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Human activities, such as residential development, urbanization, and deforestation can
have profound effects on water quality in streams, lakes, and oceans worldwide. Water is a
critical resource and must be managed and protected as such. Monitoring and understanding
human effects on water resources is necessary for maintaining usable water supplies. Our studies
describe both the effects of residential development on water quality in a major drinking water
source and an attempt to improve the capacity of practitioners to monitor their respective
drinking water sources. Specifically, we assess the potential effects of onsite wastewater
treatment on reservoir water quality and evaluate the accuracy of in-situ chlorophyll-a
monitoring techniques. Based on our results, the main source of water quality variation in our
study area was linked to precipitation events and is most likely stormwater or surface runoff. We

also propose a method for improving the accuracy of in-situ chlorophyll-a fluorescence data.
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW
Introduction

Onsite wastewater treatment systems (OWT), more commonly known as septic systems,
are used widely for disposal and treatment of domestic wastewater in suburban and rural settings
that lack access to centralized wastewater treatment facilities via sanitary sewer. OWT relies on
anaerobic digestion of organic matter in a bioreactor (septic tank; Figure 1) with subsequent
aerobic treatment by soil percolation (Beal et al. 2005, Gill et al. 2009) (Figure 2).

The United States Environmental Protection Agency (USEPA) lists pathogens—
including those associated with human fecal contamination—and excess nutrients as the two
leading causes of water quality impairment in the United States (USEPA 2015). It is often
difficult to quantify and isolate all sources of impairment within a watershed, so these
impairments cannot all be attributed to OWT pollution. However, some information exists to
suggest at least a partial connection. OWT systems have been shown to be a significant source of
human fecal pollution in streams in highly developed areas of Georgia (Sowah et al. 2017),
suggesting that these pollutants can be transferred to other environments via both groundwater
and stream connections.

In a water supply reservoir setting, contributing watersheds with high density OWT
systems have been shown to export significantly higher levels of nutrients than watersheds with
low density or no OWT systems (Iverson et al. 2018). Not only do excess nutrient inputs from

OWT systems occur via groundwater, making them non-point-source pollutants, there have been



documented cases in which OWT systems were designed so poorly that they became point-
source inputs (Jarvie et al. 2010). However, information is relatively scarce elucidating similar
effects in reservoirs in the Piedmont region of Georgia.

Factors that may affect the ability of OWT to remove nutrients prior to entry into a
waterbody include location, age, frequency of maintenance, and distance from the waterbody
(Withers et al. 2012). Unfortunately, documentation of important data related to OWT
installation and maintenance is inconsistent, leading to uncertainty and difficulty using only
groundwater and septic tank data to extrapolate effects to areas of a reservoir that are not
sampled. Lack of accurate documentation makes estimating accurate total loads from septic
systems to waterbodies difficult (Withers et al. 2012).

Although USEPA directly lists nutrients as a source of impairment, other problems such
as harmful algal blooms (HABs) and excessive aquatic vegetation can be indirect effects
associated with excess nutrient loading (USEPA 2015). Coastal and estuarine environments with
high density development are receiving excess nutrients from OWT systems (Harman et al.
1996, Humphrey et al. 2015), which have been linked to consequent HABs (Lapointe et al.
2017).

Background Information

Onsite Wastewater Treatment

The objective of soil percolation is to remove excess nutrients, such as phosphorus and
nitrogen, from the wastewater before it enters waterbodies via groundwater. The soil percolation
process is especially important for homes that are built near reservoirs and streams and have very
little distance between the OWT system drain field and the edge of the waterbody. Anaerobic

digestion and soil percolation are generally effective at removing nutrients from groundwater,



but there are factors that can render these processes much less effective. One of the main
requirements for efficient treatment of wastewater using OWT is periodic maintenance,
including checking tanks for leaks, making sure there are no clogs in the tank or drain field, and
having the tank pumped out to ensure it does not fill and overflow. Failure to complete regular
OWT system maintenance may result in backups of wastewater on the surface, which can easily
reach waterbodies via surface runoff before it can be properly treated by the soil. Another
important consideration regarding OWT effectiveness is the location where the systems are
placed, as some sites have characteristics that are better for OWT than others. Soil type is an
important factor to consider when placing an OWT system, as some soils have much slower
percolation rates and higher adsorption capacities than others. Ideal soils have a wide variety of
adsorption materials, which include organic matter, clay minerals, and iron hydroxides, and
allow for more effective attenuation of phosphorus without creating preferential flow paths (Rea
and Upchurch 1980). Sites with high water tables, such as those close to waterbodies, are
generally less desirable because soils are likely to become saturated much more quickly, thus
diminishing the capability of the soil for percolation and adsorption (Arnade 1999). An
additional consideration for sites that are close to streams or reservoirs is the distance from the
drain field to the shoreline of the waterbody, as it is important for there to be enough soil in that
area to effectively adsorb all nutrients from the wastewater (Jones and Lee 1979, Chen 1988).
Water Quality and Chemistry

