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ABSTRACT 

 Mixture IRT models have been applied to investigate the latent groups that exist in the 

respondent population and how the same set of test items function differently for different latent 

groups. However, they assume that a respondent remains in the same latent group across test 

items, which can be unreasonable in certain scenarios. In this dissertation, a mixed membership 

Rasch model (MMR) is developed to help overcome this limitation in mixture IRT models. The 

MMR is built by integrating the Rasch model into the framework of mixed membership models 

which are considered as a soft clustering technique. In the MMR, a respondent belongs to all the 

latent groups but with different probabilities at the test level. At the item level, a respondent 

belongs to only one of the latent groups in each test item and the latent group to which he or she 

belongs can be different across items. For a response to an item, the probability of a correct 

answer is parameterized using the Rasch model and the item difficulties in the Rasch model are 

assumed to vary with latent groups. The MMR is estimated using a Metropolis-within-Gibbs 

algorithm. This dissertation includes three simulation studies. In Study I, parameter recovery of 

the MMR is investigated given different test conditions and different priors used in the 

Metropolis-within-Gibbs algorithm, when the item difficulties across latent groups are known. 

The design and the purpose of Study II are similar to those in Study I except that in Study II, 



item difficulties across latent groups are unknown and thus also need to be estimated. In order to 

run the MMR, the number of latent groups has to be specified even though it is typically 

unknown. Selecting the best fitting model from among candidate models is an important part of 

modeling with an MMR. Therefore, in Study III, the performance of several widely applied 

information criteria is examined in different test conditions in term of their accuracy in selecting 

the best fitting MMR.   
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CHAPTER 1 

INTRODCUTION 

Item Response Theory (IRT) refers to a family of statistical models designed to measure a 

continuous latent trait based on observed binary responses to tests, surveys or other types of 

psychological or educational measures (Baker & Kim, 2004). IRT assumes that the probability of 

a correct response or the probability of endorsing a target option of an item is a function of item 

characteristics and the status of the respondent on the latent trait. Item characteristics in the 

common IRT models include item difficulty, item discrimination and pseudo-guessing. In 

educational studies, the latent trait is usually defined as the ability in a certain subject, e.g., 

mathematical computation ability (Wu & Adams, 2006). Based on how many parameters of item 

characteristics are included, IRT models are categorized as 1-parameter, 2-parameter and 3-

parameter models with the Rasch model as a special case of the 1-parameter model.  

Another basic assumption of IRT is that a set of items have the same item characteristics 

for the entire respondent population (Lord & Novick, 1968). This assumption is violated when 

the respondent population is heterogeneous, such as with respect to the problem-solving 

strategies used in answering questions (e.g., Mislevy & Verhelst, 1990; Rost, 1990). For 

example, in a visual spatial task that shows respondents several three-dimensional objects and 

asks them to determine which of these objects is the same as the target object, respondents may 

solve the problem by rotating the target object mentally or by detecting matching features 

between the options and the target object (French, 1965; Lohman, 1979). The same task can be 
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relatively harder to solve for one strategy than the other depending on the characteristics of the 

objects (Kyllonen et al., 1984).  

The respondent population can also be heterogeneous because of their different test-

taking behaviors. One example is from low-stakes tests. Performance in a low-stakes test does 

not usually have significant consequences for the respondents (Wise & Kong, 2005). The 

Program for International Student Assessment (PISA), for example, is a low-stakes assessment 

because its purpose is to evaluate the quality of school systems rather than to make decisions on 

the students.  Even in a low-stakes test, some respondents still actively seek to answer the 

questions. Wise and Kong describe this kind of test-taking behavior as solution behavior (SB). 

Other respondents, however, may not necessarily be motivated to answer the questions with high 

effort. Instead, they may respond so quickly that it is reasonable to assume they did not even 

fully read and consider the questions. This is called rapid-guessing behavior (RGB). For a given 

ability level, the same set of questions may appear to be harder for respondents who display 

RGB as compared with respondents who display SB (Schlosser, Neeman & Attali, 2019).  

In the above examples of visual spatial tasks and low-stakes tests, respondents who apply 

the same problem-solving strategy or who display the same test-taking behavior might be 

classified into one group. The item characteristics of the same set of test questions may differ 

across groups. Assuming the same set of item characteristics for the entire population, however, 

may overestimate or underestimate the item characteristics and ability and even reduce the 

validity of the tests, since a response is not only a function of the respondent’ ability level but 

also of which latent group to which the respondent belongs (Bolt, Cohen & Wollack, 2002; 

Embretson, 2007; Oshima, 1994).  
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When such groups are latent, that is, not observed, mixture IRT models can be used to 

account for the latent heterogeneity in respondent populations. These models estimate ability and 

item characteristics for each latent group and also estimate to which latent group each respondent 

belongs (Rost, 1990). Embretson (2004) and Mislevy and Verhelst (1990) employed mixture IRT 

models to measure respondent’s spatial ability given their problem-solving strategies in visual 

spatial tasks. Liu et al. (2018) developed a multilevel mixture IRT model for both the process 

data generated during problem solving and final responses to investigate students’ strategy use in 

a computer-based finding-the-quickest-route task in the Program for International Student 

Assessment (PISA). Meyer (2010) and Swanson (2015) used mixture IRT and its variants to 

detect students who randomly guessed answers rather than responded to test questions seriously 

in low-stakes tests.  

Except for being applied to studying problem-solving strategies and test-taking 

behaviors, mixture IRT models and their extensions have also been applied to studying the effect 

of speededness (Bolt, Cohen & Wollack, 2002), learning motivation (Johns & Woolf, 2006), 

food security status (Maia et al., 2020), differential item functioning (Cohen & Bolt, 2005), etc.  

Mixture IRT models, following the framework of finite mixture models, assume that each 

respondent belongs to one and only one of the latent groups across the entire test. They also 

assume that the probabilities of belonging to each latent group are the same across respondents in 

the population. When mixture IRT models are applied to studying problem-solving strategies and 

a latent group represents a strategy, such assumptions may not always be true. There is evidence 

to suggest that respondents switch strategies across problems and there is individual difference in 

strategy choice. Young elementary school children, for example, switched strategies on simple 

arithmetic and spelling problems (Siegler, 1987; Rittle-Johnson & Siegler, 1999), and the 
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differences in their strategy choice in simple arithmetic problems can be largely explained by the 

differences in their arithmetic ability (Siegler, 1987).  Teenagers were observed to switch 

strategies at different steps in solving the problem of finding the quickest route in a computer-

based PISA task (Liu et al., 2018). In the context of spatial tasks, respondents may switch 

between strategies across questions, either as an outcome of learning after they answer more 

questions and explore different strategies (Lohman, 1979), or as motivated by the different 

characteristics and presentation forms of the questions (Kyllonen, Lohman & Snow, 1984). And 

the strategy that a respondent tends to employ to effectively solve a spatial task may be a 

function of the respondent’s verbal abilities (Salomon, 1974).  

When mixture IRT models are applied to studying test-taking behaviors and a latent 

group represents a test-taking behavior, the above assumptions in mixture IRT models may not 

be appropriate, either.  For example, factors such as ability, cognitive resources and motivation 

can predict respondents’ general tendency to engage in RGB in low-stakes tests, but engaging in 

RGB may also be influenced by the characteristics of specific questions, such as the surface 

features of the questions (Wise et al., 2009). As a result, when the characteristics of the questions 

change, a respondent may not consistently demonstrate RGB but rather may switch between 

RGB and SB over the course of the test.  

Ignoring respondents’ possible multiple membership in latent groups and switching 

between latent groups across test items might potentially reduce the validity of a test. Mislevy 

and Verhelst (1990) briefly pointed out this limitation of mixture IRT in a paper on using a 

mixture IRT model to study problem-solving strategies in visual spatial tasks. However, this 

issue was not further investigated in subsequent research on mixture IRT models. Therefore, 

developing a modified IRT model that could account for the possibility that a respondent belongs 
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to multiple latent groups and switches between latent groups across test items and that also 

allows for individual differences in the tendency to belong to different latent groups can be 

useful, especially when the model aims to study respondents’ problem-solving strategies or test-

taking behaviors while measuring their abilities.  

Mixed membership models are a soft clustering technique that allows an individual to 

belong to multiple latent groups (Erosheva, 2002). In this dissertation, I introduce a mixed 

membership Rasch (MMR) model developed by integrating a standard Rasch model into the 

framework of mixed membership models. The literature noted above suggests that, when 

respondents belong to multiple latent groups and switch between latent groups across test items, 

it may be a function of the cognitive and noncognitive factors of the respondents or the specific 

characteristics of the test items. The purpose of the MMR, however, is to account for a simpler 

scenario of multiple membership and switching behaviors of test respondents using their correct 

or incorrect responses to test questions. Specifically, this MMR assumes that a respondent 

belongs to multiple latent groups with different probabilities at test level. These probabilities 

remain the same for a given respondent across test items but vary over respondents. The model 

also assumes that in a test item, a respondent belongs to one of the latent groups, but allows a 

respondent to belong to different latent groups on different test items. This is typically 

interpreted as the respondent’s switching behaviors in the literature of mixed membership 

models (Erosheva, 2002).  Given a latent group, the probability of a correct response to a test 

item is parameterized using the Rasch model. The item difficulties in the Rasch model are 

assumed to vary over latent groups.  

This dissertation includes seven chapters. In chapter 2, I review mixture IRT models, 

mixed membership models and their identifiability and scaling issues. In chapter 3, I introduce 
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the MMR and explain the generative assumptions and the interpretations of this model. I also 

present the Monte Carlo Markov Chain (MCMC) algorithm used to estimate the model. In order 

to show that the MMR is a useful model, it is important to understand how well the model can be 

estimated and what factors would affect the estimation. In chapters 4 and 5, I present the results 

of simulation studies that investigate how well the parameters in the MMR can be recovered 

under various simulation conditions. Another practical question to ask before an MMR model is 

specified is how many latent groups there are in the respondents. This number is usually 

unknown.  Chapter 6, therefore, investigates which model selection indices perform well in 

selecting the correct number of latent groups for the MMR models using simulated data. In 

chapter 7, I summarize the findings of chapters 4-6 and discuss the scaling issue in the MMR and 

the challenges of comparing current results with those in previous related studies on IRT. I also 

discuss what might be investigated in future studies for the MMR.  
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CHPATER 2 

LITERATURE REVIEW 

2.1 Rasch Models and Mixture Rasch Models 

In IRT, the probability of a correct response to a dichotomous item is a function of item 

characteristics and the status of the respondent on the latent trait. This latent trait is commonly 

referred to as ability in education studies. In the Rasch model, item difficulty is assumed to vary 

with test items, item discrimination is fixed as 1 across items and the probability of correctly 

guessing on an item when ability level is extremely low is assumed to be zero (Baker & Kim, 

2004). Let 𝜃𝑖 denote the ability of respondent i, 𝑏𝑗 denote the difficulty of item j and 𝑋𝑖𝑗 denote a 

binary response of respondent i to question j. In the Rasch model, the probability of a correct 

response to item j is:  

P(𝑋𝑖𝑗 = 1| 𝜃𝑖, 𝑏𝑗) = 
1

1+ 𝑒
−(𝜃𝑖 − 𝑏𝑗)       

and 𝑋𝑖𝑗 follows a Bernoulli distribution with success probability P(𝑋𝑖𝑗 = 1| 𝜃𝑖, 𝑏𝑗). Suppose there 

are N respondents and J items. Given 𝜽 = (𝜃1,…, 𝜃𝑖, …, 𝜃𝑁) and b = ( 𝑏1, …, 𝑏𝑗, …, 𝑏𝐽), 

responses to all the items from all the respondents are assumed to be independent. In this case, 

the likelihood of the responses across respondents and across items given ability and item 

difficulty parameters is the product of the probability of a response given the relevant ability and 

item difficulty parameters, P(X| 𝜽, b) = ∏ ∏ 𝑃(𝑋𝑖𝑗 |𝜃𝑖 , 𝑏𝑗)𝑗𝑖 . 

Mixture Rasch models follow the framework of finite mixture models. These models 

assume that there are G latent groups in the respondent population and the item difficulties in the 
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Rasch model vary across latent groups (Bolt, Cohen & Wollack, 2002). The mixture Rasch 

model can be specified as follows:   

Suppose there are G latent groups, let 𝑏𝑔𝑗 denote the item difficulty of item j in latent 

group g, 𝜃𝑔𝑖 denote respondent i’ s ability given membership in latent group g, and 𝑍𝑖 denote the 

latent group to which respondent i belongs.  𝑍𝑖 can take on integer values that range from 1 to G. 

