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Abstract

Residential energy storage (RES) installations have exponentially increased over the last years in the

United States. The cluster of residential battery storage plus solar is also known as distributed nanogrids.

Although fundamentally similar to conventional large-scale microgrids, residential nanogrids o�er the possi-

bility of a widely distributed energy generation and, at the same time, allow the end-user to be ready against

externalities that could cause the electric system suspension for weeks or months. Output power and en-

ergy storage scalability, battery prognosis, and optimal energy management are among the main challenges

these systems face. In most cases, the implementation of control and monitoring strategies at the power

converter and energy management level addresses the challenges mentioned above. This research aims to

study non-linear control schemes at di�erent hierarchical levels of the energy storage systems (ESS) for the

realization of AC residential nanogrids. This dissertation develops a time-varying phasor model for multiple

ESS connected in parallel. The model considers the use of non-linear droop control and virtual impedance

scheme in the power converters of the ESS. Contraction theory is then employed to analyze the stability of

two systems connected in parallel. We also propose a non-intrusive method to estimate lithium-ion battery

modules’ internal impedance used in residential ESS. Such an approach considers the non-linear intrinsic

power transfer characteristic in the DC/AC conversion process for single-phase systems. Such assessment also

allows us to develop a non-linear control law for the DC/DC power converter using feedback linearization

analysis. Finally, we formulate a non-linear optimization problem for the energy management of islanded

residential nanogrids using stochastic dynamic programming. We corroborate and validate the proposed

methods and control schemes using numerical analysis and experimental results throughout the dissertation.
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Chapter 1

AC Residential Nanogrids

The ecosystem of distributed generation is generally divided into two main types, microgrids (MGs) and

nanogrids (NGs) (Werth et al., 2015). MGs, which constitute various types of large-scale distributed energy

resources (DERs) and energy storage systems (ESS) units connected to the mains, can supply power to load

demands generally in the order of megawatts. NGs are typically composed of a single type of renewable

energy systems (RES) such as photo-voltaic (PV) systems, an energy storage system (ESS), and a fuel/gas

generator, with or without the capability to connect to the utility. Residential NGs are typically designed

to serve a single building where maximum power levels are not greater than 10kW . In case of a grid service

interruption, the grid-tied inverter stops the power generation, and the RES, ESS, and the fuel generator

form an autonomous NG.

This chapter will introduce the reader to the concepts of residential nanogrids, especially AC nanogrids,

when they work as autonomous NGs or, as it is commonly known, island operation. It will also present the

main challenges these systems face and the primary motivations for the proposed work.

1.1 ESS and Renewable role on Distributed Energy Generation

Centralized energy generation and distribution have been the electrical power system’s status quo for more

than 100 years. A typical example of a classic power system is shown in Fig. 1.1. Under this scheme, power

generation plants (typically fossil fuel-based) generate electricity in locations that are, in most cases, far from

the end consumer. Multiple high power plans are interconnected at the transmission level, and electricity

normally �ows in one direction, from generation to commercial, industrial, and residential loads. In par-
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ticular, the electricity �owing through the distribution network is unidirectional (Q.-C. Zhong & Tomas,

n.d.).

Power Plant generates electricity Transmission lines carry

electricity long distance

Transformer steps up 

voltage for transmission

Neighborhood 

transformer steps 

down voltage

Distribution lines carry 

electricity to houses 

Transformer on pole steps down electricity 

before it enters the home

Figure 1.1: Typical Centralized Generation Power System

In the last two decades, there has been a strong interest in diversifying the energy generation portfolio by

reexamining the role of renewable energy from the environmental point of view and the economic aspect. The

focus on renewables has gained momentum recently. Such renewed focus, backed by the rapid development

of more e�cient and a�ordable technology, has created the right conditions for the industry to establish itself

solidly (Administration, 2020). Therefore, alternative energy sources make it possible to change the power

�ow’s typical unidirectionality, allowing power generation from the distribution system even at the residential

level as it is shown in Fig.1.2. The creation and widespread implementation of microgrids (MGs), has helped

in the evolution and modernization of the power system. Microgrids are small-scale power networks that

are used to supply local loads in small geographical areas, facilitating the integration of renewable energy

generators and the scalable addition of new generation systems and loads. Microgrids facilitate the reliable

integration of renewable energy resources such as wind, solar generation, and fuel cells through distributed

generators (DGs). The microgrid operates on the idea of autonomous subsystems composed of small local

areas with dedicated control systems that provide guaranteed power quality support to the distribution grid.

The microgrid concept potentially enables high DGs penetration without redesigning or re-engineering the

distribution system itself (Bidram et al., 2017).

The acceptance of renewables into the generation mix has not been seamless and straightforward. In

many instances, solar and wind generation are conceptually di�erent from more conventional means of

energy generation. For example, solar and wind plants are typically more distributed in nature than other

plants, and their production performance is a�ected by the weather. Thus, the need to manage energy for

practical use and stability has been an ongoing concern (Restrepo et al., 2015).
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Power Plant generates electricity Transmission lines carry
electricity long distance

Transformer steps up
voltage for transmission

Neighborhood
transformer steps
down voltage

Distribution lines carry
electricity to houses

Transformer on pole steps down electricity
before it enters the home

Figure 1.2: Distributed Generation Power System

The planning and forecasting of solar and wind production can be highly complicated, and, in some

instances, it is not accurate enough. The susceptibility of solar and wind power generation to weather patterns

in conjunction with expected demand can lead to solutions that may not be e�cient and compliant to all

applications. The use of energy storage together with photovoltaic (PV) and wind power generation o�ers a

the ability to reduce the impact of variability in power generation signi�cantly. Batteries played a principal role

in the evolution of energy storage. Signi�cant research e�ort has resulted in a more sophisticated knowledge

of battery chemistry, which has consequently given a rapid reduction in cost while addressing major concerns

about reliability and stability.

Such declining costs of battery storage technologies have stimulated interest in combining PV with

batteries to provide dispatchable energy and reliable capacity—particularly as the U.S. utility storage market

has begun moving away from short-term power regulation and longer-term temporal shifting of renewable

generation. The signi�cant power interruptions caused by natural disasters such as hurricanes, tornadoes,

�res, among others, have also propelled the need to improve the reliability and resiliency of U.S. electric

systems. The integration of renewable generation and battery storage o�ers a way to cost-e�ectively diversify

and forti�ed the nation’s energy portfolio (Fu. et al., 2018).

Distributed energy generation from homes and in neighborhood locations comes naturally as a reaction

to the demand and low cost of the systems. Residential energy storage (RES) installations have dramatically

increased in the U.S. over the last 3 years, going from less than 5MWh deployments in 2016 to a record

of 40MWh in 2019 (see Fig. 1.3) (Mackenzie, 2020). And it is projected to go over 17 GW peak of battery

storage capacity in 2050 (Administration, 2020). The cluster of residential battery storage plus solar is also

known as distributed nanogrids. Although fundamentally similar to conventional large-scale microgrids,

3



residential nanogrids o�er the possibility of a widely distributed energy generation and, at the same time,

allow the end-user to be ready against externalities that could cause the electric system suspension for weeks or

months. Besides, residential nanogrids support the PV self-consumption while reducing household electrical

demand charges. It provides several grid-level bene�ts such as voltage and frequency regulation, deferred

infrastructure investment, and resource adequacy (Ardani et al., 2016).
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Figure 1.3: U.S. energy storage annual deployment forecast, 2012-2025E(MW). Adapted from (Mackenzie,
2020).

1.2 The Concept of Nanogrids

(Nordman et al., 2012) de�nes a nanogrid as a single domain for voltage, price, reliability, quality, and admin-

istration. The main components of a nanogrid are a controller, load, storage, and gateways. Figure 2.4 shows

a scheme represent ion for a nanogrid. Although energy storage is optional, the addition of such an element

provides the nanogrid with stability and continuous operation; it does, however, add complexity.

• Loads in a nanogrid could be or not (is not necessary) to be controlled in such a way that its power level

could be either curtailed or reduced. For instance, LED lights can be dimmed out to reduce power

consumption, or intelligent breakers can be used to restrict the power consumption from a speci�c

load. Under this scenario, the nanogrid is known to be managed. If loads can not be controllable, then

the nanogrid is unmanaged, i.e., there is no communication between loads and controller (Nordman

& Christensen, 2013).
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Load Load
Battery

Controller

Power

Communications

Grid or local renewable power

Connections to 
other grids

Figure 1.4: Main components in a nanogrid. Adapted from (Nordman et al., 2012)

• The controller of a nanogrid can manage the level of power supplied to the loads, negotiate with other

grids through the gateways, manage internal energy storage. Di�erent hierarchies operate e inside the

controller, going from the gateway controller to the communication, loads, and other nanogrids or

the grid.

• Gateways are generally two ways devices in which power processing and communication take place.

Power processing can be seen as the energy transformation between the energy power source and the

loads and energy storage element. For instance, power converters represent a way to process the energy

and allow the power �ow between other sources and loads. On the other hand, the communication

gateway plays the role of providing the end-user with information about the nanogrid status and the

communication link between multiple controllers facilitating the implementation of interconnected

nanogrids.

• The energy stored in the battery element is controlled depending on the load needs and nanogrid

operation. The controller manages the storage element and has no independent decision-making and

no power connection with the other entity.
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Residential AC nanogrids areas are, as indicated in Fig. 1.2, located at the low voltage distribution level.

In the U.S., such voltage corresponds to 240V Line to Line, with a split-phase characteristic at the connection

point due to the residential transformer component. All the loads connected to the nanogrid are AC loads

typically connected to the 120V line or 240V line with power levels oscillating between 4KW to 20KW

maximum. Typically, the renewable energy source used in AC residential nanogrids is a PV system. When

the PV system is added through a DC/DC hybrid inverter, the AC nanogrid is DC coupled. When The

PV system uses a DC/AC solar inverter, the nanogrid is AC coupled. Fig. 1.5 shows the di�erence between

both types. The energy storage element is generally a battery. The battery output is connected to the AC

connection point through a DC/AC converter (inverter), which controls the battery’s charge and discharge

according to the mode of operation. Depending on the nanogrid design, multiple ESS can be connected

in parallel to increase the energy storage capacity and output power capabilities. Finally, another optional

component of AC nanogrids is backup generators, normally fossil fuel generators, which are used in o�-grid

operation mode.

Meter

Hybrid
Inverter

Batteries

Solar Inverter

Battery Inverter

AC DC

DC Coupled -AC Nanogrid

Meter

AC Coupled -AC Nanogrid

Batteries

Figure 1.5: AC Nanogrids. DC coupled vs AC Coupled.

Modes of operation

• Grid-tied. It is also called on-grid because it is necessary to be connected to the main grid or to a

voltage source to operate. The PV system generates energy injected into the loads directly, and the

energy surplus is fed back to the grid. When a battery is used in the nanogrids, the controller is able

to calculate the excess of energy and decide if such can be used to charge the batteries. Suppose the

load demand is higher than the PV energy available at a particular moment,i.e. cloudy day. In that
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case, the controller decides whether to provide the rest of the energy demand either from the grid or

the batteries.

• O�-grid. It is also called island mode or stand-alone nanogrids. Under this operation, batteries are

not an option and are necessary to keep the nanogrid running. In this case, the system acts in a more

autonomous way providing the load with the demanded energy from the batteries and PV as well

as charging the batteries whenever PV energy is available. Depending on the controller complexity,

and whether or not it is a managed nanogrid, optimization goals such as load shedding, PV energy

optimization, and or fuel consumption optimization (in case of generator utilization) are set. Typically

islanded nanogrids are designed to cover power outage situations in a grid-tied system or for rural area

operations where power system distribution is not available.

Importance of Islanded Nanogrids

Residential nanogrids are crucial for the modernization of the electrical power system. As it was mentioned

before, allowing the incorporation of renewable is only possible by increasing the use of distributed residential

nanogrid, which could allow more robustness for the power system in the aggregation of smart grids and the

consolidation of a modern power system. They do, however, represent a solution for populations for whom

power is vital for their survival. Hurricanes and storms are catastrophic events for the power system. Di�erent

parts of the country are a�ected by such devastating scenarios. In most cases, users have to withstand without

energy access for days and months (O’Neill-Carrillo & Irizarry-Rivera, 2019). The United States Department

of Energy found that an average household in the United States goes without power for 8 hours a year. This

number varies widely among individual states: households in Florida lose power supply on average for 40

hours, whereas those in Washington, D.C. lose power supply for about 2 hours. These power outages occur

for various reasons. Although storms and hurricanes account for the vast majority of these outages, power

network attacks are also a risk to consider. The resilience of a system can be de�ned as its ability to prepare,

predict, sustain and recover from an outage (Chatterji & Bazilian, 2020). In other words implementation

of AC residential nanogrids could help to improve the power system resiliency. On the other hand, the

world faces a global problem of lack of electri�cation in rural areas where approximately 1.2 billion people live

without electric energy access. Di�erent nanogrids used in rural areas have shown the applicability to provide

local communities in third-world countries with basic energy coverage. Increasing the implementation of
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stand-alone nanogrids in rural areas could help developing nations ful�ll other basic needs such as potable

water through the water pump and food providing electricity for working irrigation systems (Sood, 2020).

1.3 Main Challenges of Residential AC Nanogrids

Some of the challenges associated to the adoption of residential nanogrids are :

• Battery capacity and optimization. In a residential nanogrid, the capacity for energy storage is de�ned

by the household size. Optimizing energy consumption patterns, as well as dispatching models based

on renewable energy availability, is essential to guarantee system resiliency. In some cases, such opti-

mization can be achieved by scheduling load consumption or by load curtailment; whereas, in other

instances, optimization in the use of renewable energy resources can also be conceived. The latter

implies a stochastic model over the non-deterministic energy generation pro�le.

• Synchronization and stable operation while o�-grid. Synchronous operation during stand alone per-

formance is critical for increasing system capacity, reliability and resiliency. Stand alone systems are

de�ned as such systems where no utility interconnection is possible. For instance remote rural areas or

locations where natural disasters have occurred and the electric supply could be compromised. Parallel

and synchronous operation of inverters in nanogrids tries to cope with power capacity and system

reliability increase goals, especially for ESS, where multiple systems can be parallelized to combine

and increase the energy storage capacity and output power capabilities. It is well known that parallel

inverters su�er from stability problems when sharing the load power among them.

• E�ciency and reliability. Components of the nanogrid systems have limited life cycles, and manufac-

turers of such systems only guaranteed the operability of such components up to 20 years. In the case

of battery storage nanogrids, reliability plays an important role when it comes to the life span of PV

panels, battery modules or battery cells, and power electronic converters.

The work summarized in this document looks toward the analysis of non-linear control structures used in

the power and energy control in residential AC nanogrids systems. This study was motivated by the challenges

associated with the nanogrids’ power and energy capacity scalability, batteries prognosis analysis, and optimal

energy management, particularly for islanded systems. Chapter 2 proposes using a non-linear droop control

structure that aims to alter conventional linear droops for the bene�t and performance of the active and
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reactive power sharing of multiple inverters connected in parallel in an islanded nanogrid. Challenges over

the system stability are presented when reactive power-sharing is required. Chapter 3 presents the analysis

of the power transfer in residential energy storage systems. A novel method for the online estimation of the

battery impedance based on that analysis is proposed. A non-linear control law for the DC/DC converter

used in these systems is studied. Finally, Chapter 4 shows the study of a non-linear optimization problem for

the energy management of autonomous stand-alone residential nanogrids.

Among the main contributions of this dissertation, the following are the most relevant:

• Development of a non-linear model using time-varying phasor analysis for the electrical behavior of

multiples inverters connected in parallel in stand-alone residential nanogrid.

• Mathematical tool to evaluate the contraction region of two single-phase inverters connected in parallel

sharing reactive power and using a non-linear droop control with virtual impedance.

• A development of an online non-perturbing method to estimate the internal impedance of battery

modules in energy storage systems used in residential AC nanogrids

• Formulation of a non-linear control law based on feedback linearization analysis for DC/DC converters

used in residential energy storage systems.

• Formulation of a non-linear optimization problem for the energy management of an autonomous

residential nanogrid considering the PV energy generation’s as a stochastic process.
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Chapter 2

Island Operation of AC Nanogrids

A partial content of this chapter has been published at APEC 2019.1

Full content of this chapter was submitted to the IEEE Transactions on Energy Conversion.

2.1 Parallel Operation of Inverters

Typically, while residential ESS are connected to the grid, the inverter has to follow the grid reference, therefore

acting as a current source. During o�-grid operation (back-up mode), at least one ESS inverter act as grid

forming, and other components connected to the residential nanogrid, i.e., PV inverters and other ESS

inverters, have to follow this reference. The disadvantages of having inverters still following a voltage reference

in a nanogrid, can vary from slow re-connection to limited capabilities for responding to fast load transient

and di�erent load dynamics.

In order to overcome the aforementioned limitations, it is desired that additional ESS in the nanogrid

operate also as voltage sources and harmonically synchronize with other ESS in the nanogrid. Under this

parallel operation mode, the biggest challenge of the ESS is to guarantee load sharing among di�erent units

connected in parallel (Q. Zhong, 2013).

Recent advances in control of ESS have facilitated their autonomous parallel operation, avoiding com-

munication links between the inverters in the microgrid. The advantages of such inverters con�gurations

include: improved reliability and no constraint on the location of the inverters or ESS units (Guerrero et al.,

2005). To achieve this parallel operation, the conventional droop method is often adopted, which is based on
1A. Berzoy, A. Salazar, F. Khalizheli, C. Restrepo and J. M. Velni, "Non-linear Droop Control of Parallel Split-phase Inverters

for Residential Nanogrids," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019,
pp. 1150-1156, doi: 10.1109/APEC.2019.8721932.
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a well-known concept in large-scale power systems that consists of linearly drooping the frequency/voltage

of AC generator when its output active/reactive power increases.

