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ABSTRACT 

 The clinical applications of CT are integral parts of the modern-day biomedical field. One 

of the many flaw tomography faces is the photon-starved image artifacts. This report presents a 

modified reconstruction technique to mathematically attenuate the losses of absorbance data. 

This method utilizes the nature of Algebraic Reconstruction Technique (ART) convergence as 

well as its construct to detect and complement the information loss. The Weight Shrinking 

Iterative Reconstruction Technique (WSIRT) method showed promising results in decreasing the 

streaks in a reconstructed image. A mask effect was found through dissecting the reconstruction 

that can accurately pinpoint the location of the material that caused the photon starvation, while 

also creating a mask for the resulting streaks. This provides great potential as a middle step for a 

further image treatment to suppress this type of artifact in CT. 
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CHAPTER 1 

INTRODUCTION 

Problem and Purpose of the Study 

 Computed Tomography relies on the nature of x-ray attenuation as it passes through 

materials to reconstruct the cross-section of an object. The sensor detects the incoming x-ray 

intensity to provide data for a meaningful reconstruction, based on the theory of Radon transform 

[1]. One of the major causes of the image artifacts, photon starvation, is created when the sensor 

cannot receive sufficient x-ray intensity. This occurs commonly when the x-ray beam path is too 

long, thus accumulated high attenuation, or when it travels through a dense material that has high 

absorption, such as metals. The phenomenon usually results in streak-like artifacts in the 

reconstructed image, decreasing image quality and potentially overwriting minor details around 

high absorption materials. 

 The general approaches to combat this issue can be crudely divided into hardware and 

software approaches. An easy way to alleviate photon starvation is to increase the energy of the 

x-ray, by simply turning up the tube voltage and current, achieving a stronger penetration power. 

This method will trade off the image quality with radiation dosage. However, due to modern 

clinical CT trending towards faster acquisition and less radiation dosage for the sake of the 

patient, the main focus of looking for a solution weighs on the software side. The purpose of this 

thesis is to develop and experiment with a form of reconstruction technique to reduce the photon 

starvation image artifacts.  
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Background 

 One of the main applications for CT is on the human body for its clinical advantages. 

Development in the implant and artificial replacements of the medical field showed promising 

results in solving various health issues. From hip replacement to dental implants, or even spinal 

fixation devices, such medical technologies bring improvements, but also problems. Many of the 

described operations require reliable detection and monitoring techniques in order to track and 

discover results and complications. The issue arises as most implants are dense and have high 

absorption values compared to normal human tissues and bones. These high absorption materials 

cause photon starvation as described previously, thus creating image artifacts in the resulting 

cross-section reconstruction. See Figure 1 as an example, the image artifacts will blur out the 

details around these implants, giving radiologists a hard time determining potential implant 

failures.  

 

 

(A)      (B) 

Figure 11. Examples of streak artifacts caused by photon starvation (and generally referred to as beam 

hardening artifacts). (A) shows a cross-section through a statue made of plaster, which has been reinforced 

 
1 Images provided by Dr. Haidekker. 
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with iron rods. While the plaster has a widely homogeneous absorption, apart from a few air pockets, the 

iron shows excessively high absorption, which causes shadow-like streaks in the reconstruction. (B) shows 

a cross-sectional image from a primate. The high absorbing spinal bone is prominently visible. In addition, 

contrast agent was injected into the vena cava, which was poorly distributed at the time of imaging. Its high 

concentration, combined with the contrast agent's high absorption, causes some minor diagonal streak 

shadows. 

 

 The main focus of the thesis is on software approaches, and so will the discussion on its 

background. There are three main areas where methods were developed to reduce these artifacts, 

reconstruction relying on dual-energy x-ray beam, artifact reduction reconstruction algorithms, 

and image post-processing [2]. Each of these methods targets a different stage of CT in an 

attempt to suppress or even eliminate this issue.  

 The first concept is the dual-energy x-ray spectrum, which stands for the preprocessing of 

the CT stage. Along with hardware changes that deal with different image artifacts, it sets up an 

environment before acquisition in order to have better raw data to begin with. Changing the x-ray 

energy level arguably is also a part of the hardware process, but the reconstruction and 

extrapolation process that goes with it fits in the software method in reducing image artifacts [3]. 

 The remaining two methods are the main focus of the study, representing the 

reconstruction phase and the post-processing phase. Common reconstruction algorithms used in 

CT such as Filtered Back Projection (FBP) and Algebraic reconstruction technique (ART) are 

main targets for these researches. They are often combined and referred to as artifact reduction 

algorithms, and since most of which is caused by metal, they are often named Metal Artifact 

Reduction (MAR) algorithms. These algorithms, unlike conventional image processing 

techniques, target the raw projection data, or the sinogram. Many of the algorithms find a way to 

remove the projections that did not reach sensors (photon starvation) and interpolate from nearby 

projections [4],. These methods include frequency filtering/splitting, adaptive filtering, sinogram 
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interpolation, and iterative algorithms. The WSIRT fits well into the iterative MAR algorithms, 

finding a way to use convergence as a path to interpolate missing projection data. The iterative 

methods in MAR algorithms have been proposed as early as the 1990s, as described by [5], to 

produce superior image quality compared to FBP after linearly interpolate projection gaps. These 

iterative methods in general are not widely used compared to simpler methods such as FBP, 

mainly due to their high construction costs. 