Throughout the literature, multiple parameters have been used to investigate OWT related
water quality degradation in waterbodies, including nutrients (nitrogen and phosphorus), algal
bloom indicators (chlorophyll-a), and fecal pollution indicators (fecal coliform, E. coli, human

waste DNA markers, etc.). In general, changes in these parameters can be considered a direct or



indirect response by the waterbody to the addition of pollutants and can be traced to several
different sources, including surface runoff, groundwater, and inflows from streams or other parts
of the waterbody. For example, a direct response could be the simple increase in nutrient
concentrations resulting from an effluent, while an indirect response could be an algal bloom
(increase in chlorophyll-a, pH, and dissolved oxygen) triggered by increased nutrient
concentrations. Another useful tool for tracing wastewater effluent is chloride, a water chemistry
parameter that is not necessarily indicative of impairment, but that is often found in high
concentrations in wastewater effluent (Alhajjar et al. 1990). Multiple studies have shown that
chloride can be used to track a wastewater “plume” through both surface water and groundwater
(Alhajjar et al. 1990, Harman et al. 1996, Kochary et al. 2017). Unfortunately, these parameters
(nitrogen, phosphorus, chlorophyll-a, E. coli, etc.) require resource intensive analysis in a
laboratory, which can limit monitoring both spatially and temporally. A limited sampling regime,
if not properly allocated, will most likely fail to identify areas of water that are more degraded
than others and to pinpoint the source of the pollutants causing the degradation.
Sensor Technology

Various technologies have emerged to attempt to mitigate sampling limitations caused by
resource availability. Yellow Springs Instruments (Y SI) is a company involved in developing
cutting edge technology for monitoring water quality—such as sensors that measure chlorophyll-
a and phycocyanin—that combine with platforms measuring more typical water quality
parameters (temperature, dissolved oxygen, specific conductance, and pH). In-situ measurement
platforms allow for measurement of these parameters in-situ, without involving any of the steps
of analysis in a laboratory. However, in-situ sensors require calibration prior to use and certain

sensors have shelf-lives before they require total replacement (1 year for pH). Additionally, for



various reasons, many of the parameters measured by these sensors must be “post-calibrated” by
relating the measurements to values acquired from laboratory analysis of the same water. Once
these relationships are established for a given location and date, we may have more confidence in
subsequent measurements.

In-Situ Chorophyll-a Measurement

The YSI total algae sensor quantifies the amount of chlorophyll-a or phycocyanin in-situ
by measuring the fluorescence of the algal cells in the water. In-situ methods differ from
standard chlorophyll-a determination, which disrupts the algal cells, extracts the chlorophyll-a
from the cells, and quantifies the concentration of chlorophyll-a in the extract using a
fluorometer or spectrophotometer. Although less time intensive, the in-situ method is less
accurate than the extraction method and should only be used to supplement laboratory analysis
(YSI Environmental 2000).

Another consideration for measuring in-situ fluorescence is a phenomenon called non-
photochemical quenching. Non-photochemical quenching is a process by which algal cells
depress or “quench” fluorescence as a response to intense light (Muller et al. 2001). According to
Mbller et. al, quenching effects are demonstrated within seconds after saturation with intense
light, but recovery to full fluorescence usually takes minutes. Non-photochemical quenching
could affect the relationship between in-situ chlorophyll-a fluorescence measurements and those
obtained from a laboratory extraction, and therefore diminish confidence in the in-situ
measurements. All considerations regarding in-situ measurements acquired by a sensor under
field conditions must be evaluated before these measurements can be considered accurate and

acceptable for use in water quality monitoring.



Lake Lanier Description

Lake Sidney Lanier is an 18,000-ha impoundment of the Chattahoochee river located
northeast of Atlanta, GA, United States and is operated by the United States Army Corps of
Engineers (Figure 3). The reservoir has many uses, including water supply, hydroelectricity,
flood control, and recreation. Since its construction in 1956, residential development has
occurred along much of the shoreline, resulting in the installation of approximately 14,000 OWT
systems within parcels of land directly adjacent to the shoreline (GCDWR Unpublished Data).

A reservoir-wide water quality study was done in 2005 to characterize the factors
contributing to overall water quality in Lake Lanier. This study found three major contributors to
water quality variation in the lake and its tributaries: stormwater runoff, point-source wastewater
discharges, and groundwater inputs (Zeng and Rasmussen 2005). These results could suggest
that a portion of the groundwater component originates from OWT discharges, but the study did

not infer the source of the groundwater inputs.
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Abstract

Onsite wastewater treatment (OWT) systems are commonly used for treating domestic
wastewater in areas that do not have access to sanitary sewer and centralized wastewater
treatment facilities. OWT systems include a septic tank that disposes of solid waste and a drain
field that treats wastewater via soil percolation. Proper installation of an OWT system allows for
sufficient distance and soil dispersal area between the drain field and the nearest waterbody for
complete nutrient adsorption. Previous research has shown that high densities of OWT systems
can affect water quality in rivers, reservoirs, streams, and estuaries. This study investigates
effects of OWT system presence, site characteristics, and precipitation on water chemistry in
four coves of Lake Lanier, Georgia, United States. Total phosphorus, total nitrogen, E. coli,
chloride, and chlorophyll-a data were collected from May-October 2020 and modeled in a
generalized additive model framework using site dispersal area and slope length, along with
precipitation, as predictors. A significant difference was found between E. coli concentrations in
developed (OWT present) and undeveloped (no OWT) coves. Precipitation was a significant
predictor of all water chemistry parameters. We cannot attribute the difference in E. coli
concentrations to OWT without DNA source tracking to distinguish between animal and human
bacteria. However, we conclude that residential development does affect E. coli concentrations.
The significant relationship between precipitation and all tested water chemistry parameters
likely indicates that variation in water chemistry is attributable to surface runoff and stormwater
rather than OWT systems.
Introduction

