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ABSTRACT

If certain conditions are met, mechanical systems can exhibit the remarkable ability to self-

synchronize. This thesis implements low-order models of two such systems. The first models two

coupled pendula attached to a rigid body—a system known as “Huygens’ clocks”. The two pendula

are subject to excitation from an external moment applied by an escapement mechanism. There

are two types of escapement models considered: Hamiltonian and Van der Pol. Depending on

initial conditions and escapement parameters, the system will fall into one of three post-transient

states, which are classified according to the phase difference between the two pendula. These

states are in-phase synchronization, out-of-phase synchronization, and asynchronous motion. One

objective of this thesis is to map parameter sets and initial conditions to one of these three states.

The second model uses principles from the Huygens’ clocks model in an adaptation of the well-

known “kicked rotor” system. The model consists of two kicked rotors that are coupled via their

momenta. The responses of this system indicate rich dynamical behavior, including the possibility

of synchronized chaotic motion.
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Chapter 1

Introduction and Background

1.1 Synchronization

Self-synchronization is a phenomenon that can sometimes occur in coupled oscillators. Oscillator mod-

els are used to predict the behavior of physical systems such as pendula, electric circuits, and planets [1].

The interface between oscillators critically contributes to the feasibility of synchronization. Interest in syn-

chronizing systems has greatly increased over the last century [2], and synchronization is essential to im-

portant natural and man-made processes. For example, synchronization is required in power generation and

distribution [3], and synchronization of mechanical oscillators has been leveraged in the design of robotic

manipulators for assembly lines [4].

Generally, ‘to synchronize’ means to concur or agree in time, to proceed or to operate at exactly the

same rate, to happen at the same time [5, 6]. This definition captures three conventional subdivisions of

synchronization [4]:

• In self-synchronization, internal system properties enable synchronization between individual oscil-

lators without external influences [4, 5].

• For controlled-synchronization, external input or feedback is used to promote synchronization. The

U.S. Navy has used controlled synchronization in cryptography for security applications in commu-

nications [7].

• In natural synchronization, no interconnection between oscillatory systems exists—they act inde-

pendently, yet can still synchronize. This type of synchronization is relatively rare, but an example

given in Ref. [5] which describes clocks synchronizing in the frequency domain.
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1.2 Brief History of Self-Synchronization Research

The first documented observation of self-synchronization was made in 1665 by Christiaan Huygens,

a Dutch physicist who observed the phenomenon in the movement of pendulum clocks. Huygens played

a major role in the scientific revolution and to this day, he is credited with many discoveries in horology,

astronomy, and mathematics. Being fascinated by Galileo’s previous findings on the pendulum, Huygens

spent numerous years combing its principles along with those of mechanical watches. In 1656 he invented

the first pendulum clock, which significantly improved time tracking accuracy, from losses of 15 minutes

per day to less than 15 seconds [8]. One of Huygens’ more famous publications, the Horologium Oscilla-

torium, dives deep into his understanding of oscillatory dynamics in pendulum motion. A big motivator for

Huygens’ discoveries in horology was solving the longitude problem at sea [9]. One day when Huygens was

laying ill in bed, he noticed a strange phenomenon. Two of his pendulum clocks were swinging in opposite

directions and at the same frequency (later referred to as out-of-phase synchronization). Over the next few

days, Huygens studied this “sympathy” by repeatedly disturbing the clocks to see if they would synchronize.

A letter to his father was the first account of this observation. In the letter he mentioned that, within about

30 minutes, the two pendulum clocks hung on the same wooden bar, as seen in Fig. 1.1, would inevitably

synchronize out-of-phase [1, 10, 11].

Figure 1.1. Drawing by Huygens from 1665, showing his experimental setup

In 1905, Diederik Korteweg developed the first approach to analytically model Huygens’ synchroniza-

tion using linear theory. Korteweg’s approach neglected effects of escapement and damping; however, it

provided helpful insight to the modes of the coupled system [2, 10]. Further progress was halted until 1971

when Izrailevich Bleckhman revisited synchronization of dynamic systems. Improving on Kortweg’s model,

Bleckhman’s was the first to consider damped nonlinear oscillations using Van der Pol escapement [12]. Im-
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portantly, the findings showed the presence of both an in-phase and out-of-phase post-transient state. In the

1980s, the field of dynamic synchronization experienced more widespread interest [13]. It was during this

time that Bleckham further defined self-synchronization and controlled-synchronization [5].

As previously stated, for mechanical systems to synchronize, some type of interface between oscillators

must be in place such that motion can be communicated. In the case of Huygens’ original synchronization

discovery, coupling occurred due to the wooden bar that the pendula to which the pendula were attached [1].

Huygens lacked mathematical concepts of today, including differential calculus, which largely obstructed

his quantitative description. However, he noticed the wooden bar come to rest every time the pendula

synchronized, therefore attributing synchronization as a byproduct of the bar’s motion [1, 2, 11]. Over

recent years a variety of experiments replicated Huygens’ setup, one of which was performed by Bennett

et al. [14]. They considered the ratio between the masses of the pendula and that of the connecting body,

and recognized that as this mass ratio increases, the probability of out-of-phase synchronization goes down.

A common alternative adaptation of the Huygens model has been the substitution of metronomes for the

pendula. Ref. [15] discusses such a case. The findings show consistent in-phase synchronization compared

to the out-of-phase synchronization that occurs with pendula. In Ref. [15], the difference is attributed to the

larger frequency variance in the metronomes and lower coupling mass.

Coupled pendula and metronomes exhibit periodic self-synchronization. Amazingly, synchronized non-

periodic (i.e., chaotic) behavior is also possible. Applications for chaotic synchronization have been found

in the field of cryptography chaotic signals are used to encrypt communications signals, and synchronized

chaos is used in the decryption [16, 17].

1.3 Contributions of Thesis

The goal of this thesis is to implement numerical models of self-synchronizing systems in an effort to

better understand this fascinating phenomenon. Chapter 2 implements a previously studied Huygens’ clocks

model, and uses it to generate some new results. Chapter 3 presents a novel duel kicked-rotor model that

can exhibit synchronized chaos.

