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Abstract

The prevalence of machine learning applications in decision-making has sparked abundant interest
in the fairness of machine learning. Existing notions of fairness are mainly de�ned upon predictions
like equalized odds. This paper characterized the unfairness in regression from a new perspective by
inspecting the prediction errors. In particular, we �rst de�ned a new fairness measurement with equalized
error, which measures the dependence of prediction error on sensitive attributes. We then propose a
regularization approach called Fairness Regularization with Equalized Error (FREE) which can handle
more dimensions of fairness. We conducted two extensive experiments on both simulated datasets and
real-world datasets to evaluate our approach’s e�ectiveness in terms of mean square error, Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation coe�cient, and overlapping index. The results show that
our approach reduces unfairness in error more e�ectively, compared with representative methods.

Index words: [Sensitive attributes, Fairness regularization, Equalized Error, HGR, Overlapping
index]
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Chapter 1

Introduction

1.1 Motivation
Fairness has become an emerging research topic in machine learning Mehrabi et al., 2019. In general, fair
machine learning methods aim to learn a mapping h(X,S) for a target variable Y using input featuresX
and a protected/sensitive attribute S (e.g, race, gender), while ensuring fairness with respect to S Barocas
et al., 2017; Chouldechova and Roth, 2018. For instance, when we predict the probability that a defendant
will be a recidivist, we would like the algorithm to not unfairly treat the groups with sensitive attribute Race
Dressel and Farid, 2018. Previous work has shown that standard machine learning methods usually cause
unfairness. An intuitive solution is to simply train models by excluding the sensitive attributes, however,
such a strategy still could not reduce fairness. One possible reason is that, in most cases, the sensitive
attribute S may be correlated with other attributes. For instance, personal income varies signi�cantly by
age/race. In addition, the prediction is estimated from independent variables that are usually correlated
with sensitive attributes. For example, education level is correlated with race. To obtain a more accurate
model, the error between target and prediction need to be reduced, which increases the dependence
between prediction and sensitive attribute and renders the prediction biased.

There have been mainly three strategies to improve algorithmic fairness Hajian and Domingo-Ferrer,
2012. The �rst one is pre-processing approach. It trains the model using a new representation, which
removes the information correlated to the sensitive attributesS and obtains the information ofX Calmon
et al., 2017; Louizos et al., 2015. The second is to add fairness penalty in the objective function at the training
time Agarwal et al., 2018; Kamishima et al., 2011. The third one is post-processing approach, which applies
transformations to model output and reduce prediction unfairness Hardt et al., 2016; Kamiran et al., 2010.
However, much of the work to date has focused on classi�cation with binary targets, where standard
fairness notions include equal false positive or negative rates across di�erent populations. Less attention
has been paid to fairness in regression, where the target is continuous Agarwal et al., 2019; Berk et al., 2017;
Okray et al., 2019. Existing fair regression methods mainly exploit the conditional independence of model
prediction ŷ and the sensitive attribute S.
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In this paper, we identify the source of unfairness in regression from a new perspective based on
prediction errors. The idea originated from the assumption that the error term ε in a general regression
problem (Eq. (1.1)) is independent of covariatesX :

y = h(X) + ε, (1.1)

where y is a continuous target variable. In practice, however, there might be complicated structures in
the error term ε, e.g., ε is a function of S. Figure 1.1 shows that models without considering fairness
and models considering only dependence in (ŷ, S) cause unfairness in terms of prediction error, as the
distributions of prediction errors on two groups (High_AA and Low_AA) are not clearly overlapped.
Sensitive attributes are usually correlated with other attributes or the target variable. For example, in
the Communities and Crime dataset, the target variable ViolentCrimesPerPop and sensitive attribute
racepctblack are highly correlated with a Pearson’s correlation coe�cient 0.636. Hence, penalizing on the
dependence of prediction and sensitive attributes would su�er an increased loss of accuracy. In addition,
for the sake of fair decision making, we should not overestimate or underestimate any groups in the
sensitive attribute. This implies that the distribution of prediction error should be independent of sensitive
attribute.

Figure 1.1: Distributions of Prediction Error across Sensitive Groups for the Communities and Crime
dataset (i.e., High_AA: ratio of African American Residents≥ 50% and Low_AA otherwise).

1.2 Contributions
We aim to achieve fairness in regression by fully exploiting the independence across model prediction,
prediction errors and sensitive attributes. In particular, we incorporate the fairness awareness into the
regression regularization framework, and consider two di�erent cases with continuous sensitive attributes
and categorical sensitive attributes. For continuous sensitive attribute, we employ the Hirschfeld-Gebelein-
Rényi (HGR) correlation coe�cient Mary et al., 2019 of the prediction error distribution and the sensitive
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attribute distribution to measure the fairness. For categorical sensitive attributes, we use the HGR corre-
lation coe�cients and overlapping index Pastore and Calcagnì, 2019 as fairness measurement. The main
contributions of this paper are as follows:

• We identify the unfairness in regression from a new perspective based on prediction error.