It is also known that parallel operation of inverters su�er from stability problems when sharing the

load power among them. One of the main challenges in the implementation of droop controllers is the

reactive power sharing mismatch. Realizing accurate reactive power sharing is hard to achieve due to the

voltage di�erences at the inverter’s output terminals caused by unequal line impedance or inverters’ di�erent

ratings. The stability of conventional droops can be compromised under several load and line conditions, as

well as droop parameters. Virtual impedance and nonlinear droop have been proposed in the literature to

improve system stability while enhancing active and reactive power sharing (Berzoy et al., 2019), (Moslemi

& Mohammadpour, 2015). In order to cope with the issues associated with the droop control, di�erent

approaches have been proposed in the literature (Guerrero et al., 2011), (Li & Kao, 2009). For instance, to

improve the active damping of the low-frequency power-sharing modes and the reactive power compensation,

a modi�ed droop function is employed in (Hamzeh et al., 2013). The idea of nonlinear droop was �rst

introduced in (Simpson-Porco et al., 2017), (Simpson-Porco et al., 2013). In (Simpson-Porco et al., 2013), a

nonlinear stability analysis of the frequency-droop controller was performed. In (Simpson-Porco et al., 2017),

a nonlinear stability analysis of the reactive power-sharing was conducted. In neither of those two works,

authors focus on a nonlinear droop equation to reach the desired transient and steady state performance.

References (Bidram et al., 2012), (Q. Zhong, 2013) proposed modi�ed droop control methods focusing on

speci�c drawbacks of the original droop techniques without considering power losses.

Modeling the dynamic behavior of parallel inverters in residential nanogrids can be achieved by di�erent

techniques. Dynamic phasor or time-varying phasor (tvp) theory and small-signal analysis are typically em-

ployed for this purpose (Mariani & Vasca, 2013). Traditional phasor analysis has been used for decades for

transient analysis of power systems under the quasi-stationary assumption; that is, the transients are assumed

to be su�ciently slow so that they can be approximated to be stationary. It has been proven that the e�cient

and fast transient representation of time-varying phasor can be used for the formulation of di�erential equa-

tions in RLC networks while the resulting system in the phasor domain is consistent with the original system

stability properties (Peng et al., 2020) (Venkatasubramanian, 1994).

The main contributions of this paper can be summarized as follows:
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• A time-varying phasor model of N inverters connected in parallel for stand-alone operation in resi-

dential nanogrids is developed and corroborated by comparing against a power electronics switching

simulation and experimental results.

• The developed model is used to study the closed-loop stability of a nonlinear droop control with virtual

impedance using nonlinear contraction theory.

• The stability analysis results demonstrate the criteria for local exponential convergence for any trajec-

tory contained in a ball with constant radius centered at the system equilibrium point.

• Validations through simulation studies and hardware experiments are performed, using single-phase

inverters which are part of a commercially available residential ESS.

2.2 General De�nitions

This section provides preliminaries on fundamental droop control and concept of virtual impedance for

droop control and �nally introduces time-varying phasor notation.

2.2.1 Droop Control

Grid
Droop

equations

Voltage

controller

Voltage

Source

Inverter

P,Q

calculation

Controller

( )refu t

,P Q ,v i
d

Figure 2.1: Simpli�ed block diagram for a droop-based controller.

A basic representation of the droop control scheme is depicted in Fig. 2.1. The voltage controller goal is to

guarantee that the sinusoidal voltage reference is tracked. The reference voltage signal is calculated using (2.1),

where U(t) andω(t) are the instantaneous RMS voltage and frequency values. These variables are obtained
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using the droop equations and are related to the output power of the inverter.

ure f (t) =
√

2 U(t) cos
(∫ t

0
ω(τ)dτ

)
. (2.1)

The droop equations come form the power �ow control theory analysis. Fig 2.2 shows the equivalent

circuit of an inverter connected to an AC bus. The complex power drawn by the bus can be calculated as in

(2.2).

U∠0
V∠δ

Z∠φ

I

S=P+jQ

Figure 2.2: One-line diagram of an inverter connected to an AC bus.

S = P + jQ, (2.2)

where P and Q are active and reactive power respectively, which are obtained using equations 2.3 and 2.4

P =
U2 cos (φ) − U V cos(φ − δ)

Z
, (2.3)

Q =
U2 sin(φ) − U V sin(φ − δ)

Z
. (2.4)

Assuming that the inverter’s output impedance is mainly inductive(i.e. Z = jX) (Guerrero et al., 2005)

and a small phase di�erence between U and V (i.e., sin (δ) ≈ δ and cos (δ) ≈ 1, the expressions for active

and reactive power can be approximated by equations (2.5) and (2.6)

P ≈
U V δ

X
, (2.5)
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Q ≈
U (U − V)

X
. (2.6)

Therefore, there exists a strong correlation between the active power P and the power angle δ, while the

reactive power Q is strongly dependent on the voltage amplitude di�erence U −V . Inverter’s controllers can

adopt droop equations for the frequency and voltage amplitude to mimic AC generator’s inertia. The voltage

amplitude and frequency references can be de�ned as functionsΩ and E, respectively, withΩ : p→ ω and

E : q→ U. Generally,Ω and E are linear functions of the form

Ω(p) = ω̄ − m p, E(q) = Ū − n q, (2.7)

Although classical droop control theory has focused on linear droop relations, it is also possible to use

nonlinear functions, e.g., polynomial representations of degree D as follows

Ω(p) =

D∑
ρ=0

aρpρ, E(q) =

D∑
ρ=0

bρqρ. (2.8)

2.2.2 Virtual Impedance concept

In order to improve the stability of the system, reduce the impact of circulating currents and share linear and

nonlinear loads, one solution is to introduce a virtual impedance into the system by an additional control

loop of the form

ure f = udroop − Zv i, (2.9)

where udroop is the voltage reference delivered by the droop equations, Zv is the virtual output impedance and

i is the inverter output current. Fig. 2.3 shows a modi�ed representation for a droop scheme with the virtual

impedance loop in it. Basically, the voltage drop introduced by the virtual impedance loop increases inverter

output impedance and therefore increases the impedance between the inverter and the common connection

point. This will result in reducing circulating currents in the system (Matas et al., 2010).

2.2.3 Time Varying Phasor Notation

Consider a modulated signal of the form

y(t) =
√

2 Y(t) cos
(
ω t + δy(t)

)
. (2.10)
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Figure 2.3: Simpli�ed block diagram for a droop based controller with virtual impedance.

Mathematically, by phasor representation, time-varying phasor de�nition is given by (2.11), where P is the

phasor transformation operator,

P(y(t)) := ŷ(t) =
√

2 Y(t)e jδy(t). (2.11)

The relation between the original signal y(t) and the time-varying phasor ŷ(t) is given by

y(t) := Re
(
ŷ(t) e jωt) =

√
2Re

(
Y(t) e jωt+δy(t)). (2.12)

If y is a sinusoidal signal with constant magnitude and constant frequency, ŷ is not time dependent and

coincides with classical de�nition of phasors. However, it is a dynamic phasor when Y and δ are time-varying.

A feature for the time-varying phasor transformation comes when the time derivative operation is con-

sidered.

Property 1 :

P(
dy(t)

dt
) =

dP(y(t))
dt

+ jωP(y(t)). (2.13)

This property can be demonstrated by using rule chain on (2.12).
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Figure 2.4: Circuit Scheme of N-Parallel ESS.

2.3 Time-varying Phasor Model for Inverters Connected in Parallel

The analyzed system that is shown in Fig. 2.4 consists of N inverters connected in parallel to a single point of

connection (SPC) and an impedance ZL as load. The subscript k represents the ESS number (k = 1, ...,N).

The line series impedance for each output of the inverters is modeled by a resistance Rk and an inductance

Lk. The output voltage of each inverter is denoted by uk(t) and the output current by ik(t).

De�nition 2.3.1 Let the output voltage of each inverter connected in parallel be represented by the modulated

signal

uk(t) =
√

2Uk(t)cos(θk(t)).

Then,

ûk(t) =
√

2Re(ûk(t)e jθk(t)) = Uk(t) (2.14)

De�nition 2.3.2 Let the output current of each inverter connected in parallel be represented by the modulated

signal

ik(t) =
√

2Ik(t)cos(θk(t) + φk(t)).

Then,

îk(t) =
√

2Re(îk(t)e jθk(t)) = Ik(t)e jφk(t). (2.15)
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De�nition 2.3.3 Let the angle di�erence δk between each inverter and the load voltage angle θL be

δk(t) = θk(t) − θL(t).

De�nition 2.3.4 Let the load voltage be represented by the modulated signal

vL(t) =
√

2VL(t)cos(θL(t)) =
√

2Re(v̂L(t)e jθL(t)).

Then,

v̂L(t) = VL(t)

The load current iL(t) is given by :

iL(t) = i1(t) + i2(t) + · · · + iN(t), (2.16)

where N is the total number of inverters in the nanogrid.

According to 2.11, 2.12 and 2.15, the time dynamic phsaor equivalent for expression 2.16 is given by

iL(t) =
√

2Re(î1(t)e jθ1(t) + î2(t)e jθ2(t) + · · · î(t)Ne jθN (t)). (2.17)

The �rst derivative of iL(t) with respect to t can be obtained by applying the derivative operator on 2.17

diL(t)
dt

=
√

2Re
(dî1(t)

dt
e jθ1(t) + j

dθ1(t)
dt

î1(t)e jθ1(t)

+
dî2(t)

dt
e jθ2(t) + j

dθ2(t)
dt

î2(t)e jθ2(t) + · · ·

+
dîN(t)

dt
e jθN (t) + j

dθN(t)
dt

îN(t)e jθN (t)
)
. (2.18)

For a load impedance de�ned as ZL = RL + jωLL Load voltage can be modeled as

vL(t) = RLiL(t) + LL
diL(t)

dt
. (2.19)
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Substituting (2.16) and (2.18) into (2.19) and using de�nitions 2.3.3, 2.3.4, then the load voltage can be

expressed as :

√
2 Re(v̂L(t)e jθL(t)) =

√
2 Re

(( N∑
k=1

(RL îk(t)e jδk(t) + LL

(dîk(t)
dt

+ j
dθk(t)

dt
îk(t)

)
e jδk(t))e jθL(t)

)
(2.20)

which is Equivalent to

v̂L(t) =

N∑
k=1

RL îk(t)e jδk(t) + LL

(dîk(t)
dt

+ j
dθk(t)

dt
îk(t)

)
e jδk(t). (2.21)

Also, the analysis of each inverter’s output circuit gives

uk(t) − Rkik(t) − Lk
dik(t)

dt
− vL(t) = 0, (2.22)

√
2Re(ûk(t)e jθk(t)) − Rk

√
2Re(îk(t)e jθk(t)) − Lk

√
2Re

(dîk(t)
dt

e jθk(t) + j
dθk(t)

dt
îk(t)e jθk(t)

)
−
√

2Re(v̂L(t)e jθk(t)e− jδk(t)) = 0. (2.23)

√
2Re

(
ûk(t) − Rk îk(t) − Lk

(dîk(t)
dt

+ j
dθk(t)

dt
îk(t)

)
− v̂L(t)e− jδk(t)

)
e jθk(t) = 0. (2.24)

which is Equivalent to

ûk(t) − Rk îk(t) − Lk

(dîk(t)
dt

+ j
dθk(t)

dt
îk(t)

)
− v̂L(t)e− jδk(t) = 0. (2.25)

Substituting (2.21) into (2.25),
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ûk(t) −
(
RkL + jLkL

dθk(t)
dt

)
îk(t) − LkL

dîk(t)
dt

−

N∑
ς=1,∀ς 6=k

(
(RL + jLL

dθς(t)
dt

)îς(t) + LL
dîς(t)

dt

)
e jθςk(t) = 0, (2.26)

where

RkL = Rk + RL,

LkL = Lk + LL,

θςk(t) = θς(t) − θk(t).

Equations (2.26) and (2.25) summarize the tvp model in open loop for N ESS connected in parallel to a

single series inductive-resistive load.

2.3.1 Analysis for two inverters connected in parallel

To analyze the behavior of N = 2 systems connected in parallel to an inductive-resistive load, the model

described by equation (2.26) is used.

û1(t) − Z̄I1(t)î1(t) − ZI2(t)î2(t)e j(θ2(t)−θ1(t)) − L1L
dî1(t)

dt
− LL

dî2(t)
dt

e j(θ2(t)−θ1(t)) = 0. (2.27)

û2(t) − Z̄I2(t)î2(t) − ZI1(t)î1(t)e− j(θ2(t)−θ1(t)) − L2L
dî2(t)

dt
− LL

dî1(t)
dt

e− j(θ2(t)−θ1(t)) = 0. (2.28)

where
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Z̄I1(t) = R1L + jL1L
dθ1(t)

dt
,

ZI2(t) = RL + jLL
dθ2(t)

dt
,

Z̄I2(t) = R2L + jL2L
dθ2(t)

dt
,

ZI1(t) = RL + jLL
dθ1(t)

dt
.

(2.29)

Then, (2.27) and (2.28) can be solved for dî1
dt and dî2

dt .

dî1(t)
dt

=
1
Lo

(
(ZI1(t)LL − Z̄I1 L2L)î1(t)

+ (Z̄I2(t)LL − ZI2(t)L2L)î2(t)e jθ21(t)

− LLU2(t)e jθ21(t) + L2LU1(t)
)
. (2.30)

dî2

dt
=

1
Lo

(
(ZI1(t)L1L − Z̄I1(t)LL)î1(t)e− jθ21(t)

+ (Z̄I2(t)L1L − ZI2(t)LL)î2(t)

− LLU1(t)e− j(θ21(t)) + L1LU2(t)
)
, (2.31)

where

Lo = L1LL2L − L2
L,

θ21(t) = θ2(t) − θ1(t).

The model is completed by de�ning dθ1
dt and dθ2

dt ,

dθ1

dt
= fω1(·) (2.32)

dθ2

dt
= fω2(·) (2.33)
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where fωk(·) is a smooth function.

We can also introduce the dynamic phasor notation for îk(t) as a dynamic complex vector

îk(t) = Ikre(t) + jIkim(t), (2.34)

where

Ikre(t) = Re(îk),

Ikim(t) = Im(îk).

Where re and im can be conceived as operators, giving the real and the imaginary parts of a complex

vector respectively.

In the same manner, the load current can also be represented as dynamic complex vector notation

îL(t) = ILre(t) + jILim(t), (2.35)

where

ILre(t) = I1re(t) + I2re(t),

ILim(t) = I1im(t) + I2im(t).

The time-varying phase for the load current is given by

φL(t) = arctan
(

ILim(t)
ILre(t)

)
. (2.36)

And therefore the tvp notation for the load current îL(t) can be expressed as

îL(t) = IL(t)e− jφL(t), (2.37)

where IL(t) is the time-varying RMS load current.

Model General Form The time-varying phasor states can also be expressed in terms of its real and imagi-

nary components. To facilitate the mathematical development and to avoid the use of additional sub-indices

to represent the imaginary and real operators, the model can be expressed in a general form as ζ̇ = f̂ (ζ)+ ĝ(ζ)u.
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Therefore by using the system in (2.30) and (2.31) and using the states names in (2.38), the full state time-

varying system can be obtained by (2.39).



ζ1

ζ2

ζ3

ζ4

ζ5

ζ6



=



Re(î1)

Im(î1)

Re(î2)

Im(î2)

fω1(·)

fω2(·)



(2.38)

ζ̇1 = −α1ζ1 + ζ̇5ζ2 + α2 cos (ζ5 − ζ6)ζ3 + α2 sin (ζ5 − ζ6)ζ4 +
L2L

Lo
U1 −

LL

Lo
cos (ζ5 − ζ6)U2,

ζ̇2 = −ζ̇5ζ1 − α1ζ2 − α2 sin (ζ5 − ζ6)ζ3 + α2 cos (ζ5 − ζ6)ζ4 +
LL

Lo
sin (ζ5 − ζ6)U2,

ζ̇3 = β2 cos (ζ5 − ζ6)ζ1 − β2 sin (ζ5 − ζ6)ζ2 − β1ζ3 + ζ̇6ζ4 −
LL

Lo
cos (ζ5 − ζ6)U1 +

L1L

Lo
U2,

ζ̇4 = β2 sin (ζ5 − ζ6)ζ1 + β2 cos (ζ5 − ζ6)ζ2 − ζ̇6ζ3 − β1ζ4 −
LL

Lo
sin (ζ5 − ζ6)U1,

ζ̇5 = fω1(·),

ζ̇6 = fω2(·).

(2.39)

where

α1 = (L2L(R1 + RL) − LLRL)/Lo,

α2 = (LL(R2 + RL) − L2LRL)/Lo,

β1 = (L1L(R2 + RL) − LLRL)/Lo,

β2 = (LL(R1 + RL) − L1LRL)/Lo.

Assuming small signal variation between the systems’ phases,i.e. θ1 ≈ θ2 the open-loop model of the

system is then approximated by
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ζ̇1 = −α1ζ1 + ζ̇5ζ2 + α2ζ3 + α2(ζ5 − ζ6)ζ4 +
L2L

Lo
U1 −

LL

Lo
U2,

ζ̇2 = −ζ̇5ζ1 − α1ζ2 − α2(ζ5 − ζ6)ζ3 + α2ζ4 +
LL

Lo
U2(ζ5 − ζ6),

ζ̇3 = β2ζ1 − β2(ζ5 − ζ6)ζ2 − β1ζ3 + ζ̇6ζ4 −
LL

Lo
U1 +

L1L

Lo
U2,

ζ̇4 = β2(ζ5 − ζ6)ζ1 + β2ζ2 − ζ̇6ζ3 − β1ζ4 −
LL

Lo
U1(ζ5 − ζ6),

ζ̇5 = fω1(·),

ζ̇6 = fω2(·).

(2.40)

2.3.2 Closed Loop Model

In this section it will be shown how the developed model in (2.40) can be used to study the closed loop

stability of the system with di�erent droop control structures including the virtual impedance concept.

Each inverter output reference voltage can be calculated by using (2.41)

Uk(t) = Ūk + nk(Q̄k − qk(t)), (2.41)

where pk is de�ned by 2.42 and qk is de�ned by 2.43.

pk(t) = Re(Uk î∗gk
) = Uk(t)Re(îk(t)). (2.42)

qk(t) = Im(Uk î∗gk
) = −Uk(t)Im(îk(t)). (2.43)

Substituting (2.42) and (2.43) into (2.41), the expression in (2.44) for the closed loop output voltage

reference is obtained. Such expression will be used in the following sections to develop the closed loop time-

varying model for three di�erent cases. Case I Linear droop. Case II, Non linear droop. Case III Non-linear

droop with virtual impedance.

Uk(t) =
Ūk + nk Q̄k

1 − nk Im(îk(t))
(2.44)
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Case I. Linear Droop Relation

The classical linear droop functions are of the general form

dθk

dt
= ω̄k + mk(P̄k − pk(t)). (2.45)

Substituting (2.42) into (2.45), the following expression in time-varying phasor notation is obtained,

dθk

dt
= ω̄k + mk(P̄k − Uk(t)Re(îgk(t))). (2.46)

Assuming small angle variation, the closed loop model can be deduced by substituting (2.46) into (2.40).

