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ABSTRACT
Mixture IRT models have been applied to investigate the latent groups that exist in the
respondent population and how the same set of test items function differently for different latent
groups. However, they assume that a respondent remains in the same latent group across test
items, which can be unreasonable in certain scenarios. In this dissertation, a mixed membership
Rasch model (MMR) is developed to help overcome this limitation in mixture IRT models. The
MMR is built by integrating the Rasch model into the framework of mixed membership models
which are considered as a soft clustering technigue. In the MMR, a respondent belongs to all the
latent groups but with different probabilities at the test level. At the item level, a respondent
belongs to only one of the latent groups in each test item and the latent group to which he or she
belongs can be different across items. For a response to an item, the probability of a correct
answer is parameterized using the Rasch model and the item difficulties in the Rasch model are
assumed to vary with latent groups. The MMR s estimated using a Metropolis-within-Gibbs
algorithm. This dissertation includes three simulation studies. In Study I, parameter recovery of
the MMR is investigated given different test conditions and different priors used in the
Metropolis-within-Gibbs algorithm, when the item difficulties across latent groups are known.

The design and the purpose of Study Il are similar to those in Study | except that in Study 1,



item difficulties across latent groups are unknown and thus also need to be estimated. In order to
run the MMR, the number of latent groups has to be specified even though it is typically
unknown. Selecting the best fitting model from among candidate models is an important part of
modeling with an MMR. Therefore, in Study I1l, the performance of several widely applied
information criteria is examined in different test conditions in term of their accuracy in selecting

the best fitting MMR.

INDEX WORDS: Latent groups, Rasch model, Mixed membership models, Metropolis-

within-Gibbs algorithm, Parameter recovery, Model selection
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CHAPTER 1

INTRODCUTION
Item Response Theory (IRT) refers to a family of statistical models designed to measure a
continuous latent trait based on observed binary responses to tests, surveys or other types of
psychological or educational measures (Baker & Kim, 2004). IRT assumes that the probability of
a correct response or the probability of endorsing a target option of an item is a function of item
characteristics and the status of the respondent on the latent trait. Iltem characteristics in the
common IRT models include item difficulty, item discrimination and pseudo-guessing. In
educational studies, the latent trait is usually defined as the ability in a certain subject, e.g.,
mathematical computation ability (Wu & Adams, 2006). Based on how many parameters of item
characteristics are included, IRT models are categorized as 1-parameter, 2-parameter and 3-
parameter models with the Rasch model as a special case of the 1-parameter model.

Another basic assumption of IRT is that a set of items have the same item characteristics
for the entire respondent population (Lord & Novick, 1968). This assumption is violated when
the respondent population is heterogeneous, such as with respect to the problem-solving
strategies used in answering questions (e.g., Mislevy & Verhelst, 1990; Rost, 1990). For
example, in a visual spatial task that shows respondents several three-dimensional objects and
asks them to determine which of these objects is the same as the target object, respondents may
solve the problem by rotating the target object mentally or by detecting matching features

between the options and the target object (French, 1965; Lohman, 1979). The same task can be



relatively harder to solve for one strategy than the other depending on the characteristics of the
objects (Kyllonen et al., 1984).

The respondent population can also be heterogeneous because of their different test-
taking behaviors. One example is from low-stakes tests. Performance in a low-stakes test does
not usually have significant consequences for the respondents (Wise & Kong, 2005). The
Program for International Student Assessment (PISA), for example, is a low-stakes assessment
because its purpose is to evaluate the quality of school systems rather than to make decisions on
the students. Even in a low-stakes test, some respondents still actively seek to answer the
questions. Wise and Kong describe this kind of test-taking behavior as solution behavior (SB).
Other respondents, however, may not necessarily be motivated to answer the questions with high
effort. Instead, they may respond so quickly that it is reasonable to assume they did not even
fully read and consider the questions. This is called rapid-guessing behavior (RGB). For a given
ability level, the same set of questions may appear to be harder for respondents who display
RGB as compared with respondents who display SB (Schlosser, Neeman & Attali, 2019).

In the above examples of visual spatial tasks and low-stakes tests, respondents who apply
the same problem-solving strategy or who display the same test-taking behavior might be
classified into one group. The item characteristics of the same set of test questions may differ
across groups. Assuming the same set of item characteristics for the entire population, however,
may overestimate or underestimate the item characteristics and ability and even reduce the
validity of the tests, since a response is not only a function of the respondent’ ability level but
also of which latent group to which the respondent belongs (Bolt, Cohen & Wollack, 2002;

Embretson, 2007; Oshima, 1994).



When such groups are latent, that is, not observed, mixture IRT models can be used to
account for the latent heterogeneity in respondent populations. These models estimate ability and
item characteristics for each latent group and also estimate to which latent group each respondent
belongs (Rost, 1990). Embretson (2004) and Mislevy and Verhelst (1990) employed mixture IRT
models to measure respondent’s spatial ability given their problem-solving strategies in visual
spatial tasks. Liu et al. (2018) developed a multilevel mixture IRT model for both the process
data generated during problem solving and final responses to investigate students’ strategy use in
a computer-based finding-the-quickest-route task in the Program for International Student
Assessment (PISA). Meyer (2010) and Swanson (2015) used mixture IRT and its variants to
detect students who randomly guessed answers rather than responded to test questions seriously
in low-stakes tests.

Except for being applied to studying problem-solving strategies and test-taking
behaviors, mixture IRT models and their extensions have also been applied to studying the effect
of speededness (Bolt, Cohen & Wollack, 2002), learning motivation (Johns & Woolf, 2006),
food security status (Maia et al., 2020), differential item functioning (Cohen & Bolt, 2005), etc.

Mixture IRT models, following the framework of finite mixture models, assume that each
respondent belongs to one and only one of the latent groups across the entire test. They also
assume that the probabilities of belonging to each latent group are the same across respondents in
the population. When mixture IRT models are applied to studying problem-solving strategies and
a latent group represents a strategy, such assumptions may not always be true. There is evidence
to suggest that respondents switch strategies across problems and there is individual difference in
strategy choice. Young elementary school children, for example, switched strategies on simple

arithmetic and spelling problems (Siegler, 1987; Rittle-Johnson & Siegler, 1999), and the



differences in their strategy choice in simple arithmetic problems can be largely explained by the
differences in their arithmetic ability (Siegler, 1987). Teenagers were observed to switch
strategies at different steps in solving the problem of finding the quickest route in a computer-
based PISA task (Liu et al., 2018). In the context of spatial tasks, respondents may switch
between strategies across questions, either as an outcome of learning after they answer more
questions and explore different strategies (Lohman, 1979), or as motivated by the different
characteristics and presentation forms of the questions (Kyllonen, Lohman & Snow, 1984). And
the strategy that a respondent tends to employ to effectively solve a spatial task may be a
function of the respondent’s verbal abilities (Salomon, 1974).

When mixture IRT models are applied to studying test-taking behaviors and a latent
group represents a test-taking behavior, the above assumptions in mixture IRT models may not
be appropriate, either. For example, factors such as ability, cognitive resources and motivation
can predict respondents’ general tendency to engage in RGB in low-stakes tests, but engaging in
RGB may also be influenced by the characteristics of specific questions, such as the surface
features of the questions (Wise et al., 2009). As a result, when the characteristics of the questions
change, a respondent may not consistently demonstrate RGB but rather may switch between
RGB and SB over the course of the test.

Ignoring respondents’ possible multiple membership in latent groups and switching
between latent groups across test items might potentially reduce the validity of a test. Mislevy
and Verhelst (1990) briefly pointed out this limitation of mixture IRT in a paper on using a
mixture IRT model to study problem-solving strategies in visual spatial tasks. However, this
issue was not further investigated in subsequent research on mixture IRT models. Therefore,

developing a modified IRT model that could account for the possibility that a respondent belongs



to multiple latent groups and switches between latent groups across test items and that also
allows for individual differences in the tendency to belong to different latent groups can be
useful, especially when the model aims to study respondents’ problem-solving strategies or test-
taking behaviors while measuring their abilities.

Mixed membership models are a soft clustering technique that allows an individual to
belong to multiple latent groups (Erosheva, 2002). In this dissertation, | introduce a mixed
membership Rasch (MMR) model developed by integrating a standard Rasch model into the
framework of mixed membership models. The literature noted above suggests that, when
respondents belong to multiple latent groups and switch between latent groups across test items,
it may be a function of the cognitive and noncognitive factors of the respondents or the specific
characteristics of the test items. The purpose of the MMR, however, is to account for a simpler
scenario of multiple membership and switching behaviors of test respondents using their correct
or incorrect responses to test questions. Specifically, this MMR assumes that a respondent
belongs to multiple latent groups with different probabilities at test level. These probabilities
remain the same for a given respondent across test items but vary over respondents. The model
also assumes that in a test item, a respondent belongs to one of the latent groups, but allows a
respondent to belong to different latent groups on different test items. This is typically
interpreted as the respondent’s switching behaviors in the literature of mixed membership
models (Erosheva, 2002). Given a latent group, the probability of a correct response to a test
item is parameterized using the Rasch model. The item difficulties in the Rasch model are
assumed to vary over latent groups.

This dissertation includes seven chapters. In chapter 2, | review mixture IRT models,

mixed membership models and their identifiability and scaling issues. In chapter 3, | introduce



the MMR and explain the generative assumptions and the interpretations of this model. I also
present the Monte Carlo Markov Chain (MCMC) algorithm used to estimate the model. In order
to show that the MMR is a useful model, it is important to understand how well the model can be
estimated and what factors would affect the estimation. In chapters 4 and 5, | present the results
of simulation studies that investigate how well the parameters in the MMR can be recovered
under various simulation conditions. Another practical question to ask before an MMR model is
specified is how many latent groups there are in the respondents. This number is usually
unknown. Chapter 6, therefore, investigates which model selection indices perform well in
selecting the correct number of latent groups for the MMR models using simulated data. In
chapter 7, | summarize the findings of chapters 4-6 and discuss the scaling issue in the MMR and
the challenges of comparing current results with those in previous related studies on IRT. | also

discuss what might be investigated in future studies for the MMR.



