result showed good correlation

between plant height and canopy cover, but a low correlation between the estimated yield and

observed yield (R2 = 0.5 for the best model). Due to the lack of manual measurement, the

accuracy of the plant height and canopy cover was unknown in this study. Despite the two

relevant studies, the use of aerial images to measure other important phenotypic traits such
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as flowering and boll opening has received little attention. There is still a gap in knowledge

and technical development that hinders capitalizing the latest UAS and imaging technologies

for cotton breeding.

To explore the potential of cotton phenotyping using UAS, this paper focuses on measuring

multiple traits including plant height, canopy cover, vegetation index, and flower detection

using a multispectral camera. Specifically, this paper develops a method to measure cotton

plant heights with a UAS-based FHTP system, validating the accuracy of the method with

manual measurements. Canopy cover, the proportion of the ground covered by the crop

canopy, will be derived based on the crop surface model and the normalized differential

vegetation index (NDVI). The feasibility of flower detection based on the spectral response

will be explored, providing a foundation for future quantification of the distribution of

flowering over the growing season.

4.2 Materials and Methods

4.2.1 Test fields

The study was carried out on Plant Science Farm at University Georgia, Athens campus and

the owner of the land gave permission to conduct the study on this site. Furthermore, the

field studies did not involve endangered or protected species. Two test fields were used in this

study, both of which located at the University of Georgia Plant Sciences Farm (33°52′2.8′′N,

83°32′39.5′′W) in Watkinsville, GA (Figure 4.1). A total of 240 plots of cotton were planted

in field 1 on June 15, 2015, arranged in 20 columns and 12 rows, with a 1.8 m alley between
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each column. Each plot was 3 m long and 0.9 m wide, and 15 seeds were planted in each

plot. Six genotypes were used in field 1. Genotype 1 to 5 were provided by a cotton breeder

from the University of Georgia, Tifton Campus. They were GA2011158, GA230, GA2010074,

GA2009037 and GA2009100, respectively. Genotype 6 was Americot UA48. Each column

had twelve plots and each genotype with two replicates were randomly assigned to each

column. The germination rate of the plots varied from 13% to 100%, resulting in variance

in the plot density.

Due to lack of high accurate surveying tool, no ground control point was used to correct

the aerial triangulation error of the crop surface model. Instead, six round stainless steel

plates with a diameter of 30 cm, which were referred as ground calibration targets (GCTs),

were raised around 1.5 m above the ground using plastic pipes and placed around the border

of the test field. The GCTs were painted in black patterns on white background (Figure B.1).

Those GCTs were used to evaluate and calibrate the crop surface model. To avoid the power

lines over the field during data collection, only 48 plots (from column 7 to column 10) were

selected as test plots. However, the plants from row 1 to row 6 were seriously damaged by a

tractor after October 7. Therefore, only 24 plots from row 7 to row 12 were used for data

analysis since October 7.

Because of late planting, plants in field 1 did not produce many flowers over the season.

Therefore, we used field 2 to collect cotton flower images. Field 2 had 288 plots arranged in

16 columns and 18 rows and it was based on complete random block design. We selected 22

plots to develop and validate the method for cotton flower detection.
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Figure 4.1: Location and plot layout of the two test fields. The genotypes of the plots in
field 1 were indicated in different colors.

4.2.2 Image collection

Aerial multispectral images of the two fields were acquired using an octocopter (s1000+,

DJI, China) carrying a lightweight multispectral camera (RedEdge, MicaSense, WA). The

multispectral camera was mounted on a gimbal and faced the ground. The multispectral

camera has five global shutter camera modules that provide five band images — blue, green,

red, near-infrared (NIR), and red edge (RE). The center wavelengths of each band are

475 nm, 560 nm, 668 nm, 840 nm and 717 nm, respectively. The multispectral camera has a

low accuracy GPS (2.5 m) which can record the geographic coordinates of the image. The
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size of the band image is 1280× 800. In order to validate flower detection results from

multispectral images, aerial color images of field 2 were acquired (at the same time as the

multispectral images) using a color camera (Lumix DMC-G6KK, Panasonic, Japan) that

provides a maximum image size of 4624× 3472.

To collect the aerial multispectral imaging data, the drone flew autonomously along a

preset flight path at a speed of 2.5 m/s and a height of 20 m above ground level (AGL) for

field 1, achieving ∼1.5 cm ground sample distance for multispectral images. The endlap and

sidelap of the collected multispectral images were over 85%. To image cotton flowers as

closely as possible, while maintaining the same flight speed, we set the flight height at 15 m

AGL for field 2, which was the minimum height that downdraft of the UAV did not disturb

the plants and images had enough overlap. In reality, the drone flew lower than 15 m due

to the wind condition and error of altitude sensor, which gave the actual ground sample

distance of ∼0.8 cm for the multispectral images. The endlap was over 80% and sidelap was

over 50% for the multispectral images. The color and multispectral cameras were triggered

simultaneously at the frequency of 1 Hz with a customized triggering circuit. The exposure

time and aperture were manually set for the color camera according to the light conditions of

the field to get the best image quality and other parameters used auto-settings. At each data

collection, a reflectance panel provided by MicaSense was imaged before and after the flight.

In total, we collected one set of images for the field 2 and seven sets of images for the field 1

(Table 4.1). The field 2 images were used to explore the feasibility of flower detection using

multispectral images, while the field 1 images were used to calculate plant heights, canopy

cover, and vegetation index.
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Table 4.1: Data collection summary.

Field Date Time Flight height Flight speed Flight time
Field 2 8/28/2015 12:00 PM 15 m 2.5 m/s 6 min

9/18/2015 1:00 PM 20 m 2.5 m/s 5 min
9/30/2015 12:00 PM 20 m 2.5 m/s 6 min
10/7/2015 4:00 PM 20 m 2.5 m/s 5 min

Field 1 10/16/2015 11:00 AM 20 m 2.5 m/s 5 min
10/19/2015 2:00 PM 20 m 2.5 m/s 5 min
10/23/2015 10:00 AM 20 m 2.5 m/s 5 min
10/30/2015 10:00 AM 20 m 2.5 m/s 5 min

4.2.3 Reference measurement

On each data collection day (except September 18, 2015), the height of each plot in the field 1

was manually measured as the ground truth. For each plot, individual plants were measured

using a ruler and the height of the tallest plant within the plot was used as the maximum plot

height. All 48 plots were measured on September 30 and October 7, and 24 plots (from rows

7 through 12) were measured on the other four days. The vertical distance between the edge

of the GCT to the ground was measured four times using a ruler with millimeter accuracy

at even spacing along the edge of the GCT and the average value of the four measurements

was used as the GCT height reference. The manual measurements of plant height were used

to calculate the accuracy of results from aerial images.

4.2.4 Plot height, canopy cover and vegetation index extraction

Multispectral images from the field 1 were used to calculate plot height, canopy cover, and

vegetation index. The data processing flowchart consisted of five steps (Figure 4.2). The
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first step was to perform aerial triangulation and generate the digital elevation model (DEM)

and ortho-mosaic. Two software/services were used in this step: PhotoScan and MicaSense

ATLAS. Both of them can generate DEM and ortho-mosaic. The PhotoScan (PhotoScan

Professional 1.2.6, Agisoft LLC, Russia) can generate better DEM with higher resolution

than MicaSense ATLAS (atlas.micasense.com). However, the ortho-mosaic from PhotoScan

is not radiometrically calibrated, resulting in incorrect vegetation indices. In contrast, the

ortho-mosaic from ATLAS is radiometrically calibrated using the images of the reflectance

panel. Therefore, we used the DEM generated from PhotoScan, and the ortho-mosaic from

ATLAS for the subsequent data processing. The processing time for each step in PhotoScan

was summarized in Table 4.2.

Table 4.2: Summary of the image processing time for generating ortho-mosaic and DEM in
PhotoScan. Dense cloud and DEM was not built for 8/28 dataset since the ortho-mosaic was
used for flower detection.

Dataset Images Align photos Build dense
cloud

Build
ortho-mosaic

Build
DEM

Total time

8/28 230 55 min, 14 sec - 1 min, 46 sec - 57 min
9/18 178 39 min, 55 sec 24 min, 57 sec 1 min, 46 sec 6 sec 66 min, 44 sec
9/30 171 41 min, 26 sec 31 min, 10 sec 1 min, 17 sec 6 sec 73 min, 59 sec
10/07 134 30 min, 8 sec 13 min, 31 sec 40 sec 6 sec 44 min, 25 s
10/16 137 31 min, 36 sec 19 min, 24 sec 49 sec 5 sec 51 min, 54 sec
10/19 135 29 min, 28 sec 15 min, 27 sec 52 sec 6 sec 45 min, 53 sec
10/23 114 22 min, 34 sec 9 min, 40 sec 2 min, 15 sec 6 sec 32 min, 35 sec
10/30 132 28 min, 13 sec 12 min, 35 sec 2 min, 20 sec 6 sec 43 min, 14 sec

The second step was to align the PhotoScan DEM and ATLAS mosaic using OpenCV

(OpenCV 2.5). The scale-invariant feature transform (SIFT) image features were first calcu-

lated for each band image of the PhotoScan and ATLAS ortho-mosaics and their common

image features were matched. Then the projective transformation from ATLAS ortho-mosaic
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to PhotoScan ortho-mosaic was calculated based on the locations of the common feature

points. Finally, the ATLAS ortho-mosaic was transformed to the image frame of the Photo-

Scan ortho-mosaic, which is same as the PhotoScan DEM, using the projective transformation.

Then the ATLAS ortho-mosaic and the DEM were aligned pixel by pixel.

The third step was plot segmentation, which was to divide the entire DEM and ortho-

mosaic into individual plots (plot DEM and plot image) based on plot length and width. As

a result, each plot-level DEM or ortho-mosaic has only plants and the surrounding soil. The

area of the plot DEM and plot images were kept the same. The pixel value of the DEM

indicates the altitude above sea level, therefore, the fourth step was to adjust plot DEMs

so that the pixel value represented the relative height from the ground. For this purpose,

the maximum likelihood estimation sample consensus (MLESC) algorithm was used on the

DEM to find the best fitting plane to represent the ground surface since the ground within

one plot can be assumed to be flat [136]. The MLESC was applied to the ground pixels

whose normalized intensity on the red band image was larger than 0.4. The threshold was

chosen arbitrarily but the misclassified ground pixels due to the threshold will not affected

the ground surface significantly because the MLESC is robust to outliers. The threshold

of MLESC was set to 0.1 m. The ground surface was subtracted from the DEM to get

the relative height. Meanwhile, the vegetation index for each plot was calculated. Several

vegetation indices can be derived from the five bands of the multispectral images, such as

normalized difference vegetation index (NDVI) and normalized difference red edge (NDRE).

A complete list of vegetation indices can be found in Torino et al.’s study [139]. In our study,

only the NDVI was calculated using the red (R) and near-infrared band (NIR) using equation
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4.1.

NDV I = NIR840 −R668

NIR840 +R668
(4.1)

The subscript indicates the wavelength (nm).

The fifth step was to separate the canopy from the ground using plot height and plot NDVI

by a threshold method. A threshold of 0.5 for NDVI was used to separate the vegetation from

the soil [155] and a threshold of 20 cm for DEM was used to remove weeds. The maximum

plot height was calculated as the largest height value within the canopy. When calculating

the maximum plot height, only the central 75% of the canopy was used to avoid pixels from

nearby plots. The canopy cover was calculated as the ratio of the number of canopy pixels

to the total pixels of the plot. The NDVI of the plot was calculated using the mean NDVI

value of the canopy.
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Figure 4.2: Data processing flowchart. DEM: digital elevation model. MLESC: maximum
likelihood estimation sample consensus. NDVI: normalized difference vegetation index.
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4.2.5 GCT height

For each dataset, the height of each GCT was calculated from the DEM following the same

procedure as the plot height in order to evaluate the accuracy of the model and height

calculation algorithm. However, due to the shape of the GCT, the last step was replaced by

calculating the average GCT pixel values as the height of the GCT.

4.2.6 Flower detection

Flower detection was performed using the field 2 image set. The ortho-mosaic was first

generated using PhotoScan and was divided into plot images using the same procedure as

in the height calculation. For each plot image, each pixel was classified into four different

categories (flower, canopy, ground, ground shade) based on the raw pixel value using support

vector machine type 1 (C-SVM) [156]. The SVM can return a categorical label and probability

of being in each category. Using the criteria of the probability being in flower category larger

than 0.75 rather than the categorical label to classify a pixel as a flower pixel was found

helpful to prevent misclassifying some leave spots with high reflectance as flower pixels. The

flower pixels generated a flower mask for each plot. The number of flowers was obtained by

counting the connected components in the flower mask. The SVM was trained using the raw

digital count of the pixels manually selected from the images for each category. The penalty

of the C-SVM was set to 1, and the kernel function was Gaussian radial basis function with

a gamma value of 0.2. The classification accuracy of the SVM was examined using four-fold
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cross validation. The number of flowers detected from the multispectral image was compared

with the results of manual identification using the corresponding color image.

4.2.7 Statistical analysis

The error of the maximum plot height was calculated by the difference between the calculated

heights (CH) and the measured height (MH). Root mean square error (RMSE) and relative

root mean squared error (R-RMSE) was calculated for each dataset using equations 4.2 and

4.3. Linear regression between the measured height and calculated height was performed

and the coefficient of determination (R2) was calculated for each dataset. All the statistical

analysis were done in MATLAB (2016a, MathWorks).

RMSE =

√√√√ 1
N

N∑
i=1

(CHi −MHi)2 (4.2)

R -RMSE =

√√√√ 1
N

N∑
i=1

( CHi

MHi

− 1)
2

(4.3)

Where N is the total number of plots.

4.3 Results

4.3.1 GCT height

The accuracy of calculated plot heights was affected by the accuracy of the DEM. The heights

of GCTs were used to examine the accuracy of the DEM because the rigid body of the GCTs
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was less prone to error than plants. The error of the GCT height varied for different date and

among the GCTs (Figure 4.3A). The mean errors for 9/30, 10/7, 10/16, 10/19, 10/23 and

10/30 were −9.8 cm, −9.4 cm, −7.6 cm, −8.7 cm, −8.3 cm and −6.7 cm, respectively. This

suggested that there were systematic errors in the DEM that vary by day. The systematic

errors resulted from the georeferencing error of the images and triangulation error during

dense point cloud generation. The common practice for error correction is to use accurately

surveyed ground control points to correct the error introduced by inaccurate georeferencing

of the aerial images, or to scale the DEM using a reference object with its true size. The

second method was adopted to correct the systematic error by calculating the scale factor

between the calculated GCT height and the measured height. After error correction, the

errors of the GCT heights were reduced to −2.6–3.2 cm (Figure 4.3B).

Figure 4.3: Accuracy of height measurements of the ground calibration targets by the imaging
method. A) The error in calculating ground calibration target heights before error correction.
B) The error in calculating ground calibration target heights after error correction.
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4.3.2 Maximum plot height

The calculated plant heights were adjusted using the scale factor from the GCTs. After

correction, the mean errors of the maximum height for 9/30, 10/07, 10/16, 10/19, 10/23,

and 10/30 were −4.2 cm, −4.3 cm, −7.1 cm, −8.0 cm, −5.6 cm, and −12.1 cm, respectively

(Figure 4.4A). The mean of the relative error for each day ranged from -3.9% to -10.2%

(Figure 4.4B). This suggested that the calculated maximum plot heights were consistently

smaller than the reference height measured manually, which is consistent with the findings

in Huang et al.’s study [153]. The errors for all data sets, ranging from -39.0 to 13.5 cm,

approximately followed a normal distribution with a mean of -6.2 cm and a standard deviation

of 7.5 cm (Figure 4.5). The coefficient of determination (R2) between the calculated maximum

plot heights and manually measured maximum plot heights was between 0.9 and 0.96, showing

a strong linear relationship between calculated heights and the reference heights (Figure 4.6).

Figure 4.4: Error of the calculated maximum plot height. A) The absolute error in calculating
maximum plot heights. B) The relative error in calculating maximum plot height.
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Figure 4.5: The error distribution for the maximum plot height.

97



Figure 4.6: Correlation between calculated maximum plot heights and manually measured
maximum plot heights using a linear model.
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4.3.3 Canopy cover and vegetation index

Canopy cover indicates the proportion of the ground area covered by the canopy, which can

be used to quantify canopy development over time (Figure B.2A). Ideally over time the

canopy cover increased until reaching full coverage of the ground. Plots with larger canopy

cover can capture more sunlight, which potentially can produce more cotton fiber. The NDVI

usually increases as the canopy develops, reaching a maximum the canopy fully develops, then

declines as the plant remobilizes resources into the bolls and starts to defoliate (Figure B.2B).

Studies have shown that NDVI has a high linear correlation (R2 > 0.6) with leaf area

index (LAI), which is an important index to quantify plant canopy [157]. Since NDVI and

LAI are both correlated with canopy cover, a linear relationship was found between NDVI

and canopy cover (Figure 4.7). The coefficient of determination(R2) was low because the

data collection was taken in the late vegetative stage, where correlation between LAI and

NDVI was declined. Another reason of the low R2 could be due to the late planting that

caused the cotton plants to grow differently from normal growth. The linear relationship

became weak after the canopy fully closed due to the defoliation of the leaves.

99



Figure 4.7: Correlation between NDVI and canopy cover on different dates.