ζ̇1 = −α1ζ1 + (ω̄1 + m1P̄1)ζ2 + α2ζ3 + α2(ζ5 − ζ6)ζ4 + (
L2L

Lo
− m1ζ1ζ2)U1 −

LL

Lo
U2,

ζ̇2 = −(ω̄1 + m1P̄1)ζ1 − α1ζ2 − α2(ζ5 − ζ6)ζ3 + α2ζ4 + m1ζ
2
1U1 +

LL

Lo
U2(ζ5 − ζ6),

ζ̇3 = β2ζ1 − β2(ζ5 − ζ6)ζ2 − β1ζ3 + (ω̄2 + m2P̄2)ζ4 −
LL

Lo
U1 + (

L1L

Lo
− m2ζ3ζ4)U2,

ζ̇4 = β2(ζ5 − ζ6)ζ1 + β2ζ2 − (ω̄2 + m2P̄2)ζ3 − β1ζ4 −
LL

Lo
U1(ζ5 − ζ6) + m2ζ

2
3U2,

ζ̇5 = ω̄1 + m1(P̄1 − U1ζ1),

ζ̇6 = ω̄2 + m2(P̄2 − U2ζ3).

(2.47)

The closed loop model is completed by substituting (2.44) into (2.47).
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ζ̇1 = −α1ζ1 + (ω̄1 + m1P̄1)ζ2 + α2ζ3 + α2(ζ5 − ζ6)ζ4+

(
L2L

Lo
− m1ζ1ζ2)(

Ū1 + n1Q̄1

1 − n1ζ2
) −

LL

Lo
(
Ū2 + n2Q̄2

1 − n2ζ4
),

ζ̇2 = −(ω̄1 + m1P̄1)ζ1 − α1ζ2 − α2(ζ5 − ζ6)ζ3 + α2ζ4+

m1ζ
2
1 (

Ū1 + n1Q̄1

1 − n1ζ2
) +

LL

Lo
(ζ5 − ζ6)(

Ū2 + n2Q̄2

1 − n2ζ4
),

ζ̇3 = β2ζ1 − β2(ζ5 − ζ6)ζ2 − β1ζ3 + (ω̄2 + m2P̄2)ζ4−

LL

Lo
(
Ū1 + n1Q̄1

1 − n1ζ2
) + (

L1L

Lo
− m2ζ3ζ4)(

Ū2 + n2Q̄2

1 − n2ζ4
),

ζ̇4 = β2(ζ5 − ζ6)ζ1 + β2ζ2 − (ω̄2 + m2P̄2)ζ3 − β1ζ4−

LL

Lo
(ζ5 − ζ6)(

Ū1 + n1Q̄1

1 − n1ζ2
) + m2ζ

2
3 (

Ū2 + n2Q̄2

1 − n2ζ4
),

ζ̇5 = ω̄1 + m1(P̄1 − (
Ū1 + n1Q̄1

1 − n1ζ2
)ζ1),

ζ̇6 = ω̄2 + m2(P̄2 − (
Ū2 + n2Q̄2

1 − n2ζ4
)ζ3).

(2.48)

Case II. Non-linear Droop

In this section, a new family of functions for the frequency droop is introduced. Equation (2.49) represents

the general form of this function for each inverter. This function is based on the work presented in (Berzoy

et al., 2019), where the performance of the nonlinear droop controllers was compared against commonly

known linear droop functions. The superiority of this type of nonlinear functions, when it comes to power

sharing capabilities, was demonstrated through simulations in (Berzoy et al., 2019).

dθk

dt
= ω̄k + GPk tanh (mk(P̄k − pk(t))). (2.49)

where positive scalar GPk can be used to set the frequency variation allowed.

The closed loop system model using small angle approximation, is de�ned by substituting (2.49) into

the model (2.40).
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ζ̇1 = −α1ζ1 +
(
ω̄1 + GP1 tanh (Θ1(ζ1, ζ2))

)
ζ2 + α2ζ3 + α2(ζ5 − ζ6)ζ4

+
L2L

Lo

(Ū1 + n1Q̄1

1 − n1ζ2

)
−

LL

Lo

(Ū2 + n2Q̄2

1 − n2ζ4

)
,

ζ̇2 = −
(
ω̄1 + GP1 tanh (Θ1(ζ1, ζ2)))

)
ζ1 − α1ζ2 − α2(ζ5 − ζ6)ζ3 + α2ζ4

+
LL

Lo
(ζ5 − ζ6)

(Ū2 + n2Q̄2

1 − n2ζ4

)
,

ζ̇3 = β2ζ1 − β2(ζ5 − ζ6)ζ2 − β1ζ3 +
(
ω̄2 + GP2 tanh (Θ2(ζ3, ζ4))

)
ζ4

−
LL

Lo

(Ū1 + n1Q̄1

1 − n1ζ2

)
+

L1L

Lo

(Ū2 + n2Q̄2

1 − n2ζ4

)
,

ζ̇4 = β2(ζ5 − ζ6)ζ1 + β2ζ2 − β1ζ4 −
(
ω̄2 + GP2 tanh (Θ2(ζ3, ζ4))

)
ζ3

−
LL

Lo
(ζ5 − ζ6)

(Ū1 + n1Q̄1

1 − n1ζ2

)
,

ζ̇5 = ω̄1 + GP1 tanh (Θ1(ζ1, ζ2)),

ζ̇6 = ω̄2 + GP2 tanh (Θ2(ζ3, ζ4)).

(2.50)

Where,

Θ1(ζ1, ζ2) = m1
(
P̄1 −

( Ū1+n1Q̄1
1−n1ζ2

)
ζ1

)
,

Θ2(ζ3, ζ4) = m2
(
P̄2 −

( Ū2+n2Q̄2
1−n2ζ4

)
ζ3

)
.

Case III. Non-linear Droop with Virtual Impedance

In section 2.2.2, the concept of virtual impedance was introduced. Fig. 2.3 shows how the virtual impedance

produces voltage drop in the reference voltage with respect to the droop voltage. The virtual impedance (Zv

) analyzed in this chapter is assumed to have a resistive component (Rv) and a reactive component (ωoLv).

Zv = Rv + jωoLv. (2.51)

In a single phase inverter, the virtual impedance is introduced by decomposing the inverter’s output current

(ik(t)) into an in-phase and quadrature components as it is shown by Fig. 2.5. In a real implementation, the

decomposition is made thorough a Second Order Integrator (SOGI). Such �lter structure introduces a delay;

however, for the present analysis the delay is not considered.
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Figure 2.5: Virtual Impedance implementation in a control loop.

The in-phase (ikd ) and quadrature (ikq components are de�ned by equations (2.52) and (2.53).

ikd (t) =
√

2Ik(t) cos(ωt + φk(t)), (2.52)

ikq(t) =
√

2Ik(t) cos (ωt + φk(t) −
π

2
). (2.53)

Therefore, the virtual voltage (Uvk ) is de�ned by equation 2.54

Uvk(t) =
√

2Ik(t)Rvk cos(ωt + φk(t)) −
√

2Ik(t)ωoLvk cos (ωt + φk(t) −
π

2
). (2.54)

Which can be also expressed as

Uvk(t) =
√

2Re
(
(Ik(t)Rvke

jφk(t) − Ik(t)ωoLvke
j(φk(t)− π2 ))e jωt). (2.55)

Applying the dynamic phasor de�nition, the dynamic phasor representation is given by equation 2.56.

ûvk(t) = (Rv + jωoLv)Ik(t)e jφk(t). (2.56)

Substituting de�nition 2.15 into equation 2.56 expression 2.57 is obtained,
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ûvk(t) = (Rv + jωoLv)îkt(t). (2.57)

where the real and imaginary part of the dynamic phasor can be obtained as

Re(ûvk(t)) = RvkRe(îkt(t)) − ωoLvkIm(îkt(t)), (2.58)

Im(ûvk(t)) = ωoLvkRe(îkt(t)) + RvkIm(îkt(t)). (2.59)

In this case, the output voltage ûk(t) is modi�ed in function of the virtual voltage ûvk(t) and droop voltage

ûdroop(t) as

ûk(t) = ûdroop(t) − ûvk(t). (2.60)

where the dynamic phasor representation of the droop voltage is given by

ûdroop(t) = Udroop(t)e jα(t). (2.61)

And from equation 2.43 the magnitude of the dynamic phasor is obtained by

Udroop(t) = Ūk + nk(Q̄k + Im(îk(t))Uk(t)). (2.62)

According to the model de�nition 2.3.1, the output voltage phase is assumed zero. And therefore

Im(ûdroop(t)) − Im(ûvk(t)) = 0 (2.63)

and consequently

Uk(t) = Re(ûdroop(t)) − Re(ûvk(t)). (2.64)

The magnitude of the droop voltage can also be expressed in terms of the real part of ûdroop(t) and the

imaginary part of ûvk(t).
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Udroop(t) = ((Re(ûdroop(t)))2 + (Im(ûvk(t)))
2)

1
2 . (2.65)

Therefore, by solving (2.65) forRe(ûdroop(t)) and substituting (2.62) into (2.64), the expression for Uk(t)

in terms of the model state variables is as follows,

Uk(t) =
Dk +

(
D2

k − (Re(ûvk (t))
2 + Im(ûvk (t))

2 − Ū2
k )Ξk

) 1
2

Ξk
, (2.66)

where

Ξk = 1 − n2
kIm(îk(t))2,

Dk = ŪknkIm(îk(t)) − Re(ûvk(t)),

Q̄k = 0.

Using voltage and frequency relations found in (2.66) and (2.49) into the open-loop system described

in (2.40), the dynamic system equations for two inverters connected in parallel using nonlinear frequency

droop and virtual impedance can be represented by (2.67).

ζ̇1 = −α1ζ1 +
(
ω̄1 + GP1 tanh (m1(P̄1 − U1ζ1))

)
ζ2 + α2ζ3 + α2(ζ5 − ζ6)ζ4 +

L2L

Lo
U1 −

LL

Lo
U2,

ζ̇2 = −
(
ω̄1 + GP1 tanh (m1(P̄1 − U1ζ1))

)
ζ1 − α1ζ2 − α2(ζ5 − ζ6)ζ3 + α2ζ4 +

LL

Lo
(ζ5 − ζ6)U2,

ζ̇3 = β2ζ1 − β2(ζ5 − ζ6)ζ2 − β1ζ3 +
(
ω̄2 + GP2 tanh (m2(P̄2 − U2ζ3))

)
ζ4 −

LL

Lo
U1 +

L1L

Lo
U2,

ζ̇4 = β2(ζ5 − ζ6)ζ1 + β2ζ2 − β1ζ4 −
(
ω̄2 + GP2 tanh (m2(P̄2 − U2ζ3))

)
ζ3 −

LL

Lo
(ζ5 − ζ6)U1,

ζ̇5 = ω̄1 + GP1 tanh (m1(P̄1 − U1ζ1)),

ζ̇6 = ω̄2 + GP2 tanh (m2(P̄2 − U2ζ3)).

(2.67)

where,

U1 =
ζ2LU1 − ζ1Rv1 +

(
(ζ2LU1 − ζ1Rv1)2 − (Z2

v1
(ζ2

1 + ζ2
2 ) − Ū2

1)(1 − (n1ζ2)2)
) 1

2

1 − (n1ζ2)2 ,

U2 =
ζ4LU2 − ζ3Rv2 +

(
(ζ4LU2 − ζ3Rv2)2 − (Z2

v2
(ζ2

3 + ζ2
4 ) − Ū2

2)(1 − (n1ζ2)2)
) 1

2

1 − (n1ζ2)2 .

LU1 = Ū1n1 + ωoLv1 ,
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Z2
v1

= R2
v1

+ (ωoLv1)
2,

LU2 = Ū2n2 + ωoLv2 ,

Z2
v2

= R2
v2

+ (ωoLv2)
2.

2.3.3 Stability analysis using contraction theory

De�nition 2.3.5 Given the system equations dx
dt = f (x), a region of the state space is called a contraction

region if the Jacobian is uniformly negative definite in that region.

In other words, the contraction region C is approximated by the matrix inequality

C ,

{
x ∈ Rn :

1
2

(
∂ f (x)
∂x

+
∂ f (x)T

∂x

)
≤ −βI

}
,

where β > 0 and I is the identity matrix.

More generally, by convention, all matrix inequalities will refer to the symmetric parts of the square

matrices involved. Therefore, the above expression can be rewritten as

C ,

{
x ∈ Rn :

∂ f (x)
∂x

≤ −βI
}
.

The implications of a contraction region are analyzed for more general nonlinear systems in (LOHMILLER

& SLOTINE, 1998) where Theorem 1 (see below) is presented. Basically, the existence of contraction region

is necessary to guarantee exponential convergence between any two given trajectories contained in a ball in

the contraction region. If the trajectory for which the ball is centered to is an equilibrium point, then the

contraction region represents an estimate of the domain of attraction, and therefore, any trajectory start-

ing at an initial condition around the equilibrium will converge to equilibrium point, but not necessarily

exponentially.

Theorem 1 Given the system model dx
dt = f (x), any trajectory, which starts in a ball of constant radius cen-

tered about a given trajectory and contained at all times within a contraction region, remains in that ball and

converges exponentially to the trajectory.
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Theorem 2 Consider the system described by (2.67) with predominant inductive load, i.e., XL � RL. The

reduced-order model of the system can be described by dx
dt = f (x), where x ∈ R2 and x1, x2 represent the real

and imaginary states for the dynamic current vector, respectively. An approximation of the contraction region

for any trajectory centered at x1 = 0 and with the use of a resistive virtual impedance, i.e., Zv = Rv, is defined

by the following subset

C ,
{
x2 ∈ R, ∀ x1 = 0,

−Ū
Rvk

< x2 ≤ 0 : Rvk + Λ(x2) > 0
}
, (2.68)

where

Λ(x2) = 2 Rk + 2π κGP (Lk + 2 LL) x2 (Ū2 − R2
vk

x2
2)

1
2 .

Proo f : We assume that both inverters under analysis have identical parameters in terms of the line

impedance and droop gains, even further, both droop gain parameters mk and nk are equal to κ, where κ > 0.

We can say then without the loss of generality that perfect synchronization is achieved and

ζ5 = ζ6, (2.69)

ζ1 = ζ3 = x1, (2.70)

ζ2 = ζ4 = x2. (2.71)

Substituting the equalities above into (2.67), the reduced-order model is obtained in the general form dx
dt =

f (x), where f (x) is given by

f (x) =

α x1 +
(
ω̄ + 2πGP tanh (κ(P̄ −U x1))

)
x2 + U

Lk+2LL

−
(
ω̄ + 2πGP tanh (κ(P̄ −U x1))

)
x1 + α x2.

 (2.72)

where

U =
x2 κ Ūk − x1 Rvk +

(
Υk(x1, x2)

) 1
2

1 − (κ x2)2 ,

Υk(x1, x2) = (x2 κ Ūk − x1 Rvk )
2 − (R2

vk
(x2

1 + x2
2) − Ū2

k )(1 − (κx2)2),

α = −
RK + 2RL

Lk + 2LL
.

In order to simplify the analysis, the droop parameters P̄ and Q̄ are assumed to be zero, which means that the

initial conditions for frequency and voltage at the origin are ω̄ and Ū, respectively. Since XL � RL, we can
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also say, without the loss of generality, that RL = 0 and therefore α ≈ −RK
Lk+2LL

and the trajectory is centered at

x1 = 0.

The Jacobian matrix J is obtained from the system in (2.72) and the aforementioned assumptions are

used in the result.

J =

α +
Lk

(
Rvk +

Rvk Ū κ x2
σ2

)
Lo σ3

+ σ1 ω̄ −
Lk

(
Ū κ+

x2 Rvk
2 (κ2 x2

2+σ3)
σ2

)
Lo σ3

+ σ5

−ω̄ α


where

σ2 =
√

Ū2 κ2 x2
2 − σ3 σ4,

σ3 = κ2 x2
2 − 1,

σ4 = Ū2 − Rvk
2 x2

2,

σ5 = 2 Lk κ
2 x2 σ1

Lo σ32 .

σ1 =
2 πGP κ x2 (σ2+Ū κ x2)

σ3

By using de�nition 2.3.5, the contraction region can be obtained by evaluating the eigenvalues (λ) of the

Jacobian of the system J in (2.72) as

λ =


Ψ(x2)+

√
Γ(x2)

2 Lk (Lk+2 LL) (κ2 x2
2−1) (R2

vk x2
2(κ2 x2

2−1)+Ū2)
1
2

Ψ(x2)−
√

Γ(x2)
2 Lk (Lk+2 LL) (κ2 x2

2−1) (R2
vk x2

2(κ2 x2
2−1)+Ū2)

1
2

 , (2.73)

where

Ψ(x2) = Lk Rvk Ū κ x2 + 2 πGP Lk (Lk + 2 LL) κ x2 %
2+

%Lk
(

Rvk + 2 Rk(1 − κ2 x2
2) + 2 πGP (Lk + 2 LL) Ū κ2 x2

2
)
, (2.74)

and

% =
(
R2

vk
x2

2(κ2 x2
2 − 1) + Ū2) 1

2 .

For small κ, we can say, without the loss of generality, that

(κ2 x2
2 − 1) < 0, (2.75)
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and therefore

% ∈ R ⇐⇒ x2 <
Ū
Rvk

. (2.76)

The same condition holds for Γ : R→ C ⇐⇒ x2 <
Ū

Rvk
. Thus, the only condition for the Jacobian J to

be positive de�nite is given by

Ψ(x2) > 0. (2.77)

Using conditions in (2.76) and (2.75), the function Ψ(x2) can be approximated as

Ψ(x2) ≈ (Ū2 − R2
vk

x2
2)
(LkRvk + 2RkLk

(Ū2 − R2
vk

x2
2)

1
2

+ 2πGPκ Lk (Lk + 2 LL) x2

)
. (2.78)

Therefore, according to the condition in (2.76), Ψ(x2) > 0 if the following holds true

Rvk + 2Rk + 2πGPκ (Lk + 2 LL) x2 (Ū2 − R2
vk

x2
2)

1
2 > 0.� (2.79)

The results presented in Theorem 2 show that it is possible to design a virtual impedance with only a

resistive component that could guarantee exponential convergence in systems with predominantly inductive

loads. Theorem 2 shows that by using a virtual impedance, the contraction region could be expanded, as

well as the ball radius inside of the region allowing a more relaxed convergence condition. At the same time,

it is important to mention that according to (2.64) and (2.58), there should not be any voltage drop in the

output voltage other than the voltage reference provided by the droop equation. This means that under

reactive loads conditions, having virtual impedance with mostly resistive component guarantees not only

exponential convergence and system stability, but also proper voltage regulation in the system; this is desired

in a residential nanogrid operation, where voltage sags and swells are more noticeable and critical for the end

user.