CHPATER 2
LITERATURE REVIEW
2.1 Rasch Models and Mixture Rasch Models
In IRT, the probability of a correct response to a dichotomous item is a function of item
characteristics and the status of the respondent on the latent trait. This latent trait is commonly
referred to as ability in education studies. In the Rasch model, item difficulty is assumed to vary
with test items, item discrimination is fixed as 1 across items and the probability of correctly
guessing on an item when ability level is extremely low is assumed to be zero (Baker & Kim,

2004). Let 6; denote the ability of respondent i, b; denote the difficulty of item j and X;; denote a

binary response of respondent i to question j. In the Rasch model, the probability of a correct

response to item j is:

1
P(Xij =110:, bj) = —a@=5p

and X;; follows a Bernoulli distribution with success probability P(X;; = 1| 8;, b;). Suppose there
are N respondents and J items. Given 8 = (6,,..., 6;, ...,0y)andb=(by, ..., bj, ..., b)),
responses to all the items from all the respondents are assumed to be independent. In this case,
the likelihood of the responses across respondents and across items given ability and item
difficulty parameters is the product of the probability of a response given the relevant ability and
item difficulty parameters, P(X| 8, b) = [[; I1; P(Xl-j |9i, bj).

Mixture Rasch models follow the framework of finite mixture models. These models

assume that there are G latent groups in the respondent population and the item difficulties in the



Rasch model vary across latent groups (Bolt, Cohen & Wollack, 2002). The mixture Rasch
model can be specified as follows:

Suppose there are G latent groups, let b, ; denote the item difficulty of item j in latent
group g, 6,; denote respondent i’ s ability given membership in latent group g, and Z; denote the
latent group to which respondent i belongs. Z; can take on integer values that range from 1 to G.
bg; and 6,; are latent group specific and thus are the component parameters in a mixture Rasch

model. In a mixture Rasch model, the probability of a correct response to item j given latent

group g and the corresponding component parameters is the following:

1

P =1 21 = 9 Byt Do) = Lm0

It is noted that even though the ability parameter has a latent group index, only one
ability is estimated for each respondent since mixture Rasch models assume that a respondent
belongs to only one of the latent groups. One of the possible reasons of using a latent group
index on ability parameters is that in some scenarios, the distribution of ability is assumed to
vary with latent groups and having a latent group index makes it straightforward to assign a
different prior distribution for the abilities in different latent groups. Another possible reason is
to indicate that the estimation of a respondent’s ability is a function of the latent group to which
he or she belongs and the item difficulty parameters in that latent group. Such information is
needed to develop an estimation algorithm for a mixture Rasch model. Given 8, b and Z =

(Z4,..., Zy), responses to all the items from all the respondents are assumed to be independent

with the likelihood of all the responses written as P(X| 8, b, Z) = [[; [1; P(Xij|99i, bgj,Zig = 8) .
Scaling in the Rasch and Mixture Rasch Models. In the Rasch model, the scale of item
difficulty and ability parameters is undetermined. What this means is that a linear transformation

of a set of item difficulty and ability parameters in the Rasch model can return the same



probability of a correct response given the original set of the parameters (Kolen & Brennan,
2014). Let 9;" and bj* denote the rescaled 6; and b; after a linear transformation. Equation (1)
shows that both (6;, b;) and (6;", b;") return the same probability of a correct response since
P(X;; = 1|6;", b;") equals P(X;; = 1| 6;, b;):
0,"=6,+B Q)
b;"=b; +B
P(X;j =116;", b;") = m

1
+ e—(9i+B —bj—B)

1

1

1+ e J
=P(X;; =1| 0;, b))
Therefore, the scale of the item difficulty and ability parameters in the Rasch model is not
unique.

In order to provide a scale for the item difficulty and ability parameters and also to ensure
that the parameters across latent groups are on the same scale and thus are comparable,
researchers typically use the constraint }.; b, ; = 0 for item difficulties within each latent group in
mixture Rasch models (Bolt, Cohen & Wollack, 2002; Meyer, 2010; Mislevy & Verhelst, 1990).

Label switching in Bayesian estimation of the mixture Rasch models. Mixture Rasch
models as well as finite mixture models in general have the issue of lack of identifiability
associated with the permutations of latent group indices. That is, there is more than one way to
label the latent groups and the different ways of labeling would return the same likelihood or

posterior distributions in certain cases. As a result, label switching, which means latent groups

switch between indices, may occur in the estimation algorithms of these models. The following



equations illustrate this lack of identifiability in mixture Rasch models estimated using Bayesian
methods.

In mixture Rasch models, the likelihood of all the respondents’ responses to all the items
isP(X|0,b,Z) =1, I1; P(Xij| 84i, bgj, Zig = g) . Lety denote a permutation of latent group
indices. Equation (2) shows that this likelihood is the same before and after a permutation of the
latent group indices, that is, P(X| 8, b, Z) = P(X| y(0, b, Z)). To understand this idea intuitively,
suppose there are two latent groups. Whether the first latent group is being called group 1 or the
second latent group is being called group 1 does not affect the likelihood of the responses as long

as such naming is consistent across latent-group-specific parameters. Therefore, the likelihood of
a mixture Rasch model is only identifiable up to a permutation of the latent group indices.
P(X|6,b,Z) =1; I1; P(Xij| 041, by, Zig = 9) )
=1 I P(Xijl Oy (i by(gyjo Zi = ¥(9)))
=P(X|y(6,b,2))

In a mixture Rasch model, when priors are exchangeable over latent group indices, the
posteriors are also only identifiable up to a permutation of the latent group indices. In statistics,
exchangeability means the joint distribution of a set of variables P(Y;, Y5, ..., Y;) does not change
after a permutation of the indices P(Y,,(1), Yo (2 ---» Yu(s)) Where w denotes a permutation. With
respect to the mixture Rasch models, the joint prior distribution of all the parameters can be
written as the product of the prior distribution of each parameter since the prior distributions are
assumed to be independent:

P(0,b,Z) = P(0)P(b)P(Z)

H 1Hg 1P(6, )1(zl 9 HJ 1H3=1P(bgj) mv=1 H2=1P(Zi — g)I(Zizg)

10



With a permutation of latent group indices, this prior can be written as:
P(v(6,b,Z)) = P(y(6))P(y(b))P(y(2))
= [T [T§=1 P (8y ()0 @O T TG =1 P(by ) >
i1 [1g=1 P(Z; = y(g))! 79D

If this prior distribution does not change after a permutation of the latent group indices,
that is, P(0,b,Z) = P(y(6, b, Z)), we say this prior is exchangeable. An example of an
exchangeable prior in a mixture Rasch model is when the priors on by ;, 8,; and Z; are the same
regardless of g.

Equation (3) shows the posterior distribution is the same before and after the permutation
of latent group indices with an exchangeable prior, that is, P(8, b, Z|X) = P(y(6, b, Z)|X).

P(y(6,b,7)|X) 3)

_ PX|v(0,b,2)) P(y(6,b,Z))
P(X)

_ P(X|6,b,Z) P(6,b,2)
a P(X)

= P(8, b, Z|X)

Therefore, the posterior in a mixture Rasch model is only identifiable up to a permutation
of the latent group indices with an exchangeable prior and the latent groups may switch between
indices within or across estimation algorithms of a mixture Rasch model even for the same data
set. When the mixture Rasch models are estimated using MCMC, multiple modes may display

among the samples obtained in a single MCMC chain or in multiple MCMC chains.

When label switching occurs, it is inappropriate to make inferences about each parameter
using the posterior samples directly. This is because the posterior distributions of the model

parameters, such as b in the mixture Rasch models, are not distinguishable across latent groups

11



(Gelman et al., 2013). Label switching is not only an issue for mixture Rasch models but for

finite mixture models in general.

In order to handle the label switching issue in mixture Rasch models, some researchers
have placed ordinal constraints on the parameters or used non-exchangeable priors. These
methods have the potential to cause the invariance property of the posterior distributions under
the permutation of indices to be violated (Bolt, Cohen & Wollack, 2002; Huang, 2016; Meyer,
2010; Sen, Cohen & Kim, 2016). Choosing such constraints or priors in these studies has usually
relied on reasonable assumptions about the data or study design. Post-processing methods have
also been used to remove label switching across MCMC chains for mixture IRT models when it
is observed (Cho, Cohen & Kim, 2013; Choi & Wilson, 2014; Finch, 2012). In post-processing,
researchers usually examine whether obvious jumps are evident in the trace plots across multiple
MCMC chains. Such jumps may indicate the occurrence of label switching. When they are
observed, posterior samples might be manually relabeled so that the indices are consistent across

multiple MCMC chains.

2.2 Mixed Membership Models
Mixed membership modeling is a general framework that has incorporated previous statistical
models reflecting the idea that individuals may belong to multiple latent groups (Erosheva, 2002;
Erosheva et al., 2004; Galyardt, 2012). It differs from finite mixture models in that it does not
assume an individual belongs to one and only one of the latent groups in the data. The mixed
membership models are not used to measure abilities and do not include parameters for abilities
nor for item characteristics as IRT does. Instead, they have been applied in a wide range of
contexts to investigate the distributions of observed variables under different latent groups and

individuals” multiple memberships in the latent groups. Erosheva et al. (2004), for example, used

12



a mixed membership model adjusted for text data to study what research areas were mentioned
in the biology articles published in the Proceedings of the National Academy of Sciences of the
United States of America (PNAS) from 1997 to 2001, how likely different words would appear
in an article given an area and how much an article expressed each of the areas. In the setting of
education, Galyardt (2012) combined a mixed membership model with a response time model to
study what strategies young children used to solve least common multiples problems and how
much each child used each of the strategies in the test.

Mixed membership models and their variants have also been applied to studying the
multiple disease profiles in patients (Woodbury, Clive & Garson, 1978), multiple genetic
heritages in birds (Pritchard, Stephens & Donnelly, 2000) and multiple communities a monk at a
monastery has social interactions with (Airoldi et al., 2008).