𝑏𝑔𝑗 and 𝜃𝑔𝑖 are latent group specific and thus are the component parameters in a mixture Rasch 

model. In a mixture Rasch model, the probability of a correct response to item j given latent 

group g and the corresponding component parameters is the following:  

𝑃(𝑋𝑖𝑗 = 1| 𝑍𝑖𝑔 = 𝑔, 𝜃𝑔𝑖, 𝑏𝑔𝑗) = 
1

1+ 𝑒
−(𝜃𝑔𝑖 − 𝑏𝑔𝑗)       

It is noted that even though the ability parameter has a latent group index, only one 

ability is estimated for each respondent since mixture Rasch models assume that a respondent 

belongs to only one of the latent groups. One of the possible reasons of using a latent group 

index on ability parameters is that in some scenarios, the distribution of ability is assumed to 

vary with latent groups and having a latent group index makes it straightforward to assign a 

different prior distribution for the abilities in different latent groups. Another possible reason is 

to indicate that the estimation of a respondent’s ability is a function of the latent group to which 

he or she belongs and the item difficulty parameters in that latent group. Such information is 

needed to develop an estimation algorithm for a mixture Rasch model. Given 𝜽, b and Z = 

(𝑍1,…, 𝑍𝑁), responses to all the items from all the respondents are assumed to be independent 

with the likelihood of all the responses written as P(X| 𝜽, b, Z) = ∏ ∏ 𝑃(𝑋𝑖𝑗|𝜃𝑔𝑖, 𝑏𝑔𝑗 , 𝑍𝑖𝑔 = g) 𝑗𝑖 . 

Scaling in the Rasch and Mixture Rasch Models. In the Rasch model, the scale of item 

difficulty and ability parameters is undetermined. What this means is that a linear transformation 

of a set of item difficulty and ability parameters in the Rasch model can return the same 
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probability of a correct response given the original set of the parameters (Kolen & Brennan, 

2014). Let 𝜃𝑖
∗
 and 𝑏𝑗

∗
 denote the rescaled 𝜃𝑖  and 𝑏𝑗 after a linear transformation. Equation (1) 

shows that both (𝜃𝑖, 𝑏𝑗) and (𝜃𝑖
∗
, 𝑏𝑗

∗
) return the same probability of a correct response since 

P(𝑋𝑖𝑗 = 1|𝜃𝑖
∗
, 𝑏𝑗

∗
) equals P(𝑋𝑖𝑗 = 1| 𝜃𝑖, 𝑏𝑗):  

                     𝜃𝑖
∗
 = 𝜃𝑖 + B                 (1) 

𝑏𝑗
∗
 = 𝑏𝑗 + B 

P(𝑋𝑖𝑗 = 1|𝜃𝑖
∗
, 𝑏𝑗

∗
) =  

1

1+ 𝑒
−(𝜃𝑖

∗ − 𝑏𝑗
∗)

                  

                                                                              =  
1

1+ 𝑒
−(𝜃𝑖 + 𝐵   − 𝑏𝑗− 𝐵) 

                                                                              =  
1

1+ 𝑒
−(𝜃𝑖− 𝑏𝑗) 

                                                                              = P(𝑋𝑖𝑗 = 1| 𝜃𝑖, 𝑏𝑗) 

Therefore, the scale of the item difficulty and ability parameters in the Rasch model is not 

unique.  

In order to provide a scale for the item difficulty and ability parameters and also to ensure 

that the parameters across latent groups are on the same scale and thus are comparable, 

researchers typically use the constraint ∑ 𝑏𝑔𝑗𝑗  = 0 for item difficulties within each latent group in 

mixture Rasch models (Bolt, Cohen & Wollack, 2002; Meyer, 2010; Mislevy & Verhelst, 1990). 

Label switching in Bayesian estimation of the mixture Rasch models. Mixture Rasch 

models as well as finite mixture models in general have the issue of lack of identifiability 

associated with the permutations of latent group indices. That is, there is more than one way to 

label the latent groups and the different ways of labeling would return the same likelihood or 

posterior distributions in certain cases. As a result, label switching, which means latent groups 

switch between indices, may occur in the estimation algorithms of these models. The following 
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equations illustrate this lack of identifiability in mixture Rasch models estimated using Bayesian 

methods.   

In mixture Rasch models, the likelihood of all the respondents’ responses to all the items 

is P(X| 𝜽, 𝒃, 𝒁) = ∏ ∏ 𝑃(𝑋𝑖𝑗| 𝜃𝑔𝑖, 𝑏𝑔𝑗, 𝑍𝑖𝑔 = 𝑔) 𝑗𝑖 . Let 𝛾 denote a permutation of latent group 

indices. Equation (2) shows that this likelihood is the same before and after a permutation of the 

latent group indices, that is, P(X| 𝜽, 𝒃, 𝒁) = P(X| 𝛾(𝜽, 𝒃, 𝒁)). To understand this idea intuitively, 

suppose there are two latent groups. Whether the first latent group is being called group 1 or the 

second latent group is being called group 1 does not affect the likelihood of the responses as long 

as such naming is consistent across latent-group-specific parameters. Therefore, the likelihood of 

a mixture Rasch model is only identifiable up to a permutation of the latent group indices. 

P(X| 𝜽, 𝒃, 𝒁) = ∏ ∏ 𝑃(𝑋𝑖𝑗| 𝜃𝑔𝑖, 𝑏𝑔𝑗, 𝑍𝑖𝑔 = 𝑔)𝑗𝑖                   (2) 

            = ∏ ∏ 𝑃(𝑋𝑖𝑗| 𝜃𝛾(𝑔)𝑖, 𝑏𝛾(𝑔)𝑗 , 𝑍𝑖 = 𝛾(𝑔)))𝑗𝑖  

                                                   = P(X| 𝛾(𝜽, 𝒃, 𝒁)) 

In a mixture Rasch model, when priors are exchangeable over latent group indices, the 

posteriors are also only identifiable up to a permutation of the latent group indices. In statistics, 

exchangeability means the joint distribution of a set of variables P(𝑌1, 𝑌2, …, 𝑌𝑠) does not change 

after a permutation of the indices P(𝑌𝜔(1), 𝑌𝜔(2), …, 𝑌𝜔(𝑠)) where 𝜔 denotes a permutation. With 

respect to the mixture Rasch models, the joint prior distribution of all the parameters can be 

written as the product of the prior distribution of each parameter since the prior distributions are 

assumed to be independent: 

 P(𝜽, 𝒃, 𝒁) = P(𝜽)P(𝒃)P(𝒁) 

                  = ∏ ∏ 𝑃(𝜃𝑔𝑖)
𝐼(𝑍𝑖=𝑔)𝐺

𝑔=1
𝑁
𝑖=1 ∏ ∏ 𝑃(𝑏𝑔𝑗)𝐺

𝑔=1
𝐽
𝑗=1 ∏ ∏ 𝑃(𝑍𝑖 = 𝑔)𝐼(𝑍𝑖=𝑔)𝐺

𝑔=1
𝑁
𝑖=1  
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With a permutation of latent group indices, this prior can be written as: 

P(γ(𝜽, 𝒃, 𝒁)) = P(𝛾(𝜽))P(𝛾(b))P(𝛾(Z)) 

                      = ∏ ∏ 𝑃(𝜃𝛾(𝑔)𝑖)
𝐼(𝑍𝑖=𝛾(𝑔))𝐺

𝑔=1
𝑁
𝑖=1  ∏ ∏ 𝑃(𝑏𝛾(𝑔)𝑗

𝐺
𝑔=1

𝐽
𝑗=1 )  × 

                         ∏ ∏ 𝑃(𝑍𝑖 = 𝛾(𝑔))𝐼(𝑍𝑖=𝛾(𝑔))𝐺
𝑔=1

𝑁
𝑖=1  

If this prior distribution does not change after a permutation of the latent group indices, 

that is, P(𝜽, 𝒃, 𝒁) = P(γ(𝜽, 𝒃, 𝒁)), we say this prior is exchangeable. An example of an 

exchangeable prior in a mixture Rasch model is when the priors on 𝑏𝑔𝑗, 𝜃𝑔𝑖 and 𝑍𝑖 are the same 

regardless of g.  

Equation (3) shows the posterior distribution is the same before and after the permutation 

of latent group indices with an exchangeable prior, that is, P(𝜽, b, Z|X) = 𝑃(γ(𝜽, 𝒃, 𝒁)|𝑿). 

                            𝑃(γ(𝜽, 𝒃, 𝒁)|𝑿)                                      (3) 

= 
P(𝐗| 𝛾(𝜽,𝒃,𝒁)) P(𝛾(𝜽,𝒃,𝒁))                 

𝑃(𝑿)
 

                                                       = 
P(𝐗| 𝜽,𝒃,𝒁) P(𝜽,𝒃,𝒁)              

𝑃(𝑿)
 

                                                       = P(𝜽, b, Z|X) 

Therefore, the posterior in a mixture Rasch model is only identifiable up to a permutation 

of the latent group indices with an exchangeable prior and the latent groups may switch between 

indices within or across estimation algorithms of a mixture Rasch model even for the same data 

set. When the mixture Rasch models are estimated using MCMC, multiple modes may display 

among the samples obtained in a single MCMC chain or in multiple MCMC chains.  

When label switching occurs, it is inappropriate to make inferences about each parameter 

using the posterior samples directly. This is because the posterior distributions of the model 

parameters, such as  𝒃  in the mixture Rasch models, are not distinguishable across latent groups 
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(Gelman et al., 2013). Label switching is not only an issue for mixture Rasch models but for 

finite mixture models in general.  

In order to handle the label switching issue in mixture Rasch models, some researchers 

have placed ordinal constraints on the parameters or used non-exchangeable priors. These 

methods have the potential to cause the invariance property of the posterior distributions under 

the permutation of indices to be violated (Bolt, Cohen & Wollack, 2002; Huang, 2016; Meyer, 

2010; Sen, Cohen & Kim, 2016). Choosing such constraints or priors in these studies has usually 

relied on reasonable assumptions about the data or study design. Post-processing methods have 

also been used to remove label switching across MCMC chains for mixture IRT models when it 

is observed (Cho, Cohen & Kim, 2013; Choi & Wilson, 2014; Finch, 2012). In post-processing, 

researchers usually examine whether obvious jumps are evident in the trace plots across multiple 

MCMC chains. Such jumps may indicate the occurrence of label switching. When they are 

observed, posterior samples might be manually relabeled so that the indices are consistent across 

multiple MCMC chains.  

2.2 Mixed Membership Models 

Mixed membership modeling is a general framework that has incorporated previous statistical 

models reflecting the idea that individuals may belong to multiple latent groups (Erosheva, 2002; 

Erosheva et al., 2004; Galyardt, 2012). It differs from finite mixture models in that it does not 

assume an individual belongs to one and only one of the latent groups in the data. The mixed 

membership models are not used to measure abilities and do not include parameters for abilities 

nor for item characteristics as IRT does. Instead, they have been applied in a wide range of 

contexts to investigate the distributions of observed variables under different latent groups and 

individuals’ multiple memberships in the latent groups. Erosheva et al. (2004), for example, used 
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a mixed membership model adjusted for text data to study what research areas were mentioned 

in the biology articles published in the Proceedings of the National Academy of Sciences of the 

United States of America (PNAS) from 1997 to 2001, how likely different words would appear 

in an article given an area and how much an article expressed each of the areas. In the setting of 

education, Galyardt (2012) combined a mixed membership model with a response time model to 

study what strategies young children used to solve least common multiples problems and how 

much each child used each of the strategies in the test.  

Mixed membership models and their variants have also been applied to studying the 

multiple disease profiles in patients (Woodbury, Clive & Garson, 1978), multiple genetic 

heritages in birds (Pritchard, Stephens & Donnelly, 2000) and multiple communities a monk at a 

monastery has social interactions with (Airoldi et al., 2008). 

There are four levels of assumptions in mixed membership models (Erosheva, 2002; 

Galyardt, 2012). These four levels of assumptions are illustrated below and the contexts of 

Erosheva et al. (2004) and Galyardt (2012) are used as examples to explain the notations 

mentioned.   

Population level. It is assumed that there are G latent groups in the population. The 

interpretations of the latent groups depend on data and study design. For example, in Erosheva et 

al. (2004), latent groups are the research areas mentioned in the articles published in PNAS. In 

Galyardt (2012), latent groups are the strategies that young children used to solve least common 

multiples problems.  

The distribution of an observed variable varies with latent groups. Let variables be 

indexed by j = 1, …, J and latent groups by g = 1, …, G. Given latent group g, the distribution of 

variable j is denoted by 𝑃𝑔(𝑋𝑗). For Erosheva et al. (2004), variables are the words that appear in 
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an article and 𝑃𝑔(𝑋𝑗) denotes a multinomial distribution of words with a single trial given 

research area g. For Galyardt (2012), variables are children’s responses to least common multiple 

problems and 𝑃𝑔(𝑋𝑗) denotes a Bernoulli distribution of a right or wrong response to a problem 

given strategy g.   

Individual level. Each individual has a membership probability vector  𝝅𝒊= (𝜋𝑖1, …, 𝜋𝑖𝑔, …, 

𝜋𝑖𝐺), where 𝜋𝑖𝑔 denotes the probability that individual i belongs to latent group g. Each element 

in this vector is nonnegative and falls between 0 and 1, and all the elements in a given vector 

sum to 1. 𝝅𝒊 indicates individual i’s partial membership in each of the latent groups. For 

example, suppose we have two latent groups, G = 2, and an individual has 𝝅𝒊= (0.30, 0.70). This 

individual belongs to latent group 1 with probability 0.3 and to latent group 2 with probability 

0.7. In the context of Erosheva et al. (2004),  𝝅𝒊= (0.30, 0.70) would mean that article i expresses 

one of the two areas with probability 0.30 and the other area with probability 0.70. And in the 

context of Galyardt (2012), it would mean child i uses one of the two strategies 30% of the time 

and the other strategy 70% of the time in the test.  