4.3.4 Flower detection

Multispectral images showed the clear separation between flowers and other objects (canopy,

ground and ground shade, Figure 4.8A). Since the multispectral images were taken under

auto exposure for each channel, each band image always gave the best contrast between the

plant and ground. Flowers showed the highest pixel value on the blue, green, and red channels;
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therefore, flowers can be clearly separated from other objects using these three channels. The

ground was clearly separated from other objects on the NIR channel. Because of the clear

separation of the spectrum between different categories, we were able to train the SVM with

100% classification accuracy for flower and non-flower classes for the training set at the pixel

level. The detection results from multispectral images showed few false negatives and false

positives (Table 4.3). In a few cases, all the flowers were detected and match with the color

images (Figure 4.9A), while in most case, the flowers cannot be detected with 100% accuracy

for several reasons. First, the shadow of the leaves decreased the pixel value of flowers inside

the canopy, and the SVM could not detect those flowers because their spectrum was closer

to the canopy spectrum, which caused false negatives (Figure 4.9B). Second, leaves with

high specular reflectance could be misclassified as flowers because they gave high pixel values,

and thus caused false positives (Figure 4.9C). Third, because of the resolution limitation of

the multispectral images, a cotton flower was only several pixels large in the images. This

increased the risk of missing small flowers or flowers partly hidden by leaves. In Figure 4.9D,

two partly hidden flowers were not detected in the multispectral image.
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Figure 4.8: Spectrum of the objects in the field. A) Pixel values of four objects (flower,
canopy, ground, and ground shade). B) The four regions of interest in the image.
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Figure 4.9: Example plots of the automatically detected flowers in the multispectral images
(composited from the blue, red, and green band) and manually identified flowers in the color
images. In the multispectral images (top image in each panel), the magenta lines indicate
detected flowers. In the color images (bottom image in each panel), the yellow circles indicate
detected flowers and the yellow squares indicate undetected flowers in multispectral images.
A) All the flowers in the color image were detected in the multispectral image. B) The flower
inside the canopy was not detected in the multispectral image. C) Spots with high specular
reflectance from the leaves were misclassified as flowers in multispectral images while the
color images showed no flowers. D) Most of the flowers in the color image were detected in
the multispectral image. Two partly hidden flowers and one flower inside the canopy were
not detected in the multispectral image
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Table 4.3: Comparison of the flower detection using multispectral images with the manual
detection using color images.

Plot Flowers in
color image

Flowers detected by multispectral image
False negative
(percent rate)

False positive
(percent rate)

True positive
(percent rate)

1 4 1(25) 0(0) 3(75)
2 1 0(0) 0(0) 1(100)
3 4 3(75) 0(0) 1(25)
4 3 1(33) 0(0) 2(67)
5 4 1(25) 0(0) 3(75)
6 4 1(25) 1(25) 2(50)
7 4 1(20) 1(20) 3(60)
8 7 2(22) 2(22) 5(56)
9 5 1(17) 1(17) 4(67)
10 4 1(20) 1(20) 3(60)
11 5 3(60) 0(0) 2(40)
12 4 2(50) 0(0) 2(50)
13 4 0(0) 3(43) 4(57)
14 9 0(0) 3(27) 8(73)
15 4 2(33) 0(0) 4(67)
16 3 2(67) 0(0) 1(33)
17 1 0(0) 1(50) 1(50)
18 1 1(100) 0(0) 0(0)
19 5 1(20) 0(0) 4(80)
20 5 1(17) 0(0) 5(83)
21 5 0(0) 1(17) 5(83)

4.4 Discussion

This study demonstrated the success of using aerial multispectral images to measure plant

height, canopy cover, and vegetation index, as well as the feasibility to detect cotton flowers.

The UAS greatly improved the data collection throughput in the field and provided ability

to continuously monitor cotton growth over the season.
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In terms of accuracies for plant height measurement, the root mean squared error (RMSE)

ranged from 5.7 cm to 10.4 cm (the relative root mean squared error (R-RMSE) ranged from

6.6% to 13.6%). Because of the lower ground sample distance, the accuracy is better than

most of the studies on tree height measurement. One study achieved the RMSE between

20 and 45 cm (R-RMSE ranged from 6.55% to 19.24%) for olive tree height [110]. Another

study measured single olive tree using multispectral imaging and the average error was 22 cm

(6.32%) and 53 cm (15.55%) for 50 m and 100 m flight height, respectively [158]. Compared

with similar studies on crops with lower height such as barley and wheat, the proposed

method achieved a similar accuracy [108, 111]. The error of the height measurement is

mostly contributed by the error of the DEM, which can be largely corrected using the GCTs.

However, certain errors involved in the DEM generation process cannot be corrected in the

case of maximum height. For example, the highest point may be smoothed out due to the

size of the ground pixel or the depth filter during the construction of DEM because of the

movement of plant leaves, resulting in generally lower value than the true maximum height.

Another significant error source is the algorithm to extract height from DEM, where the plot

segmentation and baseline correction introduced errors into the height calculation. During

the plot segmentation, only the central 75% of the plot canopy was used to avoid the overlap

with nearby plots, potentially excluding the highest points and resulting in a lower calculated

maximum height than the manual measurement. The resulted errors can be as large as

−40.4 cm, but most of the errors were within −20 cm to 20 cm. The baseline correction can

correct the unevenness of the ground (soil contours left by the tractor), which could be an

issue for manual measurement since the base of the plant changed with the soil contour. This
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can be revealed by the standard deviation of the difference between the ground plane and

the DEM for the ground pixels which was in the range of 1 - 12 cm for plot DEMs from all

data sets. Similar results were also found by Chu et al. that the bare soil areas have ∼5 cm

uncertainty in DEM [154].

Because the maximum plot height can be affected by the above error sources, it may

not accurately reflect the overall canopy for the plot. The DEM not only provides height

information but also the spatial distribution of the height. In this case, the height histogram

presents the distribution of the height, which can better describe the development of the

canopy (Figure 4.10). For example, changes over time of the height from low to high indicate

the growth of the canopy. The histogram can be divided into two parts using a threshold of

20 cm, where the left part and right part indicate the height distribution of the ground and

canopy, respectively. The metrics for characterizing the histogram, such as mean, standard

deviation, skewness, kurtosis, and percentile, can be used to characterize canopy height.

These metrics can be directly obtained with existing statistical tools. For example, the 99th

percentile of canopy height distribution within a plot were used to represent the height of

wheat [111].
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Figure 4.10: Histogram of the height for one plot over 42 days. Blue and green areas indicate
the ground and canopy, respectively. Blue and red lines respectively indicate the 85th and
100th percentile (maximum) of canopy heights.

Flowering time is an important factor that effects the cotton yield [159]. Currently there

is no high-throughput method to measure flowering time other than human visual evaluation

in the field. The preliminary results have shown that the multispectral images have the

potential to detect cotton flowers, which can be very helpful to continuously monitor the

flower development over the season, although more research needs to be done to overcome its

limitations. For example, the flowering count can be underestimated comparing to human
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evaluation because flowers hidden inside the canopy may not be captured by the image. Using

oblique imagery to provide different views of the canopy to increase the chance to capture

the flowers inside canopy could be a solution to solve the underestimation.

The main contribution of this study is that we developed a methodology to measure

multiple phenotypic traits using multispectral images on a UAS. These image-derived traits

were validated against manual measurements, providing confidence of our method (Table

A.1). Compared to other methods used to calculate crop/tree heights, our method has two

key improvements. First, it does not require the bare soil model that was used in other

papers [108, 154]. It is particular useful for perennial crops and trees whose bare soil model

cannot be measured. Second, using the fitted ground surface as baseline can compensate

the unevenness of the ground terrain in comparison to the average or minimum height of

the surrounding soil that were used in the tree height estimation studies [110, 160, 158].

Another unique contribution of this study is that we demonstrated the feasibility of detecting

cotton flowers for the first time, making it possible to quantitatively monitor cotton flower

development over time. We acknowledge that our methodology has certain limitations and

some aspects can be improved. For example, the georeferencing error of the ortho-mosaic

and DEM limited the usage of the automatic plot segmentation based on the geolocation of

the plots. The error would be greatly reduced if accurately surveyed ground control points

were used. The resolution of the multispectral camera used in this study was relatively low

and it limited the accuracy of the result. In addition, two independent software/services were

used to generate ortho-mosaics and DEMs, which is not a cost effective and elegant solution.

108



In the future, we will incorporate the whole data processing pipeline into PhotoScan so the

process can be streamlined and results can be directly generated by one software.

4.5 Conclusion

In this paper, we developed a methodology of using multispectral images acquired by an

UAS to measure cotton plant height, canopy cover, and vegetation index, as well as to detect

flowers, which is an important step towards bringing UAS and advanced sensor technologies

to cotton breeding. The ground calibration targets were effective to substantially reduce

systematic errors in the digital elevation model due to georeferencing errors caused by the low-

accuracy GPS on the UAS and lack of accurately surveyed ground control points. Histograms

of plot DEM presented more information about the distribution of plant canopy height than

the maximum height, and can be used to derive statistics to characterize the plot height.

Correlation between the canopy cover and NDVI was found, and gradually declined after

the canopy fully closed. The difference in the spectral response among ground, leaves, and

cotton flowers showed the potential of detecting cotton flowers using multispectral images,

which can be used in the future to assess the timing of cotton flowering and its distribution

over time. Although we only demonstrated the application of aerial multispectral images

for cotton phenotyping in this study, we will integrate a color camera and thermal camera

into the UAS in the future. The combination of color, multispectral, and thermal images

could provide a wide range of information about crops, which can be used to measure more

complicated traits for cotton and other crops alike.
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Chapter 5

Aerial Images and

Convolutional Neural

Network for Cotton Bloom

Detection1

1Xu, Rui, Changying Li, Andrew H. Paterson, Yu Jiang, Shangpeng Sun, and Jon S. Robertson. "Aerial
images and convolutional neural network for cotton bloom detection." Frontiers in plant science 8 (2018):
2235. Reprinted here with permission of publisher
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Abstract

Monitoring flower development can provide useful information for production

management, estimating yield and selecting specific genotypes of crops. The main

goal of this study was to develop a methodology to detect and count cotton flowers,

or blooms, using color images acquired by an unmanned aerial system. The aerial

images were collected from two test fields in four days. A convolutional neural

network (CNN) was designed and trained to detect cotton blooms in raw images,

and their 3D locations were calculated using the dense point cloud constructed

from the aerial images with the structure from motion method. The quality of

the dense point cloud was analyzed and plots with poor quality were excluded

from data analysis. A constrained clustering algorithm was developed to register

the same bloom detected from different images based on the 3D location of the

bloom. The accuracy and incompleteness of the dense point cloud were analyzed

because they affected the accuracy of the 3D location of the blooms and thus the

accuracy of the bloom registration result. The constrained clustering algorithm

was validated using simulated data, showing good efficiency and accuracy. The

bloom count from the proposed method was comparable with the manual count

with an error of -4 to 3 blooms for the field with a single plant per plot. However,

more plots were underestimated in the field with multiple plants per plot due

to hidden blooms that were not captured by the aerial images. The proposed

methodology provides a high-throughput method to continuously monitor the

flowering progress of cotton.
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5.1 Introduction

Improving cotton yield is one of the main objectives in cotton breeding projects and cotton

growth and production management. Yield can be defined as the product of the number

of bolls produced per unit area and the mass of lint per boll (a common measure of boll

size). Cotton yield is associated with many physiological variables and environmental factors.

However, an increase in cotton yield is generally associated with an increase in the number of

bolls regardless of genotype or environment [161, 162]. Flower and boll retention will affect

the final number of bolls produced. Therefore, processes that affect flower and boll retention

will have a significant impact on yield.

Flowering is important to cotton yield because pollinated flowers form cotton bolls. Within

a given genotype, seasonal flower production per unit area is more closely related to yield

than boll retention percentage [163, 164]. Since a cotton flower is white (cream-color for

some upland germplasms and yellow for Pima) on the first day it opens and turns pink

within 24 hours, it is unlikely to mistake an old bloom for a new bloom on separate days.

Therefore, if bloom counts are obtained daily then the seasonal total counts can be calculated.

The flowering time (the time of the first flower opening) and the peak bloom time can be

determined accordingly, both of which are critical to production management. The timing

and duration of the flowering stage also reflect the difference in growth habits of different

genotypes, which can help breeders select specific genotypes, for example, short-season or

long-season genotypes. Although manual counting is perhaps the simplest and most reliable
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way to count flowers, it is tedious and inefficient and requires a massive amount of labor,

which is not practical for large fields.

Imaging methods can improve the efficiency of manual counting. Many studies have been

done on flower detection and classification using color images [165, 166, 167, 168, 169, 170].

Flowers usually have distinct color and texture from the background; therefore, traditional

image processing methods such as color and texture analysis can be used to segment flower

pixels [170]. The number of flowers can be calculated using morphological operations on the

segmented flower pixels or correlated with flower pixel percentage [168, 170]. Flower features

can be extracted from flower images and are used to recognize flower species [167]. Machine

learning techniques can be used to classify different flower types, which could be useful to

determine the age of cotton flowers based on differences in color and shape [169]. Deep

learning methods such as the convolutional neural network (CNN) have been demonstrated

to be effective in recognizing flower species [171]. CNN showed advantages over traditional

machine learning methods because it does not require extraction of image features.

Although imaging methods have proved to be efficient in detecting flowers, the image

collection throughput limits its usage in agriculture because agriculture usually deals with

large fields. Therefore, improving the data collection throughput is important. In this

case, the use of an unmanned aerial vehicle (UAV) is preferred over a ground vehicle or

robot because a UAV can provide superior data collection speed and larger spatial coverage.

UAVs also do not interact with the plants, so constant data collection will not cause soil

compaction and plant damage, which can happen when using a ground vehicle. Although

many researchers have used UAVs for agriculture studies in recent years, only a few used
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UAVs to count flowers for crops. For example, aerial multispectral imaging has been used

to calculate flower fraction in oilseed rape and monitor the peach flower (Fang et al., 2016;

Horton et al., 2017). However, those studies only segmented flowers from the canopy rather

than counting the flowers. To our knowledge, no study has been done to count cotton flowers

using aerial images. The main reason for this is the low image resolution compared to images

taken from ground platforms, making image processing challenging.

In this paper, we aimed to develop a methodology for counting cotton blooms using aerial

color images. The overall objective of this paper was to develop a data processing pipeline

to detect and count the number of newly opened cotton flowers using aerial images. Specific

objectives were to: 1) build and train a CNN to classify flowers, 2) construct dense point

clouds from raw images and evaluate the quality, 3) develop an algorithm to register flowers,

and analyze its accuracy and efficiency using simulated data, and 4) evaluate the performance

of the data processing pipeline compared with manual counting. To avoid ambiguity, we

used the term bloom to refer to a newly opened flower to distinguish it from its other growth

stages.

5.2 Materials and Methods

5.2.1 Test fields

Two test fields were used, both of which were located in the Plant Science Farm in Watkinsville,

GA (33°43′37.80′′N, 83°17′57.52′′E) (Figure 5.1). Field 1 had 132 plots with a single cotton

plant in each plot, arranged in 12 rows and 11 columns with a 1.5 m (5 ft) distance in both

114



row and column directions. The cotton in field 1 was planted on May 25, 2016. Field 2 had

128 plots of cotton, arranged in 16 rows and 8 columns (Figure 5.1). Each plot was 3 m

(10 ft) long and 1.5 m (5 ft) wide, with a 1.8 m (6 ft) alley between each plot. Fifteen cotton

plants were planted in each plot with equal spacing of 0.15 m (6 inch) on June 13, 2016. The

plant density varied because of the different number of plants germinated, resulting in some

empty plots in field 1 and field 2. The number of germinated plants in each plot for field

2 was recorded two weeks after planting (June 8, 2016) to be used to calculate the average

number of blooms for each plant.
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Figure 5.1: Plot layout of the two test fields.
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5.2.2 Data collection

Aerial color images of the test fields were collected using an octocopter (s1000+, DJI, China)

with a color camera (Lumix DMC-G6, Panasonic, Japan) on August 12, August 19, August

26, and September 9, 2016 (Table 5.1). The color camera was directly mounted on the bottom

of the drone with the lens facing downward. An inertial measurement unit (IMU) with GPS

was mounted on the drone to record the location and orientation of the camera. Raspberry

Pi 2 was used to trigger the camera and record the IMU/GPS measurement. During the

flight, the camera took images at a frequency of 1 Hz. The exposure time and aperture

were manually set for the color camera according to the light conditions of the field, and

auto-settings were used for other parameters. The drone was flown at a height of 15 m above

ground level (AGL) to reduce the ground sample distance (GSD). One flight was used to

collect data from both of the test fields.

Table 5.1: Data collection summary

Date Time (p.m.) Flight height
(m)

Flight speed
(m/s)

Focal length
(mm)

Ground pixel
size (mm)

8/12/2016 12:09 15 2.5 18 3.17
8/19/2016 1:43 15 1.5 20 2.23
8/26/2016 1:35 15 3 20 2.69
9/9/2016 1:12 15 2.5 22 2.36

The number of blooms in each plot was manually counted as a reference for the image

method. To count the blooms in each plot, only white flowers were counted in each plot on

the same day that aerial images were collected. Although manual counting is reliable overall,

it is possible for some blooms to be counted multiple times or not counted. The judgement
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of whether a flower is white is subjective and varies from person to person, which could cause

human counting errors. For field 1, blooms in all of the plots were counted on all four days.

For field 2, blooms were counted in all plots on August 12, and in 32 random plots on the

other three days.

5.2.3 Data processing pipeline

The overall data processing pipeline for bloom counting can be divided into four key steps:

1) dense point cloud generation, 2) plot images extraction, 3) bloom detection, and 4) bloom

registration (Figure 5.2). The final output of the pipeline is the bloom count for each plot.