There are four levels of assumptions in mixed membership models (Erosheva, 2002;
Galyardt, 2012). These four levels of assumptions are illustrated below and the contexts of
Erosheva et al. (2004) and Galyardt (2012) are used as examples to explain the notations
mentioned.

Population level. It is assumed that there are G latent groups in the population. The
interpretations of the latent groups depend on data and study design. For example, in Erosheva et
al. (2004), latent groups are the research areas mentioned in the articles published in PNAS. In
Galyardt (2012), latent groups are the strategies that young children used to solve least common
multiples problems.

The distribution of an observed variable varies with latent groups. Let variables be
indexed by j=1, ..., Jand latent groups by g =1, ..., G. Given latent group g, the distribution of

variable j is denoted by P, (X;). For Erosheva et al. (2004), variables are the words that appear in

13



an article and F,(X;) denotes a multinomial distribution of words with a single trial given
research area g. For Galyardt (2012), variables are children’s responses to least common multiple
problems and F, (X;) denotes a Bernoulli distribution of a right or wrong response to a problem
given strategy Q.
Individual level. Each individual has a membership probability vector m;= (m;q, ..., Tig, ...,
T;s), where m;, denotes the probability that individual i belongs to latent group g. Each element
in this vector is nonnegative and falls between 0 and 1, and all the elements in a given vector
sum to 1. ir; indicates individual i’s partial membership in each of the latent groups. For
example, suppose we have two latent groups, G = 2, and an individual has mr;= (0.30, 0.70). This
individual belongs to latent group 1 with probability 0.3 and to latent group 2 with probability
0.7. In the context of Erosheva et al. (2004), ;= (0.30, 0.70) would mean that article i expresses
one of the two areas with probability 0.30 and the other area with probability 0.70. And in the
context of Galyardt (2012), it would mean child i uses one of the two strategies 30% of the time
and the other strategy 70% of the time in the test.

Let Z;; denote the latent group that individual i belongs to in variable j. Z;; can take on
integer values that range from 1 to G. Z;; = g is used to denote that individual i belongs to latent

group g invariable j. Z; = (Z;1, ..., Z , Zi;) indicates the behavior that individual i switches

T
latent groups across variables. For Erosheva et al. (2004), Z;; would indicate the research area
that word j in article i represents and different words in article i can represent different areas. For
Galyardt (2012), Z;; would indicate the strategy child i uses to solve problem j and child i may

use different strategies to solve different problems in the test.

Given m;, the marginal response distribution of individual i for variable j is

P(Xjlm;) = X5, P(X;|Zij = 9)P(Zij = glmy) = X571 mig By (X))

14



Given m;, individual i’s responses to all the variables are assumed to be independent,
P(X|rt;) = [T=y T5-1 mig By (X)).
Sampling scheme level. In some cases, each variable is measured repeatedly for each individual.
The number of repeated measurements can be different across variables and across individuals.
Let R;; denote the number of repeated measurements of variable j for individual i. An

individual’s responses at all repeated measurements across variables are assumed to be

Rij
=1 r=

independent given m;, P(X|m;) = ]'[f 1zg=1 ;g Py (Xjr) . In Erosheva et al. (2004), the
observed variables are what words appear in an article, and the distribution of words given a
research area, F; (X;), is assumed to be the same regardless of the location of the words. Suppose
there are R words in article i. The R words can be considered as R repeated measurements of
what word appears in the article. And the number of variables, J, can be considered as 1.
Latent variable level. Latent variables in the context of mixed membership models refer to m;,
where 1r; can be treated either as fixed but unknown constants or random samples from a certain
underlying distribution for the purpose of estimation. When treated as random, m; is usually
assumed to follow a Dirichlet distribution in which the components are independent subject to
the constraint Y., m;g = 1 (Aitchison, 1982). Or 7r; may be assumed to follow a logistic normal
distribution, where covariances between the elements in mr; are explicitly indicated in the
probability density function. Blei and Lafferty (2007) used the logistic normal distribution, for
example, in a mixed membership model adjusted for text data to model correlated topics in text
documents.

Label Switching in Mixed Membership Models. Similar to finite mixture models, mixed

membership models also have an issue of lack of identifiability. Galyardt (2012) proved that a

general mixed membership model can be expressed as a finite mixture model that has a much
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larger number of latent groups compared with the equivalent mixed membership model and has
constraints on membership probabilities. Further, Galyardt (2012) proved that mixed
membership models are only identifiable up to a permutation of the latent group indices when
the components of the m; are exchangeable, as is the case when a symmetric Dirichlet prior is
placed on m;. Therefore, when a mixed membership model is estimated using MCMC, label
switching may occur in the posterior samples either within a single MCMC chain or across
multiple MCMC chains.

Some researchers who applied mixed membership models in their studies have employed
similar methods as those mentioned in mixture IRT studies to handle this label switching issue,
such as imposing ordinal constraints on 7; or latent-group-specific parameters (Richardson &
Green, 1997) and post-processing the posterior samples so that the latent group labels are
consistent across estimation algorithms or between the posterior estimates and the generating

values in simulation studies (Wang & Erosheva, 2015).
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CHAPTER 3
A MIXED MEMBERSHIP RASCH MODEL
Mixture IRT models assume each respondent remains in the same latent group across the entire
test. As noted in Chapter 1, such an assumption may not always be reasonable especially when
the mixture IRT models are used to study problem-solving strategy use and test-taking behaviors
in low-stakes tests. To help tackle this limitation in mixture IRT models, a mixed membership
Rasch model (MMR) is developed in this dissertation. It integrates the Rasch model into the
mixed membership framework. In the MMR, an individual is a respondent and observed
variables are responses to the items in a test. The distribution of a response to an item by a
respondent is parameterized using the Rasch model given a latent group. The item difficulty
parameters in the mixture Rasch model are assumed to vary with latent groups. The MMR allows
a respondent to belong to multiple latent groups with different probabilities at the test level and
to belong to different latent groups on different items in a test.
The generative process of the MMR is explained as follows:

1. Assume there are G latent groups in the sample of respondents. Again, the interpretations
of the latent groups depend on data and study design. For example, if the purpose is to
investigate students’ test-taking behaviors in a low-stakes test, latent groups may
correspond to solution behavior and random guessing behavior even though such
interpretation may need to be supported by further evidence, e.g., by cognitive interviews.

2. Each respondent i has a membership probability vector m; of length G. m;, indicates the

probability that respondent i belongs to latent group g. The elements of m; are nonnegative
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and fall within the range 0 and 1 with the sum of all the elements in m; equal to 1. The
MMR assumes that 7z; is drawn from a Dirichlet distribution:
m; ~ Dirichlet(a) ;= (1, ..., Tig, ..., Tig)

Using the test-taking behavior example, suppose latent group 1 represents solution
behavior (SB) and latent group 2 represents random guessing behavior (RGB). If
respondent i has a ir; = (0.2, 0.8), this respondent would show solution behavior with
probability 0.2 and random guessing behavior with probability 0.8 in the test. The MMR
assumes that these probabilities are different for different respondents. It also assumes that
these probabilities for respondent i remain the same regardless of which question in the
test he or she is trying to answer.
In item j, the latent group to which respondent i belongs is denoted by Z;; and is drawn
from a multinomial distribution with probabilities 7;:

Zij|m; ~ Multinomial(1, 7r;)
The latent group respondent i belongs to may vary across items. Therefore, the Z;;’s
indicate respondent i’s switching behaviors. In the example of test-taking behaviors, Z;;
denotes the type of test-taking behavior respondent i shows on item j and Z;;’s indicate
that the respondent i switches between SB and RGB across test questions.
Let X;; denote a binary response by respondent i to item j, 6; denote respondent i’s ability
and by ; denote item j’s difficulty given latent group g. X;; takes on value 1 for a correct

response and 0 otherwise. Given latent group g, 8; and b

4j» Xij is generated from a

Bernoulli distribution with probability P;;:

XU|ZU =9, Hi! bg] ~ Bernoulli(Pijg)
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With respect to the example of test-taking behaviors, this indicates how likely a
respondent answers a question correctly depends on his or her ability level, how difficult
the question is and whether he or she answers the question using SB or RGB.
It is noted that in the general mixed membership models, the distribution of an observed
variable can change for different variables and latent groups. In the MMR, an observed

variable is a binary response to a test item. Its distribution can change for different test

items, latent groups and respondents.

In this study, the MMR is estimated using a Metropolis-within-Gibbs algorithm. In a
Metropolis-within-Gibbs algorithm, some parameters are sampled using Gibbs sampler and some
are sampled using Metropolis algorithm. Both the Gibbs sampler and the Metropolis algorithm
are Markov Chain Monte Carlo (MCMC) sampling methods. The MCMC draws a sequence of
samples of parameters from approximate distributions as running a Markov chain in which, the
stationary distribution is the target posterior distribution. The specific steps of the Metropolis-
within-Gibbs algorithm are as follows:

Step 1. For each respondent, m; has the following posterior distribution assuming conditional
independence of respondent i’s responses across items:
P(rr;rest) oc [1; P(Z;;|m) % P(my)
o [g > "= [1g mig%
= Dirichlet(a®)

az= ag +X;1(Z;j = g)
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where “rest” is shorthand for data and the rest of the parameters in the MMR, and P(m;) denotes
the prior distribution of 7r; and is a Dirichlet distribution with & = (a4, ..., a;). The posterior
distribution of m;, P(mt;|rest), is a Dirichlet distribution with a* = (a7,..., ag).

At iteration t, draw a sample of m; from P(;|rest) given the samples of the other parameters
obtained at iteration t-1.

Step 2. For each respondent and each item, Z;; has the following the posterior distribution:
P(Z;;lrest) oc P(X;j1Z;j,0;, by ;) X P(Z;;|7;)
[l [P ingij 1-p ijg)l_xij ] 11j=9) [1g 7Tigl(zij =9
=g [Pijg™ (1 = Pyjg)' ¥ myy| 1=
where 1(Z;; = g) is an indicator function taking on value 1 if respondent i belongs to latent

group g on item j and 0 otherwise. The posterior distribution of Z;;, P(Z;;|rest), is a multinomial

j
distribution with probabilities P;;; 4 (1 — Pyj) ™0 myq, ..., Pije™ (1 — Pyjg)* ™ U myq.