 The postprocessing methods focus on treating an already reconstructed image, often 

through different transformations into the frequency domain or through filters, examples seen in 

[6] [7] [8]. Some even attempted to use convolution network-type AI to solve the issue [9]. It is 

hard to isolate this type of method from the previous phase since the direct issue lies within the 

missing projection data, and a reconstruction may blur the effect or even hide it. It is much 

harder to have a solution from this isolated phase, but does not stop the researchers from 

attempting. For example, in [8], Hao et al. used a wavelet transform-based suppression algorithm 

to accommodate directional characteristics of the streaks when separating different frequency 

components. Other researchers created algorithms with similar concepts around the frequency 

domain, to identify artifact streaks and adaptively interpolate for its values, while not adding in 

new artifacts or noise [6] [7] [10]. 

 The goal of this thesis is to develop a functioning variant of the iterative algorithm that 

can effectively suppress photon-starvation artifacts. CT has the feature of rotational acquisition, 

meaning one point of the material is scanned multiple times in a rotation. This creates the 

possibility to use unimpaired projection data to replace failed ones in an iterative process and 
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potentially recreating an image without the artifacts as shown in Figure 2. Results of the 

algorithm should be identified with either data processing or visually.  

 

Figure 2. An illustration of the concept, wherefrom one acquisition angle, the absorption of the material 

brings the x-ray intensity down to an undetectable sensor range, yet from another angle, the information 

remains. 
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CHAPTER 2 

THEORY 

Tomographic Reconstruction 

 The foundation of this algorithm is the mathematical underpinning of CT reconstructions, 

the Radon transform. It is the mathematical representation of the CT setup for data acquisition 

and reconstruction. A pair of illustrations (Figure 3, 4) are provided below to demonstrate the 

effect as well as defining some nomenclatures. 

 

 

Figure 3. Illustration of an object being scanned. The object is placed in the x-y plane, and the scanning is 

done through iterations over multiple angles 𝜃 in the s-t plane. 
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Figure 4. An example of an object (Shepp-Logan phantom) and its corresponding sinogram with labels 

aligned to the described system. 

An equation that can describe the projection path of an x-ray beam at angle 𝜃 𝑝(𝑡, 𝜃),  

 

 
𝑝(𝑡, 𝜃) = exp(−∫ 𝜇(𝑠)𝑑𝑠

𝑠(𝑡)

) 
(1) 

   

   

where 𝑠(𝑡) is the path of the x-ray beam initiated at position 𝑡 with respect to the s-t plane, 𝜇(𝑠) 

is the absorption coefficient along path 𝑠 that is a translated version of 𝜇(𝑥, 𝑦) in the 𝜃 angle.  

Imagine a row of rotating sensor array placed along the t direction, and the x-ray beam 

shines in the s direction through an object and reaching sensors on the other side. The result is an 

intensity value that can be described with the following discrete variation of Lambert Beer’s 

Law. 

 

 𝐼 = 𝐼0∏exp(−𝜇𝑖𝑑𝑖) 
(2) 
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 After a complete scan, the resulting projection data is stored in an image-like grid known 

as the sinogram. These sinograms will serve as the input and be treated with a reconstruction 

algorithm to recreate the cross-section of the scanned object. The common practice of the 

reconstruction uses FBP or Fourier slice theorem, both have good efficiency. Iterative 

reconstructions, such as the ART, IRT, CGLS (Conjugate Gradient Least Squares), etc. are more 

time-consuming but often perform better in categories like improved reconstruction quality. 

Concept of WSIRT 

What is important about this concept is that one sweep through the object at a certain 

angle only constitutes one single column in the sinogram, yet every bit of the material is already 

accounted for by the beam traveling through, albeit collapsed from a two-dimension data down 

to one. That is to say, the sinogram accounts for a single spot in the material as many times as 

there are acquisitions, demonstrated more in detail in the Chapter 3: Apparatus section.  

 Photon starvation results from an accumulated high absorption from the material, but not 

being able to penetrate at one angle does not necessarily mean it is not present at a different 

angle. Perhaps the beam travels through less material in some angles, resulting in meaningful 

data at these but not other angles. Here is where this research differs from most other artifact 

reduction algorithms, instead of interpolating missing values, WSIRT attempts to fill them in 

with actual data from other acquisitions. The difference lies in where to sample for the missing 

data, general interpolation methods take values from neighboring pixels from the same 

acquisition, whereas WSIRT will use the projection data from a different acquisition that 

corresponds to the same general location to account for the vacancy.   
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 WSIRT is a modified version of Simultaneous Iterative Reconstruction Technique 

(SIRT), and the variables will be defined similarly to that of SIRT. Let 𝑣 (voxel) be the volume 

in which an object of interest resides. In the imaging setup, this is effective the image itself, 

stored as an array of 𝑚2 × 1 elements, 𝑚 being the size of the image canvas. Let 𝑝(𝑡, 𝜃) be the 

projection data, corresponding to the data from a detector, and forming a sinogram described 

earlier. Let 𝑊𝑖𝑗 be the weight accounting for each voxel 𝑢(𝑡, 𝜃) a beam path traveled through.  