The list below summarizes the main contributions of this thesis:
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• An independent implementation of a Huygens’ clocks model is created and exercised across a large

configuration space.

• Several initial condition maps are generated for the Huygens’ clocks model. Such maps are rarely

found in the literature.

• A study of the linearized natural modes of the Huygens’ clocks model provides insight into how the

center mass behaves in the different synchronized states.

• Introduction of natural frequency variation in Huygens’ clocks model generates numerical results that

are in agreement with experimental observations

• Formulation and analysis of novel model constituting of two kicked rotors. The system is shown to

exhibit both synchronous and asynchronous periodic and chaotic motion.

• The initial conditions leading to each type of motion in the dual kicked rotor system are mapped to

show a complicated dependence on initial conditions.

• Due to its relative simplicity, this new kicked rotor model is thought to have applications to Physics

education. It could also help explain perplexing phenomena from quantum mechanics.

4



Chapter 2

Numerical Model of Huygens’ Clocks

2.1 Description

This chapter covers the modeling of a mechanical system exhibiting synchronization. The model is

inspired by Huygens’ synchronizing clocks, as described in Chapter 1. The model consists of two damped,

identical pendula connected through a common, elastically restrained and damped mass (see Fig. 2.1).

An escapement mechanism is modeled such that it provides a moment to each pendulum depending on its

angular position. The system is modeled and then solved numerically using Matlab’s ode45 integrator, i.e.

the Runge-Kutta funciton, to investigate the configurations leading to synchronization.

x3

k3

d3

M

m
x1

u1, d

θ1

`

m
x2

u2, d
M

θ2

`

Figure 2.1. Schematic of the Huygens’ clocks model
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2.2 Equations of Motion

The equations of motion for the three degree-of-freedom system shown in Fig. 2.1 are derived using La-

grange’s equation of motion, which can be written in terms of the Lagrangian, i.e.,

L = T − U, (2.1)

where T and U are the total kinetic and potential energies of the system. In terms of T and U , Lagrange’s

equations of motion are

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
+
∂U

∂qk
= Qk,

δW =

n∑
k=1

Qkδqk, k = 1, 2, ...N.

(2.2)

Here, qk are the generalized coordinates. In the present model, the generalized coordinates are θ1, θ2, and

x3. The generalized forces are given by Qk, and are expressed in terms of the virtual work, δW , acting over

a virtual displacement, δqk.

The kinetic energy of the system can be found by adding the kinetic energies of the center mass and the

pendula

T =
1

2
Mẋ23 +

2∑
i=1

(
1

2
m~vi · ~vi

)
. (2.3)

Next, the velocities of the pendula are found by writing their position vectors, i.e., ~ri = (` sin θi + x3)̂i −

(` cos θi)ĵ and ~vi = ~̇ri = (`θ̇i cos θi + ẋ3)̂i+ (`θ̇i sin θi)ĵ for i=1, 2. The dot product of the velocity vectors

is then

~vi · ~vi = (`θ̇i cos θi + ẋ3)
2 + (`θ̇i sin θi)

2 = ẋ23 + 2`ẋ3θ̇i cos θi + `2θ̇2i i = 1, 2. (2.4)

Substituting Eq. (2.4) into Eq. (2.3) and simplifying then yields the system’s total kinetic energy

T =
1

2
(M + 2m)ẋ23 +

2∑
i=1

(
m`ẋ3θi cos θi +

1

2
m`2θ̇2i

)
. (2.5)

The potential energy of the system is simply given by the elastic potential energy of the spring, plus the

potential energy from the change in height of the pendula,

U =
1

2
kx23 +

2∑
i=1

(mg`(1− cos θi)). (2.6)

6



The individual terms in Lagrange’s equation, Eq. (2.2), with respect to x3 are

d

dt

(
∂T

∂ẋ3

)
=

d

dt

(
(M + 2m)ẋ3 +

2∑
i=1

(m`θ̇i cos θi)

)
,

= (M + 2m)ẍ3 +
2∑
i=1

(m`θ̈i cos θi −m`θ̇2i sin θi),

− ∂T
∂x3

= 0,

∂U

∂x3
= k3x3,

Qx3 = d3ẋ3,

(2.7)

which lead to the equation of motion for the center mass

(M + 2m)ẍ3 + k3x3 + d3ẋ3 +
2∑
i=1

(m`θ̈i cos θi −m`θ̇2i sin θi) = 0. (2.8)

The individual terms of Lagrange’s equation with respect to θi for i = 1, 2 are

d

dt

(
∂T

∂θ̇i

)
=

d

dt

(
mẋ3` cos θi +m`2θ̇i

)
,

= mẍ3` cos θi −mẋ3`θ̇i sin θi +m`2θ̈i,

−∂T
∂θi

= mẋ3`θ̇i sin θi,

∂U

∂θi
= mg` sin θi,

Qθi = −dθi.

(2.9)

The final equation of motion for the pendula are then

m`2θ̈i + dθ̇i +mg` sin θi +m`ẍ3 cos θi = ui, i = 1, 2. (2.10)

Here ui(t) represents an external moment provided by the escapement mechanism.

2.3 Escapement

Escapement is the transfer of stored energy—usually in the form of a spring or suspended mass—to the

gears of a clock in order to overcome frictional forces [18]. This energy addition heavily determines the

accuracy of a clock. For example, the escape fork in a wristwatch often oscillates two or three times a

second [18]. One can imagine that if such oscillation is off by just one hundredth of a second, over a

7



full day (86,400 seconds), the effect becomes significantly magnified. Even though uncommon due to

complexity, one error mitigation approach has been to purposely introduce coupled resonance in watches.

Through coupled resonance, the periodic motion of multiple escapements can be averaged, such as in the

2005 Haldimann H2 Flying Resonance. Here, a coupling spring links the arbors of two fly wheels (in gold)

to average out imperfections in the hairspring’s oscillations, see Fig. 2.2 [18,19]. This is not unlike the way

in which the two pendula are coupled in the Hygens’ clocks model.

Figure 2.2. Image of Haldimann H2 Flying Resonance watch. Notice the thin coupling spring
connecting the two individual escapement mechanisms on each side.