At iteration t, draw a sample of Z;; from P(Z;;|rest) given the samples of the other parameters
obtained at iteration t-1.

Step 3. Assuming conditional independence of respondent i’s responses across items, the full

conditional distribution of 8; is as follows:
P(6;|rest) oc [1; P( X;;1Z;j,0;,bg;) X P(6;)
IT{My Pyg™ (1 = Pyg)t*u] “7=" Normal(;; n, 0?)
where Normal(8;; 1, o) is the normal density evaluated at 8; given mean 7 and variance 2. 6;

is updated using a Metropolis step, since the normal distribution is not a conjugate prior. In order

to obtain a sample of 9; at iteration t,
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e Draw a proposed value 8; from Normal(8f~*,1) where 8/~* is a sample of ; obtained at
iteration t-1.
e Calculate the ratio of the posterior densities given the samples of the other parameters

that are obtained at iteration t-1:

o = P (0] |rest)
Oi ~ P8 |rest)

e Assign 6; = 6; with probability min{1, r,}, and assign 6; = 6; " otherwise.

Step 4. Assuming conditional independence of the responses to item j across respondents, the full

conditional distribution of b ; is as follows:
P(bgjl rest) oC Hi P( Xl-j|Zij,9i,bgj) X P(bg])
Xij 1-X;; I(Zij=g) . 2
o [T Pijg ™9 (1 = Pyyg)* 0] Normal(bg ;; u, 7%)
where Normal(b,;; p, ) is the normal density evaluated at b,; with mean p and variance 2.

b

4 1S updated using a Metropolis step since the normal distribution is not a conjugate prior. In

order to obtain a sample of b ; at iteration t,

e Draw a proposed value b; ; from Normal(b;;*,1) where b;* is a sample of b, obtained
at iteration t-1.
e Calculate the ratio of the posterior densities given the samples of the other parameters

obtained at iteration t-1;

_ P(byjlrest)

Ty =—2Z——
bgj P(bl‘;;l |rest)

e Assign b.; = b,; with probability min{1, Tp;, 3, and assign b ; = b ' otherwise.

The scales of the parameters in the Rasch model are undetermined, as described in

section 2.1. In order to set up a scale for the parameters and also to ensure that the parameters

21



across latent groups are on the same scale and thus are comparable, after item difficulties are

sampled for all the items in latent group g at each iteration of MCMC, the sampled item

difficulties are rescaled so that Eg\] = 0. For example, suppose the original item difficulty

samples across J items at an iteration sum up to a, Y b;* = a. After the rescaling b’g;*- % , the

sum of the rescaled samples equals 0, Y’ (b;* — %) =0.
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CHAPTER 4
STUDY |
4.1 Purpose and Study Design
Both Study I and Study 11 are to investigate how well the parameters in a two-latent-group MMR
can be recovered under different conditions. In study I, it is assumed that there is extra
information available about item difficulty parameters. Compared with a mixture Rasch model,
an MMR with the same number of latent groups is a more complicated model and has far more
parameters to estimate. The investigation of parameter recovery in Study I, therefore, starts with
a scenario in which item difficulty parameters are known. This is analogous to having an item
bank, in which the item difficulty parameters are known. Item difficulties, thus, do not need to be
estimated.

The parameter recovery of the MMR is investigated under three conditions. The first
condition is test length: 6-item, 15-item and 30-item tests were simulated to reflect very small,
small and medium test lengths. The generating item difficulty parameters for the two latent
groups used in this study, as shown in Table 1 and Table 2, are taken from Li, Cohen, Kim and
Cho (2009). In the 30-item test, each item in the 15-item test is repeated once. The sum of these
parameters equals zero within each latent group. The second condition is sample size: 300, 500
and 1000 respondents’ responses were simulated to reflect small, medium and large sample sizes
common in education studies. The third condition is the prior choice for the membership
probability parameters mr; The effects of two priors were tested. One prior was the same as the

generating distribution (i.e., the true prior) and the other prior was a flat prior to reflect a lack of
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prior knowledge about the distribution of 7r;. This is further explained under Priors Used in Both
Study I and Study Il (see below).

Table 1. Generating item difficulty parameters for the 6-item test

Item difficulty

Item Latent Group 1 Latent Group 2
1 -1.50 0.00
2 -1.50 0.00
3 0.00 1.50
4 0.00 1.50
5 1.50 -1.50
6 1.50 -1.50

Table 2. Generating item difficulty parameters for the 15-item test

Item difficulty

Item Latent Group 1 Latent Group 2
1 -2.00 -0.50
2 -1.75 -0.25
3 -1.50 0.00
4 -1.25 0.25
5 -1.00 0.50
6 -0.50 1.00
7 -0.25 1.25
8 0.00 1.50
9 0.25 1.75

10 0.50 2.00
11 1.00 -2.00
12 1.25 -1.75
13 1.50 -1.50
14 1.75 -1.25
15 2.00 -1.00

4.2 Data Simulation

The data of different test lengths and samples sizes were simulated following this procedure:
e Choose a test length J which varies by conditions
e Choose a number of respondents N which varies by conditions

e Number of latent groups G= 2
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For each latent group g = 1, 2, generating item difficulty parameters are shown in Table 1

and Table 2. In the 30-item test, each item in the 15-item test is repeated once.

For each respondent i =1, ..., N, simulate

a. m; ~ Dirichlet(0.25, 0.25). In Dirichlet(0.25, 0.25), about 37% of the data have
a mr;; smaller than 0.20 and a mt;, larger than 0.80, and about 37% of the data have a
m;, larger than 0.80 and a m;, smaller than 0.20. Therefore, using this generating
distribution for m; simulates the scenario that most of the respondents tend to have a

dominant latent group and tend to stay in that latent group across items.

< - < |
> @ > @
2 z |
o ) |
a a
\
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Figure 1. The probability density of each dimension of Dirichlet(0.25, 0.25). Most of the

data either have a large m;; and a small 7;, or a small r;; and a large m;,.

c. Foreachitemj=1,...,J, simulate
Z;;|m; ~ Multinomial(1;)

1

Xij|Z;j = 9 ~ Bernoulli(P;;,) where P;;, = 1+ e ©@i-bgp

The priors used in both Study I and Study I1 are as follows:
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e 6, ~N(0,1)
o b, ~N(@,1)
e Two priors of «;, P(m;)
Prior 1: the true prior which is the same as the generating distribution of m;,
Dirichlet(0.25, 0.25)

Prior 2: a flat prior, Dirichlet(1, 1)

The simulation of response data was replicated 50 times under each test length and each
sample size. And in the same condition, the same set of generating parameters was used across
replications. To illustrate the simulated data, assuming a simulated student responds to 15
questions, his or her data simulated based on the above process would look like the following:

0, =-1.32
y =(0.56, 0.44)
Z;=(1,1,2,1,2,1,2,1,2,2,1,1,2,1, 1)

Y,=(0,1,0,1,0,0,0,1,0,0,1,0,1,0,0)

The total number of conditions under which parameter recovery was examined was
therefore 18 (i.e., 3 test lengths x 3 sample sizes x 2 priors of membership probabilities = 18
conditions). After running MCMC for each data set, convergence and label switching were
examined.

4.3 Evaluation Statistics for Parameter Recovery
Under each condition, the recoveries of membership probability 7r; and ability 8; were evaluated
using the average root mean square error (RMSE), average bias and the average correlation

between posterior estimates and the true parameters. The recovery of latent group membership
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Z;; was evaluated using the average proportion of correct recovery (PCR). For m; , because m;; +

m;, = 1, the patterns of the estimates of m;; and m;, are reversed. Therefore, the following
analyses only focused on m;;.

The mean squared error (MSE) of an estimator is the expected squared difference
between an estimate and the true parameter and can be written as the sum of two components,
bias? and variance. The RMSE is the square root of the MSE. In this study, the RMSE’s for
1T; and 6; are averaged over respondents respectively. The mathematical definitions of the
average RMSE’s of 7t and 8 are shown in equation (4) where i denotes respondent, r denotes
replication, N denotes the total number of respondents, R denotes the total number of
replications, 75,3, denotes the posterior sample mean of ;; in replication r and 8, denotes the
posterior sample mean of 6; in replication r. A RMSE in this case measures the bias and variance
of a posterior sample mean in a replication and the expected squared difference between a
posterior sample mean in a replication and the true parameter is approximated by the average
squared difference between a posterior sample mean in a replication and the true parameter

across replications.

Average RMSE(1,7,) = % N RMSE(1,1,) (4)

1 —
= ﬁ Zlivzl vV MSE(T[llr)

= %Zli\]:l \/E[(T[/LIr = i)’

= % ¥ N \/Bias(r;3,)? + Variance (1 3,)

1 1 —~
<13, AR O — T
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Average RMSE(8,,) = % N  RMSE(8,,)

1 —
= N ?’:1 w’ MSE(HW)

= 13X, [El@ - 0]

= % >N, \/Bias(@?)z + Variance (8,,)

~ %Zli\’:l\/%zxg:l(él\r — 6;)?

The bias of an estimator is the difference between the expected value of the estimator and
the true parameter. In this study, the bias of 77,;,- and 8,, are averaged over respondents
respectively and the corresponding mathematical definitions are shown in equation (5). The
expected values of 77,;, and 8,, are approximated by the average 1,;, and the average 8,, across

replications respectively.
. — 1 _—
Average Blas(nllr) = NZIiV=1(E[7T11r] - T[il) (5)
1 1 —~
& ;Z’Ll (E 1Ty — 7Ti1)
. — 1 —
Average Bias(f,) =~ N (E[6,] - 6)
1 1 —
~ ﬁzliv=1 (E Fe10, — 91‘)
An example of the relationship between 7,,- and m;; over respondents when N = 300 and
J =15 is shown in Figure 2. Since this relationship is not best described as a linear relationship
and such pattern is observed across conditions, to report the correlation between 77,;,- and m;4,
Kendall's t coefficient is calculated for each iteration and the coefficients are averaged across

replications to obtain an average (17,1, ;1) as shown in equation (6). Figure 2 also shows an

example of the relationship between 8, and 8; over respondents when N = 300 and J = 15. Since
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this relationship appears to be linear and such pattern is observed across conditions, Pearson

correlation coefficient is calculated to examine the correlation between 8,, and 6;.
o~ _ 1R —~
Average (1,1, ;1) = EZr:l (1, Ti1) (6)

— 1 —
Average p(glr: 61’) = R 5:1 p 6y, 61’)
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Figure 2. The left panel shows the relationship between 7,7, and m;; over respondents. The right

panel shows the relationship between 8,, and 8; over respondents. The estimates of the
parameters in both of the panels were obtained in one of the replications when N =300 and J =

15.