Let 𝑍𝑖𝑗 denote the latent group that individual i belongs to in variable j. 𝑍𝑖𝑗 can take on 

integer values that range from 1 to G. 𝑍𝑖𝑗 = g is used to denote that individual i belongs to latent 

group g in variable j. 𝒁𝒊 = (𝑍𝑖1, …, 𝑍𝑖𝑗, …, 𝑍𝑖𝐽) indicates the behavior that individual i switches 

latent groups across variables. For Erosheva et al. (2004),  𝑍𝑖𝑗 would indicate the research area 

that word j in article i represents and different words in article i can represent different areas. For 

Galyardt (2012), 𝑍𝑖𝑗 would indicate the strategy child i uses to solve problem j and child i may 

use different strategies to solve different problems in the test. 

Given  𝝅𝒊, the marginal response distribution of individual i for variable j is   

P(𝑋𝑗|𝝅𝒊) = ∑ 𝑃(𝑋𝑗|𝑍𝑖𝑗 = 𝑔)𝐺
𝑔=1 P(𝑍𝑖𝑗 = 𝑔|𝝅𝒊) = ∑  𝜋𝑖𝑔

𝐺
𝑔=1 𝑃𝑔(𝑋𝑗) 



 

15 

Given 𝝅𝒊, individual i’s responses to all the variables are assumed to be independent, 

P(X|𝝅𝒊) = ∏ ∑  𝜋𝑖𝑔
𝐺
𝑔=1 𝑃𝑔(𝑋𝑗)𝐽

𝑗=1 .  

Sampling scheme level. In some cases, each variable is measured repeatedly for each individual. 

The number of repeated measurements can be different across variables and across individuals. 

Let 𝑅𝑖𝑗 denote the number of repeated measurements of variable j for individual i. An 

individual’s responses at all repeated measurements across variables are assumed to be 

independent given 𝝅𝒊, P(X|𝝅𝒊) = ∏ ∏ ∑  𝜋𝑖𝑔
𝐺
𝑔=1 𝑃𝑔(𝑋𝑗𝑟)

𝑅𝑖𝑗 

𝑟=1
𝐽
𝑗=1  . In Erosheva et al. (2004), the 

observed variables are what words appear in an article, and the distribution of words given a 

research area, 𝑃𝑔(𝑋𝑗), is assumed to be the same regardless of the location of the words. Suppose 

there are R words in article i. The R words can be considered as R repeated measurements of 

what word appears in the article. And the number of variables, J, can be considered as 1. 

Latent variable level. Latent variables in the context of mixed membership models refer to 𝝅𝒊, 

where 𝝅𝒊 can be treated either as fixed but unknown constants or random samples from a certain 

underlying distribution for the purpose of estimation. When treated as random, 𝝅𝒊 is usually 

assumed to follow a Dirichlet distribution in which the components are independent subject to 

the constraint ∑ 𝜋𝑖𝑔 = 1𝐺
𝑖=1  (Aitchison, 1982). Or 𝝅𝒊 may be assumed to follow a logistic normal 

distribution, where covariances between the elements in 𝝅𝒊 are explicitly indicated in the 

probability density function. Blei and Lafferty (2007) used the logistic normal distribution, for 

example, in a mixed membership model adjusted for text data to model correlated topics in text 

documents. 

Label Switching in Mixed Membership Models. Similar to finite mixture models, mixed 

membership models also have an issue of lack of identifiability. Galyardt (2012) proved that a 

general mixed membership model can be expressed as a finite mixture model that has a much 
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larger number of latent groups compared with the equivalent mixed membership model and has 

constraints on membership probabilities. Further, Galyardt (2012) proved that mixed 

membership models are only identifiable up to a permutation of the latent group indices when 

the components of the 𝝅𝒊 are exchangeable, as is the case when a symmetric Dirichlet prior is 

placed on 𝝅𝒊. Therefore, when a mixed membership model is estimated using MCMC, label 

switching may occur in the posterior samples either within a single MCMC chain or across 

multiple MCMC chains.  

Some researchers who applied mixed membership models in their studies have employed 

similar methods as those mentioned in mixture IRT studies to handle this label switching issue, 

such as imposing ordinal constraints on 𝝅𝒊 or latent-group-specific parameters (Richardson & 

Green, 1997) and post-processing the posterior samples so that the latent group labels are 

consistent across estimation algorithms or between the posterior estimates and the generating 

values in simulation studies (Wang & Erosheva, 2015).  
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CHAPTER 3 

A MIXED MEMBERSHIP RASCH MODEL 

Mixture IRT models assume each respondent remains in the same latent group across the entire 

test. As noted in Chapter 1, such an assumption may not always be reasonable especially when 

the mixture IRT models are used to study problem-solving strategy use and test-taking behaviors 

in low-stakes tests. To help tackle this limitation in mixture IRT models, a mixed membership 

Rasch model (MMR) is developed in this dissertation. It integrates the Rasch model into the 

mixed membership framework. In the MMR, an individual is a respondent and observed 

variables are responses to the items in a test. The distribution of a response to an item by a 

respondent is parameterized using the Rasch model given a latent group. The item difficulty 

parameters in the mixture Rasch model are assumed to vary with latent groups. The MMR allows 

a respondent to belong to multiple latent groups with different probabilities at the test level and 

to belong to different latent groups on different items in a test.  

The generative process of the MMR is explained as follows:  

1. Assume there are G latent groups in the sample of respondents. Again, the interpretations 

of the latent groups depend on data and study design. For example, if the purpose is to 

investigate students’ test-taking behaviors in a low-stakes test, latent groups may 

correspond to solution behavior and random guessing behavior even though such 

interpretation may need to be supported by further evidence, e.g., by cognitive interviews.  

2. Each respondent i has a membership probability vector 𝝅𝒊 of length G. 𝜋𝑖𝑔 indicates the 

probability that respondent i belongs to latent group g. The elements of 𝝅𝒊 are nonnegative 
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and fall within the range 0 and 1 with the sum of all the elements in 𝝅𝒊 equal to 1. The 

MMR assumes that 𝝅𝒊 is drawn from a Dirichlet distribution: 

𝝅𝒊 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶)    𝝅𝒊= (𝜋𝑖1, …, 𝜋𝑖𝑔, …, 𝜋𝑖𝐺) 

Using the test-taking behavior example, suppose latent group 1 represents solution 

behavior (SB) and latent group 2 represents random guessing behavior (RGB). If 

respondent i has a 𝝅𝒊 = (0.2, 0.8), this respondent would show solution behavior with 

probability 0.2 and random guessing behavior with probability 0.8 in the test. The MMR 

assumes that these probabilities are different for different respondents. It also assumes that 

these probabilities for respondent i remain the same regardless of which question in the 

test he or she is trying to answer.  

3. In item j, the latent group to which respondent i belongs is denoted by 𝑍𝑖𝑗 and is drawn 

from a multinomial distribution with probabilities 𝝅𝒊: 

 𝑍𝑖𝑗|𝝅𝒊 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝝅𝒊) 

The latent group respondent i belongs to may vary across items. Therefore, the 𝑍𝑖𝑗’s 

indicate respondent i’s switching behaviors. In the example of test-taking behaviors, 𝑍𝑖𝑗 

denotes the type of test-taking behavior respondent i shows on item j and 𝑍𝑖𝑗’s indicate 

that the respondent i switches between SB and RGB across test questions.  

4. Let 𝑋𝑖𝑗 denote a binary response by respondent i to item j, 𝜃𝑖 denote respondent i’s ability 

and 𝑏𝑔𝑗 denote item j’s difficulty given latent group g. 𝑋𝑖𝑗 takes on value 1 for a correct 

response and 0 otherwise. Given latent group g, 𝜃𝑖 and 𝑏𝑔𝑗, 𝑋𝑖𝑗 is generated from a 

Bernoulli distribution with probability 𝑃𝑖𝑗𝑔: 

𝑋𝑖𝑗|𝑍𝑖𝑗 = 𝑔, 𝜃𝑖, 𝑏𝑔𝑗  ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃𝑖𝑗𝑔) 
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𝑃𝑖𝑗𝑔 =  
1

1+ 𝑒
−(𝜃𝑖− 𝑏𝑔𝑗) 

With respect to the example of test-taking behaviors, this indicates how likely a 

respondent answers a question correctly depends on his or her ability level, how difficult 

the question is and whether he or she answers the question using SB or RGB.  

It is noted that in the general mixed membership models, the distribution of an observed 

variable can change for different variables and latent groups. In the MMR, an observed 

variable is a binary response to a test item. Its distribution can change for different test 

items, latent groups and respondents.  

In this study, the MMR is estimated using a Metropolis-within-Gibbs algorithm. In a 

Metropolis-within-Gibbs algorithm, some parameters are sampled using Gibbs sampler and some 

are sampled using Metropolis algorithm. Both the Gibbs sampler and the Metropolis algorithm 

are Markov Chain Monte Carlo (MCMC) sampling methods. The MCMC draws a sequence of 

samples of parameters from approximate distributions as running a Markov chain in which, the 

stationary distribution is the target posterior distribution. The specific steps of the Metropolis-

within-Gibbs algorithm are as follows:  

Step 1. For each respondent,  𝝅𝒊 has the following posterior distribution assuming conditional 

independence of respondent i’s responses across items:  

                                                    P(𝝅𝒊|rest)  ∏ P(𝑍𝑖𝑗|𝝅𝒊)  ×  P(𝝅𝒊)𝑗  

                                                                      ∏ 𝜋𝑖𝑔
∑ I(𝑍𝑖𝑗=𝑔𝑗 )

𝑔  ∏ 𝜋𝑖𝑔
𝛼𝑔

𝑔  

                                                                     = Dirichlet(𝜶∗)   

                                                               𝛼𝑔
∗=  𝛼𝑔 + ∑ I(𝑍𝑖𝑗 = 𝑔𝑗 ) 
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where “rest” is shorthand for data and the rest of the parameters in the MMR, and P(𝝅𝒊) denotes 

the prior distribution of 𝝅𝒊 and is a Dirichlet distribution with 𝜶 = (𝛼1, …, 𝛼𝐺). The posterior 

distribution of 𝝅𝒊, P(𝝅𝒊|rest), is a Dirichlet distribution with 𝜶∗ = (𝛼1
∗,…, 𝛼𝐺

∗ ).  

At iteration t, draw a sample of  𝝅𝒊 from P(𝝅𝒊|rest) given the samples of the other parameters 

obtained at iteration t-1. 

Step 2. For each respondent and each item, 𝑍𝑖𝑗 has the following the posterior distribution: 

                                              P(𝑍𝑖𝑗 |rest)  P( 𝑋𝑖𝑗|𝑍𝑖𝑗, 𝜃𝑖 , 𝑏𝑔𝑗) × P(𝑍𝑖𝑗|𝝅𝒊) 

                                                               ∏ [𝑃𝑖𝑗𝑔
𝑋𝑖𝑗  (1 −  𝑃𝑖𝑗𝑔)1−𝑋𝑖𝑗] I(𝑍𝑖𝑗=𝑔)

𝑔  ∏ 𝜋𝑖𝑔
I(𝑍𝑖𝑗=𝑔)

𝑔  

                                                                = ∏ [𝑃𝑖𝑗𝑔
𝑋𝑖𝑗  (1 −  𝑃𝑖𝑗𝑔)1−𝑋𝑖𝑗  𝜋𝑖𝑔] I(𝑍𝑖𝑗=𝑔)

𝑔  

where I(𝑍𝑖𝑗 = 𝑔) is an indicator function taking on value 1 if respondent i belongs to latent 

group g on item j and 0 otherwise. The posterior distribution of 𝑍𝑖𝑗, P(𝑍𝑖𝑗 |rest), is a multinomial 

distribution with probabilities 𝑃𝑖𝑗1
𝑋𝑖𝑗  (1 −  𝑃𝑖𝑗1)1−𝑋𝑖𝑗  𝜋𝑖1, …, 𝑃𝑖𝑗𝐺

𝑋𝑖𝑗  (1 −  𝑃𝑖𝑗𝐺)1−𝑋𝑖𝑗  𝜋𝑖𝐺. 

At iteration t, draw a sample of 𝑍𝑖𝑗 from P(𝑍𝑖𝑗 |rest) given the samples of the other parameters 

obtained at iteration t-1.  