In the Huygens’ clock model, damping of the bar and pendula causes the system to lose energy, so the

motion will eventually decay to zero without an escapement mechanism. One such escapement model is

known as Hamiltonian escapement. The Hamiltonian is often defined as the total energy in the system, i.e.,

H = T + U. (2.11)

Using the Hamiltonian as in Refs. [20–23] provides a means of determining the external moment, u(t),

that is applied to the pendula. For the pendula, the Hamiltonian is given by

Hi(θi, θ̇i) =
m`2θ̇2i

2
+mg`(1− cos θi), i = 1, 2. (2.12)

One can find the reference energy, H∗, to reach a certain angle, θref, by focusing on potential energy at the

desired amplitude, with the kinetic energy equal to zero, i.e.,

H∗i = mg`(1− cos θref). (2.13)
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Using a nonlinear feedback control method called the speed gradient, the appropriate input control function,

u(t), is formulated such that the desiredH∗ is achieved [5, 20, 22, 24–26],

ui = −γ(Hi −H∗)θ̇i, i = 1, 2. (2.14)

Upon substitution, this gives

ui = −γ
(
m`2θ̇2i

2
+mg`(cos θref − cos θi)

)
θ̇i, i = 1, 2. (2.15)

Accounting for Hamiltonian escapement, the equations of motion for the pendula are now

m`2θ̈i +

(
d+ γ

(
m`2θ̇2i

2
+mg`(cos θref − cos θi)

))
θ̇i +mg` sin θi +m` cos θiẍ3 = 0, i = 1, 2.

(2.16)

Dividing both sides of Eq. (2.16) by m`2 yields

θ̈i +

(
d

m`2
+ γ

(
θ̇2i
2

+
g

`
(cos θref − cos θi)

))
θ̇i +

g

`
sin θi +

1

`
cos θiẍ3 = 0, i = 1, 2. (2.17)

At this point, we define ω2 = g/` and β = d/(m`2γ) such that

θ̈i + γ

(
β +

θ̇2i
2

+ ω2(cos θref − cos θi)

)
θ̇i + ω2 sin θi +

ω2

g
ẍ3 cos θ = 0, i = 1, 2. (2.18)

Turning attention to the center mass, we can further reduce the number of input parameters in the system by

treating the center mass as a rigid body (i.e., neglect its stiffness and damping). This simplifies Eq. (2.8) to

ẍ+ σ
∑(

θ̈i cos θi − θ̇2i sin θi

)
= 0, i = 1, 2, (2.19)

where σ = m`/(M + 2m). At this point, the total number of parameters needing to be declared is reduced

to six: γ, β, g, ω, θref, and σ. Ways of further simplifying the equations of motion do exist such as in

Ref. [2], however, they necessitate some approximations.

Note that Hamiltonian escapement is just one of many possible types of escapement models. But unlike

other models, Hamiltonian escapement resides on a continuous nonlinear function which maintains the

smoothness of the system [10]. The time-varying inputs, θ and θ̇, continuously adjust the escapement to the

reference energy,H∗. In a realistic clock mechanics, however, escapement supplies impulses of energy into

the system to maintain its amplitude [14].
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Fig. 2.3 shows how the Hamiltonian escapement input changes according to θ and θ̇ for a reference

angle of 0.35 rad. The largest inputs for u correspond to positive and negative extremes of angular velocity,

θ̇, and θ. Note that a negative value of u corresponds to an increase in system energy.

−0.4
−0.2

0
0.2

0.4

−2 −1
0

1
2

−0.4

−0.2

0

0.2

0.4

θ (rad)θ̇ (rad/s)

E
sc
a
p
em

en
t
In
p
u
t,
u

Figure 2.3. The Hamiltonian escapement input, u, over angles of -0.35 to 0.35 rad and rotational
velocities of -2.35 to 2.35 rad/s with γ = 1 and θref = 0.35 rad.

The equations of motion of the system can now be solved with numerical integration. After an initial

transient, the pendula are expected to assume one of three states: (1) in-phase synchronization, (2) out-of-

phase synchronization, (3) or asynchronous motion. In-phase synchronization indicates that φ1(t) = φ2(t),

where φ denotes the phase of each pendulum. Out-of-phase synchronization is defined by |φ1(t)−φ2(t)| =

π. If neither of these two states are determined at the end of some transient, the system is said to be

asynchronous.

To define synchronization for the sake of the numerical model, a certain tolerance must be implemented.

For all simulations used here, if the pendula are said to be in-phase if they have a phase difference of less

than one-hundredth of a degree at steady state. Similarly, if the pendula have a phase difference of π±0.01◦,

they are categorized as out-of-phase.

2.4 Verification

To verify the implementation of the numerical model, results from Ref. [1] are reproduced. Here, the

input parameters are: m = 1 kg, M = 50 kg, d = 0.01 Nms/rad, d3 = 20 Ns/m, k3 = 1 N/m, g = 9.81
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m/s2, l = 0.2184 m, θ̇1(0) = θ̇2(0) = x(0) = ẋ(0) = 0, and θref = 0.35 rad. Figs. 2.4 and 2.5 each show

the same four sub-plots, where Fig. 2.4 comes from Ref. [1] and Fig. 2.5 is from the present implementation.

(a) (b)

(c) (d)

Figure 2.4. Figures reproduced from Ref. [1] showing the beginning of the time history for the
pendula before synchronization (top left), the same time history after synchronization has occurred
(top right), the time history of the rigid mass (bottom left), and angles of the two pendula plotted
against each other over time (bottom right). Here, γ = 5.3, φ1(0) = −0.32 rad and φ2(0) = −0.02
rad. Note that in Ref. [1], φ is used to represent the angular position of the pendula.
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Figure 2.5. Reproduction of results from Ref. [1] as produced by the present model implementa-
tion. Again, γ = 5.3, θ1(0) = −0.32 rad and θ2(0) = −0.02 rad.

2.5 Initial Conditions

Nonlinear dynamical systems can exhibit sensitivity to initial conditions. This section considers how the

initial conditions of the Huygens’ clock model influence whether the model exhibits self-synchronization.