𝑊𝑖𝑗 is stored as an 𝑚2 ×𝑚 × 𝑛 matrix, where m is the size of the image, and 𝑛 is the number of 

acquisitions. The process of tomographic reconstruction is essentially solving the equation  

 

 𝑊𝑖𝑗𝑣 = 𝑝 (1) 

 

Ideally, to find 𝑣, you want to simply solve 𝑣∗ = 𝑊𝑖𝑗
−1𝑝, but 𝑊𝑖𝑗 is non-invertible. Consider a 

512 by 512 image with a sensor resolution of 512 with 180 acquisitions. Trying to solve for 

512x512 unknowns with 512x180 equation, that is extremely underdetermined. Instead, the 

focus of the method is to iterate trying to optimize the equation 

 

 𝑣∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣‖𝑝 −𝑊𝑖𝑗𝑣‖ (2) 

 

   

such that the measured projection data and the simulated projection data difference reach a 

minimum. Let 𝐼 stand for the image acquired for reconstruction, then the general equation for the 

entire system of SIRT can be defined as the following: 

 

 𝐼𝑘+1 = 𝐼𝑘 + 𝐶𝑊𝑇𝑅(𝑝 −𝑊𝐼𝑘) 
 

(3) 

 

where: 
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(𝑎).𝑅𝑖𝑖 =

1

∑ 𝑊𝑖𝑗 
𝑛−1
𝑗=0

(𝑏).𝐶𝑗𝑗 =
1

∑ 𝑊𝑖𝑗 
𝑚−1
𝑖=0

 
(4) 

 

𝑅, 𝐶 is the inverse of the row sum and column sum respectively, used to account for the beam 

path weight and normalize the final result.  

 The modified WSIRT introduces an extra weight shrinking variable into the equation, 

targets the impaired projection data while not inhibiting the algorithm’s performance. 

 

 𝐼𝑘+1 = 𝐼𝑘 + 𝐶𝑆𝑊𝑇𝑅(𝑝 −𝑊𝐼𝑘) 
 

(5) 

   

𝑆 is the weight shrinking matrix used to account for the photon-starved pixels and 

shrinking their relative weights.  

 The primary difference between SIRT and SART (Simultaneous ART) is the order of 

operations. SART iterates through each projection for the set number of iterations, before 

moving on to the next, while SIRT completes all the projection angles, before moving on to the 

next iteration. An in-process visualization for SART would look like a clock rotating through 

and creating an image, where SIRT will look like a blurred image slowly becoming clearer.  
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CHAPTER 3 

APPARATUS 

Setup of the reconstruction experiment is done in the MATLAB R2019b. The formation 

of the reconstruction system utilized modular designs to separate the long equation into parts for 

the convenience of debugging. To display the experimentation set up as a software package, a 

documentation-like approach will be used here to demonstrate.  

The apparatus accepts projection data, in a form of a sinogram, and outputs a fully 

reconstructed image. First, a weight matrix is calculated depending on the dimensions of the 

projection data. A specific weight matrix must be created for each different image resolution, and 

different rotational values for the projection acquisition. Next, the image is back-projected with 

the weight matrix to calculate the back projected image, saving it as the base for the output 

image. The result is then forward projected into a sinogram, and subtracted from the original 

projection to get the residual. That residual is back-projected and layered onto the resulting 

image, then forward projected to get the simulated projection. This process is repeated until the 

system converges or when it reaches the desired number of iterations.   
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Weighted Forward Projection → 𝑾𝑰𝒌      WFP(𝑾𝒊𝒋, 𝒗, 𝒎, 𝒏) 

 

Returns the projection data of the image (forward projection), using the weighted matrix 

W. Inputs to the function are the weight matrix (𝑊𝑖𝑗), image voxel (𝐼 in the Equation 5, 𝑣 here to 

represent the concept of voxels), image size (𝑚), number of acquisitions (𝑛). The output is 

represented in the figure as 𝑞 to differentiate from the original sinogram 𝑝 (projection data) since 

it is going to be changing with each iteration. See Figure 5 for visualization. 

 

Figure 5. An illustration of the process of weighted forward projection. The system represents the data 

acquisition of x-rays passing through the material and received by the sensor to create a value within the 

projection data. The output is then subtracted from the original sinogram to find the difference. 
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Weighted Back Projection → 𝑾𝑻𝒒      WBP(𝑾𝒊𝒋, 𝒒, 𝒎, 𝒏) 

 

 Returns the image voxels 𝑣 corresponding to the input projection data, essentially a back 

projection process. Inputs to the function are the weight matrix (𝑊𝑖𝑗), projection data (𝑞 or the 

original sinogram 𝑝, as long as they are in the correct format for the projection data), image size 

(𝑚), number of acquisitions (𝑛). See Figure 6 for visualization. 

