
Machine Learning with Knowledge Graphs and
Neural Networks

by

Nicholas Sterling
(Under the Direction of JohnMiller)

Abstract

Graph data is being produced and collected at an accelerating pace in numerous state of the art ap-
plications, and the structure and node properties of the graph data offer fertile ground for data mining
and machine learning. Numerous machine learning models have already been applied to graph data and
newmodels are being developed to specifically exploit it. In this work we examine distinct approaches for
machine learning over graph data; we provide an in depth examination of applying a modern machine
learning framework - probabilistic soft logic - to the problem of graph node label prediction and compare
the results to novel neural network architectures applied to the same problem. We also examine the appli-
cation of a novel knowledge graph based neural network architecture applied to the problem of vehicle
traffic flow prediction and compare those results with well established neural network architectures for
time series forecasting.

Index words: [Knowledge Graph, Long Short TermMemory, Temporal Convolutional Neural
Network, Time Series, Probabalistic Soft Logic]

Machine Learning with Knowledge Graphs and Neural Networks

by

Nicholas Sterling

B.S., University of Georgia, 2014

A Thesis Submitted to the Graduate Faculty of the
University of Georgia in Partial Fulfillment of the Requirements for the Degree

Master of Science

Athens, Georgia

2021

©2021
Nicholas Sterling

All Rights Reserved

Machine Learning with Knowledge Graphs and Neural Networks

by

Nicholas Sterling

Major Professor: JohnMiller
Committee: Budak Arpinar

FredMayer

Electronic Version Approved:

RonWalcott
Dean of the Graduate School
The University of Georgia
May 2021

Dedication

For Baby E.

iv

Acknowledgments

I would like to thank my major professor, Dr. JohnMiller, for his instruction, guidance, and encourage-
ment. I would also like to thank my committee members: Dr. Budak Arpinar for his compassion and
availability and Dr. FredMayer for stimulating my intellectual curiosity.

Finally, I would like to thankmywife, Kyla, withoutwhose love and support this would all bemeaningless
if it weren’t impossible.

v

Contents

Acknowledgments v

List of Figures vii

List of Tables viii

1 Introduction 1

2 Probabilistic Soft Logic 5
2.1 Markov Random Fields . 5
2.2 Hinge-Loss Markov Random Fields . 7
2.3 Probabilistic Soft Logic . 9

3 Neural Networks 15
3.1 Deep Neural Networks . 17
3.2 Recurrent Neural Networks . 17
3.3 Temporal Convolutional Neural Networks . 21
3.4 Dilated TCN . 22

4 Document Label Prediction 24
4.1 Data . 25
4.2 PSLModels . 25
4.3 Neural NetworkModels . 26
4.4 Model Training and Assessment . 28

5 Traffic Forecasting 29
5.1 Data . 30
5.2 Neural Network Forecasting Models . 30
5.3 Model Training and Assessment . 32

6 Conclusions 34
6.1 Document Label Prediction . 34

vi

6.2 Traffic Flow Forecasting . 39

Appendices 46

A Markov Random Fields 46

B Document ClassificationModel Results Tables 49

C Time Series NN Forecasting Model Results 54

Bibliography 58

vii

List of Figures

3.1 An Artificial Neuron . 16
3.2 A Single Layer Neural Network . 17
3.3 A Densely Connected Deep Neural Network . 18
3.4 A Recurrent Neural Network Node . 19
3.5 A Stack of DTCN Layers with Increasing Rates of Dilation 23

6.1 ANOVAAnalysis of the 4 PSL DesignModeling Decisions 36
6.2 Forward SelectedModel for FScore by Design Decisions 36
6.3 ANOVAModel For Depth andWidth of Deep NNDocument Label PredictionModels 39
6.4 Comparison of MAPE Values for the Various NNModel Forecasts 40
6.5 Comparison of MAPE Values for the Various NNModel Forecasts w/ Baseline 41
6.6 Comparison of MAPE Values for the Various NNModel Forecasts w/o Baseline 42
6.7 Comparison of MAPE Values for CNNModel Forecasts 43
6.8 Comparison of MAPE Values for RNNModel Forecasts 43
6.9 ANOVAModel for Width . 43
6.10 ANOVAModel for Depth . 44
6.11 ANOVAModel for Time Dilation . 44
6.12 ANOVAModel for Convolutional Kernel Size . 44
6.13 ANOVAModel for Filters . 45

viii

List of Tables

6.1 PSLModel Accuracies Aggregated by Design Decision 35
6.2 Comparison of LSLVMAvg. FScore with SVM Best Fscore 38

B.1 PSL Rule Key Legend . 50
B.2 Accuracy Metrics of Various PSL Configurations, Part 1 50
B.3 Accuracy Metrics of Various FLLVMConfigurations 51
B.4 Accuracy Metrics of Various LSLVMConfigurations 51
B.5 Accuracy Metrics of Various SELVMConfigurations 52
B.6 Accuracy Metrics of Various SVMConfigurations 52
B.7 Accuracy Metrics of Various SEM Configurations . 53
B.8 Accuracy Metrics of Various SLSMConfigurations 53

C.1 Comparison of MAPE for Various TCNTraffic Forecasters, Part 1 55
C.2 Comparison of MAPE for Various TCNTraffic Forecasters, Part 2 56
C.3 Comparison of MAPE for Various RNNTraffic Forecasters, Part 1 56
C.4 Comparison of MAPE for Various RNNTraffic Forecasters, Part 2 57
C.5 NNTraffic Forecasting MAPE, Part 1 . 57
C.6 NNTraffic Forecasting MAPE, Part 2 . 57

ix

Chapter 1

Introduction

Graph data is currently being generated in huge quantities by several state of the art applications: social

media, data mining over the Internet, etc. With the proliferation of technologies for harvesting and stor-

ing graph data, a great deal of research has focused on developing technologies for representing, storing,

retrieving and reasoning over the collected data. Early research into graph data technology focused on

the Resource Description Framework (RDF) - described by theWorldWideWeb Consortium (W3C) as

the standard model for data interchange on the Web (“Resource Description Framework - RDF”, 2021).

The abstract syntax for RDF consists of resources - or things in the universe of discourse - related to one

another by predicates which describe the relationship between the resources. Two resources - a subject

and an object - related through a predicate form a triple - (subject,predicate,object) - which de-

scribes a fact about the universe. For instance, a resource representing Joe Biden and another representing

theUnited States of America can be connected through a predicate describing a head of state relationship

to express the fact that Joe Biden is the head of state of the United States. A collection of triples forms

an RDF graph, a graphical representation about some subset of the facts of the universe of discourse. A

persistent database of RDF graphs is often referred to as a triple store.

Many technologies have been developed by the W3C to utilize the abstract RDF syntax, including

the TURTLE and JSON-LD syntaxes for serializing RDF, the SPARQL query syntax for data retrieval

over RDF triple stores, and RDF Schema (RDFS) and OWL vocabulary extensions which allow for a

1

richer expression of data models than the basic RDF abstract syntax. In addition, several independent

technologies have been developed tomake use of theRDF abstract datamodel. For instance, Apache Jena

(“Apache Jena”, 2021) provides anRDFAPI for creating, reading and serializingRDF graphs, a SPARQL

compliant query language (ARQ), a high performance triple store (TDB) for persisting RDF data on

disk , and anRDFS andOWL compliant reasoner and inference API for reasoning over the RDF graphs.

Similar independent technology includes efforts fromOracle (“OracleGraphDatabase”, 2021) and several

others.

Regardless of the early success of the RDF framework and the wide adoption of the RDF datamodel

in academia, the Property Graph Model (PGM) - a much simpler and more user friendly graph data

model - has become the more dominant industry tool for representing, storing, retrieving and reasoning

over graph data. Popularized by the wildly successful Neo4j (“Neo4J”, 2021), the property graph model

includes nodes with an optional set of key/value pairs describing their properties, as well as labeled (i.e. -

typed) edges between the nodeswhich alsomay be annotatedwith a set of key/value pairs describing their

properties. One of themain distinctions between PGMandRDF is thatRDF ismuchmore verbose than

PGM; the data in an RDF graph is essentially completely atomized to its most basic elements. However,

the PGM allows for a muchmore compact representation of the graph data. Thus, the learning curve for

working with a PGM vs. an RDFmodel is much less steep.

The wealth of data collected, compact representation of the PGM model, and the robust literature

on graph theory in the computer science literature means that PGM data is a fertile ground for inference

withmachine learningmodels, includingmodern "black box"models aswell asmodels built specifically to

exploit graph data and provide a high degree of lucidity in their structure and mechanisms. For instance,

a graph described in PGM can be described, structurally, as an edge matrix while the properties of the

graph can be vectorized so that both are suitable as input to a neural network, the quintessential black

box model.

While their performance on specific learning tasks is frequently impressive, nonetheless "black box"

is often a pejorative term used to describe certain machine learning models, i.e. - a model whose internal

2

mechanisms are obscured from rigorous inspection and evaluation. Artificial neural networks (ANN)

are a typical example of a highly performant model widely condemned as a "black box": they achieve state

of the art results on a wide variety of learning tasks at the expense of an extremely opaque mechanism

of action. While their has been some progress in looking "under the hood" (so to speak) of some neural

network models - for instance a la Bruckner, Rosen, and Sparks, 2013 - nonetheless the challenge of un-

derstanding the decision mechanism of most neural network models is a persistently stubborn problem.

On the other hand, models which rely on the domain expertise and intuition of the designer (i.e. -

knowledge) offer a great degree of perspicacity, though the lucidity is not without a steep cost of its own:

first theremust exist a suitable language for representing the knowledge of the domain expert programat-

ically (knowledge representation) and secondly thesemodels are often not as performant as the black box

models. Hence, research into efficient and effective Knowledge Representation and Reasoning (KRR)

has flourished among computer scientists.

Given the unique advantages of both modeling paradigms, the effort to unify them is accelerating,

with some efforts bearing real fruit. For instance, Statistical Relational Learning (SRL)models - an appli-

cation of statistical machine learning over data in highly relational domains - leverage our understanding

of the relationships between objects to achieve impressive results in tasks such as collective classification,

link based clustering, and link prediction (Khosravi and Bina, 2010).

One of ourmain goals in this work is to exploit the the logical structure of relational data expressed in

PGM syntax to solve a classical machine learning question for relational data - document label prediction

from a citation network - and offer an in depth examination of the effect of themodeling design decisions

made in implementing themachine learningmodels. To be sure, this is not the first work to leverage deep

learning over knowledge graphs, however the bulk of previous research has focused on producing effi-

cient embeddings to simplify their manipulation while preserving their logical structure; seeWang,Mao,

Wang, and Guo, 2017 for a thorough survey of knowledge graph embedding techniques. In contrast to

the previous focus on knowledge graph embedding, this work is less focused on the results of the knowl-

3

edge graph embedding andmore focused on directly consuming the property and relational structure of

the knowledge graph as input to the classification models.

