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Abstract

The dramatically growing availability of observational data is being witnessed in various

domains of science and technology, which facilitates the study of causal inference. Compared

with randomized controlled trials, causal inference from observational data has become an

appealing research direction owing to a large amount of available data and low budget re-

quirement for its collection. In particular, the success of representation learning inspires

advanced methods for learning causal effects with observational data. However, some is-

sues around the causal effect estimation are still challenging, such as missing counterfactual

outcomes, treatment selection bias, lack of interpretability and explainability, inclusion of

various covariate types, hidden confounders, difficulty of continual learning for incrementally

available observational data, etc. This dissertation provides a comprehensive review of exist-

ing causal inference methods and proposes several novel approaches based on representation

learning to solve these issues.
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Chapter 1

Introduction

1.1 Causal Inference with Observational Data.

In everyday language, correlation and causality are commonly used interchangeably, although

they have quite different interpretations. Correlation indicates a general relationship: two

variables are correlated when they display an increasing or decreasing trend (Altman &

Krzywinski, 2015). Causality is also referred to as cause and effect where the cause is partly

responsible for the effect, and the effect is partly dependent on the cause. Causal inference

is the process of drawing a conclusion about a causal connection based on the conditions of

the occurrence of an effect. The main difference between causal inference and inference of

correlation is that the former analyzes the response of the effect variable when the cause is

changed (Pearl, 2009a; Stephen & Christopher, 2007).

In many cases, it seems obvious that one action can cause another; however, there exists

also many cases that we cannot easily tease out and make sure the relationship. Therefore,

learning causality is one dauntingly challenging problem. The most effective way of inferring

causality is to conduct a randomized controlled trial, which randomly assigns participants

into a treatment group or a control group. As the randomized study is conducted, the only
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expected difference between the control and treatment groups is the outcome variable being

studied. However, in reality, randomized controlled trials are always time-consuming and

expensive, and thus the study cannot involve many subjects, which may be not representative

of the real-world population a treatment/intervention would eventually target. Another issue

is that the randomized controlled trials only focus on the average of samples, and it doesn’t

explain the mechanism or pertain for individual subjects. In addition, ethical issues also

need to be considered in most of the randomized controlled trials, which largely limits its

applications.

Therefore, instead of the randomized controlled trials, the observational data is a tempt-

ing shortcut. Observational data is obtained by the researcher simply observing the subjects

without any interfering. That means, the researchers have no control over treatments and

subjects, and they just observe the subjects and record data based on their observations.

From the observational data, we can find their actions, outcomes, and information about

what has occurred, but cannot figure out the mechanism why they took a specific action.

1.2 Causal Inference Approaches.

To solve these problems in causal inference from observational data, researchers develop var-

ious frameworks, including the potential outcome framework (Rubin, 1974; Splawa-Neyman

et al., 1990) and the structural causal model (Pearl, 1995, 2009b, 2014). The potential

outcome framework is also known as the Neyman-Rubin Potential Outcomes or the Rubin

Causal Model. The potential outcome framework aims to estimate such potential outcomes

and then calculate the treatment effect. Therefore, the treatment effect estimation is one of

the central problems in causal inference under the potential outcome framework. Another in-

fluential framework in causal inference is the structural causal model (SCM), which includes

the causal graph and the structural equations. The structural causal model describes the
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causal mechanisms of a system where a set of variables and the causal relationship among

them are modeled by a set of simultaneous structural equations. In recent years, the magnif-

icent bloom of the machine learning area enhances the development of the causal inference

area. Powerful machine learning methods such as decision tree, ensemble methods, deep neu-

ral network, are applied to estimate the potential outcome more accurately. In addition to

the amelioration on the outcome estimation model, machine learning methods also provide a

new aspect to handle the confounders. Benefiting from the recently representation learning

methods, the confounder variables are adjusted by learning the balanced representation for

all covariates, so that conditioning on the learned representation, the treatment assignment

is independent of the confounder variables. In machine learning, the more data the better.

However, in causal inference, the more data alone is not yet enough. Having more data only

helps to get more precise estimates, but it cannot make sure these estimates are correct and

unbiased.

1.3 Research Challenges of Causal Inference.

For the causal inference with observational data, the core question is how to get the coun-

terfactual outcome. For example, we want to answer this question ”would this patient

have different results if he received a different medication?” Answering such counterfactual

questions is challenging due to two reasons (Schwab et al., 2019): the first one is that we

only observe the factual outcome and never the counterfactual outcomes that would poten-

tially have happened if they have chosen a different treatment option. The second one is

that treatments are typically not assigned at random in observational data, which may lead

the treated population differs significantly from the general population. Therefore, missing

counterfactual outcomes and treatment selection bias are two major challenges of causal

inference.
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Recent causal effect estimation methods (F. Johansson et al., 2016; S. Li & Fu, 2017a;

Shalit et al., 2017) have built a strong connection with domain adaptation, by enforcing

domain invariance with distributional distances such as the Wasserstein distance and maxi-

mum mean discrepancy. Inspired by metric learning, some methods (Yao et al., 2018) use

hard samples to learn representations that preserve local similarity information and balance

the data distributions. In Y. Zhang et al., 2020, the authors argue that distribution in-

variance is often too strict a requirement, and they propose to use counterfactual variance

to measure the domain overlap. Thus, which is the best measurement for the imbalanced

domains remains unsettled and the choice highly relies on the characteristics of the domain

distributions (Yao et al., 2020). Besides, despite the empirical success of such methods,

enforcing balance can, to various extents, remove predictive information and lead to a loss in

predictive power, regardless of which type of domain divergence metric is employed (A. Alaa

& Schaar, 2018).

Another question is which covariates should be included in the causal inference model.

The most important assumption in causal inference is ignorability, under which treatment

assignment is independent of the potential outcomes given the observed covariates. It is also

known as the “no unmeasured confounders” assumption, which means all of the confounders

should be measured and included in the analysis. Although including all of the confounders

is important, this does not mean that including more variables is better (Z. Chu et al., 2020;

Greenland, 2008; Patrick et al., 2011; Schisterman et al., 2009; Shortreed & Ertefaie, 2017).

For example, conditioning on an instrumental variable that is associated with the treatment

assignment but not with the outcome except through exposure can increase both bias and

variance of estimated treatment effects (Myers et al., 2011). Conditioning on an adjustment

variable, which is predictive of outcomes but not associated with treatment assignment, is

unnecessary to remove bias, but can reduce variance in estimated treatment effects (Sauer

et al., 2013). Therefore, conditioning on these variables, let alone spurious variables that are
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not associated with treatment assignment and outcomes, may introduce more impalpable

bias into model, especially in scenarios with high dimensional variables.

Due to the fact that identifying and collecting all of the confounders is impossible in

practice, as well as the existence of hidden confounders, the strong ignorability assumption is

usually untenable. By leveraging big data, it becomes possible to find a proxy for the hidden

confounders. Network information, which serves as an efficient structured representation of

non-regular data, is ubiquitous in the real world. Advanced by the powerful representation

capabilities of various graph neural networks, networked data has recently received increasing

attention (Kipf & Welling, 2016; Velickovic et al., 2019; Veličković et al., 2017). Besides, it

can be used to help recognize the patterns of hidden confounders.

Besides, the existing methods only focus on source-specific and stationary observational

data. Such learning strategies assume that all observational data are already available during

the training phase and from the only one source. This assumption is unsubstantial in practice

due to two reasons. The first one is based on the characteristics of observational data, which

are incrementally available from non-stationary data distributions. For instance, the number

of electronic medical records in one hospital is growing every day, or the electronic medical

records for one disease may be from different hospitals or even different countries. This

characteristic implies that one cannot have access to all observational data at one time point

and from one single source. The second reason is based on the realistic consideration of

accessibility. For example, when the new observational are available, if we want to refine the

model previously trained by original data, maybe the original training data are no longer

accessible due to a variety of reasons, e.g., legacy data may be unrecorded, proprietary, too

large to store, or subject to privacy constraint (J. Zhang et al., 2020). This practical concern

of accessibility is ubiquitous in various academic and industrial applications. That’s what

it boiled down to: in the era of big data, we face the new challenges in causal inference

with observational data: the extensibility for incrementally available observational data,
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the adaptability for extra domain adaptation problem except for the imbalance between

treatment and control groups in one source, and the accessibility for a huge amount of data.

1.4 The Organization of Dissertation.

The dissertation is organized as follows. In Chapter 2, we define the notations and assump-

tions under the potential outcome framework. In Chapter 3, we give one comprehensive

review of the existing causal inference methods. Then, aiming to solve the above mentioned

research challenges of causal inference, our proposed methods and experiments are presented

in the following chapters. We close with a conclusion in the last Chapter.
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Chapter 2

Background

2.1 Definitions

Here we define the notations under the potential outcome framework (Rubin, 1974; Splawa-

Neyman et al., 1990), which is logically equivalent to another framework, the structural

causal model framework (Judea Pearl, 2012). The foundation of potential outcome frame-

work is that the causality is tied to treatment (or action, manipulation, intervention), applied

to a unit (G. W. Imbens & Rubin, 2015a). The treatment effect is obtained by comparing

units’ potential outcomes of treatments. In the following, we first introduce three essential

concepts in causal inference: unit, treatment, and outcome.

Definition 1. Unit. A unit is the atomic research object in the treatment effect study.

A unit can be a physical object, a firm, a patient, an individual person, or a collection

of objects or persons, such as a classroom or a market, at a particular time point (G. W.

Imbens & Rubin, 2015a). Under the potential outcome framework, the atomic research

objects at different time points are different units. One unit in the dataset is a sample of the

whole population, so in this survey, the term “sample” and “unit” are used interchangeably.
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Definition 2. Treatment. Treatment refers to the action that applies (exposes, or subjects)

to a unit.

Let T (T ∈ {0, 1, 2, . . . , NT}) denote the treatment, where NT + 1 is the total number of

possible treatments. In the aforementioned medicine example, Medicine A is a treatment.

Most of the literatures consider the binary treatment, and in this case, the group of units

applied with treatment T = 1 is the treated group, and the group of units with T = 0 is the

control group.

Definition 3. Potential outcome. For each unit-treatment pair, the outcome of that treat-

ment when applied on that unit is the potential outcome (G. W. Imbens & Rubin, 2015a).

The potential outcome of treatment with value t is denoted as Y (T = t).

Definition 4. Observed outcome. The observed outcome is the outcome of the treatment

that is actually applied.

The observed outcome is also called factual outcome, and we use Y F to denote it where F

stands for “factual”. The relation between the potential outcome and the observed outcome

is: Y F = Y (T = t) where t is the treatment actually applied.

Definition 5. Counterfactual outcome: Counterfactual outcome is the outcome if the unit

had taken another treatment.

The counterfactual outcomes are the potential outcomes of the treatments except the

one actually taken by the unit. Since a unit can only take one treatment, only one potential

outcome can be observed, and the remaining unobserved potential outcomes are the counter-

factual outcome. In the multiple treatment case, let Y CF (T = t
′
) denote the counterfactual

outcome of treatment with value t
′
. In the binary treatment case, for notation simplicity,

we use Y CF to denote the counterfactual outcome, and Y CF = Y (T = 1− t), where t is the

treatment actually taken by the unit.
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In the observational data, besides the chosen treatments and the observed outcome,

the units’ other information is also recorded, and they can be separated as pre-treatment

variables and the post-treatment variables.

Definition 6. Pre-treatment variables: Pre-treatment variables are the variables that are

not affected by the treatment.

Pre-treatment variables are also named as background variables, and they can be patients’

demographics, medical history, and etc. Let X denote the pre-treatment variables.

Definition 7. Post-treatment variables: The post-treatment variables are the variables that

are affected by the treatment.

One example of post-treatment variables is the intermediate outcome, such as the lab

test after taking the medicine in the aforementioned medicine example.

Treatment Effect. After introducing the observational data and the key terminologies,

the treatment effect can be quantitatively defined using the above definitions. The treatment

effect can be measured at the population, treated group, subgroup, and individual levels.

To make these definitions clear, here we define the treatment effect under binary treatment,

and it can be extended to multiple treatments by comparing their the potential outcomes.

At the population level, the treatment effect is named as the Average Treatment Effect

(ATE), which is defined as:

ATE = E[Y(T = 1)−Y(T = 0)], (2.1.1)

where Y(T = 1) and Y(T = 0) are the potential treated and control outcome of the whole

population respectively.
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For the treated group, the treatment effect is named as Average Treatment effect on the

Treated group (ATT), and it is defined as:

ATT = E[Y(T = 1)|T = 1]− E[Y(T = 0)|T = 1], (2.1.2)

where Y(T = 1)|T = 1 and Y(T = 0)|T = 1 are the potential treated and control outcome

of the treated group respectively.

At the subgroup level, the treatment effect is called Conditional Average Treatment Effect

(CATE), which is defined as:

CATE = E[Y(T = 1)|X = x]− E[Y(T = 0)|X = x], (2.1.3)

where Y(T = 1)|X = x and Y(T = 0)|X = x are the potential treated and control outcome

of the subgroup with X = x, respectively. CATE is a common treatment effect measurement

under the case where the treatment effect varies across different subgroups, which is also

known as the heterogeneous treatment effect.

At the individual level, the treatment effect is called Individual Treatment Effect (ITE),

and the ITE of unit i is defined as:

ITEi = Yi(T = 1)− Yi(T = 0), (2.1.4)

where Yi(T = 1) and Yi(T = 0) are the potential treated and control outcome of unit i

respectively. In some literatures (F. Johansson et al., 2016; Shalit et al., 2017), the ITE is

viewed equivalent to the CATE.

Objective. For causal inference, our objective is to estimate the treatment effects from

the observational data. Formally speaking, given the observational dataset,
{
Xi, Ti, Y

F
i

}N
i=1

,
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where N is the total number of units in the datasets, the goal of the causal inference task is

to estimate the treatment effects defined above.

2.2 Assumptions

In order to estimate the treatment effect, the following assumptions are commonly used in

the causal inference literature.

Assumption 2.2.1. Stable Unit Treatment Value Assumption (SUTVA). The po-

tential outcomes for any unit do not vary with the treatment assigned to other units, and,

for each unit, there are no different forms or versions of each treatment level, which lead to

different potential outcomes.

This assumption emphasizes two points: The first point is the independence of each unit,

that is, there are no interactions between units. In the context of the above illustrative

example, one patient’s outcome will not affect other patients’ outcomes.

The second point is the single version for each treatment. In the above example, Medicine

A with different dosages are different treatments under the SUTVA assumption.

Assumption 2.2.2. Ignorability. Given the background variable, X, treatment assign-

ment T is independent to the potential outcomes, i.e., T ⊥⊥ Y (T = 0), Y (T = 1)|X.

In the context of the illustrative example, this ignorability assumption indicates two

folds: First, if two patients have the same background variable X, their potential outcomes

should be the same whatever the treatment assignment is, i.e., p(Yi(0), Yi(1)|X = x, T =

Ti) = p(Yj(0), Yj(1)|X = x, T = Tj). Analogously, if two patients have the same background

variable value, their treatment assignment mechanism should be same whatever the value

of potential outcomes they have, i.e., p(T |X = x, Yi(0), Yi(1)) = p(T |X = x, Yj(0), Yj(1)).

The ignorability assumption is also named as unconfoundedness assumption. With this
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unconfoundedness assumption, for the units with the same background variable X, their

treatment assignment can be viewed as random.

Assumption 2.2.3. Positivity. For any value of X, treatment assignment is not deter-

ministic:

P (T = t|X = x) > 0, ∀ t and x. (2.2.1)

If for some values of X, the treatment assignment is deterministic; then for these values,

the outcomes of at least one treatment could never be observed. In this case, it would be

unable and meaningless to estimate the treatment effect. To be more specific, suppose there

are two treatments: Medicine A and Medicine B. Let’s assume that patients with age greater

than 60 are always assigned with medicine A, then it will be unable and meaningless to study

the outcome of medicine B on those patients. In other words, the positivity assumption

indicates the variability, which is important for treatment effect estimation. In (G. W.

Imbens & Rubin, 2015a), the ignorability and the positivity assumptions together are called

Strong Ignorability or Strongly Ignorable Treatment Assignment.

With these assumptions, the relationship between the observed outcome and the potential

outcome can be rewritten as:

E[Y (T = t)|X = x] = E[Y (T = t)|T = t,X = x] (Ignorability)

= E[Y F |T = t,X = x],

(2.2.2)

where Y F is the random variable of the observed outcome, and Y (T = t) is the random

variable of the potential outcome of treatment t. If we are interested in the potential outcome

of one specific group (either the subgroup, the treated group, or the whole population), the

potential outcome can be obtained by taking expectation of the observed outcome over that

group.
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With the above equation, we can rewrite the treatment effect defined in Section 2.1 as

follows:

ITEi = TiY
F
i − TiY CF

i + (1− Ti)Y CF
i − (1− Ti)Y F

i

ATE = EX
[
E[Y F |T = 1, X = x]− E[Y F |T = 0, X = x]

]
=

1

N

∑
i

(Yi(T = 1)− Yi(T = 0)) =
1

N

∑
i

ITEi

ATT = EXT
[
E[Y F |T = 1, X = x]− E[Y F |T = 0, X = x]

]
=

1

Ntreat

∑
{i:Ti=1}

(Yi(T = 1)− Yi(T = 0)) =
1

Ntreat

∑
{i:Ti=1}

ITEi

CATE = E[Y F |T = 1, X = x]− E[Y F |T = 0, X = x]

=
1

Nx

∑
{i:Xi=x}

(Yi(T = 1)− Yi(T = 0)) =
1

Nx

∑
{i:Xi=x}

ITEi

(2.2.3)

where Yi(T = 1) and Yi(T = 0) are the potential treated/control outcomes of unit i, N is the

total number of units in the whole population, Ntreat is the number of units in the treated

group, and Nx is the number of units in the group with X = x. The second line in the

ATE, ATT and CATE equations are their empirical estimations. Empirically, the ATE can

be estimated as the average of ITE on the entire population. Similarly, ATT and CATE can

be estimated as the average of ITE on the treated group and specific subgroup separately.

13



Chapter 3

Causal Inference Methods

In this chapter, we introduce existing causal inference methods. We divide these methods

into the following categories: (1) Re-weighting methods; (2) Stratification methods; (3)

Matching methods; (4) Tree-based methods; (5) Representation based methods.

3.1 Re-weighting Methods

Due to the existence of confounders, the covariate distributions of the treated group and

control group are different, which leads to the selection bias problem. In other words, the

treatment assignment is correlated with covariates in the observational data. Sample re-

weighting is an effective approach to overcome the selection bias. By assigning appropriate

weight to each unit in the observational data, a pseudo-population can be created on which

the distributions of the treated group and control group are similar.

In sample re-weighting methods, a key concept is balancing score. Balancing score b(x) is

a general weighting score, which is the function of x satisfying: T ⊥⊥ x|b(x) (G. W. Imbens

& Rubin, 2015a), where T is the treatment assignment and x is the background variables.

There are various designs of the balancing score, and apparently, the most trivial design of
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balancing score is b(x) = x due to the ignorability assumption. Besides, propensity score is

also a special case of balancing score.

Definition 8. Propensity score: The propensity score is defined as the conditional proba-

bility of treatment given background variables (Rosenbaum & Rubin, 1983):

e(x) = Pr(T = 1|X = x) (3.1.1)

In detail, a propensity score indicates the probability of a unit being assigned to a particu-

lar treatment given a set of observed covariates. Balancing scores that incorporate propensity

score are the most common approach.

Propensity score based sample re-weighting

Propensity scores can be used to reduce selection bias by equating groups based on these

covariates. Inverse propensity weighting (IPW) (Rosenbaum, 1987a; Rosenbaum & Rubin,

1983), also named as inverse probability of treatment weighting (IPTW), assigns a weight r

to each sample:

r = T
e(x)

+ 1−T
1−e(x)

, (3.1.2)

where T is the treatment assignment (T = 1 denotes being treated group; T = 0 denotes

the control group), and e(x) is the propensity score defined in Eqn. (3.1.1).

After re-weighting, the IPW estimator of average treatment effect (ATE) is:

ˆATEIPW =
1

n

n∑
i=1

TiY
F
i

ê(xi)
− 1

n

n∑
i=1

(1− Ti)Y F
i

1− ê(xi)
, (3.1.3)
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and its normalized version, which is preferred especially when the propensity scores are

obtained by estimation (G. W. Imbens, 2004a):

ˆATEIPW =
n∑
i=1

TiY
F
i

ê(xi)

/ n∑
i=1

Ti
ê(xi)

−
n∑
i=1

(1− Ti)Y F
i

1− ê(xi)

/ n∑
i=1

(1− Ti)
1− ê(xi)

. (3.1.4)

Both large and small sample theory show that adjustment for the scalar propensity score

is enough to remove bias due to all observed covariates (Rosenbaum & Rubin, 1983). The

propensity score can be used to balance the covariates in the treatment and control groups

and therefore reduce the bias through matching, stratification (subclassification), regression

adjustment, or some combination of all three. (D’Agostino Jr, 1998) discusses the use of

propensity score to reduce the bias, which also provides examples and detailed discussions.

However, in practice, the correctness of the IPW estimator highly relies on the correctness

of the propensity score estimation, and slightly misspecification of propensity scores would

cause ATE estimation error dramatically (Imai & Ratkovic, 2014). To handle this dilemma,

Doubly Robust estimator (DR) (J. M. Robins et al., 1994), also named as Augmented IPW

(AIPW), is proposed. DR estimator combines the propensity score weighting with the out-

come regression, so that the estimator is robust even when one of the propensity score or

outcome regression is incorrect (but not both). In detail, the DR estimator is formalized as:

ˆATEDR =
1

n

n∑
i=1

{[
TiY

F
i

ê(xi)
− Ti − ê(xi)

ê(xi)
m̂(1, xi)

]
−
[

(1− Ti)Y F
i

1− ê(xi)
− Ti − ê(xi)

1− ê(xi)
m̂(0, xi)

]}
=

1

n

n∑
i=1

{
m̂(1, xi) +

Ti(Y
F
i − m̂(1, xi))

ê(xi)
− m̂(0, xi)−

(1− Ti)(Y F
i − m̂(0, xi))

1− ê(xi)

}
,

(3.1.5)

where m̂(1, xi) and m̂(0, xi) are the regression model estimations of treated and control

outcomes. The DR estimator is consistent and therefore asymptotically unbiased, if either

the propensity score is correct or the model correctly reflects the true relationship among
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exposure and confounders with the outcome (Fan et al., 2016). In reality, one definitely

cannot guarantee whether one model can accurately explain the relationship among variables.

