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Abstract

α−helices are secondary structures existing in most macromolecular systems such as pro-

teins, DNA and RNA. The reasons behind the formation of structural phases are essential for

understanding their biological functions. For this purpose, we performed parallel-tempering

replica-exchange simulations of a coarse-grained polymer model. The tertiary folds com-

posed of secondary structure segments are stabilized by the effects of bending and torsion.

We systematically investigate the structural transitions by varying bending constraints at

confined torsion strengths and construct the hyperphase diagrams. This study lends insight

into the impact of competing bending and torsion effects and explains why polymers often

exhibit helical structures.
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Chapter 1

Introduction

Amino acids are the building blocks of proteins. There are 20 different types of amino

acids in bioproteins and all of them contain an NH2 group (amino) and a COOH group

(carboxylic). A peptide is a short chain of fewer than fifty amino acids linked by peptide

bonds (Fig. 1.1), in which the NH2 group of one amino acid binds to the COOH group of

another amino acid [1].

Figure 1.1: A peptide bond is the bond between an NH2 group and COOH group.
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A polypeptide is a longer, continuous and unbranched chain of fifty or more amino acids

and a protein is a polypeptide. For example, Chymotripsin (Fig. 1.2) [2,3] is a single protein

with about 100 to 500 amino acids which acts as a biological catalyst [4].

Figure 1.2: The structure of chymotrypsin in which the labelled amino acids form the active
site of the enzyme. Chymotrypsin has the tertiary structure.

In contrast, hemoglobin (Fig. 1.3) [5,6] in red blood cells consists of four units and each

unit contains a compound known as heme. Each heme contains an iron molecule in the

center which can bind an oxygen molecule. Hemoglobin plays the key role in transporting

oxygen throughout the body.

Figure 1.3: αβ hemoglobin has the quarternary structure composed of four units. α and β
subunits are in red and blue, respectively, and the iron-containing heme groups in green.
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Proteins, which widely exist in cells or organisms, perform a dazzling array of functions.

A protein chain folds into a distinct three-dimensional structure which is stabilized by non-

covalent interactions. The function of a protein is determined by the geometric structure

and the distinctive chemical properties and sequences of the amino acids it is composed of.

Conceptually, there are four hierarchical levels of protein structures (Fig. 1.4) [7, 8].

Figure 1.4: Four levels of protein hierarchy. These are primary structure, secondary struc-
ture, teritiary structure and quarternary structure.
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Figure 1.5: Atomic model (all-atom model). Hydrogen bonds are represented by yellow
dashed lines in this α-helix structure. Oxygen atoms, nitrogen atoms, hydrogen atoms and
carbon atoms are represented in red, blue, white and green respectively. [9]

The primary structure is the linear sequence of amino acids linked together by peptide

bonds. Secondary structures are represented by local α-helices (Fig. 1.5) or β-sheets and

stabilized by hydrogen bonds (Fig. 1.5) between CO and NH groups of different amino

acids. The tertiary structure holds together the elements of secondary structure (α-helix

and β-sheet), turns and coils. The formation of the tertiary structure is the result of a single

polypeptide chain stabilized by the attractive interaction between polar residues and the sur-

rounding polar solvent (in the simplest case, water). The quaternary structure is composed

of several polypeptides. The interactions to stabilize tertiary and quaternary structure are

weak and the difference in free energy between the folded and unfolded states in typical
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proteins is in the range of only 20 to 65 kJ/mol comparing to the thermal energy at room

temperature. As a consequence, the native conformation of a protein is only marginally sta-

ble and is not rigidly fixed but undergoes thermal fluctuations. Structural fluctuations have

significant influence on the function of proteins. When the structures are dissolved, it will

be dysfunctional. This can eventually result in severe diseases such as Alzheimer’s disease,

Parkinson’s disease and Huntington’s disease. Therefore, characterizing the structures of

proteins is a fundamental prerequisite for the understanding of how biological systems work

and for the development of effective disease protection and therapies.

With this motivation in mind, we performed parallel-tempering replica-exchange Monte

Carlo studies of a coarse-grained model for helical polymer with 40 monomers. We introduced

four different types of potentials in the model, i.e., interactions between nonbond monomers

(ULJ), interactions between bonded monomers (UFENE), bending potential (Ubend) and tor-

sion potential (Utor). Previous studies focused on the structural transitions in the spaces

of torsion strength and temperature for flexible and semi-flexible polymers. However, the

dependence of structural phase on the bending strength has not yet been studied in detail.

By employing canonical analysis and adequate order parameters, we aim at constructing the

hyperphase diagrams. We find in the spaces of the bending stiffness and temperature at

confined torsion strengths, an array of phases such as two-helix bundle, two-crossing-helix

bundle, three-helix bundle, amorphous, liquid and random coils. A novel structure we call

as helix-liquid was discovered at intermediate values of the bending stiffness.
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Chapter 2

Methodology

2.1 Model selection

The model selection is the first step to investigate the structural transitions of the polymer

system. Atomic models, also known as all-atom models (Fig. 1.5), are particularly popular

among biochemists. Biological details are tried to be maintained on a semi-classical level

mimicing quantum effects. As a consequence, atomic models are extremely complicated.

Some of them include extensive physical interactions such as electrostatic potentials, solvent

buffer effects etc. Due to its complexity, simulations of such models require extensive system

resources. Typically, atomic models cannot provide generic features or statistical information

for different biological systems. However, these approaches are only useful for the character-

ization of specific system properties. Hundreds to thousands of force-field parameters have

to be introduced, but are very difficult to evaluate. Two different atomic models often will

not yield the same results.

Complex macromolecules consist of thousands of atoms. However, they are finite sys-

tems and the general structural behaviours do not necessarily depend on atomic details.

The chemical group(s) forming a monomer can be considered as a coarse-grained entity.
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Therefore, we employ a generic coarse-grained model (Fig. 2.1) for the polymer [17–20].

This model provides the generic facts which cause the polymer folding and it also helps us

obtain the prominent secondary and tertiary structures as well as statistical information.

An important fact is that the coarse-grained models are simple and feasible in computer

simulations.

Figure 2.1: Coarse-grained representation of an α-helix. All different amino acids are con-
sidered as identical monomers.

Here, we focus on a model of a polymer chain with N=40 monomers. The conformation

of our 40mer can be expressed by the vector
−→
X = (−→x1,

−→x2, ...,
−→x40) where −→xi is the position of

the ith monomer. The energy of the polymer chain contains non-bonded, bonded, bending

and torsion interactions.
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Therefore, the total energy of the polymer with conformation X can be written as:

E(X) = SLJ

N−2∑
i=1

N∑
j=i+2

ULJ(rij) + SFENE

N−1∑
i=1

UFENE(rii+1)

+Sθ

N−1∑
l=2

Ubend(θl) + Sτ

N−1∑
k=3

Utor(τk)

The interactions between all nonbonded monomers are represented by the dimensionless

shifted Lennard-Jones (LJ) potential [42,43] with cutoff (Fig. 2.2 and Fig. 2.3)

ULJ(r) =


4[(σ/r)12 − (σ/r)6]− VLJ(rc), r ≤ rc,

0, otherwise.