In addition to the problem of document label prediction, we focus our efforts on machine learning

in a less traditional graph data domain - vehicle traffic flow prediction where the traffic network is de-

fined graphically. Again, this is not the first application ofNeural Networks to the problem of traffic flow

prediction. Ma et al. in Ma, Zhang, and Ihler, 2020 present a thorough examination of numerous novel

modeling architectures for traffic prediction on various traffic data sources, including PeMS data. How-

ever, the question of utilizing the graphical structure of the traffic network in the predictive models is less

thoroughly treated in the literature.

For both problems - document labeling and traffic flow forecasting - we provide several novel neural

network architectures which directly exploit the raw relational and property structure of the graph data

for predictive power. In the case of document label prediction we also utilize a popular SRL model -

Probabilistic Soft Logic - to compare our novel NN results against.

The rest of this document is organized as follows: in Chapter 2 we discuss Probabilistic Soft Logic

(PSL), a PGM designed specifically to exploit the structure of highly relational data; in Chapter 3 we

briefly present backgroundmaterial on neural networks and discuss several neural network architectures

relevant to this work; in Chapter 4 we discuss the problem of Document Label Classification and thor-

oughly examine the application of PSL and several novel neural network architectures to the problem,

and in Chapter 5 we discuss the problem of vehicle traffic forecasting and examine several neural network

architectures applied to this particular time series prediction problem, and finally in chapter 6 we discuss

conclusion and future work.

4

Chapter 2

Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is a declarative syntax for specifying Hinge-Loss Markov Random Fields

(HL-MRF), a tractable and expressive PGM that describes classes of probability density functions over

a joint continuous domain [0, 1]n. Thus, to understand the syntax and semantics of PSL it is first neces-

sary to develop a passing understanding of the HL-MRF, and since the HL-MRF is a generalization of

the discrete Markov Random Field (MRF) - a PGM describing probability density functions over the

joint discrete domain {0, 1}n - we first present a brief introduction to theMRF and secondly describe its

generalization to the HL-MRF.

2.1 Markov Random Fields

For an excellent and thorough discussion of theMarkov Random Field (MRF) onemay consult Domin-

gos et al., 2008. Here we will provide an intuitive description of the MRF model; see appenendix A for

a more thorough and rigorous discussion of the model. Regardless, a MRF is a PGM based on a non-

directed graph,G, and a set of potential functions,Φ. A graphG = (V,E) is defined by a set of vertices,

V , and edges,E,whereE ⊆ V×V .A clique,C ⊆ V ofG is a completely connected subset of the vertices

ofG; in other words ∀i, j(xi ∈ C ∧ xj ∈ C → (xi, xj) ∈ E). IfG is the graph associated with some

MRFmodeling the joint probability distribution for a set of randomvariablesX = {X1, · · · , Xn}, then

5

dependencies among some subset of the random variablesXi ⊆ X is expressed as a clique inG. Further-

more, the dependencies associated with the clique are modeled by a potential function φi : X → R+

which shoud capture the relevant information about the underlying probability distrubition of X ; in

other words, for each pair of assignments, x1, x2, to the random variables inX , if x1 is less likely than x2

then φi(x1) < φi(x2).

The probability density function of the MRF is

P (x) =
1

Z

∏
k

φk(x{k}) (2.1)

where x{k} is the state of the k’th clique in the graph according to x. Since the potential functions are

unbounded, non-negative real values,Z is the partitioning function

Z =
∑
x∈X

∏
k

φk(x{k})

which confines the probability density function to a range of [0, 1]. A more convenient (and common)

expression of the above probability density function is the log-linear model

P (x) ∝ exp(
∑
j

wjfj(x)) = exp(wTf(x)) (2.2)

where the potential functions in (A.1) are replaced with an exponentially weighted sum of features of the

state ofX .

One of the original intentions behind the MRF model was to produce what Richardson et al. in

Richardson and Domingos, 2006 referred to as the Markov Logic Network (MLN). Consider a first or-

der knowledge base - as described in Hayes-Roth, Waterman, and Lenat, 1983 - consisting of a set of dis-

junctive logical clauses C = {C1, C2, · · · , Cm}. Let I−j and I+
j be (respectively) the sets of the indices

of the negated and non-negated literals in clause Cj . The KBmay be embedded in anMRF by assigning a

potential function, fj , to each clause, Cj , where fj(x) = 1whenever Cj is satisfied by x and 0 otherwise.

6

The correspondingweight,wj , for the potential fj in theMRF should express a degree of confidence

for Cj . In other words, the weight wj should be proportional to the probability that the clause Cj is

satisfied for any variable assignment x. Thus, a MRF defines a joint probability distribution function

over a set of random variables related to one another by a set of binary valued logical predicate functions.

2.2 Hinge-Loss Markov Random Fields

TheHL-MRF is a generalization of the aboveMLN; here we take a short preamble to describe the gener-

alization of theMLN to the HL-MRF, including the conept of the hinge-loss objective functions as well

as a final generality to improve the model’s flexibility.

2.2.1 The Unified Objective Function and Arbitrary Linear Constraints

See equationA.3 in appendixA for a description of the objective function for training aMRF.HL-MRFs

are a generalization of theMRFaccording to the equivalences discovered inBach, Broecheler,Huang, and

Getoor, 2017 with the unified objective function

arg max
y∈[0,1]n

∑
Cj∈C

wj min{
∑
i∈I+

yi +
∑
i∈I+

(1− yi), 1} (2.3)

Notice that the discrete random variables from the objective function (A.3) are now replaced with

continuous random variables in objective function (2.3).

Regarding the unweighted terms of the summation in objective function (2.3), we say that the term

is satisfied when it achieves its maximum value of 1, and we refer to its distance to satisfaction as

1−
∑
i∈I+

yi +
∑
i∈I+

(1− yi)

7

We can refactor the objective function (2.3) to minimize the distance to satisfaction of each of the terms

of the summation:

arg min
y∈[0,1]n

∑
Cj∈C

wj max{1−
∑
i∈I+

yi +
∑
i∈I+

(1− yi), 0} (2.4)

and in so doing we introduce the concept of the relaxed linear constraint:

1−
∑
i∈I+

yi +
∑
i∈I+

(1− yi) = Lj(y) ≤ 0

It is a trivial generalization that linear constraint Lj(y) may be any linear function over the domain of

y; in other words, the requirement that the linear constraints be defined over logical clauses is no longer

necessary, and instead they can be defined to capture any arbitrary understanding of the domain of y. The

weight wj is an indication of how important it is to satisfy the linear constraint Lj(y): a higher weight

means satisfyingLj(y) is more important, a lower weight less important, and an infinite weight indicates

a hard (instead of a relaxed) linear constraint. Furthermore, the relaxed linear constraintsLj(y) ≤ 0 and

−Lj(y) ≤ 0 may be combined to express a relaxed equality constraintLj(y) = 0.

2.2.2 Hinge-loss and Squared Hinge-loss Functions

Hinge-loss objective functions were first introduced in Gentile and Warmuth, 1998, and the objective

function (2.4) re-written in terms of the linear constraint functions

arg min
y∈[0,1]n

∑
j

wj max{Lj(y), 0} (2.5)

makes explicit the hinge-loss functions at its heart:max{Lj(y), 0}. While the hinge-loss function allows

for reasoning over arbitrary linear constraints over the domain of y, it can be less than ideal for modeling

in certain circumstances, particularly in domains which require a smooth trade off between conflicting

constraints. In these cases, a squared hinge-loss function may be more appropriate : (max{Lj(y), 0})2.

8

Thus, HL-MRFs are defined using any combination of either regular or squared hinge-loss functions for

all of the linear constraints.

2.2.3 The Rigorous Model Definition

Let Φ = (φ1, · · · , φm) be a vector of generalized hinge-loss functions defined over the continuous do-

main [0, 1]n with

φj(y) = (max{Lj(y), 0})pj

where pj ∈ {1, 2}. Then with a vector of potential function weights ~w = (w1, · · · , wm), the Hinge-

Loss Markov Random Field is defined by the probability density function

P (y) =
1

Zy
exp

(
−
∑
j

wjφj(y)

)
(2.6)

with the familiar partition function

Zy =

∫
[0,1]n

exp

(
−
∑
j

wjφj(y)

)
∂y

2.3 Probabilistic Soft Logic

PSL is a declarative syntax for defining classes ofHL-MRFs,while a PSLprogram is a set of ruleswhich are

templates for defining hinge-loss potentials and hard linear constraints. Once the rules of the program are

defined, they are grounded out over a base of ground atoms to induce a HL-MRF. PSL syntax is defined

over the familiar first order logical syntax: constants define the elements in a Universe, variables may be

substituted with constants, a set of terms which is the union of the set of constants and variables, n-ary

predicates which are functions p : T n → {True, False}, atoms which are an application of n many

terms to an n-ary predicate, and literals which are either an atom or the negation of an atom. A ground

atom is a specific type of atom which has nothing but constants as its arguments, and each valid ground

9

atomwill be associatedwith a randomvariable in the inducedHL-MRF.Constants are defined according

to a schema (i.e. - each constant belongs to a type), and predicates are defined similarly, thus limiting the

allowable atoms to be grounded out to only those atoms that match the schema. For instance, given the

sets of constants

Students={Mary, Joe, Sue, Hao}

Professors={Dan, Jin, Jane}

the 2-ary PredicateAdvises/2 can be confined to the schema

Professors X Students

where Advises(x,y) says that Professor "x" advises Student "y".

2.3.1 Logical Rules

The first type of PSL rule is a logical rule, which is a disjunction of literals, i.e. - a disjunctive clause. A

disjunctive clause is writtenwith the usual Boolean operators - conjunction (&), disjunction (|) and nega-

tion (!) - and any valid disjunctive clause is a valid PSL logical rule. A logical rule may either be weighted,

unweighted, defined as a hard constraint, or defined with a squared hinge-loss potential in mind. For

instance

1 : Advises(X,Y) & Department(X,Z) -> Major(Y,Z) ^2

defines a rule that says a student’s major is administered by the department of her advisor. The rule is

annotated with a weight of 1 and the atoms that will ground out from this rule will be associated with

squared hinge-loss potentials.

Recall what we said earlier: PSL rules are templates for producing hinge-loss potentials and linear

constraints that will form a HL-MRF, and each ground atom resulting from grounding out the PSL

rules is associated with a random variable in the HL-MRF. Consider a grounded predicate with random

variables corresponding to the the set of negated and un-negated atoms in the grounded predicateI− and

10

I+, respectively. The corresponding linear constraint induced by this rule in the PSL should be familiar:

1−
∑
y∈I+

y −
∑
y∈I−

(1− y) ≤ 0

If the logical rule which produced the linear constraint is weighted, then a hinge-loss potential created

from the constraint is added to the HL-MRF. Furthermore, if it is annotated with a squared exponent,

the potential will be squared hinge-loss potential. If the logical rule is NOT weighted, then a hard linear

constraint is added to the HL-MRF instead.