The combination of outcome regression with weighting by propensity score ensures that the

estimators are robust to misspecification of one of these models (Bang & Robins, 2005; J.

Robins et al., 2007; J. M. Robins et al., 1994; Scharfstein et al., 1999).

The DR estimator consults outcomes to make the IPW estimator robust when propensity

score estimation is not correct. An alternative way is to improve the estimation of propensity

scores. In the IPW estimator, propensity score serves as both the probability of being

treated and the covariate balancing score, covariate balancing propensity score (CBPS) (Imai

& Ratkovic, 2014) is proposed to exploit such dual characteristics. In particular, CBPS

estimates propensity scores by solving the following problem:

E
[

Tix̃i
e(xi; β)

− (1− Ti)x̃i
1− e(xi; β)

]
= 0, (3.1.6)

where x̃i = f(xi) is a predefined vector-valued measurable function of xi. By solving the

above problem, CBPS directly constructs the covariate balancing score from the estimated

parametric propensity score, which increase the robustness to the misspecification of the

propensity score model.

Another drawback of the original IPW estimator is that it might be unstable if the

estimated propensity scores are small. If the probability of either treatment assignment is

small, the logistic regression model can become unstable around the tails, causing the IPW to

also be less stable. To overcome this issue, trimming is routinely employed as a regularization

strategy, which eliminates the samples whose propensity scores are less than a pre-defined

threshold (B. K. Lee et al., 2011). However, this approach is highly sensitive to the amount

of trimming (Ma & Wang, 2010). Also, theoretical results in (Ma & Wang, 2010) show that

the small probability of propensity scores and the trimming procedure may result in different
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non-Gaussian asymptotic distribution of IPW estimator. Based on this observation, a two-

way robustness IPW estimation algorithm is proposed in (Ma & Wang, 2010). This method

combines subsampling with a local polynomial regression based trimming bias corrector, so

that it is robust to both small propensity score and the large scale of trimming threshold.

An alternative approach to overcome the instability of IPW under small propensity scores

is to redesign the sample weight so that the weight is bounded. In (F. Li et al., 2018), the

overlap weight is proposed, in which each unit’s weight is proportional to the probability of

that unit being assigned to the opposite group. In detail, the overlap weight h(x) is defined

as h(x) ∝ 1−e(x), where e(x) is the propensity score. The overlap weight is bounded within

the interval [0, 0.5], and thus it is less sensitive to extreme vale of propensity score. Recent

theoretical results show that the overlap weight has the minimum asymptotic variance among

all balancing weights (F. Li et al., 2018).

3.2 Stratification Methods

Stratification, also named as subclassification or blocking (G. W. Imbens & Rubin, 2015a),

is a representative method to adjust the confounders. The idea of stratification is to adjust

the bias that stems from the difference between the treated group and the control group by

splitting the entire group into homogeneous subgroups (blocks). Ideally, in each subgroup,

the treated group and the control group are similar under certain measurements over the

covariates, therefore, the units in the same subgroup can be viewed as sampled from the

data under randomized controlled trials. Based on the homogeneity of each subgroup, the

treatment effect within each subgroup (i.e., CATE) can be calculated through the method

developed on RCTs data. After having the CATE of each subgroup, the treatment effect

over the interested group can be obtained by combining the CATEs of subgroups belonging

to that group.
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The key component of stratification methods is how to create the blocks and how to

combine the created blocks. The equal frequency (Rosenbaum & Rubin, 1983) is a com-

mon strategy to create blocks. Equal-frequency approach split the block by the appearance

probability, such as the propensity score, so that the covariates have the same appearance

probability (i.e., the propensity score) in each subgroup (block). The ATE is estimated by

weighted average of each block’s CATE, with the weight as the fraction of the units in this

block. However, this approach suffers from high variance due to the insufficient overlap be-

tween treated and control groups in the blocks whose propensity score is very high or low.

To reduce the variance, in (Hullsiek & Louis, 2002), the blocks, which divided according to

the propensity score, are re-weighted by the inverse variance of the block-specific treatment

effect. Although this method reduces the variance of equal-frequency method, it unavoidably

increases the estimation bias.

3.3 Matching Methods

As mentioned previously, missing counterfactuals and confounder bias are two major chal-

lenges in treatment effect estimation. Matching based approaches provide a way to esti-

mate the counterfactual and, at the same time, reduce the estimation bias brought by the

confounders. In general, the potential outcomes of the i-th unit estimated by matching

are (Abadie et al., 2004):

Ŷi(0) =

 Yi if Ti = 0,

1
#J (i)

∑
l∈J (i) Yl if Ti = 1;

Ŷi(1) =


1

#J (i)

∑
l∈J (i) Yl if Ti = 0,

Yi if Ti = 1;
(3.3.1)

where Ŷi(0) and Ŷi(1) are the estimated control and treated outcome, J (i) is the matched

neighbors of unit i in the opposite treatment group (Austin, 2011).
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The analysis of the matched sample can mimic that of an RCT: one can directly compare

outcomes between the treated and control group within the matched sample. In the context

of an RCT, one expects that, on average, the distribution of covariates will be similar between

treated and control groups. Therefore, matching can be used to reduce or eliminate the effects

of confounding when using observational data to estimate treatment effects (Austin, 2011).

3.3.1 Distance Metric

Various distances have been adopted to compare the closeness between units (Gu & Rosen-

baum, 1993), such as the widely used Euclidean distance (Rubin, 1973) and Mahalanobis

distance (Rubin & Thomas, 2000). Meanwhile, many matching methods develop their own

distance metrics, which can be abstracted as: D(xi,xj) = ||f(xi) − f(xj)||2. The existing

distance metrics mainly vary in how to design the transformation function f(·).

Propensity score based transformation. Original covariates of units can be represented by

propensity scores. As a result, the similarity between two units can be directly calculated

as: D(xi,xj) = |ei−ej|, where ei, and ej are the propensity scores of xi and xj, respectively.

Later, the linear propensity score based distance metric is also proposed, which is defined

as D(xi,xj) = |logit(ei) − logit(ej)|. This improved version is recommended since it can

effectively reduce the bias (Stuart, 2010). Furthermore, the propensity score based distance

metric can be combined with other existing distance metrics, which provides a fine-grained

comparison. In (Rubin & Thomas, 2000), when the difference of two unit’s propensity

scores is within a certain range, they are further compared with other distances on some

key covariates. Under this metric, the closeness of two units contains two criteria: they

are relatively close under propensity score measure, and they particularly similar under the

comparison of the key covariates (Stuart, 2010).
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Other transformations. Propensity score only adopts the covariate information, while

some other distance metrics are learned by utilizing both the covariates and the outcome

information so that the transformed space can preserve more information. One representa-

tive metric is the prognosis score (Hansen, 2008), which is the estimated control outcome.

The transformation function is represented as: f(x) = Ŷc. However, the performance of

the prognosis score relies on modeling the relationship between the covariates and control

outcomes. Moreover, the prognosis score only takes the control outcome into consideration

and ignores the treated outcome. The Hilbert-Schmidt Independence Criterion based near-

est neighbor matching (HSIC-NNM) proposed in (Chang & Dy, 2017) could overcome the

drawbacks of prognosis score. HSIC-NNM learns two linear projections for control outcome

estimation task and treated outcome estimation task separately. To fully explore the ob-

served control/treated outcome information, the parameters of linear projection is learned

by maximizing the nonlinear dependency between the projected subspace and the outcome:

Mw = arg maxMw
HSIC(XwMw, Y

F
w ) − R(Mw), where w = 0, 1 represent the control group

and treated group, respectively. XwMw is the transformed subspace with the transformation

function as: f(x) = xMw. Y F
w is the observed control/treated outcome, and R is the reg-

ularization to avoid overfitting. The objective function ensures the learned transformation

functions project the original covariates to an information subspace where similar units will

have similar outcomes.

Compared with propensity score based distance metric that focuses on balancing, prog-

nosis score and HSIC-NNM focus on embedding the relationship between the transformed

space and the observed outcome. These two lines of methods have different advantages, and

some recent work tries to integrate these advantages together. In (S. Li & Fu, 2017b), the

balanced and nonlinear representation (BNR) is proposed to project the covariates into a

balanced low-dimensional space. In detail, the parameters in the nonlinear transformation

function is learned by jointly optimizing the following two objectives: (1) Maximizing the
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differences of noncontiguous-class scatter and within-class scatter so that the units with the

same outcome prediction shall have similar representations after transformation; (2) Mini-

mizing the maximum mean discrepancy between the transformed control and outcome group

in order to get the balanced space after transformation. A series of works that have sim-

ilar objectives but vary in balancing regularization have been proposed, such as using the

conditional generative adversarial network to ensure the transformation function blocks the

treatment assignment information (C. Lee et al., 2018; Yao, Li, Li, Xue, et al., 2019).

The methods mentioned above adopt either one or two transformations for treated and

control groups separately. Different from the existing method, Randomized Nearest Neigh-

bor Matching (RNNM) (S. Li et al., 2016) adopts a number of random linear projections

as the transformation function, and the treatment effects are obtained as the median treat-

ment effect by nearest-neighbor matching in each transformed subspace. The theoretical

motivation of this approach is the Johnson-Lindenstrauss (JL) lemma, which guarantees

that the pairwise similarity information of the points in the high-dimensional space can be

preserved through random linear projection. Powered by the JL lemma, RNNM ensembles

the treatment effect estimation results of several linear random transformations.

3.3.2 Choosing a Matching Algorithm

After defining the similarity metric, the next step is to find the neighbors. In (Caliendo &

Kopeinig, 2008), existing matching algorithms are divided into four essential approaches, in-

cluding the nearest neighbor matching, caliper, stratification and kernel. The most straight-

forward matching estimator is nearest neighbour matching (NNM). In particular, a unit in

the control group is chosen as the matching partner for a treated unit, so that they are clos-

est based on a similarity score (e.g., propensity score). The NNM has several variants like

NNM with replacement and NNM without replacement. Treated units are matched to one
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control, called pair matching or 1-1 matching, or treated units are matched to two controls,

called 1-2 matching, and so on. It’s a trade-off to determine the number of neighbors, since

a large number of neighbors may result in the treatment effect estimator with high bias but

low variance, while small number results in low bias but high variance. It is known, however,

that the optimal structure is a full matching in which a treated unit may have one or several

controls or a control may have one or several treated units (Gu & Rosenbaum, 1993).

NNM may have bad matches if the closest partner is far away. One can set a tolerance

level on the maximum propensity score distance (caliper) to avoid this problem. Hence,

caliper matching is one form of imposing a common support condition.

The stratification matching is to partition the common support of the propensity score

into a set of intervals and then to take the mean difference in outcomes between treated and

control observations in order to calculate the impact within each interval. This method is

also known as interval matching, blocking and subclassification (Rosenbaum & Rubin, 1985).

The matching algorithms discussed above have in common that only a few observations

in the control group are used to create the counterfactual outcome of a treatment observa-

tion. Kernel matching (KM) and local linear matching (LLM) are nonparametric matching

that use weighted averages of observations in the control group to create the counterfactual

outcome. Thus, one major advantage of these approaches is the lower variance, because we

use more information to create counterfactual outcome.

Here, we also want to introduce another matching method called Coarsened Exact Match-

ing (CEM) proposed in (Iacus et al., 2012). Because either the 1-k matching or the full

matching fails to consider the extrapolation region, where few or no reasonable matches

exist in the other treatment group, CEM was proposed to handle this problem. CEM first

coarsen the selected important covariate,i.e., discretization, and then perform exact match-

ing on the coarsened covariates. For example, if the selected covariates are age (age > 50 is

1, and others are 0) and gender (female as 1, and male as 0). A female patient with age 50 in
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the treated group is represented by the coarsen covariates as (1, 1). She will only match the

patients in the treated group with exactly the same coarsened covariates value. After exact

matching, the whole data is separated into two subsets. In one subset, every unit has its

exact matched neighbors and it is the opposite in the other subset which contains the units

in the extrapolation region. The outcomes of units in the extrapolation region are estimated

by the outcome prediction model trained on the matched subset. So far, the treatment effect

on the two subsets can be estimated separately, and the final step is to combine treatment

effect on the two subsets by weighted average.

We have provided several different matching algorithms, but the most important question

is how we should select a perfect matching method. Asymptotically all matching methods

should yield the same results as the sample size grows and they will become closer to com-

paring only exact matches (Smith, 2000). When we only have small samples size, this choice

will be important (Heckman et al., 1998). There is one trade-off between bias and variance.

3.4 Tree-based Methods

Another popular method in causal inference is based on decision tree learning, which is one

of the predictive modeling approaches. Decision tree is a non-parametric supervised learning

method used for classification and regression. The goal is to create a model that predicts

the value of a target variable by learning simple decision rules inferred from data.

Tree models where the target variable is discrete are called classification trees with predic-

tion error measured based on misclassification cost. In these tree structures, leaves represent

class labels and branches represent conjunctions of features that lead to those class labels.

Decision trees where the target variable is continuous are called regression trees with pre-

diction error measured by the squared difference between the observed and predicted values.

The term Classification And Regression Tree (CART) analysis is an umbrella term used to
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refer to both of the above procedures (Breiman, 2017). In CART model, the data space is

partitioned and a simple prediction model for each partition space is fitted, and therefore

every partitioning can be represented graphically as a decision tree (Loh, 2011).

For estimating heterogeneity in causal effects, a data-driven approach (Athey & Imbens,

2016) based on CART is provided to partition the data into subpopulations that differ in

the magnitude of their treatment effects. The valid confidence intervals can be created for

treatment effects, even with many covariates relative to the sample size, and without ”spar-

sity” assumptions. This approach is different from conventional CART in two aspects. First,

it focuses on estimating conditional average treatment effects instead of directly predicting

outcomes as in the conventional CART. Second, different samples are used for constructing

the partition and estimating effects each subpopulation, which is referred to as the honest

estimation. However, in conventional CART, the same samples are used for these two tasks.

In CART, a tree is built up until a splitting tolerance is reached. There is only one tree,

and it is grown and pruned as needed. However, BART is an ensemble of trees, so it is more

comparable to random forests. A Bayesian “sum-of-trees” model called Bayesian Additive

Regression Trees (BART) is developed in (Chipman et al., 2007, 2010). Every tree in BART

model is a weak learner, and it is constrained by a regularization prior. Information can

be extracted from the posterior by a Bayesian backfitting MCMC algorithm. BART is a

nonparametric Bayesian regression model, which uses dimensionally adaptive random basis

elements. Let T be a binary tree which has a set of interior node decision rules and terminal

nodes, and let M = {µ1, µ2, ..., µB} be parameters associated with each of the B terminal

nodes for T . We use g(x;T,M) to assign a µb ∈ M to input vector x. The sum-of-trees

model can be expressed as:

Y = g(x;T1,M1) + g(x;T2,M2) + · · ·+ g(x;Tm,Mm) + ε, (3.4.1)
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ε ∼ N(0, σ2), (3.4.2)

BART has a couple of advantages. It is very easy to implement and only needs to plug

in the outcome, treatment assignment, and confounding covariates. In addition, it doesn’t

require any information about how these variables are parametrically related, so that it

requires less guess when fitting the model. Moreover, it can deal with a mass of predictors,

yield coherent uncertainty intervals, and handle continuous treatment variables and missing

data (Hill, 2011).

BART is proposed to estimate average causal effects. In fact, it can also be used to

estimate individual-level causal effects. BART not only can easily identify the heterogeneous

treatment effects, but also get more accurate estimates of average treatment effects compared

to other methods like propensity score matching, propensity score weighting, and regression

adjustment in the nonlinear simulation situations examined (Hill, 2011).

In most previous methods, the prior distribution over treatment effects is always induced

indirectly, which is difficult to be attained. A flexible sum of regression trees (i.e., a forest)

can address this issue by modeling a response variable as a function of a binary treatment

indicator and a vector of control variables (Hahn et al., 2017). This approach interpolates

between two extremes: entirely and separately modeling the conditional means of treatment

and control, or only the treating treatment assignment as another covariate.

Random forest is a classifier consisting of a combination of tree predictors, in which

each tree depends on a random vector that is independently sampled and has the identical

distribution for all trees (Breiman, 2001). This model can also be extended to estimate

heterogeneous treatment effects based on the Breiman’s random forest algorithm (Wager

& Athey, 2018a). Trees and forests can be considered as nearest neighbor methods with an

adaptive neighborhood metric. Tree-based methods seek to find training examples that are

close to a point x, but now closeness is defined with respect to a decision tree. And the
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closest points to x are those that fall in the same leaf as it. The advantage of using trees is

that their leaves can be narrower along the directions where the signal is changing fast and

wider along the other directions, potentially leading to a substantial increase in power when

the dimension of the feature space is even moderately large.

The tree-based framework also can be extended to uni- or multi-dimensional treat-

ments (P. Wang et al., 2015). Each dimension can be discrete or continuous. A tree structure

is used to specify the relationship between user characteristics and the corresponding treat-

ment. This tree-based framework is robust to model misspecification and highly flexible with

minimal manual tuning.

3.5 Representation Learning Methods

The most basic assumption used in statistical learning theory is that training data and test

data are drawn from the same distribution. However, in most practical cases, the test data

are drawn from a distribution that is only related, but not identical, to the distribution of

the training data. In causal inference, this is also a big challenge. Unlike the randomized

control trials, the mechanism of treatment assignment is not explicit in observational data.

Therefore, interventions of interest are not independent of the property of the subjects. For

example, in an observational study of the treatment effect of a medicine, the medicine is

assigned to individuals based on several factors, including the known confounders and some

unknown confounders. As a result, the counterfactual distribution will generally be different

from the factual distribution. Thus, it is necessary to predict counterfactual outcomes by

learning from the factual data, which converts the causal inference problem to a domain

adaptation problem.

Extracting effective feature representations is critical for domain adaptation. A model

(Ben-David et al., 2007) with a generalization bound is proposed to formalize this intu-
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ition theoretically, which can not only explicitly minimize the difference between the source

and target domains, but also maximize the margin of the training set. Building on this

work (Ben-David et al., 2007), the discrepancy distance between distributions is tailored

to adaptation problems with arbitrary loss functions (Mansour et al., 2009). In the follow-

ing discussions, the discrepancy distance plays an important role in addressing the domain

adaptation problem in causal inference.

So far, we can see a clear connection between counterfactual inference and domain adap-

tation. An intuitive idea is to enforce the similarity between the distributions of different

treatment groups in the representation space. The learned representations trade-off three

objectives: (1) low-error prediction over the factual representation, (2) low-error prediction

over counterfactual outcomes by taking into account relevant factual outcomes, and (3) the

distance between the distribution of treatment population and that of control population (F.

Johansson et al., 2016). Following this motivation, (Shalit et al., 2017) gives a simple and

intuitive generalization-error bound. It shows that the expected ITE estimation error of

representation is bounded by a sum of the standard generalization-error of that representa-

tion and the distance between the treated and control distributions based on representation.

Integral probability metric (IPM) is used to measure the distances between distributions,

and explicit bounds are derived for the Wasserstein distance and Maximum Mean Discrep-

ancy (MMD) distance. The goal is to find a representation Φ : X → R and hypothesis

h : X × {0, 1} → Y that minimizes the following objective function:

min
h,Φ

1

n

n∑
i=1

ri ·L(h(Φ(xi), Ti), yi)+λ ·R(h)+α ·IPMG({Φ(xi)})i:Ti=0, {Φ(xi)})i:Ti=1), (3.5.1)

where ri = Ti
2u

+ 1−Ti
2(1−u)

, u = 1
n

∑n
i=1 Ti, and the weight ri compensates for the difference in

treatment group size. R is a model complexity term. Given two probability density functions

p, q defined over S ⊆ Rd, and a function family G of functions g : S → R, the IPM is defined
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as:

IPMG(p, q) := sup
g∈G
|
∫
S

g(s)(p(s)− q(s))ds|. (3.5.2)

This model allows for learning complex nonlinear representations and hypotheses with

large flexibility. When the dimension of Φ is high, it risks losing the influence of t on h if

the concatenation of Φ and T is treated as input. To address this problem, one approach

is to parameterize h1(Φ) and h0(Φ) as two separate “heads” of the joint network. h1(Φ)

is used to estimate the outcome under treatment and h0(Φ) is for the control group. Each

sample is used to update only the head corresponding to the observed treatment. The

advantage is that statistical power is shared in the common representation layers and the

influence of treatment is retained in the separate heads (Shalit et al., 2017). This model

can also be extended to any number of treatments, as described in the perfect match (PM)

approach (Schwab et al., 2018). Following this idea, a few improved models have been

proposed and discussed. For example, (F. D. Johansson et al., 2018) brings together shift-

invariant representation learning and re-weighting methods. (Hassanpour & Greiner, 2019)

presents a new context-aware weighting scheme based on the importance sampling technique,

on top of representation learning, to alleviate the selection bias problem in ITE estimation.

Existing ITE estimation methods mainly focus on balancing the distributions of control

and treated groups, but ignore the local similarity information that provides meaningful

constraints on the ITE estimation. In (Yao et al., 2018, 2019), a local similarity preserved

individual treatment effect (SITE) estimation method is proposed based on deep represen-

tation learning. SITE preserves local similarity and balances data distributions simultane-

ously. The framework of SITE contains five major components: representation network,

triplet pairs selection, position-dependent deep metric (PDDM), middle point distance min-

imization (MPDM), and the outcome prediction network. To improve the model efficiency,

SITE takes input units in a mini-batch fashion, and triplet pairs could be selected from every

29



mini-batch. The representation network learns latent embeddings for the input units. With

the selected triplet pairs, PDDM and MPDM can preserve the local similarity information

and meanwhile achieve the balanced distributions in the latent space. Finally, the embed-

dings of mini-batch are fed forward to a dichotomous outcome prediction network to get the

potential outcomes. The loss function of SITE is as follows:

L = LFL + βLPDDM + γLMPDM + λ||M ||2 (3.5.3)

where LFL is the factual loss between the estimated and observed factual outcomes. LPDDM

and LMPDM are the loss functions for PDDM and MPDM, respectively. The last term is L2

regularization on model parameters M (except the bias term).