• We propose a new fairness regularization approach that employs a new fairness measurement named
equalized error. Both continuous and discrete sensitive attributes are modeled by using di�erent
metrics.

• We conduct extensive experiments on multiple simulated and real-world datasets, and the results
show that our approach reduced more dependence between prediction error and sensitive attribute
than baselines and our approach can handle both fairness in error and fairness in prediction. We
also show that it is easier to control fairness in error than in prediction.

1.3 Thesis Structure
This thesis is structured as follows: Chapter 2 provides preliminary work about fairness in machine learn-
ing. In Chapter 3, we de�ne the new fairness measurement and construct the fair regression model called
Fairness Regularization with Equalized Error (FREE). Chapter 4 shows the model performance on simu-
lated datasets and real-world dataset. Finally, we conclude and discuss future work in Chapter 5.
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Chapter 2

Fairness in Machine Learning

2.1 Preliminary Work
The above objectives are motivated by the fact that available historic data are usually biased due to discrim-
ination such as race and gender. Simply using the standard approaches in which the sensitive attributes
are ignored in training process may still biase the results.

2.1.1 De�nitions of Fairness
Numerous de�nitions of fairness were proposed in recent years. However, there is no clear agreement
on which de�nition is the most appropriate Dwork et al., 2012; Hardt et al., 2016; Zafar, Valera, Gomez
Rodriguez, et al., 2017. Two popular fairness de�nitions are statistical parity and equalized odds.

De�nition 1 (Statistical Parity) A predictor h(X,S) for target Y satisfies statistical parity with respect
to the sensitive attribute S if h(X) is independent of S.

De�nition 2 (Equalized Odds) A predictor h(X,S) for target Y satisfies equalized odds with respect to
the sensitive attribute S if Ŷ is independent of S conditioned on Y .

In addition, Chouldechova, 2017 proposed a de�nition of fairness based on false error rates, and they
tried to balance the rates across protected and unprotected groups. Treatment equality introduced by
Berk et al., 2018 looks at the ratio of errors that the classi�er produces rather than its accuracy. A classi�er
satis�es this de�nition when both protected and unprotected groups have an equal ratio of false negatives
and false positives. To avoid unfairness in classi�cation, Zafar, Valera, Gomez Rodriguez, et al., 2017
and Zafar, Valera, Rogriguez, et al., 2017 introduced the notion of unfairness, disparate mistreatment.
Moreover, Kamiran et al., 2010 introduced a fairness-aware decision tree learner by considering fairness
gain in its splitting criterion and pruning strategy.
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2.2 Fair Regularization
Much work has considered the algorithmic fairness in Machine learning based on regularization approach
Kamishima et al., 2011. Recall the objective function of fairness learning:

argminh∈HL(h,X, Y ) + λ ∗ FP , (2.1)

where h is a regressor or classi�er from a family of regressors or classi�ers H for target variable Y using
inputX , L() is the loss function, FP is the fairness penalty term.

2.2.1 Fair Regression
For regression problems with discrete sensitive variable, Calders et al., 2013 �rstly introduced measures
including Mean di�erence and AUC and imposed them on prediction and residuals. Our method di�ers
from these because we consider the dependence of prediction error and sensitive attribute on distribu-
tions/densities instead of just the point estimate mean. And our models can handle both continuous
and discrete sensitive attributes in regression problems. More recently, Agarwal et al., 2019 proposed two
di�erent constraints based on a relaxation of statistical parity and the bounded group loss criteria onto
the objective function for the sake of �exibility.

For regression problems with discrete/continuous sensitive variables, Mary et al., 2019 used the Rényi
maximum correlation coe�cient of prediction and sensitive attribute to generalize the fairness penalty in
regression. Grari et al., 2019 considered the dependence of error and sensitive attribute to study the e�ects
of di�erent approximation methods for Rényi maximum correlation coe�cient. Independent of their
work, our work focused on the di�erence between fairness in prediction and fairness in prediction error
and provided a more general regression framework to handle more dimensions of fairness. What’s more,
our initial idea came from the assumption of noise term ε in the regression framework. And Narasimhan
et al., 2020 introducted the pairwise fairness metrics for ranking and regression problems with discrete
and continuous sensitive attributes. Authors in Steinberg et al., 2020 introduced fairness regression by
incorporating fast approximations of the independence, separation and su�ciency group fairness criteria
based on mutual information. To better understand the optimal solution for fair regression, Chzhen
et al., 2020 shows that the relationship between fair regression problems with the Demographic Parity
constraint and the problem of Wasserstein barycenters.

In addition, for fairness-aware multi-task regression, Zhao and Chen, 2019 added a non-convex con-
straint based on the group-wise ranking functions of individuals, by using a rank-based non-parametric
independence test of the target variable and protected variables. Pérez-Suay et al., 2017 solved the fairness
regression problem in kernel space, and Okray et al., 2019 further extended this method by learning fair
feature embeddings in the kernel space. It minimizes prediction loss while additionally penalizing the
correlation between the prediction and sensitive attribute in the kernel space.