Other information such as bloom position can be obtained too.
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Figure 5.2: Overall flowchart of the bloom detection algorithm, demonstrating the output of
each step for field 1.

Dense point cloud generation

A dense point cloud of each test field was generated in PhotoScan (PhotoScan Professional

1.3.1, Agisoft, Russia) using the raw color images and the IMU/GPS measurements. The

high accuracy and reference preselection settings were used for photo alignment, the high-
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quality setting for dense point cloud build, and default for other settings. After photo

alignment, PhotoScan constructed a tie point cloud—often called a sparse point cloud in

other software—from the feature points detected in the images. Before constructing the

dense point cloud, the tie point cloud was used to calculate the accuracy of the dense point

cloud. After building the dense point cloud, it was found that field 1 was not fully covered

by the images collected on August 19 and those uncovered plots were excluded from further

data analysis. Additionally, some plots had an incomplete point cloud for the canopy due

to low side-overlap on August 19, August 26, and September 9, when the focal length was

enlarged to reduce the ground pixel size. Point cloud coverage, which is the percentage of

the plot constructed with valid point cloud, was used to evaluate the completeness of the

point cloud. The plots with point cloud coverage less than 80% were excluded from further

analysis. The method to calculate point cloud coverage is explained in section 2.5.

Pot images extraction

The main purpose of the plot images extraction step is to export plot images from the raw

images such that one plot image contains only one plot or part of the plot. Since one plot

can be imaged several times, one plot has multiple plot images from different raw images.

This is helpful for detecting blooms inside the canopy because different raw images provide

views of each plot from different angles, which greatly improves the chance of one bloom

being imaged compared to the ortho-image, which only shows the top view of the canopy. To

extract the plot images, plot boundaries were first manually drawn for each plot and stored

as quadrangle shapes in PhotoScan. Then the four vertices of each shape were projected
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to each raw image to get the pixel location of the vertices in each image. One image was

considered to cover part of the plot if two or three vertices were in the image (pixel location

is within the boundary of the image), and the whole plot if four vertices were in the image.

The pixel location of the four vertices was recorded and plot images were extracted from the

raw image accordingly. The step was processed in PhotoScan using built-in Python functions.

The image file name, plot number, and pixel locations of the four vertices were saved in a

text file and imported into MATLAB (MATLAB 2017a, MathWorks, USA) to extract plot

images from raw images.

Bloom detection

The bloom detection process contains two steps. The first step is to screen out the locations

that most likely contain cotton blooms based on the fact that cotton blooms usually have the

highest pixel intensity because of their white color. The plot image was first transferred into

CIELAB color space and then the screening was performed using the L channel. A threshold

of 0.75 on the normalized L channel (normalized by the maximum value in L channel) was

used to extract bright objects. The number of pixels for each object was counted and noisy

small objects less than 15 pixels were removed. Objects separated by a distance of less than

the diameter of a flower—which is about 20 pixels for our dataset—were combined into one

object because some flowers were split into two objects by the leaves. Images with a size

of 36 by 36 pixels around the center of the remaining objects were extracted from the plot

image. Those images were treated as potential bloom images.
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The second step is to classify the potential bloom images into bloom and non-bloom

class using the pre-trained CNN (detailed information on the CNN and training process is

described in section 2.4). After classification, the images classified as bloom class were kept

and the pixel location of those images in the raw color images was recorded.

Bloom registration

Since the same bloom can be detected in several images, it is necessary to register the bloom

before counting the blooms to prevent counting the same bloom more than once. Registration

methods based on image features were not useful because very few features could be detected

from the bloom images due to the resolution limit. Therefore, we first projected the pixel

location of each detected bloom into the 3D location in the dense point cloud, and then

clustered the blooms based on the locations because the same bloom should have the same

3D location in the dense point cloud. The projection was done in PhotoScan. Because each

pixel in the image has a corresponding image ray, any point in the image ray will appear

as the same pixel in the image, and the 3D location of that pixel in the point cloud is the

intersection between the image ray and the point cloud. If there is no intersection between

the image ray and the point cloud, PhotoScan will return the closest point to the image ray.

Due to the accuracy of the point cloud and pixel location, the 3D location of the bloom

may deviate from the true location, which increases the chance of incorrect bloom registration

solely based on the location. However, since multiple blooms detected in the same image are

different blooms and cannot be in the same cluster, the bloom registration based on the 3D

position can be generalized as a constrained clustering problem as follows:
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Given the set of data points and the set of their corresponding classes, form the

data points into clusters so that no data points in the same class will be in the

same cluster and the distance between any two clusters are not smaller than a

threshold.

In the case of bloom registration, the data point is the bloom position and the class is

the image number to indicate in which image the bloom was detected. Although existing

constrained clustering algorithms can solve the problem, most of the algorithms are for

general clustering problems and are not efficient for this specific problem. Therefore, inspired

by hierarchical clustering, a deterministic clustering algorithm was designed specifically for

the bloom registration problem. The algorithm initializes with each data point as one cluster.

The algorithm involves cluster selection and merging. First, for each cluster i, a set of clusters,

S, was selected from all of the clusters such that no data points in S had the same class as

any data point assigned to cluster i. Second, the distance between cluster i and every cluster

in S was calculated and cluster i was merged to the closest cluster in S if their distance

was smaller than the threshold λ. The algorithm repeats the selection and merging until no

merging happens. The algorithm has a similar effect as the regular hierarchical clustering

algorithms when the distance between two clusters is measured using equation 1.

dist (µi, µj) =


dist′ (µi, µj) , if Ei ∩ Ej = ∅

+∞, otherwise

(5.1)
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where µi and µj are the center of the cluster i and j, dist′ (µi, µj) is the distance metric

used in the hierarchical clustering algorithms, and Ei and Ej are the set of classes of the data

points assigned to cluster i and j. Compared to the regular hierarchical clustering algorithms,

the efficiency of our algorithm is improved because the distance calculation is only performed

on a subset of the clusters.

Euclidean distance was used to measure the cluster dissimilarity. However, because of the

large error of the 3D position projection on the z-axis, the Euclidean distance was modified

by adding a weight term on the z-axis to adjust the influence of z-axis on the distance. The

weighted Euclidean distance between a = (ax, ay, az) and b = (bx, by, bz) was calculated using

equation 5.2. The final program used 0.5 for w.

dist (a, b) =
√

(ax − bx)2 + (ay − by)2 + w2 (az − bz)2 (5.2)
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Bloom registration algorithm
Input: Set of data points D = {xi}ni , class E = ei

n
i , and distance threshold λ.

Output: The assignment variables for the data points, z = [z1, z2, . . . zn].
Initialization: each point is assigned as one cluster, z1 = 1, z2 = 2, · · · , zn = n
do

for i = 1 : n do
if cluster i exists then

Find cluster i and its center µi
S ← ∅ // initialize a set to store the center of selected clusters
Given the current assignment of points, find the set of classes of the data
points assigned to cluster i, Ei = {ek ∈ E|zk = i}
for j = 1 : n do

if cluster j exists then
Find cluster j and its center µj
Given the current assignment of points, find the classes of the data
points assigned to cluster j, Ej = {ek ∈ E|zk = j}
if Ei ∩ Ej = ∅ then

//Add current cluster’s center to S.
S ← {S ∪ µj}

end
end

end
[dmin, imin]← min

{
dist (µi, s1) , · · · , dist

(
µi, s|S|

)}
if dmin < λ then

//Merge cluster i with imin and update the assignment variables
Assign imin to the assignment variables for the data points in cluster i

end
end

end
for k = 1 : n do

Given the current assignment of points, find the set of points assigned to
cluster k, Dk = {xi ∈ D|zi = k}
if |Dk| > 0 then

µk ←
∑

xi∈Dk
xi

|Dk|
else

Remove the cluster and apply the changes to the related variables
end

end
while clusters merged
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5.2.4 Convolutional neural network

The convolutional neural network was used to classify potential bloom images. The network

had seven layers, one input layer, two convolutional layers, two max pooling layers, and two

fully connected layers (Figure 5.3). Since the classification was performed on the potential

bloom images, the potential bloom images were first extracted from individual data sets

and manually labeled into bloom and non-bloom classes. Then the labeled potential bloom

images were used to construct the image database. In total, 14,000 images for the bloom

class and 60,000 images for the non-bloom class were extracted. Two thirds of the bloom

images (roughly 9,000 images) and the same number of non-bloom images were randomly

selected as training samples. The remaining images were used as testing samples. The CNN

was trained for 30 epochs. The learning rate was set to 0.01 at the first epoch and decreased

by a factor of 10 every 10 epochs. The mini batch size was set to 256. The regularization

factor was set to 0.01 to prevent overfitting.

Figure 5.3: Structure of the convolutional neural network.
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5.2.5 Quality of the dense point cloud

The quality of the dense point cloud of the canopy greatly affects the accuracy of the 3D

position of each bloom, and thus the clustering results, and ultimately the bloom numbers.

The quality of the dense point cloud can be evaluated from two aspects—the accuracy and

the completeness of the dense point cloud.

The position accuracy of each point in the point cloud is difficult to calculate because

the geometry of the canopy is unknown. Instead, the projection and reprojection error were

calculated for the tie points to estimate the overall accuracy of the dense point cloud. The

projection error was calculated as the distance between the projection of the feature points

to the point cloud and their corresponding tie points. The reprojection error was calculated

as the pixel distance between the projection of the tie points on the images and their original

corresponding feature points. The projection error was analyzed on each single axis (easting,

northing, and elevation) and the summation of three axes.

The completeness of the dense point cloud quantifies how completely the point cloud

represents the real object or scene, and can be measured by the density of the point cloud.

The completeness of the point cloud on the easting-northing plane was calculated since the

camera only captures the top view. First, the point cloud was rasterized into a 2D elevation

map using grid steps of 1.3 cm without interpolating the empty cells. The elevation map

was divided into each plot. For each plot, the ground surface was calculated using the

Maximum Likelihood Estimation SAmple Consensus (MLESAC) [136]. The plot was divided

into ground and canopy using the elevation map based on the distance to the ground surface
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with a threshold of 0.1 m. The point cloud coverage (PCC) for the canopy is defined in

equation 5.3.

PCC = Area of the canopy

Area of the canopy + Area of the empty cells
(5.3)

The area of the empty cells was included in the denominator because the empty cells were

usually part of the canopy. The PCC estimates the completeness with which the canopy is

represented by the dense point cloud, which can greatly affect the bloom registration result.

5.2.6 Evaluation of the bloom registration algorithm

To evaluate the efficiency and accuracy of the bloom registration algorithm, artificial data

was generated in three steps. First, a data point with three dimensions was generated by

randomly drawing integers from 0 to 9 for each axis. This step was repeated until 125 different

data points were generated. The same class number was assigned to the 125 data points to

simulate that they were from the same image. Second, the first step was repeated 10 times,

generating in total 1,250 data points. A new class number was assigned to the 125 data

points at each repeat to simulate that the data points from each repeat were from different

images. The data points with the same coordinates were set in the same cluster, which is the

true clustering result. Third, a random error that followed N
(
0,
√

3
3 σ

)
was added to each

axis of each data point, thus the position error (vector summation of the errors of the three

axis) followed N (0, σ). Different σ was used to simulate the noise level of the 3D position of
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the bloom. The 1,250 data points were clustered using the bloom registration algorithm and

compared with the true clustering result.

Since the clustering result will depend on the noise level of the data and threshold for

the clustering algorithms, 10 different σ values from 0.1 to 0.5 with an interval of 0.05, and

5 threshold values were tested. The threshold values were σ, 1.5σ, 2σ, 2.5σ and 3σ and they

covered from 68% to 99.7% of the position error. To acquire statistics of the result, the third

step of generating artificial data was repeated 10 times to generate 10 sets of artificial data

for each noise level and threshold. The mean and standard deviation of the clustering error

and runtime on the 10 data sets were analyzed. The misclustering rate was defined using

equation 5.4.

misclustering rate = number of misclustered points

total number of points
(5.4)

Since it is difficult to relate the clustering result with the ground truth, the misclustered

points were considered as the points that were in the same cluster from the clustering result

but not in the same cluster from the ground truth. The number of misclustered points was

calculated with two approaches. The first approach—referred to as misclustering rate by refer-

ence—used the true clustering result as the ground truth, and the second approach—referred

to as misclustering rate by result—used the clustering results as the ground truth. The first

approach was good at evaluating the clustering error when the clustering algorithm over

clustered the data points, while the second approach was suitable for under-clustering errors.
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5.3 Result

5.3.1 Quality of the dense point cloud

The point cloud accuracy was analyzed using the dataset collected on 8/12. More than 99%

of the reprojection errors of the tie points were less than 1.7 pixels and only a few were larger

than 2 pixels (Figure 5.4). The mean reprojection error was 0.5 pixels. The tie points had

overall larger projection error on the elevation than the easting and northing (Figure 5.5).

The mean projection error for the easting and northing was 0 m, whereas the mean projection

error for the elevation was 0.014 m, which is reasonable since the depth generated from multi-

view stereo is usually the least accurate. The elevation also had larger variation than the

easting and northing. The mean projection error for the three axes combined was 0.022 m,

and 99% of the errors were between 0 m and 0.127 m (Figure 5.5d). The large projection error

on the elevation validates the rationale to assign a weight to the elevation when calculating

the cluster distance in bloom registration.
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Figure 5.4: Histogram of the reprojection error for the tie points generated from 8/12/2016
dataset.
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Figure 5.5: Histogram of the projection error for the tie points generated from the 8/12/2016
dataset. A) Error histogram for easting. B) Error histogram for northing. C) Error histogram
for elevation. D) Error histogram for the summation of the three axes.

In the event of an incomplete dense point cloud for the canopy, some blooms may not be

able to get 3D point positions and thus cannot be counted. If the blooms equally distribute

over the canopy, the point cloud coverage can be considered as the probability of a bloom

having a valid point in the dense point cloud. Assuming a canopy has n blooms and point

cloud coverage of p, then k (k = 1, 2, . . . , n) blooms not having valid points (which cannot be

counted using the imaging method) follow a binomial distribution B (n, 1− p). The mean
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count error is n (1− p) and the relative error is (1− p). Therefore, the point cloud coverage

should be close to 1 to make the counting error small.

Figure 5.6 showed that the 8/12 dataset had good point cloud coverage (> 0.9) on most

of the plots for both test fields. However, the other three datasets showed low point cloud

coverage on both fields, except that the 8/19 dataset had some plots with good point cloud

coverage. The low point cloud coverage was mainly due to the insufficient image side-overlap

(<60%); the PhotoScan was unable to construct valid 3D points for areas that were covered by

less than three images. Therefore, increasing the image overlap can improve the point cloud

coverage. The depth filter inside the PhotoScan removed noisy points due to the movement

of the plants and image noise, which was another reason for the low coverage. To achieve

low image counting error, the plots with point cloud coverage lower than 0.8 were excluded

from data analysis, which removed 16 plots in field 1 for the 8/12 dataset, 18 plots in field 1

and 103 plots in field 2 for the 8/19 dataset, all the plots in field 1 and 112 plots in field 2

for the 8/26 dataset, and 127 plots in field 1 and 97 plots in field 2 for the 9/9 dataset.
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Figure 5.6: Point cloud coverage for field 1 (A) and field 2 (B). The red line indicates the
0.8 threshold.

5.3.2 Training result of the convolutional neural network (CNN)

With more than 28,000 training images and mini batch size of 256, the CNN was trained

about 114 iterations every epoch. Because of the large training sample size and relatively

simple structure, the training process converged quickly and the training accuracy reached

0.94 in the first epoch. As shown in Figure 5.7, the training accuracy for bloom and non-

bloom class increased in the first few epochs. The training accuracy for the non-bloom class

reached a maximum on the 8th epoch, and the training accuracy for the bloom class reached

a maximum on the 12th epoch. The accuracy for both classes decreased after reaching the

maximum value, fluctuated a bit, but then reached a stable accuracy with small variation

after 20 epochs. The training loss decreased quickly over the first few epochs, which indicates

the quick convergence of the training. After 10 epochs, where the learning rate changed from

0.01 to 0.001, the training loss kept decreasing but the change rate was small. After 20 epochs,
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the training loss reached the minimum with a certain level of oscillation, which indicates that

the training process should stop at the 20th epoch because no further improvement of the

CNN can be gained from the last 10 epochs. Therefore, the training result at the 20th epoch

was used to classify the potential bloom images. The testing accuracy was smaller than the

training accuracy for both classes after 7 epochs but the difference between them was less

than 0.01, which showed the CNN worked well on both the training and testing sets.

Figure 5.7: CNN training setting and result. A) Training and testing accuracy of the CNN
on two classes over training epoch. B) Training loss over epoch. C) Learning rate over epoch.

The classification result for each dataset using the trained CNN varied due to the different

lighting conditions and flowering stages (Table 5.2). The classification result showed high

precision (>0.9) for both classes across all datasets. However, the recall (true positive rate) for
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the bloom class was low for the 8/19 and 9/9 datasets. The CNN can cause overestimation or

underestimation when comparing the number of predicted blooms and the number of actual

blooms. For example, in the 8/12 dataset, the number of predicted bloom images was 789,

but the actual number of bloom images was 719, thus the classification result overestimated

the number of blooms by 10%. Similarly, the classification result overestimated the number

of blooms by 23% and 29% in the 8/19 and 9/9 datasets, and underestimated the number

of blooms by 2% in the 8/26 dataset. Objects such as cotton bolls, specular highlights on

leaves, and pink flowers were misclassified as blooms because their shape and color appeared

like a bloom in the aerial image due to the limited resolution (Figure 5.8). The misclassified

blooms caused by objects (e.g. label sticks) on the ground could be removed based on the

height from the ground, but the misclassified blooms caused by the plants (e.g. leaves, pink

flowers, and cotton bolls) were difficult to eliminate using the height. Small blooms or partly

hidden blooms can easily be misclassified as non-blooms because of their size. Blooms in the

shade can also be misclassified as non-blooms because their intensity is reduced. Including

those misclassified images into the training set may further improve the CNN performance.