Most models focus on covariates with numerical values, while how to handle covariates

with textual information for treatment effect estimation is still an open question. One major

challenge is how to filter out the nearly instrumental variables which are the variables more

predictive to the treatment than the outcome. Conditioning on those variables to estimate

the treatment effect would amplify the estimation bias. To address this challenge, a condi-

tional treatment-adversarial learning based matching (CTAM) method is proposed in (Yao,

Li, Li, Xue, et al., 2019). CTAM incorporates the treatment-adversarial learning to filter out

the information related to nearly instrumental variables when learning the representations,

and then it performs matching among the learned representations to estimate the treatment

effects. The CTAM contains three major components: text processing, representation learn-

ing, and conditional treatment discriminator. Through the text processing component, the

original text is transformed into vectorized representation S. After that, S is concatenated

with the non-textual covariates X to construct a unified feature vector, which is then fed

into the representation neural network to get the latent representation Z. After learning the

representation, Z, together with potential outcomes Y , are fed into the conditional treatment
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discriminator. During the training procedures, the representation learner plays a minimax

game with the conditional treatment discriminator: By preventing the discriminator from

assigning correct treatment, the representation learner can filter out the information related

to nearly instrumental variables. The final matching procedure is performed in the repre-

sentation space Z. The conditional treatment-adversarial learning helps reduce the bias of

treatment effect estimation.
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Chapter 4

Deep Adaptive Variable Selection

Propensity Score

4.1 Introduction

The increasing availability of observational data requires the development of new and in-

novative statistical methods for causal inference. Instead of a randomized controlled trial,

observational studies are tempting and less expensive shortcuts but draws into question what

conclusions may be drawn when the researchers do not control treatment options. Due to the

fact that the treatments are not assigned at random in observational studies, confounders

that influence both the dependent variable and independent variable may cause a spurious

association, making treatment effect estimation more difficult.

Various frameworks for causal inference have been proposed to obtain unbiased esti-

mators for treatment effect from observational data (Hernán & Robins, 2006; Pearl, 2014;

Rubin, 1974; Splawa-Neyman et al., 1990), many of which are based on the propensity score

(Rosenbaum & Rubin, 1983). The propensity score is defined to be the conditional prob-

ability of assignment to a particular treatment given the observed covariates (Rosenbaum
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& Rubin, 1983). Representative methods based on the propensity score include propensity

score matching (Rosenbaum & Rubin, 1983, 1985), propensity score stratification (Cochran,

1968), inverse probability of treatment weighting (Rosenbaum, 1987b), and covariate adjust-

ment via the propensity score (Harder et al., 2010). The common purpose of all of these

methods is to reduce the selection bias between the treatment and control groups by con-

trolling for the propensity score.

The calculation of the propensity score involves estimating the probability of treatment

assignment conditional on the covariates. The essential question is which covariates should

be included in the model. The most important assumption in causal inference is ignorability,

under which treatment assignment is independent of the potential outcomes given the ob-

served covariates. It is also known as the “no unmeasured confounders” assumption, which

means all of the confounders should be measured and included in the analysis. Although in-

cluding all of the confounders is important, this does not mean that including more variables

is better (Z. Chu et al., 2020; Greenland, 2008; Patrick et al., 2011; Schisterman et al., 2009;

Shortreed & Ertefaie, 2017). For example, conditioning on instrumental variables that are

associated with the treatment assignment but not with the outcome except through exposure

can increase both bias and variance of estimated treatment effects (Myers et al., 2011). Con-

ditioning on adjustment variables that are predictive of outcomes but not associated with

treatment assignment is unnecessary to remove bias, but can reduce variance in estimated

treatment effects (Sauer et al., 2013). Therefore, conditioning on these variables, let alone

spurious variables that are not associated with treatment assignment and outcomes, may

introduce more impalpable bias into the model, especially in scenarios with high dimensional

variables.

Much work (Z. Chu et al., 2020; Shortreed & Ertefaie, 2017; C. Wang et al., 2012; Wilson

& Reich, 2014) has been proposed to solve the variable selection problem in causal infer-

ence. C. Wang et al., 2012 introduced a Bayesian adjustment for confounding method that
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is a parametric variable selection approach. Wilson and Reich, 2014 proposed a decision-

theoretic approach to confounder selection and treatment effect estimation. Z. Chu et al.,

2020 proposed a feature selection representation matching method based on deep represen-

tation learning and matching. Shortreed and Ertefaie, 2017 proposed an outcome adaptive

LASSO method that imposes penalties on variables that depend on the relationship between

the predictors and outcome when estimating the propensity score.

Even if the confounders and adjustment variables are correctly specified, misspecification

of the relationship between treatment assignment and those variables could also introduce

bias in estimators of treatment effects. Estimation of the propensity score is typically based

on logistic regression, under which the log odds of being assigned to a given treatment

is assumed to be a linear function of the covariates. Compared with logistic regression,

neural networks are potentially better at describing high dimensional data and estimating

the propensity score (Bishop et al., 1995; Westreich et al., 2010). Without a priori decisions

regarding the order of the polynomial and the number of interaction terms, deep neural

networks can approximate complex polynomial and nonlinear functions of the data (Barron,

1994; Mhaskar, 1996). Due to the severe nonlinearity and unidentifiability of deep neural

networks, there has been little work on the inferential properties of neural networks for causal

inference (A. M. Alaa et al., 2017; S. Li & Fu, 2017a; Shalit et al., 2017; Yao et al., 2018;

Yoon et al., 2018). For the case of normally-distributed outcomes, Dinh and Ho, 2020 have

recently demonstrated that deep neural networks with square-error loss and adaptive group

LASSO yield consistent estimators that are also consistent with respect to variable selection.

In this chapter, we propose a Deep Adaptive Variable Selection Propensity Score (DAVSPS)

based on deep representation learning and outcome adaptive group LASSO. DAVSPS com-

bines the data-driven learning capability of deep representation learning and variable se-

lection consistency of adaptive group LASSO to improve the estimation of the propensity

score by selecting out confounders and adjustment variables, while removing instrumental
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and spurious variables. The latter extends the approach of Shortreed and Ertefaie, 2017 to

deep neural networks. We also extend the results of Dinh and Ho, 2020 to joint modeling

of binary outcomes and propensity score estimation.

We organize the rest of this chapter as follows. In Section 2, we provide a brief overview

of deep neural networks, variable selection, and causal inference. Our proposed framework

is presented in Section 3. In Section 4, we give the proofs about the consistency of outcome

prediction estimator with group LASSO and consistency of estimator and variable selection

in propensity score estimation with adaptive group LASSO. In Section 5, experiments on

simulation data sets are provided. In Section 6, we apply our method to explore the racial

disparities in severe maternal morbidity based on a National Inpatient Sample (NIS) data

set. We close with our conclusions in Section 7.

4.2 Background

4.2.1 Deep Neural Networks

Linear and generalized linear models may not always adequately describe large data sets with

high dimensional covariates, and complex nonlinear relationships among variables. Deep

neural networks are one of the most efficient and effective tools for complex learning sys-

tems since they can approximate broad classes of continuous functions defined on bounded

domains (Barron, 1994; Mhaskar, 1996). Throughout the chapter, we consider a general

analytic neural network model. For example, consider predicting an output Y as a function

of d0 covariates X1, X2, · · · , Xd0 , which we will collect in a vector X and |X| is bounded for

all X ∈ X . As shown in Figure 4.1, a deep neural network is comprised of several layers of

interconnected nodes. The first layer is the input layer and is taken to be comprised of the

values of the covariates. The last layer is the output layer that produces the results for given
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Figure 4.1: The structure of deep neural network.

inputs. The remaining layers are hidden layers. The k-th hidden layer Hk is comprised of dk

nodes, taking values Hk = (Hk,1, · · · , Hk,dk)
T . We take H0 = X for notational convenience.

The k-th hidden layer is defined as Hk = φ(Bk · Hk−1 + Ak), k = 1, · · · , L − 1, where the

activation function φ is analogous to the inverse link function in generalized linear models.

Besides, we need the φ is analytic. The matrix Bk ∈ Rdk×dk−1 is comprised of unknown

weights, analogous to the regression coefficients of a multivariate regression, and the dk × 1

vector Ak may be regarded as a vector of intercepts. In particular, because the deep neural

network only interacts with the original covariates through the first hidden layer, the columns

β1, · · · , βd0 of B1 in the first hidden layer are comprised of vectors of parameters associated

with input variables X1, X2, · · · , and Xd0 , respectively. Thus, ||βj|| may be regarded as

a measure of the impact of Xj on the outcome Y , where j = 1, · · · , d0. The last layer of

deep neural networks is output layer HL which produces the result for given inputs, i.e.,

HL = Y = f(X) = φ(BL ·HL−1 +AL), where HL−1 is the last hidden layer and φ is analytic

activation function that depends on the type of outcome variable. For example, if Y is a

36



continuous variable, φ can be set as constant 1; if it is binary variable, φ can be set as an

analytic hyperbolic tangent function.

4.2.2 Variable Selection

Least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) is a regression

analysis method that performs both variable selection and regularization by minimizing the

residual sum of squares subject to the regularizing constraint that the sum of the absolute

value of the coefficients is less than a constant. Unlike ridge regression, it tends to set the

coefficients of some covariates to exactly 0 under the constraint, thus providing a mecha-

nism for model selection. Although the LASSO seems like a very viable procedure and has

demonstrably good performance in variable selection in many applications, Meinshausen,

Bühlmann, et al., 2006 showed that LASSO selection is consistent only if the underlying

model satisfies some conditions; for example, in orthogonal designs, or given proper choice

of λn when d = 2). Zou, 2006 proposed the necessary condition for the consistency of

the LASSO selection and pointed out if the necessary condition is not satisfied, LASSO

is inconsistent with respect to variable selection. To enjoy oracle properties, the adaptive

LASSO (Zou, 2006) was proposed where adaptive weights are used for penalizing different

coefficients in the `1 penalty. The oracle properties mean that the adaptive LASSO with a

proper choice of λn has variable selection consistency (the nonzero coefficients are selected

with probability tending to one) and asymptotic normality (nonzero components are esti-

mated as if the sparse model were known a priori) (Fan & Li, 2001; Shortreed & Ertefaie,

2017; Zou, 2006).

Due to the structure of neural networks, each covariate in the input layer interacts with

several nodes in the first hidden layer. Therefore, a covariate can be dropped only if all of

the parameters connecting that covariate to all nodes in the first hidden layer are zeros, so
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that the standard LASSO and adaptive LASSO are not applicable for neural networks. The

Group LASSO may be used to address this concern in neural networks (Scardapane et al.,

2017; Zhao et al., 2015; Zhu et al., 2016). The Group LASSO is used to impose sparsity on a

group level, where the parameters associated with the same covariate are put in one group,

and that all the parameters in the group are shrunk together towards zero.

4.2.3 Causal Inference

The task of causal inference is to estimate the unbiased treatment effect, a measure used

to compare treatments (or interventions). At the population level, the treatment effect is

named as the Average Treatment Effect (ATE), which is defined as:

ATE = E[Y (T = 1)− Y (T = 0)], (4.2.1)

where Y (T = 1) and Y (T = 0) are the potential treated and control outcome of the whole

population respectively.

When estimating treatment effects from observational data, we face two major chal-

lenges (Yao et al., 2020), i.e., missing counterfactual outcomes and treatment selection bias.

Firstly, in real life, we only observe the factual outcome and never all potential outcomes that

would potentially have happened had we chosen other different treatment options. Secondly,

unlike randomized controlled experiments, treatments are typically not assigned at random

in observational data. Due to this treatment assignment bias, the treated population may

differ significantly from the general population. These two major issues make treatment

effects estimation very challenging.

To overcome these two challenges, balancing score is the key concept in most of the

approaches. Balancing score b(x) is a general weighting score, which is the function of

x satisfying: T ⊥⊥ x|b(x) (G. W. Imbens & Rubin, 2015a). Therefore, conditioned on
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the balancing score, the treatment and control groups can be be directly compared for

unbiased estimation of treatment effects (Rosenbaum & Rubin, 1983). Propensity score is

a special case of balancing score. It is defined as the conditional probability of treatment

given variables, i.e., e(x) = P (T = 1|X = x) (Rosenbaum & Rubin, 1983).

The success of unbiased treatment effete estimation from observational data is based on

the following assumptions (G. W. Imbens & Rubin, 2015a), which ensure that the treatment

effect can be identified. Stable Unit Treatment Value Assumption (SUTVA): The

potential outcomes for any units do not vary with the treatments assigned to other units,

and, for each unit, there are no different forms or versions of each treatment level, which

lead to different potential outcomes. Consistency: The potential outcome of treatment T

is equal to the observed outcome if the actual treatment received is T . Positivity: For any

value of X, treatment assignment is not deterministic, i.e.,P (T = t|X = x) > 0, for all t

and x. Ignorability: Given covariates X, treatment assignment T is independent to the

potential outcomes, i.e., (Y1, Y0) ⊥⊥ T |X.

4.3 Deep Adaptive Variable Selection Propensity Score

In this section, we firstly present the definitions and notations involved in our model and

then describe the proposed framework, i.e., Deep Adaptive Variable Selection Propensity

Score (DAVSPS). Finally, we prove the consistency of estimator and variable selection in

DAVSPS.

4.3.1 Preliminaries

Suppose that observational data are obtained from n sampling units and each unit received

one of two or more treatments. Let ti denote the treatment assignment for unit i; i = 1, ..., n.

For binary treatments, ti = 1 for the treatment group, and ti = 0 for the control group. The
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Figure 4.2: The framework of DAVSPS contains two major steps: outcome prediction with

group LASSO and propensity score estimation with adaptive group LASSO.

observed outcome for unit i is denoted by Yi. Let X ∈ Rd0 denote the vector of all observed

variables. There are d0 covariates, denoted Xj for j = 1 : d0.

According to the different types of covariates, the covariates X can be decomposed into

four subsets: X = [XC
ᵀ, XP

ᵀ, XI
ᵀ, XS

ᵀ]ᵀ, where XC are confounders associated with both

outcome and treatment assignment; XP are adjustment variables that predict outcome, but

not treatment assignment; XI are instrumental variables that predict treatment assignment,

not outcome; XS are spurious variables that are not associated with both outcome and

treatment assignment. Let nC, nP , nI , and nS denote the cardinalities of XC, XP , XI , and

XS , respectively, so d0 = nC + nP + nI + nS . One objective of our analysis is to discern the

unknown subset to which each covariate in X belongs.

4.3.2 The Framework of DAVSPS

We propose a deep adaptive variable selection propensity score (DAVSPS) based on deep

representation learning and outcome adaptive group LASSO. The key idea of DAVSPS is to
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combine the data-driven learning capability of deep representation learning (Bengio et al.,

2013; Z. Chu et al., 2020; Shalit et al., 2017; Yao et al., 2018) and selection consistency

of adaptive group LASSO (Dinh & Ho, 2020; Zou, 2006) to improve the estimation of

propensity score by selecting out confounders and adjustment variables and removing in-

strumental and spurious variables. The framework of DAVSPS is illustrated in Figure 4.2,

which contains two major steps: outcome prediction with group LASSO and propensity

score estimation with adaptive group LASSO. More specifically, Step one is to use a deep

neural network (DNN) based prediction model with group LASSO to predict the outcome

and obtain the initial weight estimates for each covariate. Step two is to use a DNN based

classification model to estimate propensity scores with adaptive group LASSO under which

the weighted penalty is based on initial weight estimates (obtained from step one).

Outcome Prediction with Group LASSO. The first component of DAVSPS adopts

a deep neural network with group LASSO to predict the outcome, and it is expressed as a

nonlinear mapping f : X × T → Y , where X denotes the original covariates and Y denotes

the observed factual outcome. Because the model only interacts with the original covariates

through the first hidden layer, we only impose the group LASSO penalty in the first layer.

In deep neural network, parameters that connect to the same input covariate are grouped

together through the `2-norm, so that each group is associated with one covariate. Then,

each group of parameters is penalized through the `1-norm. It can be treated as LASSO (`1

penalty) between groups and ridge (`2 penalty) within groups.

When the first hidden layer’s parameters belonging to one group are shrunk together to

zero, the corresponding covariate is removed from the original covariate space. Here, we aim

to explore the relationship between the covariates and the outcome conditional on treatment

assignment and expect to obtain the initial weight of each covariate, which can help the

adaptive group LASSO in the deep classification layer to consistently distinguish the covari-
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ates predictive of the outcome (i.e., confounder and adjustment variables) and covariates

independent of the outcome (i.e., instrumental and spurious variables). Compared to the

simple outcome prediction without penalization in the first step of adaptive LASSO (Short-

reed & Ertefaie, 2017), adding penalization can provide more accurate initial estimation for

parameters (Dinh & Ho, 2020).

The function f : X × T → Y maps the observed covariates and treatment assignment to

the corresponding observed outcome. However, when the dimensionality of the input covari-

ates is high, there is a risk of losing the influence of the treatment T on f : X×T → Y , if the

concatenation of X and T are both treated as inputs (Shalit et al., 2017). Besides, no matter

which group the subjects belong to, they should share some common properties. Therefore,

we first use one common neural network to train all the subjects together and then parti-

tion the common neural network into two sub-neural networks respectively corresponding to

treatment and control groups:

f(x, t) =


f1(x) if t = 0

f2(x) if t = 1.

(4.3.1)

Here, the first layer f1(x) is used to estimate the outcome under treatment and the

second layer f2(x) is used to estimate the outcome for the control group. Each sample

is only updated in one sub-network corresponding to the observed treatment. Obviously,

this model can also be extended to any number of treatments. Let ŷi = fβ(x) denote the

predicted observed outcome of unit i corresponding to factual treatment ti.

Based on the decomposition of X, the parameters in the first hidden layer of outcome

prediction model that directly interact with X can also be decomposed into four subsets,

i.e., [βC, βP , βI , βS ], where βC ∈ Rd1×nC , βP ∈ Rd1×nP , βI ∈ Rd1×nI , and βS ∈ Rd1×nS .

The estimator for outcome prediction with group LASSO is thus defined by:
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β̂n = arg min
β

{
1

n

n∑
i=1

`(yi, fβ(xi)) + λnq(β)

}
, (4.3.2)

where `(yi, fβ(xi)) denotes the log probability density (mass) function of yi given fβ(x).

The penalty function is

q(β) =

nC∑
c=1

||βc(C)||+
nP∑
p=1

||βp(P)||+
nI∑
i=1

||βi(I)||+
nS∑
s=1

||βs(S)||, (4.3.3)

and the tuning parameter λn > 0 controls the trade-off between the outcome prediction

and group LASSO. Here, || · || is the Euclidean norm. The parameters βc(C), βp(P), βi(I),

andβs(S) respectively represent the vectors of parameters directly connecting to the c-th

confounder XC, p-th adjustment XP , i-th instrumental XI , and s-th spurious variable XS .

Propensity Score Estimation with Adaptive Group LASSO. The propensity score

is the conditional probability of assignment to a particular treatment given the observed

covariates (Rosenbaum & Rubin, 1983). The estimation of propensity score for the analysis

of the observational data is typically based on the logistic regression. Compared with the

logistic regression, neural network is better at dealing with high dimensional data (Bishop et

al., 1995; Westreich et al., 2010), without a priori decisions about the order of the polynomial

and the number of interaction terms, it can approximate the complex polynomial function

(Barron, 1994; Mhaskar, 1996). Therefore, the second component of DAVSPS adopts a

deep neural network with adaptive group LASSO to estimate the propensity score, which is

expressed as a nonlinear mapping g : X → T .

Based on the discussion in Introduction, a propensity score estimation model should in-

clude the confounders XC and adjustment variables XP , and at the same time eliminate

instrumental variables XI and spurious variables XS . The regular LASSO forces the coef-

ficients to be equally penalized in the `1 penalty, regardless of the types of covariates (Zou,
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2006), thus it cannot achieve our goal of including XC and XP , while excluding XI and

XS . To design a penalty function with different regularization strengths according to dif-

ferent types of covariates, we apply the adaptive group LASSO with outcome prediction

(Eq.(4.3.2)) as the base estimator into propensity score estimation model.

Based on the decomposition of X, the parameters in the first hidden layer of propensity

score estimation model that directly interact with X can also be decomposed into four

subsets, i.e., [αC, αP , αI , αS ], where αC ∈ Rd1×nC , αP ∈ Rd1×nP , αI ∈ Rd1×nI , and αS ∈

Rd1×nS .

The function g maps the covariates Xi to the corresponding observed treatment assign-

ments Ti by deep neural network with hyperbolic tangent activation function. We assume

p(xi;α) = 0.5{1 + gα(xi)
d
} is the predicted probability that the unit i belongs to treatment

group. Subjects with a very small probability close to zero or very large probability close to

one can result in a very large weight in the following IPTW. Such weights can increase the

variability of the estimated treatment effect (cole2008constructing). Thus, we utilize the

scale parameter d > 1 to control the range of probability. Then, we use the log-likelihood

of a Bernoulli to quantify the factual treatment prediction error and define the estimator of

propensity score model with adaptive group LASSO by:

α̃n = arg min
α

{
1

n

n∑
i=1

`(ti, p(xi;α)) + θnq(α)

}
, (4.3.4)

where

`(ti, p(xi;α)) = −
(
ti log(p(xi;α)) + (1− ti) log(1− p(xi;α))

)
, (4.3.5)

q(α) =

nC∑
c=1

||αc(C)||
||β̂c(C)||γ

+

nP∑
p=1

||αp(P)||
||β̂p(P)||γ

+

nI∑
i=1

||αi(I)||
||β̂i(I)||γ

+

nS∑
s=1

||αs(S)||
||β̂s(S)||γ

, (4.3.6)
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and the tuning parameter θn > 0 controls the trade-off between the treatment assignment

classification and adaptive group LASSO. The power γ is positive. For the covariates removed

in the outcome prediction with group LASSO (Eq.(4.3.2)), the β̂ = 0, so we assume 0/0 = 1

and the corresponding β in Eq.(4.3.6) will still converge to zero. Here, the adaptive group

LASSO uses β̂c(C), β̂p(P), β̂i(I), and β̂s(S) to assign different weights to covariates based on

their importance in predicting the outcome variable. In the outcome prediction model with

group LASSO (Eq.(4.3.2)), the coefficients of confounders and adjustment variables that are

predictive of outcome should be larger than those of instrumental and spurious variables that

are not related to outcome. Thus, in the Eq.(4.3.6), the weights (||β̂i(I)||−γ and ||β̂s(S)||−γ)

for instrumental and spurious variables are inflated to infinity while the weights (||β̂c(C)||−γ

and ||β̂p(P)||−γ) for confounders and adjustment variables are bounded (Dinh & Ho, 2020;

Shortreed & Ertefaie, 2017; Zou, 2006), which will help us to find out the ideal propensity

score estimation model.