Existing work on fair regression is mainly based on the independence of model prediction and sen-
sitive attribute. Our approach di�ers from the existing fair regression methods in that we consider the
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dependence of prediction error and sensitive attribute on distributions/densities, instead of just the point
estimate. We propose a regularization approach, which can handle more dimensions of fairness. And our
approach can handle both continuous and discrete sensitive attributes in regression problems.
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Chapter 3

Fairness Regularization with
Equalized Error (FREE)

In this chapter, we de�ne a new fairness measurement based on equalized error. Then, by leveraging
the regularization approach Kamishima et al., 2011, we propose a fair regression approach called Fairness
Regularization with Equalized Error (FREE).

The regularization approach has been widely adopted in existing work in order to achieve algorithmic
fairness Kamishima et al., 2011. In general, the fairness regularization framework for regression could be
formulated as:

argmin
h∈H
L(h(X), Y ) + λFP , (3.1)

where h is a regressor from a family of regressorsH for target variable Y using input X . L(·) denotes
the loss function. FP is a fairness penalty term, and λ is a trade-o� parameter. The key idea of fairness
regularization is to penalize the dependence of two random variables (one of them is the sensitive attribute),
by customizing the fairness penalty term FP .

3.1 Fairness De�nition: Equalized Error

We consider a fair regression problem that involves sensitive (i.e., protected) attributes. Let (X,S, Y )

denote the training data, whereX is an input feature matrix except the sensitive attribute, S is a sensitive
attribute, and Y is a continuous target variable. The goal of fair regression is to learn an accurate regressor
h(X) from a set of regressorsH, such as linear threshold rules or neural networks, while satisfying some
fairness constrains.

Recall the regression framework detailed in (Eq. (1.1)) which assumes the error ε is independent with
(X,S). Then, we de�ne a new fairness measurement, which characterizes the fairness with regards to
prediction error.
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De�nition 3 (Equalized Error) A regressorh satisfies Equalized Error under a distribution over (X,S, Y )

if its prediction error ε(X, Y ) = h(X)− Y is independent of the sensitive attribute S, that is,

P [ε(X, Y ) ≤ z|S = s] = P [ε(X, Y ) ≤ z],

for all s ∈ S and all z ∈ R.

Our work is independent with that in paperGrari et al., 2019 which used the same formula to measure
fairness of regression. While our initial idea came from the assumption of noise term ε in (Eq. (1.1)).

3.2 Fairness Measurements
With the proposed equalized error for fairness measurement, we present two di�erent fairness penalty
terms to deal with continuous and categorical sensitive attributes. The �rst one is based on the Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation coe�cient Rényi, 1959, which is able to handle both contin-
uous and categorical variables.

De�nition 4 (Hirschfeld-Gebelein-Rényi (HGR) Maximal Correlation Coe�cient Rényi, 1959)
For random variables U ∈ U and V ∈ V , the Hirschfeld-Gebelein-Rényi(HGR) Maximal Correlation
Coefficient is defined as follow,

HGR(U, V ) = sup
f,g

ρ(f(U), g(V )),

whereρ is the Pearson’s correlation coefficient andf ,g are measurable functions withE[f 2(U)], E[g2(V )] <

∞.

The fairness penalty term FP based on HGR is de�ned as: ρHGR(ε, S), which measures the depen-
dency of prediction error ε on the sensitive attribute S.

We have 0 ≤ HGR(U, V ) ≤ 1. HGR(U, V ) closing to 1 means high dependence between U and
V . HGR(U, V ) = 0 i� V andU are independent. We did not use the well known measurement Pearson
Correlation Coe�cient, because it measures the linear correlation between two variables. In practice, the
correlation between targetY and sensitive attributeS may be complicated. AndU andV are independent
implies that ρ(U, V ) = 0, but the converse is not true.

The second one is based on the overlapping (OL) index, which can deal with categorical sensitive
attributes. In particular, the OL index is de�ned as η(f, g) =

∫
x∈R min[f(x), g(x)]dx. η(f, g) = 0

indicates that densities f(x) and g(x) are distinct. It can be used to measure the distribution similarity of
prediction error densities across protected groups. Also, a distribution-free approximation of overlapping
index has been introduced in Pastore and Calcagnì, 2019. Then, the fairness penalty term FP based on
OL is de�ned as:

ρOL(ε, S) = η(εXa , εXac
),
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where Xa is the set of instances with sensitive attribute S = a, a is a subgroup in sensitive attribute S,
Xac is the the complement of setXa, and εXa is the probability density of prediction error for instances
with sensitive attribute S = a.