Table 5.2: Classification result of the potential bloom images extracted from individual
dataset for field 1.

8/12/2016 8/19/2016

Output class Bloom Non-
bloom

Precision Recall Bloom Non-
bloom

Precision Recall

Actual
class

Bloom 709 10 0.90 0.90 813 37 0.96 0.78
Non-bloom 80 4876 0.98 0.997 234 23208 0.99 0.998

8/26/2016 9/9/2016

Output class Bloom Non-
bloom

Precision Recall Bloom Non-
bloom

Precision Recall

Actual
class

Bloom 731 82 0.90 0.91 558 28 0.95 0.74
Non-bloom 68 8543 0.99 0.99 191 3946 0.95 0.99
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Figure 5.8: Example images of the classification result.

5.3.3 Efficiency and accuracy of the bloom registration algorithm

To cluster the 1,250 data points, the bloom registration algorithm used 13.3 to 48.4 seconds,

which is 0.0106 to 0.0387 seconds per data point (Figure 5.9a). Using a larger threshold and

larger noise level reduced the runtime because they resulted in a smaller number of clusters

and thus the number of distance calculations. The bloom registration algorithm produced

a near-zero misclustering rate by result at smaller noise level no matter what threshold was

used because the distance between two reference clusters was still larger than the spread of

the data points due to the noise (Figure 5.9b). As the noise level increased, the misclustering

rate by result increased and larger threshold values had larger misclustering rates. This was

mainly because of over-clustering when the noise of the points became large enough that

certain portions of two clusters overlapped with each other and the algorithm could cluster
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them into one cluster. The misclustering rate by reference did not change significantly as

the noise level increased (Figure 5.9c). Smaller thresholds had larger misclustering rates by

reference.

At low noise level, the under-clustering takes the main effect because the bloom registra-

tion algorithm can split one cluster into smaller clusters at low noise level, generating a larger

number of clusters compared to the real cluster number (Figure 5.9d). As the noise increased,

a smaller number of clusters than the real number of clusters was generated, resulting in

over-clustering. The bloom registration algorithm had a smaller cluster number with larger

threshold at the same noise level, indicating that it is more prone to under-clustering but

less prone to over-clustering.
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Figure 5.9: Test results of the bloom registration algorithm. A) Run time of the bloom regis-
tration algorithm on the simulation data. B) Misclustering rate by result. C) Misclustering
rate by reference. D) Number of clusters using modified hierarchy clustering. The horizontal
line is the true number of clusters.

5.3.4 Bloom count result

This section shows the bloom count results after removing the plots with point cloud coverage

less than 0.8. The image count and manual count had the same trend for both fields (Fig-

ure 5.10). The error of the image count was between -4 and 3 for field 1, and the between -10

139



and 5 for field 2, showing that field 2 had more underestimated plots than field 1 (Figure 5.11).

This may be due to the single plant per plot layout in field 1. The single plant per plot layout

allows the plant to be seen from all directions without being blocked by other plants in the

plot. Therefore, blooms in field 1 were more likely to be captured in the aerial images.

Figure 5.10: Comparison between image count and manual count for field 1 (A) and field 2
(B) after removing plots with point cloud coverage less than 0.8.
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Figure 5.11: Histogram of the image count error for field 1 (A) and field 2 (B).

The overestimation was caused for two major reasons. One reason is the classification

error of the CNN. For example, some leaves with specular highlights were classified as blooms

(Figure 5.12a). The other reason is the quality of the point cloud, which causes the error of

the bloom’s 3D position and thus make the bloom registration incorrect (the same bloom

from different images was registered as different blooms) (Figure 5.12b). The underestimation

was caused by hidden blooms that were not shown in the aerial images, or blooms that were

shown in the images but were not classified correctly by the CNN.

With enough datasets, it is possible to monitor the development of the flowers over time,

which is one of the advantages of the proposed method. Figure 5.13 demonstrates the trend

of the bloom development. It shows that the number of blooms was low at the early flowering

stage, reached the peak in the middle flowering stage, and then decreased at the late flowering

stage.
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Figure 5.12: The bloom detection results for plot 0110 (A) and plot 1011 (B) in field 1 on
8/12/2016 dataset. The left images show the point cloud and detected blooms and right
images show the corresponding blooms in the raw images.

Figure 5.13: Boxplot of the image count per plot over time for field 1 (A) and field 2 (B).
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5.4 Discussion

This paper demonstrated a high-throughput methodology to count cotton blooms using aerial

color images. Continuously monitoring the cotton blooms over time can provide information

about the cotton growth status, such as the flowering time and peak flowering time, which

can be used for production management and yield estimation. It is also helpful for breeding

programs to identify short season or long season genotypes.

Unlike sorghum or corn, whose flowers open at top of the stem, cotton flowers open from

the bottom and progress up the plant. At the early cotton flowering stage, blooms at the

bottom can be covered by the leaves and may not be able to be captured by the aerial images.

Therefore, it is expected that image counting can underestimate the real bloom count. Instead

of using the ortho-images which only take the top view of the canopy, we utilized all the raw

images that take different views of a plot to get the bloom count in order to improve the

underestimation to a certain extent. The inability to detect hidden blooms inside the canopy

from aerial images is the major limitation of the proposed methodology. The underestimation

could be improved at the middle and later flowering stages since the flowers that open at the

middle and top of the canopy are more likely to be imaged in the aerial images. This issue

could be addressed by using oblique aerial images or ground side-view images.

Besides the inability to detect hidden flowers, the proposed bloom counting method can

generate errors from two aspects: the bloom detection error and the bloom registration error.

The bloom detection error was affected by the image quality, the threshold to select the

potential bloom images, and the accuracy of the CNN. The image quality was affected by
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the illumination condition at the time of data collection. Ideally, the best image quality can

be obtained when the illumination is uniform from all directions so there are no shadows or

specular highlights. The ideal condition is hard to obtain in the field, but the approximate

ideal condition can be obtained on a cloudy day. When the sunlight directly shines on the

canopy without being scattered by clouds, shadows and specular highlights can be found in

the aerial images, which cause non-uniformed intensity changes of the plot. Those changes

will affect the selection of the potential bloom positions.

The threshold to select the potential bloom positions was arbitrary and mainly based

on the images. A high threshold can eliminate some blooms that have low intensity due

to shadows. A low threshold can include more non-bloom objects (such as the specular

highlights), which can increase the processing time and be misclassified by the CNN. The

classification of the potential bloom images relied on the CNN but misclassifying a bloom

image as a non-bloom image affected the result differently from misclassifying a non-bloom

image. When a bloom was classified as a non-bloom in one image, it was possible to be

correctly classified as a bloom in other images given a different perspective of the flower;

therefore, this flower could be included in the final result. However, when a non-bloom image

was classified as a bloom, this false bloom was counted and there was no approach to remove it

in the current method. The training samples for the CNN were selected from images collected

on only four different days, so the trained CNN may not be suitable for data collected in

different growth stages, especially when the color of the cotton leaves changes over the season.

Therefore, including more training samples from different dates over the growth season could

improve the accuracy and robustness of the CNN. The different appearances of the cotton
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flower caused by genotype differences—for instance, the Pima cotton has yellow bloom in

contrast with white bloom for some upland cotton varieties—should also be considered when

constructing the training samples.

The accuracy of the bloom registration was affected by the 3D position of the bloom and

the registration algorithm. The 3D position of the bloom was affected by the pixel location

and the dense point cloud. Therefore, the accuracy of the dense point cloud has an important

impact on the accuracy of a bloom’s 3D position, and thus affects the bloom registration

results. A larger error of the 3D position can cause the bloom registration to under-cluster

or over-cluster the blooms. Under-clustering can count the same bloom more than once and

over-clustering may count several blooms as one bloom, making the bloom count unreliable.

The completeness of the point cloud also affects the registration result. If the dense point

cloud cannot cover the whole canopy, some blooms that are detected in the images may not

have a valid projection on the dense point cloud. Those blooms will not be registered and

underestimation of the bloom count will occur. Therefore, adequate image overlap is critical

in data collection to capture the whole canopy. Increasing the image overlap can improve the

completeness, but also requires more data collection and processing time. Oblique imagery

can also improve the completeness of the point cloud by providing more views of a plot and

potentially can image more occluded flowers.

Although the proposed bloom counting methodology usually provides an underestimated

bloom count compared to manual counting, it has the advantage in throughput over manual

counting. It saves manual labor and makes continuously monitoring the flowering possible.

Without such throughput, it is impossible to continuously monitor the flowering stage and
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determine the flowering time, peak flowering time, and seasonal bloom count. For farmers

and breeders, it is helpful to estimate the fiber yield because some studies have shown the

fiber yield is correlated with seasonal bloom count [163, 164]. However, additional studies on

how well the proposed methodology can estimate fiber yield are needed. The methodology is

also helpful for differentiating the growth behavior among different genotypes, which can be

used to select certain genotypes, such as short-season or long-season genotypes. Compared to

other flower detection methods that are based on the percentage of flower pixels, the method

proposed in this study can directly provide flower count without exploring the correlation

between pixel percentage and flower count [165]. The proposed method also can provide the

locations of flowers as byproducts, which could be used to correlate with the cotton bolls

(Figure 5.14).
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Figure 5.14: Top view of the two test fields with red dots indicating the flower locations using
8/12/2016 dataset. The image was rendered from dense point cloud.

To implement the proposed method, farmers and breeders can use commercial aerial pho-

togrammetry systems or build custom systems to collect aerial images. The data processing

pipeline can be used as long as the image quality (such as the ground resolution) meets
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the requirements. This study used small fields of 920 m2 (0.22 acre) and the data collection

throughput is not enough for commercial farms or breeding programs with large fields. Al-

though the throughput can be increased by increasing the flight altitude, the reduced ground

resolution may not meet the requirement for the pipeline to correctly recognize cotton flowers.

Alternative solutions include using high-resolution cameras to maintain the ground resolution

when imaging at higher altitude.

5.5 Conclusion

This study developed a high throughput methodology for cotton bloom detection using

aerial images, which can be potentially used to monitor cotton flowering over the season for

cotton production management and yield estimation. The method generally underestimated

the bloom count due to the inability to count hidden flowers, but the bloom count for the

single plant layout was less likely to be underestimated than the multiple plant layout. The

accuracy and completeness of the dense point cloud has an impact on the bloom count result,

so generating a good dense point cloud can improve the results significantly. The bloom

registration algorithm developed in this study was efficient in terms of runtime and was

more prone to under-clustering but less prone to over-clustering. The trained CNN correctly

classified more than 97% of the training and test images, and more than 90% of the potential

flowers extracted from individual datasets. Since the false classification from the CNN can

result in false bloom count, designing a robust CNN that can handle images taken under

different field illumination conditions and cotton growth stages will be included in future
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studies. In addition, oblique imagery will be explored to improve the quality of the dense

point cloud.
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Chapter 6

Development of The Modular

Agricultural Robotic System1

1Rui Xu and Changying Li. To be submitted to Journal of Field Robotics.
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Abstract

Increasing global population and climate change pose significant challenges for

meeting food and fiber demand, and the agricultural robot is a promising solution

to these challenges. This paper presents the modular agricultural robotic system

(MARS) from concept design to real implementation. The MARS is a low-cost,

multipurpose agricultural robot that uses a modular design for the hardware and

software. There are five essential hardware modules (wheel module, connection

module, robot controller, robot frame, and power module) and three optional

hardware modules (actuation module, sensing module, and smart attachment).

Various combinations of the hardware modules can create different robot configu-

rations for specific agricultural tasks. The software was designed using the Robot

Operating System (ROS) with three modules: control module, navigation module,

and vision module. A robot localization method using dual Global Navigation

Satellite System (GNSS) antennas was developed. Two line-following algorithms

were implemented as the local planner for the ROS navigation stack. Based on

the MARS design concept, two MARS designs were implemented: a low-cost,

lightweight robotic system named MARS mini and a heavy-duty robot named

MARS X. The MARS X was tested for its performance and navigation accuracy,

achieving a high accuracy over a 537 m long path with 15% of the path having

an error larger than 0.05 m. The MARS mini and MARS X were shown to be

useful for plant phenotyping through two field tests. The modular design makes
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the robots easily adaptable to different agricultural tasks and the low-cost makes

it affordable for researchers and growers.

6.1 Introduction

The projected global population will reach 9 billion by 2050, which will require the current

food production to double to feed the global population [1]. Modern agriculture also faces

challenges in climate change, farmland loss, and labor shortage. Agricultural scientists and

engineers strive to find solutions to increase production with higher quality in a sustainable

way, and some have achieved limited success. For example, agricultural machinery has

improved dramatically the productivity and efficiency of many agricultural tasks, making

managing large farmland possible with only a few workers. Another successful example is

found in precision agriculture (or digital agriculture), which integrates sensors, controls, and

information technologies to continuously monitor and manage crops in order to increase

production with fewer resources. Similarly, high-throughput phenotyping requires collecting

phenotypical data for plants at a large spatial scale and high temporal resolution. Agricultural

robots can play an important role to automate these processes [172].

Agricultural robots have several advantages over traditional agricultural machinery. Agri-

cultural robots can be lightweight, so they create little or no soil compaction and are less

limited by field conditions than heavy tractors. Agricultural robots can be autonomous

and intelligent, so they are less dependent on labor. They are also more suitable for some

agricultural tasks and crops that require a certain level of intelligence, such as harvesting
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specialty crops [173, 174, 175]. For irrigation and weeding tasks, agricultural robots can

control precisely the irrigation and weeding spots to reduce water and pesticide usage [176,

54, 33]. Several robots can form a robot swarm to cover a large field and can reduce the

chance of disruptions resulting from a single machine failure that might occur in traditional

agricultural machinery [177, 178].

The adoption of robotics in agriculture has been generally slower than in other industries,

primarily because of the complexity of the tasks in uncontrolled agricultural environments.

Unlike industrial robots in a controlled environment, most agricultural robots need to work in

an uncontrolled environment or semi-structured environment, thus requiring one or multiple

sensors to achieve intelligence and autonomy. This can make the robot costly. Thanks to

recent advancements in sensing technologies, sensors are becoming less expensive and more

robust, allowing researchers and companies to create affordable robots. Some agricultural

robots have achieved limited intelligence by combining computer vision and artificial intel-

ligence, a process that has demonstrated considerable potential for harvesting robots and

weeding robots. Most robots can be driven autonomously using Global Navigation Satellite

System (GNSS) and Inertial Measurement Unit (IMU), and avoid obstacles using the imaging

sensors or LiDAR.

Many agricultural robots have been developed by both research labs and technology

companies. For example, the Australian Centre for Field Robotics has developed several

agricultural robots for weeding and phenotyping, including Ladybird, Shrimp, and RIPPA [28,

26, 179]. Another well-known weeding robot is AgBotII, which can detect and classify weed

using computer vision and remove the weed using a mechanical or spray weeding module [33].
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Companies such as Blue River, EcoRobotix, F Poulsen Engineering, and Naio Technologies

have also developed commercial weeding robots. Harvesting robots is an important research

area, and some robots have been developed in academia to harvest apples [180], strawberries

[51, 173, 181], sweet peppers [174], tomatoes [182, 183], and kiwi fruit [175]. In parallel, some

companies have developed robot harvesters. For example, the Agrobot and Harvest CROO

Robotics both developed the strawberry harvester, Energid Technologies developed a robotic

citrus harvesting system, and Abundant Robotics developed an apple harvester. Phenotyping

robots is another important research area in recent years. Robotanist is a skid-steering robot

that can navigate autonomously within sorghum fields using abundant sensors equipped on

the robot [27]. Vinobot and Vinoculer are two robotic platforms where Vinoculer is a mobile

observation tower that can identify specific plants for further inspection by the ground robot

Vinobot [24]. Phenobot is a robot for sorghum plant phenotyping [50]. TerraSentia is a

low-cost, 3D printed field robot that can count corn stands using deep learning methods [23].

An autonomous mobile robot was developed for plant phenotyping using a LiDAR sensor

and soil sensing with a multipurpose toolhead on a robotic arm [81, 31].

The above-mentioned agricultural robots are task-based and can perform specific tasks for

specific field arrangements, but they are not suitable for other tasks. When considering the

complexity of agricultural environments resulting from diversity in farm size, farm topology,

and crops, growers must use different machines for different crops and production methods.

This method is not cost-effective, especially for small farms. To address this issue, some

researchers and companies have developed multi-purpose robotic platforms that can be used

for different production methods. Some multi-purpose robotic platforms can carry different
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attachments, but the physical appearance is fixed, such as BoniRob (BOSCH, German),

Robotti (AGROINTELLI, Danish), and PUMAgri (SITIA, France). BoniRob is an adaptable,

multi-purpose robotic platform that can be adapted to different tasks using exchangeable

application modules [34]. Armadillo is another multi-purpose robotic platform that can

carry different tools [35]. The robot is equipped with multiple sensors for row detection and

navigation and has been used for weeding, soil measuring, and phenotyping [176, 59, 178].