Treatment Effect Estimation based on DAVSPS. Although our Deep Adaptive Vari-

able Selection Propensity Score is applicable to any methodology based on propensity score,

such as matching (G. W. Imbens, 2004b; Rosenbaum & Rubin, 1983), stratification (Rosen-

baum & Rubin, 1984), covariate adjustment (Garrido, 2016), and inverse probability re-

weighting (Hernán & Robins, 2006; Rosenbaum, 1987b), we only consider the inverse proba-

bility of treatment weighting as an example in this chapter. The propensity score estimated

in Eq.(4.3.6) is defined as êi(xi, α̃n) = P (ti = 1|xi) and the balancing weight in IPTW

estimator is defined by:

π̂i(xi, ti) =
ti

êi(xi, α̃n)
+

1− ti
1− êi(xi, α̃n)

.
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Although DAVSPS can be applied to individual treatment effect estimation, we only

use the average treatment effect (ATE) to describe the treatment effect, denoted as τ =

E(Y1)− E(Y0). Here the estimated ATE by IPTW is defined as:

τ̂ =

∑n
i=1 π̂i(xi, ti)yiti∑n
i=1 π̂i(xi, ti)ti

−
∑n

i=1 π̂i(xi, ti)yi(1− ti)∑n
i=1 π̂i(xi, ti)(1− ti)

.

Tuning Parameter Selection Criterion. In the outcome prediction with group

LASSO (Eq.(4.3.2)), the purpose is to explore the relationship between different types of

covariates and the outcome, so we select the tuning parameter λn to optimize predictive

performance. However, in the propensity score estimation with adaptive group LASSO

(Eq.(4.3.6)), our goal is to use the propensity score to balance the selection bias between

treatment and control groups, rather than create one classification model for the treatment

assignment mechanism (Shortreed & Ertefaie, 2017). Therefore, minimizing the misclassifi-

cation error is not our priority. We propose a new criterion to help select θn by minimizing the

imbalance between treatment and control groups in the reweighted conditional distributions

by propensity score. The reweighted conditional distributions are defined as:

q1(X|T = 1) =
π̂(X, 1)p(X|T = 1)∫
π̂(X, 1)p(X|T = 1)dX

and q2(X|T = 0) =
π̂(X, 0)p(X|T = 0)∫
π̂(X, 0)p(X|T = 0)dX

.

We aim to select θn so as to make the empirical reweighted conditional distributions

q̂1(X|T = 1) and q̂2(X|T = 0) of the covariate space for the treatment and control groups

more similar. In particular, we minimize the integral probability metric (IPM), a measure

of the divergence between the reweighted conditional distributions of treatment and control

groups. The integral probability metric is defined as (Müller, 1997):

IPMG(q̂1, q̂2) = sup
φ∈G

∣∣∣∣∫
X

φ(X)(q̂1(X)− q̂2(X))dX

∣∣∣∣,
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which measures the divergence between two distributions q̂1 and q̂2 by finding the maximal

expected contrast in a function family G including the functions φ : X → R. Here, we adopt

the IPMG(q̂1, q̂2) defined in the family of 1-Lipschitz functions by setting the function family

G = {φ : ‖φ‖L ≤ 1} to be the set of 1-Lipschitz functions, which leads to IPM being the

Wasserstein distance (Shalit et al., 2017; Sriperumbudur et al., 2012).

4.4 Variable Selection Consistency of DAVSPS

For propensity score estimation in DAVSPS, the ideal model should include the confounders

XC and adjustment variables XP , while eliminating instrumental variables XI and spurious

variables XS since the former are predictive of the outcomes, while the latter are not related

to the outcomes. Therefore, we first build an outcome prediction model with group LASSO

to provide an approximate estimation of the importance of each covariate. Then, in the

propensity score estimation, based on the weights obtained from the relationship between

covariates and outcomes, we design a regularization term with weights that impose heavier

penalties on the variables that are not predictive of outcomes. In this section, we prove the

consistency of outcome prediction estimator with group LASSO and consistency of estimator

and variable selection in propensity score estimation with adaptive group LASSO.

Dinh and Ho, 2020 demonstrated that for a neural network of the form described in Fig-

ure 4.1 and with a continuous outcome, the adaptive group LASSO estimator is consistent

and covariate selection consistent. We will extend these results to the classification problem

that arises from binary outcome variables in the outcome prediction with group LASSO

(step one) and propensity score estimation with adaptive group LASSO (step two). There-

fore, regardless of the type of outcome (continuous or binary), the adaptive group LASSO

estimator and variable selection of DAVSPS are consistent.
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Suppose that the training data {(Xi, Yi)}ni=1 are independent and identically distributed

(i.i.d ) samples generated from P ∗X,Y , where X ∈ X and Y ∈ {0, 1}. Assume further that

conditional on covariates Xi, the outcomes Yi are sampled from Bernoulli distributions with

probabilities:

p(Xi; β) = 0.5{1 + fβ(Xi)/d}. (4.4.1)

Here, the activation function in fβ(X) is taken to be an analytic function in the deep

neural network and is taken to have range of (−1, 1). For example, it may be the hyperbolic

tangent function, i.e., tanh(x) = ex−e−x
ex+e−x

. We also assume that β belongs to the hypercube

W and that |X| is bounded for all X ∈ X . The true value β∗ for β is assumed to be in

the interior of W . The constant d > 1 controls the range of p(Xi; β), so as to bound it

away from zero and one; more specifically, |p(X; β)| ≤ 0.5(1 + 1/d) for all β ∈ W and all

X ∈ X . Therefore, the following negative log likelihood is bounded. Then the empirical risk

(negative log likelihood) is:

Rn(β) = − 1

n

n∑
i=1

{
Yi log p(Xi; β) + (1− Yi) log(1− p(Xi; β))

}
, (4.4.2)

and the risk is:

R (β) = −EP ∗X,Y
{
{Y log p (X; β) + (1− Y ) log (1− p (X; β))}

}
(4.4.3)

= −EPX
{
p (X; β∗) log p (X; β) + (1− p (X; β∗)) log (1− p (X; β))

}
(4.4.4)

Because log(1 +x) is analytic when |x| < 1, and |p(x; β)| < 0.5(1 + 1/d), Eqs. (4.4.2) and

(4.4.4) are analytic. Therefore, the risk function R (β) is also analytic.

To complete the proofs, we make the following assumptions:

Assumption 4.4.1. The marginal distribution PX of the covariates has bounded support.
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Assumption 4.4.2. The outcome prediction model fβ∗(x) only depends on the set of co-

variates that are predictive of the outcome, i.e., XU ∈ RnU = XC
⋃
XP and , while being

independent of the remaining covariates, i.e., XV ∈ RnV = XI
⋃
XS , where nU = nC + nP

and nV = nI + nS .

The parameters in the first hidden layer for the outcome model are partitioned into two

groups u = βC
⋃
βP and v = βI

⋃
βS , where u ∈ Rd1×nU and v ∈ Rd1×nV , and d1 is the

number of nodes in the first hidden layer. This assumption requires that the parameters v

of the first hidden layer linked to covariates not predictive of the outcome are equal to zero,

i.e., v = 0. Conversely, parameters uj of the first hidden layer linked to each covariate j that

is predictive of the outcome are not equal to zero; i.e., ||uj|| > 0 .

A necessary and often implicit assumption for investigating the inferential properties of

estimators is that the model parameters are identifiable. However, the parameters of deep

neural network models are highly unidentifiable. Arbitrary permutations of the hidden nodes

and arbitrary scaling under nonlinear activation functions can lead to identical outcomes,

etc (Pourzanjani et al., 2017). For example, rearranging hidden nodes has no effect on the

model output and these nodes are fully exchangeable because they are sum up together to

obtain the output of the next layer. Arbitrarily multiplying all of the incoming weights and

biases by a real scalar, a, and then multiplying the outcoming weights by 1
a
, will lead to

the same output. Geometrically, it will lead to a high-dimensional hyperbola of equivalent

output (Goodfellow et al., 2016). Moreover, in the context of variable selection, when all

incoming or outcoming parameters are set to zero, changing the remaining parameters linked

to that node has no effect on the outcome.

Following the approach of Dinh and Ho, 2020, we define the set of risk minimizers as:

H∗β := {β : R(β) = R(β∗)}.
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Traditional statistical analyses are often based on Taylor expansion at a local optimum

and non-singular Hessian matrix, but this does not work for deep neural networks since H∗

may contain subsets of high dimension and the Hessian matrix at an optimum might be

singular. Due to its severe unidentifiability and nonlinearity, it is challenging to explore the

statistical properties of deep neural networks(Dinh & Ho, 2020). Dinh and Ho, 2020 use

Lojasewicz’s inequality (Ji et al., 1992) for analytic functions to give an upper bound for the

distance between β̂n and H∗β by the excess risk, thus avoiding the issue of the irregularity of

the Hessian matrix.

To study the consistency of the outcome prediction estimator with group LASSO without

a full geometric description of the H∗β, we need the following Lemmas. The first lemma

states that members of the set H∗β share hidden layers with activation functions that are are

identical almost everywhere on X :

Lemma 4.4.3. The element β0 ∈ H∗β = {β : R(β) = R(β∗)} if and only if fβ0 = fβ∗ almost

surely.

Proof. For each X ∈ X ,

−p(X; β∗) log q + 1− p(X; β∗) log(1− q)

is minimized by taking q = p(X; β∗). So

inf
β∈W

R (β) = inf
β∈W
−EX

{
p (X; β∗) log p (X; β)− (1− p (X; β∗)) log (1− p (X; β))

}
≥ −EX

{
inf
β∈W

[p (X; β∗) log p (X; β)− (1− p (X; β∗)) log (1− p (X; β))]
}

= −EX
{

[p (X; β∗) log p (X; β∗)− (1− p (X; β∗)) log (1− p (X; β∗))]
}

= R (β∗) ,
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where p(X; β∗) = 0.5{1 + fβ∗(X)/d}. Because β0 ∈ H∗β = {β : R(β) = R(β∗)},

R(β0) = −EPX
{
p (X; β∗) log p (X; β0) + (1− p (X; β∗)) log (1− p (X; β0))

}
= inf

β∈W
R (β) ,

where p(X; β0) = 0.5{1 + fβ0(X)/d}.

Thus we get R(β∗) ≤ infβ∈W R (β) = R(β0) with equality if and only if fβ0(X) is equal

to fβ∗(X) almost surely on the support of PX . Since pX(x) is continuous and positive on its

open domain X and the function fβ(X) is analytic, we deduce that fβ0(X) = fβ∗(X) almost

everywhere.

The following lemma describes the set of risk estimators, and is required to demonstrate

the consistency of the estimators and variable selection:

Lemma 4.4.4. For the set of risk minimizers H∗β:

(i) For β0 ∈ H∗β, the parameters u = βC
⋃
βP of β0 are bounded away from zero, i.e.,

‖uk(β0)‖ ≥ c0 for all β0 ∈ H∗β and k = 1, . . . , nu, where c0 > 0.

(ii) For β0 ∈ H∗β, the vector φ(β0) setting the parameters v = βI
⋃
βS of β0 to zero, also

belongs to H∗β, i.e., φ(β0) ∈ H∗β for all β0 ∈ H∗β.

Proof. (i) For the sake of contradiction, we suppose that no such positive c0 exists. Thus, for

β0 ∈ H∗β, there exists k such that ‖uk(β0)‖ = 0. According to Lemma 4.4.3, the fβ0 = fβ∗ does

not depend on k-th Xk(u) covariate that is predictive of outcome. Since this is a contradiction

to Assumption 4.4.2, ‖uk(β0)‖ ≥ c0 for all β0 ∈ H∗β and k = 1, . . . , nu.

(ii) Because β0 ∈ H∗, Lemma 4.4.3 implies that fβ0(Xu, Xv) = fβ∗(Xu, Xv). Based on As-

sumption 4.4.2, fβ0(Xu, Xv) = fβ0(Xu, 0). From the definition of vector φ(β0), fβ0(Xu, 0) =

51



fφ(β0)(Xu, Xv). Therefore, we have fβ∗(Xu, Xv) = fφ(β0)(Xu, Xv), which implies that φ(β0) ∈

H∗β for all β0 ∈ H∗β.

It remains to prove that the estimator β̂n of outcome prediction with group LASSO

belongs to H∗β, and that there exists φ(β̂n) by setting setting the parameters v = βI
⋃
βS of

β0 to zero, which can identify the variables predictive of the outcomes and provide a good

estimation for regularization strengths in the next step: propensity score estimation with

adaptive group LASSO. To prove the consistency of the outcome prediction estimator with

group LASSO, we still need three Lemmas that explore the convergence rate, Lipschitzness

of risk function, and generalization bound. The first of these lemmas gives an inequality

between the excess risk R(β)−R(β∗) and the distance between β and H∗β:

Lemma 4.4.5. There exist c2, ν > 0 and such that R(β) − R(β∗) ≥ c2d(β,H∗β)ν for all

β ∈ W.

Proof. Since R(β) and fβ(X) are analytic in both β and X, the excess risk r(β) = R(β) −

R(β∗) is also analytic in β. Therefore H∗β = {β : R(β) = R(β∗)} is the zero level set of

the analytic function r. By Lojasewicz’s inequality for algebraic varieties (Ji et al., 1992),

there exist positive constants C and ν such that d(β,H∗β)ν ≤ C|r(β)| for all β ∈ W , which

completes the proof.

The following lemma proves that the risk R(β) and empirical risk Rn(β) functions are

Lipschitz continuous. This Lemma requires that the output layer of the deep neural net

fβ(X) is Lipschitz continuous; that is, there exists a finite constant c0 > 0 such that |fβ(X)−

fβ′ | ≤ c0||β − β′|| for all β and β′ in W and X ∈ X . Note that theis assumption is satisfied

by the hyperbolic tangent function provided that W and X are bounded.

Lemma 4.4.6. Suppose that fβ(X) is Lipschitz continuous β and X with |fβ(X)| ∈ (0, 1)

for all X ∈ (X) and all β ∈ W, then the risk R(β) is Lipschitz function with Lipschitz
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constant c1 > 0. For any δ > 0, there exists Mδ > c1 such that Rn(β) is an Mδ-Lipschitz

function with probability at least 1− δ.

Proof. We first demonstrate that log p(X; β) and log(1−p(X; β)) are Lipschitz continuous in

X and β. Without loss of generality, assume that the 0 < c2 ≤ p(Xi; β) ≤ p(Xi; β
′) ≤ c3 < 1,

where c2 = 0.5(1− 1/d) and c3 = 0.5(1 + 1/d) are the bounds of the Bernoulli probabilities

(4.4.1) with d > 1. Then

| log p(Xi; β)− log p(Xi; β
′)| = log

p(Xi; β
′)

p(Xi; β)

= log

(
1 +

(
p(Xi; β

′)

p(Xi; β)
− 1

))
≤p(Xi; β

′)

p(Xi; β)
− 1

=
1

p(Xi; β)
(p(Xi; β

′)− p(Xi; β))

≤ 1

c2

(p(Xi; β
′)− p(Xi; β))

=
1

c2

|p(Xi; β
′)− p(Xi; β)|

≤c4||β − β′||,
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where c4 = c0/c2. Similarly,

| log(1− p(Xi; β))− log(1− p(Xi; β
′))| = log

1− p(Xi; β)

1− p(Xi; β′)

= log

(
1 +

(
1− p(Xi; β)

1− p(Xi; β′)
− 1

))
≤ 1− p(Xi; β)

1− p(Xi; β′)
− 1

=
1

1− p(Xi; β′)
(p(Xi; β

′)− p(Xi; β))

≤ 1

1− c3

(p(Xi; β
′)− p(Xi; β))

=
1

1− c3

|p(Xi; β
′)− p(Xi; β)|

≤c5||β − β′||,

where c5 = c0/(1− c3).

By the triangle and Jensen’s inequality,
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|R(β)−R(β′)| =
∣∣∣∣E{{p(X; β∗) log p(X; β) + (1− p(X; β∗)) log(1− p(X; β))

}
−
{
p(X; β∗) log p(X; β′) + (1− p(X; β∗)) log(1− p(X; β′))

}}∣∣∣∣
=

∣∣∣∣E{p(Xi; β
∗)
{

log p(X; β)− log p(Xi; β
′)
}

+ (1− p(X; β∗))
{

log(1− p(X; β))− log(1− p(X; β′))
}}∣∣∣∣

≤
∣∣∣∣E{p(X; β∗)

{
log p(X; β)− log p(X; β′)

}}∣∣∣∣
+

∣∣∣∣E{(1− p(X; β∗))
{

log(1− p(X; β))− log(1− p(X; β′))
}}∣∣∣∣

≤E
{
p(X; β∗)| log p(X; β)− log p(X; β′)|

}
+ E

{
(1− p(X; β∗))| log(1− p(X; β))− log(1− p(X; β′))|

}
≤E
{
| log p(X; β)− log p(X; β′)|

}
+ E

{
| log(1− p(X; β))− log(1− p(X; β′))|

}
≤(c4 + c5)||β − β′||

=c1||β − β′||

where c1 = c4 + c5.

Therefore, the risk R(β) is Lipschitz continuous in β.

Similarly, we can get the empirical risk function Rn(β) is an Mδ-Lipschitz function with

probability at least 1− δ
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|Rn(β)−Rn(β′)| =
∣∣∣∣ 1n

n∑
i=1

{
Yi log p(Xi; β) + (1− Yi) log(1− p(Xi; β))

}
− 1

n

n∑
i=1

{
Yi log p(Xi; β

′) + (1− Yi) log(1− p(Xi; β
′))
}∣∣∣∣

=

∣∣∣∣ 1n
n∑
i=1

{
Yi

{
log p(Xi; β)− log p(Xi; β

′)
}

+ (1− Yi)
{

log(1− p(Xi; β))− log(1− p(Xi; β
′))
}}∣∣∣∣

≤
∣∣∣∣ 1n

n∑
i=1

{
Yi

{
log p(Xi; β)− log p(Xi; β

′)
}}∣∣∣∣

+

∣∣∣∣ 1n
n∑
i=1

{
(1− Yi)

{
log(1− p(Xi; β))− log(1− p(Xi; β

′))
}}∣∣∣∣

≤ 1

n

n∑
i=1

{
Yi

∣∣∣ log p(Xi; β)− log p(Xi; β
′)
∣∣∣}

+
1

n

n∑
i=1

{
(1− Yi)

∣∣∣ log(1− p(Xi; β))− log(1− p(Xi; β
′))
∣∣∣}

≤ 1

n

n∑
i=1

{
c4Yi||β − β′||+ c5(1− Yi)||β − β′||

}
≤||β − β′|| 1

n

n∑
i=1

{
(c4 − c5)Yi + c5

}
=c6||β − β′||

(
c7 +

1

n

n∑
i=1

Yi

)

where c6 = c4 − c5 and c7 = c5
c4−c5 .

The proof that Rn(β) is a Lipschitz function is completed by noting that by Chebyshev’s

inequality

Pr

(
1

n

n∑
i=1

|Yi| > Mδ

)
≤ E|Yi|

Mδ

that for any Mδ > 0.
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The following lemma describes the rate at which the empirical risk Rn(β) converges to

the risk R(β) as n→∞. It extends Lemma 3.3 of Dinh and Ho, 2020 to models for binary

outcome variables.

Lemma 4.4.7. For any δ > 0, there exist c1(δ) > 0 such that

|Rn(β)−R(β)| ≤ c1
log n√
n
, for all β ∈ W

with probability at least 1− δ.

Proof. Since the hyperbolic tangent function is a bounded Lipschitz function and the weight

space W is bounded, fβ(Xi) is bounded. According to the definition of p(Xi; β) = 0.5{1 +

fβ(Xi)

d
}, log p(Xi; β) and log(1− p(Xi; β)) are also bounded when d > 1:

log
1− 1

d

2
≤ log p(Xi; β) ≤ log

1 + 1
d

2
;

log
1− 1

d

2
≤ log(1− p(Xi; β)) ≤ log

1 + 1
d

2
;

Thus, we have

Zi =
{
Yi log p(Xi; β) + (1− Yi) log(1− p(Xi; β))

}
−
{
p (Xi; β

∗) log p (X; β) + (1− p (Xi; β
∗)) log (1− p (Xi; β))

}
=
{
Yi − p (Xi; β

∗)
}

log p (Xi; β) +
{

(1− Yi)− (1− p (Xi; β
∗))
}

log(1− p (Xi; β))

≤ log p (Xi; β) + log (1− p (Xi; β))

≤2 log
1 + 1

d

2
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Zi =
{
Yi − p (Xi; β

∗)
}

log p (Xi; β) +
{

(1− Yi)− (1− p (Xi; β
∗))
}

log(1− p (Xi; β))

≥− log p (Xi; β)− log (1− p (Xi; β))

≥− 2 log
1 + 1

d

2

Therefore, we get

|Zi| ≤ 2 log
1 + 1

d

2
= C0

for all i = 1, 2, ..., n. Applying Bernstein’s inequality, we have

Pr
{
|Rn(β)−R(β)| ≥ τ

2

}
≤ 2 exp

{
− n2τ 2

2nσ2 + 2
3
C0nτ

}
≤ exp{−C1nτ

2}

where C1 = σ−2,

σ2 = varPX,Y {Yi log p(Xi; β) + (1− Yi) log[1− p(Xi; β)]}.

and t ≥ 0. The remainder of the proof follows closely that of Lemma 3.3 of Dinh and Ho,

2020. Define the events

A(β, τ) = {|Rn(β)−R(β)| > τ/2},

B(β, τ) = {∃β′ ∈ W such that‖β′ − β‖ ≤ τ

4Mδ

and |Rn(β′)−R(β′)| > τ},

and

C = {|Rn(β)−Rn(β′)| ≤Mδ‖β − β′‖,∀β, β′ ∈ W}.