2.3.2 Arithmetic Rules

In addition to the logical rules, PSL provides arithmetic rules which allow for expressing a greater variety

of relations. At its most basic, an arithmetic rule can relate linear combinations of atoms with equalities

or inequalities. For instance, the rules

Liberal(P) + Conservative(P) = 1

Liberal(P) + Conservative(P) <= 1

express the idea that a personmust be either politically liberal or politically conservative and the idea that

a person may be politically liberal or politically conservative but not both, respectively.

There is additional syntax to make arithmetic rules more flexible and useful. An arithmetic rule may

be defined using summation atoms, an atom which takes as its arguments either terms or sum variables,

where a sum variable is a variable prepended with a "+" sign. The summation atom represents the sum-

mation of the ground atoms that can be obtained by grounding the free variables and summing over the

all of the possible values for the sum variables. For instance, the rules

Friends(X,+P) <= 10

Label(X,+L) = 1

say that no person can have more than 10 friends and that the labels for any item must sum to 1, respec-

tively.

11

In addition to sum variables, PSL includes filter clauses which allow us to filter the constants which

can be substituted into the sum variables. For instance, the following arithmetic rule with a filter clause

Advises(X,+Y) >= 1

{ Y : Undergraduate(Y) }

says that every professor must advise at least one undergraduate student.

Arithmetic rules can also contain coefficients on their atoms, which can be either hard-coded con-

stants or specified using the carnality function or other built in coefficient functions. For instance, the

rules

Advises(X,+Y) <= .5 Teaches(X,+Z)

1/|Y| Friends(X,+Y) = Friendliness(X)

Friends(X,+Y) + WorksWith(X,+Z) < @Min[|Y|,|Z|]

say that a professor can only advise atmost half asmany students as she teaches, that a person’s friendliness

is defined as the percentage of people they are friends with in a social network, and that the number of

people that a person is friends with plus the number of people that a person works with must be less

than the smaller size of the two potential groups. The first rule uses a simple hard-coded coefficient, the

second rule takes advantage of the cardinality function, while the third uses the built in @Min coefficient

function to programmatically derive the coefficient.

To ground out an arithmetic rule to find the linear constraints it induces, the variables (not sum

variables) in the rule are individually grounded out to find the set of ground atoms from the rule, and

the summation atoms are substituted for the appropriate summations over ground atoms (potentially

filtered by the filter clauses). If the rule is an unweighted (in)equality then the resulting ground atoms are

manipulated to the form c(y) <= 0 or c(y) = 0 - respectively - and the hard linear constraint is added

to the HL-MRF. If the arithmetic rule is weighted, then the resulting ground atoms are manipulated to

the formL(y) < 0 and the resulting hinge-loss potentials added to theHL-MRFdepend on the specifics

of the arithmetic rule. In the case that the arithmetic rule is an inequality without an exponent indicator,

12

then the hinge-loss potentials added to the HL-MRF take the form

max{L(y), 0}

If, on the other hand, the rule is an equality without an exponent indicator, then pairs of potentials are

added for each grounding:

max{L(y), 0}max{−L(y), 0}

In all cases, the hinge-loss potentials are squared if the arithmetic rule includes an exponent indicator.

2.3.3 MAP Inference

Maximum a posteriori (MAP) inference is the assignment of values to the free random variables in the

HL-MRF given observations (i.e. - values) for some subset of the random variables in the model. MAP

inference is the most important inference problem in HL-MRFs, for two reasons:

1. It is the mechanism by which predictions are made from the model.

2. It is often used as a sub-routine in other learning algorithms forHL-MRFs, includingweight learn-

ing.

MAP inference inHL-MRFs enjoys a substantial advantage overMAP inference in regularMRFs in that

the question is one of convex optimization in the former as opposed to combinatorial optimization in

the latter. However, exact MAP inference in HL-MRFs is nonetheless still intractable, since MAP infer-

ence over a MRF is generally NP-hard and HL-MRFs are a generalization of the MRF approach by the

equivalences that are proved in Bach et al., 2017.However, context optimization can provide approximate

results for MAP inference in HL-MRFs in time polynomial in the number of variables, potentials, and

constraints in the HL-MRF.

Another of the advantagesHL-MRFs have over other logic basedPGMs is the inclusion of hard linear

constraints in model definition. By defining the hard linear constraints as a limit on the viable ground

13

atoms of the model, the number of viable interpretations of the logical rules can be drastically limited.

Lazy MAP inference algorithms have been developed to take advantage of the restricted viable space to

explore a limited materialization of the joint probability distribution.

Finally, the sparse dependency structure of theHL-MRFmeans that liftedMAP inference algorithms

have been developed as well. Lifted inference discovers common substructures in the input data and per-

forms inference individually on the substructures to avoid redundant computation on the entire data

structure. LiftedMAP inference forHL-MRFswas proposed in Srinivasan, Babaki, Farnadi, andGetoor,

2019 and showed substantial improvements in processing timeover non-liftedMAP inference (more than

2.5x speed up.)

Generally speaking the combination of convex optimization, hard linear constraints, and lifted infer-

ence algorithmsmeans thatmost PSLprograms are tractable for even very large data sets.However, one of

the main design decisions to consider to ensure their tractability includes defining well thought out hard

constraint rules. Without these constraints the size of the viable space of the probability distribution can

potentially become cost prohibitive. Also, forecasting directly over a time series itself with HL-MRFs is

not particularly promising; the huge number of time dependencies that need to be specified and reasoned

over make this a cost-prohibitive exercise. Instead, the HL-MRF should be used as part of a stacked or

hybrid modeling effort.

14

Chapter 3

Neural Networks

The artificial neural network, more commonly referred to simply as a neural network, is a machine learn-

ing model originally intended to mimic the structure and behavior of the human brain. The basic unit

of the model is the artificial neuron or node, n, comprised of a vector of weights, ~wn = [wn0, . . . , wni],

a bias, bn and an activation function, fn, which transform a linear combination of some input vector,

~v = [v0, . . . , vi] to a scalar output value, on, according to the following equation:

on(~v) = fn (~v · ~wn + bn))

See figure 3.1 for a diagram of an artificial neuron.

Let Θn denote the parameters of the node n, i.e. - the weight vector and bias value. Given a vector

of input vectors, i.e. - a matrix, V = [v1, . . . , vj] which we want to use to predict a vector of target

values,~t = [t1, . . . , tj], then a loss function, JΘn , can be defined to describe the error of the predictions

relative to the target values.While strictly speakingoptimizing (i.e. - training) theparameters ofΘ is a non-

convex optimization problemwhenever the underlying neural network contains at least one hidden layer,

nonetheless Jiang showed in H. Jiang, 2019 that non-convex optimization in the case of training neural

networkmodel parameters behaves essentially as a convex optimization problem and thus gradient based

optimization techniques may be applied efficiently to train the model parameters.

15

Figure 3.1: An Artificial Neuron

Groups of nodes can be organized into layers which are connected to one another in various config-

urations - or architectures - depending on the application the model is designed for. The input to such

a model is referred to as the input layer, and the output as the output layer, while any other layers are

referred to as the hidden layers. The same convex optimization techniques are used to train such a layered

model, however such models are only efficiently trainable recently since the advent of the backpropoga-

tion algorithm. See figure 3.2 for an example of an artificial neural networkwith an input layer that accepts

vectors of length 3, an input layerwith 4 nodes, and an output layer with 7 nodes. The output of 3.2 could

be amodel of amulti-dimensional target vector of length 7 or even amulti-categorical classification prob-

lem with 7 categories, among others. Such a neural net is often referred to as a densely connected net,

since each node in the hidden layer computes an activated output of a linear combination of all of the

input vector values.

Neural networks can be composed of multiple layers with varying sizes and activation functions to

achieve a truly dizzying variety of architectures. The following is a brief examination of some of the dif-

ferent types of neural network designs to date.

16

Figure 3.2: A Single Layer Neural Network

3.1 Deep Neural Networks

Adeep neural network is an artificial neural networkwithmultiple hidden layers between the input layer

and the output layer, and it is chiefly defined by two important features : the depth of the network is the

number of hidden layers, while the width of the network is the number of nodes in the hidden layers.

Figure 3.3 presents a densely connected deep neural network with a depth of 3 and a width of 4. It is

important to note that the width of the layers need not be consistent among all layers; the architecture

referred to here was chosen merely for the convenience of its presentation.

3.2 Recurrent Neural Networks

The neural networks described above are often referred to as feed forward neural networks to distin-

guish them from a popular variant called recurrent neural networks. Recurrent neural networks are used

in predictive models where the ordered sequence of the input and output is as important as the values

themselves, for instance in time series modeling and sequence prediction tasks such as natural language

17

Figure 3.3: A Densely Connected Deep Neural Network

modeling. In a recurrent neural network, the output of the model is not solely based on the recombined

and activated outputs of the nodes in the network, but also upon the network’s previous outputs for the

previous input in the sequence. A basic diagram of an artificial recurrent neuron is presented in 3.4 where

ti is the value of the input sequence at time i and h(ti) is the prediction (i.e. - hypothesis) of the model

for the target value at index i. In the diagram the node has been "unrolled" through time to more clearly

present the mechanism of the model. In other words, while there are seemingly several nodes in the dia-

gram, in reality there is just a single node, and we are presenting its input and output at various points in

the sequence. In its most naive implementation this implies an infinite look back window, which results

in what is known as the vanishing / exploding gradient problem, where the gradient of the error function

with respect to the weights of the model are so small as to prevent effective training with gradient based

optimization. To rectify the problems associated with the infinite look back, several variations on the

vanilla recurrent node have been explored. The following is a brief examination of two of those variants:

the long short termmemory unit and the gated recurrent unit.

18

Figure 3.4: A Recurrent Neural Network Node

3.2.1 Long Sort TermMemory Networks

One popular variant of the RNN is the LSTM network, the basic unit of which is the LSTM memory

cell which preserves an internal cell state by selectively forgetting old information out of the state and se-

lectively incorporating new information into the state. The cell state is applied to the newdata to produce

a hypothesis. The cell utilizes a number of "gates" to selectively forget old information and incorporate

new information into the model, as well as to update the cell state and produce the current hypothesis.

The gates include the forget gate, the input gate, and the output gate.