Some robots have adopted modular designs to enable the robot’s reconfiguration for different

environments and tasks. One well-known example is the Thorvald II agricultural robotic

system, which consists of several standardized robot modules that can form different robot

designs [32]. The system also used modular design for its software using the Robot Operating

System (ROS) [184]. This modular design creates great flexibility in creating robot designs

for various environments, such as the greenhouse, polytunnel, and open field [53, 52].

Modularity can bring several benefits when incorporated into the design of agricultural

robots. The biggest advantage is that the robot can be easily reconfigured and customized

using different modules for various tasks. Because the modules can be reused for different

robot configurations, the total cost of reusing the modules to perform different tasks would be

much lower than the cost of several task-based robots. Furthermore, harsh field environments

such as humidity, dust, high temperature, and rain can cause metal erosion and electrical

problems, which can increase maintenance costs. With a modular design, individual parts

can be replaced and repaired, making maintenance easier and cheaper.

The current commercial agricultural robots, such as the Thorvald II system, are still

expensive for most small farms and research labs. In addition, their design is proprietary
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so integrating third-party components and optimizing the design for specific tasks can be

difficult. Therefore, we aim to develop a low-cost Modular Agricultural Robotic System

(MARS) that is affordable for growers and researchers. There were four objectives for this

study. The first objective was to describe the design concept and requirements for MARS.

The second objective was to implement two types of MARS, a low-cost and lightweight MARS

mini and a high payload MARS X, based on the design concept. The third objective was to

develop software modules that can perform basic autonomous and intelligent tasks, such as

autonomous navigation and object detection. The fourth objective was to test the robots’

performance in an agricultural field and demonstrate their application for high-throughput

phenotyping.

6.2 Design Concept

The Modular Agricultural Robotic System (MARS) is designed around hardware and software

modularity (Figure 6.1). The modularity design provides maximum flexibility and reusability

of the system by allowing users to reconfigure the system to their specific needs with little

effort. Each module serves specific functions and, combining different modules can enhance

the functionality of the entire robot.
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Figure 6.1: System diagram of the MARS. The rectangular boxes with the dashed line frame
are optional modules. Arrows indicate how the modules are connected. The blue rectangles
indicate the hardware modules and their components. The orange rectangles indicate the
sub-modules.

6.2.1 Hardware modules

The MARS contains eight hardware modules, and each module includes several variations

(Figure 6.1). The wheel module, connection module, robot frame, robot controller, and power

module are necessary and can provide basic functionality. The actuation module, sensing

module, and smart attachment are optional and can expand the robot’s functionality. All

the hardware modules have the same mechanical interface for easy assembling.

Robot frame

The robot frame is used to combine all other modules and provides the main structure of

the robot. It provides the mount points for other modules and how other modules connected
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to the robot frame governs the robot’s basic functionality and structure. Because the robot

can fit for various agricultural environments and applications, the robot frame can differ in

width, height, and length. The robot frame should be designed using mechanical structures

that are easy to assemble and modify to accommodate the robot frame’s customizability. It

should also sustain the robot’s static weight and the dynamic force generated by the robot

motion. The robot frame can be fixed or adjustable. The fixed frame has a rigid connection,

and the overall dimension is not changeable. The adjustable frame can change the frame

dimension, such as width and height, via slide mechanisms.

Wheel module

The wheel module consists of three sub-modules: steering wheel, drive wheel, and passive

wheel. The steering wheel has a motor to rotate the wheel on the horizontal plane, which can

change the wheel’s drive direction. The drive wheel has a motor to propel the robot, while

the passive wheel has a free rotation wheel that is mainly used to support the robot. The

drive wheel or passive wheel can be attached to a steering wheel to form a steerable drive

wheel or a steerable passive wheel. They also can be used directly as non-steerable drive

wheels or non-steerable passive wheels. The wheel module is connected to the robot frame

through the connection module. Because the steering wheel and drive wheel use motors,

the related electronic components are also included in the wheel module (Figure 2). The

electronic components include the motor driver and motor controller. They are powered by

the power module and can be controlled by the robot controller through certain unified bus

interface, such as Controller Area Network (CAN).
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Figure 6.2: Diagram of the electronic connections for MARS.

A robot can have multiple wheel modules. Using more steering wheels can increase

the maneuverability of the robot, and using more drive wheels can increase the payload of

the robot. For example, a four-wheel steering four-wheel driving robot uses four steering

wheels and four drive wheels (Figure 6.3), enabling the robot to follow any trajectory in its

workspace.

Connection module

The connection module is used to connect the wheel module with the robot frame. It has

two variations: rigid connection and suspension. The rigid connection fixes the wheel module

on the robot frame. The suspension can increase the robot’s ability of keeping the wheel in

contact with the ground, which is useful moving through uneven terrain.
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Robot controller

The robot controller is used to control the motion of the robot. The robot controller uses an

onboard computer to control the motor in the wheel modules (Figure 6.2). It can communicate

with other modules, such as the actuation module, the sensing module, and the smart

attachment. The robot controller hosts the software control module.

Power module

The power module provides power for the entire robotic system. The power module includes

the battery, battery manager, battery protector, and other electronic components that protect

the battery and load. It may have a voltage regulator to regulate voltage to power other

modules. The battery status can be monitored by the robot controller. A robot can have

multiple power modules. For example, a robot can use one power module to power the wheel

modules and one power module to power other modules. Having separable power sources

and modules can protect them from the noise and back electromotive force induced by the

motors.

Actuation module

The actuation module is an optional module that can be added to the robot for specific tasks,

such as weeding, that require motion within the robot. The actuation module can be any

robot arm and manipulator. The actuation module should have an independent electronic

system and the controller can be added easily to the robot system.
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Sensing module

The sensing module is optional and is used primarily to acquire information through sensors

and cameras. The acquired information can be used to expand the robot’s functionality and

provide information for other modules. For example, in weeding tasks, the sensing module

can have a color camera to identify and localize the weed and pass the information to the

weeding module to remove the weed. The sensing module can be attached to the actuation

module or directly attached to the robot frame.

Smart attachment

Smart attachments are optional modules that can expand significantly the robot’s capacity

to perform various agricultural tasks, including weeding, irrigation, and other customized

tasks. The user can design their customized attachment for their specific tasks. The smart

attachment is a standalone module that has an independent electronic system and controller.

The smart attachment can communicate with and be controlled by the robot controller.

A complicated agricultural task may need coordination between the actuation module,

sensing module, and the smart attachment. For example, the weeding task uses the sensing

module to provide the location of the weeds, uses the actuation module to move the weeding

module to the weed location, and uses the weeding module to remove the weed.
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6.2.2 System configuration

The user can create different robot configurations using the hardware modules for different

agricultural environments and applications. The required modules are the wheel module,

connection module, robot frame, robot controller, and powermodule. Figure 6.3 demonstrated

several robot configurations using the hardware modules. These configurations can be used

for different agricultural environments and applications. Configuration 1 is a four-wheel-

steering four-wheel driving robot with high maneuverability and can run on uneven terrain.

Configuration 2 and configuration 3 are three-wheel robots, but configuration 3 has two

drive wheels, giving more payload. They use fewer modules than other configurations so that

the total cost will be cheaper. They can be used in the greenhouse. Configuration 4 is a

four-wheel skid-steering robot, which can run between crop rows.
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Figure 6.3: Example configurations of MARS. Configuration 1: four-wheel steering four-
wheel driving robot. Configuration 2: front wheel steering front-wheel driving with two back
support wheels. Configure 3: one wheel steering on the front and two drive wheels on the
back. Configure 4: four-wheel skid- steering robot.

6.2.3 Software modules

The software modules include the control module, the navigation module, and the vision

module, covering the most useful functions for most agricultural tasks. The software modules

control the robot as a whole, and one software module can control one or more hardware

modules. Each software module provides specific functions, but they can coordinate with

each other to provide more complex functions, such as vision-guided autonomous navigation.
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The software is implemented in ROS because ROS is modular and flexible. Several

ROS packages were designed to implement the software modules. Specifically, a robot

control framework was designed to enable the control module to control the robot’s motion

according to the robot’s configuration, and an object detection framework was designed for

the vision module to enable the detection and localization of objects in the image. For the

navigation module, a GNSS-guided autonomous navigation module was developed using the

ROS navigation stack.

Control module

The control module’s main function is to control the motion of the robot, i.e., control the

rotation of the steering wheel and the speed of the drive wheel. The control module is

hosted by the robot controller. Different robot configurations have different kinematics. For

example, a four-wheel steering, four-wheel driving robot has different kinematics from a skid-

steering robot. The wheel module can use different motor and motor controllers for different

agricultural applications, so the motor controller’s ROS driver can vary. Therefore, inspired

by the move_base package that uses the ROS pluginlib to create a reconfigurable navigation

node, we use a similar idea to develop a robot control framework, named robot_drive, which

can configure different kinematic model and motor drivers according to the robot configuration.

A universal motion_controller, named basic_motion_controller, was implemented for any

robot configurations.

Robot control framework The robot control framework consists of motion_controller,

wheel_driver, which are managed by robot_drive (Figure 6.4). The motion_controller is a
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plugin that models the kinematics and inverse kinematics of the robot. The wheel_driver is

a plugin that interfaces with the wheel module. The robot_drive provides an ROS interface

for configuring, running, and interacting with the robot control framework. It subscribes to

the cmd_vel topic, which defines the velocity command (turning speed and rotation speed)

of the robot and converts it to the command of the wheel module, which is the rotation

of the steering wheel and the speed of the drive wheel. These commands are passed to

the wheel_driver to be executed by the wheel module. The robot_drive can also calculate

the odometry of the robot through the motion_controller using the status of the wheel

modules retrieved by the wheel_driver. The odometry is then published as the odom topic.

Because the motion_controller and wheel_driver are plugins, the users can implement their

own motion_controller and wheel_driver based on their robot configuration. We provided

BaseRobotController and BaseWheelDriver class to define the interfaces for the plugins. The

users need to implement the interfaces for their motion_controller and wheel_driver.

Figure 6.4: Diagram of the robot control framework.
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Control the motion of the robot The basic_motion_controller used a simple kinematic

model for the robot. It treats the motion of the robot as an instantaneous rotation around

a time-varying point called the instantaneous center of rotation (ICR) (Figure 6.5). We

assume the robot moves on a plane with linear velocity v =
[
vx vy 0

]T
in the robot frame

and rotates with an angular velocity ω =
[
0 0 ω

]T
. Then the control input to the robot

is η =
[
vx vy ω

]T
, which is issued to the center of the robot (COR) (not necessarily the

robot’s center of mass (COM)). For each wheel, the velocity vector of the wheel’s contact

point with the ground (vi =
[
vix viy

]
) is orthogonal to the straight line joining the point

and the ICR.
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Figure 6.5: Wheel velocities. COR is the center of the robot. ICR is the instantaneous center
of rotation. The velocity is expressed in the robot frame. Xg−Yg is the global frame. xl− yl
is the robot frame. xP − yP is the wheel frame. The robot frame uses the COR as the origin.
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In Figure 6.5, the radius vectors di =
[
dix diy

]
and dC =

[
dCx dCy

]
. Based on the

geometry of Figure 6.5, the following expression can be derived:

‖vi‖
‖di‖

= v

dC
= |ω| (6.1)

or,
vix
−diy

= viy
dix

= vx
−dCy

= vy
dCx

= ω (6.2)

where the symbol ‖ · ‖ denotes the Euclidean norm.

If we define the coordinate of the ICR in the robot frame as ICR = (xICR, yICR) =

(−dCx,−dCy), then we can rewrite equation 6.2 to get the following relationship:

xICR = −vy
ω
, yICR = vx

ω
(6.3)

When the angular velocity is zero, the ICR is at an infinite position. If the position of the

wheel in the robot frame is denoted as (Pix, Piy), then the vector di can be calculated by the

following equations:

dix = Pix − xICR = Pix + vy
ω

(6.4)

diy = Piy − yICR = Piy −
vx
ω

(6.5)

For the i-th wheel module, the velocity vector of the wheel’s contact point with the ground

(vi) is orthogonal of the straight line joining the point and the ICR. Combining equation 6.2,
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6.4 and 6.5, vi can be calculated as the following equation:

vix = vx − ωPiy (6.6)

viy = vy − ωPix (6.7)

For each wheel, the velocity vector of the ground contact point is decomposed as the velocity

along the wheel direction (longitudinal velocity) and perpendicular to the wheel direction

(lateral velocity). Based on the geometry of Figure 4, the longitudinal velocity (vPix) and

lateral velocity (vPiy) can be calculated using the following equations:

vPix = vix cosαi + viy sinαi (6.8)

vPiy = −vix sinαi + viy cosαi (6.9)

or, after combining with equation 6.6 and 6.7,

vPix = vx cosαi + vy sinαi + (Pix sinαi − Piy cosαi)ω (6.10)

vPiy = −vx sinαi + vy cosαi + (Pix cosαi + Piy sinαi)ω (6.11)

where αi is the wheel direction.
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The velocity command for the drive wheel ωP is the longitudinal velocity vPix divided by

the wheel radius ri, which is

vPiy = vx cosαi + vy sinαi + (Pix sinαi − Piy cosαi)ω
ri

(6.12)

The lateral velocity can cause lateral slip for the wheel and we usually want to make it as

small as possible. For a non-steerable wheel, αi is a constant, so it’s not possible to change

αi to reduce vPiy. However, for a steerable wheel, we can change αi to reduce vPiy to zero.

In this case, αi is calculated using the following equation:

ωi = atan2(ωPix + vy, vx − ωPiy) (6.13)

where atan2(y, x) is the four-quadrant inverse tangent.

Using equation 6.11, we can get the steering command αi for the steering wheel, which is

essential to align the wheel direction perpendicular to the radius vector di.

Estimate the motion of the robot When calculating the longitudinal velocity and

lateral velocity for all the wheels, we can write equation 6.8 and 6.9 into matrix format, as
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following: 

vP1x

...

vPNx

vP1y

...

vP1y



=



cosα1 sinα1 P1x sinα1 − P1y cosα1

... ... ...

cosαN sinαN PNx sinαN − PNy cosαN

− sinα1 cosα1 P1x cosα1 + P1y sinα1

... ... ...

− sinαN cosαN PNx cosαN + PNy sinαN





vx

vy

ω


(6.14)

where N is the number of wheel modules. Equation 6.14 can also be used to estimate the

linear speed and angular speed of the robot from the wheel speed. First, we need to make

several assumptions: 1) the wheel speed is measured by wheel encoders, which means vPix

is known, 2) the wheel direction is provided by the steering wheel or fixed, which means αi

is also known and 3) the wheel direction is perpendicular to the line joining the ICR and

the wheel’s contact point with the ground, which means vPiy is zero. Assumptions 1 and 2

usually hold because the drive module and steering module have encoders to measure the

wheel’s speed and direction. Assumption 3 can hold for the steerable wheel module and

for the non-steerable passive wheel if the passive wheel’s direction is perpendicular to the

line joining the COR and the wheel’s contact point with the ground. Therefore, we can

restrict the COR position and the robot’s configuration to make assumption 3 valid for the

non-steerable passive wheel. Assumption 3 is not always valid for the non-steerable drive

wheel, and thus we can remove the lateral velocity equation from equation 6.14.

170



With the above assumptions, equation 6.14 can be rewritten as equation 6.15.

V(K+M)×1 =



vP1x

...

vPKx

0

...

0



=



cosα1 sinα1 P1x sinα1 − P1y cosα1

... ... ...

cosαK sinαK PKx sinαK − PKy cosαK

− sinα1 cosα1 P1x cosα1 + P1y sinα1

... ... ...

− sinαM cosαM PMx cosαM + PMy sinαM





vx

vy

ω


= M(K+M)×3 · η

(6.15)

where K is the number of drive wheels and M is the total number of steerable and non-steerable

passive wheels.

We can use linear least squares to estimate η from equation 6.13, which is η = (MTM)−1
MTV .

Navigation module

The navigation module uses the ROS navigation stack to implement autonomous navigation.

The navigation module uses the sensing module to provide localization information. The

sensing module can contain various sensors, and different combinations of the sensors can

provide different capacities for navigation (Table 6.1). The user can configure the sensor

based on the capacities that the navigation task requires. For example, a basic setting for

autonomous navigation is using the GNSS and IMU to achieve waypoint navigation. If the

user wants to add obstacle avoidance capacity to the navigation, the user can add the LiDAR

sensor on top of the GNSS/IMU. In addition to the required sensors, the navigation module
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also needs the results from the vision module to achieve certain capacities, such as selective

obstacle avoidance and crop row following. In the agricultural environment, the robot can

run over many obstacles, such as plant leaves and weeds. The selective obstacle avoidance

can detect the obstacles and determine whether the robot can run over it, so it requires the

vision module to tell what the obstacle is. For crop row following, the navigation module

relies on the vision module to detect the crop row and correct the robot’s heading accordingly.

Currently, we have achieved waypoint navigation and obstacle avoidance using GNSS, IMU,

and LiDAR. The selective obstacle avoidance and crop row following will be developed in

future work.

Table 6.1: Navigation capacities for different sensor combinations. Y: the capacity can be
achieved. V: the capacity can be achieved with the vision module.