2.4 Numerical Analysis and Validation

In this section, two sets of results are presented. The �rst results correspond to the comparison of the closed-

loop model developed in (2.67) against experimental and simulation results. The second set of results show

the analysis and validation of the contraction region theorem presented in Theorem 2. In the latter, a speci�c
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load condition is studied and an analysis over di�erent values of Rvk is presented. Experimental results validate

the numerical analysis.

2.4.1 Experimental Setup

The experiments were performed using the setup illustrated in Fig. 2.6. It consisted of two Energy Storage

Systems (ESS), ESS-1 and ESS-2. Each ESS consisted of a set of Li-Ion batteries and a single-phase inverter. The

AC output of each system is connected to common connection in a breaker box where they are connected to

an Inductive/Resistive load (RL load). The computers were used to provide the synchronization commands

for initialization and the whole system operates as an islanded nanogrid. A Yokogawa DL850E ScopeCorder

was used to record the output currents, voltages, active and reactive powers.

Figure 2.6: Experimental setup used in this study with the components labeled.

The systems parameters used for the numerical analysis in the next sections are shown in Table 2.1.

Table 2.1: System parameters

Parameter Value Parameter Value
Lk 50 µH Rk 10 mΩ

Ūk 125 V ω̄k 376.99 rad/s
nk 5e-4 mk 5e-4
P̄k 0 Q̄k 0
GP 0.2 ωo 376.99 rad/s
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2.4.2 Closed-loop Model Validation

The results obtained from the time-varying phasor closed loop model developed in this paper and presented

in (2.67) are compared against real-time hardware and simulation results. The experimental results were

obtained through the set-up presented in section 2.4.1. The simulation results were obtained using a Simulink

model (full switching-model) which considers the switching operation of the inverters, as well as the dynamic

behavior of the DC link capacitors and batteries.

Fig. 2.7 shows the system behavior when the virtual impedance parameters are set to Rvk = 0.5 Ω and

Lvk = 4 mH. Output current (i1) of inverter-1 is captured on the ScopeCorder channel 2 (CH2) and the

output voltage (u1) on channel 1 (CH1). The two inverters are synchronized at the beginning of the test, and

then a load of RL = 1.5Ω, LL = 16.75mH is connected and disconnected 3.5 seconds later. The bottom plot

is the zoomed area during the load connection moment. In this case, the current demanded by the inductive

load is properly shared by the two inverters while there is a voltage sag from 176Vpk to 155Vpk, around 20V .

The output voltage and output current dynamic is simulated using the closed-loop tvp model. Fig. 2.8 and

Fig. 2.8 show the results of the tvp model compared against the full switching model and the real hardware

results. Output voltage and output current are compared as well as the output active and reactive powers for

inverter-1. The obtained results show how the proposed closed loop tvp model is able to produce results very

close to the Simulink full-switching model, not only the steady steady state response, but also the transient

response. Due to the ScopeCorder resolution, there is a small di�erence between the real hardware and the

simulated transient behavior (not only for the tvp model, but also for the full-switching model), however, the

steady behavior matches very closely for the three presented cases. With a root mean square error (RMSE) of

0.29 when compared against experimental results and 0.0783, when it is compared against the full switching

model simulation.

Additional results are presented in Fig. 2.10 and 2.11, where the virtual impedance parameters are set to

Rvk = 1 Ω and Lvk = 0. Fig. 2.10 shows the output current and output voltage captured by an oscilloscope. It

can be seen that in this case, despite having the same load conditions, the voltage remains almost constant or

with minimal output voltage variation during the transient. This behavior supports the theoretical analysis

obtained in (2.56) and (2.57) and the bene�t of using only resistive virtual impedance with predominantly

reactive loads. Additionally, Fig. 2.11 shows comparison of the output active power and reactive power among

the three cases, tvp model, switching model and real hardware test. It can be observed how close the tvp

model results are to the output of the full switching model during the transient and steady-state operation.
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Figure 2.7: Inverter-1 system response. Rvk = 0.5 Ω and Lvk = 4 mH. Load transient of LL = 16.5 mH and
RL = 1.5 Ω. CH1 Output voltage, u1. CH2, Output Current, i1.

Although there is a di�erence between the experimental results and the tvp model during the transient, which

can be due to the scope-corder resolution used during the test, the steady-state values are very close for the

three cases, and the plots suggest an exponential convergence for the three cases.

2.4.3 Examining the Contraction Regions Using Numerical Analysis and Exper-

imental Validation

To validate the results obtained by Theorem 2, an analysis over the approximation of the contraction region

for di�erent values of Rvk under no load conditions was performed. Such condition is introduced as a high

load impedance parameter in the model. The approximated contraction regions for di�erent trajectories

close to the origin are depicted in Fig. 2.12. It can be observed that higher values of Rvk expand the region.

On the other side, lower values of Rvk make the region smaller and therefore exponential convergence can
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Figure 2.8: Comparison of tvp model, full switching model and real hardware results. Rvk = 0.5 Ω and
Lvk = 4 mH. Load transient of LL = 16.5 mH and RL = 1.5 Ω. a) Time-varying RMS Output voltage, U1.
b) Time-varying RMS Output current, I1.

only be guaranteed for trajectories that are in close vicinity to the origin. Thus, the larger the values of Rvk

are, the stronger criterion for exponential convergence for any trajectory will be.

The validation of the numerical analysis is con�rmed through experimental results, which are presented

in Fig. 2.13. Fig. 2.13-a shows the current response for Rvk = 0.5. Here, the current signal oscillates around the

equilibrium point because the exponential convergence criterion is limited to trajectories that are very close to

0 or to the origin. On the other hand, Fig. 2.13-b shows results after the virtual impedance increases to a very

high value Rvk � 1. Here, the convergence is not only exponential but also has a faster convergence rate due

to a stronger stability criterion given by the expanded contraction region. Fig. 2.13-c shows an intermediate

result for Rvk = 1. Exponential convergence to the system equilibrium point is achieved but with a slower

rate.
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Figure 2.10: Inverter-1 system response. Rvk = 1 Ω and Lvk = 0. Load transient of LL = 14.9 mH and
RL = 0.5 Ω. CH1 Output voltage, u1. CH2, Output Current, i1.
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Figure 2.12: Approximated contraction regions for di�erent values of Rvk .
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Chapter 3

Battery Storage in AC residential

nanogrids

A partial content of this chapter has been published at ECCE 2017 1, ECCE 2019 2, and in the book Fault

Diagnosis for Robust Inverter Power Drives, 2018 3.

3.1 Battery Storage

3.1.1 Batteries Principle of Operation

In the last decade, the high penetration of renewable energy sources and the accelerated demand for Electric

Vehicles (EVs) has resulted in the batteries to play a critical role in the worldwide energy future.

The chemical energy contained in batteries active materials is converted into electrical energy through an

electrochemical oxidation-reduction (redox) reaction. This type of reaction involves the transfer of electrons

from one material to another through an electrical circuit.

The operating principle of a single cell (the basic building block of a battery) is visualized in Fig. 3.1.

Here, two electrodes (anode and cathode) are submerged in an electrolyte component, which provides the

medium for the transfer of charge. During the electrochemical reaction, the anode is oxidized while it is giving
1A. Salazar, C. Restrepo, Y. Gao, J. M. Velni and A. Ginart, "An online LiFePO4 battery impedance estimation method for

grid-tied residential energy storage systems," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH,
USA, 2017, pp. 980-986, doi: 10.1109/ECCE.2017.8095892. Copyright ©2017, IEEE

2A. Salazar, A. Berzoy and J. M. Velni, "Nonlinear Control Design for Bidirectional Synchronous Buck-Boost Converters
used in Residential Battery Storage Systems," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD,
USA, 2019, pp. 2485-2490, doi: 10.1109/ECCE.2019.8912221. Copyright ©2019, IEEE

3Llinas, Andres Salazar; Ginart, Antonio; Velni, Javad Mohammadpour: ’Battery storage’ (Power and Energy, 2018), ’Fault
Diagnosis for Robust Inverter Power Drives’, Chap. 7, pp. 253-270, DOI: 10.1049/PBPO120E_ch7
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up electrons to the external circuit; meanwhile, the cathode is reduced while accepting electrons from the

external circuit. Depending on the type of electrolyte and cathode, the process can be reversible or not. Non-

rechargeable batteries are known as primary batteries, whereas rechargeable batteries are called secondary

batteries.
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Figure 3.1: Basic operation of a single battery cell during discharge. Reproduced with permission from (Salazar
et al., 2018).

The general advantages of primary batteries are good shelf life, high energy density at low to moderate

discharge rates, and low maintenance (Batteries et al., 2004). Secondary batteries are characterized (in addi-

tion to their ability to be recharged) by high power density, high discharge rate, �at discharge curves, and

good low-temperature performance (Batteries et al., 2004). Secondary batteries can also be classi�ed by the

type of chemistry they use. Among the most common one are:

• Lead-acid batteries: This was the �rst battery type that could be recharged by passing a reverse cur-

rent through it. The lead-acid battery uses lead dioxide (PbO2) as the active material of the positive

electrode, and metallic lead (Pb) in a high-surface-area porous structure as the negative active material.

The electrolyte is a sulfuric acid solution:

Pb + PbO2 + 2 H2SO4
discharge
−−−−−−−−→ 2 PbSO4 + 2 H2O

Pb + PbO2 + 2 H2SO4
charge
←−−−−−− 2 PbSO4 + 2 H2O

Lead-acid batteries can be found in Energy Storage Systems (ESSs), emergency power systems, and

electric and hybrid vehicles. They are also used in combustion engine vehicles’ lighting and engine

ignition circuits.

• Nickel-cadmium batteries: This is the most popular type of alkaline secondary batteries. The charge/discharge

mechanism in the alkaline electrolyte involves only the transport of oxygen or hydroxyl ions from one
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electrode to the other; hence, the concentration of the electrolyte does not change during charge and

discharge. Nickel-cadmium (NiCd) batteries are found in di�erent design forms and sizes, such as

sealed pocket plate and vented pocket plate. The reactions of charge and discharge can be illustrated

by the following simpli�ed equations:

2 NiOOH + 2 H2O + Cd
discharge
−−−−−−−−→ 2 Ni(OH)2 + Cd(OH)2

2 NiOOH + 2 H2O + Cd
charge
←−−−−−− 2 Ni(OH)2 + Cd(OH)2

The main application of NiCd is with cordless electronic tools. It is also used in applications, such as

aircraft engine starting, as well as communications and electronics equipment.

• Lithium-ion batteries: These are the most popular type of secondary batteries nowadays. Lithium-ion

(Li-ion) batteries are comprised of cells that employ lithium intercalation compounds as the posi-

tive and negative materials. The positive electrode material is typically a metal oxide with a layered

structure, such as lithium cobalt oxide (LiCoO2), or a material with a tunneled structure, such as

lithium manganese oxide (LiMn2O4), on a current collector of aluminum foil. The negative electrode

material is typically a graphitic carbon, also a layered material, on a copper current collector. In the

charge/discharge process, lithium ions are inserted or extracted from interstitial space between atomic

layers within the active materials.

Applications for Lithium-ion batteries range from commercial electronics, such as cell phones and

laptops, to Electric Vehicles (EVs) and Energy Storage Systems (ESSs).

This chapter focuses on lithium-ion batteries. It also covers relevant aspects of this technology, focusing on

the Impedance Measurement as a diagnostic tool mechanism for detecting aging on this type of batteries.

Furthermore, we divide such mechanisms into online and o�ine methods based on their means of operation

during the service time of the battery.

Important Parameters of Batteries

• Capacity. This measures the amount of charge that the battery can deliver at the rated voltage. It is

measured in Ampere hours (Ah). The Energy Capacity relates the capacity to the battery voltage, and

it is measured in Watt-hours (Wh).
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• C-Rate. This is a measure of the rate of the battery’s discharge relative to its capacity. It is de�ned as

the multiple of the current over the discharge current that the battery can sustain over one hour. The

C-rate of 1 for a 10 Ah battery corresponds to a discharge current of 10 A over 1 hour.

• SoC. This measures the percentage of the battery capacity available for charging or discharging.

• Power. This describes the capability of the battery for charge or discharge at a speci�c current level.

There are two parameters to describe power: (1) Power Density: Power per volume, and (2) Speci�c

Power: Power per weight. Depending on the application, one of these might be more important than

the other. For example, for a cell phone, the power density is more important, whereas for an electric

vehicle, speci�c power has more value.

• Cycle Lifetime Aging. It is de�ned as the number of charging and discharging cycles after which the

battery capacity drops below 80% of the nominal value.

• Calendar Life Aging. Calendar aging comprises all aging processes that lead to a degradation of a

battery cell independent of charge-discharge cycling.

3.1.2 Li-ion Batteries

Lithium-ion cells are composed of four components: a positive electrode, a negative electrode, an electrolyte,

and a separator in between them. The positive electrode is made of a metal oxide material (such as lithium

cobalt oxide LiCoO2), a material with a tunneled structure (such as lithium manganese oxide LiMn2O4),

or a material with an olivine structure (such as lithium iron phosphate LiFePO4). The negative electrode is

built up of carbon (graphite), and the electrolyte varies depending on the type of battery technology. The

separator prevents physical contact between the anode and the cathode, while facilitating ion transport in

the cell (Wakihara et al., 1998), (Pistoia, 2013). Throughout the charge process of the battery, the lithium

positive electrode pulls out some of its lithium ions, which move through the electrolyte to reach the negative

electrode and remain there. When the cell is discharging, the lithium ions move back across the electrolyte

to the positive electrode, producing the energy required by the load connected to the battery. In both cases

electrons �ow in the opposite direction from the ions around the outer circuits. Electrons do not �ow

through the electrolyte, which behaves as an insulating barrier for them. The �ows of ions (through the

electrolyte) and electrons (around the external circuit, in the opposite direction) are interconnected processes,

and if either one of them stops, the other also stops. If ions stop moving through the electrolyte because the
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Figure 3.2: Discharging process of a lithium-ion cell (Adapted from (Wakihara et al., 1998)). Reproduced
with permission from (Salazar et al., 2018).

battery completely discharges, then the electrons cannot move through the outer circuit either, so the power

is lost. Furthermore, at no-load conditions, the electron �ow stops and consequently the �ow of ions also

stops, forcing the battery to stop discharging. (Fujisawa, 1989)

Evolution of Cathodes Technologies: It took around 30 years to reach the basis of what we know

today as commercial rechargeable high-energy density Li-ion batteries. The research of di�erent compounds

and materials to improve the e�ciency and power density of the cell started in early 70s, when Matsushita

introduced a lithium-carbon mono�uoride (Li-CFx) primary cell. In 1975 Sanyo was the �rst company to

commercialize lithium-manganese dioxide cells (Li-Mn2). It was a not rechargeable cell but was able to pro-

duce a voltage of 3.5 V. The basic usage of these cells was for cameras and memory backup applications. In the

following years great e�orts were made to convert lithium cells into rechargeable cells with high energy density.

Di�erent materials were studied, without achieving any competitive advantage, except by the Polyacene (PAS)

battery, for which the main use was in the production of coin cells for memory backups (Wakihara et al.,
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1998). Between 1973 and 1976, Whittingham at Exxon developed a novel material for the cathode based on

a titanium disul�de cathode and started the principle of lithium-ion rechargeable batteries, which he called

Intercalation compounds. Exxon commercialized this �rst rechargeable battery with a lithium-aluminum

anode, but its low-voltage pro�le (only around 2 V) made it insu�cient for many applications (Pistoia, 2013).

In 1980, Goodenough developed the Li-Cobalt Oxide as a cathode material at Oxford. This new compound

o�ered a higher energy density than lithium-ion cells (Wakihara et al., 1998). The applications and market

were not foreseen at that time, and it was only in 1991 when Sony, using the developments made by Yoshino

(Fujisawa, 1989), started the commercialization of the �rst rechargeable LiCoO2 battery. The cell was based

on the Goodenough discovery but with the addition of a carbonized material in the anode. Another cath-

ode structure was developed in 1983 at Oxford within the Goodenough research group. Later, Thackeray

developed the structure called spinel and used a compound based on manganese dioxide MnO2 (Thackeray

et al., 1983). This new compound would o�er price advantages over the cobalt compound; however, its lower

capacity and stability issues gave priority to LiCoO2, enabling the latter to take over the market. In 1997,

Goodenough, this time with the Univ. of Texas at Austin, developed a new material for the cathode: Li-ion

Iron Phosphate (LiFePO4). This material gave the cell better stability, �attening the discharge characteristic

pro�le and bringing the following advantages (Padhi, 1997):

• High output performance with standard discharge for 2 to 5C and continuous discharge high current

capacity of up to 10C and the instantaneous discharge pulse up to 20C.

• Good performance is observed at high temperatures from 65 to 95 degree Centigrade keeping the

battery in good safe condition.

• It shows excellent life cycles as after 6000 cycles also it shows discharge capacity to be above 80%. [10]

• It gets quickly charged with much less time compared to other batteries.

• It is an environmental-friendly battery which does not produce any waste.

Although the advances in new materials for anode and cathode are being made in di�erent laboratories

around the world, commercially speaking, LiCoO2 and LiFePO4 are the leading technologies for EV and

grid energy storage systems.
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3.1.3 Electrical Model of Li-ion Batteries

Fig. 3.3 illustrates a suitable AC impedance model for a battery, with speci�c characteristics parameters for Li-

ion. The components of this circuit are as follows: (1) parasitic inductor Le; (2) ohmic resistance Ro; (3) charge

transfer resistance Rct; (4) double-layer capacitor Cdl as a result of activation polarization; and (5) Warburg

impedance Zw as a result of concentration polarization (Cho et al., 2016). The battery AC impedance Zac

can then be expressed as follows:

Zac(ω) = jLeω + Ro + (Rct + Zw)‖
1

jCdlω
. (3.1)

A Nyquist plot for the battery impedance is shown in Fig. 3.4. Normally, this plot is obtained by an

Electrochemical Impedance Spectroscopy (EIS) analysis, measuring the phase displacement between current

and voltage when an oscillatory current, at di�erent frequencies, is injected into the battery. The parameters in

(3.1) can be estimated by di�erent techniques as described in (Stroe, Swierczynski, Stan, et al., 2014) and (Tang

et al., 2011). In the middle frequencies, the e�ect of the Warburg impedance and the inductance component

are not that evident; hence, for injected currents with frequencies in that range, the AC impedance can be

modeled as:

Zac(ω) = Ro + (Rct‖
1

jCdlω
). (3.2)
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3.1.4 Aging of Li-Ion Batteries

We distinguish between two types of aging happening in a battery: cycle aging, occurring mainly due to

regular battery operation, and calendar aging, occurring even if the battery is not under operation. Some of

the consequences of aging in Lithium-ion batteries are described below.

