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ABSTRACT 

On occasion, tropical cyclones (TCs) have been shown to strengthen over land, provided 

that the land is warm and moist. The emergent hypothesis is that the moist surface provides 

sustaining latent heat flux (LHF) reminiscent of an oceanic environment (the “Brown Ocean 

Effect” or BOE). Chapter 1 provides a review of mechanisms associated with TC intensification 

over land and tests the BOE hypothesis using numerical simulations of idealized TCs with 

different levels of soil moisture availability (SMA). Afterwards, a more sophisticated experiment 

was conducted with additional SMA profiles and different roughness lengths (Chapter 2). SMA 

gradients are shown to have a large influence on precipitation. The sensitivity of accumulated 

precipitation to SMA is larger with enhanced friction. The maximum wind speed is more 

sensitive to differences in SMA under lower surface roughness.  

In Chapter 3, the idealized simulations are reexamined to evaluate the structure, intensity, 

and precipitation mechanisms. Vortical hot towers and Vortex Rossby Waves are identified and 

describe the radial pattern of local wind maxima but fail to describe the steady state patterns. The 

wind-induced surface heat exchange (WISHE), while appealing as an explanation, needs to be 

modified to describe the BOE. It is shown that the BOE is a semi-stable state with 



condensational warming causing structural degradation to the outflow but maintaining the warm-

core structure. The increase in LHF also enhances the precipitation. 

TC Maintenance and Intensification (TCMI) is a generalized definition of TCs that 

strengthen or maintain intensity inland. While extratropical transition is a well-studied 

explanation for many cases, the BOE is a relatively new explanatory hypothesis for certain 

storms. In Chapter 4, a novel methodology is proposed to examine the TC record to improve 

climatological representation of such cases. Using IBTrACS, individual times of inland TCs 

were classified into TCMI and non-TCMI (weakening) events. The MERRA-2 dataset was 

applied to develop a prototypical machine-learning model to help diagnose future TCMI events. 

A list of possible TCMI storms for case studies in future analyses is provided. Two of these 

storms were examined for BOE attributes. 
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CHAPTER 1  

Introduction 

A. Impacts of Tropical Cyclones 

Tropical cyclones (TCs) are one of the most expensive and expansive natural disasters 

that emerge from the atmosphere. Between 1900 and 2017, approximately $2 trillion (corrected 

after inflation) in damages were incurred from TCs within the United States (Weinkle et al. 

2018), averaging $17 billion per year. Four common dangers of TCs are damaging winds, sea 

level rise due to the storm surge, flooding, and tornadoes. High winds are the primary metric 

used to classify TCs as tropical depressions, tropical storms and hurricanes, per the Saffir-

Simpson scale. The storm surge is often the most destructive aspect of TCs but is primarily 

confined to coastal and near coastal areas (Needham et al. 2015). Flooding from TCs is often 

widespread and may occur in areas not directly susceptible to TCs (Kidder et al. 2005).  

Tropical cyclones pose a variety of multifaceted hazards. Tropical cyclones have a 

detrimental effect on global Gross Domestic Product (Chan and Kepert 2010). This does not 

include the indirect costs such as the opportunity cost of labor and business, the increased price 

of mitigation strategies, or the need for insurance (Gray et al. 1986). Other costs, such as the loss 

of cultural or sentimental objects and icons (McKernan and Mulcahy 2008) and the 

psychological health of residents (Fussell and Lowe 2014; Lowe et al. 2009), may not be 

quantifiable. Even the cost of the evacuation of residents is not negligible (Lowe 2012). TCs 

pose a hazard for industrial accidents (Misuri et al. 2019), soil contamination (Casteel et al. 

2006), ecological damage (Erickson et al. 2019) and influence quality of life through power 
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outages or degradation of air and water quality (Manuel 2013). This may result in the avoidance 

of areas perceived to be more vulnerable to TCs (Hunter 2005), particularly coastal areas. The 

perception of coastal regions as being more prone to TC threats than inland regions is slightly 

illusory as the only hazards posed uniquely to the littoral region are the storm surge (the most 

destructive aspect of TCs) and high wind. 

Inland flooding accounts for 50% (Rappaport 2000) to 80% (Czajkowski et al. 2011) of 

United States deaths (statistics from before 2011 and may not account for later storms such as 

Hurricane Sandy of 2012). Much of the property damage from flooding within the United States, 

as recorded by insurance claims, occurs inland (Czajkowski et al. 2017). Though as discussed 

above, insurance claims only consider the property damage of the insured and not of 

uninsured/excluded damages. Other sectors that are impacted by inland flooding include energy 

(Han et al. 2009), agriculture (Stewart and Berg 2019; Wood et al. 2001; Hiesl and Rodriguez 

2019), transportation , infrastructure (Chisolm and Matthews 2012; Lin and Cha 2021), and 

medicine (Ryan et al. 2015). 

B. Fate of Tropical Cyclones and Extratropical Transition 

Tropical cyclone intensity, although unpredictable after 4-5 days (Kieu and Moon 2016), 

has a semi-predictable behavior in given situations. Often, TCs strengthen over warm waters 

with weak vertical wind shear. Conversely, strong wind shear (Frank and Ritchie 2001) and a 

dearth of surface moisture undermine the intensity (Kimball 2006). The premise is that wind 

shear disrupts the vertical structure of TCs, while the land is presumed to be dry. This process 

reduces the transport of moisture from the surface to the TC. If the TC does not dissipate, it 

eventually may undergo extratropical transition (ET), which is when the TC takes on 

characteristics of an extratropical cyclone. 



3 

 

Evans et al. (2017) and Keller et al. (2018) provide recent literature reviews regarding 

ET. ET occurs when a preexisting tropical cyclone interacts with a baroclinic environment or a 

preexisting midlatitude synoptic system. A TC undergoing ET may cause continuity problems 

for operational forecasting centers (Blake et al. 2013) as the hazards posed are similar to those of 

a TC, even if the structure does not reflect those hazards. Those hazards may be amplified by ET, 

and hazards may be generated downstream from ET (Grams and Blumer 2015). Characteristics 

of ET may be identified on satellite by the dissolution of symmetry and the characteristics of an 

extratropical system (such as the manifestation of fronts) (Jones et al. 2003). Another graphical 

though quantifiable way of identifying ET is through the use of Cyclone Phase Space (CPS) 

diagrams (Hart 2003), which applies the thermal wind of 900-600 hPa, the thermal wind of 600-

300 hPa, and the cross-track thermal symmetry between 900-600 hPa for categorization. Evans 

et al. (2017) and Klein et al. (2000) describe ET as a three-step process: 1) initial contact with the 

baroclinic zone degrades the TC structure, expands the wind field and introduces asymmetry to 

the precipitation, 2) the TC becomes superimposed with the baroclinic zone, gaining vertical tilt 

and creating fronts and losing its warm core in the upper levels, and 3) the TC becomes a 

component of the extratropical cyclone as it loses its tropical structure, remaining as a low-level 

warm anomaly. 

C. Background on the Brown Ocean Effect 

Provided that a TC that is over land does not interact with a baroclinic zone to begin ET, 

it is presumed to decay over land. Generically, if ET does not occur and the TC, even 

temporarily, does not decay, it is considered to undergo Tropical Cyclone Maintenance or 

Intensification (TCMI, see Figure 1). While there may be various reasons why a TC may 
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undergo TCMI, the topic of this dissertation is on what has become known as the “Brown Ocean 

Effect” (Andersen and Shepherd 2014; Andersen et al. 2013). 

 

Figure 1: Schematic categorizing inland tropical cyclone fate. Image credit: 

NASA/Kathryn Hansen. Source: https://www.nasa.gov/content/goddard/brown-ocean-can-fuel-

inland-tropical-cyclones/  

The assumption that land weakens TCs hinges on the moisture available for 

evapotranspiration. Tuleya and Kurihara (1978) show that the soil moisture is the most important 

aspect in determining post-landfall decay. If the surface is sufficiently moist, the TC may still 

intensify or maintain intensity despite its geographic location (Shen et al. 2002; Andersen et al. 

2013). Moreover, the change in the roughness of the surface may also strengthen the TC after 

landfall provided that the evaporation from the surface was not impacted (Tuleya and Kurihara 

1978).  
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The “Brown Ocean Effect” may be summarized that in the proper environment, moist 

enthalpy fluxes may strengthen the TC beyond simply providing a source of moisture. The 

process of evaporating surface moisture to the TC, in turn, provides the enthalpy flux that 

enhances the storm strength. This is evident in the case of the agukabam, coined by Emanuel et 

al. (2008). Agukabams are TCs that are not intensified through a supply of moisture while over 

land but are instead invigorated by the sensible heat flux from the surface. This idea is supported 

by Mrowiec et al. (2011) which showed that a hurricane may be sustained without the presence 

of water vapor. The intensification due to the sensible heat flux complements the “Brown Ocean 

Effect.” Because the concept of the Agukabam relies on surface heat fluxes, it will be considered 

as part of the Brown Ocean Effect. In this way, the Brown Ocean Effect may be defined as the 

reintensification or maintenance of overland TCs due to surface enthalpy fluxes. 

D. “Proof-of-Concept” Simulations 

Since this concept is relatively new and many scholars are unaware of this phenomenon, 

a small, preliminary series of idealized simulations of TCs was conducted using the Weather 

Research and Forecasting (WRF) model. First, a control simulation was run for 6 days with the 

settings described by Table 1. Next, a “Dry Land” simulation was conducted by restarting the 

control simulation after three days of simulation time and replacing the ocean with land covered 

by deciduous trees and no available surface moisture. Finally, a “Brown Ocean Effect” 

simulation was conducted by replicating the “Dry Land” simulation but using a fully moistened 

surface. For these simulations, the land-surface model was turned off in order to allow the 

simulation a constantly moistened or dried surface at a constant temperature. The time period 

that was chosen was prior to the period of rapid intensification (RI) of the control simulation. RI 
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is defined as the event or period where the maximum wind speed of the TC intensifies by 35 

knots within one day. 

Table 1: Model settings for “Proof-of-Concept” simulations. 

Setting Choice Reference (if applicable) 

Horizontal resolution 15 km N/A 

Microphysics Kessler Kessler 1969 

Radiation Capped Newtonian relaxation 

scheme 

Rotunno and Emanuel 1987 

 

Convection None N/A 

Input profile Default Jordan 1958 

Boundary Layer YSU Hong et al. 2006 

Vertical layers 21 N/A 

Land-Surface Model None N/A 

Surface layer MM5 Similarity scheme with 

alternate Ck/Cd over the ocean 

Jiménez et al. 2012; Donelan et al. 

2004 

 

 

As expected, the aptly named “Brown Ocean Effect” simulation intensified, even in a 

pattern that is not so different from the control simulation, whilst the “Dry Land” simulation 

weakened accordingly. Figure 2 shows the maximum wind speed for each simulation. This 

“Proof-of-Concept” experiment indicates that the Brown Ocean Effect is certainly plausible, if 

not likely. These simulations were conducted with physics options that were not necessarily the 

most accurate but were optimized for speed and lower computational costs. Yet, they were still 

able to produce a TC. One of the major influences on the strength of the TC was likely the 

horizontal resolution (Gentry and Lackmann 2010), which in future simulations will be 

corrected. 
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Figure 2: Maximum wind speed for the “Proof-of-Concept” simulations. 