 

Figure 62. An illustration of the process of weighted back projection. The system represents the smearing 

of projection data back onto the image canvas to reconstruct the original image. This process is repeated 

many times in the iterative method. 

  

 
2 Figure 6 and Figure 7 structures inspired by ASTRA Toolbox. http://www.astra-toolbox.com/docs/index.html 
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The weight shrinking component → 𝑺𝑾𝑻𝒒 

 

 The addition of weight shrinking matrix S is visualized in Figure 7. 

 

Figure 7. The WBP with added shrinking coefficient S. It is added into each layer of acquisitions, checking 

individual projection data and automatically mapped into a matrix S, to account for potential photon 

starvation effect. 

Figure 8, 9, and 10 explains how the weight shrinking coefficient is determined. 

 

Figure 8. A row of sinogram data visualized with its pixel values with respect to the transformed s-t axis 

position t.  
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In this example, some of the projections clearly did not reach the sensor, creating photon-

starved vacuums as identified by 0 image intensities, and even near-zero values are detrimental 

to reconstruction. Corresponding weight values for these projections may look something like 

this: 

 

Figure 9.  a is the initial weight distribution, assuming each x-ray projection traveled through equal amounts 

of materials. b is hard thresholding of the weight in this projection angle. 

 

wherein the case of brutal hard thresholding, all of the weight of these projections not reaching 

the sensor is set to zero. In the conceptual sense, instead of reconstructing the image and 

pretending all the data is valuable, this weight coefficient discards beams that are not fully 

representative of the material absorption, and relies on other angles to account for the missing 

information. 



 

16 

 

 

 

Figure 10. Graph representations of different types of methods in determining the weight shrinking factor, 

and its relative effect on the weight values. Image intensity here displayed as a relative value, mapped to a 

certain range in the actual data. Sinogram data received in intensity, mapped to general intensity scale (0-

255) while keeping data integrity. An example of the range used to determine the weight shrinking factor 

would be around 0-5. 

 

All of the methods displayed in Figure 10. are used to test the effect of the algorithm against 

different samples, their results are compared to find a superior way of determining the weight 

shrinking factor. 
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Weight Shrinking Iterative Reconstruction Technique  WSIRT(𝑾𝒊𝒋,𝒑, 𝒎, 𝒏, 𝒊𝒕𝒆𝒓) 

 

 Returns the reconstructed image 𝐼 based on the input projection data 𝑝 (sinogram). Inputs 

to the function are weight matrix 𝑊𝑖𝑗, original projection data 𝑝, image size 𝑚, acquisition count 

𝑛, number of iterations 𝑖𝑡𝑒𝑟. A diagram of the WSIRT workflow logic is provided in Figure 11. 

 

Figure 11. A diagram demonstrating the inside workflow logic of the WSIRT function, with inputs and 

outputs labeled.  

Several background functions not mentioned in the loop above are3: 

 
3 Weights created parallel beams, with beam numbers equal to the number of pixels. Acquisition number and 

rotation accounted for in weight matrix creation, detailed codes included in the appendix. 
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LinearWij(𝑚,𝜃) 

Returns a slice of 𝑊𝑖𝑗 at the angle 𝜃 with size 𝑚. This method uses linear kernel to map 

the beam geometry onto the weight matrix. 

getCompressedWij(𝑚, 𝑛, 𝑝𝑒𝑟𝑖𝑜𝑑) 

 Returns a compressed sequence using a modified run-length encoded 𝑊𝑖𝑗, to alleviate the 

repeated weight calculation in iterative algorithms. Returns a compact array that encompass all 

of the weight information for a specific period. 

recW(𝑡𝑒𝑚𝑝𝑊, 𝑚) 

Input a slice of compressed 𝑊𝑖𝑗 that represents the current acquisition's beam weights to 

reconstruct a full weight matrix. Returns essentially 𝑊𝑖𝑗 corresponding to the dimension 𝑚. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 To determine the effectiveness of the algorithm, several samples and the corresponding 

cases for different shrink coefficients are tested. The used data samples are a crafted bone 

phantom, a 280x280 scan of a camera lens, and a 400x400 scan of a different lens. The bone 

phantom inside a water-filled centrifuge tube is acquired at 140kVp, with parts of the data 

artificially manipulated to simulate an extreme absorption area serving as an input. The two lens 

data are from camera lenses with plastic casing that have strong artifact streaks in reconstruction. 

Strong photon starvation effect samples are selected in hopes to help have a more visualized 

presentation. All of the scans are parallel beam scans, and the reconstruction system uses parallel 

beam weights accordingly.  