(2.1)

Figure 2.2: The nonbonded interaction is represented by the dimensionless shifted Lennard-
Jones (LJ) potential. For bonded interaction, the FENE potential is used.
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The length scale of the nonbonded interaction is represented by r0, which is set to unity in

the simulations and, is where the minimum of the LJ potential is located. The LJ potential is

zero at the van der Waals radius σ = r0/2
1/6. If the distance r between any pair of monomers

is greater than rc = 2.5σ, the LJ potential will be zero. The rc is called the cutoff distance

and the LJ potential is shifted by VLJ(rc) = 4[(σ/rc)
12 − (σ/rc)

6] ≈ −0.0163169 to avoid

a discontinuity at the cutoff point. The non-bond interaction strength SLJ is the reference

energy scale for all energetic quantities, and it is set to unity in our simulation.

Figure 2.3: The dimensionless shifted Lennard-Jones (LJ) potential with cutoff.
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The interaction between any pair of bonded monomers can be described by the finitely

extensible nonlinear elastic (FENE) potential [21, 22] (Fig. 2.2 and Fig 2.4)

UFENE(r) = ln{1− [(r − r0)/R]2}. (2.2)

The minimum and the maximum bond lengths are limited by the parameter R since the

FENE potential diverges as r → r0±R. The bond interaction strength is SFENE = −KR2/2

for which we fixed the parameter values R = (3/7)r0 and K = (98/5)r2
0 [10].

Figure 2.4: The finitely extensible nonlinear elastic (FENE) potential.
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Figure 2.5: The bending angle is denoted by θ (blue) and the torsion angle by τ (red).

The bending potential [15] is defined as

Ubend(θ) = 1− cos(θ − θ0). (2.3)

where θ is the bending angle formed by two successive bonds (Fig. 2.5). The reference

bending angle is set to θ0 = 1.742.

Similarly, the torsion potential [16] is given by

Utor(τ) = 1− cos(τ − τ0), (2.4)

where τ is an out-of-plane torsion angle formed by three successive bonds (Fig. 2.5). The

reference torsion angle is τ0 = 0.873. With these reference values of θ0 and τ0, helical

segments in our polymer model resemble α-helices with about 4 monomers per turn in the

ground state. Sθ is the bending strength and Sτ is the torsion strength. We systematically

investigate the system’s structural behaviours by varying the values of Sθ from 0 to 200 at

confined values of Sτ=4, 5 and 8, respectively.
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2.2 Sampling and simulation

The polymer system is composed of 40 identical monomers and we choose a random initial

microstate in our simulations. The standard importance-sampling method typically used in

Monte Carlo simulations is the Metropolis method [44]. At the given temperature T , it is

based on the canonical microstate probability

P (X) ∼ e−βE(X)

where β = 1/kBT and kB is the Boltzmann constant. For numerical reasons, we set kB = 1

in the simulations.

In our simulations, we use simple Monte Carlo updates to sample the conformational

space. Each update results in a change in the polymer’s energy by an amount ∆E, where

∆E = E(X’) − E(X), X’ is the updated state and X is the previous state. The update is

accepted with probability PM
acc according to the Metropolis sampling criterion,

PM
acc(X → X’) = min(1, e−β∆E)

.

Obviously, the update will be accepted when ∆E < 0. If the updated state has a greater

energy, i.e., ∆E > 0, we randomly generate a number r ∈ [0, 1) and accept the updated

state only if r < e−β∆E. The proposed update is rejected otherwise.

There are several different types of updates which can be used in sampling, and their

choice impacts the efficiency of the simulations. Here, we employed both the local dis-

placement update and the torsion update (Fig. 2.6). For the displacement update, we

randomly choose a monomer (red) and randomly move it within a cubic box with edge

lengths d = 0.3r0. If the box space is too large, the acceptance rate becomes low and it will

12



take more time to update the system microstate. If the box size is small, it will lead to a

high acceptance rate but the change of the polymers structure will be very small and it still

takes longer to make a significant change of the state. Therefore, a reasonable box size can

lead to gains in simulation efficiency.

For the torsion update, we randomly select a bond and rotate the whole monomers after

the bond by a random angle. It is not difficult to understand that the acceptance rate for

such global updates is low. However, it increases the simulation efficiency by a lot once the

global update was accepted due to the large structural change. It helps the system overcome

the local minimums i.e. the local free energy barriers.

Figure 2.6: Left side shows the local update. The randomly picked monomer is in red and
is updated within a cubic box. An example for a torsion update by 450 is shown on the
right. The randomly picked bond is in blue. The three monomers in light green show the
new positions after the 450 torsion update.

13



However, even with global updates, the Metropolis method is still one of the least efficient

methods, because the widths of canonical distributions at low temperatures are extremely

small and β ∼ (1/T ) is very large. When the updates lead to an increment in energy,

they will be strongly suppressed due to the Boltzman weight e−β∆E → 0. As a result,

the system will be trapped in a local energy minimum for a long time. In addition, at a

first order transition, the energy distribution is bimodal, i.e., there are two peaks with a

highly suppressed energetic region in between. The system will be easily trapped in either

one of peaks if the Metropolis sampling is the standalone method. In order to enhance the

sampling in the low temperature region and improve the simulation efficiency, we employ

the replica-exchange (parallel tempering) Monte Carlo method. In our parallel simulation,

multiple threads are utilized where each thread is used to sample the conformation space at

a single fixed temperature. After a sufficient number (∼2000) of Monte Carlo updates, we

attempt to exchange the configuration in each temperature thread with one of its neighbors.

The mechanism of the replica exchange is visualized in Fig. 2.7. The red box represents

high temperature threads while the blue box represents low temperature threads. Since the

lowest temperature threads and the highest temperature threads only have one neighbor,

they will be idle for half of the exchange attempts.

14



• The recipe of replica-exchange parallel tempering simulation

1. 36 temperatures are assigned to 36 threads.

2. Randomly initialize the configuration of the polymer.

3. Using local or global updates to update the polymer structure.

4. Calculate the energy change ∆E = E(X’)− E(X)

5. Accept or reject according to the Metropolis probability PM
acc(X → X’) =

min(1, e−β∆E)

6. Repeat steps 2 to 4 for sufficient Monte Carlo updates.

7. Every 80000 steps, attempt to exchange configurations between two neighbor cores

with the acceptance probability PPT
acc (i ↔ j) = min(1, e−(βi−βj)[E(Xj)−E(Xi)])

Figure 2.7: The mechanism for the replica-exchange between neighbor threads.

15



2.3 Canonical analysis

The canonical ensemble is the statistical ensemble that represents the possible states of a

system in thermal equilibrium with a heat bath at a fixed temperature. A system in the

canonical ensemble with fixed temperature T , system volume V and the number of particles

N has the Helmholtz free energy of F (N, V, T ). In the thermodynamic limit, it is possible

to employ an order parameter to distinguish the phase transitions in the system.

In the classification scheme, phase transitions are categorized into two classes. The first

order transition, also called as discontinuous transition, is defined by a discontinuity in the

first derivative of free energy, i.e., entropy S at transition temperature Ttr (Fig. 2.8)

(
∂F

∂T

)
N,V

= −S(N, V, T ) (2.5)

Figure 2.8: Schematic plot of the entropy S of a system experiencing a first-order transition.
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where ∆S measures the distance of the gap. First order phase transitions involve the latent

heat ∆Q:

∆Q = Ttr∆S (2.6)

which is the measurement of the energetic separation between the two phases.