Corrosion in the copper collector may lead to contact loss and hence to an increase in the contact resis-

tance. At the same time, the anode will start changing its morphological structure due to cycle aging. Due to

high charging/discharging currents in combination with low temperatures, the Li+ ions cannot intercalate

fast enough into the anode material, and lithium deposits are formed on the graphite surface. The growth

of these deposits and the formation of dendrites can destroy the separator, leading to thermal runaway in

the cell. Over the cycle life of the battery, formation of a solid-electrolyte interphase (SEI) occurs typically
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at the negative electrode during recharging. Initially, SEI formation protects the electrode against solvent

decomposition at large negative voltage, but over time it leads to a gradual decrease in capacity as the SEI

layer thickens. Above a certain threshold, �lms become resistive, which is considered an aging e�ect. On

the other hand, decomposition of the SEI can result in lithium corrosion and thus in irreversible energy loss.

Especially at high temperatures (≥60 degree Celsius), the SEI layer begins to decompose, causing the anode’s

passivation to fail. Similarly to the anode, the current collector su�ers from corrosion; furthermore, changes

in the cathode morphology and decomposition of the binder are some of the e�ects resulting from cycle

aging of the cell (Schlasza et al., 2014).

The quanti�cation of the current battery life is described by the state of health (SOH). This factor can

be studied from two di�erent points of view: �rst, by comparing the actual capacity of the battery to the

capacity of a new battery and expressing this in a percentage. Normally, when the capacity decreases to 80%

of the manufacturer’s rated capacity, the battery is considered to be at the end of its operational life. Second

point of view is achieved by means of measuring the internal resistance. An increase of the internal resistance

resulting from aging e�ects in the cell leads to a reduction of the battery’s power capabilities.

Method for Detection of Aging in Batteries using Impedance Measurement

It has been shown in previous studies that the real (or ohmic) part of the battery increases with the increase of

battery life cycles (Stroe, Swierczynski, Stan, et al., 2014), (Micea & Ungurean, 2011). Fig. 3.5 shows a typical

Nyquist plot of a Li-ion battery at the beginning of and end of its life. This illustrates that it is possible to

examine the battery lifetime by measuring the battery impedance.

There exist di�erent ways to measure the battery impedance in order to determine the SOH. The majority

of those methods are based on the measure of voltage and current in the battery and the calculation of the

battery impedance as

Z(ω) =
V(ω)
I(ω)

. (3.3)

We can distinguish between two methodologies for measuring the battery impedance. O�ine methods are

based on a parameter estimation of the battery packs or cells while they are not operational. The measurement

occurs after the battery is neither charging nor discharging, and the parameters are �tted using the battery

electrical model. On the other hand, online methods are used while the battery is operating, meaning that non-

interruption of the charge/discharge process is needed. These methods are more suitable for implementation

as part of the Battery Management System (BMS) algorithms. The aging is then detected by comparing
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Figure 3.5: AC-battery impedance before and after aging. Reproduced with permission from (Salazar et al.,
2018)

the baseline impedance measurement at the beginning of the battery life against the obtained impedance

calculation, as shown in (3.4), where Reol is the resistance at the end of life, Rbol is the resistance at the

beginning of life and R is the measured resistance.

S OHR =
Reol − R

Reol − Rbol
. (3.4)

Online Measurement Methods

Online methods are characterized by exploiting the characteristics of the systems in which the batteries are

used. These methods are mainly applicable and suitable for EV applications or ESS applications in which

online prognosis of the batteries is used for determining levels of system maintenance.

Quasi-Electrochemical Impedance Spectroscopy (QEIS): QEIS is a novel alternative to the EIS. In

QEIS, high-frequency oscillations occurring in the battery current, and voltage during acceleration and

regenerative braking in EVs, are exploited to perform the impedance measurement across the frequency

spectrum. Contrary to EIS, QEIS does not perform a periodical current or voltage perturbation. The method
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instead uses the real current and voltage values of the module during an in-use load cycling scenario as input

data in order to calculate an impedance spectrum, or so-called QEIS, which could be �tted to an equivalent

electrical circuit model (Mingant et al., 2016):

Z(ω) =
V(ω)
I(ω)

=

2
T V(ω) ∗ I(ω)
2
T I(ω) ∗ I(ω)

=
ψIV(ω)
ψI(ω)

, (3.5)

where ψ denotes the power spectral density (PSD).

Motor Control Excitation: This method is also suitable for EV applications. It uses an excitation current

generated by a motor controller. To mitigate the presence of noise in the measurement signals, a statistical

correlation approach is used. The excitation in the current signal comes from variations in either the main

traction current to the driver or the controller response. Authors in (Howey et al., 2014) demonstrate the capa-

bility of this method by obtaining the impedance measurement in the presence of noise in the measurement

signals and then applying a QEIS for calculating the impedance spectrum.

Additional
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Ibatt

Vbatt

Imotor DC

EIS Measurement Control
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Gate Signals

Figure 3.6: Battery impedance using motor control excitation. Adapted from (Howey et al., 2014). Repro-
duced with permission from (Salazar et al., 2018)

Duty Cycle Perturbation in DC/DC Converter: This battery impedance measurement is performed

during system operation. In this method, instead of injecting the AC signal through an external generator,
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the duty-cycle value of the DC/DC power converter, which is used to interface the battery with the load, is

sinusoidal perturbed at a given frequency around its steady-state DC value (the duty-cycle value needed to

achieve a desired output voltage). This duty-cycle perturbation results in sinusoidal variations of the battery

voltage and the battery current around their corresponding steady-state DC values as

d(t) = Ddc + Dac sin
(
ωpt

)
, (3.6)

where ωp is the perturbation signal frequency. The sinusoidal ripple of the battery voltage and the battery

current are then measured and used to determine the AC impedance of the battery at the perturbation

frequency. The proposed method can be either continuously or periodically performed without interrupting

the normal operation of the battery system and the power converter. Fig. 3.7 and Fig. 3.8 show respectively the

circuit and waveforms presented in (Huang & Qahouq, 2014) (Qahouq, 2016) to demonstrate the e�ciency

of the method.
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Figure 3.7: Duty cycle perturbation in DC converters. Adapted from (Huang & Qahouq, 2014). Reproduced
with permission from (Salazar et al., 2018)

3.2 Residential Bi-directional Inverters and Control Schemes

Grid-tied battery storage systems (BSS) consist of a rechargeable energy source module, a grid-tied inverter

and a charge controller. The latter controls the charge and discharge of the battery while protecting the

battery electro-chemistry, whereas the inverter serves as the interface between the batteries and mains for the
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Figure 3.8: Battery impedance measurement using duty-cycle perturbation. Adapted from (Huang & Qa-
houq, 2014). Reproduced with permission from (Salazar et al., 2018)

power transfer. Generally, a residential battery storage system faces challenges associated with single-phase

systems, such as a pseudo-pulsating power transfer, in addition to those related with bidirectional capabilities

and ancillary services. Also, the U.S. split-phase power system has created a need for inverters capable of

supporting two phase unbalanced loads with center tap grounded operation. Moreover, the BSS typically

o�ers the advantage to work on back-up mode in situations where the national grid is absent (Berzoy et al.,

2019). Latest advancements in semiconductor technology have allowed the use of transformer-less inverters

for these systems. Commercially available transformer-less inverters utilize bidirectional dc/dc converters for

avoiding the use of battery modules in series and the separation of the control activities (Ginart et al., 2016).

The former reason establishes a cost-e�ective system while the latter decreases the system complexity.

The most common type of control scheme for bidirectional dc/dc converters is based on proportional-

integral (PI) controllers, which allow to track an output voltage reference in the presence of load disturbances.

However, the system operation for charging or discharging the batteries varies unpredictably which results in

highly nonlinear characteristics (Wang et al., 2014). Therefore, the use of nonlinear control schemes has been

exploited to overcome the underlying challenges and improve the system performance. In (Wang et al., 2014),

a time delay control (TDC) is implemented for a lithium-ion battery applications, when linear dc loads are
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considered. In (Fadil et al., 2012), a back-stepping design technique is used to optimally control the voltage

of a boost converter for photovoltaic (PV) applications. A back-stepping design technique is also used in

Abouloifa and Giri, 2004 for regulating the output current for a buck-boost ac/dc converter while correcting

the power factor at the ac connection point. Sliding mode control is applied in (Benadero et al., 2015) for a

bidirectional dc/dc power converter to control the dc bus voltage in a dc microgrid, considering a constant

power load. It is noted that the results presented in (Abouloifa & Giri, 2004; Benadero et al., 2015; Fadil et al.,

2012) are merely based on circuit simulations.

Feedback linearization (FBL)-based control approaches have been employed in di�erent mechanical and

electrical systems. Several publications show its applicability in power converters. In (Solsona et al., 2015),

the authors formulate a feedback controller based on FBL combined with a feed-forward strategy to control

a dc/dc buck converter. The authors in (Mahmud et al., 2014) propose a controller using partial FBL and

guarantee the robustness of this control scheme by considering structured uncertainties within a renewable

energy system (RES). In (Perez et al., 2018), a dynamic FBL control strategy is proposed to regulate the

voltage on the dc bus for a dc microgrid. The work in (Zheng & Shuai, 2012) proposes the use of FBL

for controlling the output voltage of a boost converter connected to a resistive load, and simulation results

are shown and compared against other nonlinear control design techniques such as passivity-based control.

Finally, in (Callegaro et al., 2018), a nonlinear controller is designed for PV modules integrated with dc/dc

converters.

3.3 Online Battery Impedance Estimation

Non-perturbing Method for Residential ESS: The most recent online method for estimating a Li-ion

battery AC impedance at twice the fundamental grid frequency has been proposed by the authors of this

chapter. The proposed method presented in (Salazar et al., 2017) does not require perturbing the power

electronics control of the inverter used in AC nano-grid applications interacting with the AC power grid

through single-phase inverters. This method di�erentiates from those found in the literature, because those

methods focus only on EVs and other DC applications in which no interaction with AC sources is required.

Furthermore, the above methods involve the use of a perturbation in the power electronics duty cycle, and

hence require modifying the closed-loop control of the power converters. A single-phase power system

experiences a pulsating power transfer between the batteries and the AC source, which can be computed
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based on the energy conservation principle as

pDC(t) = iDC(t) vDC(t) = η i(t) v(t) = pAC(t). (3.7)

Assuming that the e�ciency η and the power factor are equal to one, the instantaneous values for the

current and voltage are obtained from (3.8), where ω0 = 2π f0 and f0 is the fundamental frequency of the

power grid (Ginart et al., 2016):

vDC iDC =
√

2VRMS sin(ω0t)
√

2IRMS sin(ω0t) = 2VRMS IRMS sin2(ωt). (3.8)

As a result, the battery DC current should have a quadratic sine form as

iDC(t) =
2VRMS IRMS sin2(ω0t)

vDC
. (3.9)

A plot of IDC(t) is shown in Fig. 3.10. Assuming no losses in the power conversion process, the battery DC

current can be rewritten as

iDC(t) = 2IDC sin2(ω0t). (3.10)

This leads to the conclusion that the current waveform �owing through the battery in a DC/AC energy

conversion process is alternating at twice the frequency of the fundamental grid frequency, and hence

iDC(t) = IDC(1 + cos(2ω0t)) = IDC + Îbatt(t), (3.11)

where Îbatt(t) is the AC component of the battery current. Fig. 3.11 depicts the actual measurement of the

battery current and voltage during the DC/AC power conversion that demonstrates the quadratic sine wave

form of the current and also its in�uence over the DC voltage, where a ripple oscillation with the same

frequency of the current is present. It is clear then that both measurements have a DC component and AC

components.

The following equation is employed to represent the transfer function of the AC battery impedance

derived from (3.2):

Zac(s) =
s2RaCdl + s(RoRaCdl) + Ro + Ra

sRaCdl + 1
. (3.12)
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Figure 3.10: Battery current shape during the power conversion process. Reproduced with permission from
(Salazar et al., 2018).
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During the DC/AC power conversion process, the battery’s over potential voltage (Vop) at twice the grid

frequency can be obtained by combining (3.12) and (3.11) as

Vop ≡ |Zac(2ωo)| IDC cos(2ωot + 6 Zac(2ωo)), (3.13)

whereωo = 2π fo and fo is the frequency of the power grid.

The AC part of (3.13) represents the voltage ripple caused by the oscillatory behavior of the current at

2 fo. It is possible to approximate the AC component of the voltage in the battery terminals by Vop, i.e.,

V̂batt ≡ V̂op. Then, the AC battery impedance at the frequency 2 fo can be expressed as

|Zac(2ωo)| =
F {V̂batt(t)}

F {IDC cos(2ωot + 6 Z(2ωo))}
, (3.14)

where F denotes the Fourier transform. This shows that by only measuring the current flowing into the

battery and the voltage in the battery terminals, an estimation of the internal AC impedance of the cells, for

a specific grid frequency, can be achieved. The proposed online method for battery impedance estimation
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consists of sampling the voltage vDC(t) and current iDC(t) at the battery terminals, and then, obtaining the

high frequency components by removing the DC components using a moving average �lter. The following

di�erence equation shows the recursive representation of this �lter:

y(k) = ax(k) + y(k − 1) + bx(k − N), (3.15)

where a = 1/N, b = −1/N and N is the number of samples. For the initialization of this �lter, i.e., k = 1,

it is required to store N elements in order to calculate y(0) = M, where M is determined by averaging the

stored N samples as:

M =
1
N

N∑
k=1

x(k).

Then, the �ltered signal is passed through a second order Goertzel �lter, which will allow the extraction

of the signal magnitude at the desired frequency (Jaber & Massicotte, 2010). The transfer function of this

�lter is given by

H(z) =
v(z)
y(z)

=
1 − w

−
2 f0N

Fs
N z−1

1 − (2 cos
(

4π f0
Fs

)
)z−1 + z−2

, (3.16)

where Fs is the sampling frequency. With N samples, the �lter output will give the signal Fourier transform

at the frequency 2 f0 as

V̂(2 f0) = cos
(
4π f0

Fs

)
v(N − 1) − v(N − 2) + j sin

(
4π f0

Fs

)
v(N − 1). (3.17)

Finally the impedance of the battery at twice the grid frequency is obtained by dividing the real part of

the processed battery voltage V̂batt and battery current Îbatt as

Zac(2 f0) =
Re(V̂batt(2 f o))
Re(Îbatt(2 f o))

. (3.18)

3.4 Nonlinear DC/DC Control

The general basic structure of a synchronous buck-boost converter is shown in Figure 3.12. It is composed

of two fully controlled switching elements (Q1 and Q2), two diodes (D1 and D2) and two passive elements

(L and C). The voltage of the energy storage source (battery) is indicated by vin. Typically, the converter
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Figure 3.12: System diagram of the synchronous buck-boost converter with a nonlinear load. Copyright
©2019, IEEE

analysis is performed using a linear resistive element as the load; however, in this work, classical linear loads

are replaced by a dynamic nonlinear load represented by the dc/ac converter which has bidirectional output

power po. The winding copper losses in the inductor were also considered in the analysis and illustrated by

rL.

The converter dynamics are controlled by the switching gate signals Q1 and Q2. Both switches are syn-

chronized: when Q1 is turned on/o�, then Q2 is turned o�/on. The converter operates as a boost and as a

buck converter depending on two variables: the switching sequence and the current on the inductance L or

the power �ow. When the current iL is positive (Fig. 3.12), the synchronous buck-boost converter behaves as

a boost converter through Q1 and D2 and in this scenario, the energy is transferred from the battery to the

dc-link and the ac side (load). On the other hand, when iL < 0, the converter behaves as a buck converter

through Q2 and D1. Under these circumstances, the energy �ows from the dc-link to the battery. For this

model, the output power �ow is controlled by the bidirectional inverter. The following power �ow conven-
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tion was considered in the dynamic model presented in the following subsection, where if po < 0 the inverter

is discharging to the grid, whereas if po > 0 the inverter is charging from the grid.

The main goal for the control is to regulate the output voltage or dc-link voltage (vc) while keeping the

energy �ow stability between the battery and the dc-link, thus increasing the inverter’s degree of freedom by

releasing it from the dc-link control and allowing the natural charge/discharge of the battery driven by the

power set point on the ac side.

Model Description

The converter dynamics can be modeled during one switching period (Ts) to obtain the converter nonlinear

average model. When Q1 is on (Q2 is o�), the output voltage (dc-link voltage) and inductor’s current are

given by:

diL(t)
dt

=
1
L
(
vin(t) − rLiL(t)

)
,

dvc(t)
dt

=
po(t)

Cvc(t)
.

(3.19)

When Q2 is on (Q1 is o�), the output voltage and inductor’s current are given by:

diL(t)
dt

=
1
L
(
vin(t) − rLiL(t) − vc(t)

)
,

dvc(t)
dt

=
1
C

(
iL(t) +

po(t)
vc(t)

)
.

(3.20)

The average model is then obtained by combining (3.19) and (3.20) Erickson and Maksimovic, 2001, where

d(t) represents the input signal (duty cycle) to the system which in the switched model will be the input of

the pulse width modulation (PWM). The signal d′(t) is the complement of d(t) de�ned by d′(t) = 1 − d(t).