Computational Cost 

 To have an estimate for the computational cost, each module has to be analyzed 

individually. For general iterative reconstruction techniques, the forward and backward 

projection steps are always the most time-consuming. Other steps generally only take several 

images worth of memory and simple data addition and subtraction. The computational cost 

comes from two major areas in the projection stage, the large parallel matrix operations, and the 

weight matrix construction.  

The parallel operations generally involve a weight matrix size of 𝑚2 ×𝑚, an image 

voxel array of 𝑚2 × 1. The weight shrinking step additionally adds a weight shrinking matrix of 

𝑚 ×𝑚. All of the above matrix operations are repeated 𝑛 times representing each of the 
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acquisition angles, for each iteration. This alone is a considerable computational cost, and is the 

main reason the iterative algorithm isn't as widely used as simpler methods such as filtered back 

projections. However, nowadays as the GPU system is more and more developed, large parallel 

operations can be done efficiently on them compared to a general CPU, the time cost of this 

portion is significantly decreased if the right workload is applied.  

The other portion of the cost comes from the weight matrix construction. Due to the 

nature of these data, a weight matrix is generally empty and has incredibly sparse data. The 

larger the image canvas, the less one beam of x-ray path is worth. Since each individual row of 

the weight matrix can be viewed as a piece of coordinate information for each beam path, it is 

necessary to conserve both the data and the location of the data. The result of these attributes is 

that the weight matrix can easily exceed 200 GB for a 512 by 512 image reconstruction.  This 

unrealistic both for storage and run-time access, so different methods are created to circumvent 

the issue. With the development in computational power, thus the speed, a general approach is to 

calculate them live for each iteration. The problem is that the calculation is repeated since it 

cannot save the entire stack all at once. Not to mention the coordinate mapping calculation 

requires a heavy trigonometry presence. These sine and cosine values can be saved to a table to 

reduce calculation to just simple arithmetic, but the repetitive time cost remains.  

The implementation of weight matrix construction used in this thesis is a run-length 

encoding type compression to save the weight matrix into a compressed form. At the cost of a 

half-iteration-worth period before running the algorithm, a weight matrix can be created and 

saved as a file. A single type file for a 400 by 400 canvas size weight file only takes around 330 

Mb. The size of it depends on the canvas size, the number of acquisitions, and the angle of the 

acquisitions. Once the compressed weight matrix is created, it can be used for any reconstruction 
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of the same type defined at creation. This nature of the compressed weight matrix is prospected 

to be most valuable in 3D tomographic construction, where each slice of the reconstruction has 

the same acquisition angle, size, and counts. Since the experiments used in this thesis is purely 

2D and have a different focus, a detailed analysis of the method’s efficiency is not investigated. 

Reconstructions 

 The following reconstructions used the same input for both SIRT and WSIRT algorithms, 

with an initial guess of an empty canvas, iteration count varies between different samples to 

ensure a reasonable reconstruction time. It is confirmed that a higher number of iterations in each 

sample does not provide any noticeable visual differences before selecting a value. 

 The first reconstruction is a bone phantom projection data manipulated to have the 

behavior of a high absorption region, reconstructed with 25 iterations shown in Figure 12. Figure 

13 shows the reconstructions with the WSIRT method. 

 

Figure 124. The bone phantom reconstructed using SIRT, left is the modified version with streak artifacts 

observed around the densest piece, radiating in a ray-like fashion, right is the original projection 

reconstructed. 

 
4 Some figures are post-processed to improve contrast, in order to show the artifact streaks more clearly. Projection 

data acquired from Dr. Haidekker. 
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(a)Hard thresholding   (b)Linear thresholding

 

(c)Square root thresholding   (d)Square thresholding 

Figure 13. WSIRT reconstruction with different weight shrinking factor determination methods on the 

bone phantom. 

 

The next two reconstructions are both from non-altered real sinogram data. First of which 

is the cross-section of a plastic SRL lens (Figure 14, 15). The center region x-ray intensity drops 

below even one percent of the air value. This is the direct result of the high center accumulated 

absorption, making it have strong artifacts around its borders.  
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Figure 14. SIRT reconstruction of the SLR lens. 
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(a)Hard thresholding   (b)Linear thresholding 

 

(c)Square root thresholding   (d)Square thresholding 

Figure 15. WSIRT reconstructions with different weight shrinking factor determination methods on the 

SLR lens 

 

 

The last reconstruction is of another lens (figure 16,17) that has metal-like behavior 

results. The streaks are prominent and inspired many interesting variations to the algorithm and 

theories to their phenomenon.  

 



 

25 

 

Figure 16. SIRT reconstruction of the lens. 

 

 

(a)Hard thresholding   (b)Linear thresholding 
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Figure 175. WSIRT reconstructions with different weight shrinking factor determination methods for the 

lens.  

 

  

 
5 This set of data have suffered minor data type conversion losses, but the effect on data integrity is estimated to be 

less than one percent, thus should not affect statistical analysis in any major fashion. 
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Results and statistics 

 

Figure 18. The horizontal intensity profile through the reconstructed image compared to the original 

projection data. 