The second order transition, also called a continuous transition, in which the entropy

S is continuous but the second derivative of the free energy, i.e., the heat capacity Cv is

discontinuous at the critical temperature Tc (Fig. 2.9):

(
∂2F

∂T 2

)
N,V

= −
(
∂S

∂T

)
N,V

= − 1

T
Cv(T ). (2.7)

Figure 2.9: Entropy S and heat capacity Cv of a system at a second-order transition.

At the critical temperature Tc, the heat capacity follows a power law Cv(τ) ∝ |τ |−α,

where τ = (T − Tc)/T and α is the critical exponent.
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In the thermodynamic limit, the size of a system is considered as infinitely large. However,

the system we investigate is finite and finite size effects are significant and the quantities

discussed above do not exhibit non-analyticities for finite systems. In the finite system,

instead of singularity, peaks of order parameters may indicate the pseudophase transition. It

is difficult to distinguish the order of transition because both first and second order transition

exhibit peaks in the fluctuation quantities. However, we can determine the order of transition

from the distribution of the internal energy near the transition temperature (Fig. 2.10).

[a]

[b]

Figure 2.10: The energy histogram of a flexible polymer with 55 monomers near T ∼ 0.3.
[a] with bonded LJ potential [b] without bonded LJ potential.
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Bimodal distributions indicate a first-order transition. The energy difference between

the two peaks is the associated latent heat ∆Q = E2 − E1. The energy histogram at

the critical temperature associated with a latent heat ∆Q = 0. Apparently, power law

behaviour cannot be expected for finite systems. In some cases, canonical analysis may not

be sufficient to categorize the phases for finite systems because peaks do not always exist in

heat capacity when the pseudophase transition does occur. Therefore, signals from different

quantities are crucial in order to obtain an accurate pseudophase diagram. For this purpose,

structural order parameters such as the fluctuation of end-end distance d〈R2
ee〉/dT and radius

of gyration d〈R2
g〉/dT are employed in our study. In Fig. 2.12, we show an example of a

flexible polymer with 13 monomers. Near the temperature T = 1, there is only a very weak

signal (shoulder) in the heat capacity Cv curve and it is difficult to tell whether or not a

”phase” transition occurs. However, there is a prominent peak in the radius of gyration

curve in the same temperature region, which is a strong evidence for a ”phase” transition.

By examining the structures of the system near the temperature region T = 1, we find that

there is a liquid-gas transition.

13mer

T

C
V

21.510.50

60

50

40

30

20

10

0

13mer

T

d
〈R

2 g
〉/
d
T

21.510.50

2

1.5

1

0.5

0

Figure 2.11: The heat capacity CV and the fluctuation of the square radius of gyration
d〈R2

g〉/dT of a flexible polymer with 13 monomers.
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2.4 q1 and q2 order parameter space

By varying the bending strength Sθ at different confined torsion constraints Sτ = 4, Sτ = 5

and Sτ = 8, we discovered a number of interesting structures at low temperatures such as

three-helix bundles, two-helix bundles, three-non-helix bundles, two-crossing-helix bundles.

However, the traditional order parameters such as heat capacity (Cv), end-end distance (Ree),

radius of gyration (Rg) are not sufficient to distinguish structural phases associated with all

these different conformations. In addition, it is very important to find a structural transition

path to understand the process of protein folding [31–35]. As a result, we introduce a pair

of order parameters denoted as q1 and q2 (Fig. 2.12). Here, q1 is defined as the average total

energy of the ULJ between nonbonded monomers separated from the selected monomer (red)

by 6 or less bonds (blue). We do not count the bonded ULJ between monomers (green) into

q1. Consequently, q2 is defined as the average total energy of the ULJ between the selected

monomer (red) and all other monomers (yellow) which are more than 6 bonds away.

Figure 2.12: The pair of order parameters q1 and q2.
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The order parameters q1 and q2 are given by

q1(X) =
1

N

N−2∑
i=1

N∑
j=i+2

Θ6,j−ivLJ(rij), (2.8)

q2(X) =
1

N

N−2∑
i=1

N∑
j=i+2

Θj−i,7vLJ(rij), (2.9)

where Θ is defined as

Θk,l =


1, if k ≥ l,

0, otherwise.

(2.10)

[a] [b] [c]

Figure 2.13: The pair values of (q1,q2) for [a] the single helix, [b] two-helix bundle and [c]
three-helix bundle shown above are (-5.31,-0.05), (-4.76,-1.61) and (-4.24,-2.5), respectively.
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To understand q1 and q2, we first take a single helix as an example. Once a certain

monomer M is chosen, only the monomers in the above or the below turn will contribute

to q1 by taking into account the fact that there are about 4 monomers in each turn. The

monomers which are 6 or more bonds away from M contribute 0 to q2 by considering the

cutoff distance of ULJ . Therefore, in a single long helix, q1 is minimum and q2 is maximum

(Fig. 2.13). When the number of helical segments increases, two-helix as an example, the

monomers which are 6 or more bonds away from M may contribute to q2 if they are in

different helical segment. As a consequence, some of the local energy ULJ (the interaction

with the monomers which are 6 or fewer bonds away from M) will be sacrificed. Therefore,

the q1 value will increase if the interaction along the chain becomes weaker and q2 will

decrease if there are more energetic contacts between helical segments.

Figure 2.14: The pair values of (q1,q2) for the single helix, two-helix bundle and three-helix
bundle shown above are (-5.31,-0.05), (-4.76,-1.61) and (-4.24,-2.5), respectively.
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2.5 Binning Jackknife error analysis

Error analysis is a very important step to evaluate the uncertainty associated with a data set.

Without the error analysis, it is hard to examine the precision of the data and the results are

not trustworthy. Here, we employ binning jackknife error analysis method to obtain reliable

error bars for the fluctuation quantities [14].

We have total M correlated data points and each data point is labeled as Om where

m = 1, 2, ...,M . The whole data set is cut into K bins and each subset contains MB data

points and we have M = KMB. Therefore, a set of uncorrelated data subsets has been

created.

The average of the quantity O in each bin is given by

O
B

k =
1

MB

MB∑
mB=1

O(k−1)MB+mB , k = 1, ..., K (2.11)

and

O =
1

K

K∑
k=1

O
B

k (2.12)

The binning jackknife method is the complementary to the binning method. Instead of

calculating the average of the observable O in a single bin, we use the data of all bins except

the one which is labeled as k. Therefore, we define the kth individual jackknife average by

taking all the data points and subtracting those in the kth bin

O
J

k =
MO −MBO

B

k

M − MB
(2.13)

The grand average of O is calculated by averaging O
J

k over all jackknife bins

O =
1

K

K∑
k=1

O
J

k (2.14)
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The reliable error for O then is given by

εO =

√√√√K − 1

K

K∑
k=1

(O
J

k − O)2 (2.15)

The equation (2.15) is the general function to calculate the error because the observable

O can be any fluctuation quantity.
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Chapter 3

Results and discussion

Our study extends previous work [10–12], in which the bending strength was confined at

both Sθ = 0 (flexible) [36–38] and Sθ = 200 (semiflexible) [39–41], respectively (Fig. 3.1),.