Step 3. Assuming conditional independence of respondent i’s responses across items, the full 

conditional distribution of 𝜃𝑖 is as follows:  

                                          P(𝜃𝑖 |rest)  ∏ P( 𝑋𝑖𝑗|𝑍𝑖𝑗, 𝜃𝑖 , 𝑏𝑔𝑗) 𝑗  × P(𝜃𝑖) 

                                                          ∏ [∏ 𝑃𝑖𝑗𝑔
𝑋𝑖𝑗  (1 −  𝑃𝑖𝑗𝑔)1−𝑋𝑖𝑗

𝑔 ]
I(𝑍𝑖𝑗=𝑔)

𝑗 Normal(𝜃𝑖;  𝜂, 𝜎2) 

where Normal(𝜃𝑖;  𝜂, 𝜎2) is the normal density evaluated at 𝜃𝑖 given mean 𝜂 and variance 𝜎2. 𝜃𝑖 

is updated using a Metropolis step, since the normal distribution is not a conjugate prior. In order 

to obtain a sample of 𝜃𝑖 at iteration t,  
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• Draw a proposed value 𝜃𝑖
∗ from Normal(𝜃𝑖

𝑡−1,1) where 𝜃𝑖
𝑡−1 is a sample of 𝜃𝑖 obtained at 

iteration t-1. 

• Calculate the ratio of the posterior densities given the samples of the other parameters 

that are obtained at iteration t-1:  

𝑟𝜃𝑖
∗ = 

𝑃(𝜃𝑖
∗|𝑟𝑒𝑠𝑡)

𝑃(𝜃𝑖
𝑡−1|𝑟𝑒𝑠𝑡)

 

• Assign 𝜃𝑖
𝑡 = 𝜃𝑖

∗ with probability min{1, 𝑟𝜃𝑖
∗}, and assign 𝜃𝑖

𝑡 = 𝜃𝑖
𝑡−1 otherwise. 

Step 4. Assuming conditional independence of the responses to item j across respondents, the full 

conditional distribution of 𝑏𝑔𝑗 is as follows:   

                                     P(𝑏𝑔𝑗| rest)  ∏ P( 𝑋𝑖𝑗|𝑍𝑖𝑗 , 𝜃𝑖 , 𝑏𝑔𝑗)𝑖  × P(𝑏𝑔𝑗) 

                                                         ∏ [∏ 𝑃𝑖𝑗𝑔
𝑋𝑖𝑗  (1 −  𝑃𝑖𝑗𝑔)1−𝑋𝑖𝑗

𝑔 ]
I(𝑍𝑖𝑗=𝑔)

𝑖  Normal(𝑏𝑔𝑗; 𝜇, 𝜏2) 

where Normal(𝑏𝑔𝑗; 𝜇, 𝜏2) is the normal density evaluated at 𝑏𝑔𝑗 with mean 𝜇 and variance 𝜏2. 

𝑏𝑔𝑗 is updated using a Metropolis step since the normal distribution is not a conjugate prior. In 

order to obtain a sample of 𝑏𝑔𝑗 at iteration t,  

• Draw a proposed value 𝑏𝑔𝑗
∗  from Normal(𝑏𝑔𝑗

𝑡−1,1) where 𝑏𝑔𝑗
𝑡−1 is a sample of 𝑏𝑔𝑗 obtained 

at iteration t-1. 

• Calculate the ratio of the posterior densities given the samples of the other parameters 

obtained at iteration t-1:  

𝑟𝑏𝑔𝑗
∗   = 

𝑃(𝑏𝑔𝑗
∗ |𝑟𝑒𝑠𝑡)

𝑃(𝑏𝑏𝑗
𝑡−1|𝑟𝑒𝑠𝑡)

 

• Assign 𝑏𝑔𝑗
𝑡  = 𝑏𝑔𝑗

∗   with probability min{1, 𝑟𝑏𝑔𝑗
∗  }, and assign 𝑏𝑏𝑗

𝑡  = 𝑏𝑏𝑗
𝑡−1 otherwise. 

The scales of the parameters in the Rasch model are undetermined, as described in 

section 2.1. In order to set up a scale for the parameters and also to ensure that the parameters 
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across latent groups are on the same scale and thus are comparable, after item difficulties are 

sampled for all the items in latent group g at each iteration of MCMC, the sampled item 

difficulties are rescaled so that ∑ 𝑏𝑔𝑗̂𝑗  = 0. For example, suppose the original item difficulty 

samples across J items at an iteration sum up to a, ∑ 𝑏𝑔𝑗
∗̂

𝑗  = a. After the rescaling 𝑏𝑔𝑗
∗̂ - 

𝑎

𝐽
 , the 

sum of the rescaled samples equals 0, ∑ (𝑏𝑔𝑗
∗̂ −   

𝑎

𝐽
)𝑗  = 0.  
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CHAPTER 4 

STUDY I 

4.1 Purpose and Study Design 

Both Study I and Study II are to investigate how well the parameters in a two-latent-group MMR 

can be recovered under different conditions. In study I, it is assumed that there is extra 

information available about item difficulty parameters. Compared with a mixture Rasch model, 

an MMR with the same number of latent groups is a more complicated model and has far more 

parameters to estimate. The investigation of parameter recovery in Study I, therefore, starts with 

a scenario in which item difficulty parameters are known. This is analogous to having an item 

bank, in which the item difficulty parameters are known. Item difficulties, thus, do not need to be 

estimated. 

The parameter recovery of the MMR is investigated under three conditions. The first 

condition is test length: 6-item, 15-item and 30-item tests were simulated to reflect very small, 

small and medium test lengths. The generating item difficulty parameters for the two latent 

groups used in this study, as shown in Table 1 and Table 2, are taken from Li, Cohen, Kim and 

Cho (2009). In the 30-item test, each item in the 15-item test is repeated once. The sum of these 

parameters equals zero within each latent group. The second condition is sample size: 300, 500 

and 1000 respondents’ responses were simulated to reflect small, medium and large sample sizes 

common in education studies. The third condition is the prior choice for the membership 

probability parameters 𝝅𝒊 The effects of two priors were tested. One prior was the same as the 

generating distribution (i.e., the true prior) and the other prior was a flat prior to reflect a lack of 
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prior knowledge about the distribution of 𝝅𝒊.  This is further explained under Priors Used in Both 

Study I and Study II (see below).  

Table 1. Generating item difficulty parameters for the 6-item test  

Item 
Item difficulty 

Latent Group 1  Latent Group 2 

1 -1.50  0.00 

2 -1.50  0.00 

3 0.00  1.50 

4 0.00  1.50 

5 1.50  -1.50 

6 1.50  -1.50 

 

Table 2. Generating item difficulty parameters for the 15-item test  

Item 
Item difficulty 

Latent Group 1  Latent Group 2 

1 -2.00  -0.50  

2 -1.75  -0.25  

3 -1.50  0.00 

4 -1.25  0.25 

5 -1.00  0.50 

6 -0.50  1.00  

7 -0.25  1.25 

8 0.00  1.50  

9 0.25  1.75  

10 0.50  2.00 

11 1.00  -2.00  

12 1.25  -1.75 

13 1.50  -1.50 

14 1.75  -1.25 

15 2.00  -1.00 

 

4.2 Data Simulation 

The data of different test lengths and samples sizes were simulated following this procedure: 

• Choose a test length J which varies by conditions 

• Choose a number of respondents N which varies by conditions 

• Number of latent groups G= 2 
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• For each latent group g = 1, 2, generating item difficulty parameters are shown in Table 1 

and Table 2. In the 30-item test, each item in the 15-item test is repeated once. 

• For each respondent i = 1, …, N, simulate 

a. 𝝅𝒊 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(0.25, 0.25).  In 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(0.25, 0.25), about 37% of the data have 

a 𝜋𝑖1 smaller than 0.20 and a 𝜋𝑖2 larger than 0.80, and about 37% of the data have a 

𝜋𝑖1 larger than 0.80 and a 𝜋𝑖2 smaller than 0.20. Therefore, using this generating 

distribution for 𝝅𝒊 simulates the scenario that most of the respondents tend to have a 

dominant latent group and tend to stay in that latent group across items. 

 

 

     Figure 1. The probability density of each dimension of 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(0.25, 0.25). Most of the 

data either have a large 𝜋𝑖1 and a small 𝜋𝑖2 or a small 𝜋𝑖1 and a large 𝜋𝑖2.   

 

b. 𝜃𝑖 ∼ N (0, 1) 

c. For each item j = 1, …, J, simulate  

  𝑍𝑖𝑗|𝝅𝒊 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝝅𝒊) 

              𝑋𝑖𝑗|𝑍𝑖𝑗 = g ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃𝑖𝑗𝑔) where  𝑃𝑖𝑗𝑔 =  
1

1+ 𝑒
−(𝜃𝑖− 𝑏𝑔𝑗) 

The priors used in both Study I and Study II are as follows:  
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• 𝜃𝑖 ∼ N(0, 1) 

• 𝑏𝑔𝑗 ~ N(0, 1) 

• Two priors of 𝝅𝒊, P(𝝅𝒊) 

          Prior 1: the true prior which is the same as the generating distribution of 𝝅𝒊, 

𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(0.25, 0.25) 

          Prior 2: a flat prior, 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1, 1) 

The simulation of response data was replicated 50 times under each test length and each 

sample size. And in the same condition, the same set of generating parameters was used across 

replications. To illustrate the simulated data, assuming a simulated student responds to 15 

questions, his or her data simulated based on the above process would look like the following:  

𝜃1 = -1.32 

𝝅𝟏  = (0.56, 0.44) 

𝒁𝟏 = (1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1) 

𝒀𝟏 = (0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0) 

 

The total number of conditions under which parameter recovery was examined was 

therefore 18 (i.e., 3 test lengths × 3 sample sizes × 2 priors of membership probabilities = 18 

conditions). After running MCMC for each data set, convergence and label switching were 

examined.  

4.3 Evaluation Statistics for Parameter Recovery 

Under each condition, the recoveries of membership probability 𝝅𝒊 and ability 𝜃𝑖 were evaluated 

using the average root mean square error (RMSE), average bias and the average correlation 

between posterior estimates and the true parameters. The recovery of latent group membership 
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𝑍𝑖𝑗 was evaluated using the average proportion of correct recovery (PCR). For 𝝅𝒊 , because 𝜋𝑖1 + 

𝜋𝑖2 = 1, the patterns of the estimates of 𝜋𝑖1 and 𝜋𝑖2 are reversed. Therefore, the following 

analyses only focused on 𝜋𝑖1.  

The mean squared error (MSE) of an estimator is the expected squared difference 

between an estimate and the true parameter and can be written as the sum of two components, 

bias2 and variance. The RMSE is the square root of the MSE. In this study, the RMSE’s for 

𝝅𝒊 and 𝜃𝑖 are averaged over respondents respectively. The mathematical definitions of the 

average RMSE’s of 𝝅 and 𝜃 are shown in equation (4) where i denotes respondent, r denotes 

replication, N denotes the total number of respondents, R denotes the total number of 

replications, 𝜋𝑖1𝑟̂ denotes the posterior sample mean of 𝜋𝑖1 in replication r and 𝜃𝑖𝑟̂ denotes the 

posterior sample mean of 𝜃𝑖 in replication r. A RMSE in this case measures the bias and variance 

of a posterior sample mean in a replication and the expected squared difference between a 

posterior sample mean in a replication and the true parameter is approximated by the average 

squared difference between a posterior sample mean in a replication and the true parameter 

across replications.  

                       Average RMSE(𝜋𝑖1𝑟̂) = 
1

𝑁
 ∑ RMSE(𝜋𝑖1𝑟̂)𝑁

𝑖=1                                   (4) 

                                                       = 
1

𝑁
 ∑ √MSE(𝜋𝑖1𝑟̂)𝑁

𝑖=1                                        

=  
1

𝑁
 ∑ √𝐸[(𝜋𝑖1𝑟̂ −  𝜋𝑖1)2]𝑁

𝑖=1  

                          = 
1

𝑁
 ∑ √Bias(𝜋𝑖1𝑟̂)2 + Variance (𝜋𝑖1𝑟̂)𝑁

𝑖=1  

        ≈ 
1

𝑁
 ∑ √

1

𝑅
∑ (𝜋𝑖1𝑟̂ −  𝜋𝑖1)2𝑅

𝑟=1
𝑁
𝑖=1  
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                     Average RMSE(𝜃𝑖𝑟̂) = 
1

𝑁
 ∑ RMSE(𝜃𝑖𝑟̂)𝑁

𝑖=1  

                                                       =  
1

𝑁
 ∑ √MSE(𝜃𝑖𝑟̂)𝑁

𝑖=1          

                                                        =  
1

𝑁
 ∑ √𝐸[(𝜃𝑖𝑟̂ −  𝜃𝑖)2]𝑁

𝑖=1  

                      = 
1

𝑁
 ∑ √Bias(𝜃𝑖𝑟̂)2 + Variance (𝜃𝑖𝑟̂)𝑁

𝑖=1  

    ≈ 
1

𝑁
 ∑ √

1

𝑅
∑ (𝜃𝑖𝑟̂ −  𝜃𝑖)2𝑅

𝑟=1
𝑁
𝑖=1  

The bias of an estimator is the difference between the expected value of the estimator and 

the true parameter. In this study, the bias of 𝜋𝑖1𝑟̂ and 𝜃𝑖𝑟̂ are averaged over respondents 

respectively and the corresponding mathematical definitions are shown in equation (5). The 

expected values of 𝜋𝑖1𝑟̂ and 𝜃𝑖𝑟̂ are approximated by the average 𝜋𝑖1𝑟̂ and the average 𝜃𝑖𝑟̂ across 

replications respectively.  