 

The graph in Fig. 16 presented the intensity profile through the reconstructed image, forward 

projected through a simulated projection algorithm. Image intensity is effectively the inverse of 

the absorption, representing the materials scanned. The figure used projections from hard 

thresholding WSIRT phantom reconstruction and provided effective information fidelity with 

smoothing/blurring effects. All of the reconstructions displayed similar features, despite the type 

of method or sample. 
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 To present the effect in a meaningful way, a data analysis is performed with a specific 

region of interest as shown in Figure 19.  

 

Figure 19. An example of the selected region of interest, where the materials are expected to be 

homogeneous.  

 

These regions are selected to be able to reflect the effectiveness of the algorithms. Several 

different methods are tested to have a relationship or represent the amounts of artifacts present. 

In homogeneous regions of the image, any variations should be the cause of the photon 

starvation artifacts. Two major methods are selected to present the data, the signal-to-noise ratio 

(SNR) and pixel counting. SNR is estimated by the mean value of the region divided by the 

standard deviation (STD). 

 𝑆𝑁𝑅 = 𝐼/̅𝑆𝐷(𝐼) (6) 

 

 In the pure homogenous region, the lower the SNR, the higher presence of the streak artifact 

remains. Pixel counting is the method to estimate the area of streak artifacts. Since the area 

should be homogeneous, any pixel intensity that varies out too far from the mean can be the 
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streak presence. Thresholds for pixel counting are picked out by probing image values of streaks 

and surrounding areas. Value is selected to be the same within each group of images, but 

different for each group. This method may be a bit inaccurate due to the nature of these streaks 

having a full spectrum of pixel intensities, but demonstrates a clear comparison to those who are 

not interested in digging into the mathematical representations of each term. 
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Table 1. The processed data of the selected region of interest in each sample. Each sample is 

reconstructed five times with different methods. SNR and pixel counting are the two methods selected to 

have a parallel comparison of the effect in different reconstruction methods along with different samples. 

The region selected for each sample is not the same size, thus a large variation on the pixel counting 

analytics, but within each sample the region selected is identical.  

Object Name Method SNR Artifact area 

Bone phantom SIRT 28.42 372 

  WSIRT Hard 29.58 348 

  WSIRT Linear 29.88 350 

  WSIRT Square root 28.97 351 

  WSIRT Square  29.04 356 

Lens 1 SIRT 7.65 1394 

  WSIRT Hard 8.99 1211 

  WSIRT Linear 9.50 1334 

  WSIRT Square root 9.58 1348 

  WSIRT Square  9.50 1352 

Lens 2 SIRT 14.43 1069 

  WSIRT Hard 16.73 1018 

  WSIRT Linear 15.31 1012 

  WSIRT Square root 14.38 1068 

  WSIRT Square  15.31 1027 
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It can be observed that within each sample in table 1, the WSIRT reconstruction showed 

a general trend of improvement. A higher SNR value is the effective none-noise signal in the 

homogeneous region and a higher pixel count in the area of streak coverage with the unit in 

pixels. With the experiments presented in this work, very little difference can be determined 

between each different weight shrinking factor determination method. Several variations exist 

between different samples for which one provides the best quality, but the result may have been 

influenced by the specific sample data and its canvas size. The square root approximation, in 

theory, should be the closest to the original, and hard thresholding being the furthest. This is due 

to the normalization from the weight matrix creation, where each value is normalized to below 

one. The maximum voxel weight is one, to represent the entire voxel is covered by a specific 

beam path. These sub-one values provided a base so that the square root should result in the 

largest value compared to squaring, remaining the same, and flat out zero. With that, it is easy to 

understand how hard thresholding should reflect the most effect when the iteration is low. 

However, these harsh weight shrinking effects are usually nullified after a few reconstructions, 

and any observable difference by the human eye is quickly hidden by the nature of 

supplementary information from other unweighted projections. 

 A theory of principal beam weight is developed to account for the mismatch in some of 

the method results. In the weight matrix, a beam path is discretized and represented by voxel 

weights. These values are generally unevenly distributed since a beam path does not usually 

perfectly cover a voxel in the image. Each voxel of the beam path is remapped onto the weight 

matrix to represent how much of the material a beam is passing through. The middle voxel, 

named principal beam weight, is a much larger proportion compared to the side voxels, call it 

secondary beam weights. Since all of the weights are below one, a near one decimal value, for 
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example, 0.9, will react very differently to a smaller decimal value, for example, 0.1, when 

dealing with quadratic operations. It is projected that this effect will not only shrink the particular 

beam's weight but also "sharpening" it, making the middle portion of the weight much more 

compared to its outer edges. The effect of this is not yet fully determined and would behave 

differently with different weight matrix creation methods. 

 Another interesting find is the masking effect displayed in Figure 20. In early iterations 

where the weight shrinking effect is harsh and unfit for a result image, its characteristics can be 

manipulated for certain post-processing procedures. For example, the hard thresholding where 

the weights of unwanted pixels are cut off completely, and it has not been filled in with other 

projection data. These harsh lines can be used as a mask to alleviate the effect and have other 

interesting features such as separating materials and background.  