The strength of torsion was altered to explore the phase transition from the torsion-free case

Sτ = 0 to a very strong helix potential, Sτ = 30. Hyperphase diagrams were constructed for

both flexible and semi-flexible cases in the space of torsion strength Sτ and the temperature

T . In the semi-flexible phase diagram, an array of robust organization of unique structural

phases was found: stable single-helix, 2-helix bundle [23–29], 3-helix bundle and 4-helix

bundle conformation dominate in the low temperature region. However, for the flexible case,

the folding process [45–51] is not influenced by the torsion strength at all, meaning the

dominant phase is an amorphous phase for all values of the torsion strength. Therefore, it is

very interesting to explore the Sθ space between flexible Sθ = 0 and semi-flexible Sθ = 200

cases in more detail which is the focus of our study.
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Figure 3.1: Hyperphase diagrams of bending restrained Sθ = 200 (left) and unrestrained
Sθ = 0 (right) with 40 monomers.
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3.1 Stability of polymers with weak torsion restraint

In this section we systematically investigate the structural behaviour of a homopolymer with

confined torsion strength Sτ = 4 [52]. A hyperphase diagram is constructed by varying the

bending strength Sθ. We identify an array of structures at low temperature as well as the

folding paths in the q1 and q2 order parameter space.

3.1.1 Energetic order parameters

In Fig.3.2(a), we show the average energy for six different bending strength values i.e.

Sθ = 1, 3, 5, 10, 30, 60 and 80. In general, the average energy increases as Sθ increases for all

temperature. The curves are flatter at low and high temperature than at moderate temper-

atures in the range T ∼ [0.4, 1.2]. The energy difference among different bending strengths

is smaller in the moderate temperature region than at low or high temperature. The heat

capacity curves are shown in Fig. 3.2(b).
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Figure 3.2: (a) Average energy and (b) heat capacity curves at confined torsion strength
Sτ = 4.

At low temperature, we find a noticeable peak for Sθ = 1. It indicates the structural

transition from the 3-helix bundle (Fig. 3.3(a)) to the amorphous phase. The helical segment

is not the α-helix because the number of monomers per turn is not 4 (Fig. 3.3(b)) and,

therefore, bending angles do not coincide with the bending reference angle θ0. Since the

bending strength is small (Sθ = 1), the penalty (increment) from the bending potential is

smaller than the decrement from LJ potential. Therefore, it has lower energy and is more

preferred by the system at low temperature. There is also a signal for Sθ = 30 which indicates

the transition from the 3-helix bundle phase with two crossing helical ends (Fig. 3.2(c)) to
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2-helix bundles with two crossing helical ends (Fig. 3.2(d)). In the region T ∼ [0.2, 0.6], the

heat capacity has the most prominent peak for Sθ = 1. The magnitude of the peaks decrease

as the Sθ values increase. For Sθ = 5 and 10, the signals are weaker and have shifted. The

peaks become more significant as the Sθ values get larger. However, when Sθ is 30 or larger,

there is no difference among the magnitude of the peaks. Near T ∼ 1.2, all heat capacity

curves show weak signals. In order to determine whether there are pseudophase transitions,

we will need to employ other order parameters, i.e., the structural order parameters.

[a] [b]

[c] [d]

Figure 3.3: (a) Side view and (b) top view of a 3-helix bundle. (c) Side view of a 3-helix
bundle with two crossing helical ends and (d) side view of the 2-helix bundle with two
crossing helical ends.
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3.1.2 Structural order parameters

The average square radius of gyration 〈R2
g〉 curves for different values of bending strength

are shown in Fig. 3.4(a). At lowest temperature, all curves converge around the value of

2. Near T ∼ 1.2, 〈R2
g〉 increase sharply. In the high temperature region, the 〈R2

g〉 values

increase as Sθ values increase. The fluctuation of the square radius of gyration d〈R2
g〉/dT

curves are shown in Fig. 3.4(b).
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[b]

Figure 3.4: (a) The average square radius of gyration and (b) the fluctuation of the square
radius of gyration at Sθ=4.
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At low temperature, the blue curve for Sθ = 1 exhibits a clear peak which is followed

by a trough as T increases. This means when the temperature increases, the conformation

becomes more compact. It further provides evidence for the phase transition from 3-helix

bundle to the amorphous phase since the amorphous ”phase” is more compact. For the

curve of Sθ = 30, there is a peak which is consistent with the signal in the heat capacity

curve that confirms the transition from 3-helix bundle with two crossing helical ends to

2-helix bundle with two crossing helical ends. Near T ∼ 1.2, all curves show pronounced

peaks and indicate a strong structural phase transition from liquid globules(Fig. 3.4(a)) to

random coils (Fig. 3.4(b)). The height of the peak increases as the value of Sθ increases.

The structural order parameters are complementary to the energetic order parameter 〈E〉

where there are shoulders in the heat capacity curves instead of the significant signals in the

d〈R2
g〉/dT curves.

[a] [b]

Figure 3.5: Examples of (a) a liquid globule and (b) a random-coil structure.
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3.1.3 The hyperphase diagram

Equipped with the information from both the heat capacity Cv curves and the fluctuation of

the square radius of gyration d〈R2
g〉/dT curves, we construct the hyperphase diagram shown

in Fig. 3.5. Colored regions are distinguished in the spaces of the bending strength Sθ and

the temperature T .

First of all, we analyze the phase diagram vertically, i.e., the bending strength Sθ is

considered as a material parameter. In the lowest temperature region, we start with the

amorphous phase at Sθ = 0. As the bending strength Sθ increases up to 40, the system

undergoes transitions from the 3-helix bundle phase to 2-helix bundles with two crossing

helical ends phase and 3-helix bundles with two crossing helical ends. The most attractive

structural behavior is that as the bending strength Sθ is larger than 40, the system revisits

the 2-helix bundle phase with two crossing helical ends, but if Sθ > 65, the system falls into

3-helix bundle again. The reason behind this is that the 3-parallel-helix bundle conformation

is more preferred by the system for very large bending strength value. In order to make this

happen, the helical segment in the middle of the 3-helix bundle with two crossing helical

ends must be dissolved and reform again for the large bending strength values Sθ > 65

by paralleling with one of the two ends. As the bending strength Sθ gets even larger, the

other end gradually lines up with these two helical segments, and the dominant phase of the

system is the 3-parallel-helix bundle. The 3-parallel-helix bundle at the top left of the phase

diagram (Fig. 3.6) is an example found at Sθ = 200. In the moderate temperature region

T ∼ [0.5, 1.2] we find the liquid phase while in the high temperature region, i.e., T > 1.2,

the random coil is the dominant phase. These two phases are not influenced by the bending

strength Sθ.

Now let’s cross the phase diagram horizontally, i.e., the temperature T is the control

parameter. For Sθ > 50, the phases can be clearly distinguished as random coil, liquid,

3-helix bundle with two crossing helical ends and 2-helix bundle with two crossing helical
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ends. For Sθ ∼ [20, 40], the system visits 4 phases as T increases: 3-helix bundles with

two crossing helical ends, 2-helix bundles with two crossing helical ends, liquid globules and

random coils. Near Sθ ∼ 10, the dominant structures are 2-helix bundles with two crossing

helical ends, liquid globules and random coils. For small bending strength values between 1

and 3, there are 4 phases: 3-helix bundles, amorphous, liquid globules and random coils.