Onsite wastewater treatment (OWT) systems are a commonly used method for disposal

and treatment of domestic wastewater in rural and suburban areas with limited or no access to
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sanitary sewer and centralized wastewater treatment facilities. An OWT system consists of a
septic tank, in which all solid waste is anaerobically digested, and a drain field, where nutrient-
rich wastewater is treated aerobically through soil percolation (Beal et al. 2005, Gill et al. 2009).
If properly installed and maintained, OWT systems should remove excess phosphorus and
nitrogen before they enter waterbodies via groundwater. Proper installation of an OWT system
includes allowing sufficient distance between the drain field and the edge of a waterbody for
complete phosphorus adsorption (Jones and Lee 1979, Chen 1988), selection of sites with
enough area of soils that have a variety of adsorption materials (organic matter, clay minerals,
and iron hydroxides) and that allow for attenuation of phosphorus without preferential flow paths
(Rea and Upchurch 1980), and selecting sites that do not have high water tables that could
become saturated more quickly and diminish percolation and adsorption capability (Arnade
1999). Proper maintenance of an OWT system includes periodically checking the tank for leaks,
making sure there are no clogs in the tank or drain field, and having the tank pumped out to
ensure that it does not fill and overflow. If a tank or drain field backup occurs, wastewater may
reach the surface and enter waterbodies via overland flow before being properly treated by the
soil (Withers et al. 2012).

Previous studies have shown that OWT systems are a source of human fecal pollution in
streams (Sowah et al. 2017) and that watersheds with high densities of OWT systems export
significantly higher levels of nutrients than watersheds with low density or no OWT systems
(Iverson et al. 2018). Areas with high densities of OWT systems have also been linked to excess
nutrient pollution and harmful algal blooms in coastal and estuarine environments (Humphrey et
al. 2015, Lapointe et al. 2017). Therefore, existing literature suggests that there could be a

connection between lake water quality and OWT systems being employed by homes along lake
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shorelines. Previous studies that have investigated the effects of OWT systems on lake water
quality have focused on tracking pollutants through groundwater wells, not on the potential
responses occurring in the lake itself (Jones and Lee 1979, Chen 1988, Kochary et al. 2017).

The overall goal of this study was to determine whether OWT systems effect lake water
quality and whether that effect could be discovered within the water along a reservoir shoreline.
Specific objectives of this study were to (1) collect water chemistry samples from sites along the
shoreline of developed and undeveloped coves, (2) investigate the differences in water
quality/chemistry parameters between developed and undeveloped coves, and (3) use terrain
analysis and other environmental data to investigate relationships with constituents that can be
present in wastewater, specifically chloride, phosphorus, nitrogen, and E. coli, as well as
chlorophyll-a, which represents the biological response in the lake. Our expectation is that if
OWT systems affect lake shoreline water quality, we will discover higher concentrations of
wastewater constituents in developed coves than in undeveloped coves. We also expect that if
higher concentrations of wastewater constituents exist in relation to sites with shorter slope
length and smaller dispersal area between the shoreline and the associated OWT system, water
chemistry may be affected by poorly sited OWT systems more than others. Finally, if water
chemistry shows a strong relationship with precipitation, we would likely conclude that water
chemistry changes are due to inputs from surface runoff or stormwater rather than OWT systems.
Materials and Methods
Study Location

Lake Sidney Lanier (Lake Lanier) is an 18,000-ha impoundment of the Chattahoochee
river located northeast of Atlanta, GA, United States and is operated by the United States Army

Corps of Engineers (figure 1). Designated uses of this reservoir include water supply,
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hydroelectricity, flood control, and recreation. Lake Lanier was constructed in 1956 and has
since undergone extensive residential development along its shoreline.

The coves selected for this study included two coves with extensive residential
development (coves DC1 and DC2; figure 1), in which most if not all of the homes employ OWT
systems for wastewater treatment, and two coves that were undeveloped at the beginning of the
study (coves UC1 and UC2; figure 1). A camping area was constructed on the shoreline of cove
UCI during our study, and we are unsure of its wastewater handling methods.

Data Collection
Water Chemistry Parameters

Water sampling occurred monthly from May-October 2020 at 10 sites per cove in all four
coves (figure 2). Water chemistry samples were collected using a typhoon submersible pump
from 1-m depth and approximately 1-2 meters from the shoreline if boat access was possible;
otherwise, sampling was done as close to the shoreline as possible. Water samples were kept on
ice throughout each sampling event and were immediately transported to the Gwinnett County
department of water resources laboratory for chemical analyses following the conclusion of

sampling (table 1).
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Terrain Analysis and Environmental Data

Terrain analysis for the developed coves was done in ArcGIS Pro version 2.7.1. A 10-m
resolution digital elevation model (DEM) was developed using Gwinnett county light detection
and ranging data. The DEM was inverted, and the resultant DEM was used to calculate the
dispersal area from the septic tank most directly uphill from each water sampling site. Exact
position of most septic tanks was unknown, so the position of the back of each home was used as
a proxy for septic tank location. Dispersal area was calculated from the D8 flow direction raster
using the watershed tool in the ArcGIS hydrology toolbox. Slope length was also calculated
using the Pythagorean theorem for each of the sites using the position and elevation of the back
of each house and sampling site. Fifteen-minute precipitation data were sourced from a nearby
United States Geological Survey gage on Buford Dam (US Geological Survey 2020).
Data Analysis