Sensors Capacities
Waypoint
navigation

Obstacle
avoidance

Selective obstacle
avoidance

Crop row
following

GNSS/IMU Y
LiDAR Y V

Color camera V
GNSS/IMU+LiDAR Y Y
LiDAR+Color camera Y V V

GNSS/IMU+LiDAR+Color camera Y Y V V

Robot localization using dual GNSSs To localize the robot, the combination of GNSS

and IMU typically is used to measure the robot’s location and heading. Since the IMU

is sensitive to magnetic interference from the surrounding environment, the IMU heading

can be off from the true north and drift over time, which requires constant calibration and

compensation. To avoid calibration, dual GNSSs can be used to measure the localization

and heading simultaneously without using an IMU. Two GNSS antennas were mounted on
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the robot with known positions in the robot frame, which are g1 = (x1, y1) and g2 = (x2, y2),

respectively (Figure 6.6). The GNSSs also report their measured positions in the global frame,

which are G1 = (X1, Y1) and G2 = (X2, Y2), respectively. Assuming the robot runs on a 2D

flat surface, the transformation between the robot frame to the global frame can be calculated

using the two antennas’ position. Equation 6.16 and 6.17 showed the transformation of the

position of the GNSSs from the robot frame to the global frame, which includes a scale

factor c, a rotation matrix with rotation angle θ and a translation vector
[
XC YC

]T
. The

scale factor c is included to compensate the discrepancy of the two antennas’ distance in the

global frame and local frame due to the measurement error. The heading of the robot in

the global frame is same as the rotation angle θ and the position of the center of robot is

COR = (XC , YC). 
X1

Y1

 = c


cos θ − sin θ

sin θ cos θ



x1

y1

+


XC

YC

 (6.16)


X2

Y2

 = c


cos θ − sin θ

sin θ cos θ



x2

y2

+


XC

YC

 (6.17)
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Figure 6.6: Dual GNSS configuration. COR is the center of the robot. Xg − Yg is the global
frame. xl − yl is the robot frame. θ is the heading of the robot. The robot frame uses the
COR as the origin. The circles indicate the measured global positions of the antennas and
the squares indicate the local positions. They do not exactly match with each because of the
measurement error of the GNSSs.

From equation 6.16 and 6.17, the rotation matrix and translation vector
[
tx ty

]T
can

be derived.

c = D

d
(6.18)

cos θ = dxdX + dydY
d2c

(6.19)

sin θ = −−dydX + dxdY
d2c

(6.20)

XC = −x2dx + y2dy
d2 X1 + x1dx + y1dy

d2 X2 + x1y2 − x2y1

d2 dY (6.21)

YC = x2y1 − x1y2

d2 dX −
x2dx + y2dy

d2 Y1 + x1dx + y1dy
d2 Y2 (6.22)
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Where dx = x1−x2, dy = y1−y2, d =
√
d2
x + d2

y, dX = X1−X2, dY = Y1−Y2, D =
√
d2
X + d2

Y .

Let a = cos θ and b = sin θ, then θ = atan2(b, a). The variance of the robot’s heading σ2
θ

can be estimated using the propagation of uncertainty.

σ2
θ ≈

∣∣∣∣∣∂θ∂a
∣∣∣∣∣
2

σ2
a +

∣∣∣∣∣∂θ∂b
∣∣∣∣∣
2

σ2
b + 2∂θ

∂a

∂θ

∂b
σab (6.23)

∂θ

∂a
= − b

a2 + b2 = −b (6.24)

∂θ

∂b
= a

a2 + b2 = a (6.25)

where σ2
a and σ2

b is the variance of a and b, and σab is the covariance between a and b.

Assuming the easting and northing reported by the GNSS are independent, which means

σX1Y1 = 0 and σX2Y2 = 0, then σ2
a, σ2

b and σ2
ab can be calculated using the following equations.

σ2
a =

d2
x

(
σ2
X1 + σ2

X2

)
+ d2

y

(
σ2
Y1 + σ2

Y2

)
d4c2 (6.26)

σ2
b =

d2
y

(
σ2
X1 + σ2

X2

)
+ d2

x

(
σ2
Y1 + σ2

Y2

)
d4c2 (6.27)

σab =
σ2
Y1 − σ

2
X1 + σ2

Y2 − σ
2
X2

d4c2 (6.28)

If the two GNSS has the same variance for the easting and northing, σab can be treated as 0.

The variance of the position of the robot in the global frame, σ2
XC

and σ2
YC

, can be calculated

using the following equations.

σ2
XC

=
(x2dx + y2dy)2σ2

X1 + (x1dx + y1dy)2σ2
X2 + (x1y2 − x2y1)2(σ2

Y1 + σ2
Y2)

d4 (6.29)
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σ2
YC

=
(x2y1 + x1y2)2(σ2

X1 + σ2
X2) + (x2dx + y2dy)2σ2

Y1 + (x1dx + y1dy)2σ2
Y2

d4 (6.30)

Autonomously line following Many agricultural tasks require the agricultural robot

autonomously follow a preset path to perform the task. In most cases, the path is the

crop row, which is usually a line. For the navigation module, we implemented two simple

line-following algorithms. The first algorithm is the pure pursuit, which controls the robot

constantly to pursue a virtual goal on the path with a lookahead distance [74]. The second

algorithm (way-line controller) is described by [28], which only works for omnidirectional

robot configurations, such as configuration 1 in Figure 6.3. The second algorithm can control

the heading of the robot and path-following independently. The heading controller controls

the turning rate to minimize the yaw error between the robot heading and target heading.

The path-following controller controls the instantaneous translational motion vector angle

to minimize the cross-track error (distance to the following line). Both algorithms were

implemented as base_local_planner for the move_base package.

Vision module

The vision module mainly uses machine vision and machine learning to process images for

object detection and localization and to provide information for various functions, such as

visual-servoing navigation, weeding, and harvesting. To make the vision module flexible, we

developed an object detection framework using ROS pluginlib that can be reconfigured for

different object detection tasks.
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The main goal of the object detection framework is to simplify the development of ROS

nodes in order to detect objects from image topics. The core of the frame is the object_detector,

which is a ROS plugin that can be dynamically loaded (Figure 6.7). By changing different

object_detector, the user can customize the object detection methods according to the specific

task. The detect_object provides a ROS interface for configuring, running, and interacting

with the object detection framework. The detect_object also provides a localization function

to estimate the 3D position of the object in the world frame using additional sensor sources,

such as depth image from a stereo camera or point cloud from LiDAR.

Figure 6.7: Diagram of the object detection framework.

The object_detector takes an image as input and outputs the bounding box of the detected

objects in the image. The object detector also can output masks for the objects if necessary.

The object detector is a class inherited from the base class object_detector_core::BaseDetector

and object_detector_core::BaseDetectorROS (Figure 6.8). The object_detector_core::BaseDetector
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class defines the interfaces that can be called by the detect_object. The user needs to override

the two virtual functions: void initialize(std::string name) and int detect(const cv::Mat &

image). The initialization function is to initialize the object_detector, such as reading ROS

parameters from the parameter server and configuring object_detector. The detect function is

to run the detection algorithm and save the result as an object_detector_msgs::ObjectArray

object. The detect_object will load the object_detector class and call the initialization

function to initialize the class. Upon receiving an image message, the detect_object calls

the detect function to get detection results. The detection result is accessible through the

getObjectArray and getObject functions.

Currently, the object detection framework implemented two object detectors. The first

detector is a simple thresholding detector that was implemented using OpenCV (OpenCV

3) [185]. The second detector is a deep learning detector implemented using the TensorFlow

API [186]. It can accept any pre-trained model that complies with Tensorflow. With the deep

learning detector, most of the object detection tasks can be achieved using an appropriate

convolutional neural network.

178



Figure 6.8: Class diagram of the object_detector.

6.3 Design Implementation

Using the design concept of MARS, we implemented two MARS designs: MARS mini and

MARS X. The MARS mini is a lightweight and low-cost design best suited for light-duty

applications. The MARS X is a four-wheel steering, four-wheel driving robot with a high

clearance robot frame that can be used for heavy-duty applications.
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6.3.1 MARS mini

The design goal of the MARS mini was to create a set of hardware modules and robot configu-

rations using low-cost, off-the-shelf parts and 3D printed parts. Figure 6.9 shows all currently

available hardware modules, and more modules will be designed and released through GitHub

(https://github.com/UGA_BSAIL/MARS_Mini). The colored parts (except for the passive

wheel) can be 3D printed. With 3D printing, the user can easily create customized parts for

specific purposes. The robot frames are made of aluminum extrusions, making them easy to

modify and attach to other modules. Figure 6.10 shows four possible robot configurations

using the hardware modules, and Figure 6.11 shows two robot configurations that have been

fabricated. All the 3D printed parts are printed in polylactide (PLA) using a 3D printer

(Ultimaker S5, Ultimaker B.V., Netherlands).
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Figure 6.9: Modules of the MARS mini.
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Figure 6.10: Four robot configurations of the MARS mini. Configuration 1: four-wheel steer-
ing four-wheel driving robot. Configuration 2: front wheel driving front wheel steering tricycle
robot. Configuration 3: four-wheel skid steering robot with narrow width. Configuration 4:
four-wheel skid steering robot with wide width.

Figure 6.11: Two fabricated robot configurations from figure 6.10. Some parts are slightly
different because the design of some parts was changed after printing.

The steering wheel uses a 24 V DC motor and reduction gearbox with a reduction ratio of

504. A magnetic encoder is attached to the motor to measure the motor speed. Similarly, the

drive wheel uses the same setup but with a reduction ratio of 84, which gives a top speed of
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1 m/s with a 10-inch wheel. Both motors are driven by a Sabretooth dual 12A motor driver

(Dimension Engineering, OH, USA), and the motor driver was controlled with a Kangaroo

x2 motion controller (Dimension Engineering, OH, USA). We used one Sabretooth dual 12A

motor driver and one Kangaroo x2 motion controller to control two motors in the steering

wheel and driving wheel when they form a steerable driving wheel.

The wheel module has a 5-pin, circular connector for electronic connection, with two pins

for power and three pins for serial communication. The wheel modules can connect to the

same serial port for communication. A Raspberry Pi 3 was used as the robot controller and

a 24 V 16 Ah lithium-ion polymer battery (LiPo) pack as the power module.

The MARS mini uses the robot control framework to control the motion of the robot. A

wheel_driver was implemented to interface with the Kangaroo x2 motion controller.

6.3.2 MARS X

Unlike the MARS mini, the MARS X is a heavy-duty robot that is made from metal. The

MARS X was designed to have a high payload so that it can be used to carry heavy sensors

and equipment. Similar to robot configuration 1 in Figure 6.10, the robot has four steerable

drive wheels. The robot frame is made of aluminum extrusions with an opening in the middle

so the robot can inspect the crop from the top (Figure 6.12). The MARS X uses suspension

to connect the wheel module with the robot frame so the robot can run on uneven terrain.

The total weight of MARS X is estimated to be about 500 kg, which is less than 1/10 of the

average weight of a tractor.

183



Figure 6.12: Mechanical structure of the MARS X. A) Rendering image. B) Real robot.

The wheel module uses two high power, brushless servomotors (SM34165DT, Moog

Animatics, CA, US) for steering and driving. The servomotor can provide 1.45 N m continuous

torque and has a built-in motor driver and motor controller. The servomotor connects to a

gearhead (CSF-32-XX-GH, Harmonic Drive LLC, MA, US) to reduce the speed and increase

the torque. The reduction ratio is 100 for the steering wheel and 80 for the drive wheel. The

robot uses two power modules with each module on each side of the frame (Figure 6.13).

The power module is made of 12 60-Ah lithium-iron-phosphate battery cells (LFP-G60, AA

Portable Power Corp., CA, US) and a battery management system (BMS1060A, Roboteq,

Inc., AZ, US). The battery cells are connected in series to provide a power source with 38.4 V.

A DC-DC converter is used to provide 24 V source for the servomotor and other electronic

components.

The robot uses a Jetson Xavier to control the robot. Because the servomotor uses

RS232 for control and communication, an RS232 to USB converter was used to connect the

servomotor in the wheel module with the Jetson Xavier. For better cable management, the
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RS232 to USB converter first connects to a USB hub, then connects to the Jetson Xavier

(Figure 6.13).

Figure 6.13: Electronic diagram of the MARS X.

The MARS X uses the same software setup as the MARS mini, except that a new

wheel_driver was developed for the different motor used in MARS X.

6.4 Field Test

6.4.1 Mobility test

Two mobility tests were performed for the MARS mini and MARS X configuration 1 robot.

The first test looked for how well the robots can pass obstacles, and the second tested the

ability to climb an incline. The two tests were performed at a research farm and recorded by

a static camera (videos are in Supplementary Materials).

185



Passing over obstacle

Several wood blocks were placed on a concrete floor in sequence to simulate the obstacles in

the field (Figure 6.14). The robots were teleoperated to run through the obstacles at a speed

of 0.2 m/s. The robots moved forward and backward to pass the obstacles twice. A camera

was used to take the video of the test.

Figure 6.14: Obstacles used in the test.

Incline test

Each robot was driven manually (teleoperated) to a 30 degree step incline and stopped on

the incline. Then the robot was driven manually to reach the top of the incline. The incline

was depicted in Figure 6.15.
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Figure 6.15: Incline test for MARS X.

6.4.2 Navigation test

The two implemented path-following algorithms were tested in a cotton field using MARS X

because the MARS X is wide enough to traverse over the cotton plants at the late growth

stage. The navigation performance of the MARS mini configuration 1 robot was evaluated

in one high-throughput phenotyping test (Section 6.4.3). The cotton field was located at

a research farm in Watkinsville, GA. It has 11 crop rows, and each row contains 8 plots.

Each plot is about 3 m long, and there is 1.5 m long alley between the plots. The distance

between the crop rows is 1.8 m. The robot was set to traverse over the crop row. Two

RTK-GNSSs (Smart6L, Novatel, Canada) were mounted on the robot for localization. The
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robot_localization ROS package was used to fuse the robot’s location and heading from the

dual RTK-GNSSs and the local speed of the robot from the motor.

Twenty-four waypoints were set so that the robot can go through all the crop rows with

a total travel length of 537 m. The lookahead distance was set to 1 m for the pure pursuit

controller. The cross-track proportion and yaw error proportion for the way-line controller

was set to 1.5 and 0.05, respectively. The navigation tests were recorded using rosbag, and the

yaw heading error and cross-track error were calculated to evaluate the navigation accuracy.

The maximum translational speed for the robot was set to 0.3 m/s. The goal tolerance was

set to 0.1 m, and the yaw tolerance was set to 0.1 rad.

6.4.3 High-throughput phenotyping tests

We evaluated the robot’s performance in field data collection for high-throughput phenotyping

through two tests. The first test was collecting videos for cotton seedling counting using the

MARS mini configuration 1 robot. The second test used MARS X to collect hyperspectral

images for a cotton field.

Cotton seedling counting

The MARS mini configuration 1 robot has a high clearance that can be used to enables the

robot to traverse over the crop rows, making it suitable for collecting data on small crops, so

we used it to collect videos for cotton seedling counting. Two color cameras were mounted on

the robot, with one camera on the top front looking at the top of the cotton and one camera
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on the bottom side looking at the side of the cotton. An RTK-GNSS (Smart6L, Novatel,

Canada) and IMU (VN100, VectorNav, TX, USA) were used for robot localization.

The data collection was performed 14 days after planting at the same cotton field used

by the navigation test. One crop row (8 plots) was selected, and the robot was set to

autonomously traverse over the cotton row using the pure pursuit controller at a maximum

speed of 0.5 m/s. First, the collected video was split for each plot and then analyzed using

the DeepSeedling pipeline [187]. Part of the video was annotated to retrain the FasterRCNN

used by the DeepSeedling to adapt the network to the current data. In total, 610 frames were

annotated, 400 frames were used for training, and 210 frames for validation. The retrained

model was used to detect cotton for the rest of the data. The number of cotton plants was

manually counted in the field as ground truth.

Hyperspectral imaging

The hyperspectral camera is a heavy sensor (about 10 kg) that can be carried by the MARS

X. A push-broom hyperspectral camera (MSV-500, Middleton Spectral Vision, WI, USA)

was mounted on the MARS X to image the cotton plots in the same cotton field that was

used as the navigation test (Figure 6.16). A spectrometer (USB2000+, Ocean Optics, FL,

USA) was mounted on top of the robot to measure the spectrum of the downwelling sunlight.

Dual RTK-GNSSs were used for the localization of the robot. The robot was set to navigate

over a crop row autonomously using the way-line controller at a speed of 0.3 m/s. A separate

laptop was used to record the hyperspectral image.
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Figure 6.16: MARS X with the hyperspectral camera.

6.5 Results

6.5.1 Mobility test

Thanks to the suspension, both robots were able to pass all the obstacles without losing

contact with the ground, which can prevent losing traction (Figure 6.17). During the test,

we noticed that when one wheel is on the obstacles, the other three wheels’ suspensions were

also compressed, making the robot tilt toward one side. The MARS X was able to climb the

190



incline thanks to the drive motor’s high torque. However, because MARS X has a relatively

high center of gravity (0.423 m high), there is a potential risk that the robot could flip over

on a very steep incline. We have provided all the test videos as supplementary materials.

Figure 6.17: Example video frames of the obstacle test.

6.5.2 Navigation test

The robot took 36 minutes to finish the navigation at a speed of 0.3 m/s. Both the path-

following algorithms can track the path with high accuracies (Figure 6.18). The mean cross-

track error is 0.035 m with a standard deviation of 0.048 m for the pure pursuit controller.

The way-line controller had a smaller cross-track error with a mean error of 0.027 m and a

standard deviation of 0.036 m. Over the path of 537 m, the robot can follow the path within

the error of 0.05 m for most of the time and only 15% of the path has errors larger than 0.05 m

for the pure pursuit controller. The way-line controller has an error larger than 0.05 m on

18% of the path. The large tracking error usually happened when the robot started to track

a new line because the line following algorithms took time to converge. Both path-following
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algorithms had small heading errors (Figure 6.19). After the robot turns to the desired

heading, it can maintain the heading with an error between −3° and 2° for the pure pursuit

controller and between −2° and 2° for the way-line controller.