Figure 3.6: The hyperphase diagram of the polymer with 40 monomers at confined torsion
strength Sτ = 4 which is parameterized by the bending strength Sθ and the temperature T .
Examples of structures dominant in the different phases are also shown.
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3.1.4 Folding path in (q1,q2) order parameter space

We employ the structure parameter space q1 and q2 to further study the folding process

and distinguish the phases. In our simulation, we stored 600 structures for a fixed bending

strength Sθ at a given temperature. Then we calculate the energy for each of the 600

structures and plot the histogram. We take a subunit of the structures with whose energy

is near the peak of the histogram and average the q1 and q2 values of the structures in the

subunit. This makes a dot for a fixed Sθ in the q1 and q2 order parameter space which

represents the global free energy minimum. Therefore, the pathway is the line by connecting

all the free energy minima at different temperatures. We show the pathways for 6 different

bending strengths Sθ in Fig. 3.6 and the black dot locates the (q1, q2) of the 3-parallel-helix

bundle when Sθ = 200. All the pathways begin in the high temperature region which is the

upper right corner of Fig. 3.7. In the high temperature region, all 6 pathways are in the

random coil phase. As the temperature decreases, they undergo the liquid phase which is

in the middle of the plot. In the low temperature region i.e. the lower left of the plot, the

pathways go into different branches depending on the values of Sθ. The pathway for Sθ = 0

ends in the amorphous phase while the trajectory of Sθ = 3 ends in the 3-helix bundle phase.

However, we notice that all other 4 trajectories for Sθ = 10, 30, 60 and 80 end in the same

area. The dominant structures in the low temperature region for the four different Sθ are

”similar”. Therefore, it is not a surprise that they have the pair of q1 and q2 with close

values. The merge also provides us the evidence that the phase for Sθ ∼ [20, 40] (the yellow

region in Fig. 3.5) and the phase for Sθ > 65 at low temperature are identical and confirms

our most important discovery of the phase revisiting.
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Figure 3.7: The helical folding pathways in the q1 and q2 space at fixed bending strength
Sθ = 4 by decreasing the temperature T. The black dot locates the (q1,q2) for the 3-parallel-
helix bundle.
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3.2 Phase behavior of helical polymers with moderate

torsion restraint

In this section we explore the formation of structural phases for helical polymers with con-

fined torsion strength Sτ = 5 by varying the bending strength Sθ [13]. We used the external

energetic and structural fluctuations to indicate the significant phase changes. These anal-

ysis supports our expectation for the stabilization of helical phases due to the existence of

bending stiffness and we find an array of dominant structures in the low temperature region.

Moreover, we find a novel phase at the intermediate values of the bending strength which

provides the insight into the process of helix bundle formation.

3.2.1 Energetic order parameters

We first discuss the results of energetic canonical statistical analysis applied to our model.

In the average energy graph (Fig. 3.8(a)), we notice that the system energy increases when

the temperature increases for all values of bending strength. When the temperature become

higher (T ∼ 1.5), the slope of the energy curve decreases which indicates that the energy

increase more slowly. At any temperature position, when the polymer is flexible, i.e., Sθ = 0

the energy of the system is smallest while for bending strength Sθ = 60 the system energy

is largest. We also notice that there is a clear gap between Sθ = 0 and Sθ = 3. This is a

clear evidence that tells when the bending constraint starts to apply to the flexible system,

the energy of the system dramatically increases. However, when the bending strength is 10

times greater than the torsion constraint, i.e., Sθ > 60, increasing bending constraint will

not result in a noticeable change in energy. This is because large bending strength governs

the system energy and there is no competition with both torsion and non-bonded interaction

effects.

The heat capacity Cv curves as functions of temperature are shown in Fig. 3.8(b). We find
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prominent peaks for both small bending strength Sθ ≤ 5 and large bending strength Sθ ≥ 10

near T ∼ 0.5. The peak suggests the existence of the solid-liquid transition. For the bending

strength Sθ between 5 and 10, we observe broad peaks. A flexible polymer, i.e., Sθ = 0 has

the largest height of peak and decrease with the bending strength increasing. However when

the bending strength is Sθ = 7 there is a clear shift and the heat capacity increases with the

bending strength. We see a clear amorphous phase develops at low temperature (T < 0.37)

when bending strength is Sθ < 5. For Sθ > 10 we see a distinct 3-helix structure form

at low temperature (T < 0.5). It is because with larger bending strength, breaking helix

structures will result in larger energetic penalty and therefore the system will more favor

helical structures. When the bending strength is between 5 and 10, the structural phase

seems to be a mixed phases of both. We could also clearly identify the shoulder for small

bending strength Sθ ≤ 5 and large bending strength Sθ ≥ 10 but it is less obvious for bending

strengths between 5 and 10. This shoulder suggests there may occur a ”phase” transition

and we will employ the structural order parameters to perform an in-depth analysis.
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Figure 3.8: (a) The average energy and (b) heat capacity curves for Sτ = 5.
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3.2.2 Structural order parameters

Fig 3.9(a) gives us the information about the average square radius of gyration 〈R2
g〉. We

can see all curves converge at 2 in the low temperature region. There is a very steep slope

between temperature 1 and 1.5 for all values of bending strength which suggests there is a

structural transition in this temperature region. However, we do not see any signal at low

temperature. This is because the transition at low temperature is the solid-liquid transition

and the structures in both solid and liquid phase are compact and the change in radius of

gyration is not noticeable. The derivative of the average square radius of gyration is shown

in Fig. 3.9(b). We see the prominent peaks between temperature 1 and 1.5 for all values

of bending strength which is a strong evidence that suggests a structure phase transition

in this region and confirms the shoulder in the heat capacity curves. It indicates that the

transition causes the major changes in the structures and can clearly be associated with the

liquid-gas transition between globular and random coil. The liquid phase of our polymer

is overall disordered but may contain short, locally ordered segments such as helical turns.

The random-coil conformations do not have any indication of order and the fluctuation

behaviour of the individual monomers is only constrained by the bond potential, i.e., the

FENE potential.
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Figure 3.9: (a) Average square radius of gyration and (b) its fluctuation for Sτ = 5.
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3.2.3 The dependence of the peak temperature of TCmax
v

It is worth to take a look at the details for polymers with intermediate bending strength Sθ

to better understand how the different solid phases are formed. A deeper investigation into

the shift region of the liquid-solid transition temperature gives us a first hint. By using the

peak temperature of the heat capacity curves in the low temperature region, we obtain the

dependence of the peak temperature of the heat capacity TCmax
v

for all bending strengths

Sθ which is shown in Fig. 3.10. Starting from the flexible polymer case, i.e., Sθ = 0,

we notice that the transition point shifts to lower temperatures as well as the peak height

decreases as the bending strength Sθ increases. The signal has shifted to T ≈ 0.31 when

Sθ = 5. Following that, there is a clear visible gap that another signal appears at about

T ≈ 0.45 when the bending strength Sθ = 7. Then the signal becomes stronger for larger Sθ

and shifts to the higher temperatures. This behaviour gives rise to the assumption that an

intermediate phase exists for 5 < Sθ < 7, which mediates the crossover between amorphous

and the helical structures. Indeed, by visual inspection of the dominant structures, we find a

novel structure type which has not been discovered before in the limiting cases of flexible and

semiflexible polymers. It has a compact and hybrid helix-liquid structure which possesses an

ordered helical segment attached to a disordered liquid body (Fig. 3.11). This intermediate

structural phase is rather weak but it does show the evidence that how the helical bundles

form out of the liquid phase, provided the bending stiffness is strong enough to counter the

non-bonded interactions which cause the formation of most compact amorphous structures.
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Figure 3.10: Dependence of the peak temperature of the heat capacity TCmax
v

on the bending
strength Sθ for the compact phase.