According to Chung, Gulcehre, Cho, and Bengio, 2014, the output of the forget and input gates -

the gates which allow the LSTM cell to forget irrelevant information from the past and incorporate rele-

vant information from the present - is a linear combination of the weighted current input, the weighted

previous hypothesis, and the weighted current cell state:

ft = σ(Wfxt + Ufht−1 + VfCt−1)

it = σ(Wixt + Uiht−1 + ViCt−1)

(3.1)

19

The current data and the previous hypothesis are also used to create a set of candidate new cell state

values:

C̃t = tanh(WCxt + UCht−1)

The cell state is then updated using the sigmoid masks from the input and forget gates as well as the

candidate cell states:

Ct = ftCt−1 + itC̃t

A linear combination of the current cell state, the previous hypothesis, and the current input can now

be sent through the output gate:

ot = σ(Woxt + Uoht−1 + V0Ct)

Finally, the the result of the output gate is multiplied with the result of pushing the current state

through a tanh to generate the current hypothesis:

ht = ottanh(Ct)

3.2.2 Gated Recurrent Unit

The Gated Recurrent Unit is a popular variant on the LSTM. Again, according to Chung et al., 2014,

to make a prediction from a GRU, first the current data and the previous hypothesis are combined and

passed through a reset gate reset, similar to the update gate of the LSTM:

rt = σ(Wrxt + Urht−1)

20

A candidate activation is then computed from a linear combination of the current input and a point

wise multiplication of the reset gate with the previous hypothesis :

h̃t = tanh(Wxt + (rt ∗ ht−1))

Next, a linear combination of the current input and the previous hypothesis are passed through an

update gate to determine howmuch of the current input data should contribute to the new hypothesis:

zt = σ(Wzxt + Uzht−1)

Finally, the current hypothesis is created as a linear interpolation with the update, the previous hy-

pothesis, and the current candidate hypothesis:

ht = (1− zt)ht−1 + zth̃t

TheLSTMand theGRUboth share the feature that their internal state is additive,meaning that relevant

features discovered - even very early in the training process - will subsist across vast time periods without

suffering from an exploding / vanishing gradient from being repeatedly passed through multiplicative

non-linearities. The GRU differs from the LSTM principally in that the state of the GRU does not re-

quire a dedicated state field separate from the current input and previous hypothesis fields, as well as in

the fact that the entire output of the GRU is exposed in the hypothesis while the output of the LSTM is

filtered by an output sigmoid gate first.

3.3 Temporal Convolutional Neural Networks

The Convolutional Neural Network (CNN) was originally developed for work on image recognition,

and CNNs have since been applied to time series forecasting as well. Given an image described as a 2-

dimensional array of floating point pixel values, the number of parameters required to process such data

21

using a densely connected, feed forward neural network is prohibitively large. The CNN overcomes this

by applying a (set of) fixed convolutional kernel(s) (aka - filter(s)) to the image data instead. In the two

dimensional case, the filter(s) is a twodimensionalmatrix of sizenf×mf .Dependingonwhether padding

is added to the image, the convolution kernel applied to the image yields an intermediate representation

of the original image of the same size or smaller with some relevant features exposed and/or accentuated.

If the original image is f and our kernel is h then the intermediate representation of the image,G, at any

pixelm,n is

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

h[j, k]f [m− j, n− k]

where ∗ is the convolutional operation.

Typically multiple kernels are passed over the data, each of which is independently optimized and

each of which may separately tease out a distinctly important feature of the data.

In addition to the convolutional layers, CNNs also often include pooling layers. In convolutional

passes, the convolutional kernel will be applied to most of the data points either nf ∗mf many times in

the 2D case or just nf many times in the 1D case. Pooling, on the other hand, splits the data into separate,

non-overlapping chunks and applies a pooling operation to each chunk individually to produce a new

value. Common pooling functions include mean, max, and min pooling.

From the 2D CNN definition we can easilly define the Temporal Convolutional Neural Network

(TCN). The TCN is the result of passing a 1D convolutional filter over input data with at least one di-

mension. In the case of the 1-D convolutional filter we have

G[m] = (i ∗ k)[m] =
∑
j

h[j]f [m− j]

3.4 Dilated TCN

TheDilatedTCN (DTCN) is based on the time dilations presented first presented by van denOord et al.,

2016 in the WaveNet model. In a dilated convolutional network with multiple layers, the convolutional

22

results for applying a convolutional kernel to the data up to time point tk may be fed not just forward

to the next layer in the model but also forward to nodes in the next layer that will receive data from

dilations run on time points tl where k < l. The use of dilations allows the model to train and predict

with a receptive field that increases in size orders of magnitude at a rapid pace. By using time dilations at

increasing powers of two, the WaveNet can increase the receptive field by 1024x with just 10 layers.

For a normal convolutional neural network, the activation at layer l + 1 for time t is

hl+1
t = A((W ∗ h)(l, t))

(W ∗ h)(l, t) =
k∑
τ=0

W (l, τ)hlt−τ

(3.2)

whereA is an activation function, andW (l, τ) is a filter weight. By expanding the network with dilated

convolutions, we find the following activation for time t at layer l + 1:

(W ∗ h)(l, t, dl) =

bk/dlc∑
τ=0

W (l, τ)hlt−dlτ

Hence, dilated convolutions provide a trade off between reducing focus in the near term and increas-

ing the receptive field in the long term. Figure 3.5 provides a graphical diagram of the forward flow of data

through a stack of DTCN layers with a kernel size of 3 and dilation rate increasing by a factor of two at

each layer level : 0,1,2,4.

Figure 3.5: A Stack of DTCN Layers with Increasing Rates of Dilation

23

Chapter 4

Document Label Prediction

Consider a labeled property graphwith verticesV and edge setE ⊆ V×V . Consider a property,P , where

for any vertex in the graph, vi, the value of the property associated with the vertex is vi[P], and the set of

all values attributable to a vertex in the graph isV [P]. Given a set of vertices,Vevidence forwhich the values

of the property P is observed, the goal of label prediction is to find a predictive model which accurately

predicts the unknown value of the property P for the vertices in the graph which are unobserved, i.e.

V/Vevidence. Given a set of evidence documents the labels for which are all known, the document label

classification task is to predict the document labels of a set of unlabeled documents from their properties

as well as their edge connections to the documents in the evidence set.

Previous efforts have reported success in document labeling by utilizing the document citation net-

work structure, a la Lu andGetoor in Lu andGetoor, 2003 and Sen, et al. in Sen et al., 2008who used the

network structure to achieve FScore measures of between .6 and .8 on the document labeling task. Our

goal is to eithermatch or exceed those results usingmodels which are simpler in their implementation. To

that end we have developed several models and compared their performance against one another; chiefly,

we want to compare models without any awareness of the graph structure of the data to those models

that leverage the graph structure. Two general types of models with numerous different configurations

are compared against one another - and the results are presented in Appendix B. Below we discuss both

the data used in the experiments as well as the models used.

24

4.1 Data

We are using three different document data sets in this work: the Citeseer, Cora, and PubMed dataset,

all three of which may be downloaded at “LINQS Datasets”, 2021. The Citeseer dataset consists of 3,312

publications classified into one of six classes as well as a citation network with 4,732 edges. In addition to

the edges and node labels, each document is also described by a one-hot encoded vocabulary vector from

a vocabulary of 3,703 words. The Cora dataset contains 2,708 documents, 5429 edges, and a vocabulary

of 1,433 words. Finally, the PubMed dataset consists of 19,717 documents, 44,388 edges, and a vocabulary

of 500 words. For the PubMed dataset, the vocabulary vector for each document is a TF-IDF weighted

vector instead of a one-hot encoding.

4.2 PSLModels

The following PSL rules were used to create the model for document classification:

Cites(X,Y) & Label(Y,Z) -> Label(X,Z)

Cites(X,Y) & Label(X,Z) -> Label(Y,Z)

1/|X| Label(+X,Y) = Label(Z,Y)

{ X : Cites(Z,X) }

1/|X| Label(+X,Y) = Label(Z,Y)

{ X : Cites(X,Z} }

Contains(X,W) & Contains(Y,W) & Label(Y,Z) -> Label(X,Z)

Label(X,+Y) = 1

25

The first two rules capture our intuition that a document which cites (or is cited by) another docu-

ment is likely to share the same label with it. The second two arithmetic rules exploit the connectedness of

nodes. Together the rules express the intuition that for any node/label combination the degree to which

we believe that the node has the label is equal to the proportion of the node’s neighbors that have the

label. The next rule relates documents and the words the documents contain to their labels; it says that

if two documents use the same word then they probably have the same label. The final rule enforces the

normalization that each document has just a single label.

We testedmodels formed of various combinations of the above rules as well as with squared and non-

squared hinge-losses to try to find the smallest possible effective rule set for our problem. The various

table configurations are listed in table B.1, which can be used to identify the results presented in the results

tables in the conclusion section.

4.3 Neural NetworkModels

One of the major questions we are interested in answering in this work is to assess the effectiveness of

Knowledge Graph Neural Networks on the document classification task, and to answer that question

three novel neural network layers were implemented and assessed. Each of the three novel layers was used

as the first hidden layer of a neural network model with a series of densely connected layers appended

behind it. Thus, the models are in essence Deep Knowledge Graph Neural Networks.

4.3.1 Simple Edge Layer

The first novel layer implemented is referred to as the Simple Edge Layer. This layer takes no account of

the labels of the evidence nodeswhatsoever - just the edge connections to the evidence nodes. It consists of

umany weight variables for each possible connection to one of the evidence nodes, meaning that if there

are ne many evidence nodes then the layer consists of a matrix of trainable network weights of shape

26

ne× u. The input into the layer is a vector xi ∈ {0, 1}ne describing the edge connections from vector vi

of the target vertices to the evidence vertices; xi, j = 1 if (ei, ej) ∈ E otherwise and otherwise xi, j = 0.

4.3.2 Label Sum Layer

The second novel layer implemented is referred to as the Label SumLayer. This layer transforms the edge

set for a target node into the total number of nodes from each category that the edge is connected to. It

consists of umany weight variables for each label category, meaning that if there are nc many categories

then the layer consists of a matrix of trainable network weights of shape nc×u. The input into this layer

is the same vector described as input into the above layer.

4.3.3 Flat Label Layer

The last novel layer implemented is the Flat Label Layer.This layer uses a separate set of trainable variables

for each vertex in each label group of the evidence variables. Thus if there are ne many evidence vertices

and lmany labels, then this layer consists ofumany trainable variables for each label/vertex combination,

which is a training matrix of shape ne ∗ l× u. The intuition behind this layer is that it is capturing more

information than either of the above layers since the vertex labels are explicitly encoded in the training

variables. The input into this layer is the same vector described as the input into the above layers.