3.3 Final Model
By using the proposed fairness regularization terms based on equalized error, the objective function for
fair regression in Equation (3.1) can be rewritten as:

argmin
h∈H
L(h(X), Y ) + λρ(ε̂, S), (3.2)

where ε̂ is the estimation of ε.
For continuous sensitive attribute S, we adopt the HGR approximation approach Mary et al., 2019

and use the fairness penalty term ρHGR(ε̂, S). To estimate the density of probability distribution, we
used Gaussian KDE and set the bandwidth based on the Silverman’s rule Silverman, 1986. For categorical
sensitive attribute, ρ(ε̂, S) could be implemented by either ρHGR(ε̂, S) or ρOL(ε̂, S). For regression task,
a commonly used loss functionL(h(X), Y ) is the Mean Squared Error loss function.

Compared with existing fair regression methods that focus on fairness in terms of prediction ŷ =

h(X), our model in Eq. (3.2) deals with potential unfairness related to prediction error ε. Moreover, we
notice that the potential unfairness in ŷ and ε̂ are not contradictory. Instead, they could jointly present
a comprehensive characterization of unfairness in regression problems. Motivated by this insight, we
try to penalize the dependence in (ŷ, S) and (ε̂, S) simultaneously, and thus propose a generalized fair
regression model as follows:

argmin
h∈H
L(h(X), Y ) + λ(µ · ρ(ŷ, S) + (1− µ) · ρ(ε̂, S)), (3.3)

where λ ∈ [0, 1] is a hyper-parameter balancing the trade-o� between accuracy and fairness, µ ∈ [0, 1]

is a hyper-parameter balancing the trade-o� between fairness in prediction h(X) and fairness in ε, ε̂ is
the estimation of ε, and ρ(.) is a fairness penalty term that could be implemented by HGR, OL, or other
metrics.

Many existing fair regression models could be considered as special cases of Eq. (3.3). For instance, by
setting µ to 1, the model Eq. (3.3) is conceptually equivalent to existing fair regression models that solely
rely on dependence of prediction ŷ on sensitive attribute S.

9



Chapter 4

Experiments

In this chapter, we evaluate the performance of the proposed approaches on both simulated and real-world
datasets. Following a similar setting in Mary et al., 2019, we adopt a simple neural network which has
two hidden layers (50 neurons in the �rst layer and 30 neurons in the second layer) and scaled exponential
linear unit (SELU). Also, the Adam optimization method is used, and the learning rate is set to 10−6.

4.0.1 Data Simulation
We generate samples based on the dependence of (y, S) and (ε, S) to study how di�erent fairness penalties
in�uence the model accuracy and dependence in (ŷ, S) and (ε̂, S), where ε̂ is the estimation of ε. First,
we generate 20, 000 samples from normal distributions and construct simulated datasets (X, yi, Si) for
i = 1, 2, 3, 4 in Section 4.1. In Section 4.2, to construct simulated data with binary sensitive attribute, we
binarized Si from Section 4.1 by re-coding Si as (1: High_AA) if it is≥ 0.5 and (0: Low_AA) otherwise.
Each dataset is split into a training set (70% of samples) and a test set (30% of samples). The details of
four simulated datasets are shown as follows.

• Data 1-1 (X, y1, S1): y correlated with S and error independent of S (i.e., y 6⊥ S, ε ⊥ S). The
data generating functions are y1 = 10x1 + error1, S1 = x1 − x2, error1 = x1 + x2.

• Data 1-2 (X, y2, S2): y and error correlated with S (i.e., y 6⊥ S, ε 6⊥ S). The data generating
functions are y2 = 3x1 − 5x2 + ε2, S2 = x1 − x2, ε2 = x2.

• Data 1-3 (X, y3, S3): y and error independent of S (i.e., y ⊥ S, ε ⊥ S). The data generating
functions are y3 = 10x1 + 10x2 + ε3, S3 = x1 − x2, ε3 = x1 + x2.

• Data 1-4 (X, y4, S4): y independent of S and error correlated with S (i.e., y ⊥ S, ε 6⊥ S). The
data generating functions are y4 = 10x1 + 9.99x2 + 0.01ε4, S4 = x1 − x2, ε4 = x2.
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4.0.2 Baselines and Settings
We compare our approaches with following two baselines. (1) NO_Fair model. It is a standard regres-
sion model implemented by the aforementioned 2-layer neural networks, which does not consider any
fairness constraints. (2) Pred_Fair model Mary et al., 2019. It is a representative fair regression method
in literature, which only considers the dependence in (ŷ, S). Our approach FREE_Err model (Equa-
tion (3.2)) only considers dependence in (ε̂, S), while our FREE_PE model (Equation (3.3)) considers
dependence in both (ŷ, S) and (ε̂, S). Because the HGR correlation coe�cient is in [0, 1], we normalize
the input data before model training, which makes MSE and HGR correlation coe�cient in a common
scale. Moreover, to examine the robustness of the models, we ran each model 100 times and compare the
MSE, HGR correlation coe�cient between ŷi and Si, and HGR correlation coe�cient between εi and
Si for i = 1, 2, 3, 4. Hyperparameters in baselines and our approaches (e.g., λ and µ) are determined by
cross-validation on the training set.