 

This “Proof-of-Concept” experiment, while just a preliminary exercise, was a testbed for 

further tests. For Chapters 2 and 3, simulations using Bare Ground and Mixed Cropland were 

used along with various configurations of soil moisture availability. Chapter 2 focuses primarily 

on the surface impacts on the improved simulations. Chapter 3 applies theories of TC 

intensification to the idealized simulations to produce insight into the mechanism as well as to 

garner information on TC intensification. Chapter 4 details a climatology of TCMI events, and 

produces a prototypical tool to diagnose the potential for a given TC to undergo TCMI rather 

than decay. 

 

 

Days 
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1Thomas A.M., J.M. Shepherd, and J.A. Santanello 2021. Submitted to Journal of Geophysical 

Research: Atmospheres 

 

CHAPTER 2  

THE INFLUENCE OF SOIL MOISTURE AND SURFACE ROUGHNESS ON AN 

IDEALIZED TROPICAL CYCLONE1 
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A. Introduction 

It is commonly accepted that a tropical cyclone (TC) dissipates after landfall (Kaplan and 

DeMaria 1995; Zhu 2008) unless it undergoes extratropical transition (Evans et al. 2017; Keller 

et al. 2018). The reasons for the dissipation include the absence of moisture source (Shen et al. 

2002; Tuleya and Kurihara 1978) and the existence of shear (Kaplan and Demaria 2001). The 

influence of soil moisture may slow the dissipation to a negligible rate and even reverse the 

dissipation rate while maintaining characteristics of a TC (Andersen et al. 2013; Andersen and 

Shepherd 2014; Arndt et al. 2009; Nair et al. 2019). This is termed the Brown Ocean Effect 

(BOE) as the ground surface is presumed to be so moist and warm that the moisture flux is 

comparable to that from over an ocean (Andersen et al. 2013). The impact of the BOE is not a 

binary categorization but rather a signal with a spectrum of influence (Yoo et al. 2020). The BOE 

differs from other studies that hypothesize the existence of cyclogenesis over land (Cronin and 

Chavas 2019; Mrowiec et al. 2011) in that the TC has been formed a priori and is influenced by 

surface fluxes post-landfall. 

The BOE hypotheses have primarily assumed a constant soil moisture distribution. 

However, the assumption of uniform soil moisture is not appropriate for a realistic environment 

but is still consistent within the literature that supports the BOE (Andersen and Shepherd 2014). 

Previous studies that examined the influence of soil moisture gradients on TCs include Tropical 

Storm Erin (2007; Arndt et al. 2009; Kellner et al. 2012; Monteverdi and Edwards 2010) and 

Hurricane Danny (1997) and Hurricane Fran (1996) (Kehoe et al. 2010). Kellner et al. (2012) 

hypothesized that the soil moisture gradient helped produce a gradient in vorticity, which helped 

to reintensify Tropical Storm Erin (Arndt et al. 2009; Monteverdi and Edwards 2010). This 

finding is consistent with Evans et al. (2011). Kehoe et al. (2010) proposed that the enhancement 
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of Hurricane Fran was due to soil moisture gradients. They drew from an analogy of other 

mesoscale circulations induced by differences in land use (Hong et al. 1995; Ookouchi et al. 

1984). Kehoe et al. (2010) also indicated that Hurricane Danny had local maxima in precipitation 

in areas where the soil moisture gradient was prominent. 

Previous studies also suggest that the intensity of TCs is dependent on the surface drag 

coefficient (Bryan 2013; Emanuel 1995; Malkus and Riehl 1960). The surface drag coefficient is 

dependent on surface roughness length and the Monin-Obukhov length (Powell et al. 2003; Stull 

2009). The surface roughness is a fundamental difference between the land surface and oceanic 

surface which is another aspect in which the BOE is different from the typical intensification of 

TCs. Changes in the roughness length may reduce TC intensity overall but may also induce 

convergence and enhanced local winds (Zhu 2008). Increases in surface drag have also been 

proposed as a mechanism for the enhancement of precipitation in TCs (Zhang et al. 2018). 

The goal of this research is to demonstrate the validity of the BOE from a theoretical 

perspective as well as test the aforementioned deviations from a typical water surface. A 

simulation of an idealized TC was used to conduct a series of experiments replacing the water 

surface with surface roughness and patterns of soil moisture availability (SMA; Lee and Pielke 

1992) beneath a developed cyclone.  

B. Data and Methods  

The Weather Research and Forecasting Model (WRF) was used to simulate an idealized 

TC. Specific changes to the default configuration of the idealized TC simulation within WRF 

include the deactivation of radiation, convective, and land-surface parameterization, as well as a 

domain of 984 km x 984 km with 4 km resolution. Other settings within the idealized TC 

simulation include Purdue microphysics (Chen and Sun 2002), the YSU boundary layer scheme 
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(Hong et al. 2006) and revised MM5 surface layer scheme (Jiménez et al. 2012) with altered drag 

coefficient (Donelan et al. 2004). A control simulation (CTRL) with a water surface was run for 

a 10-day period. After a two-day period, the restart file of CTRL was altered by replacing the 

water surface with different land-use types and SMA profiles. Two different land-use categories 

were used, namely “Bare Ground” (BG; z0=0.01 m) and “Mixed Cropland” (MC; z0=0.1 m). 

Since the land-surface parameterization was deactivated, the SMA profile and the surface 

temperature of 301.15 K was non-variant with unintended feedback mechanisms suppressed. 

One limitation with this approach is that while the TC may move, the soil moisture profile does 

not change.  

Eleven of the fourteen SMA profiles consisted of uniform SMA, ranging from 0 to 1. 

Three non-uniform SMA profiles were also used: a parabolically weighted Gaussian distribution 

(wG), inverse of the weighted Gaussian distribution (iwG), and piecewise (Pw). The wG profiles 

describe the effect of a TC moving over a previously moistened track as if the TC followed the 

tracks of a previous TC. The iwG profile shows the influence of a TC moving over a dry area but 

with a moist inflow. The Pw profile follows the same reasoning as the wG profile but with the 

SMA gradient emphasized. Those three non-uniform SMA profiles are described by Table 1, 

where x′ and y′ are normalized coordinates relative to the minimum central pressure, and R is 

the radius from the minimum central pressure. Particular simulations will be referred to as land 

use type followed by the SMA profile. For example, BG-wG will refer to the bare ground 

simulation with the weighted Gaussian distribution, and MC-U0.3 will refer to the mixed 

cropland simulation with a uniform SMA of 0.3.  
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Table 1: Details and equations describing the non-uniform soil moisture availability profiles. 

Long Name Abbreviated 

Name 

Expression Reason 

Parabolically 

weighted 

Gaussian 

wG 
(1 −

[x′]2

2
−

[y′]2

2
) exp[−

[x′]2

2

−
[y′]2

2
)] 

Moist near center, 

dry at edge of 

domain 

Inverse 

weighted 

Gaussian 

iwG 
1 − (1 −

[x′]2

2
−

[y′]2

2
) exp[−

[x′]2

2

−
[y′]2

2
)] 

Dry near center, 

moist at edge of 

domain 

Piecewise Pw {
0 if R > 250 km
1 if R < 250 km

 Moist near center. 

Strongest SMA 

gradient. 

 

Some caveats should be mentioned. This was a modeling study in an idealized 

environment so the conditions may not perfectly align in observational studies. This includes the 

expanse of one singular land use type, the validity of parameterizations used by the simulation, 

and the presence of environmental shear. Some of the assumptions may also reduce feedback 

mechanisms that could be an artifact of a stagnant TC rather than a TC moving over an infinite 

expanse. While deactivating these settings also eliminates potentially relevant feedback 

mechanisms and signals (Subramanian 2016; Tang et al. 2019; Tang and Zhang 2016), the 

reduction to the bare soil processes and roughness length effect eliminates complicating impacts.  

Such complicating factors that arise from a fully coupled land surface model (LSM) 

include the transpiration rate, infiltration, and surface runoff, which can modulate the soil 

moisture. As a theoretical approach, these factors are suppressed in favor of controlling the 

amount of moisture that can enter the TC. Appendix A provides a justification for deactivating 

the LSM by simulating BG-U0.2 conditions using the NOAH LSM but with surface radiational 

cooling deactivated by setting the emissivity to 0. This experiment also does not test changes to 

surface temperature or gradients in surface temperature. Also, the method of replacing the land 
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surface does not induce asymmetries typical of a landfalling TC. Despite these shortcomings, 

these simulations demonstrate the importance of having accurate representation of soil moisture 

profile and surface features. 

 

C. Results 

Figure 3 shows the maximum instantaneous wind speed for the BG and MC land use 

types for all 14 SMA profiles. CTRL achieves an asymptotically stable (Kieu 2015) quasi-steady 

state (QSS) shortly after rapid intensification. Although CTRL achieves a QSS, the BOE 

experiments decay at varying rates consistent with Kaplan and DeMaria (1995). As expected, the 

maximum wind speed for all of the BG simulations were generally greater than the MC 

simulations. One important difference between the CTRL simulation and the BG/MC 

simulations is the onset of rapid intensification (RI), which is defined as the increase of the 

maximum wind speed by 30 knots in 24 hours or less. RI onset occurs earlier in the BG/MC 

simulations, with the exception of the iwG and drier uniform SMA distributions of the BG 

simulations. The onset of RI happens earlier in the MC simulations than the CTRL. Moreover, 

the BG-wG and BG-Pw have a more pronounced period of RI. The maximum wind speed of the 

uniform BG simulations during the QSS are more incremental than the MC simulations, which 

shows a less distinguishable pattern. To this extent, the maximum wind speed in the QSS for the 

MC-Pw and MC-iwG simulations are almost indistinguishable. The maximum wind speed in the 

BG simulations during the QSS are more sensitive to changes in the SMA, especially near the 

center of the TC, than the MC simulations. 
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Figure 3: Maximum instantaneous wind speed (knots) for idealized tropical cyclones over 

a water surface (CTRL), over Mixed Cropland (left) and Bare Ground (right). The uniform SMA 

profiles are labeled according to the colorbar, while the CTRL and non-uniform SMA profiles 

are labeled in the legend. 

Figure 4 shows the domain-summed total accumulated precipitation over MC (left) and 

BG (right). All of the MC simulations produced more precipitation than the CTRL simulation. 

The CTRL simulation, however, produced more precipitation simulations with a lower SMA 

than the BG-U0.3. The presence of a gradient in SMA had a large impact in the total 

accumulated precipitation. The influence of the land use type was stronger on the uniform SMA 

profiles than the SMA profiles that had a SMA gradient. That is, the BG-iwG produced more 

precipitation than the BG-U1.0, while the MC-U1.0 produced more precipitation than the MC-

wG. Land use has a small impact on the total accumulated precipitation generated by SMA 

gradients. BG-wG and MC-wG, as well as MC-Pw and BG-Pw, have comparable total 

accumulated rainfall amounts, however MC-iwG produced more precipitation than BG-iwG, 
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indicating that there may be a radial dependence to this relationship. The cause of this is likely 

due to the differences in sensitivity of the surface latent heat flux. 

Figure 5 shows the surface latent heat flux, which is computed by the surface layer 

parameterization after 180 hours of the CTRL simulation. This demonstrates that the latent heat 

flux of the MC-U0.2 and BG-U0.5 most resemble the latent heat flux of the CTRL simulation. 

Latent heat flux increase is larger in the MC simulations than the BG simulations, even though 

the wind speed is lower. The cause of the difference in latent heat flux between land-use 

categories is due to enhancements in the bulk enthalpy transfer coefficient depicted by Figure 6. 