Then, the average nonlinear state-space representation of the system is given by:

d〈iL(t)〉
dt

=
1
L
(
〈vin(t)〉 − rL〈iL(t)〉 − (1 − 〈d(t)〉)〈vc(t)〉

)
d〈vc(t)〉

dt
=

1
C

(〈po(t)〉
〈vc(t)〉

+ (1 − 〈d(t)〉)〈iL(t)〉
)
,

(3.21)

where 〈〉 is the average operator.
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Dropping the average operator and the time dependency, the model can be rewritten in the form of

ẋ = f (x) + g(x)u, with x1 = iL, x2 = vc and u = d, as:

ẋ1 =
1
L
(
− rLx1 − x2 + vin + x2u

)
,

ẋ2 =
1
C

(
x1 +

po

x2
− x1u

)
,

(3.22)

where

f (x) =


1
L (−rLx1 − x2 + vin)

1
C (x1 +

po
x2

)

 , g(x) =


x2
L

−x1
C

 .
3.4.1 Stability Analysis of the Open-loop System

The system equilibrium points are found by solving:

ẋ1 =
1
L

(−rL x̄1 − x̄2 + v̄in + x̄2ū) = 0,

ẋ2 =
1
C

(x̄1 +
p̄o

x̄2
− x̄1ū) = 0,

(3.23)

where x̄1 and x̄2 are the state variables at the equilibrium. The following relations are obtained:

ū = 1 +
rL x̄1 − v̄in

x̄2
,

x̄1 =
−p̄o

(1 − ū)x̄2
.

(3.24)

Bifurcation Analysis

By linearizing the nonlinear system equations around the equilibrium points, Jacobian matrix (J) is obtained

as

J =


−rL
L

ū−1
L

1−ū
C

−p̄o

Cx̄2
2

 . (3.25)

Finding the eigenvalues of this matrix gives the conditions for stability of the open-loop system:

λ1,2 = −
1
2

(
rL

L
+

p̄o

Cx̄2
2

)
1
2

√
(
rL

L
+

p̄o

Cx̄2
2

)2 −
4

LC
(
rL p̄o

x̄2
2

+ (1 − ū)2). (3.26)
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The system around the equilibrium point is a stable focus if p̄o > 0; however, it could become an unstable

focus when p̄o becomes negative, which means that while the system is discharging the batteries, it becomes

unstable under open-loop operating conditions. The condition for stability of open-loop system is then given

by p̄o ≤
CrL x̄2

2
L . This condition becomes a design rule for the minimum dc-link capacitor (Cmin) required

under the absence of any feedback control action:

Cmin ≥
p̄omax L
rL x̄2

2

, (3.27)

where p̄omax is the maximum power allowed for discharging in steady state under no feedback control.

Assuming the constant parameters given in Table 3.1 and setting the output power po as the changing

parameter, a bifurcation diagram is obtained as shown in Figure 3.13. The phase portraits for two di�erent

power conditions are also plotted in �gures 3.14 and 3.15. It is seen how for po = −4000W the �ux lines

denote the behavior of an unstable focus as they are leaving the trajectory, while for po = −1000W the �ux

lines are entering the trajectory (stable focus). This analysis complements the results obtained in the previous

subsection.
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Figure 3.13: Bifurcation analysis. Copyright ©2019, IEEE.
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Figure 3.15: Phase portrait stable focus for po = −1000W . Copyright ©2019, IEEE.

3.4.2 Feedback Linearization Control

In this section, we describe the process of designing the controller based on feedback linearization.
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Feedback Linearization

The main goal of the control is to maintain output voltage at a desired (reference) value, x̄2 = vre f , while the

inductor’s current is stabilized at its equilibrium point (x̄1). Furthermore, the control action must provide

a fast transient response considering the switching frequency of the converter. The control law is designed

using the transformed system for which the equilibrium point is located at the origin with new state variables

de�ned as ζ1 = x1 − x̄1 and ζ2 = x2 − x̄2.

The transformed state-space model derived from (3.22) is given by

ζ̇1 =
1
L
(
− rL(ζ1 + x̄1) − (ζ2 + x̄2) + vin + (ζ2 + x̄2)u

)
,

ζ̇2 =
1
C

(
ζ1 + x̄1 +

po

ζ2 + x̄2
− (ζ1 + x̄1)u

)
,

(3.28)

which can further be represented as ζ̇ = φ(ζ) + γ(ζ)u with

ζ̇ =


1
L (−rL(ζ1 + x̄1) − (ζ2 + x̄2) + vin)

1
C (ζ1 + x̄1 +

po
ζ2+x̄2

)

 +


ζ2+x̄2

L

−(ζ1+x̄1)
C

 u. (3.29)

In order to know if the system (3.29) is feedback linearizable, the following theorem is employed Khalil,

2015.

Theorem 3 The system ζ̇ = φ(ζ) + γ(ζ)u is feedback linearizable if and only if there is a domain D0 ⊂ D,

such that:

• The matrix Λ(ζ) = [γ(ζ), adφγ(ζ), · · ·, adn−1
φ γ(ζ)] has rank n for ∀ ζ ∈ D0.

• The distribution D = span
{
γ, adφγ, · · ·, adn−2

φ γ
}

is involutive in Do.

In the above theorem, n denotes the system order and adφγ(ζ) denotes the Lie bracket of φ and γ, which

is de�ned as adφγ(ζ) =
∂γ

∂ζ
φ(ζ) − ∂φ

∂ζ
γ(ζ).

The following equation shows matrix Λ(ζ) (in Theorem 1), whose rank was determined to be 2, and

hence the �rst condition of Theorem 3 is satis�ed:

Λ(ζ) =


ζ2+x̄2

L
L2 po−LCrL(ζ2+x̄2)2

L3C(ζ2+x̄2)

−(ζ1+x̄1)
C

rL(ζ1+x̄1)−vin
LC −

po(ζ1+x̄1)
(C(ζ2+x̄2))2

 . (3.30)
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Finally, the second condition of Theorem 1 is satis�ed since the span for the vector γ belongs to Λ.

Therefore, the system described by (3.29) is feedback linearizable. Since the system is feedback linearizable,

then there exists a di�eomorphism T : D → Rn such that the change of variables z = T (ζ) transforms the

system into the form de�ned by

ż = Az + Bξ(ζ)[u − α(ζ)]. (3.31)

The system transformation can take place by using:

z = T (ζ) =

 h(ζ)

Lφh(ζ)

 ,
if and only if there exists a function h(ζ) that satis�es Lγh(ζ) = 0 subject to the condition LγLφh(ζ) 6= 0.

The Lie derivative of h with respect to φ is denoted as Lφh(ζ) and de�ned as Lφh(ζ) = ∂h
∂ζ
φ(ζ).

A candidate for the function h(ζ) that satis�es the above condition is:

h(ζ) = Lζ2
1 + Cζ2

2 + 2Lζ1 x̄1 + 2Cζ2 x̄2. (3.32)

Then,

Lγh(ζ) =

[
2L(ζ1 + x̄1) 2C(ζ2 + x̄2)

] 
ζ2+x̄2

L

−(ζ1+x̄1)
C

 = 0.

Checking the condition LγLφh(ζ) 6= 0, it is found that LγLφh(ζ) =
∂ψ

∂ζ
γ(ζ), whereψ(ζ) = ∂h

∂ζ
φ(ζ). Then,

the condition is satis�ed:

LγLφh(ζ) = −((x̄2 + ζ2)(4rLζ1 − 2vin + 4x̄1rL))/L 6= 0.

The di�eormorphism T (ζ) can then be found from

T (ζ) =

 Lζ2
1 + Cζ2

2 + 2Lζ1 x̄1 + 2Cζ2 x̄2

−2rL x̄2
1 − 4rL x̄1ζ1 + 2vin x̄1 − 2rLζ

2
1 + 2vinζ1 + 2po

 . (3.33)

The control input u to linearize the system (3.31) is found to be

u =
−Kz
ξ(ζ)

+ α(ζ), (3.34)
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where ξ and α are de�ned as

ξ(ζ) = LγLφh(ζ), α(ζ) =
L2
φh(ζ)

LγLφh(ζ)
, (3.35)

which leads to the closed-loop system ż = (A − BK)z, where A and B are the matrices of the state-space

model de�ned in (3.36) in canonical controller form. The closed-loop system is then described by:

ż1

ż2

 =


0 1

0 0

 −
01

 [k1 k2]


z1

z2

 . (3.36)

The feedback control gain K is selected using the linear quadratic regulator (LQR) method. The �nal

control law is given by (3.37)

u =
Lk2

(
rL(−2x̄2

1 − 4x̄1ζ1 − 2ζ1
2) + 2vin(x̄1 + ζ1) + 2po

)
+ ρ(ζ1, ζ2)

(x̄2 + ζ2) (4rLζ1 − 2vin + 4x̄1rL)
, (3.37)

where

ρ(ζ1, ζ2) = Lk1 (Lζ1(ζ1 + 2x̄1) + Cζ2(ζ2 + 2x̄2)) +

(4rL(ζ1 + 4x̄1) − 2vin) (x̄2 − vin + ζ2 + rL(ζ1 + x̄1)) .

Power Calculation

According to the signals depicted in Fig. 3.12, the active and reactive power expressions for the single-phase VSI can

be written as: po = VacIac cos(ϕk)/2, where ϕk is the displacement power factor angle. It is a common practice to

convert the multiphase power system into the two-axis stationary (αβ) or rotary (dq) reference frames. These trans-

formations bring tremendous simpli�cation when determining the active and reactive powers in multi-phase power

systems. Hence, the essence of the power computation for the single-phase system is to develop a virtual two-phase

system. Then, the instantaneous power theory can be applied.

To generate the secondary orthogonal phase, which is necessary for realizing a virtual two-phase system, various

methods have been proposed. In this work, the �ctitious phase is obtained using the second order generalized integrator

(SOGI) Monfared et al., 2012. Fig. 3.16 illustrates the basic scheme of the SOGI structure, in which ks is the damping

factor, andωk is the fundamental angular frequency. A great feature of SOGI is that depending on the selected damping

factor ks, it provides some kind of �ltering and can improve performance under distorted grid voltages. Analogous to
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Figure 3.16: Basic con�guration of the SOGI structure. Copyright ©2019, IEEE.

a three-phase system, the instantaneous active and reactive powers in the αβ reference frame are de�ned as

po(t) = vacα(t)iacα(t) + vacβ(t)iacβ(t).
(3.38)

3.5 Numerical Analysis and Validation

3.5.1 DC Link Control

Feedback Linearization Control

-Simulation Results In order to validate the proposed control scheme, simulations of the synchronous buck-

boost depicted in Fig. 3.12, using di�erent levels of output power, were performed. The system parameters used for the

simulations are given in Table 3.1.

The voltage reference for the dc-link voltage was kept constant at 400 V . Di�erent output power levels were set

after the inverter was connected to the grid. Fig. 3.17 demonstrates the controller ability to keep reference voltage at

a constant mean value, while the dc current gets the sinusoidal ripple due to the power conversion process as it was

shown in (3.7). Fig. 3.18 shows the output power (inverter’s output) and input power (dc-dc converter’s input power).

Positive values mean that the batteries are being discharged while negative values implies that the batteries are charging.

During the battery charging process, the control action tries to keep the input current and consequently input power

as closely as possible to the reference output power.

One occasion in which the performance of the non-linear control law surpasses that of the linear control law is

when the operating point starts shifting away from the linearization conditions. Following the same simulation setups
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Table 3.1: Simulation and HIL Parameters.. Copyright ©2019, IEEE.

Parameter Value
C 700µF
L 600µH
rL 10mΩ

vin 100V
vre f 400V
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Figure 3.17: Synchronous buck-boost converter with a nonlinear load: (a) input current; (b) output voltage.
Copyright ©2019, IEEE.

as before, we now compare two control laws: FBL and linear. The linear control law was found using a linearized model

in (3.22) around vin = 100V . The test is performed at vin = 200V . Under this scenario, the capacitor voltage starts

deviating from the stable point, and the ripple starts to increase and show a slower response than the one presented

with the non-linear FBL control law (See Fig. 3.19).

-Implementation Results The implementation for the FBL controller was done using a digital signal processor

(DSP) from Texas Instruments. The intention was to validate the dynamic performance of the controller for changes

in the dc-link voltage set point. Initial results were obtained by implementing the power electronics elements in a

real-time emulation environment such as a Hardware-in-the-loop (HIL) from OPAL-RT. Fig. 3.20 shows a picture of

our experimental setup, and Fig. 3.21 represents the dynamic response of the system when a change in the set point is

requested. As observed, the controller is able to track the reference in less than 20ms.
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Figure 3.18: Input and output power signals of the synchronous buck-boost converter with a nonlinear load:
battery charging and discharging. Copyright ©2019, IEEE.

3.5.2 Online Battery Impedance

The method described in the previous section is implemented in the main microprocessor of the DC/AC power con-

verter as shown in Fig. 3.22. Fig. 3.23 depicts the block diagram for the di�erent modules to be implemented in the

�rmware application. Di�erent interrupt subroutines (ISR) levels are highlighted in the diagram, where ISR_0 indi-

cates the highest priority ISR.

Generally speaking, the data sampling process occurs asynchronously but is started by the PWM period. IS R_0

starts at the end of the ADC conversion. The data is stored in a temporary RAM memory allocation and then a lower

priority Interrupt (IS R_1) can transfer the data to a larger memory allocation in RAM or in Flash. Such larger memory

allocation can vary depending on the sampling time (Ts) and the microprocessor data structure. For a �oating point

32-bit unit, the allocation of memory can go from 2 KBytes to 5 KBytes for a typical inverter control application, where

common sampling frequencies can go from 8kHz to 20kHz. This value can be found from

Memory =
FsNcyclesN

2000 fo
, (3.39)
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Figure 3.19: DC-link voltage comparison of the synchronous buck-boost converter with a nonlinear load:
feedback linearization (FBL) versus linear control law. Copyright ©2019, IEEE.

where Fs is the sampling frequency in KHz, Ncycles is the number of cycles to store for the processing, N is the number

of bytes in each sample, and fo is the fundamental grid frequency in Hz. It is noted that in IS R_1, the signal process-

ing modules are implemented as shown in Fig. 3.23. Here, IDC′(t) and Vbatt′(t) represent the AC component of the

sampled signals after they are �ltered out.

It is noted that the lowest priority interruption subroutine calculates the battery impedance at the aforementioned

frequency of 2 fo. A simple bu�er module is created in order to store the previous value of the calculated impedance.

This value is then compared against the actual one and according to a decision feature given by k, a diagnostic about

the health status of the battery can be made and transmitted to the BMS via serial communication.

The process is implemented in a Texas Instrument C2000 core microprocessor, running at a system clock speed

of 150MHz. The batteries used for the testing purposes are a commercial type of LiFePO4. They are enclosed in a

module under a series and parallel arrangement with a capacity of 2kWh. The AC impedance (per data sheet) is 35mΩ

or less. A lab prototype bidirectional inverter of 4kW output is used for obtaining the initial results with main grid

frequency of 60Hz, i.e., fo = 60Hz. Estimation of the battery impedance is done at di�erent SOC (State of Charge)

levels, going from 7% to 75%. The battery charge and discharge is done continuously at approximately 0.35C, where

72



HIL

DSP

PC

OSCILLOSCOPE

Figure 3.20: HIL experimental setup. Copyright ©2019, IEEE.
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Figure 3.21: Output voltage step response. Copyright ©2019, IEEE.

C is the rate of charge or discharge relative to the capacity of the battery. In this case, 1C means that at the rated current,

the batteries are discharged or charged in 1 hour. The maximum temperature of the battery module is also monitored

with the BMS provided by the manufacturer. Fig. 3.24-b shows the current �owing into the batteries and the battery

voltage AC component while the charging process takes place.

The continuous current �owing during the entire testing process increases the internal cell temperature but the

external temperature is kept constant at 25◦C. This temperature increase was considered during the experiments and

three scenarios were studied. The �rst is when the internal average temperature of the cells was 30.57◦C, the second is

when the temperature was 37.29◦C, and the last one is for an average internal temperature of 39◦C. The same scenarios

are run several times and the mean value (µ) of the calculated impedance is summarized in Table 3.2. This table also

shows the variance (σ), and the coe�cient of variation (cv = σ/µ ) for the analyzed data.
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Figure 3.22: Implementation of the proposed method.

Fig. 3.25 illustrates the magnitude of the FFT for one of the mentioned scenarios. A variability in the obtained

voltage and current is observed for di�erent SOC levels, which led to variations in the calculated impedance value.

However, from the analysis presented in Table 3.2, it can be inferred that the calculated impedance may be considered

constant during the entire charge or discharge process and the SOC does not a�ect the AC impedance calculation

at this frequency, which is consistent with the results obtained for a di�erent type of LiFePO4 batteries in (Stroe,

Swierczynski, Stan, et al., 2014) and Furthermore, the observed dependency on the internal cell temperature is also

consistent with the results presented in (Świerczyński et al., 2014), where spectroscopy analysis results are presented at

di�erent temperatures.
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Figure 3.23: Block Diagram representation for implementation of the proposed method. Copyright ©2017,
IEEE.

Table 3.2: Calculated impedances for di�erent SOC and di�erent internal battery temperatures. Copyright
©2017, IEEE.

Z( fo) T = 30.57◦C T = 37.29◦C T = 39.02◦C
µ 28.8mΩ 27.2mΩ 26.8mΩ

σ 2.81 × 10−7 9.45 × 10−8 3.20 × 10−8

cv 9.82 × 10−6 3.47 × 10−6 1.18 × 10−6

Impedance estimation considering DC current ripple reduction

It is possible to reduce the 120Hz ripple magnitude by using a control structure as the one shown in Fig. 3.26. Here an

external control loop, generally a PI controller act as a low pass �lter for the current reference and an internal current

controller loop with a higher bandwidth than the voltage controller is used to track the current reference from the

PI output. We took advantage over the scheme already implemented on sonnenCore inverter to study the ability of

proposed algorithm to estimate the battery module impedance. The sonnenCore is a 10kwh ESS produced by the

company sonnen, Inc in Atlanta GA.

Figure 3.27 shows the input battery current during a full discharge scenario, i.e., 4.8KW. In Fig. 3.27-a the ESS

inverter uses a ripple reduction control scheme, whereas in Fig. 3.27-b no ripple reduction control was used. By using

the ripple reduction technique, a reduction over 70% was obtained. By observing the internal Battery management

system (BMS) information, we determine that the temperature increase was only of 1 degree Celsius, 26◦C with ripple

reduction vs 27◦C vs no ripple reduction.
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Figure 3.24: Implementation set-up. Reproduced with permission from (Salazar et al., 2018)
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Figure 3.25: FFT of the battery voltage and current at average internal cell temperature of 30◦C. a) FFT up
to 300 Hz. b) FFT zoom at 120 Hz. Reproduced with permission from (Salazar et al., 2018)
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Figure 3.26: Battery current ripple reduction control scheme.