                        Average Bias(𝜋𝑖1𝑟̂) = 
1

𝑁
∑ (𝐸[𝜋𝑖1𝑟̂] −  𝜋𝑖1)𝑁

𝑖=1                                  (5)                     

                                                     ≈  
1

𝑁
∑ (

1

𝑅
∑ 𝜋𝑖1𝑟̂

𝑅
𝑟=1 −  𝜋𝑖1)𝑁

𝑖=1   

                          Average Bias(𝜃𝑖𝑟̂) = 
1

𝑁
∑ (𝐸[𝜃𝑖𝑟̂] −  𝜃𝑖)𝑁

𝑖=1                                       

                                                     ≈  
1

𝑁
∑ (

1

𝑅
∑ 𝜃𝑖𝑟̂

𝑅
𝑟=1 −  𝜃𝑖)𝑁

𝑖=1   

            An example of the relationship between 𝜋𝑖1𝑟̂ and 𝜋𝑖1 over respondents when N = 300 and 

J = 15 is shown in Figure 2. Since this relationship is not best described as a linear relationship 

and such pattern is observed across conditions, to report the correlation between 𝜋𝑖1𝑟̂ and 𝜋𝑖1, 

Kendall's τ coefficient is calculated for each iteration and the coefficients are averaged across 

replications to obtain an average 𝜏(𝜋𝑖1𝑟̂, 𝜋𝑖1) as shown in equation (6). Figure 2 also shows an 

example of the relationship between 𝜃𝑖𝑟̂ and 𝜃𝑖 over respondents when N = 300 and J = 15. Since 
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this relationship appears to be linear and such pattern is observed across conditions, Pearson 

correlation coefficient is calculated to examine the correlation between 𝜃𝑖𝑟̂ and 𝜃𝑖. 

                        Average 𝜏(𝜋𝑖1𝑟̂, 𝜋𝑖1) = 
1

𝑅
∑ 𝜏(𝜋𝑖1𝑟̂ , 𝜋𝑖1)𝑅

𝑟=1                                       (6) 

                        Average 𝜌(𝜃𝑖𝑟̂ , 𝜃𝑖) = 
1

𝑅
∑ 𝜌(𝜃𝑖𝑟̂ , 𝜃𝑖)𝑅

𝑟=1  

 

 

  

Figure 2. The left panel shows the relationship between 𝜋𝑖1𝑟̂ and 𝜋𝑖1 over respondents. The right 

panel shows the relationship between 𝜃𝑖𝑟̂ and 𝜃𝑖 over respondents. The estimates of the 

parameters in both of the panels were obtained in one of the replications when N = 300 and J = 

15.    

 

The recovery of 𝑧𝑖𝑗 is evaluated using an average PCR. A PCR of a respondent is defined 

as the proportion of items for which the estimate of 𝑧𝑖𝑗 is the same as the true 𝑧𝑖𝑗. As shown in 

equation (7), an average PCR is calculated by averaging the PCR’s over respondents and over 

replications. Given that 𝑧𝑖𝑗 is a categorical variable,  𝑧𝑖𝑗𝑟 ̂  in equation (6) is the posterior sample 
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mode rather than the posterior sample mean of 𝑧𝑖𝑗 in replication r. The larger the average 

PCR(𝑧𝑖𝑗𝑟 ̂ ), the better the 𝑧𝑖𝑗’s are considered to be recovered.  

Average PCR(𝑧𝑖𝑗𝑟 ̂ ) =
1

𝑅
 ∑ (

1

𝑁
∑ (

∑ 𝐼(𝑧𝑖𝑗𝑟  ̂= 𝑧𝑖𝑗)
𝐽
𝑗=1

𝐽
)𝑁

𝑖=1 )𝑅
𝑟=1                (7) 

4.4 Results 

In each MCMC chain, the starting values for 𝜃𝑖 were generated from Normal(0, 32) and the 

starting values for 𝑍𝑖𝑗 were generated from Multinomial(0.5, 0.5). In this study, since the item 

difficulty parameters were known, label switching was unlikely to happen. However, in order to 

be certain, label switching was still checked. No label switching within an MCMC chain or 

across replications was observed in the posterior samples. Convergence of the MCMC chains 

was diagnosed using the Potential Scale Reduction Factor (PSRF; Gelman et al., 2013). After a 

burn-in of 10,000 iterations, the PSRF remained very close to 1 and smaller than 1.1, which is 

usually considered as a sign that an MCMC chain has converged (Sinharay, 2003). After the 

burn-in, each MCMC chain continued to run another 10,000 iterations.  
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Figure 3. The distribution of  𝜋𝑖1̂ and 𝜋𝑖1 across respondents in one of the replications for N = 

1000 in Study I. The x-axis in each panel is either 𝜋𝑖1̂ or 𝜋𝑖1. The solid curve shows the 

distribution of the 𝜋𝑖1 across respondents. The dashed curve shows the distribution of 𝜋𝑖1̂ across 

respondents when the prior on 𝝅𝒊 was Dirichlet(0.25, 0.25). The dotted curve shows the 

distribution of 𝜋𝑖1̂ across respondents when the prior for 𝝅𝒊 was Dirichlet(1, 1). Different panels 

are for a different test length J.  
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Table 3. Parameter recovery in Study I evaluated by average PCR, average RMSE, average bias 

and average correlation 

N P(𝝅𝒊) J 𝑧𝑖𝑗𝑟 ̂   𝜋𝑖1𝑟̂  𝜃𝑖𝑟̂ 

 PCR  RMSE Bias 𝜏  RMSE Bias 𝜌 

300 Dir(0.25, 0.25) 6 0.77  0.29 0.00 0.45  0.68 0.07 0.70 

  15 0.83  0.21 0.00 0.58  0.55 0.00 0.84 

  30 0.87  0.15 0.00 0.66  0.41 0.00 0.91 

 Dir(1, 1)  6 0.76  0.31 -0.01 0.46  0.67 0.07 0.70 

  15 0.82  0.24 0.00 0.58  0.54 0.00 0.84 

  30 0.86  0.18 -0.01 0.66  0.41 0.01 0.91 

500 Dir(0.25, 0.25) 6 0.78  0.29 0.01 0.46  0.68 -0.03 0.67 

  15 0.85  0.21 0.00 0.58  0.53 -0.01 0.83 

  30 0.88  0.14 0.00 0.65  0.42 0.01 0.91 

 Dir(1,1) 6 0.76  0.30 0.01 0.46  0.68 -0.02 0.67 

  15 0.83  0.24 0.00 0.58  0.52 -0.01 0.83 

  30 0.87  0.18 0.00 0.65  0.41 0.01 0.91 

1000 Dir(0.25, 0.25) 6 0.77  0.29 0.00 0.46  0.69 0.01 0.70 

  15 0.84  0.21 0.00 0.58  0.54 0.01 0.83 

  30 0.87  0.15 0.01 0.66  0.42 -0.01 0.91 

 Dir(1,1) 6 0.76  0.30 0.00 0.46  0.69 0.01 0.71 

  15 0.83  0.24 -0.01 0.58  0.54 0.01 0.83 

  30 0.86  0.18 0.01 0.66  0.42 0.00 0.91 

Note. Dir is short for Dirichlet.   

The parameter recovery statistics for Study I are reported in Table 3. Given a test length 

and a prior on 𝝅𝒊, the average RMSE(𝜋𝑖1𝑟̂) and the average PCR(z) do not seem to be influenced 

by sample size. For each prior on 𝝅𝒊, the average RMSE(𝜋𝑖1𝑟̂) decreases and the average PCR(z) 

increases as test length increases. For each test length, the average RMSE(𝜋𝑖1𝑟̂) increases and the 

average PCR(z) decreases slightly for the flat prior on 𝝅𝒊 compared with the true prior. However, 

the flat prior and a longer test still return a smaller average RMSE(𝜋𝑖1𝑟̂) and a larger average 

PCR(z) compared with the true prior and a shorter test. For example, when N = 300, J = 30 and 

P(𝝅𝒊) ~ Dirichlet(1, 1), the average RMSE(𝜋𝑖1𝑟̂) is 0.18 and the average PCR(z) is 0.87, whereas 

when N = 300, J = 6 and P(𝝅𝒊) ~ Dirichlet(0.25, 0.25), the average RMSE(𝜋𝑖1𝑟̂) is 0.29 and the 

average PCR(z) is 0.77. The average Bias(𝝅) under all the conditions is consistently small and 
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very close to 0. The average 𝜏(𝜋𝑖1𝑟̂, 𝜋𝑖1) increases as test length increases and does not seem to 

be influenced by sample size and prior choice for 𝝅𝒊. Given a test length, the average RMSE(𝜃𝑖𝑟̂) 

and the average 𝜌(𝜃𝑖𝑟̂ , 𝜃𝑖) do not seem to be influenced by sample size and prior choice for 𝝅𝒊. 

The average RMSE(𝜃𝑖𝑟̂) decreases and the average 𝜌(𝜃𝑖𝑟̂ , 𝜃𝑖) increases as test length increases. 

The average Bias(𝜃𝑖𝑟̂) is the largest when both the sample size and the test length were the 

smallest. When sample size increases from 300 to 500 and when test length increases from 6 to 

15, the average Bias(𝜃𝑖𝑟̂) decreases and becomes closer to 0. 

Prior choice for 𝝅𝒊 and test length also affected the distribution of 𝜋𝑖1𝑟̂ across 

respondents. When the test was longer and when the true prior was used for 𝝅𝒊, the distribution 

of 𝜋𝑖1𝑟̂ across respondents tended to better recover the distribution of 𝜋𝑖1 across respondents 

compared with when the test was shorter and when the flat prior was used. In all the conditions, 

the distributions of 𝜋𝑖1𝑟̂ tended to shrink towards the mean of the generating distribution of 𝝅𝒊 

which is 0.5. As an example, Figure 3 shows the distributions of 𝜋𝑖1 and 𝜋𝑖1𝑟̂ for one of the 50 

replications when N = 1000.   
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CHAPTER 5 

STUDY II 

5.1 Purpose and Study Design 

The purpose of study II was to investigate how well the parameters in the MMR could be 

recovered under varying conditions when item difficulty parameters for each latent group are 

unknown. This is the kind of situation that would occur, for example, for a newly created test. 

The design of the simulation study was the same as the one in Study I. The only difference 

between Study I and Study II was that item difficulty parameters were unknown and need to be 

estimated in Study II.  

As was the case for Study I, the starting values of 𝜃𝑖 for the MCMC algorithm were 

generated from Normal(0, 32) and the starting values of 𝑍𝑖𝑗 were generated from 

Multinomial(0.5, 0.5). The starting values of 𝑏𝑔𝑗 were generated from Normal(0, 1.52). Each 

MCMC chain was run 20,000 iterations with the first 10,000 iterations used as a burn-in to 

ensure that the PSRF remained considerably smaller than 1.1 after the burn-in.  As was observed 

in Study I, no label switching jumps were observed in the posterior samples within a single 

MCMC chain. Label switching that occurred across MCMC chains was corrected based on the 

correlation between the posterior estimates of item difficulty parameters and the generating 

parameters. Suppose in a certain replication, the posterior estimates in latent group 1 are 

positively correlated with the generating parameters in latent group 2. These posterior estimates 

are then relabeled as latent group 2.  After the correction, latent group so that the labels became 

consistent across replications.  
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5.2 Evaluation Statistics for Parameter Recovery 

As was done in Study I, the recoveries of membership probability 𝝅𝒊 and ability 𝜃𝑖 were 

evaluated using the average RMSE, the average bias and the average correlation as shown in 

equations (4) – (6). The recovery of latent group membership 𝑍𝑖𝑗 was evaluated using the 

average PCR as shown in equation (7). Because the item difficulty parameters were estimated in 

Study II, their recovery was also evaluated using the average RMSE and the average bias across 

items and latent groups and the average correlation across replications. The definition of the 

average RMSE for item difficulty is shown in equation (8) where J denotes the number of test 

items, G denotes the number of latent groups and 𝑏𝑔𝑗𝑟
̂  denotes the posterior sample mean of 𝑏𝑔𝑗 

in replication r. The definition of the average bias of 𝑏𝑔𝑗𝑟
̂  is shown in equation (9) where the 

𝐸[𝑏𝑔𝑗𝑟
̂ ] is approximated by the average of 𝑏𝑔𝑗𝑟

̂  across replications. The Pearson correlation 

coefficient between 𝑏𝑔𝑗𝑟
̂  and  𝑏𝑔𝑗 over items and latent groups was calculated for each 

replication and the coefficients are averaged across replications to obtain an average correlation 

as shown in equation (10).  