To generate the initial condition maps shown in Fig. 2.7, the starting angles of the pendula, θ10 and θ20 ,

are varied between -0.5 and 0.5 rad with the escapement scalar, γ, fixed. A total of 10,201 (101 × 101)

different angles combinations are considered in each map. In each case, synchronization is classified after

5,000 seconds of simulated response.
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Figure 2.6. Time histories for φ1(0) = −0.32, φ2(0) = −0.02, γ = 0.3. All other system parame-
ters are consistent with those given in the beginning of Sec. 2.4.

The initial condition maps show that the system is more prone to synchronize in-phase (blue) when the

two pendula are released with near-identical angles. However, when the initial angle combinations involve

a difference of sign, the system tends to synchronize out-of-phase (red). Note that when the escapement

gain factor, γ, is increased, the pendula are more likely to synchronize out-of-phase. It is also noted that

depending on the initial conditions, the time it takes the system to reach steady-state varies.

The present model may be categorized as asymptotic, meaning it will only synchronize under certain

initial conditions and with certain escapement parameters [5, 26]. As observed in Refs. [10, 14, 15], the

coupling strength relies on the mass ratio, m/M , between the individual pendula, m, and the center mass,

M . This correlation can be seen in Fig. 2.8. As the mass of the center block increases from 1 to 100 kg

(or the mass ratio decreases from 1 to 0.010 with m = 1 kg), the time required to reach a synchronous state

goes up. In the case of γ = 0.4, it seems to go up linearly for M > 16 kg while for γ = 4.0, the curve

appears exponential.

With γ = 4.0, out-of-phase synchronization is reached for all considered mass ratios. Whereas with

γ = 0.4, the local peak at M = 7.9 kg corresponds to a transition from an out-of-phase synchronous state

to in-phase synchronous state. Transitioning behavior has been supported experimentally [1], where it was

observed that experimental setups with smaller m/M ratios, result in out-of-phase synchronization while

systems with higher mass ratios tend to synchronize in-phase. As described in Ref. [1, 15], varying the
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Figure 2.7. Initial condition maps for select values of γ. Blue, red, and yellow indicate in-phase
synchronization, out-of-phase synchronization asynchronous behavior, respectively. For simplicity
d = 0 Nms/rad, all other system parameters are consistent with those given in the beginning of
Sec. 2.4.

weight of the connecting mass of two, coupled metronomes dictated the type of synchronization. It also

seems that Christiaan Huygens observed out-of-phase synchronization in all of his results. As described in

Refs. [11, 15], the base that he used to connect the pendula in Huygens’ experimental setup was extremely

massive, which is consistent with the present trend. However, it is also noted that the escapement gain factor,

γ, also plays a role in determining the final synchronized state.
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Figure 2.8. Correlation of coupling strength — both individually looking at the center block mass,
M , and mass ratio between the pendula and the center block, m/M — to synchronization time for
γ = 0.4 (grey) and γ = 4.0 (black) given initial angles 0.1 (rad) and 0.2 (rad) for pendulum 1 and
pendulum 2 respectively.

2.6 Modes

In an attempt to better understand the behavior of the Huygens’ clocks model, this section considers the

model’s linearized natural modes. The linearized equations of motion of the pendula and the center mass

are

m`2θ̈i + dθ̇i +mg`θi +m`ẍ3 = 0, i = 1, 2, (2.20)

(M + 2m)ẍ3 + d3ẋ3 + k3x3 +

2∑
i=1

(m`θ̈i) = 0. (2.21)

Here, a small angle approximation was applied and nonlinear terms were neglected. In matrix-vector form,

the equations of motion arem`
2 0 m`

0 m`2 m`

m` m` M + 2m


︸ ︷︷ ︸

[M]


θ̈1

θ̈2

ẍ3

+

d 0 0

0 d 0

0 0 d3


︸ ︷︷ ︸

[C]


θ̇1

θ̇2

ẋ3

+

mg` 0 0

0 mg` 0

0 0 k3


︸ ︷︷ ︸

[K]


θ1

θ2

x3

 =


0

0

0

 . (2.22)

The natural modes of the system are given below, in Table 2.1.
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Mode Shapes
Mode and Mode 1 Mode 2 Mode 3
Wavelength (λ = 0.022 Hz) λ = 1.067 Hz) (λ = 1.088 Hz)
Pendulum 1 0.002 1.000 1.000
Pendulum 2 0.002 -1.000 1.000
Center Mass 1.000 0.000 -0.008

Table 2.1. System Modes and Wavelengths.

Mode 1 is heavily dominated by the motion of the center mass. In Mode 2, the pendula are out-of-phase,

and in-phase in Mode 3. Note that in Modes 1 and Mode 3, in-phase motion of the pendula corresponds to

non-zero motion of center mass. When the system synchronizes out-of-phase, however, the forces from the

pendula cancel each other out, and the center mass moves back to its equilibrium position. Therefore, the

motion of the center mass can be used to classify whether the system is synchronized in-phase or out-of-

phase.
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Figure 2.9. Time history for the center mass given θ10 = 0.05, θ20 = −0.03, γ = 0.2, and
parameters given in Sec. 2.4.

Fig. 2.9 shows a representative motion of the center mass. At 18 seconds, the pendula nearly synchronize

in-phase, which is marked by an increase in center mass displacement. However, the motion of the center

mass then settles down, indicated the final state is out-of-phase synchronization. Fig. 2.10, shows how

amplitude of the motion the center mass changes with initial conditions. The results are consistent with

the initial condition maps shown in Fig. 2.7a. Namely, the bar has high amplitudes in the first and third
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quadrants, which corresponds to in-phase motion of the pendula, while in the second and fourth quadrants,

the bar’s motion is minimal, indicating out-of-phase synchronization.
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Figure 2.10. Variance in center mass displacement for initial angles, θ1 and θ2, -0.5 to 0.5 (rad),
γ = 0.5 after 100 second. Initial conditions are given in Section 2.4 with the exception that
M = 10 (kg) and l = 1 (m) for amplification in center mass displacement.