4.1 Simulation 1: Continuous Sensitive Attribute

4.1.1 Data 1-1: y correlated with S and error independent of S
In the simulated Data 1-1: y1 = 10∗x1+error1, S1 = x1−x2, error1 = x1+x2, the HGR correlation
coe�cient between y and S is 0.586 and HGR correlation coe�cient between error and S is 0.028. As
shown in Figure 4.1, all models obtained high accuracy on MSE, for the correlation between prediction
and sensitive attribute, all models resulted high HGR correlation coe�cient value above 0.5; while for
the correlation between prediction error and sensitive attribute, only the new method reduced the HGR
correlation coe�cient to 0.2. These indicate that the new method works better than the other models.

Figure 4.1: Model Comparison (MSE & HGR) for Simulated Data 1-1

4.1.2 Data 1-2: y and error correlated with S
In the simulated Data 1-2: y2 = 3 ∗ x1 − 5 ∗ x2 + error2, S2 = x1 − x2, error2 = x2, the HGR
correlation coe�cient between y and S is 0.951 and HGR correlation coe�cient between error and S
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is 0.659. As shown in Figure 4.2, all models obtained high accuracy on MSE, for the correlation between
prediction and sensitive attribute, all models generated high HGR correlation coe�cient values that were
above 0.8; while for the correlation between prediction error and sensitive attribute, only the model
considering Error fairness reduced the HGR correlation coe�cient to below 0.3.

Figure 4.2: Model Comparison (MSE & HGR) for Simulated Data 1-2

4.1.3 Data 1-3: y and error independent of S
In the simulated Data 1-3: y3 = 10∗x1+10∗x2+error3, S3 = x1−x2, error3 = x1+x2, the HGR
correlation coe�cient between y and S is 0.028 and HGR correlation coe�cient between error and S
is 0.028. As shown in Figure 4.3, all models obtained high accuracy on MSE, for the correlation between
prediction and sensitive attribute, all models had low HGR correlation coe�cient value around 0.1; while
for the correlation between prediction error and sensitive attribute, only the new method reduced the
HGR correlation coe�cient to 0.2.

Figure 4.3: Model Comparison (MSE & HGR) for Simulated Data 1-3

4.1.4 Data 1-4: y independent of S and error correlated with S
In the simulated Data 1-4: y4 = 10 ∗ x1 + 9.99 ∗ x2 + 0.01 ∗ error4, S4 = x1 − x2, error4 = x2, the
HGR correlation coe�cient between y and S is 0.028 and HGR correlation coe�cient between error
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and S is 0.659. As shown in Figure 4.4, all models obtained high accuracy on MSE, for the correlation
between prediction and sensitive attribute, all models had low HGR correlation coe�cient value to 0.2;
while for the correlation between prediction error and sensitive attribute, only the new method reduced
the non-signi�cant HGR correlation coe�cient to below 0.2.

Figure 4.4: Model Comparison (MSE and HGR) for Simulated Data 1-4

Table 4.1 summarized the results for all simulated datasets with continuous sensitive attribute. It
shows that, fair regression methods usually obtain slightly larger MSE values, as they sacri�ce the model
performance due to fairness penalties. At the same accuracy MSE level, our proposed FREE models would
obtain lower HGR correlation coe�cients of prediction error and sensitive attribute than Pred_Fair model
and NO_Fair model without increasing the HGR correlation coe�cients of prediction and sensitive
attribute. Although Pred_Fair∗ reduces the fairness to negligible, it increases the MSE by over 12 times. In
Data1-1 and Data1-2 in which y 6⊥ S, all models cause unfairness in ŷ, because y is highly correlated to S
and ŷ is close to y. It shows that NO_Fair and Pred_Fair would cause unfairness in prediction error with
values of HGR(ε̂, S) above 0.3 even thought when ε ⊥ S. While our models FREE_Err and FREE_PE
will control the fairness in error. In Data1-3 and Data1-4 with y ⊥ S, all models provide a non-signi�cant
HGR correlation coe�cients. Our models would control the fairness in prediction error by reducing the
HGR(ε̂, S) below 0.3. However, models NO_Fair and Pred_Fair would still cause unfairness in error
with values of HGR(ε̂, S) above 0.3. These results show that it is easier to control fairness in prediction
error especially when the response y is highly correlated with sensitive attribute S.

4.2 Simulation 2: Binary Sensitive Attribute
This section explores the performance of our approaches (FREE_Err and FREE_PE) and baselines (Pred_Fair
and NO_Fair) on the simulated datasets with binary sensitive attribute. To construct simulated data with
binary sensitive attribute, we binarized Si from Section 4.1 by re-coding Si as (1: High_AA) if it is≥ 0.5

and (0: Low_AA) otherwise. In this way, in accordance with Data 1-i (i = 1, 2, 3, 4), we obtain four
modi�ed simulated datasets Data 2-i (i = 1, 2, 3, 4). To evaluate the model performance, we employ the
following measurements: MSE, HGR (ŷ, S), HGR (ε̂, S) and OL(ε̂, S), where ε̂ is the estimation of ε.
In addition, to illustrate the distribution similarity of prediction error, we visualize the distributions of
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Table 4.1: Simulation Results (mean±std) for Continuous Sensitive Attributes.
Scenario Model MSE HGR(ŷ, S) HGR(ε̂, S)
Data1-1: NO_Fair .05± .05 .58± .04 .54± .14
y 6⊥ S, Pred_Fair .05± .04 .54± .04 .67± .11