Mδ in B(β, τ) and C is defined in Lemma 4.4.6. Therefore, B(β, τ) ∩ C ⊂ A(β, τ) and

P (C) ≥ 1 − δ. Let m = dim(W). Since W is a compact set, there exist C3(m) ≥ 1 and a
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finite set H ⊂ W such that

W ⊂
⋃
β∈H

V(β, ε) and |H| ≤ C3/ε
m

where ε = τ/(4Mδ), V(β, ε) denotes the open ball centered at β with radius ε, and |H|

denotes the cardinality of H. By a union bound, the probability that there exists β ∈ H

such that |Rn(β)−R(β)| ≥ τ/2 has upper bound

Pr [∃β ∈ H : |Rn(β)−R(β)| > τ/2] ≤ C3(4Mδ)
m

τm
e−C2nτ2 .

Moreover, since B(β, τ) ∩ C ⊂ A(β, τ) for all β ∈ H, we deduce

Pr [{∃β ∈ W : |Rn(β)−R(β)| > τ} ∩ C] ≤ C4τ
−me−C2nτ2 .

Hence,

Pr [{∃β ∈ W : |Rn(β)−R(β)| > τ}] ≤ C4τ
−me−C2nτ2 + δ.

To complete the proof, we chose τ in such a way that C4τ
−me−C2nτ2 ≤ δ. This can be

done by choosing τ = O(log n/
√
n).

Combining Lemmas 4.4.5 and 4.4.7, we have the following Theorem that demonstrates

the consistency of outcome prediction estimator under group LASSO:

Theorem 4.4.8. For any δ > 0 and λn = O(n−1/4), there exist C > 0 and Nδ > 0 such that

for all n ≥ Nδ,

d(β̂n,H∗β) ≤ C

(
log n

n

) 1
4(ν−1)

and ‖v̂β̂n‖ ≤ C

(
log n

n

) 1
4(ν−1)

.

with probability at least 1− δ.
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Proof. The proof of this Theorem is similar to that of Theorem 3.4 in Dinh and Ho, 2020.

For completeness, we include the proof below. Let φ(β) denote the weight vector obtained

from β by setting the v-components to zero. If we define βn = arg minβ∈H∗β ‖β̂n − β‖ then

φ(βn) ∈ H∗β and R(βn) = R(φ(βn)) by Lemma 4.4.4. Since q(β) in Eq.4.3.3 is a Lipschitz

function, we have

c2d(β̂n,H∗β)ν = c2‖βn − β̂n‖ν

≤ R(β̂n)−R(βn)

≤ 2c1
log n√
n

+ λn

(
q(βn)− q(β̂n)

)
≤ 2c1

log n√
n

+ λnC‖βn − β̂n‖

which implies through Young’s inequality that

‖βn − β̂n‖ν ≤ C1λ
ν/(ν−1)
n + C2

log n√
n
.

Let G denote the part of the regularization term without the v-component. We note that G

is a Lipschitz function, G(φ(β)) = G(β) for all β, and R(φ(βn)) = R(β̂n). Thus,

λn
∑
k

‖v̂k(βn)‖ ≤ Rn(φ(βn))−Rn(β̂n) + λn[G(φ(βn))−G(β̂n)]

≤ 2c1
log n√
n

+R(φ(βn))−R(β̂n) + λn[G(βn)−G(β̂n)]

≤ 2c1
log n√
n

+ λnC‖βn − β̂n‖.

If λn = O(n−1/4), then with probability at least 1− δ,

d(β̂n,H∗) ≤ C

(
log n

n

) 1
4(ν−1)

and ‖v̂n‖ ≤ C

(
log n

n

) 1
4(ν−1)

.
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This completes the proof.

Similar to the definitions of risk functions in outcome prediction with group LASSO,

assume that conditional on covariates X, treatment T is sampled from Bernoulli distributions

with probability

p(Xi;α) = 0.5{1 + gα(Xi)},

where gα(Xi) is the output layer of deep neural network with analytic activation functions

(i.e., hyperbolic tangent function) and α belongs to the hypercubeW . The true value α∗ for

α is assumed to be in the interior of W . Then the negative log likelihood is

Kn(α) = − 1

n

n∑
i=1

{
Yi log p(Xi;α) + (1− Yi) log[1− p(Xi;α)]

}
.

The risk is defined to be

K (α) = −EP ∗X,Y
{
{Y log p (Xi;α) + (1− Y ) log (1− p (Xi;α))}

}
= −EPX

{
p (Xi;α

∗) log p (Xi;α) + (1− p (Xi;α
∗)) log (1− p (Xi;α))

}

Similarly, we define the set of risk minimizers as H∗α := {α : K(α) = K(α∗)} and can

get the Lemmas 4.4.3, 4.4.5, 4.4.6, and 4.4.7. The parameters in the first hidden layer for

gα(Xi) are partitioned into two groups m = αI
⋃
αS and e = αC

⋃
αP , which correspond to

v = βI
⋃
βS and u = βC

⋃
βP .

The following Theorem proves the consistency of estimator and variable selection under

Adaptive group LASSO:
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Theorem 4.4.9. Let γ > 0, ε > 0, λn = O(n−1/4), and θn = Ω(n−γ/(4ν−4)+ε), for any δ > 0.

Then there exists Nδ such that for n > Nδ,

d(α̃n,H∗α) ≤ C

(
log n

n

) 1
4(ν−1)

and ‖m̃α̃n‖ = 0

with probability at least 1− δ, where m̃α̃n = α̃I
⋃
α̃S .

Proof. For the sake of contradiction, suppose that m̃z(α̃n) 6= 0 for some z and have the φ(α̃n)

setting the parameter m̃z(α̃n) of α̃n to zero and keeping other parameters of α̃n. By the

definition of α̃n, we have

Kn(α̃n) + θn

nv∑
l=1

‖m̃l(α̃n)‖
‖v̂l(α̂n)‖γ

+ θn

nu∑
k=1

‖ẽk(α̃n)‖
‖ûk(α̂n)‖γ

≤ Kn(φ(α̃n)) + θn

nv∑
l=1

‖m̃l(φ(α̃n))‖
‖v̂l(α̂n)‖γ

+ θn

nu∑
k=1

‖ẽk(α̃n)‖
‖ûk(α̂n)‖γ

After canceling out the same terms, we have

Kn(α̃n) + θn
‖m̃z(α̃n)‖
‖v̂z(β̂n)‖γ

≤ Kn(φ(α̃n)).

According to Lemma 4.4.6, there exists Mδ s.t.

θn
‖m̃z(α̃n)‖
‖v̂z(β̂n)‖γ

≤ Kn(φ(α̃n))−Kn(α̃n) ≤Mδ‖φ(α̃n)− α̃n‖ = Mδ‖m̃z(α̃n)‖

with probability at least 1 − δ. Since m̃z(α̃n) 6= 0, we deduce that θn
1

‖v̂z(β̂n)‖γ
≤ Mδ. This

contradicts Theorem 4.4.8, which proves that for n large enough

θn
1

‖v̂z(β̂n)‖γ
≥ C−γδ θn

(
n

log n

) γ
4(ν−1)

≥ 2Mδ
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with probability at least 1− δ.

Since Theorem 4.4.8 and Lemma 4.4.4, we conclude that ûk(α̂n) is bounded away from

zero as n→∞. Thus,

qn(α∗) =
nv∑
l=1

‖m̃l(α̃n)‖
‖v̂l(α̂n)‖γ

+
nu∑
k=1

‖ẽk(α̃n)‖
‖ûk(α̂n)‖γ

=
nu∑
k=1

‖ẽk(α̃n)‖
‖ûk(α̂n)‖γ

<∞

with probability at least 1− δ.

c2d(α̃n,H∗α)ν ≤ K(α̃n)−K(α∗) ≤ 2c1
log n√
n

+ θn (qn(α∗)− qn(α̂n)) ≤ 2c1
log n√
n

+ θnqn(α∗)

Similar to the proof in Theorem 4.4.8, with probability at least 1− δ,

d(α̃n,H∗α) ≤ C

(
log n

n

) 1
4(ν−1)

.

This completes the proof.

4.5 Simulation Study

In this section, we first conduct simulation experiments on the simulation datasets to evaluate

the following aspects: (1) Compared with alternative approaches, our proposed method

can improve treatment effect estimation with respect to average treatment effect. (2) The

deep adaptive variable selection can accurately select out the confounders and adjustment

variables from observational data with high-dimensional variables. (3) The proposed method

is robust to different levels of treatment selection bias and the ablation study proves the

necessity of tuning parameter selection procedure.
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4.5.1 Design for Generating Simulation Data set.

To mimic situations where there are large numbers of variables including instrumental, ad-

justment, confounding, and irrelevant variables, we generate a synthetic data set that reflects

the complexity of observational medical records data. The number of observed variables is

set to either 30 or 200, including 5 confounders, 5 adjustment variables, 5 instrumental vari-

ables, and either 15 or 185 spurious variables. All of these observed variables are generated

from a multivariate Gaussian distribution with zero means, unit variances, and two different

exchangeable correlation structures, i.e., moderate correlation (ρ = 0.1) and stronger cor-

relation (ρ = 0.3). The model used to generate the continuous outcome variable Y in this

simulation is the partially linear regression model extending the ideas described in (Robin-

son, 1988):

Y = ηT + gβ?
(

(XC
ᵀ, XP

ᵀ)ᵀ
)

+ ε, (4.5.1)

where T
ind.∼ Bernoulli

(
eα?
(
XC

ᵀ, XI
ᵀ)ᵀ
))

, ε are independently sampled from a standard

normal distribution, and the true treatment effect η is set to 2. The generating function

Eq. (8.4.1), gβ?
(

(XC
ᵀ, XP

ᵀ)ᵀ
)

takes one of two forms: The first is a linear of the confounders

XC and the adjustment variables XP . The second is a complex nonlinear model with tan-

gent activation function of the confounders XC and adjustment variables XP . The param-

eters β? are sampled independently from a standard normal distribution. The treatment

assignments T are independently sampled from a Bernoulli distribution with probability

eα?
(
(XC

ᵀ, XI
ᵀ)ᵀ
)
, where eα?

(
(XC

ᵀ, XI
ᵀ)ᵀ
)

represents the true propensity score. Similar to

gβ? , logit{eα?} also has two forms i.e., simple linear and complex nonlinear. The parameterα?

are sampled independently from N(0, 1). In summary, we have a total of 6 scenarios; i.e.,

(a) ρ = 0.1, linear, d = 30; (b) ρ = 0.1, linear, d = 200; (c) ρ = 0.3, linear, d = 200; (d)
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ρ = 0.1, nonlinear, d = 30; (e) ρ = 0.1, nonlinear, d = 200; (f) ρ = 0.3, nonlinear, d = 200.

For each scenario, we repeat the random sampling procedure to obtain 1000 synthetic data

sets. In each dataset, the sample size is 1000.

4.5.2 Comparison of Causal Inference Variable

Selection Approaches.

To illustrate the importance of variable selection in causal inference and explore the im-

pact of different types of covariates on the IPTW estimator, we consider three propensity

score models: Pote includes all variables predictive of the outcome variable or treatment

assignment including confounding, adjustment, or instrumental variables (i.e., XC, XP , and

XI). Conf includes only confounders (i.e., XC). Targ includes only confounders and ad-

justment variables (i.e., XC and XP). From previous work (Greenland, 2008; Myers et al.,

2011; Patrick et al., 2011; Sauer et al., 2013; Schisterman et al., 2009; Shortreed & Ertefaie,

2017), we expect that including instrumental variable will increase the bias and variance,

and including adjustment variable will reduce variance but will not have a significant impact

on bias. Targ is expected to have the smallest bias and standard error. Our DAVSPS is

designed to select out the same variables as Targ.

We also compare our model with two well-behaved models, the outcome-adaptive LASSO

(OAL) of Shortreed and Ertefaie, 2017, and feature selection representation learning (RL)

of Z. Chu et al., 2020. OAL selects covariates and estimates corresponding coefficients

by incorporating information about the outcome-covariate relationships. OAL is built on

simple linear regression, and adaptive LASSO is used to select out the covariates. RL is one

method based on the deep representation learning, which maps the original covariate space

into a selective, nonlinear and balanced representation space by simultaneously predicting

the treatment assignment and outcomes. Due to the structure of fully connected neural
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networks, the standard LASSO cannot be used to select out covariates. So, RL contains a

sparse one-to-one layer between the input and the first hidden layer thereby permitting the

application of LASSO variable selection and regularization. The variable selection at the

input level can help select which variables are input into the neural network, which makes

the deep neural network more interpretable. The parameters of competing methods (OAL

and RL) are set the same as suggested in the original papers. Following the suggestions

of Dinh and Ho, 2020, the regularizing parameters λ and θ were selected from the set

{0.001, 0.01, 0.05, 0.1, 0.5, 1, 2} and γ = 2. The number of hidden layers is in a range of

{1, 2, 3, 4} with a range of nodes within each layer {20, 30, 40, 50}. The numbers of layers

and nodes within each layer were chosen based on the average training errors of outcome

prediction and treatment classification in propensity score estimation.

Results on Simulation datasets. Figure 4.3 shows the estimates of the average treat-

ment effect (ATE) of our method and competing methods under the six scenarios over 1000

realizations. In each scenario, we provide the box plots of ATE estimates for each model.

Under moderate correlation, low dimension of covariates, and the linear model, OAL based

on simple linear regression achieves the best performance and the RL and DAVSPS based

on deep neural network slightly underperform OAL. Under these scenarios, deep neural net-

work methods with more parameters and nonlinear operations are not expected to come

without cost. However, with stronger correlations in scenarios (c) and (f), more covariates

in scenarios (d) and (f), and nonlinear relationships between predictor and outcome variables

in scenarios (d)-(f), the RL and DAVSPS fully demonstrate the advantages of deep neural

network methods. In particular, our DAVSPS significantly outperforms OAL and RL with

respect to both bias and variance, and almost performs as well as the ideal model Targ which

only includes confounders and adjustment variables.
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Figure 4.3: Box plots of 1000 inverse probability weighted estimates for the ATE under 6

scenarios.

Figure 4.4: Proportion of times covariates were selected over 1000 simulations for scenarios

(a) and (d).

67



Figure 4.5: (a) ATE performance on simulation dataset with different degrees of treatment

selection bias. (b) is the ablation study on integral probability metric.

Figure 4.4 describes the variable selection results for OAL, RL, and DAVSPS under

scenarios (a) and (d) with 30 covariates. OAL accurately identifies the confounders XC and

adjustment variables XP under the linear model, but performs poorly when the relationship

between the outcome and covariates is nonlinear. RL has relatively stable performance

in both scenarios where it can identify the confounders XC, but cannot discriminate the

adjustment valuables XP and instrumental variables XI . DAVSPS, consistently selected the

confounders XC and adjustment variables XP .

To evaluate the robustness to different levels of treatment selection bias, we carried out a

study of the impact of selection bias. Although in our simulation procedure, the treatment

selection bias has been taken in account based on their own propensity score eα?
(
XC

ᵀ, XI
ᵀ)ᵀ
)
,

we use conditional sampling from treatment and control groups to increase the treatment

selection bias. If the propensity score eα? is equal to constant 0.5, it means no matter what

the confounders and instrumental variables are, the unit is randomly assigned to either the

treatment or the control group with the same probability, so that there is no treatment

selection bias. The greater |eα?
(
XC

ᵀ, XI
ᵀ)ᵀ
)
− 0.5| is, the larger selection bias will end up
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getting. Following the idea in Shalit et al., 2017, with probability 1− q, we randomly draw

the treatment and control units; with probability q, we draw the treatment and control units

that have the greatest |eα?
(
XC

ᵀ, XI
ᵀ)ᵀ
)ᵀ

) − 0.5|. Thus, the higher the q is, the larger the

selection bias is. We run OAL, RL, and DAVSPS on the simulation datasets with q from 0

to 0.5, and show the results in Figure 4.5 (a). We can observe that our method consistently

outperforms the competing methods under different levels of divergence and is robust to a

high level of treatment assignment bias.

To demonstrate the necessity of IPM tuning parameter selection criterion that minimizing

the treatment selection bias, we adopt the standard tuning parameter selection criterion for

neural network model, i.e., minimizing training error, instead of using the IPM. As shown

in Figure 4.5 (b), under six different scenarios, the performance (letter with prime) becomes

poor after replacing the IPM tuning parameter selection compared to the original DAVSPS

(letter without prime).

4.6 Racial disparities in severe maternal morbidity

based on National Inpatient Sample

A severe maternal morbidity (SMM) is any complication of labor and delivery that can

result in death or other significant consequences to a woman’s well-being (CDCReproduc-

tiveHealth, 2020). Women who nearly died but survived these complications have been

studied as surrogates of maternal deaths making SMM an important risk factor for maternal

mortality (WHOMaternalMortality, 2020). SMMs such as severe cardiovascular conditions,

hemorrhage, and other complications have been identified as the leading causes of mater-

nal mortality, accounting for nearly 75% of all maternal deaths (WHOMaternalMortality,
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2020). Most maternal deaths are preventable; therefore, it is important to understand the

predictors and correlates associated with SMM to aid in prevention and early diagnosis.

There are significant racial and ethnic disparities in both maternal morbidity and mortal-

ity in the United States (CDCReproductiveHealth, 2020; Fingar et al., 2018; Geller et al.,

2018). Black women are three to four times more likely to experience a maternal death

than White women (CDCReproductiveHealth, 2020; Geller et al., 2018). In addition, Black

women are also significantly more likely to experience severe maternal morbidity than White

women (Fingar et al., 2018). Given the known racial disparities in maternal morbidity, it

is important to understand which factors can predict a woman’s chance of experiencing an

SMM. Understanding the predictors of SMM could help to prevent and manage SMMs and

improve care for pregnant women, laboring women, and women in postpartum.

This study uses the Healthcare Cost and Utilization Project (HCUP) National Inpatient

Sample (NIS) from 2016 to 2018. The NIS is a largely publicly available database that

provides administrative health care data. NIS is designed to produce regional and national

estimates for a variety of healthcare related topics such as medical conditions, procedures,

hospital characteristics, among others. Our analytic sample consists of 1, 412, 179 patient

discharge records and it can be categorized by race and SMM as Table 4.1. Variables that

are known to be associated with differences in the rate of SMM were observed. These

variables were maternal age, community income, type of insurance, location of residence,

hospital teaching status, region of hospital, and ownership of hospital. Each of these variables

was defined in previous studies. All the multi-value categorical variables were converted

to dummy variables to assist selection of important covariates. Therefore, 24 covariates

were taken into variable selection consideration. The detailed descriptions of each covariate

distribution are provided in Table 4.2.

To capture the true racial disparities between Black and White in severe maternal mor-

bidity, we need to control for the relationship between race and demographic variables. For
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Table 4.1: A two-way crosstabulation table by SMM (absent or present) and race (White

and Black).

SMM

Race Absent Present Total

white number 1086387 14113 1100500
percentage 98.72% 1.28% 100%

Black number 303531 8148 311679
percentage 97.39% 2.61% 100%

Total number 1389918 22261 1412179

Figure 4.6: Racial disparities in SMM (Black-White) bootstrap distribution with 5000 boot-

strap iterations.
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Table 4.2: Covariate distribution grouped by race. Last three columns report percent of

times each covariate was selected.

Race Percentage of Selected

Covariates White (n=1100500) Black (n=311679) DAVSPS OAL RL

Weight (discharge-level weight) 4.99 (0.00) 4.99 (0.00) 65.24 98.16 55.12
Age in years at admission 29.17 (5.58) 27.52 (5.98) 23.18 4.62 18.26
Total charges 18528.43 (16451.58) 21509.04 (20220.47) 5.98 23.61 8.12
Community income

Quartile 1 (poorest) 21.60 (237659) 49.49 (154256) 82.14 33.84 58.78
Quartile 2 26.63 (293040) 23.46 (73111) 85.66 20.12 65.12
Quartile 3 26.99 (296984) 17.09 (53276) 78.90 35.64 68.62
Quartile 4 (wealthiest) 24.79 (272817) 9.96 (31036) 88.36 39.96 77.50

Type of insurance
Medicaid 31.08 (342000) 63.73 (198621) 58.92 23.12 41.84
Private 63.43 (698086) 30.45 (94906) 70.48 58.88 50.12
Uninsured (self-pay/no charge) 1.54 (16898) 2.22 (6929) 76.96 30.92 55.76
Other (other public insurance) 3.95 (43516) 3.60 (11223) 62.42 48.22 42.10

Location of residence
Large metropolitan 48.94 (538553) 65.23 (203317) 23.90 21.12 55.62
Small metropolitan 32.52 (357935) 26.19 (81616) 65.68 44.84 68.18
Micropolitan 10.85 (119352) 5.15 (16038) 21.84 26.18 63.56
Rural 7.69 (84660) 3.44 (10708) 15.66 30.18 76.22

Hospital teaching status
Non-Teaching Hospital 35.83 (394357) 22.61 (70473) 33.62 21.82 20.16
Teaching Hospital 64.17 (706143) 77.39 (241206) 64.86 42.52 44.12

Region of hospital
Northeast 17.18 (189074) 14.68 (45755) 96.72 52.86 95.16
Midwest or North Central 26.75 (294329) 19.22 (59895) 95.84 42.66 90.34
South 37.93 (417436) 57.99 (180746) 98.26 48.84 88.76
West 18.14 (199661) 8.11 (25283) 98.70 38.34 92.14

Control/ownership of hospital
Government, nonfederal 10.12 (111372) 13.80 (43025) 67.56 23.16 84.92
Private, not profit 78.04 (858790) 72.30 (225352) 62.92 42.62 79.66
Private, invest own 11.84 (130338) 13.89 (43302) 94.66 48.22 90.10

Table 4.3: ATE estimates of racial disparities in SMM (Black-White) together with 95%

confidence intervals.