The greatest amount of latent heat flux is found in the simulations with the Pw profile. The Pw 

SMA profiles also have the largest gradient in latent heat flux, as expected with the gradient in 

the SMA profile. The enhanced soil moisture gradient allows dry air from outside the radius to 

Figure 4: Domain-summed accumulated precipitation (mm) for idealized tropical 

cyclones over a water surface (CTRL), over Mixed Cropland (left) and Bare Ground (right). The 

uniform SMA profiles are labeled according to the colorbar, while the CTRL and non-uniform 

SMA profiles are labeled in the legend. 
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be advected within the storm, enhancing the moisture gradient between the surface and lower 

atmosphere. This likely further increases the latent heat flux.
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Figure 5: Surface latent heat flux (W m-2) for each simulation at hour 180. 
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Figure 6: Enthalpy exchange coefficient after 180 hours of the CTRL simulation. 
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D. Discussion and Conclusions 

Through the use of idealized simulations of TCs, the BOE has been demonstrated to be a 

mechanism of overland reintensification. Previous descriptions of the BOE ignore the existence 

of soil moisture gradients, which can produce more precipitation than just a uniform SMA 

distribution in areas with a lower roughness length. Moreover, increases in friction enhance the 

precipitation produced, at the cost of hurricane intensity. Thus, it is proposed that the BOE 

should be evaluated among two different modes, precipitation enhancement and 

intensification/maintenance. The pattern of sudden enhancement of convection is likely caused 

by the gradient imbalance associated with the imposition of the land surface (Bryan 2013). 

Enhancements in precipitation are more likely in areas that have more friction and weaker wind 

speeds. The effect of friction on precipitation suggests that hurricane-related flooding is 

enhanced in urbanized areas, which is consistent with the study by Zhang et al. (2018) on 

Hurricane Harvey. 

Moreover, the influence of soil moisture gradients was investigated. It is found that the 

maximum wind speed is most influenced by the soil moisture closest to the center. However, 

when precipitation is considered, soil moisture gradients were more influential than soil moisture 

alone over areas with less surface roughness. This indicates that the TCs that generate the most 

hazardous rain-related conditions and wind damage move over a moist area with soil moisture 

gradients. While the radial orientation of the soil moisture gradient does have a large impact on 

the wind speed, it has a smaller impact on the precipitation relative to the existence of a soil 

moisture gradient. It is difficult to distinguish the role of the magnitude of the soil moisture due 

to constraints related to soil moisture and the location of the TC. The role of azimuthal 

differences in soil moisture may also be impactful, but was not explored.  
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CHAPTER 3  

APPLICATION OF CURRENT HURRICANE INTENSITY THEORIES TO THE 

BROWN OCEAN EFFECT1 
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A. Introduction 

The economic impact of landfalling tropical cyclones (TCs) is approximately $17 billion 

per year, adjusted for inflation (Weinkle et al. 2018). While it is common for TCs to dissipate 

after landfall (Kaplan and DeMaria 1995), it has also been accepted that the dissipation rate can 

be slowed by large quantities of soil moisture (Tuleya and Kurihara 1978; Shen et al. 2002). In a 

recent generation of studies, the post-landfalling TC dissipation rate has been showed to 

maintained or reversed by soil moisture and soil moisture gradients. This phenomenon has been 

named the “Brown Ocean Effect” (BOE;  Andersen et al. 2013; Collins and Walsh 2017), in that 

moist soil provides enthalpy fluxes similar to those over an ocean. One characteristic of these 

TCs is enhanced latent heat flux (Andersen et al. 2013) in an environment favorable for TCs. 

Examples of the BOE post-landfall hurricane strengthening include TS Erin (2007; Evans et al. 

2011; Kellner et al. 2012; Monteverdi and Edwards 2010; Arndt et al. 2009), an unnamed 

tropical system (Nair et al. 2019), TS Bill (Collins and Walsh 2017), and various TCs in the Bay 

of Bengal (Rao et al. 2019). The BOE is different from the unobserved (Emanuel 1994; 

Montgomery and Smith 2014) but theoretically possible (Mrowiec et al. 2011; Cronin and 

Chavas 2019; Tang et al. 2016) overland cyclogenesis since the BOE requires an a priori TC. 

The abnormal environment for TCs provides a unique opportunity to examine the 

intensification mechanisms. The mainstream TC intensification theories (Montgomery and Smith 

2014) assume an oceanic surface, which is disrupted by the observation of overland 

intensification. The first intensification theory is the wind-induced surface heat exchange 

(WISHE) (Emanuel 1986; Rotunno and Emanuel 1987; Emanuel 2012; Montgomery and Smith 

2020), which supposes that the TC intensification is a function of the temperature, 

enthalpy/entropy, and momentum fluxes between the surface and outflow. These fluxes are 
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calculated differently over land rather than over water (Stull 2009). WISHE and the corollary of 

the maximum potential intensity (MPI; Holland 1997; Emanuel 2012) are useful for statistical 

forecasts of hurricane intensity (Shimada et al. 2018) as well as estimating trends in intensity due 

to climate change (Henderson-Sellers et al. 1998; Elsner et al. 2008; Emanuel 1987). MPI is a 

moderately reliable metric for prognosticating the upper bound for intensity in different basins 

(Tonkin et al. 2000) with 20% of hurricanes reaching 80% or more of their MPI (Demaria and 

Kaplan 1994), though a few storms may become “superintense” and exceed the MPI (Persing 

and Montgomery 2003; Rousseau-Rizzi and Emanuel 2019). WISHE has also been utilized to 

study features of TCs, such as the formation of secondary eyewalls (Cheng and Wu 2018). 

Despite criticism of axisymmetric and gradient wind assumptions (Montgomery et al. 2009; 

Smith and Montgomery 2015; Smith et al. 2008; Montgomery and Smith 2020), WISHE has 

proven to be a reasonable conceptual model for describing the intensification mechanism (Tao et 

al. 2019; Zhang and Emanuel 2016; Rousseau-Rizzi and Emanuel 2020). It is hypothesized that 

the BOE will favor the WISHE mechanism due to the shared emphasis on surface entropy fluxes.  

The challenging theory to WISHE emphasizes inner-core convective bursts that are 

called “vortical hot towers” (VHTs). VHT’s are hypothesized to be formed by deep convective 

updrafts within the eyewall, forming cyclonic vorticity anomalies (Hendricks et al. 2004). VHTs 

promote convective activity and act as a heating source (Montgomery et al. 2006). As a 

functional heating source, VHTs generate potential vorticity (PV) anomalies. These VHTs merge 

with the cyclone at large, creating a PV gradient. The consequent PV gradient produces vortex 

Rossby waves (VRWs; Moller and Montgomery 2000). The VRWs, which take on the 

appearance of spiral bands (Montgomery and Kallenbach 1997), make the vortex axisymmetric 

(Moller and Montgomery 2000; McWilliams et al. 2003). This wave-mean flow interaction acts 
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to intensify the TC azimuthal velocity (Montgomery and Kallenbach 1997). The VHT theory has 

been useful in studying tropical cyclogenesis (Montgomery et al. 2006; Hendricks et al. 2004) 

and identifying the onset of rapid intensification (Zhuge et al. 2015). VHTs have been implicated 

in the overland reintensification of Typhoon Fanapi (2010) although the reintensification is not 

attributed to the same processes as those that are behind the BOE (Liou et al. 2016).  

One additional aspect investigated herein is the amount of precipitation produced by the 

idealized simulations. Neither WISHE nor VHTs provide a mechanism regarding TC 

precipitation. Many studies have been done on precipitation but focus on the morphology of the 

fields (Wingo and Cecil 2010; Rogers et al. 2020; Li et al. 2015; Wen et al. 2019; Ankur et al. 

2020) or the climatological frequency of TCs (Touma et al. 2019; Ren et al. 2006; Feldmann et 

al. 2019; Larson et al. 2005; Li and Zhou 2015; Zhu and Quiring 2013; Tu et al. 2020). However, 

the impact of TCs like Hurricane Harvey (2017) highlight the need for a mechanism explaining 

the precipitation over land (Zhang et al. 2018; Li et al. 2020). Therefore, an equation will be 

derived to quantify the sensitivity of rainfall to the surface roughness. It should be noted that this 

principle is not limited to TCs but can be found within rainfall in urban regions (Zhang et al. 

2014). 

The goal of this research is to apply the intensification theories to the BOE to yield 

insight into the mechanism governing overland intensification. Section 2 documents the use of 

idealized simulations of TCs where the ocean surface was replaced with different land surfaces. 

Section 3 describes the structure of the resulting cyclones with an emphasis on the particularly 

relevant variables in each intensification mechanism. Section 4 discusses the structural changes 

to the idealized TC and interprets the resultant variables in the light of both intensification 
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theories. Section 5 elucidates the relationship between the BOE and TC intensification, and 

provides insight into the TC intensification. 

B. Data and Methods 

a. Idealized Simulations 

A simulation of an idealized TC on an f-plane over water (CTRL) within the WRF model 

was conducted with an elapsed time of 10 days. The settings for all simulations are described by 

Table 2. These settings are similar to those used in Tao et al. (2019) and Hill and Lackmann 

(2008). One potentially significant modification is the deactivation of the land-surface model, 

which effectively holds the surface properties as fixed. This prevents unintended feedback 

mechanisms such as evaporative cooling altering the surface temperature or precipitation altering 

the soil moisture availability (SMA; Lee and Pielke 1992) but also eliminates the cooling of the 

surface by the downdraft as well as recycling of TC precipitation (Liu et al. 2019). Disabling the 

land-surface model also does not consider the effect of evapotranspiration, which implies that the 

latent heat flux may be underestimated over vegetation. 

Table 2: WRF model settings for all experiments. 

Setting Choice Reference 

Horizontal resolution 4 km N/A 

Radiation None N/A 

Cumulus physics None N/A 

PBL YSU Hong et al. (2006) 

Microphysics Purdue-Lin Chen and Sun (2002) 

Initial profile None Jordan (1958) 

Boundary conditions Cyclic N/A 

 

After two days of elapsed time, the simulation was restarted with a land surface replacing 

the water surface. The land use types include a bare ground (BG) and mixed cropland (MC). The 

bare ground land use type has a roughness length of 1 cm, and the mixed cropland has a 
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roughness length of 10 cm. By contrast, the roughness length formulation over water, which is in 

the CTRL simulation, is dependent on wind speed (Donelan et al. 2004). In addition to the 

alteration to the roughness length, the SMA was modified. Eleven horizontally uniform SMA 

profiles incrementally increasing from 0 to 1 were conducted for each of the land use types. 

Additionally, three spatially non-uniform SMA profiles described by Table 3, were applied to 

each of the land use types. The wG and Pw simulations emphasize the SMA closest to the center 

of the storm with the latter having the strongest SMA gradient. The third non-uniform SMA 

profile, the iwG, has the driest soil closest to the center of the storm.  

Table 3: Non-uniform soil moisture availability profiles. 

Long Name Abbreviated 

Name 

Expression Reason 

Parabolically 

weighted 

Gaussian 

wG 
(1 −

[x′]2

2
−

[y′]2

2
) exp[−

[x′]2

2
−

[y′]2

2
)] 

Moist near center, 

dry at edge of 

domain 

Inverse 

weighted 

Gaussian 

iwG 
1 − (1 −

[x′]2

2
−

[y′]2

2
) exp[−

[x′]2

2
−

[y′]2

2
)] 

Dry near center, 

moist at edge of 

domain 

Piecewise Pw {
0 if R > 250 km
1 if R < 250 km

 Moist near center. 

Strongest SMA 

gradient. 