Pred_Fair∗ .62± .36 .17± .04 .76± .16
ε ⊥ S FREE_Err .09± .04 .71± .03 .19± .04

FREE_PE .07± .04 .68± .03 .26± .06
Data1-2: NO_Fair .04± .04 .93± .01 .83± .08
y 6⊥ S, Pred_Fair .05± .05 .93± .01 .85± .07

Pred_Fair∗ .96± .18 .18± .15 .91± .07
ε 6⊥ S FREE_Err .10± .04 .92± .03 .28± .14

FREE_PE .08± .06 .92± .03 .45± .24
Data1-3: NO_Fair .06± .05 .09± .02 .27± .10
y ⊥ S, Pred_Fair .05± .04 .08± .02 .27± .11
ε ⊥ S FREE_Err .08± .04 .08± .01 .13± .03

FREE_PE .07± .05 .08± .02 .16± .05
Data1-4: NO_Fair .05± .04 .09± .02 .27± .09
y ⊥ S, Pred_Fair .05± .03 .08± .01 .26± .11
ε 6⊥ S FREE_Err .09± .03 .07± .02 .13± .03

FREE_PE .06± .04 .08± .02 .16± .05
NO_Fair: models without considering any fairness;
Pred_Fair[Mary etal., 2019]: models only considering fairness in prediction;
FREE_Err: FREE models only considering fairness in prediction error;
FREE_PE: FREE models considering both fairness in prediction and fairness in prediction error.
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prediction error for two groups and checked the overlapping index of the densities in Figure 4.7, Figure
A.2, Figure 4.10 and Figure A.5.

4.2.1 Data 2-1: y correlated with S and error independent of S
When y is correlated with binary S and error is independent of binary attribute S withHGR(y, S) =
0.623 andHGR(ε, S) = 0.018, Figure 4.5 shows that, at the same accuracy level, all models had signif-
icant correlation in (ŷ, S) with HGR(ŷ, S) around 0.7; while only the new proposed models reduced
correlation in (ε̂, S) to non-signi�cant correlation to 0.2. Compared to other methods, our new method
is more accurate in predicting errors. Figure 4.7 shows that for models without considering fairness and
model considering only the correlation in (ŷ, S) , there is an obvious di�erence in the overlap of predic-
tion error densities across the sensitive subgroups; while our new models obtain no signi�cant di�erence
in the overlap of prediction error densities across the sensitive subgroups. The overlapping indexes of
model without considering fairness and model considering only the prediction fairness have means 0.267,
0.191 respectively which are much smaller than 0.903 and 0.864 from model considering prediction error
fairness.

Figure 4.5: Model Comparison (MSE & HGR) for Simulated Data 2-1 with Binary S

Figure 4.6: Model Comparison (MSE & Overlapping Index) for Simulated Data 2-1 with Binary S
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Figure 4.7: Model Comparison (Prediction Error) for Simulated Data 2-1 with Binary S

4.2.2 Data 2-2: y and error correlated with S
When y and error are correlated with binary attribute S withHGR(y, S) = 0.883 andHGR(ε, S) =
0.554, Figure 4.8 and Figure A.2 gave the same conclusions as that from simulated Data 2-1.

Figure 4.8: Model Comparison (MSE & HGR) for Simulated Data 2-2 with Binary S

4.2.3 Data 2-3: y and error independent of S
When y and error are independent of binary attributeS withHGR(y, S) = 0.018 andHGR(ε, S) =
0.018, Figure 4.9 shows that, at the same accuracy level, all models had non-signi�cant correlation both in
(ŷ, S) and (ε̂, S) and the new methods FREE_Err and FREE_PE reduced the HGR correlation coe�cient
HGR(ε̂, S) to 0.1. Figure A.3 and Figure 4.10 show that all models obtained high overlapping areas
in prediction densities and prediction error densities, and FREE_Err model and FREE_PE model had
higher overlapping index values than the other models.

4.2.4 Data 2-4: y independent of S and error correlated with S
When y is independent of binary S and error is correlated with binary attribute S withHGR(y, S) =
0.623 andHGR(ε, S) = 0.554, Figure 4.11 shows that, all models obtained high accuracy on MSE, for
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Figure 4.9: Model Comparison (MSE & HGR) for Simulated Data 2-3 with Binary S

Figure 4.10: Model Comparison (Prediction Error) for Simulated Data 2-3 with Binary S

the correlation between prediction and sensitive attribute, all models had non-signi�cant HGR correlation
coe�cient value to below 0.1; while for the correlation between prediction error and sensitive attribute,
the new method reduced the non-signi�cant HGR correlation coe�cient to 0.1. Figure A.5 shows that
models considering fairness have more overlap in prediction error densities across the sensitive subgroups.
Thus, our new method perform better than the others on the fairness in the prediction error.