The sonnenCore ESS uses two LiFePO4 battery modules in series of 100V nominal each. The Battery module

manufacturer has speci�ed an internal impedance at no charge and at the beginning of life of less than 32mΩ, however

no measured data was provided or obtained during this experiment. By sampling the battery current and voltage in-

formation at the same frequency than the controller does and applying the proposed impedance estimation scheme,

we obtained the results presented in Table 3.3. These results are consistent with the battery impedance information

provided by the manufacturer considering the e�ect of aging on the used batteries.

Table 3.3: Estimated battery modules Impedance with Ripple reduction control scheme

SOC Test Condition Estimated battery impedance
60 % Charging - 4.8kW 39.18 mΩ

60 % Discharging - 4.8kW 39.75 mΩ
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a) b)

Figure 3.27: Input Battery DC Current at Full discharge scenario of 4.8KW. a) Ripple Reduction used. b)
No ripple reduction was used.
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Chapter 4

Energy Management of Residential

AC Nanogrids

The full content of this chapter has been published in the IEEE Transactions on Industry Applications 1

4.1 Introduction

In a residential nanogrid, the energy management system (EMS) is responsible for maintaining the balance between

the power generated and demands during the islanded periods of operation, avoiding the complete discharge of the

ESS by charging them with available RES and/or fuel generator energy (Dawoud et al., 2018; Liu et al., 2018). EMS op-

timization in NGs and MGs has particularly gained interest due to the stochastic behavior of RES and loads, especially

in residential systems.

Dynamic programming (DP)-based methods have been recently employed in (Shuai et al., 2018), in which au-

thors used a Monte Carlo simulation method to cope with uncertainties of the RES generation, electricity pricing and

load demand for a grid-tied MG. In (Wei et al., 2017), authors developed an adaptive dynamic programming (ADP)

algorithm to solve the optimal battery energy management and control problem in smart residential NGs; however,

stochasticity was not considered in the latter work. Comparisons between DP and a rule-based scheduling algorithm

for photovoltaic (PV)/generator/batteries nanogrids were presented in (Barnes et al., 2015; Sheng et al., 2015). In (Sheng

et al., 2015), a deterministic approach was considered, while in (Barnes et al., 2015) a semi-Markov model was used to

forecast the PV generation. References (Barnes et al., 2015; Sheng et al., 2015) both assume a linear process model in the

DP problem formulation. A multi-stage stochastic programming structure was proposed in (Bhattacharya et al., 2018),

1A. Salazar, A. Berzoy, W. Song and J. M. Velni, "Energy Management of Islanded Nanogrids Through Nonlinear Optimiza-
tion Using Stochastic Dynamic Programming," in IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2129-2137, May-
June 2020, doi: 10.1109/TIA.2020.2980731. Copyright ©2020, IEEE.
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where uncertainties in supply, demand and pricing were considered for a grid-tied MG. Stochasticity in the DERs has

been studied in (Craparo et al., 2017) by employing ensemble weather forecasts and a robust linear program for opti-

mizing a generator’s fuel cost; this structure, however, only considered uncertainty in the data obtained by the forecast

models. Markov chains for modeling uncertainty in the RES generation have been used in (Belloni et al., 2016), where

a Stochastic Dynamic Programming (SDP) algorithm was proposed to optimize the cost of the electric grid energy

consumption in wind powered NGs with ESS. In (Belloni et al., 2016), a linear optimization problem was considered

and only simulation results were provided.

SDP has also been used for the energy management of residential nanogrids with electric vehicles (EVs), where sev-

eral authors have focused on proposing solutions to the underlying optimization problem by considering stochasticity

in the behavior of the EV, i.e., mobility patterns and home loads. In (Donadee & Ilić, 2014), stochastic models of plug-in

and plug-out behavior, energy required for transportation, and electricity pricing were used to minimize electric energy

charging costs. A more recent study in (Wu et al., 2018) proposed an SDP-based method for a smart home, where a

stochastic model was used for the load demand and for the arrival and departure time of the pluggable electric vehi-

cles (PEVs). A Markov chain was used in (Wu et al., 2018) to model the PEV plug-state. None of the aforementioned

references considered the use of renewable sources (and of course stochasticity in the renewable energy generation).

Authors in (Wu et al., 2016) use an SDP-based optimization method in a residential photovoltaic application, where

the stochasticity is only related to the EV trip time. The authors further proposed the use of Neural Networks (NN) to

provide a day-ahead forecast for the PV generation. In our case, a simpli�ed stochastic model based on Markov chains

is employed in the proposed SDP-based energy management system.

There exist the opportunity to study the optimal power scheduling of an autonomous NG, considering the stochastic behavior

in the renewable energy generation and the non linear behavior of the battery discharging process. In such study, a scheme

based on stochastic dynamic programming can be used and its appropriate use could be demonstrated.

This chapter examines the scheduling of an autonomous hybrid (PV and fuel generation) NG. The goal is to sup-

ply the demand through optimal scheduling of the NG’s available local resources. A stochastic dynamic programming

(SDP) optimization problem over a rolling horizon is formulated for real-time control of the battery state of charge

(S OC). This paper is based on an early publication in (Salazar, Berzoy, Mohammadpour Velni, et al., 2019). The con-

tributions of this chapter are:

• Developing a simpli�ed time-variant Markov model for the photovoltaic (PV) power generation.

• Proposing a SDP optimization framework for energy management of a hybrid NG in a rolling time horizon,

using the Markov model of PV generation.
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• De�ning a new multi-objective optimization problem to achieve the least cost operation, where the problem is

formulated to minimize the generation cost and maximize the availability of energy stored in the battery at the

beginning of next operating cycle.

• Formulate a nonlinear optimization problem, where nonlinearities in the discharging process of the batteries

are considered.

• Conducting a comparative study between the proposed SDP framework and a rule-based method.

4.2 Optimal Operation of Islanded Residential Nanogrid

4.2.1 System Description

The residential NG used in this work is illustrated in Fig. 4.1. The ESS is an integrated solution of a bidirectional

inverter and a set of battery modules. The PV system is composed of an arrangement of PV panels and a solar inverter

that always operate at maximum power point tracking (MPPT). The fuel-based generator is a typical gas or liquid

propane. The EMS inside of the ESS receives information about the PV production and load demand using external

power meters. The goal for the EMS is to minimize the generator’s fuel consumption. Red arrows indicate the power

�ow in the system. Models for each component are described as follows.

Figure 4.1: Con�guration of the nanogrid considered in this work. Copyright ©2020, IEEE.

PV Energy Generation Model

The PV output is connected to a dc/ac converter that only operates when an ac voltage is present at its output. The

energy produced by a grid-tied PV system, EPV , can be estimated by

EPV [k] = (ηpvηinv)(APV I0[k]), (4.1)
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where k is the discrete time index, and the time horizon is divided into N equal intervals. Also, ηpv is the PV module

e�ciency, I0 is the solar irradiance measured in Watts per square meter (W/m2), APV is the e�ective area, and ηinv is

the inverter e�ciency, which is around 97%.

ESS Model

Energy storage systems in residential ac coupled NGs are usually composed of a set of batteries and a bidirectional

converter. The energy capacity and density of the system depend on the cells technology. The e�ciency in the energy

conversion process is generally between 95% and 97% during charging and discharging, respectively. The equations

of battery S OC and the energy stored in the battery EB can be used interchangeably to describe the charging and

discharging behavior and the current and future state of ESS operation by the following nonlinear equation

S OC[k] =
1

CB

N∑
k=1

(IB[k])∆t + S OC0, (4.2)

where IB is the battery current, which is positive during charging and negative during a discharging period, CB denotes

the battery storage capacity, S OC0 denotes the initial battery S OC. The energy stored in the battery can be de�ned by

EB[k + 1] = EB[k] + (PB[k])∆t, (4.3)

where PB[k] is the charge or discharge power assumed to be constant over the time period between [k∆t, (k + 1)∆t),

which is positive during charging and negative during a discharging period. We note that (4.3) holds true while the

battery is charging. However, during discharging period, the process becomes nonlinear following Peukert’s e�ect.

According to Peukert’s law, the battery discharge time (Lt) can be approximated by

Lt =
Cb

ÎB
, (4.4)

where

ÎB = (IBdis)
φ, (4.5)

with IBdis being the battery current during discharge and φ ≥ 1 an exponent which describes the exponential non-

linearity of the discharging process in the battery. If we select the parameter as φ = 1, (4.4) turns into a linear model

which fails to represent the inherent nonlinearity at high discharge currents. The exponential nonlinear relation reveals

that higher discharge currents lead to an exponentially smaller e�ective capacity (Akyurek & Rosing, 2017). For a real

battery, the exponent φ is greater than unity. For a lead–acid battery, φ is typically between 1.1 and 1.3, whereas for a

lithium-ion battery, this constant can vary from 1 to 1.09 (Omar et al., 2012). The e�ect can be also translated into the
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battery power discharge and de�ne a nonlinear term for the energy stored in the battery based on (4.3) as

EB[k + 1] = EB[k] + (P̂B[k])∆t. (4.6)

Let us de�ne the battery discharge power as:

P̂B = VB ÎB, (4.7)

P̂B = VB(IBdis)
φ, (4.8)

PBdis = VBIBdis , (4.9)

P̂B = VB(
PBdis

VB
)φ. (4.10)

For a Lithium-ion battery, it can be assumed that the battery voltage is constant inside the linear operation region.

Therefore

P̂B ≈ αv(PBdis)
φ, (4.11)

where αv is a constant that could vary from 0.5 to 0.7 for nominal battery voltage between 50V and 400V, which

is typically acceptable for commercially available battery storage systems. Then, the nonlinear model for the energy

stored in the battery is given by

EB[k + 1] =


EB[k] + αv(PB[k])φ∆t, ∀PB < 0

EB[k] + (PB[k])∆t, ∀PB ≥ 0
(4.12)

Constraints imposed on the NG by ESS are given by

Emin
B ≤ EB[k] ≤ Emax

B , (4.13)

Emin
B ≤ EB[k + 1] ≤ Emax

B , (4.14)

−Pmax
B−discharge ≤ PB[k] ≤ Pmax

B−charge. (4.15)

Constraints (4.13) and (4.14) impose allowable S OC limits while (4.15) enforces charging and discharging power limits.
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Demand Model

using historic energy consumption data, behavior of the load (EL) can be forecast. The load in residential applications

is seasonal and depends on di�erent factors such as weather, resident standard power usage habit, household size, num-

ber of electrical appliances and usage. Generally, auto-regressive moving average (ARMA) models have been used to

forecast the load (Pappas et al., 2008). In this work, the load (hourly data) forecast is based on a typical household usage

in Atlanta, GA.

Generator Model

A gas generator with the following quadratic cost function is considered

Ck(EG[k]) = α1E2
G[k] + α2EG[k] + α3, (4.16)

where EG is the energy generated, and α1, α2 and α3 are coe�cients obtained from generator’s power curve vs. the

amount of fuel consumed. The constraint imposed on the NG by generator is de�ned by the generator maximum and

minimum power limits as

Pmin
G ≤ PG[k] ≤ Pmax

G . (4.17)

Another constraint imposed on the NG comes from the power balance, where the generated energy (sum of PV

and gas generator) must be equal to the consumed energy (sum of load and the battery energy discharged). The gener-

ator energy required for cost calculations is then

EG[k] = EL[k] + PB[k]∆t − EPV [k] ≥ 0, (4.18)

where PB[k] can be positive or negative, where negative power corresponds to battery discharge.

4.2.2 NG’s General EMS Operating Rules

A classical approach to the energy management (EM) on o�-grid NGs is based on a rule-based heuristic method, in

which the PV generated power is considered to be deterministic and the actual values of PV generation and S OC are

utilized to determine the control policy for charging or discharging the batteries. The control policy determines the

relation between PB as the control input and EB as the system state. A rule-based EM algorithm of the NG under

consideration is shown in Algorithm 1. Note that whenever the S OC reaches a prede�ned minimum level (S OCmin),

the controller starts charging the battery at a �xed, predetermined power, PBfixed , which is generally set to a low value
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to minimize the fuel consumption. This algorithm is executed every time step after the battery charging /discharging

process occurs.

Algorithm 1 Rule-based EM algorithm. Copyright ©2020, IEEE.
1: procedure Generator Off
2: if S OC[k] > S OCmin & S OC[k] < S OCmax then
3: PB[k] = PPV[k] − PL[k]
4: if S OC[k] ≥ S OCmax then
5: PB[k] = −PL[k]
6: PG[k]← 0
7: if S OC[k] = S OCmin then
8: goto procedure Generator On.
9: procedure Generator On

10: PB[k] = PBfixed

11: PG[k]← PL[k] + PB[k]
12: if S OC[k] = S OCmax then
13: goto procedure Generator Off.

4.3 Nanogrid Optimal Energy Management

4.3.1 Formulation of Nonlinear Optimization Problem

To achieve an optimal EM, the generation cost (4.16) has to be minimized by �nding the battery charging schedule

PB[k] while satisfying power balance equation and all aforementioned operational constraints over the entire operat-

ing time horizon T . The EM problem is formulated as a �nite horizon constrained quadratic problem. However, the

computational complexity increases exponentially with T . Also, in practice, accurate values of inputs (e.g., load pro�le

and PV power) are not available for the whole operating horizon in advance. Therefore, the solution to the original

�nite time horizon problem can be approximated with that of the corresponding receding time horizon (RTH) op-

timization problem. To ensure a continuous optimal operation, an additional optimization objective is added to the

performance index function J, which is the terminal cost to avoid depleting battery at the end of the optimization
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horizon. The battery optimal scheduling for kth time step (for any k ∈ {0, ...,N − 1}) can be represented by

min
PB[k]

J =

k f−1∑
k=k0

Ck(EG[k]) + γ(Emax
B − EB[k f ]),

s.t. EB[k + 1] =


EB[k] + αv(PB[k])φ∆t, ∀PB < 0

EB[k] + (PB[k])∆t, ∀PB ≥ 0

Emin
B ≤ EB[k] ≤ Emax

B ,

Emin
G ≤ EG[k] ≤ Emax

G ,

Pmin
B ≤ PB[k] ≤ Pmax

B ,

EG[k] ≥ 0,

(4.19)

where k0 is the current time step, k f = N + k0 − 1 and γ is a weight factor. The above optimization problem is

solved at every time step with updated inputs, and the �rst battery charge/discharge (control action) is implemented

as the optimal control policy. More details about the RTH optimization and its applications in EMS can be found

in (Bertsekas, 2005) and (Ra�ee Sandgani & Sirouspour, 2018). It is noted that the above optimization problem is

nonlinear due to the battery dynamics appeared in the constraints.

4.3.2 Stochastic Optimal Energy Management

In practice, power output shows stochasticity due to unpredictable behavior of solar and weather variations. The PV

generated power is �rst modeled as a time-variant Markov process, and then the optimal EM problem is formulated as

an RTH quadratic program and solved using SDP.

A.1: PV Power Density Forecast using Markov Models

First-step Discrete-time Markov Model: This is a probabilistic model, in which the transitions from one state to

another are directed by discrete probabilities obtained from the statistics of real historical data. The transition matrix

(TM) M = [mελ] ∈ Rn×n serves as a probability model that describes the transitions between states on the �nite state

space S = {s1, ..., sn}, and whose entries are de�ned as

mελ = Prob(EPVk+1 = sλ|EPVk = sε), (4.20)
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where sε is the state of EPVk = EPV [k] at the time instant k and sλ is the state of EPVk+1 at (k + 1)th time instant. A

TM with rows m1, ..,mn meets the following properties (Puterman, 2014):


∑n
λ=1 mελ = 1 ∀ε ∈ {1, ..., n},

mελ ≥ 0, ∀ε, λ ∈ {1, ..., n}.
(4.21)

The probability that after the kth transition, the state is xk = sλ, given that the initial state is EPV0 = sε , is de�ned

by

Prob(EPVk = sλ|EPV0 = sε) = mk
ελ, (4.22)

where there is a time-variant Markov model with one TM for each time instant.

Let πεk be the probability distribution of EPVk such that

πεk = Prob(EPVk = sε). (4.23)

In a Markov process, an initial probability distribution can be propagated in time. Then, the propagation of the

distribution for future time instants is given by

πk =

n∑
ε=1

(πε0

N∏
k=1

Mk), (4.24)

where Mk is the TM of the kth time instant state transition.

Markov Chain for Predicting Hourly Solar Radiation: Markov properties of the solar radiation have been studied

in (P. Poggi & Louche, 2000). Here, a discrete time-variant Markov model is used for estimating the hourly clear index

and generating the daily shape of solar radiation on a monthly basis. The proposed Markov model is a simpli�ed version

of that in (Chamola & Sikdar, 2015). We leverage the nature of solar radiation (i.e., an average rising behavior in the

morning, an average falling behavior in the afternoon, and a smooth behavior around noon) to extract a time-variant

TM for estimating the radiation in transition between states for a 24-hour time horizon (N = 24). The simpli�ed

Markov model proposed here obtains the daily probability distribution of the radiation by dividing the day into four

di�erent time zones, one for the sun rising (zone T1), one for the mid day (zone T2), one for the sun falling (zone T3),

and �nally one for the absence of sun (zone T0). This is depicted in Fig. 4.2. For zone T0, the TM MT0 = 0n,n is used.

Due to a zero or a very low level of solar energy for this zone, a null power generation is assumed. The zones T1, T2 and

T3 are respectively denoted by the TMs MT1 , MT2 and MT3 . The TM of each zone is determined separately using
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the historical data related to that part of the day assumed to be independent of the TMs of other zones. This results in

radiation transitions that may not infringe the statistics of other transition frequencies.

Figure 4.2: Four zones of operation considered in obtaining the probability distribution of daily solar radia-
tion. Copyright ©2020, IEEE.

In order to obtain the TM for the solar energy generation, the generated energy (Wh/m2) is discretized in n states

each representing a region of occurrence, i.e.,

s1 : 0 ≤ EPV [k] ≤
Emax

PV

n
,

...

sn :
(n − 1) × Emax

PV

n
< EPV [k] ≤ Emax

PV ,

(4.25)

where Emax
PV is the maximum hourly radiation level, and the number of states, n, is determined based on Emax

PV .

From a set of historical hourly solar radiation data in one month, the frequency of transitions from state ε to λ,

fε,λ, is found. Subsequently, the frequencies are converted into probabilities

mελ =
fε,λ

N fε,λ
, (4.26)

where N fε,λ is the total transitions. At each time zone Tl, where l ∈ {0, 1, 2, 3}, the same procedure is employed to

determine TM.
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A.2: Optimal Energy Management using SDP

In this section, the proposed time-variant Markov model for PV prediction is employed in NG’s EM problem formu-

lated as a stochastic time-varying optimal control problem. using the proposed stochastic EM approach, expected cost

of NG operation is minimized over the operating horizon. The stationary TMs are described as before.