Figure 3.11: Representative conformations dominating the different structural phases iden-
tified for bending strengths in the interval Sθ ∈ [0, 60] at Sτ = 5.
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3.3 The general structural transitions of helical macro-

molecules with strong torsion restraint

In this section, we study the impact of the competition between bending strength and torsion

effects upon the formation of the structural phases for the helcial polymer with confined

torsion strength Sτ = 8 [53]. We employ the conventional canonical statistical analysis by

introducing both the energetic and structural thermodynamic quantities. These analyses

help us construct the hyperphase diagram in spaces of temperature and bending stiffness.

We take a detailed look in the low temperature region and distinguish an array of dominant

structures. Further, we explore the polymer folding path by using the order parameters q1

and q2.

3.3.1 Energetic order parameters

We first show the result of the average energy in Fig. 3.12(a). Generally speaking, the

average energy 〈E〉 increases as the bending strength increases across the temperature T

space. Also, the average energy 〈E〉 increases as the temperature increases for all bending

strength values. In the temperature T ∼ [0.4, 1.3], the slope for all curves is steeper than

the slope in low temperature region i.e. T < 0.4 and in the high temperature region i.e.

T > 1.4. The average energy change between Sτ = 0 and Sτ = 3 is much more pronounced

than the change between Sτ = 30 and Sτ = 100, because there is still significant competition

between bending and torsion potential. However, when the bending strength is large enough,

it dominates the system energy. Any further increment in Sτ does not have a noticeable

impact on the system behaviour.
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Figure 3.12: (a) Average energy and (b) heat capacity curves at Sτ = 8.

44



The heat capacity curves are shown in Fig. 3.12(b). In the low temperature region, i.e.,

T ∼ 0.15, we notice the weak signals at the bending strengths Sθ = 1 and Sθ = 3. There is a

transition from the 3-helix bundle to the amorphous phase. Near T ∼ 0.25, we notice another

weak signal at Sθ = 30. It indicates the phase transition from the 2-helix bundle with two

crossing helical ends to the 2-helix bundle. Near T ∼ 0.4, we clearly identify a prominent

peak at small bending strengths, i.e., Sθ ≤ 3. The height of the peak increases when the

polymer changes from flexible, i.e, Sθ = 0 to Sθ = 1 and then decreases as the Sθ is getting

larger. At Sθ = 8 the peak becomes flat and wide. For bending strength Sθ = 16, there is

a clear shift for the critical temperature and then the height of the peak increases as the

bending strength increases further. We characterize it as the amorphous-liquid transition.

In the temperature region T ∼ [0.8, 1.2], we notice that there are prominent peaks for large

bending strengths Sθ ≥ 8 while only shoulders are visible for small bending strengths Sθ ≤ 3.

In order to confirm the ”phase” transition we perform a structural analysis.
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Figure 3.13: (a) Average square radius of gyration and (b) the fluctuation of the square
radius of gyration at Sθ=8.
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3.3.2 Structural order parameters

The average square radius of gyration 〈R2
g〉 curves are shown in Fig. 3.13(a). We see all

curves converge to 2 at low temperature except for the curve of Sθ = 100 which converges

to 3. The reason is that the dominant structure at the lowest temperature for Sθ = 100 is a

2-helix bundle which is less compact than the structures found at smaller bending strength

values. A noticeable slope occurs near T ∼ 0.25 at the bending value Sθ = 30 which bridges

the curves at small values of bending strengths and the curve at Sθ = 100. A very steep

slope occurs for all bending strength values between temperature 0.8 and 1.2 which indicates

there is a structural transition in this temperature region.

We show the result of the fluctuation of the square radius of gyration d〈R2
g〉/dT in Fig.

3.13(b). At the low temperature, i.e., T ∼ 0.1 there are small peaks for the curves of

bending strengths Sθ = 1 and Sθ = 3 and as the temperature increases slightly there is a

noticeable down trend. This is a strong evidence which indicates the ”phase” transition from

3-helix bundle to the amorphous phase, where conformations are more compact than 3-helix

bundle which explains the down trend of the curve when the temperature increases. In the

temperature region T ∼ [0.25, 0.5], we notice a very clear peak in the curve for Sθ = 30 which

indicates the transition from the 2-helix bundle with two crossing helical ends to the 2-helix

bundle phase and suggests that this is a structural transition. However, for the curves of

Sθ = 8 and Sθ = 16, the signals are not that strong and may suggest a mixed phase here.

In the temperature region T ∼ [0.8, 1.2], we see prominent peaks for all values of bending

strength which are strong evidences for the phase transition from liquid to random-coil phase.
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Figure 3.14: The hyperphase diagram of the polymer with 40 monomers at confined tor-
sion strength Sτ = 8, parameterized by the bending strength Sθ and the temperature T .
Representative conformations are shown as well.

48



3.3.3 The hyperphase diagram

After the careful analysis of both energetic and structural order quantities, we construct the

hyperphase diagram in the space of bending strength Sθ and temperature T (Fig. 3.14).

We first look into the phase diagram vertically, i.e., the bending strength Sθ is varied as a

material parameter. In the lowest temperature region, the system stays in the amorphous

phase for the flexible polymers, Sθ = 0. As the bending strength Sθ increases slightly, the

system enters the 3-helix bundle phase. The 2-helix bundle with two crossing helical ends

becomes the dominant configuration when Sθ ∼ [15, 50]. As the bending strength Sθ is

getting even larger, i.e., Sθ > 65, there is a clear dominant conformation which is identified

as 2-helix bundle. Near T ∼ 0.7, the dominant phase is qualitatively recognizable as the

liquid phase. However, as the bending strength Sθ increases, the liquid phase shrinks. This

is because the helical segments are more stable when the bending strength is large and it will

require more energy, for example higher temperatures to dissolve the ordered conformation.

If T > 1.2, the random-coil phase is the dominant phase for all bending values.

We then analyze the phase diagram horizontally, i.e., the temperature is controlled as

an external parameter. For the flexible polymer, Sθ = 0, the dominant conformations are

amorphous, liquid and random-coils phase as temperature increases. For 1 < Sθ < 5,

there are 4 phases, i.e., 3-helix bundle, amorphous, liquid and random-coil phase. As Sθ

increases up to 8, the amorphous phase disappears with the other 3 phases remained. For

the Sθ ∼ [15, 55], the system is in the 2-helix bundle with two crossing helical ends phase at

the low temperature and enters 2-helix bundle, liquid and random-coil phases, respectively,

by increasing T . For large bending strengths Sθ > 65, we discover 3 dominant phases: 2-helix

bundle, liquid and random-coil phase. Indeed, these phases across the temperature space

imply the specific folding path for a given Sθ which can be further verified in the q1 and q2

order parameters space.
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3.3.4 The exploration of folding paths in (q1, q2) order parameters

space

The q1 and q2 plot is shown in Fig. 3.15 which is used to investigate the polymer folding

processes and further verify the dominant phases. Each dot in the plot represents the global

free energy minimum. We have discussed the method in detail in section 3.1.4 for how

to determine the dots. The pathway is obtained by connecting all free energy minima at

different temperatures for a given bending strength Sθ. Here, we show 6 pathways for 6

different bending strength Sθ. The upper right corner is the high temperature region and all

6 pathways start from there, i.e., in the random-coil phase. As temperature decreases, they

enter liquid phase in the center of the plot, and we do not see the paths diverge. However,

in the lower left of the plot i.e. in the low temperature region, we find the paths separate

away. For Sθ = 0, the trajectory ends in the amorphous phase. For Sθ = 3, the path goes

through the amorphous phase but near the end, it is stabilized in the 3-helix bundle phase.