Table 4.2 summarizes the results of our approaches and baselines on the simulated datasets with binary
sensitive attribute. In the Data 2-1, y is correlated with binaryS and ε is independent of binary attributeS,
HGR(y, S) = 0.62, and HGR(ε, S) = 0.02. Experimental results show that all the compared methods
obtain low values of MSE. Moreover, at the same level of MSE, all models have signi�cant correlation in
terms of (ŷ, S), with HGR(ŷ, S) around 0.7. The baselines NO_Fair and Pred_Fair obtain much higher
values of HGR(ε̂, S) (around 0.80) than our approaches FREE_Err and FREE_PE. Our approaches
could reduce the HGR(ε̂, S) to 0.10. The results imply that the baseline methods cannot satisfy the
fairness measurement based on equalized error. As for the metric OL(ε̂, S), a higher value indicates a
stronger overlap, and our approaches obtain much higher results than the baselines.
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Figure 4.11: Model Comparison (MSE & HGR) for Simulated Data 2-4 with Binary S

4.3 Real-world Data
In this section, we implement the proposed models on the Communities and Crime (C&C) dataset Dua
and Gra�, 2017 which is a commonly used benchmark for evaluating regression models.

4.3.1 Dataset and Settings
The C&C dataset contains the socio-economic data and crime data on communities in the United States.
In this dataset, each data point represents a community. The task is to predict the violent crime rate of
community and the sensitive attribute is the ratio of African American Residents. Both the target violent
crime rate and the sensitive attribute the ratio of African American people are continuous. To test the
model performance for binary sensitive attribute, we binarized the original ratio of African American
Residents into (1: High_AA) if it is≥ 50% and (0: Low_AA) otherwise.

4.3.2 Results and Analysis

C&C dataset with Continuous Sensitive Attribute

When the sensitive attribute is continuous, the results in Table 4.3 and Figure 4.12 show that: (1) All models
obtain low MSE values, and the models considering fairness do not harm the model performance too
much; (2) NO_Fair models cause unfairness in prediction and error, Pred_Fair models cause unfairness in
error, and FREE_Err models cause unfairness in prediction, while FREE_PE models reduce the values of
HGR(ŷ, S) and values of HGR(ε̂, S) below 0.3 which means the correlation coe�cient is negligible.(3)
For the correlation between Prediction and sensitive attribute, our approaches obtain comparable results
than baselines; (4) For the correlation between prediction error and sensitive feature, our approaches
could reduce the correlation to non-signi�cant level with HGR values around 0.2.
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Table 4.2: Simulation Results (mean± std) for Binary Sensitive Attributes.
Scenario Model MSE HGR(ŷ, S) HGR(ε̂, S) OL(ε̂)
Data2-1: NO_Fair .05± .03 .56± .04 .73± .15 .27± .17
y 6⊥ S Pred_Fair .06± .04 .53± .04 .80± .13 .19± .15
ε ⊥ S FREE_Err .07± .04 .68± .04 .10± .03 .90± .03

FREE_PE .07± .04 .67± .04 .15± .07 .86± .07
Data2-2: NO_Fair .06± .04 .88± .02 .68± .15 .30± .17
y 6⊥ S Pred_Fair .06± .05 .87± .02 .66± .17 .33± .20
ε 6⊥ S FREE_Err .07± .03 .87± .04 .17± .05 .85± .05

FREE_PE .06± .04 .88± .03 .29± .19 .73± .20
Data2-3: NO_Fair .05± .03 .05± .02 .18± .10 .82± .09
y ⊥ S Pred_Fair .05± .04 .05± .01 .17± .08 .83± .08
ε ⊥ S FREE_Err .07± .04 .04± .01 .07± .02 .93± .03

FREE_PE .06± .05 .04± .01 .08± .03 .91± .04
Data2-4: NO_Fair .06± .05 .06± .02 .18± .09 .83± .09
y ⊥ S Pred_Fair .06± .05 .06± .02 .15± .08 .85± .08
ε 6⊥ S FREE_Err .07± .05 .05± .01 .07± .02 .93± .03

FREE_PE .06± .05 .05± .01 .08± .03 .92± .03
NO_Fair: models without considering any fairness;
Pred_Fair[Mary etal., 2019]: models only considering fairness in prediction;
FREE_Err: FREE models only considering fairness in prediction error;
FREE_PE: FREE models considering both fairness in prediction and fairness in prediction error.