 

The simulations will be referred to by the land use type followed by the abbreviated name 

of the SMA profile found in Table 3. Uniform SMA profiles will be referred to as U followed by 

the value of the SMA. For example, the bare ground simulation with a piecewise SMA profile 

will be referred to as BG-Pw, and the simulation using a mixed cropland with a uniform SMA 

profile of 0.8 will be referred to as MC-U0.8. Computations of height, potential vorticity, updraft 

helicity, and equivalent potential temperature were done using WRF-Python (Ladwig 2019). 

b. Methodology of Evaluation 
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1) WISHE 

Tao et al. (2019) examined the validity of several assumptions within WISHE. These 

include the validity of the gradient wind assumption above the PBL, and the functional 

relationship of the angular momentum and saturation entropy signifying moist slantwise 

neutrality. We will examine the slantwise convection assumption as well as modify the saturated 

surface assumption within the MPI equation. 

One of the assumptions of WISHE is the existence of a steady-state cyclone under 

idealized conditions. In order to calculate the MPI, some of the underlying assumptions include a 

constant ratio of the enthalpy exchange coefficient to drag coefficient, a constant PBL 

temperature, and constant radius of maximum wind at the PBL. This will be evaluated at the 

radius of azimuthally-averaged tangential winds. Additionally, the formulation of the potential 

intensity equation described by Bister and Emanuel (1998) will be modified to account for 

surface moisture. The modification to the original equation, which is 

 

𝑉𝑀𝑃𝐼 = √
𝐶𝑘

𝐶𝐷

(𝑠∗ − 𝑠)(𝑇𝑠 − 𝑇0) 

 

Equation 1 

 

where 𝐶𝑘 is the surface enthalpy coefficient, 𝐶𝐷 is the surface drag coefficient, 𝑇𝑠 is the surface 

temperature, and 𝑇0 is the ouflow temperature, will primarily affect the difference between the 

saturation entropy, 𝑠∗, and the surface entropy, 𝑠. The ansatz equation is  

 

𝑉𝑎𝑛𝑠𝑎𝑡𝑧−𝑀𝑃𝐼 = √
𝐶𝑘

𝐶𝐷

(𝑠∗𝑎 − 𝑠𝑎)(𝑇𝑠 − 𝑇0) 

 

Equation 2 
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where 𝑠∗𝑎 and 𝑠𝑎 are the modified saturated and unsaturated surface entropy. Entropy was 

computed using  

𝑠(𝑇𝑠, 𝑞) = 𝑐𝑝(𝑞) ln[𝜃𝑒(𝑇𝑠, 𝑞)] 

 

Equation 3 

 

 

where 𝑐𝑝 is the moist specific heat capacity, 𝑞 is the water vapor mixing ratio at 2 meters, and 𝜃𝑒 

is the equivalent potential temperature computed by WRF-Python (Ladwig 2019). The modified 

saturated and unsaturated surface entropy are computed as 

𝑠∗𝑎 =  𝑠(𝑇𝑠, 𝑀𝑞𝑠[𝑇𝑠]) 

 

Equation 4 

 

𝑠𝑎 =  𝑠(𝑇𝑠, 𝑀𝑞) 

 

Equation 5 

 

where 𝑀 is SMA, and 𝑞𝑠 is the saturated water vapor mixing ratio at the surface. The basis of the 

ansatz is that a relaxation of the saturation assumption for surface entropy is more appropriate for 

land than over the ocean. Variables are used at 2 meters only when the variable at the surface 

was unavailable. Since SMA is the surface soil specific humidity, the amount of moisture is the 

product of SMA and saturated mixing ratio. The purpose of altering the saturation entropy in 

addition to the surface entropy is to prevent an inflation of the maximum velocity due to an 

inflated entropy difference.  

2) VHT Theory 

VHTs are definitive convective perturbations that contribute to diabatic heating within 

the eyewall. The variables of interest for the identification of VHTs are microphysical diabatic 

heating, potential vorticity, and vertical velocity. Therefore, VHTs may be identified through an 

azimuthal variance of those variables. The presence of VRWs will also be identified. The 
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identification of VHTs is insufficient to the attribution of intensification so the mean PV 

response and tangential velocity will also be examined.   

C. Results  

a. WISHE Analysis 

Since WISHE is based on the idea of slantwise-neutral moist convection, angular 

momentum is presumed to be a function of entropy. Figure 7 displays the angular momentum 

and the saturated entropy averaged between 72 and 132 hours of CTRL simulation. This period 

is presumed to be shortly after landfall. In both the MC and BG experiments, the warm core 

becomes more prominent with increasing SMA. Corresponding to the stronger warm core, the 

tendency towards slantwise-neutral convection increases with SMA. 
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Figure 7: Saturation entropy (filled contours) and angular momentum (black contours), averaged between 

72 and 132 hours of CTRL simulation. The magenta contour represents the angular momentum of the 

maximum azimuthally-averaged tangential wind at 10 m. 
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Figure 8 and Figure 9 show the maximum radial velocity in each column and that of the 

surrounding 4 levels, averaged between 72 and 132 hours and 144 hours to the end, respectively. 

The first period is semi-stable since the MC and non-uniform SMA distribution eventually have 

an outflow at a lower height. While this difference in height between the two periods may be a 

result of the TC-influenced environment affecting the TC, this new height may also be 

interpreted as a new steady state given that the uniform SMA in the BG simulations resemble the 

CTRL simulation. This lower height may be due to the enhanced latent heat fluxes increasing 

condensational warming aloft and reducing the height of the updraft, Evidence of this is provided 

in Figure 11, which is the azimuthally-averaged change in the potential temperature with height.
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Figure 8: Radial velocity of the outflow and surrounding levels, averaged between 72 and 132 hours. 



32 

 

 

  
Figure 9: Same as Figure 8, but averaged between 144 hours and the end of the experiment. 
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 Figure 10: Same as Figure 7, but averaged between 144 hours and the end. 
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Figure 11: The change in the potential temperature with height during the late period
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The change in the convection and thermal wind is reflected in Figure 12, which is part of 

the cyclone phase space (CPS; Hart 2003) diagram. Large circles depict the period between 72 

and 132 hours and “x” depicting the period between 144 hours and the end. CPS diagrams 

describe the thermal structure of cyclones. Warm-core cyclones are typically TCs, and cold-core 

cyclones are typically extratropical cyclones. Usually within CPS diagrams, baroclinicity is 

examined, but that requires TC movement, which is not applicable in this study. The comparison 

involving baroclinicity was not done since the translation speed for the TCs was either 

nonexistent or negligible. Thus, the component of the CPS diagram that was examined was the 

thermal wind comparison between the lower levels (900-600 hPa) and the upper levels (600-300 

hPa). The simulated TCs have deep warm cores during the early period with few exceptions. 

During this period, the MC simulations tend to be deeper than the BG simulations. While all 

simulations have a weaker lower level thermal wind than for the upper level, this is far more 

prominent in the later period when the low-level thermal wind changes sign. This suggests that 

the BG simulations with uniform SMA distributions have a low-level cold core similar to a post-

tropical cyclone like Hurricane Sandy (2012). Figure 12 also indicates that the warm core 

structure is maintained in the MC simulations. Neither is supported by Figure 10, which may 

indicate that the CPS diagram can be misinterpreted absent thermal asymmetry information. It 

may also be due to the stratification from the prolonged presence of the updraft. The late 

structure of the MC-Pw indicates that extratropical transition (ET) has started, which is in 

contrast to the early MC-Pw. Contrasting this difference to the difference between the early and 

late periods of the BG-Pw experiment indicates that roughness length has an influence on ET. 

Moreover, the similarity between the late structure of MC-iwG and BG-iwG indicates that when 

the SMA is lower near the center, the impact of the land surface is negligible in the final state. In 
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comparison, when the SMA is greater near the center than in the environment, a deep warm core 

is favored. It should be noted that ET inferred by the CPS diagram does not mean that actual ET, 

which involves entanglement with a baroclinic zone, fully occurred. 
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 Figure 12: The thermal wind comparison plot of the Cyclone Phase Space diagram. Large circles 

represent the time period between 72 hours and 132 hours of CTRL simulation and "x" represents an instance 

between 144 hours and the end. 
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Figure 13 shows the maximum azimuthally averaged tangential wind speed, the MPI, and 

the ansatz for the BG and MC experiments. The temporal average for each of the aforementioned 

variables changes due to uniform SMA is quantified in Table 4. Since the SMA for the ocean is 

1, the MPI and the ansatz are the same for the CTRL simulation. The change from the oceanic 

surface to the land surface does have an impact on the MPI, but the influence that SMA 

distributions have are minor with lower SMA distributions having a larger temporal variance 

though the MPI of the BG-Pw and BG-wG simulations are less than the other simulations. 

Unlike the MPI, the ansatz shows a progression that approximates the modeled wind speed. This 

implies that the ansatz is a better indicator of the BOE than the ordinary MPI. However, as 

predicted, the ansatz underestimates the wind speed for the driest soils, namely the U0.0 

simulations. The ansatz also underestimates the wind speed for the iwG simulations, possibly 

since the evaluation of the ansatz is closer to the drier part of the domain.

Table 4: Linear regression statistics for the azimuthally and temporally averaged intensity parameters 

 

  Slope (m s-1 per 0.1 SMA) p-value 

BG 

MPI -1.24 6.02e-05 

Ansatz 3.24 8.03e-05 

Maximum Azimuthally-

Averaged 10-m 

tangential wind speed. 

1.35 1.07e-04 

MC 

MPI -0.93 1.03e-04 

Ansatz 1.81 1.6e-04 

Maximum Azimuthally-

Averaged 10-m 

tangential wind speed. 

0.47 4.99e-03 
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Figure 13: Timeseries for the azimuthally-average tangential 10 m wind speed (top row), MPI 

(middle row), and ansatz-MPI (bottom row). 
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The iwG and U0.0 cases are not the only instances of superintensity in the suite of 

experiments. Figure 14 shows the difference between the MPI and the modeled wind speed as 

well as the ansatz and the modeled wind speed.  The impact of switching to a new land surface is 

most apparent in the MC simulations. All can be regarded as superintense at some point in which 

modeled intensity exceeds the MPI before the transition to the quasi-stable steady state.  This is 

analogous to a TC moving over an area of cooler water that cannot support the current intensity. 

Superintensity is more prevalent in the MC simulations than the BG simulations. The BG-wG 

and BG-iwG simulations are superintense more often than the other BG experiments possibly 

because the entropy difference is larger. This is not the case with the ansatz where the modeled 

wind speed of the iwG simulations exceed the ansatz. This condition will be called ansatz-

superintensity. The degree of ansatz-superintensity decreases with increasing SMA indicating 

that this metric is more appropriate for instances where BOE mechanisms are possible. This 

applies more to the BG simulations; however, the MC simulations also show that the ansatz is a 

more reasonable estimation of modeled wind speed than MPI. It should be noted that this does 

not defeat the purpose of MPI, which was to be a maximum theoretical wind speed. The ansatz is 

a useful metric for quantifying the BOE.  
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Figure 15 shows the various components of the MPI and ansatz-MPI. While the ratio of 

surface transfer coefficients has a sudden expected decrease, the other variables have noticeable 

differences. The unmodified entropy difference decreases with SMA, whereas the modified 

entropy difference increases with SMA. While the temperature difference between the outflow 

and the surface shows a small sensitivity to SMA, the land use has a larger impact. While this 

may be attributable to the lower outflow, a more likely reason is that the updraft was more tilted, 

leading to a maximum radial velocity that is at a lower height. This is evidenced by the warmer 

outflow occurring prior to the early period. 