All terrain and environmental data analyses were done within a generalized additive
modeling (GAM) framework, a class of generalized linear model which estimates the sum of
non-parametric smooth functions instead of assuming a linear relationship with predictors
(Hastie and Tibshirani 1999). The GAM framework allows for the identification of linear and

nonlinear covariate effects and takes the form of:
P
9O = B+ D fi(X)
J=1

where g(7;) is the expectation of the dependent variable, B represents parametric coefficients, and
fi (Xi) represents the variables explained by the non-parametric smooth functions. GAMs were fit
using the “mgcv” package version 1.8-33 in R (Wood 2017). GAMs were fit using total

phosphorus, total nitrogen, E. coli, chloride, and chlorophyll-a as the response variable in five
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different models, cove treatment (developed or undeveloped) as a parametric categorical
predictor, and slope length divided by dispersal area and precipitation as non-parametric smooth
terms. Missingness of terrain data for undeveloped coves, which is simply due to lack of septic
tanks, was handled by multiplying the slope length divided by dispersal area smooth term by
zero for all instances of missing data within the model. All response variables and terrain
variables were log-transformed and precipitation was square-root transformed to meet the
assumptions of the Gaussian distribution. Site ID was added to each model as a random effect to
control for variability between sites. The “mgcv” package allows for the addition of random
effects in a way that represents them as penalized regression terms similar to the other model
parameters (Wood 2013). The thin plate spline smoother function was used for all fixed effect
smooth terms.

Each model was evaluated using 5-fold cross validation. Using the createFolds function
in the “caret” package version 6.0-86 in R, the dataset was randomly divided into five equal
subsets (i.e., folds). During this procedure, one of the folds was used as a validation dataset,
while the other folds were used to train the model. This process was repeated five times so that
each fold was used both as a training dataset and a validation dataset. Goodness of fit for each
validation fold was determined by calculating the root mean squared error (RMSE). Model and
cross-validation RMSE values were compared to evaluate model performance.

Results

According to the parametric cove treatment variable, mean concentrations in
undeveloped and developed coves significantly differed (oo = 0.05) in chloride (p = 0.003), E.
coli (p <0.001), and total nitrogen (p = 0.019) models (figure 3). Total nitrogen and chloride

concentrations were significantly higher in undeveloped coves than developed coves and E. coli
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concentrations were significantly higher in developed coves than undeveloped coves (figure 3).
Chlorophyll-a and total phosphorus concentrations did not differ between cove treatments.
Adjusted coefficient of determination values (R?) and percent total deviance explained are
presented for each of the five models in table 2. Precipitation significantly affected
concentrations of all five parameters (p < 0.001), while slope length divided by dispersal area did
not significantly affect concentrations of any parameters. The precipitation smooth term had a
significant positive affect on total phosphorus (figure 4), total nitrogen (figure 5), and E. coli
(figure 6) concentrations, and had a significant negative affect on chloride (figure 7) and
chlorophyll-a (figure 8) concentrations. Mean five-fold cross-validation RMSE values were
comparable to model RMSE values for all five models, indicating good model fit (table 2).
Discussion

Each of the five water chemistry parameters that were evaluated as a part of this study
were only significantly affected by the amount of precipitation that occurred 24 hours prior to
sampling. Neither dispersal area nor slope length were related to the concentrations of any of the
parameters that we measured. The significant relationship between water chemistry parameters
and rainfall, in addition to the lack of relationship between water chemistry and both dispersal
area and slope length, suggests that water chemistry changes along the lake shoreline were
mainly explained by surface runoff and/or stormwater rather than poorly sited OWT systems.

Perhaps the most compelling result of this study is the significant and substantial
difference in E. coli concentrations between developed and undeveloped coves. The methods
employed in this study do not allow us to conclude that higher E. coli concentrations are a result
of septic system inputs. A DNA tracer study would be required to distinguish human sources of

E. coli from animal sources of E. coli before a claim could be made that septic systems are the
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cause of significantly higher E. coli concentrations in the developed coves. However, whether E.
coli sources are animal or human, we can conclude that residential development has both a
significant and substantial effect on E. coli concentrations along the lake shoreline.

Although total nitrogen and chloride concentrations are significantly higher in the
undeveloped coves than the developed coves, these differences are likely only present because of
large sample size and low variability between measurements. Additionally, both the mean and
range of total nitrogen concentrations are low within the range of reference conditions (0.30-0.96
mg/L) for the Piedmont ecoregion of the southeastern United States according to United States
Environmental Protection Agency ambient water quality criteria recommendations (USEPA
2000), meaning that the difference in total nitrogen concentrations is likely not biologically
relevant.

Based on our results, we conclude that the presence of residential development, and
therefore onsite wastewater treatment systems, does not affect total phosphorus or chlorophyll-a
concentrations along the shoreline of Lake Lanier. We also conclude that the statistical
difference between total nitrogen and chloride concentrations in developed and undeveloped
coves is most likely due to large sample size and low variation and does not represent a
biologically relevant treatment effect. Given the both statistically significant and substantial
difference between E. coli concentrations in developed and undeveloped coves, we can conclude
that residential development does have an effect on E. coli concentrations in Lake Lanier.
However, a DNA tracer study would be needed to further characterize the source of E. coli and
potentially attribute the source to humans, and therefore onsite wastewater treatment.