 

Figure 20. An example of the masking effect that has an edge detection-like effect. The inside structures 

are brightened and outlined by the weight shrinking mask. 

 

This effect seems promising; however, the usage may be niche. The masking is mathematically 

equivalent to weight each image pixels, and does not bring in any additional information. Thus, it 

is a form of interpolation, it may make the result look better, but does not provide information 
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about hidden structures that may be covered by the artifacts. That being said, it can be an 

interesting mask for postprocessing images for other uses, and will not be elaborated in this 

thesis. 
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CHAPTER 5 

CONCLUSIONS 

 This thesis aimed to present a solution to suppress photon starvation artifacts that stands 

as a barrier to more effective medical advancements. The method developed and tested in this 

thesis provided promising results and a direction where artifact reduction algorithms can 

advance.  

 Many artifact reduction algorithms have attempted to reduce the projection data lost 

effect through different directions. Despite the abundant proposed solutions in the postprocessing 

category, it is evident that the solution may very well come from the reconstruction algorithms. 

The theory behind tomographic reconstruction is an estimator and an optimizer. Collapsed and 

missing information cannot be correctly determined but only approached. Augmented iterative 

algorithms are a promising lead towards nullifying the artifacts in reconstructions. 

 The downside of this method is a common one shared by any iterative method: 

computational costs. The constructed system in this work takes several hundred more times to 

produce an image compared to conventional FBP algorithms. Although the weight shrinking 

component only adds roughly five to ten percent on top of that, it is still much too expensive for 

general clinical practices. The good news is that with developing graphics processing units 

(GPU), large parallel structured computation is more efficient than ever. Several groups have 

implemented GPU accelerated reconstructions [11], and can reduce the reconstruction time down 

to seconds. When matrix operation is no longer an issue, the only problem left is the cost to 

transfer data between the CPU and the GPU. With a code optimized for this structure, the 
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iterative algorithms can be the future of tomography, even in 3D constructions where large 

numbers of slices are required for reconstructions. 

The present study only confirmed a minor increase in the effect of reducing photon 

starvation artifacts, and that points out the directions of potential future work. Currently, the 

sample tested is not very well constructed for the problem, and larger sample size can always 

help confirm trends and theories. Specially crafted samples may help to identify the effect of 

retrieving hidden material structures behind artifacts, and even expanding its capabilities. The 

other main issue is the machine limitations. Resolution of the reconstruction is limited by the 

resolution of the scanner, and more intricate sensor setup, more sophisticated machine can result 

in much better quality (resolution) projection data. With better resolution, resulting in more 

pixels to perform analytical research on.   

 The biggest strength in artifact reduction algorithms is their ability to supplement 

each other. Every proposed algorithm targets a different part of the problem, takes a different 

approach to tackle the issue. For example, previously introduced algorithms that interpolate 

different projection angle data to fill missing slots, and frequency domain filters in defining 

structures. All of these creations are aimed to solve a particular problem, but in the clinical 

perspective, every individual sample creates a different problem. With the combination of 

existing and future methods, the case-by-case solution may very well be presented. Every 

method proposed in the field is a step towards a comprehensive solution, and this method aims to 

be just another step towards that achievement. 
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APPENDIX 

Codes 

%Obtain one slice of the weight at one angle, output in sizexsize^2 matrix 
function [W] = linearWij(m,theta) %Obtain one slice of the weight at one 

angle, output in sizexsize^2 matrix 
tempp = 0;          %p is the axis that the ray (projection) traveled 

through. 
tempt = 0;          %t lines up with the sinogram horizontal axis 
tempx = 0; 
tempy = 0; 
halfm = m/2; 
W = zeros(m,m^2); 

  
    for j = -halfm+1:halfm 
        for k = -m+1:m 
            tempx = k*cos(theta) + j*sin(theta); 
            tempy = -k*sin(theta) +  j*cos(theta); 
            temploc = (floor(tempy)+halfm-1)*m+floor(tempx)+halfm; 

             
            if tempx<-halfm+1||tempx>halfm||tempy<-halfm+1||tempy>halfm 
            else 
                if temploc<1||temploc+m+1>m^2 
                else 
                    W(j+halfm,temploc) = W(j+halfm,temploc) + tempx-

floor(tempx); 
                    W(j+halfm,temploc+1) = W(j+halfm,temploc+1) + 1-(tempx-

floor(tempx)); 
                    W(j+halfm,temploc+m) = W(j+halfm,temploc+m) + tempy-

floor(tempy); 
                    W(j+halfm,temploc+m+1) = W(j+halfm,temploc+m+1) + 1-

(tempy-floor(tempy)); 
                end 
            end 
        end 
    end 
end 