Using the Markov model of the PV generation, considering the battery energy and PV generation as the system

states, i.e., xk = [x1, x2]T = [EB, EPV ]T , and by assuming uk = [u1] = [PB] as the input vector and dk = [d1] = [EL]

as the load vector, the NG state-space model becomes:

xk+1 =




x1[k + 1]

x2[k + 1]

 =


x1[k] + (u1[k])φ∆t

hk(x2[k],wk)

 , ∀u1[k] < 0


x1[k + 1]

x2[k + 1]

 =


x1[k] + (u1[k])∆t

hk(x2[k],wk)

 , ∀u1[k] ≥ 0

(4.27)

where wk is a random variable with independent samples and hk is the probability density that satis�es

Prob{hk(si,wk = s j)} = mk
i j. (4.28)

To minimize the NG operational cost, sum of the gas generator cost over the optimization horizon should be

minimized; therefore, we consider the generation cost at time step k as the stage cost gk de�ned by

gk = Ck( − x2[k] + d1[k] + u1[k]∆t). (4.29)

Furthermore, the terminal cost gN is considered as

gN = ω1(Emax
B − x1[N]), (4.30)

whereω1 is a weight on terminal cost. The terminal cost enforces battery to stay su�ciently charged. With the stage cost

gk as the fuel generator cost, the expected performance index function Js becomes Js = E(
∑N−1

k=0 gk + gN), in which

E(·) denotes the expected value of the associated random process. To minimize the NG operational cost, the expected

performance index function has to be minimized over the control input u2 subject to state-space equations (4.27)

and physical constraints represented by (4.19). By applying Bellman operator, the stochastic optimization problem is

divided into a recursive single step optimization
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µ∗k(xk) = arg min
u1k

(Egf)

Egf = E(gk) + E(V∗k+1(xk+1))

(4.31a)

V∗k (xk) = E(gk) + E(V∗k+1(xk+1)). (4.31b)

The above problems need be solved backward in time. By solving the above time-varying SDP, the battery

charge/discharge policy is calculated and the �rst step control input is implemented. Summary of the SDP

algorithm is shown in Algorithm 2.

Algorithm 2 Stochastic DP algorithm. Copyright ©2020, IEEE.
1: procedure Function Assignment
2: gk ← Ck(EG[k])
3: gN ← ω1(Emax

B − EBN )
4: V∗N := gN

5: uk = [PB]
6: xk = [x1, x2]T = [EB, EPV]T

7: procedure Minimization
8: for k = N − 1 : 0 do
9: Solve (4.31a) for µ∗k(xk)

10: Update V∗k (xk) using (4.31b)
11: u20 ← µ∗0

A.3: Real-Time SDP Implementation

The practical implementation and programming of the optimization algorithm based on SDP is presented

in the �owchart diagram depicted in Fig. 4.4. Before proceeding with the description of the �owchart, it is

worth mentioning that the SDP algorithm needs to have information about the discrete state values and the

control input as de�ned in Algorithm 2. The following de�nitions are made and corresponding information

is fed into the algorithm initially:

x1(·) ∈ Rn1 , x2(·) ∈ Rn, d1(·) ∈ RN , u1(·) ∈ Rn2 .

gN(·) : dim[gN(·)] = n1 × n

Mkt(·) : dim[Mkt(·)] = n × n
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The algorithm is initialized at every control decision step (k). The time horizon (N) is assigned to a

variable k which is going to keep track of the rolling horizon iteration. For the �rst iteration, a matrix Jtogo

is �lled with the coe�cients corresponding to the �nal cost that is desired to be achieved from each one of

the initial states. Depending on the current time step in the optimization rolling horizon (k), the transition

matrix is copied into a variable P, following the procedure described in section A.1. Three nested loops are

used to calculate the cost to go matrix for the current time horizon step (k). A temporary cost vector Jo ∈ R
n2

is calculated using (4.31b). Here the value of the next state for x1(k + 1) is calculated according to (4.3). This

value is then used to obtain the index (idx), which is the argument of the vector x1 for the calculated value.

f is a temporary variable used in the expected value calculation. After all of the discrete values for the input

are considered, the minimum cost is stored in the corresponding coe�cient for the cost to go matrix and

an additional matrix U∗ is used to store the argument or index for which this minimum is achieved. The

iterations are completed for all the possible states, and the cost to go matrix is used for the following kth

iteration. The beginning of the time horizon is reached, and the current states are checked by assigning their

arguments to the variables idx1 and idx2, which are the indexes to determine optimum value for the input

from matrix U∗.

Figure 4.3: An illustrative example for n1 = 3 and n = 3 at l = 0. Transition probability diagram for di�erent values
of the PV is shown here. Copyright ©2020, IEEE.

As an illustrative example, consider the diagram with only few states shown in Fig. 4.3. An example of

the transition probability for the dynamic programming algorithm when n1 = 3 and n = 3 is shown. Notice

that the two states x1 and x2 form a 3× 3 matrix with all the states options on the time step k. The transition

between states would have as many options as admissible inputs are allowed by the transition probability

matrix; however, the total case of transitions could vary depending on the system behavior. For this example,

all the transitions are possible which give 9 per state, in total would be as many as 81 possible transitions (not
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drawn in Fig. 4.3). In the �gure, the 9 cases of transitions for the state [x1(i = 2), x2( j = 2)] are de�ned

by the arrows, and two of them are speci�ed. If the system is in the state [x1(i = 2), x2( j = 2)], then PV

probability distribution is de�ned as Prob(s22 → s02) = m22→02 which indicates the probability that the

system will be in the state [x1(i = 2), x2( j = 0)] at the next discrete time k + 1 moment.

4.4 Simulation and HIL Test Results

For the purpose of veri�cation and comparison of the proposed optimal EM algorithm, simulation and

real-time hardware-in-the-loop (HIL) tests are performed in MATLAB/Simulink environment and OPAL

RT, respectively. The main parameters of the NG (as shown in Fig. 4.1) are given in Table 4.1. The parameters

are chosen based on an available commercial prototype for residential applications. Simulations of the NG

Table 4.1: Nanogrid parameters. Copyright ©2020, IEEE.

Parameter Value Parameter Value
Emax

B 6kWh ω1 7 × 108

Emin
B 300Wh Imax

0 1.018 kWh
m2

Pmax
B−charge 4kW ηpv 0.19

Pmax
B−discharge 3.5kW ηinv 0.98

Pmax
G 8kW APV 18m2

Pmin
G 0kW T 24 hours

Pmax
PV 5kW ∆t 1 hour
α1 1.2898 × 10−9 N 24
α2 1.3609 × 10−4 n 22
α3 0.9117 × 10−16 φ 1.09
n1 120 n2 115
αv 0.6 Gprice 0.5 US D

thm

energy management start from the same initial condition, i.e., EB(0) = Emax
B . In addition, the daily PV

generation pro�le is taken from the solar radiation data from NREL database ((NREL)., n.d.).

4.4.1 Results for the Simulated NG System

Evaluation of the Markov Model

In order to validate the proposed model, 15-year solar radiation data of the month of July of a site located

in Elizabeth City, North Carolina, extracted from the NREL database is used. The model is learned using

13 years of data and validated on the other two years data. The maximum hourly radiation of the site is
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Imax
0 = 1.018 kWh/m2, and the number of Markov model states is considered to be n = 22 with the states

taking values as si ∈ {0, 1, ..., 21} for ∀i ∈ {1, ..., 22}.

In order to evaluate the performance of the proposed time-variant Markov model, data from the average

day of the two years is selected. The results of the Markov model for each hour have a probability distribution;

the expected value of each probability distribution is used for the evaluation of the results. The PV output

predicted by the proposed model for the subsequent 24 hours is compared with the time-invariant Markov

model and the real data in Fig. 4.5. As observed, the model is able to follow the real mean pro�le, while closely

approximating the standard deviation for the obtained data. In order to show the improvements achieved by

the proposed model compared to the time-invariant model, the relative root mean square error (RRMS E) is

used to quantify the total estimation error.

RRMS E value achieved by the proposed model is 9.14%, whereas the error with the stationary (time-

invariant) model is 31.3%. using the proposed model, the error considerably decreases while the computational

complexity nearly remains the same. Next, simulation results using SDP are compared against those obtained

from the rule-based algorithm.

Comparative Assessment of Rule-based EM and SDP-based Approach

Two cases are simulated considering di�erent solar irradiance levels over a period of 72 hours. The �rst one

is shown in Fig. 4.6, where three consecutive days with good irradiance are presented. The comparison

between battery S OC for rule-based (S OCBrule ) and SDP-based (S OCBsdp ) methods is shown in the third

subplot. Generation power for both algorithms is also shown in this �gure. With the SDP approach, the

EMS is able to consume less generator power over the three days and �nish each day with a higher battery

S OC index. The rule-based algorithm charges the battery whenever the energy stored in the battery is below

2 kWh. On the other hand, the underlying optimization problem for the SDP method is solved on a rolling

horizon basis. The prediction horizon is assumed to be 24 hours, and at each hour, it determines the optimal

policy for the next 24 hours. The control policy for this case is the battery charge/discharge power (control

input) as a function of battery stored energy and PV generated energy (which are the system states). Table

4.2 shows the cost of operating the generator each day and the availability index in Wh, which is the battery

S OC at the end of each day. Results showed that after the third day of operation, the user could save up to

20% of the generator’s cost if the SDP method is employed. Fig. 4.7 shows the system behavior assuming

that the second day irradiance is proportionally lower than the other two days. In this case, the total saving

for operating the NG could be up to 7% if the SDP algorithm is used.
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Table 4.2: Three days performance comparison using rule-based and stochastic DP methods. Copyright
©2020, IEEE.

Generator fuel cost ($/day) Battery availability index (Wh)
Day Rule-based SDP Rule-based SDP

1 0.9291 0.8705 1,944 3,350
2 1.3936 0.9713 4,650 4,650
3 0.9291 0.7638 1,872 3,950

4.4.2 Real-time HIL Simulation Results

Performance of the two proposed methods (rule-based and SDP) is evaluated using OPAL-RT Model-In-

the-Loop real-time experiments. The NG is implemented in the OPAL-RT unit using dynamic models for

the inverters, batteries, PV panels and generator. The interface RT-lab is executed in Laptop 1 of Fig. 4.8.

The EMS is developed in Python and implemented in a RaspberyPi4 which receives the measurement data

and sends the control input via Modbus TCP/IP. An overview of the experimental platform is shown in the

bottom half of Fig. 4.8. The HIL simulation results of the generated power, consumption and the battery

energy for the two proposed energy management algorithms are illustrated in Fig. 4.9 for a period of 72 hour.

During this experiment, nonlinear SDP algorithm uses a φ value of 1.09. At the end of the �rst day, the SDP

method exhibits better Battery Availability Index than the rule-based method; however, in the second day, it

fails in obtaining a superior index than the rule-based method. The situation is over ruled by the third day

when the SDP implementation is able to show better performance. In general, the total generator operating

cost (for generator fuel consumption) using the rule-based approach was US$3.5537, whereas the total cost

for the generator usage under the SDP-based method was US$2.8493, representing a saving of 19%.
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Figure 4.4: Flowchart diagram of the SDP algorithm. Copyright ©2020, IEEE.
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Figure 4.6: Simulation results for three consecutive days with good irradiance levels. (a) PPV (PV available
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Figure 4.8: Setup for the real-time Hardware-in-the-Loop. Copyright ©2020, IEEE.
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Chapter 5

Conclusion and Future work

A study over the implementation of a nonlinear droop controller with virtual impedance in residential AC

nanogrids was presented in chapter 1. This study allowed to understand the dynamic behavior of the system

by developing a closed-loop model using time-varying phasor or dynamic phasor theory. The developed

model was employed for the stability analysis using contraction theory. The analysis showed the role of the

virtual impedance in the closed-loop control stability even if both systems share the same parameters and are

perfectly synchronized. It also showed that during reactive power sharing, the use of a virtual impedance with

a resistive behavior is su�cient for guaranteeing exponential convergence of any trajectory around the system

equilibrium point. Experimental and simulation results demonstrated the e�cacy of the proposed model,

as well as the validation of the stability analysis. The mathematical tools developed in Chapter 1 can allow

further analysis in the design of virtual impedance and nonlinear droop controllers for islanded nanogrid

operation, where multiple ESS are employed to increase the system power output, as well as the system energy

storage capacity.

Chapter 2 examined the power conversion process in a single phase residential battery storage system.

It is demonstrated that the pulsating power transfer characteristics in these systems leads to a quadratic

sinusoidal current waveform �owing through the Li-Ion batteries, where the fundamental frequency of the

AC component of the battery current is twice the power grid frequency. By having this information, we have

shown how to obtain an expression for the estimation of the AC battery impedance at this frequency. The

implementation of the proposed methodology for online estimation of the battery impedance is described

with the presented results supporting the accuracy and reliability of the proposed method. The proposed

method can further allow the online assessment of the health degradation of Li-Ion battery impedance, and
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hence constitutes the �rst step in the analysis of online SOH estimation of Li-Ion batteries when they are

used in residential single phase applications.

Chapter 2 also presented the design of a feedback linearization-based control law for a synchronous buck-

boost converter used in residential BSS. The challenges of the double grid frequency pulsating power in the

dc side were studied and it was shown how the implemented control law could support the system e�ciency

by tracking the desired power transfer, while, at the same time tracking the dc-link reference. A comparison

against a linear control law implementation was shown. The performance found for the FBL was superior

than the one presented by linear control law. Implementation results further validated the system dynamic

performance in a real-time application. Finally, the stability analysis of the converter led to a design constraint

that can be used to correctly select the output capacitance value based on the output power demand while

supporting system stability.

Two algorithms were devised in chapter 4 aiming at scheduling the battery charge and discharge in an

NG supplied by both traditional and renewable sources while considering operational constraints to yield

maximum �nancial and operational bene�ts. SDP was employed to achieve an optimal EM, in which a

nonlinear optimization problem was formulated over a �nite number of stages and on a rolling horizon basis.

The use of a time-variant Markov model was also proposed in this paper. The simulation and HIL results

con�rmed that the stochastic EM strategy was able to e�ectively cope with the economical requirements

much better than the rule-based approach in an autonomous mode. Furthermore, the stochastic approach

could also cope with modeling and capturing uncertainties in PV generation. The SDP-based approach

guaranteed the minimum operating cost by minimizing the fuel generator operating times during each cycle,

and simultaneously improving the availability of battery in the next cycle by elevating its S OC at the end of

each cycle.

5.1 Future research

Simulating multiple ESS connected in parallel for understanding the impact of linear and non-linear droop

control schemes can be achieved by following the results and mathematical tools presented in chapter 2. Even

more, the stability analysis proposed in chapter 2 could allow a proper design of a virtual impedance parameter

without the need for iterations through extensive simulations. Further research could use the presented

results to develop a closed control loop, including the inner current and voltage control loop for the power

converter. The closed and open-loop tvp models derived in this work can be expanded to analyze the deviation
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of multiple parameters in a residential nanogrids. Such approach could allow to develop mathematical tools

to analyze the impact of failures in the power network, and not desired perturbations in the inverters control

loop parameters.

Chapter 3 results has been presented in (Salazar, Berzoy, & Velni, 2019), (Salazar et al., 2017) and (Salazar

et al., 2018). Prognosis of Li-Ion batteries used in residential ESS can be studied by using the proposed tools

presented in this work. Feedback linearization controller used in this type of applications can be further

studied to increase the robustness. The results and analysis presented in chapter 3 could implement a non-

linear control law using feedback linearization for reducing the battery current ripple. Even thought the

presented results showed no major ESS performance di�erences between no ripple reduction and ripple

reduction control schemes, further analysis should be developed to establish a possible correlation with

round trip e�ciency and/or DC link capacitors’ life expectancy.

Finally, the results and analysis presented in chapter 4 allowed the understanding of an energy manage-

ment optimization approach assuming non-linearities in the battery charge/discharge dynamics. Such results

were published in (Salazar et al., 2020). Further research could help to evaluate the performance of the pro-

posed algorithm under a complete ESS scenario. Simultaneously, the stochastic Markov model proposed in

this work could be improved to adapt itself based on real time measured data dynamically. The introduc-

tion of additional constraints such as load demand can also be investigated. The proposed stochastic DP

framework can be used to evaluate di�erent load demand forecasting models. These results also encourage

exploring the implementation and further adaptation of the proposed framework to an ADP approach.
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Nomenclature

Chapter 2

α, β, a, b Coe�cients

ω̄ Angular frequency reference at no load

Ū Output voltage reference at no load

ζ, x State space vector

Ω, E, Ψ, Υ, Λ, Γ Functions fromR ontoR

δ Phase di�erence between two power sources

δy Phase of sinusoidal signal

f̂ , ĝ, f Function fromRn ontoRn

ŷ(t) Time varying phasor of y(t)

ω(t) Instantaneous angular frequency

ωo Nominal angular frequency

θ(t) Instantaneous phase shift between signals

Υ Function fromR2 ontoR

ζ, x State-space variable

GP Non-linear droop gain

L Inductance
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m Active power droop gain

n Reactive power droop gain

P Average active power

p(t) Instantaneous active power

Q Average reactive power

q(t) Instantaneous reactive power

R Resistance

S Average complex power

s(t) Instantaneous complex power

X Reactance

Y(t) Instantaneous RMS of signal y(t)

y(t) Instantaneous time varying signal with all harmonics content, transient and steady state. e.g. u(t) and

i(t)

Z Impedance

Chapter 3

f , g Function fromRn ontoRn

x, ζ, z State space vector

η E�ciency

ω Angular frequency

ωo Nominal power grid angular frequency

a, b Parameter

C Capacitance
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Fs Sampling frequency

I Frequency content of current signal

i Time-varying current signal

IDC DC component of current

IRMS RMS Current value

L Inductance

p Time-varying power signal

R r Resistance

s complex number frequency parameter

S OC State of Charge

S OH State of Health

V Frequency content of voltage signal

v Time-varying voltage signal

VRMS RMS Voltage value

x, y General di�erence equations

Z Impedance

Chapter 4

α, φ, Energy Storage capacity

E Expected value function

x State space vector

A Area function

E Discrete energy function
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P Discrete Power function

S OC State of Charge
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