4.3.4 Neural Network Architectures

Both the simple edge layer and label sum layers were used as the first layer of a neural network architecture

backed by a densely connected deep neural network, denoted the Simple Edge Model (SEM) and Label

SumModel (LSM) respectively. Four additional general architectureswere also tested, each ofwhich used

(at aminimum) the one-hot encoded vocabulary vector for the target document as an input to themodel;

three of the four were designed to also accept the edge vector for the target document as a second input.

The three double-input architectures were built using the three novel layers described above, resulting in

the Simple Edge Layer Vocabulary Model (SELVM), the Label Sum Layer Vocabulary Model (LSLVM)

27

and the Flat Label Layer VocabularyModel (FLLVM). The final model included in the experiments was

a control model which relied solely on the document vocabulary vector to predict the document labels.

4.4 Model Training and Assessment

Each of the above models was trained using a 10-fold cross validation scheme. Each dataset was split into

10 separate training/testing folds, and the models were independently trained on each of the 10 folds.

For a binary classification task, the precision, recall, and FScore are measures of the accuracy of a model’s

predictions based on the true/false positives and true/false negatives predicted by the model. If TP is the

number of positive samples that were accurately predicted by the model as positive, FP is the number

of negative samples that were erroneously predicted as positive by the model, and FN is the number of

positive samples erroneously predicted as negative by the model, the precision, recall, and FScore of the

model are defined as

precision =
TP

TP + FP
, recall =

TP

TP + FN
,FScore =

2 ∗ (precision ∗ recall)
precision+ recall

Now, consider a testing/training fold with nmany samples withLmany distinct labels in the fold where

nl is the number of samples in the fold with label l. For each label l if we calculate the precision, recall and

FScore metrics for the fold as pl,rl, and Fl respectively, then the weighted average precision (pweighted),

recall (rweighted) and FScore (Fweighted) for the fold are defined as :

pweighted =

∑
l nl ∗ pl∑
l nl

, rweighted =

∑
l nl ∗ rl∑
l nl

, Fweighted =

∑
l nl ∗ Fl∑
l nl

Each model was trained on each fold and the weighted precision, recall and FScore saved and annotated

with the model configuration. Later we present our conclusions on the collected results.

28

Chapter 5

Traffic Forecasting

Traffic flow forecasting is a well-studied problem in the computer science literature, due mainly to the

positive benefits accrued from more accurate traffic flow predictions; more accurate vehicle traffic flow

predictions allow formore efficientmanagement of traffic systems; predicting congestionmore accurately

allows for better congestionmitigation resulting in less lost productivity aswell as less traveler frustration.

Due to its high degree of utility, research into vehicle traffic forecasting is constantly evolving, as evidenced

by several studies published in just the past 2 years, i.e. - Wei et al., 2019, Mallick, Balaprakash, Rask, and

Macfarlane, 2019, and Boukerche andWang, 2020 to name just a few.

One of the main questions we are interested in answering in this work is the effect of varying neural

networkmodel architectures on traffic flow prediction accuracy.We have trained several models, outlined

below, with a variety of hyperparameters to assess the effect of model depth and width - among other

parameters - on traffic flow forecasting accuracy. In addition, we are interesting in assessing the potential

to improve the accuracyofneural network forecasting results by incorporating knowledge graph structure

in the modeling process. Jiang and Luo present a comprehensive survey of traffic forecasting with graph

neural networks in W. Jiang and Luo, 2021. The following is a brief description of the data used in this

work and the models trained to solve the problem of multi-step traffic flow prediction.

29

5.1 Data

The data used in this work comes from the California Department of Transportation’s (Caltrans) Per-

formance Metric System (PeMS) and is freely available on the web (“Caltrans PeMS Data Warehouse”,

2021). The data was collected between January 1, 2017 and December 31, 2018 in Caltrans District 4 - lo-

cations in and around the San Francisco Bay area. Among other sources, Caltrans collects vehicle traffic

data on California roadways by inductive loop sensors (ILS) deployed widely throughout the California

road system. The ILS record the flow, average occupancy, and average speed data for vehicles flowing past

the ILS at a 5 minute resolution. In this work we have aggregated the data to a 15 minute resolution to

yield a smoother dataset for predicting.

In addition to the ILS vehicle traffic data, PeMS also makes available the stationmetadata for the ILS

through the data warehouse, including the station’s unique station ID, the freeway the ILS is recording

on, the freeway direction that the ILS is measuring traffic on, and the postmile at which the station is

positioned. For instance, station 135 is located at on Hwy 1S at absolute post mile 78; absolute postmiles

on a California roadway begin at 0 at the northern (western)most point of the roadway in California and

increases by one for each mile driven south (east) on the road for N/S oriented roadways (E/W respec-

tively). The meta-data for the ILS allows us to build a knowledge graph about the road system including

properties such as direction, roadway, & postmile and edges indicating that one station is upstream or

downstream from another, that two stations are on the same road, etc.

5.2 Neural Network Forecasting Models

Several neural networkmodels eachwithnumerousmodel architectureswere trained in order to assess the

varying model hyperparameter values on forecasting accuracy, including two recurrent neural network

models (LSTMandGRU), TCN,DTCN, as well as two novel graphmodels: a GraphCNNand aGraph

LSTM.The results of the neural networkmodels applied to the vehicle traffic time series data are reported

in Appendix C. For both the recurrent and convolutional networks, we examine the effect of varying the

30

depth and width of the model on the forecasting accuracy, and for the convolutional networks we also

explore the effect of varying numbers of convolutional filters, kernel width, and temporal dilation as well.

For the convolutional networks, the model configurations varied in depth (5,15, or 20 layers deep), width

(16,32, or 64 nodes wide), kernel size (4, 8 , or 12 steps wide), number of convolutional filters (16, 32 ,or

64 filters per layer) and finally on whether or not to include time dilation in the convolutional filters.

In the case of the recurrent networks, the depth and width of the models were varied between 5,10, &

20 and 16, 32, nd 64 respectively. Each of the graph neural networks consisted of a deep convolutional

back end with an initial hidden layer handling the graph data transformations; specifically the LSTM

and GRU graph neural networks were backed by the most performant LSTM and GRU architectures

from the comparative architectural experiments - 15 layers deep, 16 units wide, 32 filters per layer with a

dilated kernel of width 4 in the case of the Graph CNN; and 10 layers deep with 32 node per layer for the

Graph LSTM.The action of the graph data transformation hidden layer transforms - for each sensor (i.e.

- graph node) at each time step - the traffic flowmeasurements in the network according to the adjacency

matrix and property values of the node in question, for instance by concatenating the flowmeasurement

for the node with the flowmeasurements of its adjacent nodes as well as the nodes sharing its properties,

i.e. - freeway and direction.

In addition to the neural network models, the classic statistical time series analysis AutoRegressive

(AR) model was also fit to the data to provide a statistical benchmark for the neural network models.

The statsmodels.tsa.ar_model module of the popular statsmodels python package exposes a

number of methods for training and predicting with an AR model, including the ar_select_order

method which given a set of training data finds the model order which minimizes the AIC of the result-

ing AR model. The models were trained and evaluated using a rolling validation model, a la Bergmeir

and Benitez, 2012 : for each set of sensor data, first we used the ar_select_order function to train an

"optimal" ARmodel on one month’s worth of training data, then we used the trained model to forecast

the traffic flow at the sensor 12 time steps out into the future, and finally we moved the training window

up 12 time steps to re-fit and predict the model on a newmonth’s worth of flow data.

31

Finally, a baseline historical average model was used to compare against the results of the neural net-

work models; if ~y = (y0, · · · , yn) is the recorded (i.e. - true) flow measurements for some ILS, then the

historical average model forecasts flow from time t at time steps t+ i for i ∈ [1, 12] as

ŷt+i =

∑4
j=1 yt−j∗672

4

i.e. - the average of the recorded flow measurements at this time of day on this day of the week for the

past four weeks (4 time stamps per hour, 24 hours per day, 7 days per week implies 4 ∗ 24 ∗ 7 = 672 time

stamps per week).

5.3 Model Training and Assessment

Each model was trained according to a 10-fold cross validation scheme. 80% of the training fold was used

to train the model, while 20% was held back as validation data. The models were trained as long as the

validation loss continued to decrease, with a patience of 20 epochs without an improvement in validation

loss before terminating training epochs. The model weights from the training epoch with the best vali-

dation loss were then re-loaded on the model, and this best-fitting model was used to predict the traffic

flow values out to 12 steps from the training data. Tensorflow/Keras was the software used to efficiently

train the neural network models. The MAPE metric was used to calculate the the accuracy of the model

independently for each time step prediction. If the size of each testing fold is n, the true flow values for

the n training samples at time step are y ∈ Rn, and our predictions for time step i is ŷ ∈ Rn, then the

MAPE for the fold at time step i is defined as

MAPEi =
n∑
j

|yj − ŷj|
yj

32

We then save the MAPE for each model at each time step annotated with their model features, i.e. - the

depth /width of the dense blocks of themodel, and the size of the kernel, number of convolutional filters

and time dilation indicator if and when this is reasonable.

The training data includes 70,000 timestamps of flow values recorded at each of the approximately

3,000 different ILS in the traffic network; the sheer size of the training data precluded training each of

the modeling configurations on the full dataset. Thus, to assess the effect of the various model hyperpa-

rameters on forecasting accuracy, a random sample of 300 of the 3,000 sensors was selected as the training

data set. Once the most effective model was discovered (as measured by lowest average MAPE across all

time steps) the "best" model configurations were then trained on the full set of training data and the re-

sults compared against one another. The results and conclusions from those results are presented in later

chapters, including our analysis of the model MAPE values for each model configuration.

33

Chapter 6

Conclusions

In this chapter we discuss the conclusions which can be drawn from the results of the experiments run on

both the document label prediction task as well as vehicle traffic forecasting. The raw numerical results of

the document label prediction experiments may be found in B while the raw results of the vehicle traffic

forecasting model can be found in Appendix C. Below we analyze the results and draw the appropriate

conclusions.

6.1 Document Label Prediction

We will analyze the PSL model results and neural network model results separately, as their results are

wildly different.

6.1.1 PSLModel Conclusions

In assessing the PSL models for the document label prediction task, we would like to not only answer

- affirmatively or negatively - whether PSL models are effective and efficient models for document label

prediction, but we also identified four separatemodeling decisions whose affect onmodeling accuracy we

are interested in assessing: including the use of squared hinge loss functions vs regular hinge loss func-

tion (d1) and the inclusion of each of the non citation rules : the normalizing rule (d2) - the rule which

34

normalizes the sum of the predicate Label(X,L) for each documentX over all labels L to 1, the vocab

feature rule (d3), and the arithmetic rules (d4). Table 6.1 shows the average accuracy metrics for the PSL

models grouped by the above modeling decisions.