2.7 Pendula with Different Natural Frequencies

In a physical implementation of Huygens’ clock experiment, a slight difference in the linearized natural

frequency of the two pendula is expected. Altering the natural frequency of a simple pendulum,
√
g/l, can

then be done by means of varying gravity or length. Since gravity on both pendula is the same in a typical

physical situation, the natural frequency of a pendulum is varied by adjusting its length. To determine an

appropriate amount of variation to apply to the pendulum length, Ref. [14] was consulted. This reference

claims that at the time of Huygens’s discovery pendulum clocks were able to record time within 15 seconds

of each day. With two pendula, this corresponds to a maximum possible time difference of 30 seconds a

day. A 0.069% difference in natural could account for such a shift.

Fig. 2.11 shows two initial condition maps in which there is this small difference in natural frequencies

of the two pendula. For the low mass ratio case, Fig. 2.11a, no angle combinations (excluding the trivial

θ10 = θ20 = 0 combination) resulted in synchronization. It has also been remarked experimentally that

altering the natural frequencies beyond a certain threshold ceased synchronization all together [15]. On the
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contrary, as can been seen in Fig. 2.11a, maintaining all other parameters the same and only reducing the

coupling strength,m/M , causes all angle combinations to synchronize out-of-phase. Even initial conditions

where θ10 = θ20 synchronized out-of-phase. These results support Huygens’s observations in 1665. His

findings only mention out-of-phase synchronization [11].
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(a) m/M = 1/50
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(b) m/M = 1/3

Figure 2.11. Shows the affect of alterning the natural frequencies between the pendula by 0.069%
for (a) m/M = 1/50 and (b) m/M = 1/3 while γ = 1. Apart from these adjustments, the same
initial conditions as in Sec. 2.4 held true.

2.8 Van der Pol Escapement

One of the simplest types of non-linear, self-exciting models is the Van der Pol oscillator [2]. In this

model, non-linearity enters the system in the damping term. Here, instead of a Hamiltonian escapement

mechanism, a van der Pol escapement is considered, where the external torque is given by

ui = γ(θ2ref − θ2i )θ̇i, i = 1, 2. (2.23)

As indicated above, only the difference of the squares of the pendulum’s angle and the reference angle

dictate the applied torque. This term adds energy for angles below θref, and deducts energy for larger angles.

Van der Pol escapement has been used to model synchronization in metronomes and carts [1, 2].
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Figure 2.12. Shows the Van der Pol escapement input, u, over angles of -0.35 to 0.35 rad and
rotational velocities of -2.35 to 2.35 rad/s. Again, the range on the axes for θ and θ̇ was chosen to
encompass all state values when the reference angles is set to 0.35 rad.
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Figure 2.13. Initial condition map, with the same system initial conditions as in Fig. 2.7a(a) with
the exception that θref = 0.1 rad. Again, blue indicates in-phase synchronization and red indicates
out-of-phase synchronization.

To better compare the response of the model using the Van der Pol escapement to the model using

Hamiltonian escapement, the exact same initial conditions were used. Based on Fig. 2.12 and Fig. 2.13, the

two escapements do influence the system in a very similar way. Specifically when comparing Fig. 2.7a to

Fig. 2.13, one can see they are almost identical. Where the figures do vary is along the zero axes. However,

with that exception, in both cases the pendula almost always synchronize in-phase and out-of-phase based

on the phase difference of their initial angles.
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2.9 Summary

This chapter implements a mechanical oscillator model of Huygens’ clocks. It is one of the rare studies

to use initial condition maps to track system behavior across different initial conditions and escapement

gains. With both Hamiltonian and Van der Pol escapement, the initial conditions play a crucial role in

determining the possibility of in-phase and out-of-phase synchronization. As seen in Fig. 2.8, changing

the mass ratio of the pendula to the center mass can lead to a transition between the synchronized states

[1, 8, 10, 15]. The effect of pendulum natural frequency difference was also investigated, and the results are

in agreement with Huygens’ observations from 1665.
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Chapter 3

Kicked Rotor

The kicked rotor is a well-known model in nonlinear dynamics. Among other things, it demonstrates

the utility of using phase space when interpreting system behavior [27]. In recent years, the kicked rotor

has been used in the field of quantum mechanics to model quantum chaos and dynamic localization from

interference, (e.g., atoms standing in ultra-cold atomic gases and microwave fields) [27, 28]. The kicked

rotor describes the motion of a particle rotating around a fixed point. The particle experiences a periodic

excitation, the strength of which depends on its angular position. One can think of the excitation as a

gravitational force that is applied in short periodic impulses which change the particle’s angular velocity. In

this chapter, the synchronization of two kicked rotors is of interest.

3.1 Hamiltonian Mechanics

A general knowledge of classical dynamics and the Kolmogorov-Arnold-Moser theory as it relates to

phase space will improve the understanding of the forthcoming results. In the case of the kicked rotor, two

state variables—angle and momentum—define its two dimensional phase space. As previously defined,

the Hamiltonian represents the total energy in a system, i.e., the sum of the kinetic and potential energies,

Eq. (2.11). In low-order systems, deciding whether to use Hamiltonian or Lagrangian is of little significance;

however, the Hamiltonian is often preferred in the field of quantum mechanics where a large number of

particles are of interest [29]. More importantly, using the Hamiltonian gives way to dynamic principles that

allow for a better interpretation of systems in phase space. Rather than using position and velocity variables

for defining the system equations, the Hamiltonian relies on position and momentum variables respectively.
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To start, variable pi is introduced as the conjugate momentum for a particle iwith generalized coordinate

qi. Without getting into too much detail about the exact derivation of the Hamiltonian using the Legendre

transformation, the Hamiltonian may be rewritten such that

H =

(
N∑
i=1

piq̇i

)
− L (3.1)

where the ith momentum equals the partial of the Lagrangian with respect to velocity, q̇i

pi =
∂L
∂q̇i

. (3.2)

Note that even though it might not look intuitive, Eq. (3.1) still represents the system’s total energy. It should

also become apparent that q and p represent a set canonical coordinates for the system that will dictate its

motion through phase space [30]. To then find the according time dependent coordinates for position, qi(t),

and momentum, pi(t), Hamilton’s equations of motion become useful,

dqi
dt

= +
∂H
∂pi

,
dpi
dt

= −∂H
∂qi

. (3.3)

The coming section shows a derivation for this set of equations through Poisson brackets.