Average RMSE(𝑏𝑔𝑗𝑟
̂ ) = 

1

𝐺×𝐽
∑ ∑ RMSE(𝑏𝑔𝑗𝑟̂)𝐽

𝑗=1
𝐺
𝑔=1          (8) 

                 = 
1

𝐺×𝐽
∑ ∑ √MSE(𝑏𝑔𝑗𝑟̂)𝐽

𝑗=1
𝐺
𝑔=1  

                           = 
1

𝐺×𝐽
∑ ∑ √𝐸[(𝑏𝑔𝑗𝑟̂ − 𝑏𝑔𝑗)2]𝐽

𝑗=1
𝐺
𝑔=1  

                                                   = 
1

𝐺×𝐽
∑ ∑ √Bias(𝑏𝑔𝑗𝑟̂)2 + Variance (𝑏𝑔𝑗𝑟

̂ )𝐽
𝑗=1

𝐺
𝑔=1  

                                   ≈ 
1

𝐺×𝐽
∑ ∑ √

1

𝑅
∑ (𝑏𝑔𝑗𝑟

̂  −  𝑏𝑔𝑗)2𝑅
𝑟=1

𝐽
𝑗=1

𝐺
𝑔=1           
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                           Average Bias(𝑏𝑔𝑗𝑟
̂ ) = 

1

𝐺×𝐽
∑ ∑ (𝐸[𝑏𝑔𝑗𝑟

̂ ] − 𝑏𝑔𝑗)𝐽
𝑗=1

𝐺
𝑔=1             (9) 

                                                           ≈ 
1

𝐺×𝐽
∑ ∑ (

1

𝑅
∑ 𝑏𝑔𝑗𝑟

̂𝑅
𝑟=1 − 𝑏𝑔𝑗)𝐽

𝑗=1
𝐺
𝑔=1         

 Average 𝜌(𝑏𝑠̂, 𝑏) = 
1

𝑅
∑ 𝜌(𝑏𝑟̂ , 𝑏)𝑅

𝑟=1     (10) 

  

Figure 4. The distribution of  𝜋𝑖1̂ and 𝜋𝑖1 across respondents in one of the replications for sample 

size N = 1000 in Study II. The x-axis in each panel is either 𝜋𝑖1̂ or 𝜋𝑖1. The solid curve shows the 

distribution of the 𝜋𝑖1 across respondents. The dashed curve shows the distribution of 𝜋𝑖1̂ across 

respondents when Dirichlet(0.25, 0.25) was the prior on 𝝅𝒊. The dotted curve shows the 

distribution of 𝜋𝑖1̂ across respondents when Dirichlet(1, 1) was the prior on  𝝅𝒊. Different panels 

are for the three different test lengths J.  

5.3. Results 

The parameter recovery statistics for Study II are reported in Table 4. Given a prior on 𝝅𝒊 and a 

test length, the average PCR(z) and the average RMSE(𝜋𝑖1𝑟̂) do not seem to be influenced by 

sample size. For a given prior on 𝝅𝒊,  the average PCR(z) increases and the average RMSE(𝜋𝑖1𝑟̂) 
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decreases as test length increases. For a given test length, the average PCR(z) decreases slightly 

and the average RMSE(𝜋𝑖1𝑟̂) increases when the prior for 𝝅𝒊 changes from Dirichlet(0.25, 0.25) 

to Dirichlet(1, 1).  A larger test length, however, appears to reduce the negative effect of a flat 

prior on the average PCR(z) and the average RMSE(𝜋𝑖1𝑟̂). For example, when N = 300, J = 30 

and P(𝝅𝒊) ~ Dirichlet(1, 1), the average PCR(z) is 0.85 and the average RMSE(𝜋𝑖1𝑟̂) is 0.19, 

whereas when N = 300, J = 6 and P(𝝅𝒊) ~ Dirichlet(0.25, 0.25), the average PCR(z) is 0.78 and 

the average RMSE(𝜋𝑖1𝑟̂) is 0.29. The average Bias(𝝅) is consistently negligible (i.e., close to 

zero) across all the conditions. The average 𝜏(𝜋𝑖1𝑟̂, 𝜋𝑖1) increases as test length increases and is 

not influenced by sample size and prior choice for 𝝅𝒊.  

For a given test length, the average RMSE(𝑏𝑔𝑗𝑟
̂ ) decreases considerably as sample size 

increases when the true prior on 𝝅𝒊 is used. For a given sample size and when the true prior on 

𝝅𝒊 is used, the average RMSE(𝑏𝑔𝑗𝑟
̂ ) decreases slightly as test length increases from 6 to 15 

items. Less of a decrease is evident as test length increases from 15 to 30 items. When the flat 

prior on 𝝅𝒊 is used, the average RMSE(𝑏𝑔𝑗𝑟
̂ ) tends to be larger than when the true prior is used 

for a given sample size and test length. Further, increasing test length and sample size do not 

seem to decrease the average RMSE(𝑏𝑔𝑗𝑟
̂ ). The Average Bias(𝑏𝑔𝑗𝑟

̂ ) is very close to 0 in all the 

conditions. The average 𝜌(𝑏𝑠̂, 𝑏)  is consistently positive and large in all the conditions.  

The average RMSE(𝜃𝑖𝑟̂) and the average 𝜌(𝜃𝑖𝑟̂ , 𝜃𝑖) seems to be only affected by test 

length. The average RMSE(𝜃𝑖𝑟̂) decreases and the average 𝜌(𝜃𝑖𝑟̂ , 𝜃𝑖)  increases as test length 

increases. When both sample size and test length are the smallest, the average Bias(𝜃𝑖𝑟̂) tends to 

be relatively large. Increasing sample size or test length appears to help decrease the average 

Bias(𝜃𝑖𝑟̂) to 0.  
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As was observed in Study I, test length and choice of choice on 𝝅𝒊  also influences the 

distributions of 𝜋𝑖1𝑟̂ across respondents in Study II. The distribution of  𝜋𝑖1𝑟̂ across respondents 

better approximated the distribution of 𝜋𝑖1 across respondents when the true prior rather than the 

flat prior for 𝝅𝒊 was used and for the longer test lengths.  An example of such patterns is shown 

in Figure 4. 

 

Table 4. Parameter recovery in study II evaluated by average PCR, average RMSE, average bias, 

and average correlation 

N P(𝝅𝒊) J 𝑧𝑖𝑗𝑟 ̂   𝜋𝑖1𝑟̂  𝑏𝑔𝑗𝑟
̂   𝜃𝑖𝑟̂ 

PCR  RMSE Bias 𝜏  RMSE Bias 𝜌  RMSE Bias 𝜌 

300 Dir(0.25, 

0.25) 

6 0.78  0.29 -0.01 0.46  0.28 0.00 0.98  0.68 0.07 0.70 

  15 0.83  0.21 -0.00 0.57  0.25 0.00 0.98  0.55 0.00 0.84 

  30 0.87  0.15 -0.01 0.65  0.24 0.00 0.98  0.41 0.00 0.91 

 Dir(1, 1)  6 0.76  0.31 -0.01 0.46  0.26 0.00 0.98  0.67 0.07 0.70 

  15 0.81  0.24 -0.00 0.58  0.28 0.00 0.98  0.55 0.00 0.84 

  30 0.85  0.19 -0.02 0.65  0.28 0.00 0.98  0.42 0.00 0.91 

500 Dir(0.25, 

0.25) 

6 0.78  0.29 0.01 0.46  0.20 0.00 0.99  0.68 -0.02 0.68 

  15 0.84  0.21 0.00 0.58  0.18 0.00 0.99  0.53 0.00 0.83 

  30 0.88  0.14 0.00 0.65  0.18 0.00 0.99  0.41 0.01 0.91 

 Dir(1,1) 6  0.75  0.30 0.01 0.45  0.28 0.00 0.99  0.68 -0.02 0.68 

  15  0.82  0.24 -0.00 0.58  0.32 0.00 0.99  0.53 0.00 0.83 

  30 0.85  0.19 0.01 0.65  0.32 0.00 0.99  0.42 0.01 0.91 

1000 Dir(0.25, 

0.25) 

6 0.78  0.29 -0.00 0.46  0.15 0.00 0.99  0.69 0.01 0.70 

  15 0.84  0.21 -0.01 0.58  0.14 0.00 0.99  0.54 0.01 0.83 

  30  0.87  0.15 0.00 0.66  0.13 0.00 0.99  0.42 -0.01 0.91 

 Dir(1,1) 6 0.75  0.30 0.00 0.45  0.21 0.00 0.99  0.69 0.01 0.71 

  15 0.81  0.24 -0.01 0.58  0.32 0.00 0.99  0.54 0.00 0.83 

  30 0.85  0.19 0.01 0.66  0.33 0.00 0.99  0.42 -0.01 0.91 
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CHAPTER 6 

STUDY III 

6.1 Purpose and Study Design 

In order to fit an MMR, the number of latent groups has to be specified. Selection of the best 

fitting model, i.e., the model with the appropriate number of latent groups, is critical to ensure 

that the model does not under-fit or over-fit the data. Likelihood-based goodness-of-fit measures 

are one of the most common approaches for model selection and usually evaluate the tradeoff 

between log-likelihood and model complexity. Previous studies on mixed membership models 

and mixture IRT models (Erosheva, 2002; Erosheva & Fineberg, 2007; Gormley & Murphy, 

2009; Li, et al., 2009) employed Akaike’s information criterion (AIC; Akaike, 1974), Bayesian 

Information Criterion (BIC; Schwartz, 1978), deviance information criterion (DIC; Spiegelhalter, 

Best, Garlin & Van Der Linde, 2002), and Akaike’s information criterion for MCMC samples 

(AICM; Raftery et al., 2007) to determine the number of latent groups.  

            AIC and BIC were originally developed for maximum likelihood estimators and were 

modified for use with MCMC estimation (Congdon, 2003). According to Congdon (2003), the 

modified AIC and BIC for MCMC estimation are defined as follows: 

AIC = 𝐷(𝜹)̅̅ ̅̅ ̅̅ ̅  + 2p                 (9) 

                                                     BIC = 𝐷(𝜹)̅̅ ̅̅ ̅̅ ̅  + log(N)p 

                                                    𝐷(𝜹)̅̅ ̅̅ ̅̅ ̅ = -2
1

𝑆
∑ 𝑙(𝜹(𝑠)|𝑋)𝑆

𝑠=1  

where 𝐷(𝜹)̅̅ ̅̅ ̅̅ ̅ is the posterior mean deviance given relevant parameters 𝜹, p is the number of 

estimated parameters, N is the number of observations, and 𝑙(𝜹(𝑠)|𝑋) is the log-likelihood in 
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iteration s after burn-in. The definition of p and N, however, is not straightforward in Bayesian 

models especially in those that have informative prior information (Erosheva, 2002; 

Spiegelhalter, Best, Carlin & van der Linde, 2014).  

            DIC can be conveniently computed with MCMC estimation and is defined as follows:  

DIC = D(𝜹̅) + 2*𝑝𝐷         (10)  

                                                         𝑝𝐷 = 𝐷(𝜹)̅̅ ̅̅ ̅̅ ̅  − D(𝜹̅) 

                                                       D(𝜹̅) = -2l(𝜹̂|X) 

where D(𝜹̅) is the deviance given the point estimates of the parameters calculated using posterior 

samples. DIC has been criticized for its tendency to overfit, that is, to select more complex 

models (Van der Linde, 2005, 2012). Thus, Plummer (2008) and Ando (2012) recommended 

DIC∗ that has a larger penalty on model complexity than DIC.  

DIC∗ = D(𝜹̅) + 3*𝑝𝐷      (11) 

For AIC, BIC, DIC and DIC∗, the models with smaller values among candidate models 

are preferred.   

AICM is analogous to AIC and was developed for use with MCMC estimation. It is 

defined as:  

AICM = 2(𝑙(𝜹|𝑋)̅̅ ̅̅ ̅̅ ̅̅   - 𝑠𝑙(𝜹|𝑋
2 )           (12) 

                                                     𝑙(𝜹|𝑋)̅̅ ̅̅ ̅̅ ̅̅  = 
1

𝑆
∑ 𝑙(𝜹(𝑠)|𝑋)𝑆

𝑠=1  

   𝑠𝑙(𝜹|𝑋
2  = 

1

𝑆
∑ (𝑙(𝜹(𝑠)|𝑋) −  𝑙(𝜹|𝑋)̅̅ ̅̅ ̅̅ ̅̅ )2𝑆

𝑠=1  

The models with larger AICM are preferred.  

Previous studies showed that AIC, BIC, DIC and AICM may not always agree on the 

best fitting models with latent groups and some of them outperform the others in certain 

conditions for certain models (Erosheva & Fineberg, 2007; Li, et al., 2009). For example, the 
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BIC, modified for use with MCMC estimation, has been found to outperform the other measures 

for mixture IRT models (Li, et al., 2009), whereas AICM has been found to be one of the best-

performing model selection measures in a mixed membership model (Erosheva & Fineberg, 

2007).  