Figure 14: Difference from the azimuthally-averaged, maximum 10 m tangential wind speed 

for the MPI (top row) and ansatz-MPI (bottom row). 
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Figure 15: The surface entropy difference (top row), the modified entropy difference 

(second row), the ratio of surface exchange coefficients (third row) and surface-outflow 

temperature difference (bottom row), which are components of the MPI and ansatz-MPI. 

b. VHT Analysis 

Figure 16 displays a time-radius plot of azimuthally averaged simulated radar reflectivity. 

The presence of VRWs are more prominent in the CTRL simulation than the other simulations. 

The serialized maxima of reflectivity are indicative of VHTs with the rainband/VRW emanating 

radially from it. The pattern of VRWs is longer-lived in the CTRL simulation than the uniform 

BG simulations where the size of the rain shield narrows. This is not the case in the MC 

simulations or non-uniform SMA distributions where the rain shield does not decrease in size. 

Although there may not be reflectivity maxima, this is not indicative of the absence of VHTs.  
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Figure 16: Time-radius plot of azimuthally averaged simulated radar reflectivity. 
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Figure 17 shows a time-radius plot of azimuthal variance of the updraft helicity (filled 

contours) and azimuthally averaged 10-m wind speed (white contours). The MC simulations 

have the most prominent VHTs early, but they dissipate at later times. This is consistent with the 

role that VHTs have in rapid intensification. The BG simulations with uniform SMA 

distributions as well as the CTRL simulation have VHTs that are more periodic and resilient 

during the later times though the VHTs quickly decay in the BG simulation. The absence of 

VHTs from the BG simulations with non-uniform SMA distributions as well as the MC 

simulations provides evidence that convection was suppressed in those simulations. The 

appearance of wind speed and VHTs shows that the relationship is consistent in the BG 

simulations but delayed in the MC simulations.



45 

 

 

 

Figure 17: Azimuthal variance of the updraft helicity (shaded) and maximum azimuthally-averaged 

tangential wind speed (white contours). 
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Figure 18 shows the FFT magnitude of potential vorticity at the radius of maximum 

potential vorticity at 850 hPa, temporally averaged over the late period similar to Gentry and 

Lackmann (2010). The influence of shear from the imposed land surface, which is often 

attributed to wavenumber 1, increases with SMA in the BG. Notably, the wavenumber 1 maxima 

between the MC and BG simulations are of a similar magnitude for the higher SMA. The 

wavenumber 8 asymmetry maxima is larger in the BG simulations than the MC simulations, 

indicating that the wavenumber 8 VRWs produced are preferentially generated in the BG 

simulations with the most SMA. The absence of such a local maxima in the CTRL simulation 

suggests that this feature is unique to the BOE and is suppressed in areas with a greater 

roughness length. While the cause of this spectral maxima is unknown, it does show a sign of a 

polygonal eyewall, though overshadowed by the shear and symmetric modes. 

 

Figure 18: Spectra of the potential vorticity at the 850 hPa radius of maximum potential vorticity. 

c. Precipitation mechanism analysis 
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While the WISHE and VHT analysis focus on the intensity, which is strictly defined as 

the maximum tangential wind speed, little has been said about the mechanism of describing the 

precipitation. Although the dynamical features provide the essential characteristics of a TC, the 

above theories do not apply to precipitation. The VHTs do not persist in the MC simulations, 

though the total accumulated precipitation accrues. Yet, WISHE requires that the atmosphere is 

unsaturated even to the extent that the atmosphere may be dry (Cronin and Chavas 2019; Wang 

and Lin 2020; Mrowiec et al. 2011). A moist-WISHE-like mechanism was proposed for the 

Madden-Julian Oscillation (Fuchs and Raymond 2017). Instead of either intensity theory, an 

examination of the neutrally stable similarity theory equations will show that the moisture flux 

increase in response to the roughness increase is mathematically predicted. The formula for such 

sensitivity is 

𝜕𝑤′𝑞′̅̅ ̅̅ ̅̅

𝜕𝑧0
=

𝑤′𝑞′̅̅ ̅̅ ̅̅

𝑧0 [log
𝑧𝑟𝑒𝑓

𝑧0
]
 

where 𝑤′𝑞′̅̅ ̅̅ ̅̅  is the kinematic moisture flux, 𝑧0 is the roughness length, and 𝑧𝑟𝑒𝑓 is a reference 

height. The value of this sensitivity at a reference height of 2 m is shown in Figure 19. The full 

derivation can be found in Appendix B. A similar derivation can be found in Quintanar et al. 

(2016), which examined the impact of roughness length on surface heat fluxes in convective 

environments, which implicitly ignores the neutrality assumption. Similar arguments have been 

made concerning the precipitation decrease in deforested areas (da Rocha et al. 1996; Hasler et 

al. 2009; Sud et al. 1996; Sen et al. 2004). The assumption of neutral stability is not valid near 

the core and over the driest simulations but is otherwise acceptable as shown in Figure 20. This 

justifies the higher quantity of moisture flux in the MC simulations than the BG simulations. 

Moreover, this also indicates that the sensitivity of the moisture flux to roughness length 
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decreases with increasing roughness length, which explains the large jump between the CTRL 

and other simulations. Furthermore, the sensitivity increases with increases in SMA. Therefore, 

the latent heat flux will be more sensitive to changes in surface roughness where SMA is larger. 

This is not a unique idea as indicated in Chen and Zhang (2009) among the other references in 

this section.
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Figure 19: Sensitivity of the latent heat flux to surface roughness length at a reference height of 2 meters. 
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Figure 20: Azimuthally-averaged inverse Monin-Obukhov length. 
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Since it has been established that surface moisture flux increases with roughness length, 

then the water vapor mixing ratio increases. With the increase of water vapor mixing ratio comes 

the increase of hydrometeors and precipitation. Therefore, the sensitivities to SMA and surface 

roughness are applicable to precipitation by the influence of surface moisture flux. However, the 

advection of microphysically relevant variables or parameterizations may lead to a relationship 

that may not be spatially matching. Departing from the assumptions in this study, application of 

the sensitivity equation does neglect evapotranspiration; therefore it should be applied only in 

regard to evaporation by turbulence. 

D. Conclusions 

A series of simulations of TCs that developed over water were imposed over land 

surfaces with varying surface characteristics, namely roughness and moisture availability. The 

simulations were examined in the context of the WISHE and VHT intensity hypotheses of TC 

intensification. As part of the WISHE analysis, an ansatz maximum potential intensity equation 

was developed. In addition to the intensification analysis, an evaluation of the total precipitation 

differences was conducted to describe the role that friction has on precipitation. 

a. Intensity analysis 

Both the WISHE and VHT analysis adequately evaluate the intensity of the idealized 

TCs. The VHTs and VRWs explain the patterns in the radial-temporal deviations of tangential 

wind and corresponding composite reflectivity patterns within each simulation. Unlike the VHT 

analysis, WISHE provided an explanation for an intercomparison of simulations. WISHE also 

did have some deficiencies such as the reliance on slantwise-neutral convection, which the 

simulations approached but never reached. Not achieving slantwise-neutral convection may not 

be an obstacle however, as it is acknowledged that WISHE is supposed to represent a TC that 
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achieved maximum intensity. Other papers have shown such a criteria is achievable (Tao et al. 

2019; Wang and Lin 2020). This is not the only problem that may arise. TCs that undergo the 

BOE require latent heat fluxes to maintain a deep warm core structure, which the BG simulations 

lack. The warm-core structure, which is generated by diabatic heating of the microphysics, is 

maintained by the enhancement of the latent heat flux by the roughness length increase. Yet, the 

increase in latent heat fluxes also implies an increase in condensational warming, which impedes 

convection. This transition suggests that there is an intrinsic condition within the BOE, which 

may require rough surfaces to maintain a warm core to be classified as a TC, but at the expense 

of actual intensification. This is an important augmentation of the original BOE concept put forth 

by Andersen et al. (2013) and others. However, a rough surface presents another problem in that 

the diabatic heating from the enhanced latent heat flux can suppress the convection and intensity. 

Further research will be required to understand the competing aspects of these two factors.  

While WISHE may have appeared to be the best candidate for explaining the BOE, 

significant modifications are needed for MPI to function. Otherwise, the surface saturated 

entropy difference decreases with increasing SMA, which is contrary to the very basis of the 

BOE. The modification used here considers not just the difference between the saturated and 

unsaturated entropy but a modified version considering SMA. The resulting equation is a version 

of MPI that reflects the premise of the BOE— a version of MPI where the intensity increases 

with SMA as opposed to decreases with SMA. The ansatz MPI is not without flaws, however, as 

it does tend to promote superintensity in the early period. This is analogous to a TC that is 

stronger than the MPI of the surface is able to support. Additionally, due to the lower outflow in 

the MC simulations, a different way of evaluating the outflow temperature had to be established. 

b. Precipitation Analysis 
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While not required to describe the precipitation variation to achieve the intended result, 

we decided to include a small description of some of the precipitation metrics. While the 

assumption of neutrality may be dubious, we have shown that it is largely satisfied in this 

particular study. In other studies that rely on convective instability (Quintanar et al. 2016), such 

an equation may be inappropriate. From the derived equation, this suggests that while increasing 

the roughness length may increase the latent heat flux, the amount that it increases diminishes 

with increasing roughness. As a practical application, this means that building larger buildings in 

urban areas will increase precipitation less than planting crops on a flat terrain. But this also 

means that cities, which are already prone to increased rainfall (Shepherd 2005) and SMA, may 

see increased sensitivity to roughness length, promoting increases in evaporation and 

precipitation. 

The dependence on the surface moisture flux for inland TC precipitation also implies 

necessary modifications to existing rainfall mechanisms. The Tropical Cyclone Rainfall (TCR; 

Lu et al. 2018; Zhu et al. 2013) mechanism focuses on the moisture flux but at a reference 

height. Our result suggests that the focus of the TCR model should instead be on the surface 

moisture flux to capture the maximum amount of precipitation. While doing so may 

underestimate any advected environmental moisture (e.g. Yoo et al. 2020) and have the spatial 

structure warped by advective processes, a precipitation rate analog to the MPI is possible. There 

is one additional deviation to the TCR model that was found in our study. The convergence (not 

shown) generated by the land surface was not markedly different between the CTRL simulation 

and the other simulations. This excludes convergence as a possible mechanism for achieving an 

intense steady state, as proposed by older hypothesis, the conditional instability of the second 
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kind (CISK; Charney and Eliassen 1964), which was already demonstrated to not be dependent 

on surface enthalpy flux coefficients (Craig and Gray 1996).  

c. Implications for forecasts 

While BOE TCs are uncommon, understanding the land surface and the subsequent 

atmospheric interactions are critical for gauging the inland impact of any TC. For forecasters, 

especially long-range forecasters, the ansatz-MPI may adequately describe the intensity the TC 

may sustain due to the BOE. That is, if the ansatz-MPI is large, then the SMA and enthalpy flux 

may provide an estimate for the TC. Testing on known BOE storms as well as transitioning or 

dissipating TCs will be required before implementation. This ansatz-MPI is inadequate in 

describing the BOE in its entirety. Inland developed areas, including agricultural and forested 

areas, are more prone to flooding than wind damage. Thus, a wind-based metric for quantifying 

the precipitation potential is insufficient by itself. Alternatively, more precipitation-based metrics 

are appropriate. 