3.1.1 Integrability

Now that the Hamiltonian is more clearly defined, one may introduce the concept of integrability. Inte-

grability attributes the regular evolution of Hamiltonian trajectories, thereby system states, in a defined phase

space [31, 32]. It denotes that all Hamiltonian system states, for all time, may be characterized through de-

fined sets of differential equations [30, 31]. To classify a system as integrable requires an understanding

of a first integral, also known as a constant of motion. A function f(qi, pi, t) in phase space represents a

first integral if ḟ = 0 or equivalently f(q(t), p(t), t) = α where α equals an arbitrary constant, hence the

name ’a constant of motion’ [33]. Suppose an n-dimensional Hamiltonian system whose motion remains

retained through some canonical transformation (q, p) → (q, p). If the system can be broken into n inde-

pendent first integrals (f1, f2, ..., fn) in involution of the canonical coordinates q and p then it is considered

to be integrable [30–34]. This implies that the momentum of an integrable system equals a constant (i.e.

pi = αi). If on the other hand, these conditions are not preserved then initial conditions generate trajectories

that diverge [32]. Though integrability is rarely preserved in real dynamic system, it forms a foundation for

evaluating complex dynamic systems.
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Alternatively, introducing Poisson brackets for a Hamiltonian system further helps to characterize the

canonical coordinates and involution. By definition, the Poisson bracket (indicated by [ , ]) of two functions

in terms of the canonical coordinates will vanish if they are in involution [35]. As an example, take a

dynamic function g(q, p, t) with n degrees of freedom where q(t) and p(t) provide the system state [31,35].

Here, using Eq. (3.3), the total change of g with time becomes

dg

dt
=
∂g

∂t
+

n∑
i=1

(
∂g

∂qi

dqi
dt

)
+

n∑
i=1

(
∂g

∂pi

dpi
dt

)
, (3.4a)

dg

dt
=
∂g

∂t
+

n∑
i=1

(
∂g

∂qi

∂H
∂pi
− ∂g

∂pi

∂H
∂qi

)
(3.4b)

dg

dt
=
∂g

∂t
+ [g,H]. (3.4c)

If g is no longer a function of time, i.e. dg
dt = 0, then ∂g

∂t = 0 and therefore [g,H] = 0. The function

g(q, p) = α, indicating constant motion. Following the same procedure as above, Eq. (3.4) for our general-

ized coordinate, g = pi, or the conjugate momentum, g = qi, provides

[qi,H] = q̇i =
∂H
dpi

, [pi,H] = ṗi = −∂H
dqi

, (3.5)

i.e., the previously defined Hamilton’s equation of motion, Eq. (3.3) [33]. Satisfying the following relation

through Poisson brackets ensures that the canonical transformation remains,

[qi, qj ] = [pi, pj ] = 0, [qi, pj ] = δij . (3.6)

Furthermore, the independence between q and p induces a symmetry in Eq. (3.5) which has been the origin

of numerous principles in classical dynamics, such as Liouville’s theorem [29]. As will be discussed, these

properties give way to the formation of multi-dimensional phase space boundaries [30].

3.1.2 Phase Space Topology

For an integrable dynamic system with n degrees of freedom, there exists a manifold of dimension 2n

(typically denoted by M ) which encompasses all phase space trajectories of that system [30, 31, 33, 34]. In

other words, the motion of a Hamiltonian system is bounded to a certain subspace primarily due to principles

of conservation [31]. This means that the initial conditions of the system drive its subsequent motion and

thereby define M [32]. One of the simplest topologies that permits such a region in phase space is that of
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an n-dimensional torus. In classical dynamics, the name invariant tori refers to the idea that each trajectory

remains bounded to the surface of that torus, see Fig. 3.1. Due to integrability, trajectories—and hence their

tori— cannot intersect, which means each torus corresponds to a unique set of initial conditions [31]. Taking

the action integral of a Hamiltonian trajectory over a single period presents the action variable, Jk,

Jk =
1

2π

∮
pkdqk. (3.7)

The action variables geometrically define the surface of the invariant torus and become essential when

introducing the idea of perturbations. It should also be noted that based on the canonical transformation

for an integrable, time-invariant system, J is constant [32, 36]. Through what are called angle coordinates,

one can then specify the exact location of a system’s trajectory on that torus [30, 31, 33]. Writing the angle

coordinates with time and angular frequency would look as follows [31],

θi(t) = ωit+ βi. (3.8)

such that βi = θi(0) for i=1, ..., n [31].

Using Fig. 3.1 as a reference, if the ratio of the angular frequencies, ω1 and ω2, for θ1(t) and θ2(t)

respectively, equals a rational number then the trajectory will connect back onto itself (i.e ω1/ω1 = l, where

l equals a rational number). From this periodicity we classify the torus as a resonant torus which means that

the trajectory will never fully engulf the surface of the torus. Alternatively when looking at the Poincaré

section of a non-resonant torus, or a quasiperiod system, then the enclosed 2-dimensional contour would be

fully covered.

Isolating a transverse plane of the a torus reveals the system’s Poincaré section where points are marked

each time that a trajectory intersects the plane. This allows us to collapse system dimensions while still

observing characteristics in the system’s behavior. Fig. 3.1 shows how a Poincaré section fits into the phase

space with a two dimensional torus. Here, the points on the plane show what would be seen on a Poincaré

section for these three time dependent, periodic trajectories.
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Γ2(t)
Γ3(t)

Figure 3.1. Visualization of 3 2-dimensional invariant tori and their cross-section with a 4-
dimensional phase space. Here, Γ1(t), Γ2(t) and Γ3(t) correspond to 3 time dependent separate
trajectories, or 3 separate system initial conditions. As seen, the location of the outer trajectory,
Γ3(t), can be fully specified through the angle coordinates, θ1, θ2. The figure was adapted from
Refs. [30, 31]

3.2 Kolmogorov-Arnold-Moser Theorem

A big motivator of classical mechanics originated from the desires of mathematicians and physicists

to explain planetary motion [30]. At one point, it was believed that planetary orbits mirror the dynamic

trajectories of integrable systems in phase space as seen on the surface of an invariant torus, Fig. 3.1.