In this chapter, the performance of AIC, BIC, DIC, DIC∗ and AICM for selecting the best 

fitting MMR model estimated using MCMC under different testing conditions was examined 

using simulated data. The calculations of these measures follow the above equations. In equation 

(9), p is defined as the total number of item difficulty parameters across latent groups, which is 

consistent with the definition in Li, e. al.’s study (2009). For example, in a two-latent-group 

MMR model that is fitted to responses to 15 test items, p is equal to 15 × 2 = 30. In equation 

(10), l(𝜹̂|X) is defined as  

𝑙(𝝅̂, 𝜽̂, 𝒃̂|𝑿) = log( ∏ ∏ ∑  𝜋𝑖𝑔̂
𝑠𝐺

𝑔=1 𝑃𝑔(𝑋𝑖𝑗|𝑍𝑖𝑗𝑔̂, 𝜃𝑖̂, 𝑏𝑔𝑗̂)𝐽
𝑗=1

𝑁
𝑖=1 ) 

where 𝜋𝑖𝑔̂, 𝜃𝑖̂, and 𝑏𝑔𝑗̂ are posterior sample means and 𝑍𝑖𝑗𝑔̂ is a posterior sample mode. In 

equation (12), 𝑙(𝜹(𝑠)|𝑋) is defined as 

𝑙(𝝅𝑠, 𝜽𝑠 , 𝒃𝑠|𝑿) = log( ∏ ∏ ∑  𝜋𝑖𝑔
𝑠𝐺

𝑔=1 𝑃𝑔(𝑋𝑖𝑗|𝑍𝑖𝑗𝑔
𝑠, 𝜃𝑖

𝑠, 𝑏𝑔𝑗
𝑠 )𝐽

𝑗=1
𝑁
𝑖=1 ) 

                        = ∑ ∑ 𝑙𝑜𝑔{∑  𝜋𝑖𝑔
𝑠𝐺

𝑔=1 𝑃𝑔(𝑋𝑖𝑗|𝑍𝑖𝑗𝑔
𝑠, 𝜃𝑖

𝑠, 𝑏𝑔𝑗
𝑠)}𝐽

𝑗=1
𝑁
𝑖=1 . 

The simulation conditions for this study were the same as those described for Study I. 

That is, the data were generated given two latent groups, three sample sizes (N = 300, 500 and 

1000) and three test lengths (J = 6, 15 and 30 items). For each condition, the simulation was 

replicated 50 times. For each simulated data set, the MMR models with no latent groups, two 

latent groups, three latent groups and four latent groups were fitted using the MCMC algorithm. 

The Dirichlet(0.25, 0.25) prior on 𝝅𝒊 is the same as the generating distribution of 𝝅𝒊. Each 

MCMC chain was run for 20,000 iterations with the first 10,000 discarded as a burn-in.  
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6.2. Results 

Table 5 shows how often an information criterion measure picks a model as the optimal model 

across the 50 replications under each testing condition. BIC appears to be the best-performing 

measure since it picks the models with two latent groups 100% of the time across all conditions. 

AIC is next closest in selecting the correct model although its performance is inconsistent across 

testing conditions. In some of the conditions, AIC selects the correct model more than 94% of 

the time whereas in other conditions, AIC fails to capture the correct model at all. Moreover, 

AIC tends to pick more complex models.  DIC and DIC* consistently miss the correct model 

across all the conditions and favor more complex models. AICM is close to missing the correct 

model across all the conditions all the time. In some conditions, it favores the simplest model and 

in some other conditions, it favors the most complex model.  
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Table 5. Percent of replications in which an information criterion picked out a model as the 

optimal model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         Note. The models with 2 latent groups are the true models. 

  

N J G AIC BIC DIC DIC* AICM 

300 6 1 0 0 0 0 96 

  2 98 100 0 0 4 

  3 2 0 28 20 0 

  4 0 0 72 80 0 

 15 1 0 0 0 0 6 

  2 70 100 0 0 0 

  3 26 0 18 20 6 

  4 4 0 82 80 88 

 30 1 0 0 0 10 100 

  2 20 100 0 0 0 

  3 70 0 6 0 0 

  4 10 0 94 90 0 

500 6 1 0 0 0 0 0 

  2 84 100 0 0 0 

  3 16 0 20 20 28 

  4 0 0 80 80 72 

 15 1 0 0 0 0 44 

  2 20 100 0 0 0 

  3 48 0 2 2 0 

  4 32 0 98 98 56 

 30 1 0 0 0 0 100 

  2 0 100 0 0 0 

  3 4 0 2 4 0 

  4 96 0 98 96 0 

1000 6 1 0 0 0 0 0 

  2 94 100 0 0 0 

  3 6 0 40 28 36 

  4 0 0 60 72 64 

 15 1 0 0 0 0 64 

  2 0 100 0 0 0 

  3 0 0 0 0 0 

  4 100 0 100 100 36 

 30 1 0 0 0 0 100 

  2 0 100 0 0 0 

  3 0 0 0 0 0 

  4 100 0 100 100 0 
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CHAPTER 7 

SUMMARY AND DISCUSSION 

IRT models have been widely applied to analyze educational test data. They are usually used to 

estimate respondents’ ability as well as the characteristics of test items such as item difficulty 

and item discrimination. The Rasch model is the simplest IRT model. It only includes item 

difficulty for the item characteristics. Item discrimination is represented in the Rasch model but 

is typically assumed to be 1 for all items.  

One of the variants of the conventional IRT models is mixture IRT. A mixture IRT model 

accounts for the possible heterogeneity in model parameters by detecting latent groups of 

respondents in the data. For example, respondents may solve problems using different strategies 

and may show different test-taking behaviors. The same set of test items may perform differently 

for different groups of respondents.  

Mixture IRT models can be used to accommodate this scenario and to estimate 

respondents’ latent group membership as well as the item characteristics under each latent group. 

The assumption in mixture IRT models is that each respondent remains in the same latent group 

across the entire test. Using the analogy above of different problem-solving strategies, a mixture 

IRT model assumes that the respondents in a given latent group use the same problem-solving 

strategy over all test items. It is possible, however, that a respondent switches between problem-

solving strategies across items. To account for this possibility, in this dissertation, a mixed 

membership Rasch (MMR) model was developed by integrating the Rasch model into the 

framework of mixed membership models.  
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The MMR allows a respondent to belong to all the possible latent groups in the data but 

with different probabilities at the test level. This is represented by a membership probability 

vector 𝝅𝒊  for each respondent. At the item level, the MMR assumes that a respondent belongs to 

one of the latent groups for a given item, denoted by 𝑍𝑖𝑗, and the respondent may belong to 

different latent groups for different items. For a given latent group, the probability of a correct 

response to an item is parameterized using the Rasch model.    

In the Rasch model as well as for IRT models in general, the scale of item difficulty and 

ability parameters is undetermined. This can potentially result in nonconvergence of an 

estimation algorithm for the IRT models. Therefore, researchers and IRT analysis software 

usually implement a scale on either item difficulty or ability parameters. For mixture IRT and the 

MMR, it is important to not only determine a scale for the parameters but also to make sure that 

the parameters across latent groups are on the same scale given how the parameter estimates are 

sampled iteratively in the estimation algorithms as well as the need that the parameters across 

latent groups are comparable for interpretability purposes. Consistent with common practice in 

studies employing a mixture Rasch model, a constraint that the item difficulty parameters sum to 

0 as described in Rost (1990) was imposed for each latent group. In this way, the parameters in 

the Rasch model had a fixed scale and were on the same scale across latent groups. This 

constraint was considered reasonable in the current simulation studies since the sum of the 

generating item difficulty parameters was 0 for each latent group. However, when the sum of the 

generating item difficulty parameters is not 0, such a constraint would bias the estimates and 

more appropriate scaling methods would need to be employed (Paek & Cho, 2015).  

In this dissertation, simulation studies were conducted to investigate how well the 

parameters in the MMR could be recovered under practical testing conditions and what factors 
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affected the recovery. The MMR was estimated using a Metropolis-within-Gibbs algorithm. The 

results of the simulation studies showed that the recovery of 𝝅𝒊 and 𝑍𝑖𝑗  improved as test length 

increased. The use of an incorrect prior for 𝝅𝒊, that is, a prior that was different from the 

generating distribution of  𝝅𝒊, negatively affected their recovery. Increasing test length appeared 

to be able to overcome such negative effects. Sample size, however, did not appear to influence 

the recovery of neither 𝝅𝒊 nor 𝑍𝑖𝑗. The recovery of 𝑍𝑖𝑗 was reasonably good even though there 

was only one observed data point that could be used to estimate 𝑍𝑖𝑗. The recovery of item 

difficulty parameters 𝑏𝑔𝑗 improved as sample size increased. The recovery also improved 

slightly as test length increased from small to medium. When the wrong prior was used for 𝝅𝒊, 

the recovery of 𝑏𝑔𝑗 was worse compared with when the true prior was used. Increasing test 

length and sample size, however, did not seem to cancel out such negative effects. The recovery 

of ability parameters improved as test length increased but did not seem to be influenced by 

neither sample size nor choice of prior for 𝝅𝒊. 

 An unexpected result was that knowing item difficulty parameters did not appear to 

improve the recovery of 𝝅𝒊 and 𝑍𝑖𝑗. As shown in Chapter 3, the posterior of 𝝅𝒊 is a function of 

𝑍𝑖𝑗 and the likelihood in the posterior of 𝑍𝑖𝑗 is a function of ability and item difficulty 

parameters. Galyardt (2012) suggested that knowing the parameters in the likelihood of the 

posterior of 𝑍𝑖𝑗 returned better recovery of 𝝅𝒊 in a mixed membership model. In the current 

MMR, since the likelihood in the posterior of 𝑍𝑖𝑗 is a function of both item difficulty and ability 

parameters, knowing only item difficulty parameters may not have been sufficient to improve the 

estimation of 𝑍𝑖𝑗 and 𝝅𝒊.  

In this dissertation, parameter recovery was evaluated using RMSE, bias and the 

correlation between posterior estimates and generating parameters. For item difficulty and ability 
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parameters, it would be useful to compare their recovery obtained in the current simulation 

studies with previous simulation studies on IRT models to get some further insight as to how 

well the parameters in IRT models can be estimated in a model as complicated as the MMR. 

Such comparisons, however, are somewhat complicated as different studies have used different 

simulation designs and have defined recovery statistics in different ways even though the 

statistics are called by the same name (e.g., Natesan, Minka & Rubright, 2016; Si & 

Schumacker, 2004). Future research addressing these differences in recovery studies would be 

helpful.  

In this dissertation, simulation studies were also conducted to evaluate how well different 

likelihood-based goodness-of-fit measures performed in selecting the optimal number of latent 

groups for the MMR. Results suggested that BIC consistently selected the model with the correct 

number of latent groups across different sample sizes and test lengths that were examined in this 

study. AIC’s performance was less consistent across testing conditions and did not appear to 

improve as either sample size or test length increased. DIC and DIC* tended to consistently 

favor more complex models across testing conditions. AICM tended to favor the simplest model 

in some testing conditions and the most complex model in the other conditions. The patterns of 

AIC, BIC, DIC and DIC* were somewhat consistent with previous research by Li et al. (2009) 

on the performance of model selection indices for mixture IRT models. AICM has not been 

applied to select the number of latent groups for mixture IRT models. For mixed membership 

models, AICM has showed acceptable performance (Erosheva et al., 2007; Kim, 2019) For the 

MMR, however, AICM generally failed to select the correct model consistently across 

conditions. Such inconsistency in the performance of AICM across mixed membership models 

and their variants may indicate that the behavior of AICM is sensitive to how a model is set up.  
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It is also noted that even though BIC performed well in the current simulation study, both 

AIC and BIC are functions of the number of estimated parameters and determining the number 

of estimated parameters in hierarchical models such as the MMR and mixture IRT models 

estimated using Bayesian methods is not necessarily straightforward. Previous studies that 

involved using information criterion measures to select number of latent groups for Bayesian 

mixture IRT (Li et al., 2009) and mixed membership models (Erosheva et al, 2007) did not fully 

investigate this issue and many of the previous studies did not report how the number of 

estimated parameters was defined (e.g., Erosheva et al., 2007; Huang, 2016).   

Overall, the results of this dissertation suggest that the MMR can be estimated well under 

certain conditions and thus has the potential to help researchers understand respondents’ partial 

memberships in all the latent groups that might exist in the data and their behaviors of switching 

between latent groups across test items.  

In this dissertation, how well the parameters in the MMR can be recovered under 

different conditions was examined only when there were two latent groups in the data. Future 

studies should increase the number of latent groups so that a more complete picture of the 

patterns of parameter recovery in different conditions can be drawn. Galyardt (2012) and 

Erosheva et al. (2007) showed that each mixed membership model could be rewritten as a finite 

mixture model with far more latent groups than the mixed membership model. Since mixture 

Rasch model follows the framework of finite mixture models, future studies may also focus on 

understanding the relationship between the MMR and the mixture Rasch models. This might 

help researchers further investigate the statistical properties of the MMR and the possible bias in 

the estimates of item difficulty and ability parameters in the mixture Rasch models when partial 

membership and switching behaviors should not be omitted.  
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APPENDIX A 

R code for Study I 

# R code for a Metropolis-within-Gibbs algorithm for the MMR (item difficulties are known) 

 

# note: I tried to make sure that the object names in the following R code are somewhat 

#consistent with the notations in the MMR to make reading the R code easier.  