Table 6.1: PSLModel Accuracies Aggregated by Design Decision
d1 d2 d3 d4 prec rec fscore
0 0 0 0 0.214 0.267 0.192

1 0.085 0.288 0.131
1 0 0.028 0.158 0.047

1 0 0 0.212 0.164 0.174
1 0.167 0.131 0.137

1 0 0.041 0.195 0.067
1 0 0 0 0.210 0.266 0.185

1 0.188 0.276 0.158
1 0 0.173 0.161 0.127

1 0 0 0.206 0.158 0.167
1 0.194 0.260 0.172

1 0 0.186 0.162 0.128

In general, we found that the difference in the mean FScore of the PSL models stratified according

to the four modeling decisions was not equal. For each training/testing fold for each modeling config-

uration, let F denote the FScore of evaluating the model on the testing data, S be an indicator variable

of whether squared hinge-loss functions were used,N an indicator variable for whether the normalizing

rule was used, V an indicator variable for whether the vocab rules were used, andA an indicator variable

for whether the arithmetic rule was used. The linear model F ≈ S +N + V +A is an ANOVAmodel

assessing whether any of the above design decisions has a statistically significant effect on the accuracy of

a PSLmodel in our experiments. In this case, the null hypothesis is that none of the design decisions have

a statistically significant effect on the FScore of the PSLmodels - i.e. - the mean accuracy for a model with

any of the design decisions is the same as the mean accuracy for a model with none of them. The p-value

for this model is <.01, meaning that there is more than a 99% chance that at least one of the design deci-

sions has a statistically significant effect on the modeling accuracy. See figure 6.1 for a detailed view of the

ANOVA analysis.

35

Figure 6.1: ANOVAAnalysis of the 4 PSL DesignModeling Decisions

Since not all of the coefficients in the above ANOVAmodel have significant p-values - note that the

p-value for the normalization variable is .88 - a forward selection process revealed themodel with themost

predictive power for determining FScore from a subset of the 4 features described above: themodelwhich

includes indicators for the vocabulary rule, the arithmetic rules and the squared hinge loss functions. See

figure 6.2 for a detailed view of this ANOVA analysis as well. In particular, the ANOVA model tells us

that including either the vocabulary rule or the arithmetic rule has a deleterious effect on label prediction

accuracy of somewhere around 9% in the case of the former and about 3% in the case of the latter, and that

including squared hinge loss functions improved the model accuracy by around 2.8%. This is completely

in line with the results of the "full" ANOVAmodel.

Figure 6.2: Forward SelectedModel for FScore by Design Decisions

36

Digging further in we see that the average FScore of a model which includes the vocabulary rules is

around 8.9% while a model that does not include the vocabulary rules is over 16%. While a 16% Fscore

is not exactly an astounding accuracy, nonetheless the vocabulary rule is by far the most difficult rule to

build a model with as the number of words in the vocabulary is huge and grounding out any rule whose

variables range over words in the vocabulary is going to take a cost prohibitive amount of time. Interest-

ingly, grouping the data by arithmetic rule indicator does not reveal a similar agreementwith theANOVA

model, however; the average FScore for models including the arithmetic rule is actually slightly higher

than the average FScore of themodels that do not contain the arithmetic rule. This could be indicative of

a Type-I error in the forward selectedmodel. Grouping the data by squared hinge-loss indicator indicates

an approximately 13%FScore formodelswith regular hinge-losses vs. around 16% formodelswhich utilize

the squared hinge losses, a general agreement with the ANOVAmodel.

6.1.2 NNModel Conclusions

The neural network models built for document label prediction were far more performant than the PSL

models, and they also took far less time to train. One of the questions we aremost interested in answering

is the effect - positive or negative - of using the graph edge information in the training scheme for the neu-

ral network models trained to answer the document label prediction problem. The Simple Vocabulary

Model (SVM) provides an adequate benchmark for helping us answer this question and comparing the

results of the various knowledge graph models against, since it is based on defining each document by

its one-hot encoded vocabulary vector - a simple and common approach to document embedding which

does not take into account any graph structure. If we consider the average precision of the most perfor-

mant architecture (depth andwidth) of the SVM,we see that themost performantof thenovel knowledge

graph neural network architectures - the Label Sum Layer Vocabulary Model (LSLVM) - outperformed

the SVM’s most performant architecture not only at its own most performant architecture but in sev-

eral less than optimally performing architectures as well. This answers affirmatively that leveraging the

structure of the knowledge graph in training neural networks for the document label prediction task can

37

have a net beneficial effect on the performance of the model. Table 6.2 contains a convenient side by side

comparison of the two models.

Table 6.2: Comparison of LSLVMAvg. FScore with SVM Best Fscore
depth width avg. LSLVM Peak SVM
1 8 0.624 0.625
1 16 0.635 0.625
1 32 0.652 0.625
2 8 0.627 0.625
2 16 0.591 0.625
2 32 0.663 0.625
3 8 0.569 0.625
3 16 0.592 0.625
3 32 0.605 0.625
4 8 0.604 0.625
4 16 0.539 0.625
4 32 0.589 0.625

In addition to positively affirming the benefit of utilizing the document citation graph structure in

training the neural network models for label prediction, we are also interested in assessing the impact of

utilizing various depths and widths of model architecture in our experiments. If for each training/testing

fold for eachmodel configuration (depth/width)we letF be the FScore obtained by evaluating themodel

on the testing data,D the depth of themodel andW the width, then themodelF ∼ D+W should give

us an indication ofwhether or not the depth andwidth of the neural network has a statistically significant

effect on the accuracy of the model in label prediction. Evaluating the above linear model tells us that the

depth and width of the neural network trained for document label prediction both have a significant

effect on the accuracy of the model; see the linear model summary details in 6.3 for details of the effect.

Specifically, each extra layer in a neural network document label prediction model retards the model’s

accuracy by approximately 1.22%, while each extra node added to the width of the model increases the

model accuracy by around 0.1%. While this effect may seem completely insignificant at first blush, one

must remember that the moderately wide neural networks trained in this work contained dense blocks

which were 32 units wide, which would ultimately point to a 3.6% increase in accuracy over a single node

layer.

38

Figure 6.3: ANOVAModel For Depth andWidth of Deep NNDocument Label PredictionModels

6.2 Traffic Flow Forecasting

One important questionwewanted to explore in this workwas the relative effectiveness of various neural

network architectures in vehicle traffic flow forecasting. To that effort, we used theMAPE of the various

model architectures trained on the testing/training splits to fit an ANOVAmodel assessing the difference

in mean MAPE between the various model types, i.e. - Dilated TCN (DTCN), GRU, LSTM, Graph

CNN (GCNN), Graph LSTM (GLSTM), vanilla LSTM andTCN. Figure 6.4 presents the results of the

ANOVA test for forecasting traffic flow at one time step into the future; the ANOVA model indicates

the relative accuracy of the various top level neural network styles, where the TCN is the base model type

not represented explicitly in the ANOVA model. According to the ANOVA model the GRU is clearly

the most accurate model of the bunch at the first time step, while in order of decreasing accuracy are the

TCN, DTCN, GRU, LSTM, and the Graph LSTM. Since the p-values for the ANOVA model coeffi-

cients are all <.001 we can be quite sure that this is an appropriate description of the relative effectiveness

of the neural network models in forecasting out to one time step. The trend is quite stable until four

time steps of forecasting, at which point the p-value of the coefficients of the ANOVAmodel become less

stable/reliable.

39

Figure 6.4: Comparison of MAPE Values for the Various NNModel Forecasts

Figure 6.5 provides a comparison of MAPE of forecasts at all 12 time steps for all of the NN model

types, as well as the historical average and AR(p) statistical baseline models. Clearly, the neural network

models outperform the statistical baseline models by a wide margin.

For that reason, Figure 6.6 provides a comparison of the forecasts at all 12 time steps for theNNmodel

types without including the statistical baselinemodels for amore illuminating comparison. See figure 6.7

to compare the performance of just the three CNN models; specifically notice the inflection point at

time step 5 where the DTCN begins to outperform the TCN. There is a similarly inflection point in 6.8

regarding the performance of the GLSTM vs. the GRU and LSTMmodels.

Generally speaking the Graph Neural Network Models are much more stable in their forecast error

at future time points than the vanilla RNN, TCN, and even DTCNmodels.

In addition to testing the relative effectiveness of the top level neural network architectures, we were

interested in assessing the impact of wider/deeper architectures on traffic flow forecasting as well as the

effect of increasing the number of filters, the size of the filter, and number of convolutional layers in the

convolutional model, and of course the effect of dilation on the accuracy of the 1D CNN.

Figures 6.9 and6.10provide evidence that at a single time stepprediction, a deepermodel is deleterious

to prediction accuracy while a wider model is typically more accurate: each new layer in depth increases

40

Figure 6.5: Comparison of MAPE Values for the Various NNModel Forecasts w/ Baseline

MAPE by approximately 1.65% while each unit in width decreases the MAPE by approximately 0.11%.

Those results are consistent until 10 time steps out at which point there is no longer any evidence that

either depth or width have any effect on modeling accuracy.

There is ample evidence in the case of the DTCN networks to suggest that time dilation achieves

a lower MAPE in forecasting at all time steps, all other things being equal. Figure 6.11 is the ANOVA

model suggesting the effectiveness of time dilation in improving traffic flow forecasting at a one time-step

forecast, and those results are typical of the ANOVA results for all future time steps.

Similar to the dilation, there is also evidence that a larger kernel on a convolutional neural network

achieves a lower MAPE in forecasting; in other words a more accurate forecaster. Figure 6.12 suggests

that on average each extra time step in the kernel size results in an average MAPE approximately .53%

lower. Interestingly, these results are not valid at time steps 1-5 but are valid again from time steps 6-12.

This could be indicative of a type I error or it may be a legitimate result. Finally, figure 6.13 indicates that

41

Figure 6.6: Comparison of MAPE Values for the Various NNModel Forecasts w/o Baseline

each additional filter added to a convolutional layer results in an increase inMAPE of between 1.5 and 3%

depending on the time step of forecast.

42

Figure 6.7: Comparison of MAPE Values for CNNModel Forecasts

Figure 6.8: Comparison of MAPE Values for RNNModel Forecasts

Figure 6.9: ANOVAModel for Width

43

Figure 6.10: ANOVAModel for Depth

Figure 6.11: ANOVAModel for Time Dilation

Figure 6.12: ANOVAModel for Convolutional Kernel Size

44

Figure 6.13: ANOVAModel for Filters

45

Appendix A

Markov Random Fields

AnMRF is a PGM of the joint distribution of a set of random variablesX = (X1, · · · , Xn) according

to an undirected graph,G = (V,E) with vertices V and edgesE ⊆ V × V where V = {v1, · · · , vn}

has one vertex corresponding to each variable in X . Given a graph G = (V,E) a clique C ⊆ E is

a completely connected subset of nodes in G, i.e. - ∀j, k(xi ∈ C ∧ xj ∈ C → (xi, xj) ∈ E). In

addition to the nodes and edges in the graph G, the MRF associated with the graph also has a set of

potential functions, {φ1, · · · , φm} associated with each clique Ci of the graph where φi : X → R+.