The recovery of z;; is evaluated using an average PCR. A PCR of a respondent is defined
as the proportion of items for which the estimate of z;; is the same as the true z;;. As shown in

equation (7), an average PCR is calculated by averaging the PCR’s over respondents and over

replications. Given that z;; is a categorical variable, z;,; in equation (6) is the posterior sample
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mode rather than the posterior sample mean of z;; in replication r. The larger the average

PCR(Z,, ), the better the z;;’s are considered to be recovered.

R . 1 Y 1@Zor=zi))
Average PCR(ZUT ) :E 713:1 <E Iiv=1 (%)) (7)
4.4 Results

In each MCMC chain, the starting values for 8; were generated from Normal(0, 32) and the
starting values for Z;; were generated from Multinomial(0.5, 0.5). In this study, since the item
difficulty parameters were known, label switching was unlikely to happen. However, in order to
be certain, label switching was still checked. No label switching within an MCMC chain or
across replications was observed in the posterior samples. Convergence of the MCMC chains
was diagnosed using the Potential Scale Reduction Factor (PSRF; Gelman et al., 2013). After a
burn-in of 10,000 iterations, the PSRF remained very close to 1 and smaller than 1.1, which is
usually considered as a sign that an MCMC chain has converged (Sinharay, 2003). After the

burn-in, each MCMC chain continued to run another 10,000 iterations.
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Figure 3. The distribution of 7,; and m;; across respondents in one of the replications for N =
1000 in Study 1. The x-axis in each panel is either 7,; or m;;. The solid curve shows the
distribution of the m;; across respondents. The dashed curve shows the distribution of 77,; across
respondents when the prior on mr; was Dirichlet(0.25, 0.25). The dotted curve shows the

distribution of 77,; across respondents when the prior for ir; was Dirichlet(1, 1). Different panels

are for a different test length J.
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Table 3. Parameter recovery in Study | evaluated by average PCR, average RMSE, average bias

and average correlation

N P(m;) J Z;]\r 1 O
PCR RMSE Bias T RMSE Bias p

300 Dir(0.25,0.25) 6 0.77 0.29 0.00 045 0.68 0.07 0.70
15 0.83 0.21 0.00 0.58 0.5 0.00 0.84

30 0.87 0.15 0.00 0.66 041 0.00 0.91

Dir(1, 1) 6 0.76 0.31 -0.01 046  0.67 0.07 0.70

15 0.82 0.24 0.00 058 054 0.00 0.84

30 0.86 0.18 -0.01 0.66 041 0.01 0.91

500 Dir(0.25,0.25) 6 0.78 0.29 0.01 046  0.68 -0.03 0.67
15 0.85 0.21 0.00 058 0.53 -0.01 0.83

30 0.88 0.14 0.00 0.65 0.42 0.01 0.91

Dir(1,1) 6 0.76 0.30 0.01 046  0.68 -0.02 0.67

15 0.83 0.24 0.00 058 0.52 -0.01 0.83

30 0.87 0.18 0.00 0.65 041 0.01 0.91

1000 Dir(0.25,0.25) 6 0.77 0.29 0.00 046 0.69 0.01 0.70
15 0.84 0.21 0.00 058 054 0.01 0.83

30 0.87 0.15 001 0.66 0.42 -0.01 0.91

Dir(1,1) 6 0.76 0.30 0.00 046 0.69 0.01 0.71

15 0.83 0.24 -0.01 058 054 0.01 0.83

30 0.86 0.18 001 0.66 042 0.00 0.91

Note. Dir is short for Dirichlet.

The parameter recovery statistics for Study | are reported in Table 3. Given a test length
and a prior on m;, the average RMSE(77,7,-) and the average PCR(z) do not seem to be influenced
by sample size. For each prior on m;, the average RMSE(7,7,-) decreases and the average PCR(z)
increases as test length increases. For each test length, the average RMSE(77,;-) increases and the
average PCR(z) decreases slightly for the flat prior on ir; compared with the true prior. However,
the flat prior and a longer test still return a smaller average RMSE(7,;,-) and a larger average
PCR(z) compared with the true prior and a shorter test. For example, when N = 300, J = 30 and
P(m;) ~ Dirichlet(1, 1), the average RMSE(7,7,-) is 0.18 and the average PCR(z) is 0.87, whereas
when N = 300, J = 6 and P(rr;) ~ Dirichlet(0.25, 0.25), the average RMSE(77,7;) is 0.29 and the

average PCR(z) is 0.77. The average Bias(rr) under all the conditions is consistently small and
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very close to 0. The average (1,1, ;1) increases as test length increases and does not seem to
be influenced by sample size and prior choice for ;. Given a test length, the average RMSE(8,,)
and the average p(8,,, 6;) do not seem to be influenced by sample size and prior choice for ;.
The average RMSE(8,,) decreases and the average p(8,,, 6;) increases as test length increases.
The average Bias(8,,) is the largest when both the sample size and the test length were the
smallest. When sample size increases from 300 to 500 and when test length increases from 6 to
15, the average Bias(,,) decreases and becomes closer to 0.

Prior choice for mr; and test length also affected the distribution of 77,7, across
respondents. When the test was longer and when the true prior was used for m;, the distribution
of 17,7, across respondents tended to better recover the distribution of 1r;; across respondents
compared with when the test was shorter and when the flat prior was used. In all the conditions,
the distributions of 77,7,- tended to shrink towards the mean of the generating distribution of m;
which is 0.5. As an example, Figure 3 shows the distributions of r;; and 7,,- for one of the 50

replications when N = 1000.
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CHAPTER 5
STUDY lI
5.1 Purpose and Study Design
The purpose of study Il was to investigate how well the parameters in the MMR could be
recovered under varying conditions when item difficulty parameters for each latent group are
unknown. This is the kind of situation that would occur, for example, for a newly created test.
The design of the simulation study was the same as the one in Study I. The only difference
between Study | and Study Il was that item difficulty parameters were unknown and need to be
estimated in Study II.

As was the case for Study I, the starting values of 6; for the MCMC algorithm were
generated from Normal(0, 3%) and the starting values of Z;; were generated from
Multinomial(0.5, 0.5). The starting values of b, ; were generated from Normal(0, 1.5%). Each
MCMC chain was run 20,000 iterations with the first 10,000 iterations used as a burn-in to
ensure that the PSRF remained considerably smaller than 1.1 after the burn-in. As was observed
in Study I, no label switching jumps were observed in the posterior samples within a single
MCMC chain. Label switching that occurred across MCMC chains was corrected based on the
correlation between the posterior estimates of item difficulty parameters and the generating
parameters. Suppose in a certain replication, the posterior estimates in latent group 1 are
positively correlated with the generating parameters in latent group 2. These posterior estimates
are then relabeled as latent group 2. After the correction, latent group so that the labels became

consistent across replications.
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5.2 Evaluation Statistics for Parameter Recovery

As was done in Study I, the recoveries of membership probability 7r; and ability 8; were
evaluated using the average RMSE, the average bias and the average correlation as shown in
equations (4) — (6). The recovery of latent group membership Z;; was evaluated using the
average PCR as shown in equation (7). Because the item difficulty parameters were estimated in
Study 11, their recovery was also evaluated using the average RMSE and the average bias across
items and latent groups and the average correlation across replications. The definition of the
average RMSE for item difficulty is shown in equation (8) where J denotes the number of test
items, G denotes the number of latent groups and b;r denotes the posterior sample mean of b
in replication r. The definition of the average bias of b, by, is shown in equation (9) where the

[ g ]r] is approximated by the average of b, by, across replications. The Pearson correlation
coefficient between bg ,rand bg; over items and latent groups was calculated for each
replication and the coefficients are averaged across replications to obtain an average correlation

as shown in equation (10).

Average RMSE(by,,) = ——X5_, ¥_ RMSE(b,,)  (8)

GxJ

= o201 By [ MSE(bg,)

= 55 B B[ — by

=5 Zg 12 \/Bias(b;;r)z + Variance (b,,)

= TS (R Gg — by
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Average Bias(b,,,) = Giszgﬂ % -1(E[bg;r] = byj) ©)

—

~ 2 y6_y (Lyr -
~GX]Zg=12j=1(R r=1%gjr bgj)

Average p(bs, b) =~ SE_, p(by, b) (10)
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Figure 4. The distribution of ,; and m;; across respondents in one of the replications for sample
size N = 1000 in Study II. The x-axis in each panel is either 7,; or m;;. The solid curve shows the
distribution of the m;; across respondents. The dashed curve shows the distribution of 77,; across
respondents when Dirichlet(0.25, 0.25) was the prior on ;. The dotted curve shows the
distribution of 77,; across respondents when Dirichlet(1, 1) was the prior on ;. Different panels
are for the three different test lengths J.