For Sθ = 8, the path ends between the 3-helix bundle phase and 2-helix bundle with two

crossing helical ends phases which is not a surprise. Because it is near the phase transition

band. For the Sθ = 16, it clearly ends in the 2-helix bundle with two crossing helical ends

phase. The pathway for bending strength Sθ is very interesting as it exhibits a clear jump

down from 2-helix bundle phase into the phase of the 2-helix bundle with two crossing helical

ends phase. For Sθ = 100, the trajectory ends in the 2-helix phase. The results from q1 and

q2 plot are perfectly consistent with our hyperphase diagram.
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Figure 3.15: The helical folding pathways in the q1 and q2 space at fixed bending strength
Sθ = 8 as the temperature T decreases.
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3.4 Comparison

In this section, we will systematically compare the generic structural behaviour of helical

polymers between torsion strength Sτ = 4 and Sτ = 8. System behaviours at Sτ = 5 is very

similar to those at Sτ = 4 and thus, we exclude this case from the discussion here.

From our study, we find the following in the phase behavior at Sτ = 4 and Sτ = 8:

• There are robust helical structures in the low temperature region. Some of the domi-

nant structures are in common such as the amorphous phase, 3-helix bundle when the

Sθ is small and 2-helix bundle with two crossing helical ends.

• The liquid phase dominates the moderate temperature region for all bending strength

values.

• In the high temperature region, they all have random-coil phase independently of the

bending strength Sθ.

There are also obvious differences which can be summarized as below:

• In the low temperature region with very large bending strength Sθ > 70, the dominant

conformation at Sτ = 4 is the 3-helix bundle while it is a 2-helix bundle for Sτ = 8. The

reason is that the formation of the helical segment depends on the torsion strength.

The increment in the number of helical segments will increase the penalty of torsion

potential but may reduce the LJ potential. Therefore, the outcome is the result of the

competition of torsion energy and interaction between non-bonded monomers. When

Sτ = 4, the system sacrifices some torsion potential and benefits from LJ potential

due to the relatively small value of Sτ . However, if Sτ = 8, i.e., the torsion strength is

relatively large, the gain from LJ potential cannot offset the loss in torsion potential by

having more helical segments. Thus, the dominant structure in Sτ = 8 case is 2-helix
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bundle instead of 3-helix bundle. Similarly, if the torsion strength is even larger, such

as Sτ = 30, the dominant structure is a single helix.

• The number of dominant phases in the low temperature region with Sτ = 4 is larger

than the number of phases at Sτ = 8. It is not surprising because smaller torsion

strength means the system may have more flexibility to form preferred structure with

lower free energy.
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Chapter 4

Conclusion and outlook

In this thesis, we focused on exploring the structural behaviour of helical polymers. For

this purpose, we performed parallel-tempering Monte Carlo simulations of a coarse-grained

model of a homopolymer with 40 monomers. In our model, the interaction between the

neighboring monomers is represented by a FENE potential and the Lennard-Jones potential

is used to mimic the interaction between non-bonded monomers. We further included the

torsion potential with the dihedral angle and the bending potential with the bending angle

to support the helicity. In our study, the torsion strength values are confined at Sτ = 4, 5

and 8 respectively. By varying the bending strength Sθ, we systematically investigated the

structural transitions and stability. In addition, we gained the insight into the folding process

in the order parameter q1 and q2 space.

We investigated the helical polymers with confined torsion strength Sτ = 4. By using

both energetic and structural canonical analysis, we constructed the hyperphase diagram in

the space of Sθ and the temperature T . We find various helical structures including 3-helix

bundles with two crossing helical ends, 2-helix bundles with two crossing helical ends and

3-parallel-helix bundles. The helical segment are formed when both torsion and bending

constraints are included. The system is in the amorphous phase at low temperature if either
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of them is zero.

The macromolecules with confined torsion strength Sτ = 5 has also been studied. We

explore the significant difference in the shapes of the solid structures. By using both canon-

ical statistical analysis of energetic and structural fluctuation quantities, we discover the

novel structural phase we call helix-liquid phase, which is found in a certain intermediate

interval of bending stiffness values i.e. Sθ ∈ [5, 7] where the conformation are composed of

a helical segment attached to a disordered liquid body. This feature may lead to a better

understanding of the general consequences for folding process of polymer under the influence

of competing interactions and constraints.

Lastly, we explored the homopolymer with confined torsion strength Sτ = 8. We con-

structed the hyperphase diagram and found amorphous, 3-helix bundle, 2-helix bundle with

two crossing helical ends and 2-helix bundle at low temperature. As expected, in the moder-

ate or high temperature region, the dominant phases are liquid and random-coil, respectively.

The helical segments are stabilized by both torsion and bending strength. Our result may

lead an insight into most protein structures.

Further, we discovered that the reason of the formation of helical order is because of the

torsion and bending potential. In other words, the correct torsion and bending restraints

mimic the hydrogen bond which supports the helicity in our model. The number of the

helical segments decreases as the torsion strength increases in order to reduce the penalty

from the torsion potential. Our coarse-grained homopolymer model is used for tertiary

structures of helical bundles. However, for secondary structure, there are two types, i.e.,

helices and sheets. Only backbone atoms in amino acids are necessary for the formation of

secondary structure, not the atoms in the side chain i.e. the residue. Because the amino

acids’ backbones are identical for all 20 amino acids, our homopolymer model works perfectly

for the individual helix segment. The far LJ potential glue the segments together in order to

form the bundles. In this context, we believe our model will also work for the other type of
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protein secondary structure i.e. β-sheet by modifying certain parameters or reference values.

In Fig. 4.1, we show the potential sheet-like structure with different input reference values.

The future studies are desirable to construct a whole picture of the structural behaviour for

the β-sheet polymers.

Figure 4.1: β-sheet structure obtained with Sθ = 200 and Sτ = 20 by changing the reference
torsion angle τ0 and bending angle θ0 to π and 1/3π
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Chapter 5

Appendix

To discuss MPI statements, let us start with a simple C program in Fig. 5.1 (a). This code

aims in exchanging an array with two elements in two threads. The original arrays and the

arrays after exchanging are shown in Fig. 5.1(b). Every MPI program must contain the
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[a]

[b]

Figure 5.1: (a) A sample code for with MPI statements. (b) Simulation results for the sample
code.
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preprocessor directive

#include ”mpi.h”

This file, ”mpi.h”, contains the definitions and declarations for compiling any MPI pro-

gram. MPI use the consistent scheme for identifiers. All MPI identifiers start with string

”MPI ” and if it is followed by the name of MPI function, the first character of the function

name is capitalized and subsequent characters are lowercase (e.g. ”MPI Send”). If ”MPI ”

followed by a constant, all characters should be uppercase (e.g. ”MPI INT”).

MPI Init(&argc, &argv);

The function ”MPI Init()” must be called first before any other MPI functions and

”MPI Init()” can only be called once. Its parameters are pointers to the main function’s

parameters(argc and argv). It allows the systems to do any necessary setup so that MPI

library can be used.

MPI Finalize()

Once a program has finished using MPI library, it must call ”MPI Finalize()”. The

statement ”MPI Finalize()” cleans up any unfinished ”MPI ” function and frees memory

allocated by MPI. So far, the previous discussions are about the most basic MPI frame.