Figure 6.18: Cross-track error of the navigation test for the pure pursuit controller (left) and
way-line controller (right).
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Figure 6.19: Heading error of the navigation test for the pure pursuit controller (left) and
way-line controller (right).

6.5.3 Cotton seedling counting

With the pure pursuit controller, the robot was able to maintain a straight line with a

deviation from −0.13 m to 0.19 m (Figure 6.20). The robot’s deviation could have been

caused by a wheel being made slippery by the ground terrain. Because the GNSS was

mounted on top of the robot with a certain height from the ground, the robot’s tilt will also

change the GNSS’s position, which affects the localization of the robot. The low weight of

the MARS mini robot made it more susceptible to deviations resulting from unevenness of

the ground. Therefore, it is recommended to use the robot on relatively even ground.
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Figure 6.20: Error of the line tracking of the pure pursuit controller with MARS mini
configuration 1 robot.

The MARS mini robot is able to collect stable videos to count cotton seedlings and a high

counting accuracy with an error ranging from -2 to 6 was achieved (Figure 6.21). The network

can accurately detect the cotton plants when the plants are spaced sparsely (Figure 6.22A).

However, because the video was taken 14 days after planting, some plants already developed

true leaves, which makes it difficult for the FasterRCNN to detect all the overlapping cotton

seedlings (Figure 6.22B). In some cases, two overlapped cotton plants were detected as one

plant (Figure 6.22), while in other cases, the network detected false plants whose leaves were

from two plants. Therefore, it is better to collect data before the plants develop true leaves.
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Figure 6.21: Results of the cotton seedling counting.

Figure 6.22: Example frame of the cotton seedling detection. A) All the cotton plants were
detected. B) Two overlapped plants were detected as two plants (Plant 4 and plant 5). C)
Two overlapped plants were detected as one plant (Plant 4). D) False detection of a cotton
plant (Plant 14) whose leaves were from two plants.
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6.5.4 Hyperspectral imaging

Because the robot could maintain a straight line at a constant speed, the scan lines of the

hyperspectral camera can be directly stitched without clear geometric distortion (Figure 6.23).

When the robot deviated from the navigation line or ran over a bump, the image can be

distorted by the deviation or the tilt of the camera caused by the bump (Figure 6.23B). It

is possible to correct the distortion using the location of the robot to calculate the locations

of the scan lines and stitch the scans according to the locations. One limitation of the

current design is that the shadow of the robot and disturbance of the plants caused by the

robot can affect hyperspectral imaging. This limitation can be addressed by extending the

hyperspectral camera outside of the robot frame so the camera’s field view will not cover the

shadow.

Figure 6.23: Hyperspectral data collected by MARS X. A) Pseudo color image of the cotton
row. B) Zoom-in image of the ground target. The target is a square but appeared distorted
in the image. C) Zoom-in image of one plot.

6.6 Discussion

Agricultural robots have shown promising potential to solve labor shortages in the agricul-

tural industry. However, developing a robust robotic system that can reliably operate in

196



unstructured agricultural environments has been challenging and costly. Although some

progress has been made in recent years, agricultural robots are still not robust enough and

cost-effective to replace traditional agricultural machinery, which limits robots’ wide use. In

this study, we proposed a modular robot design to lower the costs in both aspects. First, we

used low-cost components and manufacturing methods, such as 3D printing and extrusion

aluminum. Second, the robot modules can be reused for different robot configurations, reduc-

ing the total cost of performing different agricultural tasks using several task-based robots.

The modality also reduces the maintenance cost. The MARS mini is designed primarily as

a low-cost way to provide a robotic platform for researchers and growers with small farms.

We have demonstrated the application of MARS mini for cotton seedling detection. The

MARS mini is ideal for phenotyping research because its light weight will not create soil

compaction. The downside of its light weight is that the robot is not stable on a bumpy

ground, which means that the data quality may suffer when the robot vibrates. Therefore,

the MARS mini should be used on a relatively flat field to get quality data. The MARS

X, on the contrary, is designed for heavy-duty tasks. Its weight is large enough to keep the

robot stable on the bumpy ground but is not too heavy to create soil compaction. Both

MARS mini and MARS X have a high payload that can carry heavy sensors (such as the

hyperspectral camera) and equipment, but the payload of the MARS X is much higher (up

to several hundreds of kilograms).

Several aspects can be improved for the current design. First, the MARS mini’s mechanical

strength can be increased by improving the 3D printed parts, including adding stiffeners,

changing the printing settings, and using stronger material such as acrylonitrile butadiene
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styrene (ABS). Because of the strength of plastic and the natural degradation in harsh

environments, the payload and lifespan of MARS mini robots are limited. Therefore, a metal

version using aluminum may be worth developing for the MARS mini in the future. Second,

the kinematics of the robot can be improved further. Currently, the kinematics assumes

that the wheels’ direction and speed can be changed instantly to stay synchronized, but in

reality, they are not always synchronized because the wheels vary in the time they take to

change to the desired direction and speed. The asynchronization of the wheels results in an

invalid ICR, which creates torques for the robot frame, especially for the four-wheel steering

four-wheel driving robot. Based on our test, the asynchrnonization is negligible at low speeds

(0 to 0.3 m/s) but becomes more apparent with increased speed. A possible solution for this

issue could be to lower the speed temporarily when an invalid ICR is detected and restore

the speed after all the wheels are synchronized.

As a robot platform, the MARS mini and MARS X can be adjusted to perform different

tasks. The extrusion-based robot frame also makes it easy to mount other modules on

the robot, as demonstrated in the high-throughput phenotyping tests. The navigation test

demonstrated that the robot could follow the preset path with considerable accuracy, enabling

the robot to perform tasks automatically without human intervention and without damaging

the crops.

198



6.7 Conclusion

This paper presented the design concept and implementation details of MARS. Several

hardware modules and software modules were proposed and designed. Based on the design

concept, two types of robot, MARS mini and MARS X, were implemented. The MARS

mini is a low-cost, and lightweight robot made of low-cost components and 3D printed parts.

Several robot configurations of the MARS mini were designed. MARS X is a heavy-duty

robot that can carry a large payload. The performance test showed that MARS X could

pass obstacles and climb the incline. The software modules of MARS were implemented

using ROS, and we designed a robot control framework and object detection framework. We

implemented two path-following algorithms, and the field test showed high path-following

accuracy. We have demonstrated the usage of the robots for plant phenotyping in two

field data collection tests. For future work, we will implement more hardware modules to

expand the current functionality of the MARS mini and MARS X. We will implement more

navigation algorithms, including visual servoing and LiDAR-based navigation methods.
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Chapter 7

Development of Next

Generation Berry Impact

Recording Device

7.1 Introduction

The Blueberry industry is an important contributor to the US agricultural economy. The

US is the largest blueberry producer worldwide, with a production of 680 million pounds

in 2019 (USDA). The US also has the largest blueberry market, estimated to be $758

million in 2019. Fresh blueberries have a much higher price than processed blueberries. In

2019, the market price for cultivated fresh blueberries was $2.03 per pound, while the price

for processed blueberries was $0.50 per pound (USDA). Because blueberries are prone to

bruise damage, fresh blueberries need to be handled carefully during harvesting, packing,
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and transportation to ensure good quality. Bruised fruit is not suitable for the fresh market

and results in great economic losses for the farmers. The fruit can be bruised by mechanical

impact during harvesting, packing, and transportation. It is estimated that 78% of the

mechanically harvested blueberries are severely bruised, so most of the blueberries destined

for the fresh market are hand-harvested [188]. However, because machine harvesting cost

(estimated to be about $0.12/lb) is much lower than hand harvesting ($0.50/lb to $0.70/lb),

more growers are harvesting blueberries using mechanical harvesters, especially in light of

the labor shortage in recent years [189].

Although severely damaged blueberries can be sorted out by packing lines, blueberries

with internal bruises cannot be sorted because internal bruises are not visible from the outside

and do not appear immediately after impact, but rather develop over time. The packing line

itself also can cause bruises since it has multiple transition points with vertical drops that

can cause impact when fruits go through. Therefore, to improve the machine harvester and

packing lines and reduce bruising damage caused by mechanical impact, it is important to

know the quantity and location of the impacts during the harvesting and packing process.

An instrumented sphere, also known as “pseudo fruit,” can be used to measure the

mechanical impacts encountered by the fruit. Various instrumented spheres have been

developed in the past [190, 191, 192, 193, 194, 195]. For example, the well-known IS100

is an instrumented sphere that uses a tri-axial accelerometer to measure dynamic impact.

The IS100 was later commercialized as the Impact Recording Device (IRD) (Techmark Inc.,

Lansing, MI, USA). Another example is the PMS-60, which can record both static load

and dynamic impact using pressure sensors [193]. A wireless instrumented sphere that uses
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both accelerometer and load cell was developed to measure the impact and compression in

real-time [194].

The existing instrumented spheres are designed for large fruits and vegetables, such as

apples and potatos, so they are not suitable for smaller fruits and vegetables like blueberries.

Therefore, the Berry Impact Recording Device (BIRD) and its second generation (BIRD II)

were developed [196, 197]. The first generation BIRD (BIRD I) is a 1-inch sphere with a

weight of 14 g and sensing range of ±500 g in each orthogonal axis. The BIRD II reduced the

diameter to 21 mm and weight to 6.9 g. However, the sensing range of BIRD II is only ±200 g

in each orthogonal axis. Both BIRD I and BIRD II are not waterproof, however, and need

to download data through a wired connection. In this study, we sought to design the next

generation Berry Impact Recording Device (BIRD Next) to improve the performance of the

sensor. Specific objectives include: 1) increasing the sensing range and recording frequency,

2) making the sensor waterproof by using wireless communication and wireless charging, and

3) developing a mobile app to interface with the sensor. The BIRD Next can be used for

fruits such as cherries whose processing involves water.

7.2 Hardware Design

One key design challenge of BIRD Next is to keep the sensor size comparable with BIRD I

and BIRD II even the BIRD Next has a more complicated circuit than BIRD I and BIRD II

sensors. Therefore, to address the challenge, we split the circuit of BIRD next into six circuit

boards, and formed the six boards into a cube with the battery inside the cube (Figure
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7.1). With such a setup, the total usable PCB area to hold electronic components increased

five times over a single circuit board while maintaining the same sensor size. Each circuit

board implemented specific functions. Three single-axial accelerometers were placed on three

orthogonal boards to measure the acceleration of X, Y, and Z axes. Two circuit boards were

used as the main controller board, which has a wireless microcontroller that implements

wireless communication. One circuit board was used to implement wireless charging and

provide regulated power for other boards. The size of circuit boards is 12.6× 12.6 mm2 and

six circuit boards form a 12.6× 12.6× 12.6 mm3 cube.

A B

8

7
2

1

6 5 4 3

Figure 7.1: Normal view (A) and explored view (B) of the assembly of the BIRD Next sensor.
1) Main controller board. 2) Antenna board. 3) X axial accelerometer board. 4) Z axial
accelerometer board. 5) Wireless charging board. 6) Charging coil. 7) Y axial accelerometer
board. 8) Lithium-ion polymer battery.

7.2.1 Accelerometer board

The accelerometer board consists of a single-axial accelerometer (ADXL1004, Analog Devices,

MA, USA) and a low pass filter (LPF) with a cutoff frequency of 5 kHz to suppress the out-of-

band noise and signal as suggested by the manufacture (Figure 7.2). The accelerometer can
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measure acceleration up to 500 g, which can measure up to 866 g with three axes combined.

The current assumption is 1.0 mA at normal operation and 255 µA at standby mode.
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Figure 7.2: Circuit schematic.

7.2.2 Main controller board

The main controller for the sensor was a wireless microcontroller (CC2640R2F, Texas In-

struments, TX, USA) that implemented Bluetooth 5.1 Low Energy (BLE). Bluetooth was

chosen for its low power and wide usage in mobile devices and PCs, which makes it conve-

nient for users to interface with the sensor using mobile devices. Bluetooth 5.1 has lower

current consumption and a longer transfer range than previous Bluetooth versions. The

microcontroller had an Advanced RISC Machine (ARM) Cortex-M3 core as the main CPU,

a Radio Frequency (RF) core to interface the analog RF and handles Bluetooth low energy

protocol, and a Sensor Controller (SC) that can independently control the peripherals such
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as General-Purpose Input/Output (GPIO), Analog-to-Digital Converter (ADC) and Serial

Peripheral Interface (SPI). The SC can run autonomously in the background to offload the

main CPU and reduce power consumption, and is used to run the ADC conversions for the

sensor. An ultra-low-power flash memory (MX25R1635F, Macronix International, Taiwan)

with 16 Mbit capacity was chosen to store sensor measurements. The main controller used

SPI to interface the flash memory.

Differential input and internal bias were used as the RF front-end configuration for

CC2640R2F. The RF front-end circuitry consisted of a balun, a Pi-filter, and a 2.4 GHz chip

antenna. Because of the size limitations of the circuit board, the Pi-filter and antenna were

placed on another circuit board. A chip antenna was chosen for its small size. The balun

can convert the differential signal to a single-ended signal and match the input impedance

of CC2640R2F to 50 Ω. The main purpose of the Pi-filter was to fine-tune the impedance of

the antenna to match the input impedance of the balun.

7.2.3 Wireless charging board

Wireless charging technology has been used widely in applications in which wired power

transfer is not desirable, such as electric toothbrushes. There are two types of wireless

charging technologies: inductive charging and resonant charging. The inductive charging,

implied by its name, uses electromagnetic induction to transfer energy. An alternating current

is run through an induction coil in the charging station and generates an alternating magnetic

field, which induces an alternating current in the secondary coil. It is then converted to

direct current through a rectifier to charge the battery. The inductive charging requires
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two coils closely coupled as the transfer efficiency reduces significantly when the distance

between the coils increases. Therefore, the charging distance is limited to a few centimeters.

The resonant charging transfers power through two coils (a transmitter and a receiver) with

identical resonant frequencies. When the transmitter operates at the resonant frequency, the

receiver resonates and thus receives power from the transmitter. Resonant charging is less

restricted by the spatial arrangement of the two coils, which makes the charging distance is

higher than inductive charging but with poor efficiency. In this project, inductive charging

was chosen because this is a matured technology and efficiency is not an important factor

for our application. We chose a wireless receiver chip (BQ51050B, Texas Instruments, TX)

to implement the wireless charging. The BQ51050B complies with the Qi standard and

can achieve wireless charging with minimal external components. The charging current was

programmed to 100 µA. BQ51050B has a built-in lithium-ion battery charger to manage the

charging process.

A cylindrical Lithium-ion polymer battery was chosen. The battery is 10 mm in diameter

and 11 mm in height and can fit inside the sensor cube. The voltage of the battery was

3.7 V, and the capacity was 60 mA h. The battery is connected directly to BQ51050B. A

Low-dropout (LDO) regulator (MCP1700, Microchip, AZ, USA) was used to convert the

battery voltage to 3.3 V to power the other circuit boards.

7.2.4 Sensor assembly

After the individual circuit board was assembled, all six circuits were combined to make a

cube. First, the three accelerometer boards, the main controller board, and the antenna
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board were first assembled (Figure 7.3). The tabs on each circuit board allow the boards

to align perpendicular to each other, and the boards were connected through wires at the

edge (Figure 7.4). Second, the wireless circuit board was connected with the battery first

and then connected with other boards to form the sensor cube. Third, the sensor cube was

encapsulated into a sphere with a diameter of 20 mm using transparent epoxy (Figure 7.5).

This severed as the inner layer sphere to protect the circuit boards and to make the sensor

weight evenly distributed. Last, an outer sphere was made to encapsulate the inner sphere.

The outer sphere is mainly used to mimic the surface properties of the fruit. Therefore, the

material and size of the outer sphere could be adjusted based on the target fruit. Following

previous research, we used silicon rubber (Mold Max 27T, Smooth-On, Inc., PA, USA) for

the outer sphere to mimic the surface properties of blueberry and make the diameter to

25.4 mm (1 inch).

Figure 7.3: Sensor assembling flowchart. 1) Assemble the accelerometer boards and the
controller boards. 2) Assemble the wireless charging board with battery. 3) Connect the
wireless charging board with other boards to form the sensor cube. 4) Encapsulate the sensor
cube into the inner sphere using transparent epoxy. 5) Encapsulated the inner sphere into
the outer sphere using translucent silicon rubber.
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Figure 7.4: Illustrations of the connection between circuit boards (highlighted by blue lines)
and the tab to align the circuit board (highlighted by green lines).

Figure 7.5: Inner (left) and outer sphere (right) of the BIRD Next sensor.

7.3 Software Design

7.3.1 Sensor program

The sensor program was designed using a finite-state machine (Figure 7.6). There are three

states (record, idle, and upload) and each state implements specific functions. The program
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stays in the idle state when the sensor is not recording or uploading data. When the user starts

the recording, the program enters the record state to take measurements of the acceleration

and save them to the flash memory. The program changes from record state to idle when

the user stops recording or the flash memory is full. When the user requests to download

data from the sensor to mobile devices or PCs, the program enters the upload state to send

data. The program goes back to the idle state when the user stops downloading or all the

data were sent.

Figure 7.6: Finite-state machine of the sensor program. The circle indicates the state.
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7.3.2 Bluetooth communication

The CC2640R2F has an independent RF core to process Bluetooth protocols, and Texas

Instrument provided Application Programming Interface (API) to program with the RF core.

We used those APIs to implement the Bluetooth communication between the sensor and

other devices.