5.3. Results
The parameter recovery statistics for Study Il are reported in Table 4. Given a prior on m; and a
test length, the average PCR(z) and the average RMSE(1,7,-) do not seem to be influenced by

sample size. For a given prior on m;, the average PCR(z) increases and the average RMSE(r7,7;)
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decreases as test length increases. For a given test length, the average PCR(z) decreases slightly
and the average RMSE(1t,;,-) increases when the prior for r; changes from Dirichlet(0.25, 0.25)
to Dirichlet(1, 1). A larger test length, however, appears to reduce the negative effect of a flat
prior on the average PCR(z) and the average RMSE(77,;,-). For example, when N = 300, J = 30
and P(m;) ~ Dirichlet(1, 1), the average PCR(z) is 0.85 and the average RMSE(77,;,) is 0.19,
whereas when N = 300, J = 6 and P(m;) ~ Dirichlet(0.25, 0.25), the average PCR(z) is 0.78 and
the average RMSE(,;) is 0.29. The average Bias(rr) is consistently negligible (i.e., close to
zero) across all the conditions. The average ©(17,;,, ;1) increases as test length increases and is
not influenced by sample size and prior choice for ;.

For a given test length, the average RMSE(b;}) decreases considerably as sample size
increases when the true prior on m; is used. For a given sample size and when the true prior on
7; is used, the average RMSE(b/g}) decreases slightly as test length increases from 6 to 15
items. Less of a decrease is evident as test length increases from 15 to 30 items. When the flat
prior on mt; is used, the average RMSE(bfq}) tends to be larger than when the true prior is used

for a given sample size and test length. Further, increasing test length and sample size do not
seem to decrease the average RMSE(bZr). The Average Bias(bfg}) is very close to 0 in all the
conditions. The average p(bs, b) is consistently positive and large in all the conditions.

The average RMSE(8,,) and the average p(8,,, 6;) seems to be only affected by test
length. The average RMSE(8,,.) decreases and the average p(8,,, ;) increases as test length
increases. When both sample size and test length are the smallest, the average Bias(8,,) tends to
be relatively large. Increasing sample size or test length appears to help decrease the average

Bias(d,,) to 0.
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As was observed in Study I, test length and choice of choice on m; also influences the
distributions of 17,7,- across respondents in Study Il. The distribution of 1,7, across respondents
better approximated the distribution of mr;; across respondents when the true prior rather than the
flat prior for ir; was used and for the longer test lengths. An example of such patterns is shown

in Figure 4.

Table 4. Parameter recovery in study Il evaluated by average PCR, average RMSE, average bias,

and average correlation

N P(m;) Iz T1r bg)r Our
PCR RMSE Bias T RMSE Bias p RMSE Bias p
300 Dir(0.25, 6 0.78 0.29 -0.01 046 0.28 0.00 0.98 0.68 0.07 0.70
0.25)

15 0.83 0.21 -0.00 0.57 0.25 0.00 0.98 0.55 0.00 0.84
30 0.87 0.15 -0.01 0.65 0.24 0.00 0.98 0.41 0.00 0.91

Dir(1, 1) 6 0.76 0.31 -0.01 0.46 0.26 0.00 0.98 0.67 0.07 0.70
15 0.81 0.24 -0.00 0.58 0.28 0.00 0.98 0.55 0.00 0.84
30 0.85 0.19 -0.02  0.65 0.28 0.00 0.98 0.42 0.00 0.91

500 Dir(025, 6 078 029 00l 046 020 000 099 068  -0.02 0.68
0.25)

15 084 021 000 058 018 000 099 053 000 083

30 088 014 000 065 018 000 099 041 001 0091

Dir(1,1) 6 0.75 0.30 0.01 045 0.28 0.00 0.99 0.68 -0.02 0.68
15 0.82 0.24 -0.00 0.58 0.32 0.00 0.99 0.53 0.00 0.83
30 0.85 0.19 0.01 0.65 0.32 0.00 0.99 0.42 0.01 0.91

1000 Dir(0.25, 6 078 029  -000 046 015 0.00 099 069 00l 0.70
0.25)

15 084 021  -001 058 014 000 099 054 001 083

30 087 015 000 066 013 000 099 042  -001 091

Dir(1,1) 6 0.75 0.30 0.00 0.45 0.21 0.00 0.99 0.69 0.01 0.71
15 0.81 0.24 -0.01 0.58 0.32 0.00 0.99 0.54 0.00 0.83
30 0.85 0.19 0.01 0.66 0.33 0.00 0.99 0.42 -0.01 091
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CHAPTER 6
STUDY llI
6.1 Purpose and Study Design
In order to fit an MMR, the number of latent groups has to be specified. Selection of the best
fitting model, i.e., the model with the appropriate number of latent groups, is critical to ensure
that the model does not under-fit or over-fit the data. Likelihood-based goodness-of-fit measures
are one of the most common approaches for model selection and usually evaluate the tradeoff
between log-likelihood and model complexity. Previous studies on mixed membership models
and mixture IRT models (Erosheva, 2002; Erosheva & Fineberg, 2007; Gormley & Murphy,
2009; Li, et al., 2009) employed Akaike’s information criterion (AIC; Akaike, 1974), Bayesian
Information Criterion (BIC; Schwartz, 1978), deviance information criterion (DIC; Spiegelhalter,
Best, Garlin & Van Der Linde, 2002), and Akaike’s information criterion for MCMC samples
(AICM; Raftery et al., 2007) to determine the number of latent groups.

AIC and BIC were originally developed for maximum likelihood estimators and were
modified for use with MCMC estimation (Congdon, 2003). According to Congdon (2003), the
modified AIC and BIC for MCMC estimation are defined as follows:

AIC =D(8) +2p (9)
BIC = D(6) + log(N)p

D(8) = -2 %3_, 1(8¥|X)
where D (8) is the posterior mean deviance given relevant parameters &, p is the number of

estimated parameters, N is the number of observations, and (6| X) is the log-likelihood in
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iteration s after burn-in. The definition of p and N, however, is not straightforward in Bayesian
models especially in those that have informative prior information (Erosheva, 2002;
Spiegelhalter, Best, Carlin & van der Linde, 2014).
DIC can be conveniently computed with MCMC estimation and is defined as follows:
DIC = D(8) + 2*p,, (10)
pp =D(8) — D(8)
D(8) = -21(8|X)
where D(8) is the deviance given the point estimates of the parameters calculated using posterior
samples. DIC has been criticized for its tendency to overfit, that is, to select more complex
models (Van der Linde, 2005, 2012). Thus, Plummer (2008) and Ando (2012) recommended
DIC* that has a larger penalty on model complexity than DIC.
DIC* = D(8) + 3*p,  (11)
For AIC, BIC, DIC and DIC*, the models with smaller values among candidate models
are preferred.
AICM is analogous to AIC and was developed for use with MCMC estimation. It is
defined as:
AICM = 2(I(8[X) - sfsx)  (12)
11X = ;251 1(8910)
skax = 3 232,(1(89|x) — T(8TX))>
The models with larger AICM are preferred.
Previous studies showed that AIC, BIC, DIC and AICM may not always agree on the
best fitting models with latent groups and some of them outperform the others in certain

conditions for certain models (Erosheva & Fineberg, 2007; Li, et al., 2009). For example, the
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BIC, modified for use with MCMC estimation, has been found to outperform the other measures
for mixture IRT models (L1, et al., 2009), whereas AICM has been found to be one of the best-
performing model selection measures in a mixed membership model (Erosheva & Fineberg,
2007).

In this chapter, the performance of AIC, BIC, DIC, DIC* and AICM for selecting the best
fitting MMR model estimated using MCMC under different testing conditions was examined
using simulated data. The calculations of these measures follow the above equations. In equation
(9), p is defined as the total number of item difficulty parameters across latent groups, which is
consistent with the definition in Li, e. al.’s study (2009). For example, in a two-latent-group
MMR model that is fitted to responses to 15 test items, p is equal to 15 x 2 = 30. In equation
(10), I(8]X) is defined as

[(®,8,b]X) = log( [T, [1=, 25-1 Tog® By (X151 20,9, 8, by)))

—

where 7,4, 6,, and Eg\] are posterior sample means and Z,, ; is a posterior sample mode. In

equation (12), [(6®]X) is defined as
I(m*, 6%, b°|X) = log( T, Hle Y61 mig® Py(Xij|Zijg°, 6:5,bg;"))
= i1 Xy Log{E§=1 mig® P (Xij|Zije®s 6.7 bg;M)}-
The simulation conditions for this study were the same as those described for Study I.
That is, the data were generated given two latent groups, three sample sizes (N = 300, 500 and
1000) and three test lengths (J = 6, 15 and 30 items). For each condition, the simulation was
replicated 50 times. For each simulated data set, the MMR models with no latent groups, two
latent groups, three latent groups and four latent groups were fitted using the MCMC algorithm.
The Dirichlet(0.25, 0.25) prior on m; is the same as the generating distribution of ;. Each

MCMC chain was run for 20,000 iterations with the first 10,000 discarded as a burn-in.
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6.2. Results
Table 5 shows how often an information criterion measure picks a model as the optimal model
across the 50 replications under each testing condition. BIC appears to be the best-performing
measure since it picks the models with two latent groups 100% of the time across all conditions.
AIC is next closest in selecting the correct model although its performance is inconsistent across
testing conditions. In some of the conditions, AIC selects the correct model more than 94% of
the time whereas in other conditions, AIC fails to capture the correct model at all. Moreover,
AIC tends to pick more complex models. DIC and DIC* consistently miss the correct model
across all the conditions and favor more complex models. AICM is close to missing the correct
model across all the conditions all the time. In some conditions, it favores the simplest model and

in some other conditions, it favors the most complex model.
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Table 5. Percent of replications in which an information criterion picked out a model as the

optimal model.