 

# alpha = the hyperparameter in the prior distribution of pi 

# start.z = starting values of z 

# start.theta = starting values of theta 

# n.group = number of latent groups  

# n.sample = number of individuals 

# n.item = number of items 

# n.iter = number of iterations 

# data = binary response data matrix with rows as individuals and columns as items 

 

 

library(gtools) 

 

 

# create functions used to update pi.i (Gibbs sampler) 

posterior.pi.i= function(z.i, n.group){     

  alpha.new= alpha + table(factor(z.i, levels= 1:n.group))        

  draw= rdirichlet(1, alpha.new)  # draw a sample from the approximate posterior distribution 

of pi.i 

  return(draw) 

} 

 

 

# create functions used to update z.ij (Gibbs sampler) 

posterior.z.ij= function( pi.i, theta.i, b.j, x.ij){   

  p.j= exp(theta.i- b.j)/ (1+ exp(theta.i- b.j))   

  if (x.ij== 1){               

    p.new= p.j*pi.i 

    draw= rmultinom(1, 1, p.new)  # draw a sample from the approximate posterior distribution 

of z.ij  when x.ij = 1 

    z.tmp= which(draw==1) 

  } 

  else if (x.ij==0){ 

    p.new.2= (1-p.j)*pi.i 

    draw= rmultinom(1,1, p.new.2)  # draw a sample from the approximate posterior 

distribution of z.ij when x.ij = 0 

    z.tmp= which(draw==1) 

  } 
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  return(z.tmp) 

} 

 

 

# create functions used to update theta.i (Metropolis step) 

likelihood.theta.i= function(z.i, theta.i, b, n.item, x.i){ # calculate the log-likelihood of 

individual i’s response to each item 

  l= rep(NA, n.item) 

  for (i in 1:n.item){        

    b.gj= b[,i][z.i[i]] 

    p.jg= exp(theta.i- b.gj)/ (1+ exp(theta.i- b.gj)) 

    l[i]= dbinom(x.i[i], size=1, prob= p.jg, log= T)   

  } 

  return(sum(l)) 

} 

prior.theta.i= function(theta.i){ # evaluate the prior density function of theta at a given sample 

of theta 

  return(dnorm(theta.i, 0, 1, log= T))          

} 

posterior.theta.i= function(z.i, theta.i, b, n.item, x.i){ # calculate the posterior distribution on 

log scale 

  post= likelihood.theta.i (z.i, theta.i, b, n.item, x.i)+ prior.theta.i(theta.i) 

  return(post) 

}   

proposal.theta.i= function(theta.i){ # draw a sample of theta from a proposal distribution 

  draw= rnorm(1, theta.i, sd= 0.5) 

  return(draw) 

} 

 

 

# MCMC.  

run.mcmc = function(alpha, start.z, b, start.theta, n.group, n.sample, n.item, n.iter, data){ 

 

   # create objects to store MCMC samples 

   pi= vector('list', n.iter-1)   # create a list to store samples of pi obtained in all the iterations.  

   z= vector('list', n.iter)    # create a list to store samples of z obtained in all the iterations.  

   theta= matrix(NA, nrow= n.iter, ncol= n.sample)    # create a matrix to stores samples of 

theta obtained in all the iterations with rows as iterations and columns as individuals.  

   z[[1]]= start.z      # store starting values of z 

   theta[1,]= start.theta   # store starting values of theta 

   

  # run MCMC 

  for ( i in 2:n.iter){  # n.iter = number of iterations 

    ### Update pi 

    pi.mat= matrix(NA, nrow= n.sample, ncol=n.group)     # In each iteration, samples are 

stored in a matrix with rows as individuals and columns as groups. 
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    for (j in 1:n.sample){   

      pi.mat[j,]= posterior.pi.i(z.i= z[[i-1]][j,], n.group) 

    } 

pi[[i-1]]= pi.mat 

 

    ### update z 

    z.mat= matrix(NA, nrow= n.sample, ncol= n.item)  # In each iteration, samples are stored in 

a matrix with rows as individuals and columns as items. 

    for (j in 1:n.sample){ 

      for (n in 1:n.item){ 

        z.mat[j, n]= posterior.z.ij(pi[[i-1]][j,], theta[i-1, j], b[, n], data[j, n]) 

      } 

    } 

z[[i]]= z.mat 

 

    ### update theta 

    for (j in 1:n.sample){ 

      draw= proposal.theta.i(theta[i-1, j]) 

      p.ratio.2= exp(posterior.theta.i(z[[i-1]][j,], draw, b= b, n.item, data[j,])-  

                       posterior.theta.i(z[[i-1]][j,], theta[i-1, j], b= b, n.item, data[j,]))  # calculate the 

ratio of posterior densities. The ratio was on log scale. The exponential function takes it back 

to the regular scale of a ratio. 

      tmp= runif(1, 0,1) 

      if (tmp<p.ratio.2){ # to decide if a sample drawn at this iteration should be retained 

        theta[i, j]= draw 

      } else( 

        theta[i, j]= theta[i-1, j] 

      ) 

    } 

  } 

  return(list(pi= pi, z=z, b = b, theta=theta))      

} 
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APPENDIX B 

R code for Study II 

# R code for a Metropolis-within-Gibbs algorithm for the MMR (item difficulties are 

unknown) 

 

library(gtools) 

 

 

# create functions used to update pi.i (Gibbs sampler) 

posterior.pi.i= function(z.i, n.group){     

  # browser() 

  alpha.new= alpha + table(factor(z.i, levels= 1:n.group))         

  draw= rdirichlet(1, alpha.new) 

  return(draw) 

} 

 

 

# create functions used to update z.ij (Gibbs sampler) 

posterior.z.ij= function( pi.i, theta.i, b.j, x.ij){   

  p.j= exp(theta.i- b.j)/ (1+ exp(theta.i- b.j))   

  if (x.ij== 1){               

    p.new= p.j*pi.i 

    draw= rmultinom(1, 1, p.new) 

    z.tmp= which(draw==1) 

  } 

  else if (x.ij==0){ 

    p.new.2= (1-p.j)*pi.i 

    draw= rmultinom(1,1, p.new.2) 

    z.tmp= which(draw==1) 

  } 

  return(z.tmp) 

} 

 

 

# create functions used to update theta.i (Metropolis step) 

likelihood.theta.i= function(z.i, theta.i, b, n.item, x.i){ 

  # browser() 

  l= rep(NA, n.item) 

  for (i in 1:n.item){        

    b.gj= b[,i][z.i[i]] 

    p.jg= exp(theta.i- b.gj)/ (1+ exp(theta.i- b.gj)) 

    l[i]= dbinom(x.i[i], size=1, prob= p.jg, log= T)    

  } 

  return(sum(l)) 
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} 

prior.theta.i= function(theta.i){ 

  return(dnorm(theta.i, 0, 1, log= T))          

} 

posterior.theta.i= function(z.i, theta.i, b, n.item, x.i){ 

  post= likelihood.theta.i (z.i, theta.i, b, n.item, x.i)+ prior.theta.i(theta.i) 

  return(post) 

}   

proposal.theta.i= function(theta.i){ 

  draw= rnorm(1, theta.i, sd= 1) 

  return(draw) 

} 

 

 

# create functions used to update b.gj (Metropolis step) 

likelihood.b.gj= function(x.j, theta, b.gj, z.j, g){ # for individuals who are in latent group g on 

item j, calculate the log-likelihood of their responses to item j 

  x.j.g= x.j[z.j==g] 

  p.gj= exp(theta[z.j==g] - b.gj)/ (1+ exp(theta[z.j==g]- b.gj)) 

  l= dbinom(x.j.g, size=1, prob = p.gj, log = T)    # log-transformed   

  return(sum(l)) 

} 

prior.b.gj= function(b.gj){   # evaluate the prior density function of b.gj at a given sample of 

b.gj 

  return(dnorm(b.gj, 0, 1, log= T))      

} 

posterior.b.gj= function(x.j, theta, b.gj, z.j, g){ # calculate the posterior distribution on log 

scale 

  likelihood.b.gj(x.j, theta, b.gj, z.j, g)+ prior.b.gj(b.gj) 

} 

 

proposal.b.gj= function(b.gj){ 

  draw= rnorm(1, b.gj, sd= 1) # draw a sample from a proposal distribution 

  return(draw) 

} 

 

 

 

# MCMC  

run.mcmc = function(alpha, start.z, start.b, start.theta, n.group, n.sample, n.item, n.iter, data, 

sum.difficulty){ 

 

  pi= vector('list', n.iter-1)    

  z= vector('list', n.iter)     

  b= vector('list', n.iter)    # create a list to store the samples of b obtained in all the iterations 

  theta= matrix(NA, nrow= n.iter, ncol= n.sample)     
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  z[[1]]= start.z       

  b[[1]]= start.b       

  theta[1,]= start.theta    

   

  for ( i in 2:n.iter){ 

    

    ### Update pi 

    pi.mat= matrix(NA, nrow= n.sample, ncol=n.group) 

    for (j in 1:n.sample){ 

      # browser() 

      pi.mat[j,]= posterior.pi.i(z.i= z[[i-1]][j,], n.group) 

    } 

pi[[i-1]]= pi.mat 

 

    ### update z 

    z.mat= matrix(NA, nrow= n.sample, ncol= n.item) 

    for (j in 1:n.sample){ 

      for (n in 1:n.item){ 

        z.mat[j, n]= posterior.z.ij(pi[[i-1]][j,], theta[i-1, j], b[[i-1]][, n], data[j, n]) 

      } 

    } 

z[[i]]= z.mat 

 

    ### update theta 

    for (j in 1:n.sample){ 

      draw= proposal.theta.i(theta[i-1, j]) 

      p.ratio.2= exp(posterior.theta.i(z[[i-1]][j,], draw, b= b[[i-1]], n.item, data[j,])-  

                       posterior.theta.i(z[[i-1]][j,], theta[i-1, j], b= b[[i-1]], n.item, data[j,])) 

      tmp= runif(1, 0,1) 

      if (tmp<p.ratio.2){ 

        theta[i, j]= draw 

      } else( 

        theta[i, j]= theta[i-1, j] 

      ) 

} 

 

    ### update b 

    b.mat= matrix(NA, nrow= n.group, ncol= n.item) # In each iteration, samples are stored in a 

matrix with rows as groups and columns as items. 

    for (g in 1:n.group){ 

      for (t in 1:n.item){ 

        draw= proposal.b.gj(b[[i-1]][g, t]) 

        p.ratio.3= exp(posterior.b.gj(data[,t], theta[i-1, ], draw, z.j= z[[i-1]][, t], g)- 

                         posterior.b.gj(data[,t], theta[i-1, ], b[[i-1]][g, t], z.j= z[[i-1]][,t], g)) # calculate 

the ratio of the posterior densities. The ratio was on log scale. The exponential function takes it 

back to the regular scale of a ratio. 
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        tmp= runif(1, 0, 1) 

        if (tmp< p.ratio.3){ # to decide if a sample drawn at this iteration should be retained 

          b.mat[g, t]= draw 

        } else{ 

          b.mat[g, t]= b[[i-1]][g, t] 

        } 

      } 

    } 

    for (g in 1:n.group){ # at the end of each iteration, rescale the samples of b obtained in this 

iteration 

      constant = (sum.difficulty - sum(b.mat[g,]))/n.item 

      b.mat[g,] = b.mat[g,] + constant 

    } 

    b[[i]]= b.mat 

  } 

  return(list(pi= pi, z=z, b=b, theta=theta))     

} 
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APPENDIX C 

R code for Study III 

# R code for calculating 𝐷(𝜹)̅̅ ̅̅ ̅̅ ̅   

 

mean.deviance= function(x, inter, burn, people, response.c, item){ 

  # x = an object returned by function run.mcmc() 

  # iter = number of iterations in the MCMC chain 

  # burn = number of iterations used as a burn-in 

  # people = number of individuals 

  # response.c = a binary response matrix with rows as individuals and columns as items 

  log.l.mat= rep(NA, times= iter) # create a vector to store the sum of the log-likelihood of all 

the responses given the samples of the parameters obtained at that iteration 

  for (r in (iter-burn+1):iter) { 

    mat.i= rep(NA, people) 

    for (i in 1: people) { 

        p= 1/(1+ exp(-(x[[4]][r, i] - x[[3]][[r]])))   

        p.i.c= t(p)*response.c[i,] 

        p.i.w= (1-t(p))*(1-response.c[i,]) 

        p.i= p.i.c+ p.i.w 

        p.i.marginal= x[[1]][[r-1]][i, ] %*% t(p.i)        

        mat.i[i]= sum(log(p.i.marginal)) 

    } 

    log.l.mat[r] = sum(mat.i) 

  } 

  return(list(mean(log.l.mat, na.rm = T), var(log.l.mat, na.rm = T))) 

} 

 

# R code for calculating D(𝜹̅) 

 

deviance.mean= function(x, people, response.c, item){ 

  # x stores point posterior estimates 

  mat.i= rep(NA, people) 

  for (i in 1: people) { 

    p= 1/(1+ exp(-(x[[3]][i] - x[[2]])))    

    p.i.c= p*response.c[i,] 

    p.i.w= (1-p)*(1-response.c[i,]) 

    p.i= p.i.c+ p.i.w 

    p.i.marginal= x[[1]][i, ] %*% t(p.i)    

    mat.i[i]= sum(log(p.i.marginal))        

  } 

  return(sum(mat.i))    

} 

 