Bluetooth 5.1 uses the Generic Attribute Profile (GATT) in the application layer for data

communication between two connected devices. Data are passed and stored as characteristics

that are stored onto the memory of the Bluetooth device. When the sensor is connected with

a mobile device, the sensor is served as a GATT server that contains characteristics that can

be read or written by the GATT client, i.e., mobile device. The GATT clients (mobile devices)

initiate GATT commands and requests, and the GATT server (BIRD Next sensor) receives

the commands and requests and return responses. The characteristics are the data values

transferred between the server and the client. A collection of related characteristics is called

a service. In the sensor program, several characteristics are used for sensor configuration and

data downloading, and those characteristics are combined as the sensor service (Table 7.1).

For example, the SensorState characteristic is used to configure the state of the program,

where the user can start or stop the data recording by changing the value of this characteristic.

The FlashData characteristic is used for uploading the recorded data.

A characteristic has certain properties that indicate when certain operations are per-

missible. A GATT server can push messages to the client actively in the forms of GATT

notification (requires no acknowledgment from the client) or GATT indication (requires an

210



acknowledgment from the client). This mechanism can greatly reduce power usage for the

server if only newly-generated data is pushed to the client compared to when the client

constantly polls for new data. In the sensor program, we used the PreviewData characteristic

to push the real-time acceleration data to the client in the form of GATT notifications. The

GATT indication was used for uploading the recorded data to the client using the Flash-

Data characteristic to ensure the data integrity. The SensorState characteristic also has a

notification property so the sensor can inform the client once the program state is changed.

Table 7.1: Characteristics of the sensor service.

Characteristic Properties Description

PreviewEnabler Read | Write Use to enable/disable preview
PreviewData Notification Used to send preview data
SensorState Read | Write | Notification Used to change and retrieve sensor state
TimeStamp Write Used to synchronize timestamp of the recording with mobile App
FlashData Indication Used to send data in the flash memory
SensorRange Read Used to read sensor range
BatteryVoltage Read Used to read sensor battery voltage
ImpactThreshold Read | Write Used to read and set the impact threshold
RecordingFrequency Read | Write Used to read and set recording frequency

7.3.3 Data recording

An impact occurs when the sensor collides with other objects. The BIRD Next sensor captured

the impacts by constantly measuring the acceleration at a fixed frequency and detecting large

accelerations that exceeded a threshold. An impact curve (acceleration over time) is usually

a bell curve and can last several million seconds, depending on the properties of the collision

surface. Therefore, the higher the frequency of the sensor measuring the acceleration, the more

details of the impact curve are captured. The impact threshold and recording frequency can

be configured by the user using the ImpactThreshold and RecordingFrequency characteristic.
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Once a impact was detected, each data point of the impact was saved to the flash memory

along with its timestamp. The relative timestamp of the acceleration was stored by the

sequence number of the measurement. The absolute timestamp of the first measurement

was recorded and used to calculate the absolute timestamp of the rest measurements. We

used Unix timestamp (seconds after 00:00:00 UTC, January 1970) to record the absolute

timestamp for the first measurement. The timestamp of the first measurement is synchronized

with mobile devices through the TimeStamp characteristic. The flash memory was divided

into two sections. The first 256 bytes were used to store the record header that includes the

information of the recording settings (such as recording frequency and impact threshold) and

the number of records. The remaining space was used to store the measurements.

When the user starts the recording, the sensor program changes to the record state. The

data recording uses ADC to convert the output of the accelerometer to a digital value and SPI

to save data to the flash memory. The ADC conversion was done in the sensor controller so

it can run in the background. The sensor controller has a task-based programming flowchart.

Each task has three states – initialization, execution, and termination. When the sensor

controller starts to run a task, it first runs the initialization code, then runs the execution

code repeatedly, and finally runs the termination code after the task is terminated. In the

sensor program, we set up an ADC conversion task and used a timer to generate triggers at

the desired frequency to trigger the ADC conversions. The conversion results were saved to

a buffer memory and passed to the main program.

Because the writing speed of the flash memory is significantly slower than the processing

speed of the main program and the sensor controller, three buffers were used to cache the
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data. First, A SC buffer was used to store the conversion results in the sensor controller.

Second, an impact buffer was used to store the acceleration data calculated from the ADC

conversions. Third, a flash buffer was used to store the acceleration data that needed to

be stored on the flash memory. With such arrangement, the main program did not need to

wait for the flash memory to finish writing. The sensor program can achieve a maximum

recording frequency of 10 kHz.

Since the flash memory needs to be erased before writing, the entire flash memory is

erased before the recording. Then, the main program starts the sensor controller task to start

the ADC conversion. When a new conversion is complete, the sensor controller generated

an interrupt to inform the main program, and the main program calculated the acceleration

from the digital value. Similar to BIRD I and BIRD II, accelerations higher than the impact

threshold were recorded, as well as the leaders are trailer of an impact [196]. If the flash

buffer is not empty and the flash memory is ready for writing, the content of the flash buffer

is written to the flash memory. When the data recording was finished because of termination

by the user or the flash memory was full, the recording header was saved to the flash memory.

7.3.4 Data uploading

After the data recording was completed, the user could download data to mobile devices

by changing the state of the sensor program to the upload state. In the upload state, the

program first reads the record header from the flash memory to find the number of records

in the flash memory. The sensor only reads and uploads the records in the flash memory

to save uploading time. The data uploading was done through the FlashData characteristic
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in the form of GATT indication. Because the Bluetooth limits the length of the packet

(controlled by the Maximum Transmission Unit (MTU)) that can be transferred each time,

the measurements were split into multiple transfers, and each transfer was re-sent when it

did not receive an acknowledgment from the mobile devices. This helped to prevent from

losing data during transfer. To maximize the data transfer throughput, the sensor program

used the maximum supported MTU, achieving an uploading speed of 8 kB/s.

7.4 Mobile App

An Android App, called Bluebird, was developed to interface with the sensor through Blue-

tooth (Figure 7.7). The Bluebird App can configure the sensor, start/stop recording, down-

load data, and plot recorded data. The App has two main pages: the sensor page and

the record page. The App shows the sensor page by default on start and scans the nearby

Bluetooth devices. It lists the Bluetooth devices with their name and signal strength. The

user can select the BIRD Next sensor, and the App will show the sensor information and

configuration. The user also can configure the recording frequency and impact threshold

in the “Sensor Configure” section, as well as start/stop recording and download data. The

live sensor data can be enabled/disabled through the “Live Data” toggle button. When the

user starts downloading data, a progress bar will show the downloading progress. The user

can stop the downloading with the stop button next to the progress bar. The downloaded

data will be shown on the record page with the record’s time as the default name, which

can be renamed by the user. The sensor data were saved as a binary file but can be shared
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as a text file to other Apps, such as email. The App can plot the recorded data as the

“Acceleration over time” plot and “PeakG vs Velocity Change (VC)” plot. The PeakG of an

impact is the maximum acceleration within the impact, and the velocity change is the area

under the impact curve. The “PeakG vs Velocity Change (VC)” plot is particularly useful

to differentiate the impact of different collision surfaces. The “acceleration over time” plot

can be focused on an individual impact curve.

215



Figure 7.7: User interface of the Bluebird App.
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7.5 Calibration and Characterization

7.5.1 Sensor calibration

The sensor was calibrated using a centrifuge (Centrifuge 5430R, Eppendorf, German). To

cover the range of the sensor (0 g to 500 g), eight rotational speeds at 970, 1370, 1680, 1940,

2170, 2380, 2570, 2750, 2920 and 3070 rotation per minutes (RPM) were used to create eight

accelerational values of of 49.80 g, 99.34 g, 149.39 g, 199.20 g, 249.24 g, 299.81 g, 349.60 g,

400.27 g, 451.29 g, and 498.85 g, respectively. The centrifuge speed was increased from the

lowest speed to the highest and then decreased to the lowest. Each speed was kept for a few

seconds to allow the sensor to record enough data points, and 600 data points were selected

as one replicate. The increase and decrease of the centrifuge speed created one replicate

for 451.29 g and two replicates at other accelerations. The sensor was configured to record

data at 100 Hz. The mean value of each replicate was used as the measured acceleration. A

linear regression analysis between the reference acceleration and the measured accelerations

was performed, and the best-fit line was used to calibrate the sensor. After calibration, the

sensor’s precision and accuracy were evaluated as the standard deviation of each replicate

and the deviation of the measured acceleration from the reference acceleration, respectively.

7.5.2 Surface uniformity test

The impact test using a pendulum was conducted to test the surface uniformity of the

BIRD Next, which was expected to be improved than the BIRD II with the two-layer design.
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The sensor was fixed at the end of the pendulum so that the collision point can be controlled

(Figure 7.8). Six collision points were tested, and each collision point was tested 35 times.

The sensor was released at the same height for the six collision points and impacted on an

aluminum wall. There were multiple rebounds but only the first impact was considered for

the data analysis. The impact threshold and recording frequency were set to 18 g and 10KHz,

respectively. ANOVA test was performed on the PeakG of the impacts to test whether there

were statistical differences among the impact values.

Figure 7.8: Setup of the uniformity test. The sensor was mounted on a pendulum and
impacted on a aluminum wall.

7.6 Results and Discussion

7.6.1 Sensor calibration

The measured acceleration showed strong linear relationship with the centrifuge acceleration

(R2 = 1) (Figure 7.9). The accuracy of the sensor is within ±0.6 g at different accelerations

and the precision ranged from 0.73 g to 1.02 g (Figure 7.10). The largest difference between
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different replicate at the same acceleration is 0.85 g at 451.29 g acceleration, indicating a

good repeatability.
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Figure 7.9: Linear regression between the centrifuge acceleration and the sensor acceleration.
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Figure 7.10: Accuracy and precision of the BIRD Next
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7.6.2 Surface uniformity test

Figure 7.11 shows the BIRD Next recorded different PeakG values at different collision points,

which is similar to the BIRD II sensor. The ANOVA test also showed a significant variance

among different collision points. This result contradicted our expectation that the two-layer

housing design would improve surface uniformity. A possible reason is that the uneven

thickness of the outer layer caused by the fabrication process created different responses to

the same impact at different collision points.

Figure 7.11: Uniformity test result. The same letter showed no significant statistical difference
between the collision points. The collision points were shown in the right figure.

7.6.3 Comparison with BIRD II

The BIRD Next offers several improvements over the BIRD II. First, the BIRD Next

implemented wireless communication and wireless charging, so no wired connection was
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needed. This makes it possible to enclose the entire electronics with epoxy, making it

waterproof. Second, the two-layer design makes it much easier to change the sensor’s surface

property, weight, and size by changing the outer sphere when compared to the BIRD II.

Third, the sensing range and frequency of BIRD Next were significantly improved. The

sensing range of BIRD next is ±500 g for each axis, equivalent to BIRD I and 2.5 times that

of BIRD II (±200 g). The maximum sensing frequency was 10 kHz, which is five times that

of BIRD II (2 kHz). Fourth, the accuracy the BIRD Next was increased because of a better

ADC in the main controller, but precision decreased. Lastly, the data recording capacity was

significantly increased because of the large flash memory used for the BIRD Next.

The improvements offered by BIRD Next cost performance in some aspects. The added

functions of BIRD Next made the circuitry complicated, which increased the sensor size to

25.4 mm (1 inch). The increased size requires more housing material and makes the sensor

heavier. The weight was increased to 10 gram compared to BIRD I (3.9 gram.

7.7 Conclusion

This chapter describes the development of BIRD Next, which is an improved version of

BIRD II. The BIRD Next implemented wireless communication and wireless charging and is

waterproof. An Android App was developed to interface with the sensor through Bluetooth.

The sensing range and frequency of BIRD Next were significantly improved, but the sensitivity

and precision were reduced when compared to BIRD II. The wireless communication enabled

users to monitor the sensor data in real-time. The waterproof capacity allows the sensor to
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be used for fruits, such as cranberries and strawberries, whose harvesting and postharvest

processing involves water.
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Chapter 8

Conclusion and Future Work

This dissertation described the development of an Unmanned Aerial System (UAS) for field-

based high-throughput phenotyping, a Modular Agricultural Robotic System (MARS), and

the next generation Berry Impact Recording Device (BIRD Next). The UAS can be used to

measure phenotypic traits at the plot level, including canopy height, canopy volume, canopy

cover, canopy temperature, canopy vegetation indices and cotton bloom count. The MARS

robot’s performance was tested in agricultural settings, and its application in phenotyping

research was demonstrated through two field tests in a cotton field. The UAS and MARS

developed herein provided useful research tools for breeding programs, digital farming and

other agricultural studies. The BIRD Next implemented wireless communication and wireless

charging and is waterproof. Its sensing range and recording frequency were significantly

improved over that of the previous version.

Because of the time and scope of the dissertation, several limitations were identified in

this dissertation:
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1. The field calibration methods for the multispectral and thermal cameras on the UAS

need to be tested and validated with more data samples. The LiDAR data were not

processed because of a lack of accurate position and pose measurement.

2. The cotton bloom detection used traditional image processing methods for selecting

potential flowers and a simple CNN for bloom classification. An end-to-end CNN design

can be used to streamline the data processing.

3. The design of MARS robots can be optimized in the mechanical structure, electronic

design, and control algorithms. More field tests should be conducted to evaluate its

robustness in agricultural environments.

4. The surface of the BIRD Next is not uniform, which can result in different measurements

for the same impact. Therefore, adequate replicates should be collected to reduce

measurement variation.

Future studies can be conducted to address the limitations and issues identified.

1. Improve the design of the UAS by integrating RTK-GNSS and IMU to improve the

localization accuracy so that the LiDAR data can be correctly processed.

2. Advanced data processing methods, including deep learning, can be explored for ex-

tracting phenotypical traits from the multimodal data collected by the UAS developed.

3. It is worth to explore recently developed deep learning methods for cotton bloom

detection and counting.
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4. The MARS robots developed are expected to be used in many agricultural tasks,

including plant phenotyping, weeding, irrigation and sowing. Developing attachments

for those tasks can significantly expand the functionality of the MARS robots.

5. Real-time data processing algorithms using edge computing can be explored for the

UAS and MARS robots.

6. Collaboration between the UAS and MARS and coordination of multiple MARS robots

can be explored to improve efficiency.

7. The surface uniformity of the BIRD Next can be improved by improving the fabrication

process.
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Appendix A

Supplementary Data for

Chapter 4

We performed multiple comparisons among genotypes for the maximum height and manually

measured maximum height (ANOVA statistical test). The test was performed for each dataset.

Because of small data sample (8 samples per genotype for dataset 09/30 and 10/07 and 4

samples per genotype for dataset 10/16, 10/19, 10/23 and 10/30), the calculated maximum

height and manually measured maximum height did not consistently have the same mean

separation for all the datasets. However, it is clear that manual measurement consistently

showed statistical difference between genotype 2 and 5 in all data sets except one (09/30).

Our UAV based system also consistently showed the difference between the two genotypes.
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Table A.1: Multiple comparison tests among genotypes for each dataset’s calculated maximum
height and manually measured maximum height. ∗indicates a significant statistical difference
(p<0.05), otherwise, no significant statistical difference between the two genotypes was found.

Calculated

maximum height

Manually measured

maximum height

Calculated

maximum height

Manually measured

maximum height

Genotype 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

9/30 10/19

1 ∗ ∗

2 ∗ ∗ ∗ ∗ ∗ ∗

3 ∗ ∗

4

5 ∗ ∗

6

10/07 10/23

1 ∗ ∗

2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 ∗ ∗ ∗

4

5 ∗ ∗ ∗ ∗

6

10/16 10/30

1 ∗ ∗

2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 ∗ ∗ ∗

4 ∗ ∗

5 ∗ ∗ ∗ ∗

6
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Figure A.1: Ground calibration target patterns.

Figure A.2: Canopy cover (A) and NDVI (B) for plots in rows 7 to 12 on different dates.
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Appendix B

Supplementary Data for

Chapter 5

Figure B.1 was generated from preliminary data using the plots from field 1 (single plot

layout) that had both manual and image count. There are 70, 41 and 3 plots on 79, 86 and

107 days after planting, respectively. The overall trend from the image count matches with

that from the manual count.
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Figure B.1: Boxplot of the flower count over time for field 1.

Field 2 has four genotypes and each genotype has 64 plots. The four genotypes are

GA2011158 (genotype 1), GA2009037 (genotype 2), GA2010074 (genotype 3), Americot

conventional (genotype 4). Figure B.2 to Figure B.5 were generated from the preliminary

data using plots from four genotypes in field 2 (10-feet plot) that had both manual and image

count of blooms. There are 125, 9, 4 and 6 plots on 60, 67, 74 and 88 days after planting,

respectively. The overall trend from the image count matches with that from the manual

count. With limited plots, however, the underestimation could affect the trend. For example,

image count on 74 days after planting has large underestimation, which makes the trend

different from manual count on genotype 3.
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Figure B.2: Boxplot of the flower count over time for field 2 for genotype 1. Sample size for
DAP 60, 67, 74, 88 are 29, 2, 2, and 1, respectively.

Figure B.3: Boxplot of the flower count over time for field 2 for genotype 2. Sample size for
DAP 60, 67, 88 are 32, 2, and 1, respectively.
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Figure B.4: Boxplot of the flower count over time for field 2 for genotype 3. Sample size for
DAP 60, 67, 74, 88 are 32, 3, 1, and 3, respectively.

Figure B.5: Boxplot of the flower count over time for field 2 for genotype 4. Sample size for
DAP 60, 67, 74, 88 are 32, 2, 1, and 1, respectively.
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