C&C dataset with Binary Sensitive Attribute

When the sensitive attribute is binary, Table 4.4, Figure 4.13 and Figure 4.15 show that: (1) There is a
trade-o� between prediction fairness and prediction error fairness; (2) For the correlation between predic-
tion error and sensitive feature, the proposed FREE approaches produce much lower HGR correlation
coe�cients than two baselines NO_Fair and Pred_Fair. And Pred_Fair model increases the correlation
between prediction error and sensitive variable, which is unexpected; (3) FREE_PE model can reduce
the dependence both in prediction and prediction error, which provides more unbiased results; (4) For
the overlapping index of the distributions of prediction error for subgroups High_AA and Low_AA,
the proposed FREE approaches generate bigger overlapping area than baselines, which means our FREE
regression methods obtain similar prediction errors across sensitive groups.

4.4 Discussions
We summarize our observations in experiments as follows: 1) Across the simulated datasets and the real-
world C&C dataset, there is a trade-o� among the predictive power (by MSE), fairness in prediction,
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Table 4.3: Results on C&C dataset with Continuous Sensitive Attribute (mean±std of MSE and HGR).
In FREE_PE model, we set λ = 1.0 and µ = 0.4.

Model MSE HGR(ŷ, S) HGR(ε̂, S)
NO_Fair .11± .05 .27± .09 .29± .08
Pred_Fair .15± .05 .12± .03 .36± .05
FREE_Err .15± .06 .31± .07 .15± .05
FREE_PE .14± .05 .24± .07 .23± .08

NO_Fair: models without considering any fairness;
Pred_Fair[Mary etal., 2019]: models only considering fairness in prediction;
FREE_Err: FREE models only considering fairness in prediction error;
FREE_PE: FREE models considering both fairness in prediction and fairness in prediction error. In
FREE_PE Model, we set λ = 1.0 and µ = 0.4.

Table 4.4: Results on C&C dataset with Binary Sensitive Attribute (mean±std of MSE, HGR and Over-
lapping Index (OL)). In FREE_PE model, we set λ = 1.0 and µ = 0.4.

Model MSE HGR(ŷ, S) HGR(ε̂, S) OL(ε̂, S)
NO_Fair .12± .05 .11± .06 .12± .04 .57± .09
Pred_Fair .15± .04 .04± .02 .14± .03 .48± .07
FREE_Err .15± .06 .13± .05 .06± .03 .72± .09
FREE_PE .14± .05 .09± .03 .10± .04 .62± .10

NO_Fair: models without considering any fairness;
Pred_Fair[Mary etal., 2019]: models only considering fairness in prediction;
FREE_Err: FREE models only considering fairness in prediction error;
FREE_PE: FREE models considering both fairness in prediction and fairness in prediction error. In
FREE_PE Model, we set λ = 1.0 and µ = 0.4.
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Figure 4.12: Model Comparison (HGR) for C&C Dataset with Continuous Sensitive Attribute

Figure 4.13: Model Comparison (HGR) for C&C Dataset with Binary Sensitive Attribute

and fairness in prediction error; 2) Archiving fairness on error is easier and costs less accuracy than on
prediction especially when the response y is highly correlated with sensitive attribute S. 3) The proposed
FREE_PE approach which constrain fairness in a more general framework than baselines can handle the
trade-o� between fairness in prediction and prediction error; 4) Results on both simulated and real-world
datasets show that the proposed approaches could reduce more dependence between prediction error
and sensitive attribute than baselines; 5) By changing the hyper-parameters of fairness penalty terms, the
proposed FREE_PE approach can reduce both the unfairness in prediction and unfairness in prediction
error to non-signi�cant level.
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Figure 4.14: Model Comparison (Overlapping Index) for C&C Dataset with Binary Sensitive Attribute

Figure 4.15: Model Comparison (Prediction Error) for C&C Dataset with Binary Sensitive Attribute
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Chapter 5

Conclusion

In this paper, we characterize the unfairness in regression problems by de�ning a new fairness measure-
ment based on equalized error. Furthermore, we propose a regularization approach named fairness regular-
ization with equalized error (FREE) and design two fairness penalty terms for fair regression. Controlling
fairness penalty terms, the proposed approach can reduce both the unfairness in prediction and unfair-
ness in prediction error to non-signi�cant level. Extensive experimental results on both simulated and
real-world datasets show that the proposed approaches could e�ectively improve the fairness in predic-
tion error and they can balance the fairness in prediction and fairness in prediction error. And we show
that penalizing on fairness in prediction error would cost less accuracy than penalizing on fairness in
prediction.
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Appendix A

Experiments

A.1 Additional Results on Simulated Data with Binary Sensitive
Attributes

Figures show the detailed model comparisons on the simulated Data 2-1, 2-2, 2-3 and 2-4 in terms of MSE,
HGR, Overlapping Index, and Prediction Error.

Figure A.1: Model Comparison (MSE & Overlapping Index) for Simulated Data 2-2 with Binary S

Figure A.2: Model Comparison (Prediction Error) for Simulated Data 2-2 with Binary S

24



Figure A.3: Model Comparison (MSE & Overlapping Index) for Simulated Data 2-3 with Binary S

Figure A.4: Model Comparison (MSE & Overlapping Index) for Simulated Data 2-4 with Binary S

Figure A.5: Model Comparison (Prediction Error) for Simulated Data 2-4 with Binary S
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