While precipitation-based metrics do exist, they often have some challenges which makes 

them not as easy to quantify for this research. Recently, the Extreme Rain Multiplier (Bosma et 

al. 2020) as well as the Wet-Millimeter Day (Shepherd et al. 2007) were developed, but such 

metrics are region/climatologically-dependent and therefore cannot be applied to the idealized 

simulations. Another index, the Hurricane Hazard Index (Jordan and Clayson 2008) is as useful 

as the Saffir-Simpson scale in that the only addition is the storm surge, and not freshwater 

flooding. A precipitation scale that is sufficient to describe the BOE will need to be non-

regionalized and ideally understandable to the public. But the development of such a criterion is 

crucial for developing a BOE index for precipitation. 
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CHAPTER 4  

A CLIMATOLOGICAL DIAGNOSTIC TOOL FOR INLAND TROPICAL CYCLONE 

AND MAINTENANCE EVENTS1
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A. Introduction 

 After tropical cyclones (TCs) make landfall, it is often assumed that the wind speeds 

decay, and damage is reduced. There are two types of progression that an inland tropical cyclone 

may take: extratropical transition (ET; Keller et al. 2018; Jones et al. 2003; Evans et al. 2017) 

or dissipation (Kaplan and Demaria 2001; Shen et al. 2002). One exception to this categorization 

is the observation that some TCs intensify or maintain intensity while inland, albeit not 

indefinitely (Brauer et al. 2021; Andersen and Shepherd 2014). These events are called TC 

Maintenance or Intensification (TCMI) events by Andersen and Shepherd (2014; hereafter 

referred to as AS14). Unlike AS14, the central pressure criteria was not considered. Decreases in 

pressure could be without meaning if the environmental pressure, which IBTrACS does not 

record, decreases proportionally thereby sustaining the pressure gradient. Often, the “Brown 

Ocean” effect (BOE), which hypothesizes that enhancements in surface enthalpy fluxes induced 

by antecedent soil moisture support the TC, is attributed or associated. Examples of these events 

include, but are not limited to, Tropical Storm Erin (2007; Evans et al. 2011; Kellner et al. 2012; 

Monteverdi and Edwards 2010), Tropical Storm Bill (2015), and an unnamed Tropical 

Depression in 2010 (Nair et al. 2019). The BOE may be a factor in non-TCMI events, as the 

surface roughness may reduce the intensity but increase the precipitation (see Chapter 2). That is, 

despite the presence of soil moisture and enhanced latent heat fluxes, the surface wind is still 

constrained by the properties of the surface. 

The number of TCMI events is not limited to these studies. Rather, those studies are only 

instances of the BOE. A similar study, Andersen and Shepherd (2014; hereafter AS14), 

examined previous TCs to identify characteristics of TCMI events not found in ET events. AS14 

considered the 1-month antecedent values of latent heat flux and supporting components. 
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However, as Chapters 2 and 3 suggests, the immediate surface conditions have a large impact on 

the resulting structure of the TCs not just the environment of the previous month. In this study, 

the analysis will focus on the immediate environment of each location that TCMI events 

occurred and did not occur.  

Section 2 describes the methodology used to identify TCMI events and describe a 

prototypical machine-learning model. Section 3 investigates the cross-validation of similar 

machine-learning models, as well as instances where the prediction and dataset do not match. 

Section 3 will also examine previously unexamined TCs. Section 4 explores potential uses of the 

machine-learning model, as well as potential pitfalls of the model. 

B. Data and Methods 

TC location and intensity data were obtained from the International Best Track Archive for 

Climate Stewardship dataset (IBTrACS; Knapp et al. 2010, 2018). Of those TCs, only those that 

occurred since 1980 were considered as that is the limit of the Modern-Era Retrospective 

analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al. 2017), which was 

used for the environmental conditions. Of the variables in MERRA-2, only the Single level 

variables (SLV), flux variables (FLX), and land variables (LND) were considered. Not only were 

the variables at the time of the strike considered, but the variables 24 hours prior were used. 

Each datum that occurred 350 km away from the coast was considered, similar to AS14. 

Unlike AS14, however, this study does not compare ET events with TCMI events but rather 

TCMI events and TCs that decay. As long as the datum and the following datum’s ‘nature’ were 

classified as a Tropical Storm or Disturbance, the datum was still categorized. The classification 

of the following datum is important as neglecting such a criterion may mean a mis-categorization 

of a TCMI storm as a TC undergoing ET. The change in the maximum wind speed (MWSPD, or 
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‘usa_wind’ in IBTrACS) between the previous time and next time, a time span typically of 6 

hours, were calculated using centered differencing. If the MWSPD difference was greater than or 

equal to 0, the datum was classified as a TCMI event. If the MWSPD-change criteria were not 

met, the datum was classified as a non-TCMI event. If the datum occurred in the North Atlantic 

basin, it was used to test the developed machine-learning model. Otherwise, the datum was used 

to train the model coefficients. The data for TCMI and non-TCMI storms were consolidated by 

averaging the environmental variables of TCMI and non-TCMI events. This consolidation 

prevents the observational independence assumption of logistic regression models from being 

violated. 

The function used to create the machine learning model was the “Logit” function in 

statsmodels (Seabold and Perktold 2010). Candidate machine-learning models were developed 

iteratively going through pairs of unmatched, potentially relevant variables to identify candidate 

variables for a final prototype machine-learning model, which was initialized as an empty set. 

Then the accuracy of each variable pair for both the test and training dataset was evaluated and 

stored under the condition that the variance inflation factor (VIF) was less than or equal to 10 

(O’Brien 2007). If a variable in the variable pair is included in the candidate variables, it is 

excluded for the test.  

Afterwards, the most accurate candidate machine-learning models were selected. The 

accuracy metric utilized is the average of the Peirce Skill Score (Manzato 2007; Peirce 1884) 

between the test and training dataset subtracted by the absolute difference, with the same process 

applied to the Clayton Skill Score. Optimizing just the Peirce Skill Score with a difference 

penalty produced reasonable values of other skill scores with minimal difference between the 

testing and training datasets. The subtraction of the absolute difference is to penalize overfitting 
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of the training dataset. The most frequent variable that was shown in the most accurate candidate 

machine-learning models was used to train the next iteration of candidate machine-learning 

models, though the variable was excluded if the most frequent variable appeared previously in 

the set of candidate variables. The exclusion of a candidate variable may not always indicate that 

the machine-learning model is necessarily less accurate but may be a result of a reduction in the 

VIF. After the Peirce Skill Score was optimized, variables with a p-value greater than 0.6 were 

removed. 

While the prototypical machine-learning model may be useful for identifying TCMI events, 

it is not without flaw. On a dynamic note, the machine-learning model does not account for 

external influences, including localized intensification due to surface features, or horizontal 

influences. For example, Cyclone Kelvin (2018) has been shown to have maintained a warm core 

(Shepherd et al. 2021) over land but was more influenced by the horizontal advection of moisture 

rather than the BOE (Yoo et al. 2020). This may be the reason that the prototypical machine-

learning model missed the TCMI of Kelvin. Along a similar line, this prototypical machine-

learning model does not include extratropical cyclones, which derive energy from baroclinicity 

(Evans et al. 2017; Keller et al. 2018). Intensification due to the influence of surface features and 

topography (Coch 2020; Miller et al. 2013) are also not considered.  

 The criteria allowed for a small number of non-North Atlantic storms (93) and an even 

smaller number of North Atlantic TCs (65) so the amount of data used to train and test the 

machine-learning model is very limited. Of those limited number of TCs, there were 40 TCs in 

the North Atlantic basin and a total of 20 TCs in other basins that were counted as both non-

TCMI and TCMI cyclones. This may mean that more stringent criteria for discriminating 

between TCMI and non-TCMI events, beyond wind speed, may be necessary. Other choices, 
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such as excluding subtropical cyclones, is open for critique. One criteria for TCs to be 

consideration that may be relaxed is the 350 km buffer from the coast, suggested by Andersen 

and Shepherd (2014), which excluded TCs such as Hurricane Gaston (2004; Franklin et al. 2006) 

and Tropical Storm Helene (2000; Franklin et al. 2001) from being considered. The spatial 

criteria also does not prevent the TC under consideration from being influenced by the oceanic 

environment (Yoo et al. 2020). 

C. Results 

a. Statistical Model 

 Table 5 provides a summary of the final prototypical machine-learning model. Variables 

ending with the suffix ‘Prev’ refer to variables from 24 hours prior. For reference, the equation 

for a logistic regression model is  

𝑃 = (1 + exp [−𝛽0 − ∑ 𝛽𝑖𝑥𝑖

𝑁

𝑖=1

])

−1

 

where 𝑃 is the probability of an event occurring, 𝛽0 is the constant, 𝛽𝑖 is the 𝑖th coefficient 

corresponding to the 𝑖th variable. While the pseudo-R squared of 0.1727 may be underwhelming, 

the other statistical measures of accuracy, described in Table 6 are more optimistic. The 

relatively small Brier Skill Score indicates the need to assign a reference probability to 

discriminate between TCMI and non-TCMI events. The probability that was used to discriminate 

between TCMI and non-TCMI events was a naïve probability of 50%. There is a bias towards 

overpredicting TCMI events as indicated by the False Alarm Rate for both datasets being over 

50%. Adjustment of the naïve reference probability of 50% may change the Probability of 

Detection but also may increase the False Alarm Rate. 
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A positive coefficient indicates that the variable has a tendency towards promoting a 

TCMI event, while a negative coefficient is indicative of a reduction in the likelihood to a TCMI 

event. The magnitude of the coefficients is less relevant than the sign as the data was not 

normalized, so the coefficients have units. The positive coefficient with buoyancy scale 

(BSTAR) is indicative of the influence of the WISHE mechanism on the occurrence of TCMI 

events. The coefficient associated with the previous day accumulated precipitation 

(PRECTOTPrev) indicates recently wetted soil, which may be promoting the BOE. Comparing 

PRECTOTPrev to the 3-hour accumulated precipitation at the analysis time (PRECTOT), which 

have the same units, suggests that previously day precipitation is more indicative of a TCMI 

event than the precipitation of the TC. The coefficient associated with the planetary boundary 

layer height, both from the previous day (PBLHPrev) and at analysis (PBLH), implies that less 

turbulent mixing increases the probability of a TCMI event. While this may not directly be 

associated with the BOE, the influence of buoyancy is indicative of enhanced soil moisture. The 

meaning of the opposite sign between the coefficients associated with the previous day 

meridional wind (V250Prev) and the meridional wind at the analysis time (V250) is unknown, 

but there may be some level of bias within the wind variables based on the gradient wind balance 

and TCs in opposite hemispheres. 

 

Table 5: Description of the machine-learning model and the constituent coefficients. 

Variable 

Name Coefficient 
Standard 

Error p-value 

Coefficient 

units 

const 0.5955 1.051 0.571 N/A 

BSTAR 461.686 194.405 0.018 s2 m-1 

PBLH -0.0012 0.001 0.199 m-1 

V250Prev 0.095 0.049 0.052 s m-1 

PBLHPrev -0.0009 0.001 0.275 m-1 
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H1000Prev 0.0076 0.008 0.323 m-1 

BSTARPrev 79.2888 119.757 0.508 s2 m-1 

V250 -0.0826 0.06 0.167 s m-1 

PRECTOTPrev 1597.887 911.807 0.08 kg-1 m2 s 

U10M 0.1557 0.083 0.062 s m-1 

LWLAND 0.0507 0.038 0.18 W-1 m2 

PRECTOT 370.3106 267.323 0.166 kg-1 m2 s 

 

Table 6: Contingency Analysis and Brier Score of the machine-learning model on the test 

dataset and training dataset. 