Total phosphorus, total nitrogen, E. coli, chloride, and chlorophyll-a all showed

significant relationships with precipitation, and not with dispersal area or slope length of
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particular sites. This result further suggests that concentrations of the constituents we tested are
not affected by either the presence or placement of onsite wastewater treatment systems at a site,
but that they are either entering the system via or being affected by surface runoff or stormwater.
Our data suggest that the OWT systems and associated soils that were assessed as a part of this
study are serving the function of nutrient processing well enough such that there is no
measurable effect on shoreline water quality. However, given that we do not have reliable
information about the management regime or condition of the OWT systems at our sites, we
cannot conclude what effect a failing or leaky septic tank or drain field may have on shoreline
water quality. We also cannot conclude whether the surface runoft signal present in our models
includes input from leaky septic tanks or drain fields backing up to the surface.

Future studies attempting to elucidate effects of OWT on shoreline water quality should
focus on identifying sources of E. coli as animal or human in addition to the collection of
nutrient and biological response data. This additional data would allow for a much more
definitive conclusion as to whether or not nutrient inputs are related to wastewater or other

sources.
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Table 2.1. Parameters that were measured monthly at a total of 40 sites within four coves in Lake
Lanier, Georgia from May-October 2020 and the instruments and methods employed to analyze
samples under laboratory conditions.

Parameter Instrument Method
Chloride Ion Chromatograph EPA: 300.1
Chlorophyll-a Spectrofluorometer EPA: 445.0
Total Phosphorus Segmented Flow Analyzer EPA: 365.2
Total Nitrogen Segmented Flow Analyzer SM: 4500
E. coli Idexx SM: 9223
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Table 2.2. Model evaluation parameters for each of the five models used to establish
relationships between water chemistry and both terrain and environmental data.

Model Adjusted R? Deviance Model RMSE ~ Mean 5-fold
Explained (%) CV RMSE

Total phosphorus 0.304 35.50 0.276 0.272

Total nitrogen 0.741 74.60 0.119 0.118

E. coli 0.339 35.40 1.265 1.259

Chloride 0.090 10.10 0.045 0.041

Chlorophyll-a 0.565 57.30 0.282 0.282
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Figure 2.1. Locations of the four coves that were used to evaluate the effects of onsite
wastewater treatment systems on water quality in Lake Lanier, Georgia and their relative

locations within the entire lake.
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EFFECTS OF ENVIRONMENTAL CONDITIONS ON IN-SITU MEASUREMENT OF

CHLOROPHYLL-A FLUORESCENCE

" Gerrin, W.L., Montes, C.R., Shelton, J.L., and S.B. Wilde.

To be submitted to Lake and Reservoir Management.

35



Abstract

Eutrophication and harmful algal blooms have become an issue around the world as
human land use continues to increase the amount of nutrients being released into many
waterbodies. Taste and odor issues associated with many algal taxa result in complaints from
consumers, increased treatment costs, and ultimately increased drinking water cost to consumers.
Predicting algal blooms often requires determination of chlorophyll-a concentration, the pigment
that allows algae to photosynthesize. In-vitro chlorophyll-a determination is the most accurate
method, but is resource and time consumptive. In-situ methods of determining chlorophyll-a by
measuring fluorescence are less intensive, but may be susceptible to environmental conditions,
and therefore may not be as accurate as laboratory methods. This study evaluates the accuracy of
in-situ chlorophyll-a determination in relation to in-vitro chlorophyll-a determination in the
laboratory and attempts to correct any biases that may be caused by environmental conditions.
Chlorophyll-a grab samples were collected monthly from May-October 2020 and analyzed under
laboratory conditions. In-situ chlorophyll-a fluorescence, photosynthetically active radiation,
turbidity, and qualitative lighting condition data were collected at the same location and time as
chlorophyll-a grab samples. In-situ chlorophyll-a data was biased by lighting condition, resulting
in underestimation of chlorophyll-a concentration by in-situ data collected under direct sunlight.
A multiple linear regression model was fit using in-situ chlorophyll-a fluorescence as the
response variable, and in-vitro chlorophyll-a, photosynthetically active radiation, and turbidity as
predictors. The relationship between model predicted in-situ chlorophyll-a fluorescence and in-
vitro chlorophyll-a concentrations was improved over initial comparisons using raw data. The

procedure presented in this study represents an efficient way to increase chlorophyll-a
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monitoring capacity while maintaining measurement accuracy and confidence, but should not be
used as a total replacement for in-vitro chlorophyll-a determination in a laboratory.
Introduction

Eutrophication and harmful algal blooms (HABs) are a worldwide issue as anthropogenic
activities continue to release excess nutrients into water sources (Prepas and Charette 2003, Gatz
2020). Many species of algae are known to produce compounds such as Geosmin and 2-
Methylisoborneol (MIB), which can cause taste and odor issues in drinking water sources and
require expensive water treatment upgrades to mitigate (Watson 2004). As a result, water
treatment costs are drastically increased, which leads to more expense for consumers (Suffet et
al. 1996). Certain algae are also able to produce different types of toxins, which can be harmful
to humans and wildlife and result in water sources becoming unsuitable as a drinking water
source (Sellner et al. 2003). An example of a worst-case scenario occurred in 2014 in Toledo,
Ohio, when residents of the town were advised not to drink the tap water after HABs in Lake
Erie resulted in microcystin in finished drinking water (Jetoo et al. 2015). Ability to predict algal
blooms is critical to effectively managing drinking water sources to avoid taste and odor or
complete degradation, in the worst case scenario, to a point where a source can no longer be used
for drinking water. Algal biovolume is often estimated by measuring the concentration of
chlorophyll-a, the pigment that allows algae to photosynthesize, in a water sample. In-vitro
chlorophyll-a determination is a widely accepted method of measuring chlorophyll-a
concentrations in which high-volume water samples (1-L or more) must be filtered, extracted in
a solvent, and measured using either spectrometry or fluorometry (Holm-Hansen et al. 1965).