The potential function φi should capture some relevant information about the underlying probability

distribution associated with the MRF, i.e. - for all x, y ∈ X , if x is less likely than y, then φ(x) < φ(y).

The probability density function of the MRF is

P (x) =
1

Z

∏
k

φk(x{k}) (A.1)

where x{k} is the state of the k’th clique in the graph according to x. Since the potential functions are

unbounded, non-negative real values,Z is the partitioning function

Z =
∑
x∈X

∏
k

φk(x{k})

46

which confines the probability density function to a range of [0, 1]. A more convenient (and common)

expression of the above probability density function is the log-linear model

P (x) ∝ exp(
∑
j

wjfj(x)) = exp(wTf(x)) (A.2)

where the potential functions in (A.1) are replaced with an exponentially weighted sum of features of the

state ofX . While the features in (A.2) may be any real-valued function of the state ofX , they are often

assumed to be binary valued functions fj(x) ∈ {0, 1}.

While the most pedantic reading of (A.2) suggests that there should be one feature for each clique

in the graph, we are free to define a much smaller number of features to yield a more tractable proba-

bility density function. Moving towards our definition of the HL-MRF, the logical rules of a first order

knowledge base (KB) provide ameans of specifying a compact set of features to define aMarkovRandom

Field.

Consider a KB which consisting of a set of disjunctive logical clauses C = {C1, C2, · · · , Cm}. Let

I−j and I+
j be (respectively) the sets of the indices of the negated and non-negated literals in clause Cj .

The KB may be embedded in an MRF by assigning a potential function, fj , to each clause, Cj , where

fj(x) = 1whenever Cj is satisfied by x and 0 otherwise. The corresponding weight,wj , for the potential

fj in the MRF should express a degree of confidence for Cj . In other words, the weight wj should be

proportional to the probability that the clause Cj is satisfied for any variable assignment x.

Given a MRF defined by a KB according to the above schema, MAP inference over the MRF is the

integer linear program (ILP) equation

arg max
x∈{0,1}n

P (x) = arg max
x∈{0,1}n

wTf(x))

= arg max
x∈{0,1}n

∑
Cj∈C

wj min{
∑
i∈I+j

xi +
∑
i∈I−j

(1− xi), 1}
(A.3)

47

Maximization of objective function (A.3) can be achieved through either mapping the ILP to an in-

stance of theMAX-SAT problem and approximating the optimal solution through convex optimization

or alternatively by applying local consistency relaxation to theMRF.However, the authors of Bach et al.,

2017 showed that not only are these two approaches equivalent in that they provide identical solutions to

the same unified optimization problem, but they also show that approximate optimization of the unified

objective function is equivalent to exactMAP inference when the KB is interpreted through Lukasiewicz

logic, a logic for reasoning and inference over vague or "fuzzy" logic as well as reasoning over other con-

tinuous domains wherein logical atoms are assigned a value in the continuous interval [0, 1] instead of

the classical binary {0, 1} values. The equivalence allows for reasoning over both discrete and continuous

domains with a single modeling paradigm, namely HL-MRF.

48

Appendix B

Document Classification Model

Results Tables

The results for the various document classification models - both the PSLmodels as well as NNmodels -

are presented here. Each PSLmodel was built with a combination of the four rules presented in table B.1,

and themodels were defined using both squared and first-order hinge-loss functions.When a rule config-

uration includes a squared hinge-loss function for some rule, then the key for that rule will be appended

with an "x". Hence, the configuration "1,2,3,4" denotes a PSL model which includes all 4 PSL rules, and

all 4 rules are defined as first-order hinge-loss functions. On the other hand, the configuration "1,3x,4"

only includes 3 PSL rules (rule 2 is missing) and rule 3 is configured with a squared hinge-loss function.

The accuracy metrics reported are the categorically weighted average precision, recall and FScores. All

combinations of rules and hinge-loss exponents from the experiments are included in one of the tables

below.

The results for the NNmodels are presented by the base model configuration : the Flat Label Layer

Vocab Model (FLLVM), the Label Sum Layer Vocab Model (LSLVM), the Simple Edge Layer Vocab

Model (SELVM), the Simple EdgeModel (SEM), the Simple Label SumModel (SLSM), and the Simple

Vocabulary Model (SVM). The results for each base model are more specifically reported according to

49

the dense architectures backing them, and those architectures are defined by their reported widths and

depths.

Table B.1: PSL Rule Key Legend
PSL Rule Rule Key Number

Cites(X,Y) && Label(Y,Z) => Label(X,Z) 1
Cites(X,Y) && Label(X,Z) => Label(Y,Z) 1

1/|X| Label(+X,Y) = Label(Z,Y) 2
1/|X| Label(+X,Y) = Label(Z,Y) 2

Contains(X,W) &&Contains(Y,W) && Label(X,L) => Label(Y,L) 3
Label(X,+Y) = 1 4

Table B.2: Accuracy Metrics of Various PSL Configurations, Part 1
PSL Rules Included (By Key) Avg Precision Avg Recall Avg F1

3x .145 .139 0.110
1x,3x .123 .088 .077
1,3,4 .056 .192 .086
1x,3x,4 0.156 0.110 0.0971
3x,4 0.117 0.106 0.0723
3 0.024 0.134 0.040
3,4 0.023 0.136 0.039
1x 0.123 0.139 0.121
1x,4 0.160 0.197 0.146
1,4 0.164 0.1215 0.132
1 0.1645 0.2 0.1505

1,2,4 0.141 0.110 0.114
1,2 0.075 0.257 0.115
2x 0.161 0.254 0.133
2x,4 0.180 0.227 0.157
1x,2x,4 0.165 0.239 0.148
1x,2x 0.179 0.244 0.153
2,4 0.161 0.126 0.133
2 0.079 0.264 0.121

50

Table B.3: Accuracy Metrics of Various FLLVMConfigurations
depth width precision recall fscore
1 8 0.649 0.609 0.606
1 16 0.676 0.615 0.613
1 32 0.684 0.609 0.611
2 8 0.614 0.562 0.548
2 16 0.666 0.560 0.547
2 32 0.700 0.606 0.603
3 8 0.630 0.562 0.543
3 16 0.669 0.572 0.559
3 32 0.711 0.594 0.590
4 8 0.648 0.586 0.571
4 16 0.692 0.579 0.565
4 32 0.707 0.590 0.579

Table B.4: Accuracy Metrics of Various LSLVMConfigurations
depth width precision recall fscore
1 8 0.686 0.630 0.624
1 16 0.700 0.641 0.635
1 32 0.717 0.651 0.652
2 8 0.685 0.632 0.627
2 16 0.706 0.601 0.591
2 32 0.724 0.665 0.663
3 8 0.662 0.591 0.569
3 16 0.698 0.605 0.592
3 32 0.710 0.614 0.605
4 8 0.658 0.615 0.604
4 16 0.683 0.561 0.539
4 32 0.709 0.602 0.589

51

Table B.5: Accuracy Metrics of Various SELVMConfigurations
depth width precision recall fscore
1 8 0.660 0.605 0.600
1 16 0.671 0.605 0.603
1 32 0.674 0.611 0.607
2 8 0.645 0.590 0.582
2 16 0.671 0.586 0.578
2 32 0.695 0.615 0.613
3 8 0.642 0.591 0.576
3 16 0.668 0.578 0.564
3 32 0.698 0.589 0.581
4 8 0.621 0.576 0.561
4 16 0.662 0.561 0.549
4 32 0.705 0.590 0.582

Table B.6: Accuracy Metrics of Various SVMConfigurations
depth width precision recall fscore
1 8 0.658 0.592 0.584
1 16 0.665 0.624 0.618
1 32 0.701 0.622 0.623
2 8 0.629 0.571 0.557
2 16 0.672 0.587 0.577
2 32 0.695 0.630 0.625
3 8 0.645 0.599 0.585
3 16 0.695 0.568 0.554
3 32 0.706 0.619 0.611
4 8 0.589 0.526 0.493
4 16 0.674 0.572 0.557
4 32 0.688 0.573 0.559

52

Table B.7: Accuracy Metrics of Various SEM Configurations
depth width precision recall fscore
1 8 0.535 0.465 0.435
1 16 0.528 0.461 0.435
1 32 0.563 0.469 0.451
2 8 0.539 0.466 0.440
2 16 0.540 0.474 0.447
2 32 0.553 0.472 0.452
3 8 0.518 0.451 0.423
3 16 0.554 0.474 0.449
3 32 0.561 0.480 0.454
4 8 0.508 0.441 0.410
4 16 0.540 0.466 0.439
4 32 0.545 0.463 0.428

Table B.8: Accuracy Metrics of Various SLSMConfigurations
depth width precision recall fscore
1 8 0.527 0.447 0.423
1 16 0.527 0.466 0.437
1 32 0.545 0.475 0.448
2 8 0.512 0.443 0.414
2 16 0.527 0.463 0.438
2 32 0.543 0.470 0.445
3 8 0.541 0.442 0.416
3 16 0.536 0.463 0.437
3 32 0.559 0.480 0.453
4 8 0.550 0.464 0.437
4 16 0.537 0.466 0.435
4 32 0.542 0.469 0.440

53

Appendix C

Time Series NN Forecasting Model

Results

The results for the various neural network time series forecasting model approaches are presented here.

Each time series model was fit to the 15 minute resolution data, and eachmodel was used to predict traffic

flow from 1 to 12 time steps into the future, which for the 15 minute resolution data is out to 2 hours.

The accuracy of themodels is reported as themean average percentage error (MAPE) for each forecasting

step in the future. A variety of model architectures were trained for each general neural network type:

Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Temporal Convolutional Neural

Network (TCN) - both dilated and not.While the only configurable parameters for the LSTMandGRU

MODELS are the depth and width of the models, the CNN models also include a kernel size as well as

number of filters.