Metric Test Train Reference 

Percentage of Hits (A) 25.24% 9.91% N/A 

Percentage of False Positives (B) 12.62% 1.8% N/A 

Percentage of Misses (C) 24.27% 17.12% N/A 

Percentage of Correct Negatives 

(D) 

27.86% 71.17% N/A 

Climatological Probability of a 

Single TCMI event 

49.51% 27.03% N/A 

Probability of Detection 51% 36.66% Doswell et al. 1990; Wilks 2006 

False Alarm Rate 25% 2.5% Wilks 2006 

Clayton Skill Score 0.276 0.6523 Clayton 1927, 1934; Wilks 2006 

Brier Skill Score 0.2606 0.1566 Brier 1950; Wilks 2006 

Odds Ratio 3.12 22.87 Stephenson 2000 

Heidke Skill Score 0.1302 0.2081 Heidke 1926; Wilks 2006 

Peirce Skill Score 0.2598 0.342 Peirce 1884; Wilks 2006 

Equitable/Gilbert’s Skill Score 0.1497 0.3827 Gilbert 1884; Wilks 2006 

 

b. Verification Composite 

Figure 21 shows the sea level pressure (SLP) relative to the IBTrACS location averaged 

over the contingencies produced by the prototype machine-learning model. The centeredness is 

indicative that the TC position is represented well by MERRA-2. The central and environmental 

pressures are lower in the non-North Atlantic dataset than the testing dataset, indicating a 

systematic difference between the datasets. There are a couple of other systematic differences 

between the training and testing datasets. Another systematic difference is the roughness length 

(Figure 22), which is larger in the North Atlantic basin than in the other basins. It should be 
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noted that in both datasets but particularly the training dataset, the number of constituent storms 

that had false positives is limited, which emphasizes individual storm characteristics. Cyclone 

Naomi (1993) and Cyclone Yasi (2011), which progressed over the sparsely vegetated Australian 

interior, were the only TCs that were false positives in the training dataset leading to a systematic 

difference in the roughness length. Both the systematic difference in SLP and Z0M lead to 

systematic differences in the maximum wind speed (SPEEDMAX; Figure 23). The average 

storm that underwent TCMI had a lower SPEEDMAX than the storms that did. The eastern 

maxima in SPEEDMAX is due to the compound effect of the translation velocity and gradient 

wind balance. 

 

Figure 21: Composite mean sea level pressure (SLP) for all of the contingencies of the 

machine-learning model. 
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Figure 22: Composite mean of the aerodynamic roughness length (Z0M). 
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Figure 23: Composite mean of the maximum wind speed (SPEEDMAX). 

 Figure 24 shows the energy loss flux from interception (EVPINTR). For the testing 

dataset, the average EVPINTR is a good metric for determining inaccurate diagnoses, while it 

may improve the accuracy in the training dataset. However, including EVPINTR in the machine-

learning model produced a larger p-value than the threshold. From a physical interpretation, 

EVPINTR is the amount of energy constrained to the surface by the presence of objects on the 

surface. EVPINTR disrupts the surface energy flux and reduces the buoyancy. This is seen in 

Figure 5, which shows BSTAR. BSTAR is one of the criteria variables within the machine-

learning model that describes the role of the WISHE/BOE mechanism. In the testing dataset, the 

average BSTAR near the center of the TC is positive only in the hits. This is one way of 

discriminating between hits and false positives in the North Atlantic basin. 
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Figure 24: Composite mean of the energy loss flux by interception (EVPINTR). 
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Figure 25: Composite mean of the surface buoyancy scale (BSTAR). 

 

c. Event Analysis 

1) Discussion 

 Figure 26 shows a geographical distribution of the machine-learning model performance 

on the testing dataset. The machine-learning model does not predict TCMI events in southern 

Mexico even though TCMI events do occur in that region. There are several identifiable storms 

that have and have not undergone TCMI. Specifically, Tropical Storms Erin (2007) and Bill 

(2015) are storms that were identified by the prototypical machine-learning model, which are 

published instances of the BOE (Evans et al. 2011; Kellner et al. 2012; Arndt et al. 2009; Brauer 

et al. 2021). Appendix C lists other storms that meet the TCMI classification. Below, we 

examine Tropical Storm Hermine (2010), which followed a similar path to Tropical Storms Erin 
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and Bill, as well as Tropical Storm Dolly (2008), which eventually caused flooding in New 

Mexico.  

 

Figure 26: Map of the performance of the machine-learning model.  

2) Hurricane Dolly (2008) 

 Hurricane Dolly (2008) was a hurricane that formed in the western Caribbean Sea on 20 

July 2008. After experiencing two brief landfalls near Cancun, Mexico and South Padre Island, 

Dolly experienced a final landfall on Texas on 23 July 2008 at 2000 UTC. Figure 27 shows the 

trend in the intensity of Hurricane Dolly. After rapid weakening associated with landfall, Dolly 

experienced two periods of cyclone maintenance with the first period as a tropical depression and 
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a constant wind speed of 25 kts for 20 hours, and the second period as a low pressure with a 

constant wind speed of 20 kts for 24 hours before dissipating. The first period had monotonically 

increasing pressure, while the pressure decreased 2 hPa over 12 hours, but increased by 6 hPa 

over the next 12 hours.  

 

Figure 27: Maximum wind speed (top) and minimum central pressure (bottom) for 

Hurricane Dolly. The red line depicts the final landfall. 

 

But more than just the characteristic wind speed change, Dolly produced a secondary 

precipitation maxima (Figure 28) in New Mexico, leading to flash flooding and the death of one 

person and  (National Weather Service (NWS) 2018a). It should be noted that widespread floods 

impacted New Mexico earlier that month, before Hurricane Dolly, which may qualify as a series 
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of predecessor rain events (PRE; Bosart et al. 2012; Galarneau 2015). This is supported by 

Figure 29, which shows the time averaged precipitation for the month, prior to final landfall. The 

machine-learning model did predict a TCMI event. The latent heat flux (shown in Figure 30) 

criteria of 70 W m-2 for the BOE, as suggested by AS14, was not sufficient evidence to predict 

the TCMI of Dolly, indicating that this tool is an improvement on previous criteria.  

 

Figure 28: Rainfall associated with Hurricane Dolly in inches. Source: NOAA/NWS 

(https://www.wpc.ncep.noaa.gov/tropical/rain/dolly2008filledrainblk.gif)  

https://www.wpc.ncep.noaa.gov/tropical/rain/dolly2008filledrainblk.gif
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Figure 29: Time-averaged map of the final run of multi-satellite precipitation estimate 

with gauge calibration prior to the landfall of Hurricane Dolly (2008). Source: NASA Giovanni 

(Berrick et al. 2009; Acker and Leptoukh 2007). 



72 

 

 

Figure 30: Two week averaged latent heat (W m-2) from the NCA-LDAS model prior to 

Hurricane Dolly. Source: NASA GIOVANNI 

3) Tropical Storm Hermine (2010) 

 Tropical Storm Hermine (2010) developed within the Bay of Campeche and traveled 

across to the Gulf of Mexico, making landfall in northeast Mexico at 0200 UTC on 7 September 

2010 (Avila 2010). While Hermine lasted only 64 hours as a TC after landfall, 30 of those hours 

were as a tropical depression at a constant wind speed of 20 kts and a constant central pressure of 

1005 hPa. The maximum wind speed and minimum central pressure is summarized in Figure 31. 
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Figure 31: Maximum wind speed (top) and minimum central pressure (bottom) for 

Tropical Storm Hermine (2010). The red line depicts landfall. 

 Like Hurricane Dolly, Hermine produced an inland maxima in precipitation, as shown in 

Figure 32. Hermine was a significant precipitation event, despite it qualifying as a TCMI on the 

basis of the TC dynamics, as it was the only precipitation event for some areas in September 

2010. A severe drought began afterwards (National Weather Service (NWS) 2018b). Despite the 

severe drought, the two-week averaged latent heat flux, shown in Figure 33, was sufficient to 

produce a BOE storm. For reference, a two week average 40 W m-2 is the criteria value of for the 

BOE identified by Andersen et al. (2013). 
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Figure 32: Rainfall associated with Tropical Storm Hermine (2010) in inches. Source: 

NOAA/NWS (https://www.wpc.ncep.noaa.gov/tropical/rain/hermine2010filledrainwhite.gif)  

https://www.wpc.ncep.noaa.gov/tropical/rain/hermine2010filledrainwhite.gif
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Figure 33: Time-averaged net latent heat flux from the NCA-LDAS model in W m-2. 

Source: NASA GIOVANNI. 

 

D. Conclusions 

 A prototypical machine learning model has been developed with variables that were 

chosen to optimize accuracy rather than any given cause of TCMI. Some variables that were 

important at the time of storm arrival were important the prior day, which indicates that a TCMI 

event is a reaction to the environment. Moreover, the variables that were finally selected show a 

heavy emphasis on land-surface processes, which also indicates that proper modeling of air-land 
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interactions are critical for modeling TCMI events. This supports the idea that the accurate 

representation of the land surface state is critical to the accurate diagnosis of TCMI. 

 One aspect of the final machine-learning prototype model that can be criticized is the 

inclusion of the wind components (U10M, V250, V250Prev). The machine-learning model was 

trained on data in both the Northern and Southern Hemisphere, respectively, indicating an 

opposing bias in each due to the opposite signed Coriolis force and opposing rotation. Moreover, 

the 1000 hPa height from the previous day (H1000Prev) is included, even though it is often 

masked. However, developing the model without the masked variables still yields a similar 

subset of variables (including V250 and V250Prev) with similarly signed coefficients within the 

confidence interval of the original model, though with less accuracy. The role of the shifting 

meridional wind deserves more study. Moreover, the inclusion of meridional wind shift 

emphasizes the independence of variable selection without the perceived bias of the TCMI being 

caused exclusively by the BOE. To clarify, the variables in the final prototype model were 

chosen not out of preconceived notions of the causes of TCMI but as variables that improve the 

accuracy of the prototype machine-learning model. This means that variables that are 

instinctively examined for the BOE were not given priority (such as latent heat flux) but are 

heavily influenced by those variables. 

a. Applicability and Future Use 

 What has been presented here is a usable prototypical machine-learning model that may 

diagnose the probability of a TCMI event based on reanalysis data. This probability forecast is 

effectively a conditional probability of a TCMI event given the inland onset of a TC. If given the 

probability that an area is to be struck by a hurricane at a given time, this diagnostic method can 

be applied to determine whether the TC decays or maintains strength/intensifies. This tool may 
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be useful in diagnosing the occurrence of TCMI events in a future climate beyond the simple 70 

W m-2 latent heat flux threshold suggested by AS14.  

 Possible future improvements to this statistical model include excluding weaker TCs as 

well as distinguishing between intensification and maintenance events. Identifying the BOE 

given a TCMI event through the use of Baye’s Theorem is also a potential avenue of identifying 

specific TCs that underwent the BOE. Another potential improvement is the inclusion of 

surrounding grid cells or times but at the cost of additional computations and possibly decreasing 

the physical interpretability. While observations of rainfall are not included in the IBTrACS 

dataset, satellite observations of the precipitation rate in space may also be employed in to 

broaden the definition of TCMI beyond the dynamic criteria.  

 This study provides a list of candidate TCs to study for TCMI events (see Appendix C). 