Although these methods are an accurate way to determine chlorophyll-a concentrations, they are
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time and resource intensive, which often constrains the number of samples that can be analyzed
and thus the spatial and temporal scales of most algal studies (Lorenzen 1966).

In-situ methods for measuring chlorophyll-a fluorescence have the potential to mitigate
some of the resource constraints caused by in-vitro methods by allowing for measurement of
chlorophyll-a fluorescence in the field (Gregor and Marsalek 2004). In-situ methods for
measuring fluorescence may not be as accurate as laboratory methods, but allow for the
collection of data at much finer temporal scales and across larger areas of water. In-situ
measurement also allows for instantaneous assessment of potential blooms that may require
immediate action where lab results may not be available quickly enough for an effective
response.

In-situ fluorescence measurement may allow for collection of more data, but is not
always the most reliable method and is subject to environmental phenomena that may bias
measurements. One such phenomenon that is known to influence chlorophyll-a fluorescence is
non-photochemical quenching, the process by which algae “quench” their fluorescence as a
response to excess light energy (Muller et al. 2001). In the case of measuring in-situ chlorophyll-
a fluorescence, this phenomenon may lead to underestimation of algal biovolume in a system
exposed to the sun relative to an estimate derived from in-vitro chlorophyll-a analysis in a lab,
where lighting conditions are kept dark. The overall goal of this study was to evaluate and
correct light-related bias associated with in-situ chlorophyll-a measurement. To accomplish this
goal, our objectives were 1) to collect concurrent in-vitro and in-situ chlorophyll-a data from the
same locations at different times of day and year, 2) collect photosynthetically active radiation

(PAR) and turbidity data consistent with time and location of chlorophyll-a data, 3) compare in-
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situ chlorophyll-a data with in-vitro chlorophyll-a data to look for potential biases, and 4) if
biases are present, attempt correction using PAR and turbidity data in a linear regression model.
Materials and Methods
Study Site

Lake Sidney Lanier (Lake Lanier) is an 18,000-ha impoundment of the Chattahoochee
river located northeast of Atlanta, GA, United States and is operated by the United States Army
Corps of Engineers (figure 1). Designated uses of this reservoir include water supply,
hydroelectricity, flood control, and recreation. Lake Lanier was constructed in 1956 and has
since undergone extensive residential development along its shoreline. Data were collected in
four different coves of the Lake Lanier that were all located in the southern part of the reservoir
near the dam (figure 1).
Data Collection

Sampling took place monthly from May-October 2020 at ten sites within each of the four
coves. Sites were sampled over the course of one day, and the order in which coves were
sampled was randomized to increase variation in different lighting conditions sampled in each
event. For in-vitro chlorophyll-a determination, 1-L of water was collected in an amber bottle
from 1-m depth using a typhoon submersible pump. Samples were filtered, extracted and run on
a Shimadzu spectrofluorometer following United States Environmental Protection Agency
(EPA) method 445.0 for in-vitro chlorophyll-a determination (Arar and Collins 1997). A Yellow
Springs Instruments (YSI) EXO 3 water quality sonde equipped with a total algae sensor was
affixed to the submersible pump at the exact depth and position of the pump intake, which was
used to measure chlorophyll-a fluorescence in-situ. Sonde data points were collected after a

stabilization period of one minute and before water samples to avoid disturbance created by the
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pump. Photosynthetically active radiation (PAR) data were collected using a Li-Cor LI-193
spherical underwater quantum PAR sensor at 1-m depth. The PAR sensor was positioned as
close as possible to the water sampling location, ensuring that the shadow of the boat or other
sampling instrumentation did not interfere with measurements. Turbidity measurements were
done with a Hach 2100Q turbidity meter using the water collected by the submersible pump.
Qualitative observations of the lighting condition at each site were also recorded.

Data Analysis

The relationship between raw in-situ chlorophyll-a and in-vitro chlorophyll-a was
evaluated using simple linear regression. Linear regression models were fit using pooled data and
data parsed by observed lighting conditions.

The least absolute shrinkage and selection operator (LASSO) was used to evaluate
variable importance and lack of correlation prior to linear modeling. The LASSO evaluates all
parameters for contribution and collinearity, then shrinks the coefficients of highly correlated
and less important variables to zero. LASSO was fit in the “glmnet” package (Friedman et al.
2010) version 4.0-2 in the R program for statistical computation (R Core Team 2021) using a
generalized linear model with a Gaussian distribution:

g = B+ X+ -+ Xi
where g(Y) is the expected in-situ chlorophyll-a value and X; represents in-vitro chlorophyll-a,
par, and turbidity variables. LASSO regression applies a weighting penalty (1), found by 10-fold

cross-validation, to the absolute value of the coefficient sums for standardized predictors:

Viasso(B) =

a . b N
- By )
i=0 Jj=0

Response and predictor variables were log-transformed prior to model fitting to meet the

assumptions of the Gaussian distribution.
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Once important variables were identified, a multiple linear regression model was fit:
Y=o0a+ B+ + P

where Y is the expected in-situ chlorophyll-a value and fy; represents the important predictor
variables identified by LASSO. Again, response and predictor variables were log-transformed to
meet assumptions of the Gaussian distribution. Model predictions of in-situ chlorophyll-a were
generated, back-transformed, and compared with original in-vitro chlorophyll-a concentrations
using simple linear regression to evaluate the effectiveness of the model at “correcting” in-situ
chlorophyll-a values.