Method Racial disparities in SMM (Black-White) 95% Confidence Interval

Direct calculate 1.332%

OAL 1.341% (1.215%, 1.471%)
RL 1.751% (1.595%, 1.906%)
DAVSPS 1.871% (1.771%, 1.967%)
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some demographic variables such as community income and type of insurance coverage, there

exist big differences between White and Black, which maybe leads to the severe bias when

estimating the racial disparities in SMM. Therefore, we apply OAL, RL, and our method

DAVSPS to this data set with 5000 bootstrap iterations to estimate the average racial dis-

parities and 95% confidence intervals (Figure 4.6) conditional on the potential confounders.

As shown in Table 4.3, if we do not control for potential confounders, we can observe a sig-

nificant difference 1.33% (2.61% − 1.28%) in SMM between Whites and Blacks. The racial

disparity discovered from our data set (from 2016-2018) is consistent with the conclusion

in Fingar et al., 2018 from previous data (2006-2015). From Table 4.3, when OAL is used,

ATE is estimated to be 1.341% with a 95% CI of (1.215%, 1.471%); when RL is used, it is

1.751% with a 95% CI of (1.595%, 1.906%); and when DAVSPS is used, it is 1.871% with

a 95% CI of (1.771%, 1.967%). Compared with the direct calculation without controlling

for confounders, RL and DAVSPS discover a larger racial disparity in SMM between Blacks

and Whites than OAL. The last three columns in Table 4.2 provides the percentage of times

covariate selected in the model, which represents the importance in the prediction of SMM.

Community income, type of insurance, region of hospital, and control/ ownership of hospital

are relatively more frequently selected as predictors of SMM.

4.7 Summary

In this chapter, we present a novel deep adaptive variable selection propensity score (DAVSPS)

based on deep representation learning and outcome adaptive group LASSO. Experimental

results on simulated datasets show that DAVSPS provides more accurate estimation of av-

erage treatment effect with respect to bias and variance, and is more highly adaptable to

complicated observational data. Although in this work, the deep adaptive variable selection

is only used to estimate the propensity score, it can be connected to any causal inference
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approach seamlessly to help select out the target variables by imposing different penalties

obtained from the relationship of interest. Besides, the treatment effect may also depend

on individuals, thus the treatment effect heterogeneity should be taken into account. In

this case, our deep adaptive variable selection can also be applied to estimate the individual

treatment effect due to the strong approximation properties of deep learning.
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Chapter 5

Adversarial Learning for

Estimating Treatment Effects in

Basket Trials

5.1 Introduction

With the rapid development of next generation sequencing and comprehensive genomic pro-

filing, genomic characterization informs treatment of a variety cancers. Some genetic mu-

tations have been linked to multiple cancer types; for example BRCA1 abd BRCA2 are

associated with an increased risk of breast, ovarian and pancreatic cancers (Mersch et al.,

2015). Traditional clinical trials focusing on patients with a single cancer type are time-

consuming, expensive, and frequently fail, so they are not sufficient for the development of

genomic technologies. Patients are generally classified by their primary cancer and random-

ized controlled trials are conducted to create standard therapies for each cancer type. It

is unrealistic to conduct separate clinical trials for each sub-population based on molecular
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Figure 5.1: A basket trial is usually a non-randomized and single-arm trial.

subtypes or detailed classification of tumors (Hirakawa et al., 2018). Therefore, a new-style

clinical trial protocol is in urgent demand in oncology.

A novel clinical design called basket trial has been developed based on the presence of

a specific genomic mutation, irrespective of histology (Astsaturov, 2017; Simon, 2017; Tao

et al., 2018). Unlike traditional clinical trials which test a drug against a specific cancer

type, the core organizing principle of basket trials is a common genomic mutation. A basket

trial is usually a non-randomized, single-arm trial so that all patients with the specified ge-

nomic mutation receive the same treatment. Treatment selection only depends on genomic

mutation type, instead of tumor type. An example of basket trial is shown in Fig. 5.1, where
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the term “basket” arises from each collection of patients sharing a particular mutation, and

sub-studies for the same drug are conducted by tumor groups within the whole “basket”.

Patients enrolled in a basket trial are heterogeneous with respect to tumor type, histologic

type, and patient characteristics, so the treatment effects are sensitive to population hetero-

geneity. Therefore, the absence of a control group becomes a limitation of treatment effect

evaluation (Hirakawa et al., 2018). Ignoring the heterogeneity of tumors may lead to failure

to detect treatment effects and the inability to produce scientifically reliable findings (Strze-

bonska & Waligora, 2019). Besides, focusing only on molecular therapy targeting single

mutation without considering the complexity of tumor biology may introduce bias.

In this chapter, we apply causal inference models to basket trials. Estimating causal

effects from observational data has become an appealing research direction owing to the

availability of data and low budget requirements compared with randomized controlled trials.

This chapter is the first to apply machine learning and causal inference to basket trials

and explore the relationship between the traditional multiple treatments design and the

basket trial design. In particular, we propose a multi-task adversarial learning (MTAL)

method incorporating feature selection, multi-task representation learning and adversarial

learning to remove selection bias (tumor type heterogeneity) introduced by confounders.

Our method generates all potential outcomes for each unit across all tumor types, regardless

of heterogeneity from different tumor types, so that the sample size may be increased in

basket trials for rare tumor types, increasing statistical power. We also define targeted

group treatment effects to better describe treatment effects among sub-groups in a basket

trial. We present the practicality and advantages of our MTAL method for synthetic basket

trials, evaluate the proposed estimator on the IHDP and News benchmark datasets, and

demonstrate its superiority over state-of-the-art methods.

77



5.2 Related Work

The landscape for oncology clinical trials is changing dramatically due to the advent of ge-

nomic characterization. Among diverse master protocols (Park et al., 2019), a basket trial

evaluates the treatment effect of a targeted therapy on patients with the same genomic

mutation, regardless of tumor types. Bayesian hierarchical modeling has been proposed to

adaptively borrow strength across cancer types to improve the statistical power of basket

trials (Berry et al., 2013; Simon, 2017). To avoid inflated type I errors in Bayesian hier-

archical modeling, calibrated Bayesian hierarchical modeling has been proposed to evaluate

the treatment effect in basket trials (Y. Chu & Yuan, 2018). As an alternative to Bayesian

hierarchical modeling, we will apply powerful machine learning tools to basket trials.

Embracing the rapid developments in machine learning, various treatment effect esti-

mation methods for observational data have been proposed for causal inference. Balancing

neural networks (BNNs) (F. Johansson et al., 2016) and counterfactual regression networks

(CFRNET) (Shalit et al., 2017) have been proposed to balance covariate distributions across

treatment and control groups by regarding the problem of counterfactual inference as a do-

main adaptation problem. These models may be extended to any number of treatments

even with continuous parameters, as described in the perfect match (PM) approach (Schwab

et al., 2018) and DRNets (Schwab et al., 2019). Li and Fu (S. Li & Fu, 2017b) regard coun-

terfactual prediction as a classification problem and conduct matching based on balanced

and nonlinear representations. GANITE (Yoon et al., 2018) uses Generative Adversarial

Nets for individual treatment estimation. To the best of our knowledge, our model is the

first to introduce machine learning and causal inference to the task of estimating treatment

effects for basket trials.
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Figure 5.2: The relationship between conventional multiple treatment causal inference (top)

and basket trial (bottom).

5.3 The Proposed Framework

5.3.1 Problem Statement

Clarification on the New Problem Setup. In traditional causal inference for obser-

vational data, researchers consider binary or multiple treatments for a set of experimental

units. For example, a person who has cancer may be offered a choice between two treatment

therapies. We can observe the outcome of the chosen treatment but not the potential out-

come of the treatment not selected. It is impossible to see the potential outcomes of both

therapies; one of the potential outcomes is always missing. The potential outcome framework

(Rubin, 1974; Splawa-Neyman et al., 1990) aims to estimate unobserved potential outcomes

and then calculate the treatment effect. The basket trial tests how well a new drug works in

patients who have different types of cancer with the same mutation. Patients with the same

genetic mutations are put in one “basket” and are divided into different subgroups according
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to their cancer types. The differences in study design for potential outcome framework and

basket trials are illustrated in Fig. 5.2. For the potential outcome framework, there is one

population and several treatments, but in basket trials, there are several sub-populations

and only one treatment.

Clarification on the Challenges. In the potential outcome framework (Rubin, 1974;

Splawa-Neyman et al., 1990), we mainly face two challenges: missing unobserved counter-

factual outcomes for each patient under alternative treatments not received and treatment

selection bias. In basket trials, we have similar challenges: missing unobserved counterfac-

tual outcomes for each patient under alternative cancers not contracted and cancer selection

bias where the distributions of predictors differ among cancer types. In traditional causal

inference for observational data, confounders are variables that affect both the treatment as-

signment and the outcome. Similarly, in basket trials, there still exist confounders that are

associated with both cancer type and treatment outcome. These variables can explain why

some patients with the same mutation have different types of cancer and can also influence

treatment outcome. Due to the confounders, it is difficult in a basket trial to estimate the

true treatment effects of a drug targeting the mutation of interest and the true treatment

effect of drug for a specific type cancer type. If a significant treatment effect is not found,

analysis of basket trial without appropriate causal inference cannot determine whether fail-

ure is due to uselessness of drug, particularity of a cancer type, or individual characteristics

of patients.

Clarification on Treatment Effects Estimation. Because in this new setting, there is

no control group, we do not care about the traditional treatment effects estimation between

treated and control groups, e.g., average treatment effect (ATE) or individual treatment

effect (ITE). We only focus on the counterfactual outcome inference problem, which is the

core problem regardless of new setting or traditional treatment effects estimation setting.

Most basket trials are conducted as single-arm trials without a control group and a primary
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endpoint is given by an objective response rate (ORP). We proposed a new metric named

targeted group response rate (TGOR) to better describe treatment effects in basket trials.

TGOR describes the overall objective response rate for a given mutation or a given tumor

type. It can evaluate the treatment effect of the drug for the whole targeted population with

the same mutation and the effect of drug in the sub-population with different specific tumors

type. Our MTAL method can help remove heterogeneity across tumor types when estimating

the treatment effect for targeted mutation and remove heterogeneity across patients with the

same tumor when estimating treatment effect for a targeted tumor.

Problem Setup. Suppose a basket trial is conducted as a one-arm phase II trial that

tests how well a new drug works in patients who have different types of tumours but share

the same genetic mutation. Data are available on an outcome for n participants. Let

ti ∈ {1, ..., k} denote the type of tumour for unit i; i = 1, ..., n. The primary endpoint is the

objective response rate (ORR) (Food, Administration, et al., 2007), determined by tumor

assessments from radiological tests or physical examinations. Let yit denote the potential out-

come of the unit i (i = 1, ..., n) with the tumour t ∈ {1, ..., k}. The observed outcome, called

factual outcome is denoted by yf and remaining unobserved potential outcomes are called

counterfactual outcomes denoted by ycf . The estimated potential, factual, and counterfac-

tual outcomes are ŷ, ŷf , and ŷcf , respectively. Let X ∈ Rd denote all observed covariates.

We extend the potential outcome framework (Rubin, 1974; Splawa-Neyman et al., 1990) to

analysis of basket trial data. The following assumptions ensure that the treatment effects can

be identified: Consistency: The potential outcome of treatment t is equal to the observed

outcome if the actual treatment received is t. Positivity: For any value of X, treatment

assignment is not deterministic, i.e.,P (T = t|X = x) > 0, for all t and x. Ignorability:

Given covariates X, treatment assignment t is independent to the potential outcomes, i.e.,

(y1, y0) ⊥⊥ t|X.
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5.3.2 Model Architecture

We propose a multi-task adversarial learning (MTAL) method to analyze basket trial data or

observational data in basket trials, which can remove heterogeneity across tumor types when

estimating the treatment effects for a targeted mutation, and remove heterogeneity among

patients with one type of tumor when estimating the treatment effect for the targeted tumor

and estimating the personalized treatment effect for individual patients. Our method is

also useful for studying rare cancers and cancers with rare genetic mutations by inferring

the outcome of existing patients with counterfactual cancers to increase sample size and

statistical power.

Our method contains two major components: outcome generator and true or false dis-

criminator (TF discriminator), as shown in Fig. 8.1. In the outcome generator, we use

feature selection multi-task deep learning to estimate the potential outcomes for units across

all tumor types. Because different types of tumor may have different predictor variables,

which may be components of all observed covariates, a deep feature selection model includ-

ing a sparse one-to-one layer between the input and the first hidden layer, and an elastic

net regularization term throughout the fully-connected representation layers is an essential

foundation for potential outcome estimation. Our TF discriminator can tell whether the

outcome given the covariates and tumor type is factual outcome. At the beginning, the

TF discriminator can easily find out which outcome is factual outcome and which one is

our inferred counterfactual outcome under alternative tumor types not contracted by those

patients. The outcome generator attempts to generate counterfactual outcomes in such a

way that the TF discriminator cannot accurately determine which is the factual outcome.

The two models are trained together in a zero-sum game and they are adversarial until the

TF discriminator model is fooled by the generator, which means that the outcome generator
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Figure 5.3: The framework of our multi-task adversarial learning net (MTAL).

is generating plausible examples. At this time, we have removed the tumor type selection

bias and obtained all potential outcomes for each patient across all kinds of tumors.

Outcome Generator

Our goal is to correctly predict potential outcomes for each patient across all tumors types

by a function g : x × t → y, which is parameterized by a feed-forward deep neural network

structured by multiple hidden layers with non-linear activation functions. Deep neural net-

works can often dramatically increase prediction accuracy, describe complex relationships,

and generate structured high-level representation of features when compared to parametric

models. The function g : x × t → y uses features x and tumor type t as inputs to predict

potential outcomes. The output of g estimates potential outcomes across k tumors including
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single factual outcome ŷf and k − 1 counterfactual outcomes ŷcf . The factual outcomes yf

are used to minimize the loss of prediction ŷf .

The function g(x, t) maps the features and tumor type to the corresponding potential

outcomes. However, when the dimension of the observed variables is high, there is a risk of

losing the influence of t on g(x, t) if the concatenation of x and t is treated as input (Shalit

et al., 2017). To address this problem, g(x, t) is partitioned into multiple head nets gt(x); t =

{1, ..., k} corresponding to each cancer type. For each cancer type, there is one independent

head net for predicting the potential outcome under this tumor. Each unit is used to update

only the head net corresponding to the observed tumor type. We aim to minimize the

mean squared error in predicting factual outcomes by g(x, t), i.e., LY = 1
n

∑N
i=1(ŷi − yi)2,

where ŷi = g(xi, ti) denotes the inferred observed outcome of unit i corresponding to factual

treatment ti.

Due to the peculiarities of different tumor types, only a subset of all observed covariates

might be predictors for each tumor type. To accommodate this, we add a deep feature

selection net (Z. Chu et al., 2020; Y. Li et al., 2016) to each head net gt(x), t = {1, 2, ..., k},

which enables variable selection in deep neural networks. This model takes advantage of deep

structures to capture non-linearity and conveniently selects a subset of features of the data at

the input level. In this model, the feature selection layer is a sparse one-to-one layer between

the input and the first hidden layer. Feature selection at the input level can help select

which variables are input into the neural network and used for representing pre-treatment

variables, which makes the deep neutral network more interpretable.

In the feature selection layer, every input variable only connects to its corresponding node

where the input variable is weighted. We use a 1-1 layer instead of a fully connected layer. To

select input features, weights w in the feature selection layer and the following representation

layers have to be sparse and only the features with nonzero weights are selected to enter the

following layers. We first considered LASSO (Tibshirani, 1996) for this purpose. LASSO

84



is a penalized least squares method imposing the L1-penalty on the regression coefficients

by <(w) = ‖w‖1. However, for observational data with high dimensional variables, LASSO

cannot remove enough variables before it saturates. To overcome this limitation, the elastic

net (Zou & Hastie, 2005) is adopted in our model, which adds a quadratic term ‖w‖2
2 to the

penalty i.e., <(w) = λ‖w‖2
2 +α‖w‖1, where λ and α are tuning parameters. After combining

the mean squared error in predicting factual outcomes and elastic net regularization term,

we minimize the objective function in the outcome generator module:

Lg =
1

n

N∑
i=1

(ŷi − yi)2 + λ
k∑
t=1

St∑
s=1

‖w(s)‖2
2 + α

k∑
t=1

St∑
s=1

‖w(s)‖1, (5.3.1)

where St is the number of deep feature selection layers for the t-th head net including

the feature selection layer and the representation layers. The w(s) are the parameters of

deep neural network in the s-th layer of outcome generator. The λ ≥ 0 and α ≥ 0 are

hyperparameters that not only control the trade-off between the regularization term and the

following objective terms, but also controls the trade-off between smoothness and sparsity

of the weights in the feature selection layer (Y. Li et al., 2016).

True or False Discriminator

The true or false (TF) discriminator is intended to remove tumor type bias and thus improve

the prediction accuracy of potential outcomes inferred in the outcome generator for each

unit across all types of tumors by adversarial learning. We define one TF discriminator as

φ : x × t × (yfor ŷcf ) → P where P is the TF discriminator’s judgement, i.e., probability

that this outcome for unit i given x and t is factual outcome, which is defined as:

P =


P (TF judges yfas factual outcome|x, t)if t is factual type

P (TF judges ŷcfas factual outcome|x, t)if t is not factual type.

(5.3.2)
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To improve the accuracy of prediction and avoid risk of losing the influence of tumor type

t and potential outcomes (yfor ŷcf ) due to high dimensional features x, we adopt the same

architecture as outcome generator, which has multiple head nets for different tumor types.

In each head net, a deep feature selection net is added to select the appropriate predictors

for a each type of tumor. To improve the influence of (yf , ŷcf ) in the TF discriminator, we

add (yfor ŷcf ) into each layer after one on one feature selection layer and the dimension of

each layer in TF discriminator decreases layer by layer.

The TF discriminator is a binary classification task, which puts one label (i.e., true or false

factual outcome) on the vector concatenating the representation vector of x and potential

outcome (yfor ŷcf ) under each type of tumor head net, so the loss of discrimination is

measured by the cross-entropy with truth probability where P truth = 1 if yf is input and

P truth = 0 if ŷcf is input. In each iteration of training, we make sure to input the same

number of units in each tumor type to ensure that there exist factual units in each head

net. When there are several types of tumors, we face the imbalanced classification issue. If

there are k types of tumor and n units in each tumor type are input into the model training

procedure, then in one each head net, n units are factual outcomes and (k − 1)n units are

inferred counterfactual outcomes. As k increases, the imbalance of factual outcome numbers

and inferred counterfactual outcome numbers in each head net will aggravate. The weighted

cross entropy is used to reduce this imbalance. Because inputs of TF discriminator are

generated by the outcome generator g(x, t), the weighted cross entropy of TF discriminator

and elastic net are defined as:

Lφ,g =− 1

n× k

k∑
t=1

n∑
i=1

(w0p
truth
ti log(pti) + w1(1− ptruth

ti ) log(1− pti))

+ λ

k∑
t=1

rt∑
r=1

‖w(r)‖2
2 + α

k∑
t=1

rt∑
r=1

‖w(r)‖1,

(5.3.3)
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where ptruth
ti is the probability that this input outcome for unit i under tumor t is the observed

factual outcome or inferred outcome from generator module, i.e., 1 or 0, separately. Pti is the

probability judged by TF discriminator that this input outcome for unit i under tumor t is

factual outcome. The w1 and w0 are the proportions of factual outcomes and counterfactual

outcomes in total outcomes. Because during training, the same number of units in each

tumor type are input, w1 = 1
k

and w0 = k−1
k

in each head net. The number of deep feature

selection layers for the t-th head net is denoted by rt, and w(r) are the weights for the deep

neural network in the r-th layer of the TF discriminator. λ ≥ 0 and α ≥ 0 are the same as

those in the outcome generator.

Adversarial Learning

Thus far, we have described an outcome generator to estimate potential outcomes for each

unit across all types of tumor and a TF discriminator to determine if each potential outcome

given unit’s features under different tumor types is factual. In the initial iterations of the

training algorithm, the outcome generator may generate potential outcomes that are very

different from factual outcomes as determined by the TF discriminator. As the model is

trained further, the TF discriminator may no longer be able to discriminate between the

generated potential outcome and the factual outcome. At this point, we have attained all

potential outcomes for each unit under all tumor types. The training procedure optimizing

the outcome generator and TF discriminator uses the minimax decision rule:

mingmaxφ (Lg − βLφ,g), (5.3.4)

where β is a hyper-parameter controlling the trade-off between the outcome generator and

discriminator. Compared to the deep regression task in the outcome generator, the TF

discriminator is a relatively simple binary classification, which is easier to optimize. In every
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optimization iteration, in order to get more accurate inferred potential outcomes to fool the

discriminator based on the discriminator’s current ability of telling which is factual outcome

and which is counterfactual outcome, we can optimize ming (Lg − βLφ,g) several times after

we optimize maxφ (−βLφ,g) one time.

5.3.3 Targeted Group Analysis

The proposed MTAL method can generate all potential outcomes for each unit under all

tumor types, which can help basket trials increase sample size and thus increase statistical

power, and remove the influence of heterogeneity among different tumor types.

In basket trials, we must consider different configurations of effectiveness. For example,

the drug may truly work for only one type of tumor due to the heterogeneity of tumors.

Alternatively, it may actually work for all types of tumors, which means it works for the

mutation regardless the type of tumor. Each of these configurations can lead to markedly

different statistical properties (Cunanan et al., 2017). Therefore, we not only want to eval-

uate the treatment effect of the drug for the mutation (the whole population in study), but

also want to evaluate the effect of drug for specific tumors (the sup-population in study). In

addition, most basket trial are conducted as single-arm trials without a control group and a

primary endpoint is given by an objective response rate (ORP). We propose a new metric

named targeted group response rate (TGOR) to better describe treatment effects in basket

trials. TGOR describes the overall objective response rate for a given mutation or a given

tumor type, which is defined as:

TGORmutation =
1

n× k

k∑
t=1

n∑
i=1

yti and TGORtumor =
1

nc

nc∑
i=1

yi. (5.3.5)

where n is the number of patients with that mutation, and nc is the the sub-sample who

have that mutation and that specific cancer, a subset of mutation sample n.
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Our MTAL method can help remove heterogeneity across tumor types in basket trials

when estimating the treatment effect for targeted mutation TGORmutation, remove hetero-

geneity across patient with one type of tumor when estimating the treatment effect for a

targeted tumor TGORtumor and estimate the individualized treatment effects for an indi-

vidual patient. Our method is also useful for studying rare cancers and cancers with rare

genetic mutations by borrowing strength from more common cancers sharing the same mu-

tation to infer the potential outcomes of existing patients under counterfactual cancer to

increase sample size and statistical power.