  
%get compressed Weight. Input m = image size (one side), n = number of acq 
%period: pi = 180, 2*pi = 360 etc. 
function [W] = getcompressW(m,n,period)  
count = 0; 
m2 = m^2;  
W = single(zeros(n,m2)); 
for i = 1:n 
    theta = (i-1)/n*period;             %change haven't confirmed for n 
    tempW = linearWij(m,theta); 
    tempW = tempW./2; 



 

40 

    step = 1; 
    for j = 1:m 
        for k = 1:m2 
            if tempW(j,k) == 0 
                count = count +1; 
            else 
                if count ~= 0 
                    W(i,step) = count; 
                    step = step + 1; 
                    W(i,step) = tempW(j,k); 
                    step = step +1; 
                    count = 0; 
                else 
                    W(i,step) = tempW(j,k); 
                    step = step + 1; 
                end 
            end 
        end 
        if count~=0 
        W(i,step) = count; 
        step = step + 1; 
        count = 0; 
        end 
    end 
end 

  

  
end 

 

%WSART (Weight Shrinking ART) 
%W = compressed weight matrix, they will be decompressed in WBP and WFP 
%when needed 
%sino = sinogram 
%iter = how many iterations: 1 iter = 1 WBP + 1 WFP (no last WFP since we 

want an image output not sinogram) 
%m = image size (only accepts square image) 
%n = number of acquisitions (half or full circle accounted for by the weight 

matrix) 
function I = WSIRT(W,sino,m,n,iter) 
    I = zeros(m); 
    sino = Normalize(sino); 
    sino = abs(sino-255); 
    sino_diff = sino; 
    for i = 1:iter-1 
        tic 
        I_update = WBP(W,sino_diff,m,n); 
        toc 
        I = I + I_update; 
        sino_remain = WFP(W,I,m,n); 
        sino_diff = sino - sino_remain; 
    end 
    I_update = WBP(W,sino_remain,m,n); 
    I = I + I_update; 
end 
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function N = Normalize(IMG) 
    N = (IMG-min(min(IMG))).*(255/(max(max(IMG))-min(min(IMG)))); 
end 

 

%weighted forward projection, input weight, image, size m, number of acq n. 
function sino = WFP(W,I,m,n) 
tempI = reshape(I',m^2,1); 
sino = zeros(m,n);  
for i = 1:n 
    tempsino = zeros(m,1); 
    tempW = recW(W(i,:),m); 
    rowsum = sum(tempW'); 
    rowsum = rowsum'; 
    rowsum(rowsum == 0) = 1000; 
    tempsino = tempW*tempI./rowsum; 
    sino(:,i) = tempsino; 
    %imshow(sino,[]);   %for real time visualization 
end 
sino = sino'; 
end 

 

 

%weighted backprojection input weight, sino, number of acq n, and size m to 

get one backprojection 
function I = WBP(W,sino,m,n)  
I = zeros(m^2,1); 

  
for i = 1:n 
    tempI = zeros(m^2,1); 
    tempW = recW(W(i,:),m); 
    colsum = sum(tempW); 
    colsum = colsum'; 
    tempW = tempW'; 
    tempS = sino(i,:)'; 
    %============================== 
    Wshrink = zeros(m,1); 
    wMax = max(tempS); 
    wMin = min(tempS); 
    wRange = wMax-wMin; 
    for j = 1:m 
        if tempS(j,1) <= wMin+wRange*.05 
%            Wshrink(j,1) = (tempS(j,1)-wMin)/wRange;  
           Wshrink(j,1) = ((tempS(j,1)-wMin)/wRange)^2;  
%             Wshrink(j,1) = sqrt((tempS(j,1)-wMin)/wRange); 
%             Wshrink(j,1) = 0; 
        else 
            Wshrink(j,1) = 1; 
        end 
    end 
    Wshrink = Wshrink'; 
    tempW = tempW.*Wshrink; 
    %============================== 
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    colsum(colsum==0) = 1000; 
    tempI = tempW*tempS./colsum; 
    I = I + tempI; 
%==================================== 
%     %uncomment for visualization 
%     Ishow = reshape(I,m,m); 
%     imshow(Ishow,[]); 
%==================================== 
end 
I = reshape(I,m,m); 
I = I/n; 
end 

 

%input a slice of the compressed Weight matrix to reconstruct a slice  
%of the actual Wij 

  
function W = recW(tempW,m) 
W = zeros(m,m^2); 
i = 1;              % stepper stepping through tempW, the input compressed 

weight slice goes from 1 to size(tempW) or whenever it hits 0 
count = 1;          % counter for the x in W, going from 1 to m^2 
y = 1;              % counter for the y in W, going from 1 to m 
m2 = m^2; 
sizeW = size(tempW); 
while tempW(i) ~= 0  
    if tempW(i) < 1 
        W(y,count) = tempW(i); 
        count = count + 1; 
    else 
        for j = 1:tempW(i) 
            W(y,count) = 0; 
            count = count +1; 
        end 
    end 
    i = i + 1; 
    if count > m2 
        count = 1; 
        y = y+1; 
    end 
    if i >= sizeW(2) 
        break 
    end 
end 
end 

 