However, due to perturbations, orbits always diverged onto alternative paths. It wasn’t until 1954 when

Andrey Kolmogorov discovered a new theory, bridging perturbations to principles of classical mechanics

[30, 31]. Known as Kolmogorov-Arnold-Moser (KAM) theory, it considers the motion of Hamiltonian

dynamical systems and their resilience under perturbations to maintain phase space trajectories [30, 31]. At

the time, this was a huge breakthrough as invariant tori managed to survive certain perturbations [30]. These

deformed tori, known as KAM tori, restrict stochastic trajectories, forming boundaries for different initial
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condition sets [34]. In other words, the system embodies a combination of an integrable Hamiltonian, H0,

in addition to a perturbation function ,H1,

H(J1, ..., Jn, θ1, ..., θn) = H0(J1, ..., Jn) + εH1(J1, ..., Jn, θ1, ..., θn). (3.9)

Hence, systems that embody this behavior are also known as near-integrable. Here, the magnitude of ε

determines the scale of the perturbations. At a certain critical value of ε, some trajectories will no longer

retain the topology of deformed tori but rather diffuse into phase space. The outcome of the trajectory

originates with the initial conditions. Those trajectories that do resemble deformed tori actually create

boundaries, also known as KAM boundaries, in phase space that act as barrier for stochastic trajectories [30].

Figs. 3.2 and 3.3 in the coming section, Sec. 3.3, will provide a visualization of the covered concepts.

3.3 Classical Kicked Rotor

After covering the key fundamentals of classical dynamics features of the Poincaré section of a kicked rotor

can be correlated to the global motion of the system. To start, the Hamiltonian for the system will be shown.

The 1-dimensional system uses θ for its generalized coordinate. The Lagrangian then simply becomes the

kinetic energy of the rotor minus the potential energy due to an arbitrary, pulsed gravitational field, g,

L =
1

2
m`2θ̇2 −mg` cos θ. (3.10)

Plugging the Lagrangian into the momentum equation, Eq. (3.2), yields

p =
∂L
∂θ̇

= m`2θ̇. (3.11)

Next, using both Eqs. (3.10) and (3.11) in Eq. (3.1) gives us the Hamiltonian, H(p, q), of the rotor with a

pulsed potential field that is proportional to constant K,

H =
p2

2m`2
+mg` cos θ

=
p2

2I
+K cos θ

=
p2

2I
+K cos θ

∞∑
n=−∞

δ(t− nT ) (3.12)
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where I = m`2, K = mg` and δ, the Dirac delta function or impulse function [34, 37]. Hence, at times

t = 0, ±T , ±2T , ..., ±nT , the rotor receives the ‘kick’ [37]. To further break down the system, Hamilton’s

equations of motion, Eq. 3.3, are useful for defining the kicked rotor in phase space.

dθ

dt
= +

∂H
∂p

=
p

I
(3.13a)

dp

dt
= −∂H

∂θ
= K sin θ

∞∑
n=−∞

δ(t− nT ) (3.13b)

Plotting the state variables at each period gives way to the Poincaré section. To compensate for system

periodicity and momentum dependence on theta, taking a modulo of 2π of both θ and p values will help

retain system bounds. The system equations can be further simplified so that the variables, θ and p, are only

captured at each period for the Poincaré section [37],

θn+1 = θn +
T

I
pn+1, pn+1 = pn +

T

I
K sin θn. (3.14)

To non-dimensionalize the variables as in Ref. [37], TI pn+1 → pn and T
IK → K, such that

θn+1 = θn + pn+1, pn+1 = pn +K sin θn. (3.15)

Fig. 3.2 shows the well known transition from KAM trajectories to complete chaotic behavior for four

different values of K (K=0.5, 0.97, 2.0 and 7.0). Here, each color in the Poincaré section presents a

different set of initial conditions, and therefore its own phase space trajectory. As mentioned, in the case of

near-integrable systems, trajectories will fully clutter the surface of their KAM tori and appear as deformed

ellipses in the Poincaré section. When K = 0.5, Fig. 3.2a, cross sections of these KAM tori are clearly

identifiable. However, as K moves up to 0.97, one starts to see the destruction of some of these trajectories.

Similar to ε in Eq. (3.9), K has a critical value at which trajectories abandon their tori. The critical value at

which all KAM trajectories cease to appear is Kc ≈ 0.9716 [32, 34, 37, 38]. At values K > Kc, the rotor

experiences substantial perturbations, making its corresponding phase change appear stochastic [32, 38].

When K = 2.0, Fig. 3.2c, the phase plot is almost completely characterized by stochasticity with only very

few, heavily deformed KAM tori remaining. Increasing K up 10.0, as in Fig. 3.2d, globally diffuses all

trajectories into the phase space. At this point the Poincaré section no longer suggests any form of ordered

behavior.
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Figure 3.2. Poincaré sections of the kicked rotor for K values varying from 0.5, 0.97, 2.0, to 10.0.
Each individual plot contains 200 trajectories for varying initial momenta, p0, over 1000 periods,
such that p0 = 2πi

Ntrajectory
while θ0 = π.

Fig. 3.3 is a follow-on on Fig. 3.2 in that it shows the effect of varying the initial angle, θ0, rather than

K. Here, the K values stay fixed at 0.97 while p0 incrementally adjusts between trajectories. As the initial

angle shifts from 0 to π, trajectories start to branch over preexisting KAM boundaries to engulf vacancies

in phase space. However, between all four plots, the general typologies remain alike in that areas with

stochastic trajectories continue to consume the same specific regions.
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Figure 3.3. Poincaré sections of the kicked rotor for θ0 values varying from 0, π
3
, 2π

3
, to π with K

fixed at 0.97. Again, each Poincaré section contains 200 combinations for the initial momentum,
p0, using the same algorithm as Fig. 3.2.