More TCs can be considered if the range of dates is expanded to the full selection rather than 

what is limited by MERRA-2 or if the spatial constraints are reduced. This provides a new set of 

TCs to be considered as BOE storms for study, instead of morbidly awaiting new TCMI events 

or questioning any new TC for the potential for the BOE. This study also indicates that, while the 

BOE is one specific and major cause of TCMI, it is not the only cause. 
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CHAPTER 5 

 SUMMARY AND CONCLUSIONS 

A. Overview

TCs have a strong impact on society, decimating coastal areas and causing inland

flooding. While TCs are presumed to dissipate over land, diminishing the impact with 

distance from the coast, that presumption is not always true. Sometimes TCs are observed to 

maintain their strength or intensify, despite landfall. These TCs cause damage far inland, 

where mitigative measures for TCs may be absent. Previous research on TCs have shown 

that surface moisture fluxes are influential for these TCs. The research presented here 

attempts to do three things: 1) identify surface impacts and the impact of surface features, 2) 

investigate the role of intensification mechanisms in the BOE, and 3) identify previous TCMI 

cases for future research and the environmental variables. 

The first manuscript (Chapter 2) introduces an idealized simulation of a TC over water. 

After 48 hours a series of simulations are derived from the simulation, each with a different 

combination of soil moisture profiles and surface roughness length. For the simulations with 

the smaller surface roughness length, the surface wind speed in the near steady-state is 

closest to the TC over water. Also, the relationship between surface wind speed and soil 

moisture is clearest for the smaller roughness length. For the larger surface roughness length, 

the near-steady state wind speed is weaker though the impact of soil moisture is far less clear. 

Concerning precipitation, the simulations with the larger roughness length produces more 

precipitation than the TC over water or the simulations with a smaller roughness length, 

except for the simulations with a soil moisture gradient. The enhanced precipitation was 
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found to be caused by the enhanced latent heat flux. The soil moisture gradients increased the 

latent heat flux by promoting the surface-air moisture deficit through advection. The larger 

roughness length increased the latent heat flux by increasing the enthalpy exchange 

coefficient, which is an important component to the second manuscript. 

The second manuscript revisits the idealized simulations and experiments with the focus 

more on the TC structure and the application of intensity theories. The main intensity 

hypothesis, the wind-induced surface heat exchange (WISHE), is examined in all of the 

experiments. Though slantwise-neutral convection is not attained, the reader is reminded that 

WISHE represents the strongest possible TC, which may not be the idealized environment. 

The vertical structure was found to be heavily influenced by the surface with the outflow at a 

lower height in the simulations with a larger surface roughness at a later time. Paradoxically, 

the simulations with a larger surface roughness (despite the weaker intensity) and the CTRL 

simulation can be categorized as a TC according to the cyclone phase space diagrams, while 

the simulations with less surface roughness appear to have started warm-core seclusion. This 

may be the result of condensational warming sustaining the lower warm core. The maximum 

potential intensity (MPI) was evaluated and found that a significant change – replacing the 

saturated entropy with the surface-modified saturated entropy – was required to imitate the 

BOE. Not including the surface modification yields a larger entropy difference and the 

implication that drier surfaces yield more intense TCs. The competing hypothesis, which 

focuses on convective asymmetries in the inner eyewall (Vortical Hot Towers or VHTs) and 

the associated wave response (Vortex Rossby Waves or VRWs), shows potential as it 

describes the spatiotemporal aspects of the maximum wind speed as well as the waveform 

rainband. Moreover, the spectra of the potential vorticity in the simulations with the lower 
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roughness length and higher soil moisture show a unique feature for the BOE in higher soil 

moisture and lower surface roughness. 

Manuscript three departs from the idealized simulations to investigate previous instances 

of Tropical Cyclone Maintenance and Intensification (TCMI) through the use of the 

International Best Track Archive for Climate Stewardship (IBTrACS) dataset. The data is 

categorized into TCMI and non-TCMI categories where both satisfy geographical 

requirements and are categorized as tropical storms or disturbances. TCMI events are events 

in which the wind speed increases or stays constant while non-TCMI events are TCs that 

weaken. The MERRA-2 reanalysis dataset is referenced to create a prototypical machine-

learning model trained on the non-North Atlantic basin, while tested on the North Atlantic 

basin. Both the training and testing dataset were used to identify relevant variables for the 

development of the machine-learning model. A physical interpretation of the machine-

learning model shows a large component from the BOE through the surface buoyancy scale. 

After the development of the machine-learning model, previously unstudied TCMI cyclones 

that are potential BOE case studies were identified and briefly studied. 

In synthesis, it has been shown that modeling the BOE is possible but is highly dependent 

on the accuracy of the land-surface state as shown in Chapters 2 and 3. Not only is the 

accuracy of the land-surface state beneath a TC important, but the land-surface state outside 

of the track was shown to have just as significant of an impact. Improving the prediction of 

TCMI events require the accurate representation of the variables elucidated in the statistical 

model of Chapter 4. This includes not just the fluctuating variables that are of importance to 

land-atmosphere interactions but also the more static variables such as roughness length 

which has a non-negligible influence on TC evolution.  
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Appendices 

Appendix A. Land Surface Model simulation 

In order to justify deactivating the land surface model (LSM) in the experiments, a 

simulation with an active LSM was used. The LSM chosen was the NOAH LSM (Tewari et al. 

2004) though the Stefan-Boltzmann was deactivated by setting the emissivity to 0 to prevent 

one-way radiation leakage not associated with the radiation parameterization. Other than the 

LSM, the settings described in Table 2 were applied to a BG-U0.2 surface with a vertically 

isothermal soil temperature profile over loam soil with a constant soil moisture profile. Figure 34 

shows the maximum wind speed for all of the simulations including the LSM simulation. The 

LSM has a drastic effect on the maximum wind speed. This is a response to the sudden decrease 

in the mean enthalpy flux (Figure 35). Unlike the role of friction described in  CHAPTER 2  

THE INFLUENCE OF SOIL MOISTURE AND SURFACE ROUGHNESS ON AN 

IDEALIZED TROPICAL CYCLONE1there is a clear decrease in both latent heat flux (Figure 

36) and precipitation (Figure 37). Interestingly, but not deserving of much discussion, the surface

(skin temperature) did increase a small amount in the LSM simulation (Figure 38) due to the 

negative sensible heat flux (Figure 39), which was seen in all of the other uniform BG 

simulations. The increase in skin temperature due to a TC is more unrealistic than having a 

constant temperature. We argue that this is part of the justification for the deactivation of the 

LSM for the experiments in the theoretical treatment of this dissertation. 
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Figure 34: Maximum wind speed for all of the simulations, including the land surface 

model. 

 

Figure 35: Mean enthalpy flux for all of the simulations, including the LSM simulation. 
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Figure 36: Mean latent heat flux for all of the simulations, including the LSM. 

Figure 37: Total accumulated precipitation for all of the simulations, including the LSM. 
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Figure 38: Mean skin temperature for all of the simulations, including the LSM 

simulation. 

 

Figure 39: Surface sensible heat flux for all simulations, including the LSM simulation. 

Appendix B. Derivation of Moisture Flux Sensitivity to Roughness Length 

The kinematic moisture flux, 𝑤′𝑞′̅̅ ̅̅ ̅̅ , is a function of 𝑧0, by the way of 
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𝑤′𝑞′̅̅ ̅̅ ̅̅ = 𝐶𝑘𝑈𝑀∆𝑞 

where 𝑈 is the near-surface wind speed, 𝜌 is the air density, ∆𝑞 is the difference between the 

atmospheric moisture and saturated moisture of the surface, and  𝐶𝑘 is the roughness dependent 

enthalpy transfer coefficient. Considering that the enthalpy transfer coefficient and wind speed 

are 

𝑈 =
𝑢∗

𝑘
log (

𝑧𝑟𝑒𝑓

𝑧0
) 

𝐶𝑘 = [
𝑘

log (
𝑧𝑟𝑒𝑓

𝑧0
)

]

2

 

the equation for 𝑤′𝑞′̅̅ ̅̅ ̅̅  may be written as 

𝑤′𝑞′̅̅ ̅̅ ̅̅ = 𝑀∆𝑞
𝑘𝑢∗

log (
𝑧𝑟𝑒𝑓

𝑧0
)
 

. Thus, the change of the moisture flux to changes in roughness length may be written as 

𝜕𝑤′𝑞′̅̅ ̅̅ ̅̅

𝜕𝑧0
=

𝑀∆𝑞𝑘𝑢∗

𝑧0 [log (
𝑧𝑟𝑒𝑓

𝑧0
)]

2 

and rewritten as 

𝜕𝑤′𝑞′̅̅ ̅̅ ̅̅

𝜕𝑧0
=

𝑤′𝑞′̅̅ ̅̅ ̅̅

𝑧0 log (
𝑧𝑟𝑒𝑓

𝑧0
)
 

. A more rigorous variation may be derived, but in addition to using the Businger-Dyer functions, 

a parameterization for the water vapor roughness length would need to be used. 

Appendix C. Table of Tropical Cyclones that Underwent TCMI 

Table 7: Tropical Cyclones that Underwent TCMI 

Non-North Atlantic Storms North Atlantic Storms 
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Season Name Number 
of TCMI 
events 

Season Name Number 
of TCMI 
events 

1981 EDDIE 17 1980 ALLEN 1 

1984 FREDA 7 1982 CHRIS 2 

1987 IRMA 6 1983 ALICIA 1 

1989 
KEN-
LOLA:LOLA 12 1985 DANNY 13 

1990 LOLA 1 1985 ELENA 6 

1991 DAPHNE 14 1986 BONNIE 2 

1995 BOBBY 3 1988 FLORENCE 3 

1996 JACOB 1 1988 GILBERT 11 

1996 KIRSTY 18 1989 CHANTAL 3 

1996 ETHEL 12 1992 ANDREW 1 

1996 HERB 4 1994 ALBERTO 10 

1997 RACHEL 22 1994 BERYL 5 

1997 AMBER 2 1995 DEAN 13 

1999 BILLY 1 1995 ERIN 15 

2000 ROSITA 2 1995 JERRY 3 

2001 WINSOME 5 1996 FRAN 10 

2001 ABIGAIL 2 1997 DANNY 12 

2002 SINLAKU 1 1998 CHARLEY 2 

2003 DELFINA 2 1998 FRANCES 2 

2005 SANVU 1 1999 BRET 1 

2007 GEORGE 1 1999 DENNIS 2 

2007 JACOB 1 2001 BARRY 6 

2008 NOT_NAMED 1 2002 ISIDORE 4 

2010 LAURENCE 4 2003 BILL 6 

2010 PHET 1 2003 CLAUDETTE 2 

2010 GIRI 1 2003 GRACE 4 

2011 YASI 20 2004 FRANCES 7 

2018 HILDA 8 2004 IVAN 3 

2018 KELVIN 2 2005 ARLENE 8 

2018 YAGI 1 2005 DENNIS 45 

2005 KATRINA 2 

2005 RITA 2 

2007 ERIN 14 

2008 DOLLY 12 

2008 EDOUARD 1 

2008 FAY 3 

2008 GUSTAV 9 

2008 IKE 2 

2010 NOT_NAMED 3 
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2010 HERMINE 11 

2012 ISAAC 5 

2015 BILL 17 

2017 CINDY 6 

2017 HARVEY 4 

2017 IRMA 5 

2018 ALBERTO 15 

2018 FLORENCE 2 

2018 GORDON 10 

2019 BARRY 3 

2020 AMANDA:CRISTOBAL 6 

2020 LAURA 5 