5.4 Experiments and Analysis

Because our method is the first model for estimating treatment effects for basket trials, no

other baseline methods are available. To evaluate our model’s estimation performance, we

modify our model (by removing the deep feature selection module) to coordinate the settings

in traditional treatment effect estimation (binary and multiple treatments) and use bench-

marks (IHDP and News) to demonstrate our estimation performance on the counterfactual

outcomes. We also use one synthetic basket trial dataset to demonstrate our method’s

stability in basket trial.

5.4.1 Performance Evaluation on Estimating the Counterfactual

Outcomes

We coordinate our model to be compatible with the settings in traditional treatment effect

estimation and conduct experiments on binary treatment benchmark IHDP and multiple

treatment benchmark News with 2, 4, 8, and 16 treatment options.
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Datasets. IHDP. The IHDP data set is a commonly adopted benchmark collected

by the Infant Health and Development Program (Brooks-Gunn et al., 1992). These data

are generated based on a randomized controlled trial where intensive high-quality care and

specialist home visits were provided to low-birth-weight and premature infants. There are

a total of 25 pre-treatment covariates and 747 units, including 608 control units and 139

treatment units. The outcome is the infants’ cognitive test scores which can be simulated

using the pre-treatment covariates and the treatment assignment information through the

NPCI package 1. In the IHDP data set, a biased subset of the treatment group is removed

to simulate the selection bias (Shalit et al., 2017). We repeat these procedures 1000 times

so as to conduct evaluations of uncertainty of estimates. News. The News data set was

first introduced for binary treatments counterfactual estimation by (F. Johansson et al.,

2016) and extended to multiple treatment benchmarks by (Schwab et al., 2018). The News

benchmark includes 5000 randomly sampled news articles from the NY Times corpus and

the opinions of a media consumer exposed to multiple news items. Each unit is a news

item and the features are word counts. The outcome represents the reader’s opinion of the

news item. The treatment options are various devices used for viewing news items, e.g.

smartphone, tablet, desktop, television or others. We use the extended multiple treatment

data set according to the specification in (Schwab et al., 2018). A topic model is trained

on the whole NY Times corpus to model consumers preferences towards reading given news

items on specific devices, where k+1 centroids are randomly picked in the topic space where

k represents the number of treatment options and the remaining is the control group. We use

four different variants of this data set with 5000 units, 2870 features and k = 2, 4, 8, and 16

treatment options.

Baselines. To evaluate the accuracy of our model’s treatment effects estimates, we com-

pare our multi-task adversarial learning net model with the following methods: k-nearest

1https://github.com/vdorie/npci
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Table 5.1: Hyperparameters and ranges.

Hyperparameter IHDP News

β 0, {10k}2
k=−6 0, {10k}2

k=−6

λ, α 0, {10k}−1
k=−6 0, {10k}−1

k=−6

No. of hidden layers without feature selection layer 2, 3, 4, 5 2, 3, 4, 5

Dim. of first hidden layer 50, 100, 150 50, 100, 150

Batch size 50× 2, 75× 2, 100× 2 30× k, 40× k, 50× k

neighbor (kNN) (D. E. Ho et al., 2007), Causal forests (CF) (Wager & Athey, 2018b),Random

forests (RF) (Breiman, 2001), Bayesian additive regression trees (BART) (Chipman et al.,

2010), Generative adversarial nets for inference of ITE (GANITE) (Yoon et al., 2018),

Propensity score matching with logistic regression (PSM) (D. E. Ho et al., 2011), Treatment-

agnostic representation network (TARNET) (Shalit et al., 2017), Counterfactual regression

network (CFRNETwass) (Shalit et al., 2017), local similarity preserved individual treatment

effect estimation method (SITE) (Yao et al., 2018), and Perfect match (PM) (Schwab et al.,

2018).

Parameter Settings. To ensure a fair comparison, we follow a standardised implemen-

tation 2 to realize hyperparameter optimisation for IHDP and News data sets and extend

the original binary treatment effect estimation methods to multiple treatments according

to specifications in (Schwab et al., 2018). The hyperparameters of our method are chosen

based on performance on the validation data set, and the searching range as shown in Ta-

ble 6.5. MTAL is implemented using standard feed-forward neural networks with Dropout

(Srivastava et al., 2014) and the ReLU activation function. Adam (Kingma & Ba, 2014) is

adopted to optimize the objective function.

2https://github.com/d909b/perfect match

91

https://github.com/d909b/perfect_match


Table 5.2: Performance on IHDP and News data sets. We present mean± standard deviation

of
√
εPEHE and

√
εmPEHE on the test sets.

IHDP News-2 News-4 News-8 News-16

Method
√
εPEHE

√
εPEHE

√
εmPEHE

√
εmPEHE

√
εmPEHE

kNN 6.66± 6.89 18.14± 1.64 27.92± 2.44 26.20± 2.18 27.64± 2.40
PSM 2.70± 3.85 17.40± 1.30 37.26± 2.28 30.50± 1.70 28.17± 2.02
RF 4.54± 7.09 17.39± 1.24 26.59± 3.02 23.77± 2.14 26.13± 2.48
CF 4.47± 6.55 17.59± 1.63 23.86± 2.50 22.56± 2.32 21.45± 2.23
BART 2.57± 3.97 18.53± 2.02 26.41± 3.10 25.78± 2.66 27.45± 2.84
GANITE 5.79± 8.35 18.28± 1.66 24.50± 2.27 23.58± 2.48 25.12± 3.53
PD 5.14± 6.55 17.52± 1.62 20.88± 3.24 21.19± 2.29 22.28± 2.25
TARNET 1.32± 1.61 17.17± 1.25 23.40± 2.20 22.39± 2.32 21.19± 2.01
CFRNETwass 0.88± 1.25 16.93± 1.12 22.65± 1.97 21.64± 1.82 20.87± 1.46
PM 0.84± 0.61 16.76± 1.26 21.58± 2.58 20.76± 1.86 20.24± 1.46
SITE 0.81± 1.22 16.87± 1.34 22.33± 2.08 21.84± 2.21 20.88± 1.52

MTAL 1.06± 1.28 16.58± 1.20 20.42± 1.88 19.98± 2.01 19.32± 1.76

Table 5.3: Performance on IHDP and News data sets of MTAL and competing methods.

IHDP News-2 News-4 News-8 News-16

Method εATE εATE εmATE εmATE εmATE

kNN 3.19± 1.49 7.83± 2.55 19.40± 3.12 15.11± 2.34 17.27± 2.10
PSM 0.49± 0.81 4.89± 2.39 30.19± 2.47 22.09± 1.98 18.81± 1.74
RF 0.64± 1.25 5.50± 1.20 18.03± 3.18 12.40± 2.29 15.91± 2.00
CF 0.65± 1.24 4.02± 1.33 13.54± 2.48 9.70± 1.91 8.37± 1.76
BART 0.53± 1.02 5.40± 1.53 17.14± 3.51 14.80± 2.56 17.50± 2.49
GANITE 0.98± 1.90 4.65± 2.12 13.84± 2.69 11.20± 2.84 13.20± 3.28
PD 1.37± 1.65 4.69± 3.17 8.47± 4.51 7.29± 2.97 10.65± 2.22
TARNET 0.24± 0.29 4.58± 1.29 13.63± 2.18 9.38± 1.92 8.30± 1.66
CFRNETwass 0.20± 0.24 4.54± 1.48 12.96± 1.69 8.79± 1.68 8.05± 1.40
PM 0.24± 0.20 3.99± 1.01 10.04± 2.71 6.51± 1.66 5.76± 1.33
SITE 0.18± 0.23 4.53± 1.32 12.75± 1.88 9.01± 1.86 8.63± 1.41

MTAL 0.34± 0.28 3.88± 1.11 8.01± 1.43 5.97± 1.58 5.12± 1.31

Results and Analysis. We adopt two commonly used evaluation metrics. The first one

is the error in average treatment effect (ATE) estimation defined as εATE = |ATE − ÂTE|,
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Figure 5.4: The results for synthetic basket trial data sets.

Figure 5.5: Different covariates correlation structures.

where ATE = 1
n

∑n
i=1(Y i

1 − Y i
0 ) and ÂTE is an estimated ATE. The second one is the error

of expected precision in estimation of heterogeneous effect (PEHE) (Hill, 2011), which is

defined as εPEHE = 1
n

∑n
i=1(ITEi − ÎTEi)

2, where ITEi = Y i
1 − Y i

0 and ÎTEi is an estimated

ITE for unit i. In addition, for multiple treatment evaluations, we follow the definitions in

(Schwab et al., 2018), where both εPEHE and εATE can be extended to multiple treatments

by averaging PEHE and ATE between every possible pair of treatments. They are defined

as εmPEHE = 1

(k2)

∑k
t=1

∑t
j=1 εPEHE,t,j and εmATE = 1

(k2)

∑k
t=1

∑t
j=1 εATE,t,j. Table 5.2 and

table 5.3 show the performance of our method and baseline methods on the IHDP and
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News data sets. MTAL achieves the best performance with respect to PEHE and ATE

for News data sets with different numbers of treatment options. For the IHDP data set,

MTAL still has competitive performance when compared to the best baseline methods with

respect to PEHE and ATE. The results on these two benchmarks for conventional binary

and multiple treatments effects estimation can demonstrate that our method is capable of

precisely estimating the treatment effects.

5.4.2 Synthetic Basket Trial Data Set

Dataset. To evaluate of our model’s performance for basket trials, we simulate one synthetic

data set which mimics the characteristics of a basket trial. Because different types of tumors

may have different predictor variables, which may be subset of all observed covariates, we use

different subsets of the observable covariates to generate the outcomes for different tumor

types. To mimic the real situation further, we consider different covariance matrices in the

covariates simulation. For example, the covariates predicting outcomes in each tumor type

are taken to have stronger correlations than covariates predicting outcomes for other tumor

types.

We generate a set of synthetic data sets which reflects the complexity of observational

medical records data. The sample size for tumor type k is nk, where k = 1, 2, ..., K. So, the

total sample size is n =
∑K

k=1 nk units. The predictor variables for tumor type k are xk ∈ Rd.

The potential outcomes yk for tumor type k are generated as yk|xk ∼ cos ((wᵀ
kxk + n)2),

where wk ∼ Uniform((−1, 1)d×1). The vector of all observed covariates x = (xᵀ1, x
ᵀ
2, ..., x

ᵀ
K)ᵀ

is sampled from a multivariate normal distribution with mean µk and different random

positive definite covariance matrices Σ. By varying the value of µk, data with different

levels of selection bias are generated (Yao et al., 2018; Yoon et al., 2018). Let D be the

diagonal matrix with the square roots of the diagonal entries of Σ on its diagonal, i.e.,
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D =
√
diag(σ), then the correlation matrix is given by R = D−1ΣD−1. We simulate

correlation matrix to better explain the relationship of covariates among and within different

tumor types, instead of directly simulating covariates matrix. We use algorithm 3 in (Hardin

et al., 2013) to simulate positive definite correlation matrices consisting of different within

tumor type correlations and between tumor type correlations. Our correlation matrices

are based on the hub correlation structure which has a known correlation between a hub

variable and each of remaining variables (Langfelder et al., 2008; B. Zhang & Horvath,

2005). Each variable in a tumor type is correlated with the hub-variable with decreasing

strength from specified maximum correlation to minimum correlation and different tumor

types are generated independently or with weaker correlation among tumor types. Defining

the first variable as the hub, for the ith variable (i = 2, 3, ..., d), the correlation between it

and the hub-variable in one tumor type is given by Ri,1 = ρmax−
(
i−2
d−2

)γ
(ρmax−ρmin), where

ρmax and ρmin are specified maximum and minimum correlations, and the rate γ controls

rate at which correlations decay.

After specifying the relationship between the hub variable and remaining variables in one

tumor type, we use Toeplitz structure to fill out the remainder of the hub correlation matrix

and get the hub-Toeplitz correlation matrix Rk for tumor type k. Here, R is the d×d matrix

having the blocks R1, R2, ..., RK along the diagonal and zeros at off-diagonal elements. This

yields a correlation matrix with nonzero correlations within tumor types and zero correlation

among tumor types. The amount of correlation among tumor types which can be added to

the positive-definite correlation matrix R is determined by its smallest eigenvalue.

Results and Analysis. The mean squared error is used as the performance metric to

evaluate our model under the settings of binary or multiple tumor types, different selection

bias, and different correlation matrix for observed covariates. The mean squared error is

defined as MSE = 1
N×K

∑N
i=1

∑K
k=1 (yk(xi)− ŷk(xi))2, where yk(xi) and ŷk(xi) are factual

and estimated outcomes for unit i with features xi and tumor type k, respectively.
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We simulate 5 data sets with 2, 3, 4, 5, and 6 tumor types, separately. From the second

figure in Fig. 5.4, our MTAL performs relatively steadily for binary and multiple tumor types.

To evaluate the performance with respect to selection bias, Kullback-Leibler divergence is

adopted to quantify selection bias among different tumor types. Here, we use the data sets

with binary tumor types. The all observed covariates in two tumor types are generated

by multivariate normal distribution with mean 0 and different mean µ1 for the remaining

tumor type, so different values of µ1 represent different Kullback-Leibler divergences; i.e.,

selection bias between two tumor types. From the first figure in Fig. 5.4, for the MTAL

method, MSE increases modestly with increasing selection bias. To evaluate the sensitivity

of the MTAL method to the correlation structure of the covariates, we generate 8 different

correlation matrices with different levels of correlation for variables within each tumor type

and among different tumor types in Fig. 5.5. From the third figure in Fig. 5.4, we find that

the MSE owing to the feature selection layers in our MTAL method are not sensitive to

the structure of the correlation matrices. In addition, from the fourth figure in Fig. 5.4, the

performance of our model, with respect to MSE, is significantly improved compared with the

models without L1 and L2 penalties. Also, the overall performance on different combinations

of hyperparameters of L1 and L2 penalties is stable over a large range of tuning parameter

values, which confirms the effectiveness and robustness of deep feature selection in our MTAL

method.

5.5 Summary

In this chapter, we propose a multi-tasks adversarial learning (MTAL) method by incorpo-

rating feature selection multi-task deep learning and adversarial learning to remove hetero-

geneity of tumor types in basket trials. To the best of our knowledge, our model is the first

work introducing machine learning and causal inference to the task of analyzing basket trial
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data. It not only improves the basket trial analysis, but also has its superiority over state-

of-the-art methods in estimating multiple treatment effects for observational data. In future

work, we will follow this direction to apply causal inference models and machine learning

methods into more medical practical applications, such as umbrella and platform trials.
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Chapter 6

Graph Infomax Adversarial

Learning for Treatment Effect

Estimation with Networked

Observational Data

6.1 Introduction

A further understanding of cause and effect beyond observational data is critical across

many domains including statistics, computer science, education, public policy, economics,

and health care. Although randomized controlled trials (RCT) are usually considered as

the gold standard for causal inference, estimating causal effects from observational data has

received growing attention owing to the increasing availability of data and the low costs

compared to RCT.

When estimating treatment effects from observational data, we face two major issues,

i.e., missing counterfactual outcomes and treatment selection bias. The foremost challenge
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for solving these two issues is the existence of confounders, which are the variables that

affect both treatment assignment and outcome. Unlike RCT, treatments are typically not

assigned at random in observational data. Due to the confounders, subjects would have a

preference for a certain treatment option, which leads to a bias of the distribution for the

confounders among different treatment options. This phenomenon exacerbates the difficulty

of counterfactual outcome estimation. For most of existing methods (A. M. Alaa & van

der Schaar, 2017; Z. Chu et al., 2020; Hill, 2011; S. Li & Fu, 2017a; Shalit et al., 2017;

Wager & Athey, 2018b; Yao et al., 2018; Yao, Li, Li, Xue, et al., 2019), the strong ignora-

bility assumption is the most important prerequisite. Given covariates, it assumes that the

treatment assignment is independent of the potential outcomes and for any value of covari-

ates, treatment assignment is not deterministic. Strong ignorability is also known as the

no unmeasured confounders assumption. This assumption requires that all the confounders

be observed and sufficient to characterize the treatment assignment mechanism. Moreover,

strong ignorability is a sufficient condition for the individual treatment effect (ITE) function

to be identifiable (G. W. Imbens & Wooldridge, 2009).

However, due to the fact that identifying and collecting all of the confounders is im-

possible in practice, as well as the existence of hidden confounders, the strong ignorability

assumption is usually untenable. By leveraging big data, it becomes possible to find a proxy

for the hidden confounders. Network information, which serves as an efficient structured

representation of non-regular data, is ubiquitous in the real world. Advanced by the power-

ful representation capabilities of various graph neural networks, networked data has recently

received increasing attention (Kipf & Welling, 2016; Velickovic et al., 2019; Veličković et

al., 2017). Besides, it can be used to help recognize the patterns of hidden confounders.

A network deconfounder (Guo et al., 2019) is proposed to recognize hidden confounders

by combining the graph convolutional networks (Kipf & Welling, 2016) and counterfactual

regression (Shalit et al., 2017).
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Figure 6.1: Example of the imbalance of network structure.

The networked observational data consists of two components, node features and network

structures. Due to the confounding bias in causal inference problem, the imbalance not only

exists in distributions of feature variables in treatment and control groups but also in network

structures. For example, in social networks, the links are more likely to appear among more

similar people, so the subjects are more likely to follow other subjects in the same group as

shown in Fig. 6.1, which will aggravate the imbalance in the representation space learned

by graph neural networks. Fig. 6.2 shows the existence of imbalanced network structures in

the benchmarks of causal inference with networked data (BlogCatalog and Flickr). Unlike

the networked data in traditional graph learning tasks, such as node classification and link

detection, the networked data under the causal inference problem has its particularity, i.e.,

imbalanced network structure. For most existing work on networked observational data, they

did not consider this peculiarity of graph structure under causal inference settings. Directly

applying graph neural networks designed for traditional graph learning tasks cannot capture

all of the information from imbalanced networked data.

To fully exploit the information in the networked data with the imbalanced network

structure, we propose a Graph Infomax Adversarial Learning method (GIAL) to estimate

the treatment effects from networked observational data. In our model, structure mutual
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Figure 6.2: In the benchmarks of causal inference with networked data (BlogCatalog and

Flickr), the homogeneous edges are consistently greater than heterogeneous edges for both

datasets. Besides, as the selection bias increases, the difference between homogeneous and

heterogeneous edges gets larger.

information is maximized to help graph neural networks to extract a representation space,

which best represents observed and hidden confounders from the networked data with the

imbalanced structure. Also, adversarial learning is applied to balance the learned represen-

tation distributions of treatment and control groups and to generate the potential outcomes

for each unit across two groups. Overall, GIAL can make full use of network structure to

recognize patterns of hidden confounders, which has been validated by extensive experiments

on benchmark datasets.

We organize the rest of this chapter as follows. Technical backgrounds including notations

and assumptions are introduced in Section 2. Our proposed framework is presented in Section

3. In Section 4, experiments on networked observational data are provided. Section 5 reviews

related work. Section 6 concludes the chapter.
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6.2 Background

Suppose that the observational data contain n units and that each unit received one of two

or more treatments. Let ti denote the treatment assignment for unit i; i = 1, ..., n. For

binary treatments, ti = 1 is for the treatment group, and ti = 0 for the control group. The

outcome for unit i is denoted by Y i
t when treatment t is applied to unit i; that is, Y i

1 is the

potential outcome of unit i in the treatment group and Y i
0 is the potential outcome of unit i

in the control group. For observational data, only one of the potential outcomes is observed

according to the actual treatment assignment of unit i. The observed outcome is called the

factual outcome, and the remaining unobserved potential outcomes are called counterfactual

outcomes. Let X ∈ Rd denote all observed variables of a unit.

Let G(V , E) denote an undirected graph, where V represents n nodes in G and E is a set

of edges between nodes. According to the adjacency relationships in E , the corresponding

adjacent matrix A ∈ Rn×n of the graph G can be defined as follows. If (vi, vj) ∈ E , Aij = 1,

otherwise Aij = 0. When edges have different weights, Aij can be assigned to a real value.

In this chapter, we explore the observational data as networks. In particular, the graph

G is the networked observational data. Every node in V is one unit in observational data,

an edge in V describes the relationship between a pair of units, and adjacent matrix A

represents the whole network structure. Therefore, the observational data can be denoted

as ({xi, ti, yi}ni=1, A). We follow the potential outcome framework for estimating treatment

effects (Rubin, 1974). The individual treatment effect (ITE) for unit i is the difference

between the potential treated and control outcomes, which is defined as: ITEi = Y i
1 −

Y i
0 , (i = 1, ..., n). The average treatment effect (ATE) is the difference between the mean

potential treated and control outcomes, which is defined as ATE = 1
n

∑n
i=1(Y i

1 − Y i
0 ), (i =

1, ..., n). The success of the potential outcome framework is based on the strong ignorability

102



assumption, which ensures that the treatment effect can be identified (G. W. Imbens &

Rubin, 2015b; Yao et al., 2020).

Assumption 6.2.1. Strong Ignorability: Given covariates X, treatment assignment T

is independent of the potential outcomes, i.e., (Y1, Y0) ⊥⊥ T |X and for any value of X,

treatment assignment is not deterministic, i.e.,P (T = t|X = x) > 0, for all t and x.

In our model, we relax the strong ignorability and allow the existence of hidden con-

founders. We aim to use network structure information to recognize the hidden confounders

and then estimate treatment effects based on the learned confounder representations.

6.3 The Proposed Framework

6.3.1 Motivation

The foremost challenge of causal inference from observational data is how to recognize hidden

confounders. Recently, leveraging the powerful representation capabilities of various graph

neural networks, network structures can be utilized to help recognize the patterns of hidden

confounders in networked observational data.

Due to the particularity of the causal inference problem, the networked data in causal

inference is different from that in traditional graph learning tasks such as node classification

and link detection. As network information is incorporated into the model, we face a new

imbalance issue,i.e., imbalance of network structure in addition to the imbalance of observed

covariate distributions. A link has a larger probability of appearing between two more

similar people. It implies that one unit is more likely to be connected to other units in the

same group (treatment or control). Therefore, directly applying traditional graph learning

methods to learn the representation of networked data could not fully exploit the useful

information for causal inference. It is essential to design new methods that can capture the

103



representation of hidden confounders, implied from the imbalanced network structure and

observed confounders existed in the covariates simultaneously.