3.4 Two Kicked Rotors Sharing a Common Momentum

Here the motion of two identical kicked rotors is considered. In the Huygens’ clock model, a rigid mass

connected the two pendula, which ultimately allowed them to synchronize. Rather than using a rigid body

to physically couple the rotors, the rotors are coupled by assigning the momentum of one rotor to the other.
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The motion of the primary rotor is again found using Eq. (3.1) and Eq. (3.3), while the state of the second

rotor incorporates is found using,

θ2,n+1 = θ2,n + p2,n+1, p2,n+1 = p1,n +K sin θ2,n (3.16)

where p1,n represents the primary rotor’s momentum for the current period, n. As may be logically surmised,

this adaptation does not allow for persisting out-of-phase synchronization.

After some transient period, the motion of each rotor may be either periodic or chaotic. To classify

the post-transient motion as periodic or chaotic, a heuristic approach is used. First, the rotors’ response is

expressed in the frequency domain using an FFT. In the frequency domain, periodic motion is character-

ized by narrow, discrete peaks, while chaos is characterized by a broadband spectrum. Next, an amplitude

threshold is set and the number of peaks crossing that threshold are counted. If the number of exceedances

is large, the spectrum is broadband and the response is assumed to be chaotic. Alternatively, if the number

of exceedances is relatively low, the response is assumed to be periodic [39]. Representative chaotic and pe-

riodic frequency spectra are shown in Fig. 3.4, and the distinction between a periodic and chaotic responses

is quite apparent. The dashed red line indicates the threshold line. For this study, the response is considered

chaotic if more than 200 values fall above shown threshold line, which set at 5× 10−3.
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(a) Periodic response of the kicked Rotor
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(b) Chaotic response of the kicked Rotor

Figure 3.4. Example of (a) periodic and (b) chaotic response of the kicked rotor in the frequency
domain. The dashed line indicates the threshold for categorizing the response according to how
many points fall above it.
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Given a set of initial conditions, the response of the two rotors can be categorized by the following six

post-transient states:

(1) periodic synchronization

(2) chaotic synchronization

(3) no synchronization, periodicity in primary rotor and chaos in secondary rotor

(4) no synchronization, chaos in primary rotor and periodicity in secondary rotor

(5) no synchronization and chaos in both

(6) no synchronization and periodicity in both

Fig. 3.5 maps these six states across a range of initial conditions. The maps consider half a million

initial angle coordinates ranging from 0 to 2π, where the color represents the system state after the 1,000th

kick. Fig. 3.5a shows that for low K values, only two different system states exist—-periodic synchronous

motion and periodic asynchronous motion. Low K values represent near integrable systems with clearly

identifiable KAM tori, so the periodic responses are to be expected. As K increases to one, sections of

synchronized chaos make an appearance, identifiable by the vertical orange columns. Here, all chaotic

behavior is synchronous. Increasing K to 1.25 expands the regions of synchronous chaos. It is not until

K = 1.5, that asynchronous chaos can be observed (dark blue). This behavior can be found intermingled

with synchronous chaos behavior. At K = 2, no synchronous motion is found. Note that for moderate to

high values of K, the response is largely insensitive to the initial angle of the second rotor.
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Figure 3.5. Initial conditions maps for various values of K. The initial momentum of the primary
rotor, p10 , is fixed at π. Each color represents one of the six post transient states as described in the
text.
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Figure 3.6. Initial conditions maps that again vary by K. The initial angle, θ20 , of the second rotor
is fixed at π. The colors associated with the six post-transient states are described in the text.
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3.5 Summary

Here, it was shown that two kicked rotors are capable of exhibiting both chaotic and periodic synchronization

provided the momentum of one rotor is passed to the other. This type of synchronization can be classified as

controlled. The model is attractive because it can demonstrate synchronized chaos using a standard iterative

map, i.e., the numerical integration of nonlinear ODEs is not necessary.
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Chapter 4

Future Work

While the Huygens’ clocks model has been explored rather extensively, there a many unexplored aspects

of the dual kicked rotor model. The classical kicked rotor is an excellent platform for studying quantum

mechanics [30–32, 34, 37, 38]. Introducing quantum modifications in the kicked rotor creates an adaptation

known as the quantum kicked rotor. This model has found numerous applications relating to the Bose-

Einstein condensate (BEC), including atom optics and currents, as well as the diffusion of waves in the

atomic lattice [27, 28, 40, 41].

For future work, it would be interesting to perform a quantum modification of the dual coupled kicked

rotor model to check for further analogies in the quantum realm. There have already been discussions

on quantum non-locality from synchronized chaos [42]. Quantum non-locality is the basis of the Ein-

stein, Podolsky and Rosen Paradox which claims the incompleteness of quantum mechanic [43], i.e. “Can

Quantum-Mechanical Description of Physical Reality Be Considered Complete?” The paradox arises when

looking at the position and momenta of two entangled particles according to quantum mechanics. In entan-

gled particles, the state of one particle is partially dependent on that of the other. By principles of locality, for

two distant entangled particles to interact requires some type of interface, for example a wave or additional

particle [44]. This relates to the idea that interfaces between oscillators are a necessity for synchronization

(see Sec. 1.1). Here is the reason for the paradox: as soon as the state of the first entangled particle is mea-

sured, either through position or momentum, the respective position or momentum of the second particle is

simultaneously known [44, 45]. In other words, information between the two entangled particles exchanges

faster than the speed of light, contradicting Einstein’s Theory of Relativity. Hence, the argument for an

incompleteness of quantum mechanics was made [43]. Since a single rotor has been a widely used tool for
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studying behaviors in quantum mechanics, novel adaptations of the dual rotor system may prove useful.

The dual kicked rotor model could be further modified by changing the interface between the kicked

rotors, perhaps by introducing a rigid body, as in the Huygens’ clock model. The two rotors could then

interact passively. However, initial investigations with this passive coupling showed that there are no initial

condition sets under which such a model synchronizes. The synchronization of the present system can be

classified as controlled, thus self-synchronization of a dual kicked rotors has yet to be shown.
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