The model was evaluated using 5-fold cross validation. Using the createFolds function in
the “caret” package version 6.0-86 in R, the dataset was randomly divided into five equal subsets
(i.e., folds). During this procedure, one of the folds was used as a validation dataset, while the
other folds were used to train the model. This process was repeated five times so that each fold
was used both as a training dataset and a validation dataset. Goodness of fit for each validation
fold was determined by calculating the root mean squared error (RMSE). Model and cross-

validation RMSE values were compared to evaluate model performance.
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Results

Initial comparison of raw in-situ chlorophyll-a values with in-vitro chlorophyll-a values
yielded a linear model with an adjusted coefficient of determination (R?) of 0.65 (figure 2).
When parsed by shaded, cloudy, and sunny observed light conditions, comparisons yielded linear
models with adjusted R? values of 0.84, 0.83, and 0.68 respectively, indicating that in-situ data
collected in shaded and cloudy conditions have a stronger relationship with in-vitro chlorophyll-a
than in-situ data collected in sunny conditions (figure 3). It is also apparent from these data that
in-situ data are underestimating chlorophyll-a concentrations when collected in both cloudy and
sunny conditions (figure 3).

All three input predictor variables (in-vitro chlorophyll-a, PAR, and turbidity) were
identified as important by the LASSO regression using A = 0.003. Coefficients for in-vitro
chlorophyll-a, PAR, and turbidity were = 1.026, § =-0.216, and B = 0.120 respectively, and
were all included in the final multiple linear regression model. All three predictor variables were
significant in the final model (p <0.001) at a.= 0.05 and the model had an adjusted R? of 0.83,
indicating a better fit than the raw data model (figure 4). The mean five-fold cross-validation
RMSE value (0.278) was comparable to the model RMSE value (0.280), further indicating that
the model performs well. When parsed by shaded, cloudy, and sunny observed light conditions,
comparisons of back-transformed model predicted in-situ chlorophyll-a with original in-vitro
chlorophyll-a concentrations yielded linear models with adjusted R? values of 0.90, 0.88, and

0.95 respectively (figure 5).
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Discussion

Initial comparisons of in-vitro chlorophyll-a concentrations determined in a laboratory
using fluorometry with in-situ measurements of chlorophyll-a fluorescence suggest that in-situ
measurements are biased based on the lighting condition under which they were measured. In-
situ measurements related better with in-vitro measurements when collected under shaded or
cloudy conditions than when collected under direct sunlight, which we attribute to varying levels
of light intensity that were present at a site when in-situ data were collected. In-situ data
collected under direct sunlight also underestimated actual chlorophyll-a concentrations, which
we attribute to the non-photochemical quenching effect.

The procedure used in this study represents a relatively simple way to improve the
accuracy of in-situ chlorophyll-a data collected by fluorescence sensors when fluorescence could
be affected by lighting conditions. Although we examined the effect of lighting condition on in-
situ chlorophyll-a fluorescence 1-m below the surface at multiple locations, the same principles
most likely would apply to data collected from the same location at different depths. Rather than
improved relationships in shaded or cloudy conditions, accuracy would likely improve with
increased depth, as less light attenuates through the water column. Assuming a similar non-
photochemical quenching effect exists in depth profiles as it does at the surface, the procedure
described in this study could also be used to improve accuracy of in-situ chlorophyll-a depth
profiles. Furthermore, our use of LASSO regression for variable selection ensures that our model
can be applied to other datasets without overfitting issues, which is confirmed by our cross-
validation results. Additionally, the data required to implement this procedure (PAR and
turbidity) may already be collected by some monitoring entities or could be easily added to a

monitoring regime.
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As anthropogenic activities continue to adversely affect water supplies, simple and
efficient monitoring procedures are becoming more essential to tracking and predicting HABs.
However, accuracy should not be compromised to achieve a simpler and faster procedure. The
model presented in this study would allow for more expansive monitoring of chlorophyll-a using
in-situ fluorescence, while still maintaining the accuracy of expensive and time-consuming
laboratory procedures that measure chlorophyll-a. While our procedure could result in reduction
of laboratory chlorophyll-a analysis for many entities, we do not yet recommend complete
replacement of laboratory procedures with in-situ measurements. Until in-situ sensor technology
improves to a point at which it is not affected by environmental conditions, practitioners should