Next, we will discuss some common used MPI functions.

MPI COMM rank(MPI COMM WORLD, &my rank)

The function ”MPI COMM rank()” returns the rank of a process to its second parameter

and the rank starts from zero. The first parameter is a communicator which is a collection

of processors that can communicate with each other. ”MPI COMM WORLD” is the only

communicator we need and it has been predefined in the library which consists of all the

running processors when the program begins.

MPI COMM size(MPI COMM WORLD, &my size)

The function ”MPI COMM size()” returns the total number of processors in the com-

municator to its second parameter. The first parameter represents a communicator as well.
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The processors in a communicator use functions ”MPI Send()” and ”MPI Recv()” to

send, receive or exchange information with each other. The exact syntax for the two functions

is given below:

MPI Send(

Void* message,

int count,

MPI Datatype datatype,

int destination,

int tag,

MPI Comm communitor )

MPI Recv(

Void* message,

int count,

MPI Datatype datatype,

int source,

int tag,

MPI Comm communitor,

MPI Status* status)

For the function ”MPI Send()”, the first parameter ”message” refers the block of memory

which stored the content that is going to be sent.The second parameter ”count” tells the

system how long is the message and the third parameter determines the data type of the

message e.g. ”MPI INT”, ”MPI FLOAT” and ”MPI DOUBLE” etc. The forth parameter

”source” refers the rank of the processor which is going to receive the message. The fifth

parameter ”tag” is the label of the message which makes the message be unique. The last

parameter in ”MPI Send()” represents the collection of the processors.

For the function ”MPI Recv()”, the forth parameter ”source” refers the rank of the
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processor which is going to send the message. We should notice that the fifth parameter

”tag” here has to match up with the ”tag” in the function ”MPI Send()” so that messages

won’t get mixed up. The last parameter ”status” in ”MPI Recv()” returns the information

about the data which is actually received. For other parameters in ”MPI Recv”, they have

the same definitions as those in the function ”MPI Send()”.

61



5.1 Noticeable Issues in MPI Programming

In practical, we need the processors communicate with each other and exchange information

instead of running independently. However, when the processors are attempting to exchange

messages, some issues might arise due to synchronization. Let’s first assume that there are

only two processors A and B running on distinct nodes. One mechanism is that processor A

sends ”request to send” to processor B and waits until it receives ”ready to receive” from B,

at which point processor A begins to send the actual message to processor B. This approach

is called synchronous communication. It requires both processors to be at the same stage.

Alternatively, the message sent by processor A can be copied to a system-controlled block

of memory. Instead of waiting processor B’s response, processor A can continue executing.

When the processor B arrives at the point that it is ready to receive message, the system

simply copies the buffered message into processor B’s memory location. The second approach

is called asynchronous or buffered communication. The advantage of second approach is

that the sending processor is able to continue executing even if the receiving processor is not

ready. The disadvantages are also clear. This approach will occupy more system resources.

Further, if the receiving processor is already ready, it will still copy the message to the block

of memory which takes longer running time.

Another issue we need to address is the semantics of the ”MPI Send()”/”MPI Recv()”

pairing which has occurred in our simulation. Suppose processor A calls ”MPI Send” but

processor B does not execute a receive. Although it won’t cause the program to crash, the

message will simply sit in the buffer until the program ends. When the capability of buffer

is not enough then the program may crash. If the system does not provide buffering, the

situation becomes even worse since processor A will be waiting forever for ”ready to receive”

from processor B and the program is actually dead.

Let’s look back to the program in the Fig. 2.1 (a). The purpose of this program is to
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exchange the array a between processor 0 and processor 1. For processor 0, the value of array

a is {0,0} while for process0r 1, its array a is {1, 1}. The correct result is shown in Fig. 2.1

(b) after the exchange between two processors. By changing the sequence of ”MPI Send()”

and ”MPI Recv()” in the program, we will see how it affects the results.

• Case A

—– processor 1 —–

MPI Recv(a,2,MPI INT,0,33,MPI COMM WORLD,MPI STATUS IGNORE);

MPI Send(a,2,MPI INT,0,11,MPI COMM WORLD);

—– processor 0 —–

MPI Recv(a,2,MPI INT,1,11,MPI COMM WORLD,MPI STATUS IGNORE);

MPI Send(a,2,MPI INT,1,33,MPI COMM WORLD);

We exchange the sequence of ”MPI Send()” and ”MPI Recv()” for both processors in

the original program. After the modification, the program won’t exchange the array a

between processor 0 and processor 1 at all. We could not even get a result shown in

Fig. 2.2 (b). The reason is that both processor 0 and processor 1 call ”MPI Recv()”

function first without executing ”MPI Send()”. Therefore, both processors won’t re-

ceive anything from the buffer and will keep waiting forever. Since the ”MPI Recv()”

function has not been cleared, both processors are not able to move forward to execute

”MPI Send()” which causes the program dead.
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[a]

b

Figure 5.2: (a) Modified program for case A. (b) Case A results.
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• Case B

—– processor 1 —–

MPI Recv(a,2,MPI INT,0,33,MPI COMM WORLD,MPI STATUS IGNORE);

MPI Send(a,2,MPI INT,0,11,MPI COMM WORLD);

—– processor 0 —–

MPI Send(a,2,MPI INT,1,33,MPI COMM WORLD);

MPI Recv(a,2,MPI INT,1,11,MPI COMM WORLD,MPI STATUS IGNORE);

We exchange the sequence of ”MPI Send()” and ”MPI Recv()” for processor 1 while

the processor 0 remains the same. We find that pseudo exchange happens! Based on

Fig. 2.3 (b), We get a wrong result. Instead of exchanging array a between processor

0 and processor 1, processor 0 sends its values to processor 1 but array a in processor

0 stays the same. The reason causes the pseudo exchange is that processor 1 receives

the array a from processor 0 first and replaces its own values. Then, processor 1 sends

array a to processor 0. Obviously, it will be identical with the array a in processor 0.
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[b]

Figure 5.3: (a) Modified program for case B. (b) Case B results.
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• Case C

—– processor 1 —–

MPI Send(a,2,MPI INT,0,11,MPI COMM WORLD);

MPI Recv(a,2,MPI INT,0,33,MPI COMM WORLD,MPI STATUS IGNORE);

—– processor 0 —–

MPI Recv(a,2,MPI INT,1,11,MPI COMM WORLD,MPI STATUS IGNORE);

MPI Send(a,2,MPI INT,1,33,MPI COMM WORLD);

We exchange the sequence in processor 0 and processor 1 stays the same. We find

the pseudo exchange again! The result is shown in Fig. 2.3 (b) which is not what we

expected. Processor 1 sends its values to processor 0 but array a stays the same in

processor 1. The reason is the same as the previous case which is that the processor 0

receives the value from processor 1 before sending out its own. The array a in processor

0 will be replaced by processor 1’s and then if processor 0 executes ”MPI Send()”, it

actually sends processor 1’s array a back.
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[b]

Figure 5.4: (a) Modified program for case C. (b) Case C results.
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These outstanding issues we discussed above are very common in parallel computing and

they are hard to debug most time. Especially for case B and C, the program will run to the

end and you will obtain the results without even realizing the results are wrong. Therefore,

crossing check is very important. Also, to avoid these bugs, executes simple parallel programs

first and make sure you could get the expected results before running an extensive simulation.
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