N J G AIC BIC DIC DIC* AICM
300 6 1 O 0 0 0 96
2 98 100 O 0 4
3 2 0 28 20 0
4 0 0 72 80 0
151 0 0 0 0 6
2 70 100 O 0 0
3 26 O 18 20 6
4 4 0 82 80 88
30 1 O 0 0 10 100
2 20 100 O 0 0
3 70 O 6 0 0
4 10 O 94 90 0
500 6 1 O 0 0 0 0
2 84 100 O 0 0
3 16 O 20 20 28
4 0 0 80 80 72
151 0 0 0 0 44
2 20 100 O 0 0
3 48 0 2 2 0
4 32 0 98 98 56
30 1 0 0 0 0 100
2 0 100 O 0 0
3 4 0 2 4 0
4 96 O 98 96 0
1000 6 1 O 0 0 0 0
2 94 100 O 0 0
3 6 0 40 28 36
4 0 0 60 72 64
15 1 0 0 0 0 64
2 0 100 O 0 0
3 0 0 0 0 0
4 100 O 100 100 36
30 1 O 0 0 0 100
2 0 100 O 0 0
3 0 0 0 0 0
4 100 O 100 100 O

Note. The models with 2 latent groups are the true models.
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CHAPTER 7
SUMMARY AND DISCUSSION
IRT models have been widely applied to analyze educational test data. They are usually used to
estimate respondents’ ability as well as the characteristics of test items such as item difficulty
and item discrimination. The Rasch model is the simplest IRT model. It only includes item
difficulty for the item characteristics. Item discrimination is represented in the Rasch model but
is typically assumed to be 1 for all items.

One of the variants of the conventional IRT models is mixture IRT. A mixture IRT model
accounts for the possible heterogeneity in model parameters by detecting latent groups of
respondents in the data. For example, respondents may solve problems using different strategies
and may show different test-taking behaviors. The same set of test items may perform differently
for different groups of respondents.

Mixture IRT models can be used to accommodate this scenario and to estimate
respondents’ latent group membership as well as the item characteristics under each latent group.
The assumption in mixture IRT models is that each respondent remains in the same latent group
across the entire test. Using the analogy above of different problem-solving strategies, a mixture
IRT model assumes that the respondents in a given latent group use the same problem-solving
strategy over all test items. It is possible, however, that a respondent switches between problem-
solving strategies across items. To account for this possibility, in this dissertation, a mixed
membership Rasch (MMR) model was developed by integrating the Rasch model into the

framework of mixed membership models.
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The MMR allows a respondent to belong to all the possible latent groups in the data but
with different probabilities at the test level. This is represented by a membership probability
vector r; for each respondent. At the item level, the MMR assumes that a respondent belongs to
one of the latent groups for a given item, denoted by Z;;, and the respondent may belong to
different latent groups for different items. For a given latent group, the probability of a correct
response to an item is parameterized using the Rasch model.

In the Rasch model as well as for IRT models in general, the scale of item difficulty and
ability parameters is undetermined. This can potentially result in nonconvergence of an
estimation algorithm for the IRT models. Therefore, researchers and IRT analysis software
usually implement a scale on either item difficulty or ability parameters. For mixture IRT and the
MMR, it is important to not only determine a scale for the parameters but also to make sure that
the parameters across latent groups are on the same scale given how the parameter estimates are
sampled iteratively in the estimation algorithms as well as the need that the parameters across
latent groups are comparable for interpretability purposes. Consistent with common practice in
studies employing a mixture Rasch model, a constraint that the item difficulty parameters sum to
0 as described in Rost (1990) was imposed for each latent group. In this way, the parameters in
the Rasch model had a fixed scale and were on the same scale across latent groups. This
constraint was considered reasonable in the current simulation studies since the sum of the
generating item difficulty parameters was O for each latent group. However, when the sum of the
generating item difficulty parameters is not 0, such a constraint would bias the estimates and
more appropriate scaling methods would need to be employed (Paek & Cho, 2015).

In this dissertation, simulation studies were conducted to investigate how well the

parameters in the MMR could be recovered under practical testing conditions and what factors
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affected the recovery. The MMR was estimated using a Metropolis-within-Gibbs algorithm. The
results of the simulation studies showed that the recovery of mr; and Z;; improved as test length
increased. The use of an incorrect prior for m;, that is, a prior that was different from the
generating distribution of m;, negatively affected their recovery. Increasing test length appeared
to be able to overcome such negative effects. Sample size, however, did not appear to influence
the recovery of neither m; nor Z;;. The recovery of Z;; was reasonably good even though there
was only one observed data point that could be used to estimate Z;;. The recovery of item
difficulty parameters b, ; improved as sample size increased. The recovery also improved
slightly as test length increased from small to medium. When the wrong prior was used for m;,
the recovery of b, ; was worse compared with when the true prior was used. Increasing test
length and sample size, however, did not seem to cancel out such negative effects. The recovery
of ability parameters improved as test length increased but did not seem to be influenced by
neither sample size nor choice of prior for ;.

An unexpected result was that knowing item difficulty parameters did not appear to
improve the recovery of r; and Z;;. As shown in Chapter 3, the posterior of m; is a function of
Z;; and the likelihood in the posterior of Z;; is a function of ability and item difficulty
parameters. Galyardt (2012) suggested that knowing the parameters in the likelihood of the
posterior of Z;; returned better recovery of m; in a mixed membership model. In the current
MMR, since the likelihood in the posterior of Z;; is a function of both item difficulty and ability
parameters, knowing only item difficulty parameters may not have been sufficient to improve the
estimation of Z;; and m;.

In this dissertation, parameter recovery was evaluated using RMSE, bias and the

correlation between posterior estimates and generating parameters. For item difficulty and ability
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parameters, it would be useful to compare their recovery obtained in the current simulation
studies with previous simulation studies on IRT models to get some further insight as to how
well the parameters in IRT models can be estimated in a model as complicated as the MMR.
Such comparisons, however, are somewhat complicated as different studies have used different
simulation designs and have defined recovery statistics in different ways even though the
statistics are called by the same name (e.g., Natesan, Minka & Rubright, 2016; Si &
Schumacker, 2004). Future research addressing these differences in recovery studies would be
helpful.

In this dissertation, simulation studies were also conducted to evaluate how well different
likelihood-based goodness-of-fit measures performed in selecting the optimal number of latent
groups for the MMR. Results suggested that BIC consistently selected the model with the correct
number of latent groups across different sample sizes and test lengths that were examined in this
study. AIC’s performance was less consistent across testing conditions and did not appear to
improve as either sample size or test length increased. DIC and DIC* tended to consistently
favor more complex models across testing conditions. AICM tended to favor the simplest model
in some testing conditions and the most complex model in the other conditions. The patterns of
AIC, BIC, DIC and DIC* were somewhat consistent with previous research by Li et al. (2009)
on the performance of model selection indices for mixture IRT models. AICM has not been
applied to select the number of latent groups for mixture IRT models. For mixed membership
models, AICM has showed acceptable performance (Erosheva et al., 2007; Kim, 2019) For the
MMR, however, AICM generally failed to select the correct model consistently across
conditions. Such inconsistency in the performance of AICM across mixed membership models

and their variants may indicate that the behavior of AICM is sensitive to how a model is set up.
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It is also noted that even though BIC performed well in the current simulation study, both
AIC and BIC are functions of the number of estimated parameters and determining the number
of estimated parameters in hierarchical models such as the MMR and mixture IRT models
estimated using Bayesian methods is not necessarily straightforward. Previous studies that
involved using information criterion measures to select number of latent groups for Bayesian
mixture IRT (Li et al., 2009) and mixed membership models (Erosheva et al, 2007) did not fully
investigate this issue and many of the previous studies did not report how the number of
estimated parameters was defined (e.g., Erosheva et al., 2007; Huang, 2016).

Overall, the results of this dissertation suggest that the MMR can be estimated well under
certain conditions and thus has the potential to help researchers understand respondents’ partial
memberships in all the latent groups that might exist in the data and their behaviors of switching
between latent groups across test items.

In this dissertation, how well the parameters in the MMR can be recovered under
different conditions was examined only when there were two latent groups in the data. Future
studies should increase the number of latent groups so that a more complete picture of the
patterns of parameter recovery in different conditions can be drawn. Galyardt (2012) and
Erosheva et al. (2007) showed that each mixed membership model could be rewritten as a finite
mixture model with far more latent groups than the mixed membership model. Since mixture
Rasch model follows the framework of finite mixture models, future studies may also focus on
understanding the relationship between the MMR and the mixture Rasch models. This might
help researchers further investigate the statistical properties of the MMR and the possible bias in
the estimates of item difficulty and ability parameters in the mixture Rasch models when partial

membership and switching behaviors should not be omitted.
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APPENDIX A

R code for Study |

# R code for a Metropolis-within-Gibbs algorithm for the MMR (item difficulties are known)

# note: | tried to make sure that the object names in the following R code are somewhat
#consistent with the notations in the MMR to make reading the R code easier.

# alpha = the hyperparameter in the prior distribution of pi

# start.z = starting values of z

# start.theta = starting values of theta

# n.group = number of latent groups

# n.sample = number of individuals

# n.item = number of items

# n.iter = number of iterations

# data = binary response data matrix with rows as individuals and columns as items

library(gtools)

# create functions used to update pi.i (Gibbs sampler)
posterior.pi.i= function(z.i, n.group){
alpha.new= alpha + table(factor(z.i, levels= 1:n.group))
draw= rdirichlet(1, alpha.new) # draw a sample from the approximate posterior distribution
of pi.i
return(draw)
}

# create functions used to update z.ij (Gibbs sampler)
posterior.z.ij= function( pi.i, theta.i, b.j, X.ij){
p.j= exp(theta.i- b.j)/ (1+ exp(theta.i- b.j))
if (x.ij==1){
p.new= p.j*pi.i
draw= rmultinom(1, 1, p.new) # draw a sample from the approximate posterior distribution
of z.ij whenx.ij=1
z.tmp= which(draw==1)
}
else if (x.ij==0){
p.new.2= (1-p.j)*pi.i
draw= rmultinom(1,1, p.new.2) # draw a sample from the approximate posterior
distribution of z.ij when x.ij =0
z.tmp= which(draw==1)

}
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return(z.tmp)

}

# create functions used to update theta.i (Metropolis step)
likelihood.theta.i= function(z.i, theta.i, b, n.item, x.i){ # calculate the log-likelihood of
individual i’s response to each item
I=rep(NA, n.item)
for (i in 1:n.item){
b.gj= b[,i][z.i[i]]
p.jg= exp(theta.i- b.gj)/ (1+ exp(theta.i- b.gj))
I[i]= dbinom(x.i[i], size=1, prob= p.jg, log=T)
¥

return(sum(l))

prior.theta.i= function(theta.i){ # evaluate the prior density function of theta at a given sample
of theta

return(dnorm(theta.i, 0, 1, log=T))
}

posterior.theta.i= function(z.i, theta.i, b, n.item, x.i){ # calculate the posterior distribution on
log scale
post= likelihood.theta.i (z.i, theta.i, b, n.item, x.i)+ prior.theta.i(theta.i)
return(post)
¥
proposal.theta.i= function(theta.i){ # draw a sample of theta from a proposal distribution
draw= rnorm(1, theta.i, sd=0.5)
return(draw)