continue to collect more accurate laboratory data for comparisons and post-calibration.
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Figure 3.1. Location of the four coves from which chlorophyll-a and turbidity data were
collected on Lake Lanier, Georgia and their relative locations within the entire lake.
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Figure 3.2. Comparison of raw in-situ chlorophyll-a fluorescence and in-vitro chlorophyll-a
concentration data that were collected from May-October 2020 from 40 different sites within
four coves in Lake Lanier, Georgia. The regression equation and adjusted R? value were
determined using simple linear regression on log-transformed values.
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Figure 3.3. Comparisons of raw in-situ chlorophyll-a fluorescence and in-vitro chlorophyll-a
concentration data parsed by qualitative lighting observations that were collected from May-
October 2020 from 40 different sites within four coves in Lake Lanier, Georgia. Regression
equations and adjusted R? values were determined using simple linear regression on log-
transformed values.
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Figure 3.4. Comparison of back-transformed model predicted chlorophyll-a fluorescence and raw
in-vitro chlorophyll-a concentration data that were collected from May-October 2020 from 40
different sites within four coves in Lake Lanier, Georgia.
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Figure 3.5. Comparison of back-transformed model predicted chlorophyll-a fluorescence and raw
in-vitro chlorophyll-a concentration data parsed by qualitative light condition observations that
were collected from May-October 2020 from 40 different sites within four coves in Lake Lanier,
Georgia. Regression equations and adjusted R? values were determined using simple linear
regression on log-transformed values.

49



References

Arar EJ, Collins GB. 1997. Method 445.0: In vitro determination of chlorophyll a and
pheophytin a in marine and freshwater algae by fluorescence. United States
Environmental Protection Agency, Office of Research and ....

Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear models via
coordinate descent. Journal of statistical software. 33(1):1.

Gatz L. 2020. Freshwater Harmful Algal Blooms: An Overview. Congressional Research
Service: Report.1-2.

Gregor J, Marsalek B. 2004. Freshwater phytoplankton quantification by chlorophyll a: a
comparative study of in vitro, in vivo and in situ methods. Water Res. 38(3):517-522.

Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JD. 1965. Fluorometric determination of
chlorophyll. ICES Journal of Marine Science. 30(1):3-15.

Jetoo S, Grover VI, Krantzberg G. 2015. The Toledo drinking water advisory: suggested
application of the water safety planning approach. Sustainability. 7(8):9787-9808.

Lorenzen CJ. 1966. A method for the continuous measurement of in vivo chlorophyll
concentration. pp. 223-227 Deep Sea Research and Oceanographic Abstracts, Elsevier.

Muller P, Li XP, Niyogi KK. 2001. Non-photochemical quenching. A response to excess light
energy. Plant Physiol. 125(4):1558-1566.

Prepas E, Charette T. 2003. Worldwide eutrophication of water bodies: causes, concerns,
controls. Treatise on Geochemistry. 9:612.

R Core Team. 2021. R: A language and environment for statistical computing, R Foundation for

Statistical Computing, Vienna, Austria.

50



Sellner KG, Doucette GJ, Kirkpatrick GJ. 2003. Harmful algal blooms: causes, impacts and
detection. Journal of Industrial Microbiology and Biotechnology. 30(7):383-406.

Suffet I, Corado A, Chou D, McGuire MJ, Butterworth S. 1996. AWWA taste and odor survey.
Journal-American Water Works Association. 88(4):168-180.

Watson SB. 2004. Aquatic taste and odor: a primary signal of drinking-water integrity. Journal

of Toxicology and Environmental Health, Part A. 67(20-22):1779-1795.

51



CHAPTER 4
GENERAL CONCLUSIONS

Effects of Onsite Wastewater Treatment

We were unable to attribute variations in shoreline water quality at our study sites to
presence or placement of onsite wastewater treatment (OWT) systems. OWT systems are
designed for effective treatment of wastewater, and our results suggest that the systems evaluated
as a part of our study are performing as they should. Although we are unsure whether the
systems within our study coves were installed following best practices or whether best
maintenance practices are being done, there was no measurable effect in the shoreline water we
sampled. However, we can conclude that residential development has an effect on water quality
based on the significant difference found between E. coli concentrations in developed and
undeveloped coves. Effects of residential development appear to be related to surface runoff and
stormwater inputs, shown by the significant relationship between precipitation and all five water
chemistry parameters we measured. Potential non-point source pollutants from residential areas
could include animal (pet or wildlife) feces or fertilizers used on lawns and gardens. Future
research in this area should include a DNA tracer study, which would distinguish human E. coli
bacteria from animal E. coli bacteria. Presence of human E. coli bacteria could then be attributed
to septic tank leakage. Management in densely developed reservoir systems should focus on
limiting non-point source inputs from surface runoff and stormwater by limiting fertilizers and

animal waste at nearshore homes.
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Chlorophyll-a Monitoring

We present an effective method for improving accuracy of in-situ chlorophyll-a
fluorescence measurements collected under varying light conditions, whether in the sun or shade
or at the surface or deep. This method is implemented using data that are either already collected
as a part of most monitoring regimes or could be easily collected without the addition of any
rigorous field or laboratory procedures. We recommend this method not as a total replacement
for in-vitro chlorophyll-a determination under laboratory conditions, but as a way to collect
additional chlorophyll-a data in-situ without additional laboratory analysis and to increase
confidence in in-situ data. In resource-limited situations, in-situ data could be collected on a
much larger spatial scale and could then be validated by comparing with fewer in-vitro
measurements and using our method to correct for light-related biases. Future research could
potentially investigate the remaining bias that is not corrected by our model, as model predicted
in-situ values taken under sunny conditions still underestimated the in-vitro chlorophyll-a
concentrations. However, care should be taken to retain simplicity and ease of implementation
for any future models. Any additional parameters may cause model overfitting, and should be
checked for contribution and collinearity using the least absolute shrinkage and selection

operator prior to their addition.
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