54

Table C.1: Comparison of MAPE for Various TCNTraffic Forecasters, Part 1
depth width kernel filters dilated step0 step1 step2 step3 step4 step5
5 16 4 32 0 0.188 0.198 0.225 0.262 0.315 0.341

1 0.202 0.204 0.225 0.260 0.305 0.341
32 4 16 0 0.194 0.201 0.226 0.261 0.306 0.331

1 0.207 0.212 0.233 0.269 0.314 0.350
32 0 0.196 0.202 0.225 0.260 0.304 0.330

1 0.200 0.206 0.227 0.264 0.310 0.346
64 0 0.213 0.219 0.239 0.273 0.325 0.348

1 0.209 0.211 0.229 0.264 0.311 0.347
8 32 0 0.215 0.222 0.242 0.274 0.317 0.341

1 0.210 0.211 0.228 0.262 0.309 0.344
12 32 0 0.211 0.217 0.237 0.269 0.315 0.334

1 0.206 0.210 0.230 0.267 0.312 0.347
64 4 16 0 0.097 0.100 0.123 0.101 0.124 0.142

1 0.107 0.086 0.088 0.106 0.121 0.148
32 0 0.195 0.205 0.230 0.263 0.307 0.331

1 0.199 0.204 0.224 0.260 0.306 0.340
15 16 4 32 0 0.097 0.100 0.113 0.102 0.130 0.143

1 0.089 0.090 0.093 0.110 0.126 0.156
32 4 32 0 0.495 0.443 0.385 0.363 0.385 0.364

1 0.520 0.464 0.401 0.381 0.392 0.380
20 32 4 32 0 0.473 0.426 0.373 0.356 0.387 0.369

1 0.509 0.453 0.396 0.377 0.392 0.384

55

Table C.2: Comparison of MAPE for Various TCNTraffic Forecasters, Part 2
depth width kernel filters dilated step6 step7 step8 step9 step10 step11
5 16 4 32 0 0.358 0.395 0.412 0.437 0.455 0.492

1 0.359 0.389 0.406 0.440 0.441 0.473
32 4 16 0 0.348 0.388 0.410 0.437 0.453 0.487

1 0.367 0.396 0.414 0.447 0.449 0.481
32 0 0.346 0.385 0.407 0.433 0.447 0.482

1 0.364 0.396 0.414 0.450 0.452 0.485
64 0 0.363 0.402 0.425 0.452 0.467 0.505

1 0.366 0.401 0.421 0.459 0.463 0.498
8 32 0 0.354 0.394 0.416 0.443 0.456 0.493

1 0.362 0.398 0.420 0.458 0.459 0.493
12 32 0 0.348 0.385 0.406 0.433 0.448 0.482

1 0.363 0.396 0.415 0.449 0.449 0.482
64 4 16 0 0.153 0.179 0.203 0.229 0.228 0.251

1 0.159 0.176 0.191 0.178 0.200 0.235
32 0 0.346 0.386 0.409 0.435 0.450 0.484

1 0.359 0.393 0.412 0.449 0.453 0.487
15 16 4 32 0 0.146 0.172 0.203 0.226 0.211 0.242

1 0.157 0.163 0.171 0.164 0.173 0.199
32 4 32 0 0.350 0.383 0.405 0.439 0.462 0.509

1 0.370 0.400 0.423 0.469 0.479 0.524
20 32 4 32 0 0.362 0.400 0.424 0.458 0.484 0.536

1 0.374 0.401 0.423 0.465 0.476 0.517

Table C.3: Comparison of MAPE for Various RNNTraffic Forecasters, Part 1
RNN type width depth step0 step1 step2 step3 step4 step5
GRU 16 10 0.173 0.159 0.146 0.178 0.223 0.233

32 5 0.164 0.158 0.140 0.171 0.209 0.223
10 0.127 0.135 0.129 0.147 0.163 0.192
20 0.145 0.147 0.150 0.168 0.190 0.209

64 10 0.131 0.142 0.139 0.160 0.192 0.207
LSTM 16 10 0.161 0.147 0.131 0.142 0.162 0.183

32 5 0.152 0.137 0.121 0.135 0.155 0.171
10 0.132 0.136 0.127 0.140 0.152 0.166
20 0.142 0.151 0.149 0.178 0.197 0.198

64 10 0.136 0.138 0.143 0.176 0.192 0.181

56

Table C.4: Comparison of MAPE for Various RNNTraffic Forecasters, Part 2
RNN type width depth step6 step7 step8 step9 step10 step11
GRU 16 10 0.231 0.255 0.241 0.262 0.308 0.348

32 5 0.218 0.243 0.232 0.250 0.293 0.315
10 0.194 0.228 0.216 0.242 0.282 0.323
20 0.218 0.245 0.236 0.262 0.302 0.341

64 10 0.204 0.236 0.228 0.255 0.295 0.324
LSTM 16 10 0.184 0.220 0.207 0.213 0.256 0.320

32 5 0.176 0.207 0.198 0.195 0.232 0.301
10 0.175 0.212 0.209 0.216 0.261 0.319
20 0.210 0.236 0.247 0.249 0.294 0.351

64 10 0.191 0.217 0.215 0.235 0.261 0.327

Table C.5: NN Traffic Forecasting MAPE, Part 1
model step0 step1 step2 step3 step4 step5
TCN 0.151 0.157 0.160 0.160 0.170 0.178
DTCN 0.170 0.174 0.175 0.174 0.179 0.186
GRU 0.150 0.156 0.164 0.175 0.188 0.200
GCNN 0.177 0.178 0.181 0.183 0.187 0.190
GLSTM 0.161 0.166 0.169 0.171 0.174 0.175
LSTM 0.160 0.169 0.179 0.190 0.203 0.215
HistAvg 0.240 0.270 0.318 0.380 0.452 0.535
AR 0.317 0.434 0.647 0.902 1.172 1.296

Table C.6: NN Traffic Forecasting MAPE, Part 2
model step6 step7 step8 step9 step10 step11
TCN 0.184 0.191 0.196 0.205 0.215 0.226
DTCN 0.191 0.194 0.198 0.204 0.213 0.220
GRU 0.213 0.225 0.237 0.254 0.270 0.288
GCNN 0.192 0.197 0.199 0.202 0.206 0.210
GLSTM 0.178 0.182 0.189 0.192 0.198 0.202
LSTM 0.226 0.240 0.253 0.269 0.285 0.303
HistAvg 0.627 0.726 0.832 0.947 1.067 1.194
AR 1.444 1.604 1.789 1.825 1.866 1.913

57

Bibliography

Apache Jena. (2021). https://jena.apache.org. Accessed: 2021-01-01.

Bach, S. H., Broecheler,M., Huang, B., &Getoor, L. (2017). Hinge-loss markov random fields and prob-

abilistic soft logic. The Journal of Machine Learning Research, 18(1), 3846–3912.

Bergmeir, C., & Benitez, J. M. (2012). On the use of cross-validation for time series predictor evaluation.

Information Sciences, 191, 192–213.

Boukerche, A., &Wang, J. (2020). Machine learning-based traffic predictionmodels for intelligent trans-

portation systems. Computer Networks, 181, 107530.

Bruckner, D., Rosen, J., & Sparks, E. (2013). Deepviz: Visualizing convolutional neural networks for im-

age classification.URLhttp://vis. berkeley. edu/courses/cs294-10-fa13/wiki/images/f/fd/DeepVizPaper.

pdf. DIGITS.

Caltrans PeMS Data Warehouse. (2021). pems.dot.ca.gov. Accessed: 2021-01-01.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural

networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., & Singla, P. (2008). Markov logic. In Prob-

abilistic inductive logic programming (pp. 92–117). Springer.

Gentile, C., & Warmuth, M. K. (1998). Linear hinge loss and average margin.Advances in neural infor-

mation processing systems, 11, 225–231.

Hayes-Roth, F., Waterman, D. A., & Lenat, D. B. (1983). Building expert system.

Jiang, H. (2019). Why learning of large-scale neural networks behaves like convex optimization. CoRR,

abs/1903.02140. arXiv: 1903.02140. Retrieved from http://arxiv.org/abs/1903.02140

58

https://jena.apache.org
pems.dot.ca.gov
https://arxiv.org/abs/1903.02140
http://arxiv.org/abs/1903.02140

Jiang,W.,&Luo, J. (2021).Graphneural network for traffic forecasting:A survey.arXiv preprint arXiv:2101.11174.

Khosravi, H., & Bina, B. (2010). A survey on statistical relational learning. In Canadian conference on

artificial intelligence (pp. 256–268). Springer.

LINQS Datasets. (2021). https://linqs.soe.ucsc.edu/data. Accessed: 2021-01-01.

Lu, Q., & Getoor, L. (2003). Link-based classification. In International conference on machine learning

(icml), Washington, DC, USA: HP.

Ma, Y., Zhang, Z., & Ihler, A. (2020). Multi-lane short-term traffic forecasting with convolutional lstm

network. IEEE Access, 8, 34629–34643.

Mallick, T., Balaprakash, P., Rask, E., &Macfarlane, J. (2019). Graph-partitioningbased diffusion convo-

lution recurrent neural network for large-scale traffic forecasting. arXiv preprint arXiv:1909.11197.

Neo4J. (2021). Accessed: 2021-01-01.

Oracle Graph Database. (2021). https://www.oracle.com/database/graph/. Accessed: 2021-01-01.

Resource Description Framework - RDF. (2021). https://www.w3.org/2001/sw/wiki/RDF. Accessed:

2021-01-01.

Richardson, M., & Domingos, P. (2006). Markov logic networks.Machine learning, 62(1-2), 107–136.

Sen, P., Namata, G. M., Bilgic, M., Getoor, L., Gallagher, B., & Eliassi-Rad, T. (2008). Collective classifi-

cation in network data. 29(3), 93–106.

Srinivasan, S., Babaki, B., Farnadi, G., & Getoor, L. (2019). Lifted hinge-loss markov random fields. In

Proceedings of the aaai conference on artificial intelligence (Vol. 33, pp. 7975–7983).

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., . . . Kavukcuoglu, K.

(2016). Wavenet: A generative model for raw audio. arXiv: 1609.03499 [cs.SD]

Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey of approaches

and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12), 2724–2743.

Wei, L., Yu, Z., Jin, Z., Xie, L., Huang, J., Cai, D., . . . Hua, X.-S. (2019). Dual graph for traffic forecasting.

IEEE Access.

59

https://linqs.soe.ucsc.edu/data
https://www.oracle.com/database/graph/
https://www.w3.org/2001/sw/wiki/RDF
https://arxiv.org/abs/1609.03499

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Probabilistic Soft Logic
	Markov Random Fields
	Hinge-Loss Markov Random Fields
	Probabilistic Soft Logic

	Neural Networks
	Deep Neural Networks
	Recurrent Neural Networks
	Temporal Convolutional Neural Networks
	Dilated TCN

	Document Label Prediction
	Data
	PSL Models
	Neural Network Models
	Model Training and Assessment

	Traffic Forecasting
	Data
	Neural Network Forecasting Models
	Model Training and Assessment

	Conclusions
	Document Label Prediction
	Traffic Flow Forecasting

	Appendices
	Markov Random Fields
	Document Classification Model Results Tables
	Time Series NN Forecasting Model Results
	Bibliography