}

# MCMC.
run.mcmc = function(alpha, start.z, b, start.theta, n.group, n.sample, n.item, n.iter, data){

# create objects to store MCMC samples

pi= vector('list', n.iter-1) # create a list to store samples of pi obtained in all the iterations.

z=vector(list', n.iter)  # create a list to store samples of z obtained in all the iterations.

theta= matrix(NA, nrow= n.iter, ncol= n.sample) # create a matrix to stores samples of
theta obtained in all the iterations with rows as iterations and columns as individuals.

z[[1]]= start.z  # store starting values of z

theta[1,]= start.theta # store starting values of theta

# run MCMC
for (i in 2:n.iter){ # n.iter = number of iterations
### Update pi
pi.mat= matrix(NA, nrow= n.sample, ncol=n.group) # In each iteration, samples are
stored in a matrix with rows as individuals and columns as groups.
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for (j in 1:n.sample){
pi.mat[j,]= posterior.pi.i(z.i= z[[i-1]][j,], n.group)

¥
pi[[i-1]]= pi.mat

### update z
z.mat= matrix(NA, nrow= n.sample, ncol= n.item) # In each iteration, samples are stored in
a matrix with rows as individuals and columns as items.

for (j in 1:n.sample){

for (nin L:n.item){

z.mat[j, n]= posterior.z.ij(pi[[i-1]][j.], theta[i-1, j], b[, n], data[j, n])

¥

}

z[[i]]= z.mat

### update theta
for (j in 1:n.sample){
draw= proposal.theta.i(theta[i-1, j])
p.ratio.2= exp(posterior.theta.i(z[[i-1]][j,], draw, b= b, n.item, data[j,])-
posterior.theta.i(z[[i-1]][j,], theta[i-1, j], b= b, n.item, data[j,])) # calculate the
ratio of posterior densities. The ratio was on log scale. The exponential function takes it back
to the regular scale of a ratio.
tmp= runif(1, 0,1)
if (tmp<p.ratio.2){ # to decide if a sample drawn at this iteration should be retained
thetal[i, j]= draw
} else(
thetal[i, j]= theta[i-1, j]
)
}
¥
return(list(pi= pi, z=z, b = b, theta=theta))
¥
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APPENDIX B

R code for Study 1l

# R code for a Metropolis-within-Gibbs algorithm for the MMR (item difficulties are
unknown)

library(gtools)

# create functions used to update pi.i (Gibbs sampler)
posterior.pi.i= function(z.i, n.group){
# browser()
alpha.new= alpha + table(factor(z.i, levels= 1:n.group))
draw= rdirichlet(1, alpha.new)
return(draw)

}

# create functions used to update z.ij (Gibbs sampler)
posterior.z.ij= function( pi.i, theta.i, b.j, X.ij){
p.j= exp(theta.i- b.j)/ (1+ exp(theta.i- b.j))
if (x.ij==1){
p.new= p.j*pi.i
draw= rmultinom(1, 1, p.new)
z.tmp= which(draw==1)

}

else if (x.ij==0){
p.new.2= (1-p.j)*pi.i
draw= rmultinom(1,1, p.new.2)
z.tmp= which(draw==1)

¥

return(z.tmp)

}

# create functions used to update theta.i (Metropolis step)
likelihood.theta.i= function(z.i, theta.i, b, n.item, x.i){
# browser()
I=rep(NA, n.item)
for (i in L:n.item){
b.gj= b[i][z.i[i]]
p.jo= exp(theta.i- b.gj)/ (1+ exp(theta.i- b.gj))
I[i]= dbinom(x.i[i], size=1, prob=p.jg, log=T)

return(sum(l))
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}

prior.theta.i= function(theta.i){
return(dnorm(theta.i, 0, 1, log=T))
¥

posterior.theta.i= function(z.i, theta.i, b, n.item, x.i){
post= likelihood.theta.i (z.i, theta.i, b, n.item, x.i)+ prior.theta.i(theta.i)
return(post)

¥

proposal.theta.i= function(theta.i){
draw= rnorm(1, theta.i, sd= 1)
return(draw)

}

# create functions used to update b.gj (Metropolis step)
likelihood.b.gj= function(x.j, theta, b.gj, z.j, g){ # for individuals who are in latent group g on
item j, calculate the log-likelihood of their responses to item j

X.J.9= x.j[z.j==9]

p.gj= exp(theta[z.j==g] - b.gj)/ (1+ exp(theta[z.j==g]- b.gj))

I= dbinom(x.j.g, size=1, prob = p.gj, log = T) # log-transformed

return(sum(l))

prior.b.gj= function(b.gj){ # evaluate the prior density function of b.gj at a given sample of

b.gj
return(dnorm(b.gj, 0, 1, log=T))
}

posterior.b.gj= function(x.j, theta, b.gj, z.j, g){ # calculate the posterior distribution on log
scale

likelihood.b.gj(x.j, theta, b.gj, z.j, g)+ prior.b.gj(b.gj)
¥

proposal.b.gj= function(b.gj){
draw= rnorm(1, b.gj, sd= 1) # draw a sample from a proposal distribution
return(draw)

}

# MCMC
run.mcmc = function(alpha, start.z, start.b, start.theta, n.group, n.sample, n.item, n.iter, data,
sum.difficulty){

pi= vector(list', n.iter-1)

z= vector(list', n.iter)

b= vector(list', n.iter) # create a list to store the samples of b obtained in all the iterations
theta= matrix(NA, nrow= n.iter, ncol= n.sample)
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z[[1]]= start.z
b[[1]]= start.b
theta[1,]= start.theta

for (iin 2:n.iter){

### Update pi
pi.mat= matrix(NA, nrow= n.sample, ncol=n.group)
for (j in 1:n.sample){

# browser()

pi.mat[j,]= posterior.pi.i(z.i= z[[i-1]][j,], n.group)
¥
pi[[i-1]]= pi.mat

### update z
z.mat= matrix(NA, nrow= n.sample, ncol= n.item)
for (j in 1:n.sample){
for (nin L:n.item){
z.mat[j, n]= posterior.z.ij(pi[[i-1]][j.], theta[i-1, j], b[[i-1]][, n], data[j, n])
b

z[[i]]= z.mat

### update theta
for (j in 1:n.sample){
draw= proposal.theta.i(theta[i-1, j])
p.ratio.2= exp(posterior.theta.i(z[[i-1]][j.], draw, b= b[[i-1]], n.item, data][j,])-
posterior.theta.i(z[[i-1]][j,], theta[i-1, j], b= b[[i-1]], n.item, data[j,]))
tmp= runif(1, 0,1)
if (tmp<p.ratio.2){
theta[i, j]= draw
} else(
theta[i, j]= theta[i-1, j]
)
}

### update b
b.mat= matrix(NA, nrow= n.group, ncol= n.item) # In each iteration, samples are stored in a
matrix with rows as groups and columns as items.
for (g in 1:n.group){
for (tin L:n.item){
draw= proposal.b.gj(b[[i-1]][g, t])
p.ratio.3= exp(posterior.b.gj(datal,t], theta[i-1, ], draw, z.j= z[[i-1]][, t], 9)-
posterior.b.gj(data[,t], theta[i-1, ], b[[i-1]][g, t], z.j= z[[i-1]][,t], 9)) # calculate
the ratio of the posterior densities. The ratio was on log scale. The exponential function takes it
back to the regular scale of a ratio.

61




tmp=runif(1, 0, 1)
if (tmp< p.ratio.3){ # to decide if a sample drawn at this iteration should be retained
b.mat[g, t]= draw
}else{
b.mat[g, t]= b[[i-1]][9. ]
¥
}
b
for (g in 1:n.group){ # at the end of each iteration, rescale the samples of b obtained in this
iteration
constant = (sum.difficulty - sum(b.mat[g,]))/n.item
b.mat[g,] = b.mat[g,] + constant

¥
b[[i]]= b.mat

return(list(pi= pi, z=z, b=Db, theta=theta))
¥
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APPENDIX C

R code for Study Il

# R code for calculating D(98)

mean.deviance= function(X, inter, burn, people, response.c, item){
# x = an object returned by function run.mcmc()
# iter = number of iterations in the MCMC chain
# burn = number of iterations used as a burn-in
# people = number of individuals
# response.c = a binary response matrix with rows as individuals and columns as items
log.l.mat=rep(NA, times= iter) # create a vector to store the sum of the log-likelihood of all
the responses given the samples of the parameters obtained at that iteration
for (r in (iter-burn+1):iter) {
mat.i= rep(NA, people)
for (i in 1: people) {
p=1/(1+ exp(-(x[[411Lr, 11 - x[[311[[r1D))
p.i.c= t(p)*response.cli,]
p.i.w= (1-t(p))*(1-response.c[i,])
p.i= p.i.c+ p.iw
p.i.marginal= x[[1]][[r-1]11[i, ] %*% t(p.i)
mat.i[i]= sum(log(p.i.marginal))

log.l.mat[r] = sum(mat.i)

return(list(mean(log.l.mat, na.rm = T), var(log.l.mat, na.rm = T)))

}

# R code for calculating D(8)

deviance.mean= function(x, people, response.c, item){
# x stores point posterior estimates
mat.i= rep(NA, people)
for (i in 1: people) {
p= 1/(1+ exp(-(x[[31]L1] - x[[211)))
p.i.c= p*response.cfi,]
p.i.w= (1-p)*(1-response.c[i,])
p.i= p.i.ct p.i.w
p.i.marginal= x[[1]][i, ] %*% t(p.i)
mat.i[i]= sum(log(p.i.marginal))
b

return(sum(mat.i))
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