To solve this problem, we propose the Graph Infomax Adversarial Learning method

(GIAL) to estimate the treatment effects from the networked observational data, which can

recognize patterns of hidden confounders from imbalanced network structure.

Figure 6.3: Framework of our Graph Infomax Adversarial Learning method (GIAL).

6.3.2 Model Architecture

As shown in Fig. 7.1, our GIAL consists of four main components, i.e., confounder represen-

tation learning, structure mutual information maximization, potential outcome generator,

and counterfactual outcome discriminator. Firstly, we utilize the graph neural network and

structure mutual information to learn the representations of hidden confounders and observed

confounders, by mapping the feature covariates and network structure simultaneously into a

representation space. Then the potential outcome generator is applied to infer the potential

outcomes of units across treatment and control groups based on the learned representation
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space and treatment assignment. At the same time, the counterfactual outcome discrimina-

tor is incorporated to remove the imbalance in the learned representations of treatment and

control groups, and thus it improves the prediction accuracy of potential outcomes inferred

in the outcome generator by playing a minimax game. In the following, we present the

details of each component.

Confounder Representation Learning. Based on the graph G(V , E), our goal is

to learn the representation of confounders by a function g : X × A → R,R ∈ Rd, which

is parameterized by a graph neural network. For node i, this function maps the feature

covariates of node i and the adjacency matrix, which encodes the network structure, into a

d-dimensional representation space R = {r1, r2, ..., rn}, in order to represent the confounders

of node i. To better capture information resided in the networked data, we separately

adopt two powerful graph neural network methods, i.e., the graph convolutional network

(GCN) (Kipf & Welling, 2016) and graph attention network layers (GAT) (Veličković et

al., 2017), to learn the representation space. For these two models, their effectiveness of

the learned representations has been verified in various graph learning tasks. The major

difference between GCN and GAT is how the information from the one-hop neighborhood

is aggregated. For GCN, a graph convolution operation is used to produce the normalized

sum of the node features of neighbors. GAT introduces the attention mechanism to better

quantify the importance of each edge. Here, we want to find out which model is better to

unravel patterns of hidden confounders from the networked data with imbalanced covariate

and imbalanced network structure.

For the graph convolutional network (GCN) model, the representation learning function

g : X × A→ R is parameterized with the following layer-wise propagation rule:

r(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 r(l)W (l)), (6.3.1)
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where Ã = A+ In is the adjacency matrix of graph G(V , E) with inserted self-loops, i.e., the

identity matrix In. D̃ is its corresponding degree matrix, i.e., D̃ii =
∑

j Ãij and W (l) is a

layer-specific trainable weight matrix. σ(·) denotes an activation function and here we apply

the parametric ReLU (PReLU) function (He et al., 2015). A number of GCN layers can be

stacked to approximate the function g : X × A→ R.

For the graph attention network (GAT) model, the representation of confounder for the

i-th node is a function of its covariates and receptive field. Here, we define the i-th node

vi and its one-hop neighbor nodes as the receptive field N (vi). The representation learning

function g : X × A→ R is parameterized with the following equation:

r
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij W

(l)r
(l)
j

 , (6.3.2)

where W (l) is the learnable weight matrix and W (l)r
(l)
j is a linear transformation of the lower

layer representation r
(l)
j . σ(·) is the activation function for nonlinearity. In Eq. (6.3.2), the

representation of the i-th node and its neighbors are aggregated together, scaled by the

normalized attention scores α
(l)
ij .

α
(l)
ij =

exp(LeakyReLU(a(l)T (W (l)r
(l)
i ||W (l)r

(l)
j )))∑

k∈N (i) exp(LeakyReLU(a(l)T (W (l)r
(l)
i ||W (l)r

(l)
k )))

, (6.3.3)

where softmax is used to normalize the attention scores on each node’s incoming edges.

The pair-wise attention score between two neighbors is calculated by LeakyReLU function

(a(l)T (W (l)r
(l)
i ||W (l)r

(l)
j )). Here, it first concatenates the linear transformation of the lower

layer representations for two nodes, i.e., W (l)r
(l)
i ||W (l)r

(l)
j , where || denotes concatenation,

and then it takes a dot product of itself and a learnable weight vector a(l). Finally, the

LeakyReLU function is applied.
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To stabilize the learning process, a multi-head attention mechanism is employed. We

compute multiple different attention maps and finally aggregate all the learned represen-

tations. In particular, K independent attention mechanisms execute the transformation of

Eq. (6.3.2), and then their outputs are merged in two ways:

concatenation : r
(l+1)
i = ||Kk=1σ

 ∑
j∈N (i)

αkijW
kr

(l)
j

 (6.3.4)

or

average : h
(l+1)
i = σ

 1

K

K∑
k=1

∑
j∈N (i)

αkijW
kh

(l)
j

 (6.3.5)

When performing the multi-head attention on the final layer of the network, concatena-

tion is no longer sensible. Thus, we use the concatenation for intermediary layers and the

average for the final layer. An arbitrary number of GAT layers can be stacked to approximate

the function g : X × A→ R.

Structure Mutual Information Maximization. Inspired by a recent successful un-

supervised graph learning method (Velickovic et al., 2019), we maximize structure mutual

information to capture the imbalanced graph structure with respect to treatment and control

nodes in the networked observational data. We aim to learn representations that can capture

the imbalanced structure of the entire graph. Specifically, we utilize a structure summary

function, f : R → S, S ∈ Rd, to summarize the learned representation into an entire graph

structure representation, i.e., s = f(g(X,A)). From the observations in empirical evalua-

tions, the structure summary function could be defined as s = σ( 1
n

∑n
i=1 ri) to best capture

the entire graph structure, where σ is the logistic sigmoid activation function.

Here, our purpose is to learn a representation vector, which can capture the entire graph

structure encoded by the graph structure summary vector s and also reflect the abnormal
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imbalance in the graph structure. Therefore, we aim at maximizing the mutual information

between the learned representation vector ri and the structure summary vector s.

Mutual information is a fundamental quantity for measuring the relationship between

random variables. For example, the dependence of two random variables W and Z is quan-

tified by mutual information as (Belghazi, Baratin, Rajeshwar, et al., 2018):

I(W ;Z) =

∫
W×Z

log
dPWZ

dPW ⊗ PZ
dPWZ , (6.3.6)

where PWZ is the joint probability distribution, and PW =
∫
W dPWZ and PZ =

∫
Z dPWZ

are the marginals. However, mutual information has historically been difficult to compute.

From the viewpoint of Shannon information theory, mutual information can be estimated as

Kullback-Leibler divergence:

I(W ;Z) = H(W )−H(W |Z) = DKL(PWZ ||PW ⊗ PZ). (6.3.7)

Actually, in our model, it is unnecessary to use the exact KL-based formulation of MI,

as we only want to maximize the mutual information between representation vector ri and

structure summary vector s. A simple and stable alternative based on the Jensen-Shannon

divergence (JSD) can be utilized. Thus, we follow the intuitions from deep infomax (Hjelm

et al., 2018) and deep graph infomax (Velickovic et al., 2019) to maximize the mutual

information.

To act as an agent for maximizing the mutual information, one discriminator d : R×S →

P, P ∈ R is employed. The discriminator is formulated by a simple bilinear scoring function

with nonlinear activation: d(ri, s) = σ(ri
TWs), which estimates the probability of the i-th

node representation contained within the graph structure summary s. W is a learnable

scoring matrix. To implement the discriminator, we also need to create the negative samples
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compared with original samples and then use the discriminator to distinguish which one is

from positive samples (original networked data) and which one is from the negative samples

(created fake networked data), such that the original graph structure information could be

correctly captured. The choice of the negative sampling procedure will govern the specific

kinds of structural information that is desirable to be captured (Velickovic et al., 2019). Here,

we focus on the imbalance between the edges that link nodes in the same group and those

that link nodes in the different groups, i.e., treatment unit to treatment unit, treatment unit

to control unit, and control unit to control unit. Therefore, our discriminator is designed to

force the representations to capture this imbalanced structure by creating negative samples

where the original adjacency matrix A is preserved, whereas the negative samples X̃ are

obtained by row-wise shuffling of X. That is, the created fake networked data consists of

the same nodes as the original graph, but they are located in different places in the same

structure. Thus, the nodes at both ends of the edges may change the treatment choices like

from treatment to control, from control to treatment, or remain unchanged. Then we also

conduct the confounder representation learning for the created fake networked data (X̃, A)

to get the r̃i. With the proposed discriminator, we could have d(ri, s) and d(r̃i, s), which

indicate the probabilities of containing the representations of the i-th positive sample and

negative sample in the graph structure summary, respectively.

We optimize the discriminator to maximize mutual information between ri and s based

on the Jensen Shannon divergence via a noise-contrastive type objective with a standard

binary cross-entropy (BCE) loss (Hjelm et al., 2018; Velickovic et al., 2019):

Lm =
1

2n

( n∑
i=1

E(X,A)[log d(ri, s)] +
n∑
j=1

E(X̃,A)[log (1− d(r̃i, s))]
)
. (6.3.8)

Potential Outcome Generator. So far, we have learned the representation space of

confounders from networked data with the imbalanced network structure and imbalanced
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covariates. The function Ψ : R × T → Y maps the representation of hidden confounders

and observed confounders as well as a treatment to the corresponding potential outcome,

which is parameterized by a feed-forward deep neural network with multiple hidden layers

and non-linear activation functions. The function Ψ : R × T → Y uses representations

and treatment options as inputs to predict potential outcomes. The output of Ψ estimates

potential outcomes across treatment and control groups, including the estimated factual

outcome ŷf and the estimated counterfactual outcomes ŷcf . The factual outcomes yf are

used to minimize the loss of prediction ŷf . We aim to minimize the mean squared error in

predicting factual outcomes:

LΨ =
1

n

N∑
i=1

(ŷfi − y
f
i )2, (6.3.9)

where ŷi = Ψ(ri, ti) denotes the inferred observed outcome of unit i corresponding to the

factual treatment ti.

Counterfactual Outcome Discriminator. The counterfactual outcome discriminator

is intended to remove the imbalance of confounder representations between treatment and

control groups, and thus it could improve the prediction accuracy of potential outcomes

inferred by the outcome generator. We define the counterfactual outcome discriminator as

Φ : R × T × (Y for Ŷ cf ) → P , where P is the discriminator’s judgement, i.e., probability

that this outcome for unit i given R and T is factual outcome. P is defined as:

P =


P (judges yfas factual|x, t) if t is factual treatment choice

P (judges ŷcfas factual|x, t) if t is not factual treatment choice.

(6.3.10)

To improve the accuracy of prediction and avoid risk of losing the influence of treatment

t and potential outcomes (yfor ŷcf ) due to high dimensional representation vector, we adopt

separate head networks for treatment and control groups (Shalit et al., 2017). Besides, to
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improve the influence of (yf , ŷcf ) in the discriminator, we add (yfor ŷcf ) into each layer of

the neural network, repetitively.

The discriminator deals with a binary classification task, which assigns one label (i.e.,

factual outcome or counterfactual outcome) to the vector concatenating the representation

vector r and potential outcome (yfor ŷcf ) under the treatment head network and control

head network, respectively. Thus, the loss of discrimination is measured by the cross-entropy

with truth probability, where P truth = 1 if yf is input, and P truth = 0 if ŷcf is input. In

each iteration of training, we make sure to input the same number of units in the treatment

and control groups to ensure that there exist the same number of factual outcomes as coun-

terfactual outcomes in each head network to overcome the imbalanced classification. The

inputs of discriminator are generated by the outcome generator Ψ(R, T ), and then the cross

entropy loss of the counterfactual outcome discriminator is defined as:

LΦ,Ψ =− 1

2n

1∑
t=0

n∑
i=1

(ptruth
ti log(pti) + (1− ptruth

ti ) log(1− pti)), (6.3.11)

where ptruth
ti is the indicator that this input outcome for unit i under treatment option t is

the observed factual outcome or inferred outcome from generator module, i.e., ptruth
ti equals

1 or 0, separately. Pti is the probability judged by discriminator that how likely this input

outcome for unit i under treatment option t is a factual outcome.

Thus far, we have introduced the outcome generator to estimate potential outcomes for

each unit across treatment and control groups, and the discriminator to determine if the

potential outcome is factual, given a unit’s confounder representation under treatment or

control group. In the initial iterations of the model training, the outcome generator may

generate potential outcomes that are very different from factual outcomes as determined

by the discriminator. As the model is trained further, the discriminator may no longer be

able to distinguish the generated counterfactual outcome and the factual outcome. At this
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point, we have attained all potential outcomes for each unit under treatment and control

groups. For the training procedure of optimizing the outcome generator and discriminator,

the minimax game is adopted. Putting all of the above together, the objective function of

our Graph Infomax Adversarial Learning (GIAL) method is:

minΨmaxΦ,m (LΨ + αLm − βLΦ,Ψ), (6.3.12)

where α and β are the hyper-parameters controlling the trade-off among the outcome gen-

erator, mutual information, and discriminator.

6.3.3 Overview of GIAL

The proposed Graph Infomax Adversarial Learning method (GIAL) can estimate the treat-

ment effects from networked observational data, which utilizes the graph neural network

(GCN or GAT) and structure mutual information to learn the representations of hidden con-

founders and observed confounders, by mapping the feature covariates and network structure

simultaneously into a representation space. Adversarial learning is also employed to miti-

gate the representation imbalance between treatment and control groups and to predict the

counterfactual outcomes. After obtaining the counterfactual outcomes, GIAL can estimate

the treatment effects.

We summarize the procedures of GIAL as follows:

1. Create the negative samples (X̃, A) by row-wise shuffling of X and keeping the original

adjacency matrix A.

2. Learn the representation space R for the positive samples (X,A) by function g : X ×

A→ R by a graph neural network.
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3. Learn the representation space R̃ for the negative samples (X̃, A) by function g :

X̃ × A→ R̃ by the same graph neural network as Step 2.

4. Utilize a structure summary function f : Rn×d → S to summarize the learned repre-

sentation into a graph-level structure representation, i.e., s = f(g(X,A)).

5. Employ a discriminator d : R × S → P to obtain d(ri, s) and d(r̃i, s), which are

the probabilities that the representations of i-th positive and negative samples are

contained within the original graph structure summary s.

6. Utilize functions g, f and d to maximize mutual information between R and S.

7. Use potential outcome generator Ψ : R× T → Y to estimate the potential outcomes.

8. Apply counterfactual discriminator Φ : R× T × (Y for Ŷ cf )→ P to remove imbalance

of confounder representations between treatment and control group.

9. Here, Steps 6, 7, and 8 in the procedure are jointly trained together by optimizing

minimax rule Eq. (6.3.12) about Lm, LΨ, and LΦ,Ψ to update parameters in g, f , d,

Φ, and Ψ.

6.4 Experiments

In this section, we conduct experiments on two semi-synthetic networked datasets, including

the BlogCatalog and Flickr, to evaluate the following aspects: (1) Our proposed method can

improve treatment effect estimation with respect to average treatment effect and individu-

alized treatment effect compared to the state-of-the-art methods. (2) The structure mutual

information can help representations capture more hidden confounder information, and thus

increase the predictive accuracy for counterfactual outcomes. (3) The proposed method is

robust to the hyperparameters.
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6.4.1 Dataset

BlogCatalog. BlogCatalog is a social blog directory that manages the bloggers and their

blogs. In this dataset, each unit is a blogger and each edge represents the social relationship

between two bloggers. The features are bag-of-words representations of keywords in bloggers’

descriptions. We follow the assumptions and procedures of synthesizing the outcomes and

treatment assignments in (Guo et al., 2019). In this semi-synthetic networked dataset, the

outcomes are the opinions of readers on each blogger and the treatment options are mobile

devices or desktops on which blogs are read more. If the blogger’s blogs are read more on

mobile devices, the blogger is in the treatment group; rather, they are read more on desktops,

the blogger is in the control group. We also assume that the topics of bloggers with the social

relationship can causally affect their treatment assignment and readers’ opinions on them.

To model readers’ preference on reading some topics from mobile devices and others from

desktops, one LDA topic model (Guo et al., 2019) is trained. Three settings of datasets are

created with k = 0.5, 1, and 2 that represent the magnitude of the confounding bias in the

dataset. k = 0 means the treatment assignment is random and there is no selection bias,

and greater k means larger selection bias. The simulation procedures are repeated 10 times

for each setting of k ∈ 0.5, 1, 2.

Flickr. Flickr is a popular photo-sharing and hosting service, and it supports an active

community where people can share each other’s photos. In the Flickr dataset, each unit is

a user and each edge represents the social relationship between two users. The features of

each user represent a list of tags of interest. The same settings and simulation procedures

as BlogCatalog dataset are adopted here. The simulation procedures are repeated 10 times

for each setting of k ∈ 0.5, 1, 2. Table 6.1 presents an overview of these two datasets.
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Table 6.1: Properties of BlogCatalog and Flickr datasets.

Datasets BlogCatalog Flickr

Nodes 5,196 7,575
Features 8,189 12,047
Edges 171,743 239,738
Treatments 2 2

6.4.2 Baseline Methods

We compare the proposed Graph Infomax Adversarial Learning method (GIAL) method with

the following baseline methods. Network Deconfounder (ND) (Guo et al., 2019) utilizes

the graph convolutional networks and integral probability metric to learn balanced repre-

sentations to recognize patterns of hidden confounders from the network dataset. Counter-

factual Regression (CFRNET) (Shalit et al., 2017) maps the original features into a

latent representation space by minimizing the error in predicting factual outcomes and imbal-

ance measured by integral probability metric between the treatment representations and the

control representations. Treatment-agnostic Representation Networks (TARNet)

(Shalit et al., 2017) is a variant of counterfactual regression without balance regularization.

Causal Effect Variational Autoencoder (CEVAE) (Louizos et al., 2017) is based on

Variational Autoencoders (VAE), which follows the causal structure of inference to simul-

taneously estimate the unknown latent space summarizing the confounders and the causal

effect. Causal Forests (CF) (Wager & Athey, 2018b) is a nonparametric forest-based

method for estimating heterogeneous treatment effects by extending Breiman’s random for-

est algorithm. Bayesian Additive Regression Trees (BART) (Chipman et al., 2010)

is a nonparametric Bayesian regression model, which uses dimensionally adaptive random

basis elements.

115



6.4.3 Descriptive Data Analysis

Figure 6.4: Example of complete graph. The solid line represents heterogeneous edge and

the dashed line means homogeneous edge.

Before estimating the treatment effects from these two networked datasets, we provide

the descriptive data analysis to demonstrate the existence of network structural imbalance

in the networked data for causal inference problems.

According to graph theory, in the complete graph which is a simple undirected graph

where every pair of distinct nodes is connected by a unique edge, there are n×(n−1)
2

edges for

n nodes. We assume that the n nodes are evenly divided into treatment group and control

group with the same n
2

nodes in each group, and also each node has the same possibility to

have an edge (relationship) with another node regardless of the node’s treatment assignment.

Then, this graph is still a complete graph with n×(n−1)
2

edges. Now the edges in this graph

are put into two categories: (a) the homogeneous group including the edges that link the

nodes in the same group (treatment-treatment or control-control); (b) the heterogeneous

group including the edges that link the nodes in different groups (treatment-control). Under
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Table 6.2: Summary of homogeneous edges and heterogeneous edges for the BlogCatalog

datasets and Flickr datasets.

Dataset k Homogeneous Heterogeneous

0.5 94524.5 77218.5
BlogCatalog 1 101102.8 70640.2

2 116031.8 55711.2

0.5 124320.9 115417.1
Flickr 1 130978.5 108759.5

2 141957.3 97780.7

Table 6.3: Performance comparison on BlogCatalog and Flickr datasets with different k ∈

0.5, 1, 2.

BlogCatalog Flickr

k=0.5 k=1 k=2 k=0.5 k=1 k=2

Method
√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

BART 4.808 2.680 5.770 2.278 11.608 6.418 4.907 2.323 9.517 6.548 13.155 9.643
CF 7.456 1.261 7.805 1.763 19.271 4.050 8.104 1.359 14.636 3.545 26.702 4.324
CEVAE 7.481 1.279 10.387 1.998 24.215 5.566 12.099 1.732 22.496 4.415 42.985 5.393
TARNet 11.570 4.228 13.561 8.170 34.420 13.122 14.329 3.389 28.466 5.978 55.066 13.105
CFRNETMMD 11.536 4.127 12.332 5.345 34.654 13.785 13.539 3.350 27.679 5.416 53.863 12.115
CFRNETWass 10.904 4.257 11.644 5.107 34.848 13.053 13.846 3.507 27.514 5.192 53.454 13.269
ND 4.532 0.979 4.597 0.984 9.532 2.130 4.286 0.805 5.789 1.359 9.817 2.700

GIALGAT (Ours) 4.215 0.912 4.258 0.937 9.119 1.982 4.015 0.773 5.432 1.2312 9.428 2.586
GIALGCN (Ours) 4.023 0.841 4.091 0.883 8.927 1.780 3.938 0.682 5.317 1.194 9.275 2.245

the assumption that each node has the same possibility to be connected with another node

regardless of node’s treatment assignment, we can find that in the homogeneous group, there

are n2

4
− n

2
edges and in the heterogeneous group, there are n2

4
edges. The number of edges

in heterogeneous group should be greater than that in homogeneous group. For example, as

shown in Fig. 6.4, there is one complete graph with 6 nodes including 3 treatment nodes and

3 control nodes. The heterogeneous group has 9 edges, while the homogeneous group has 6

edges.
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Table 6.4: Summary of results in ablation studies.

k=0.5 k=1 k=2
√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

BlogCatalog
GIAL 4.023 0.841 4.091 0.883 8.927 1.780
GIAL (w/o SMI) 4.422 0.982 4.481 0.981 9.315 2.142
GIAL (w/o CD) 4.482 0.987 4.951 1.023 13.598 3.215

Flickr
GIAL 3.938 0.682 5.317 1.194 9.275 2.245
GIAL (w/o SMI) 4.158 0.792 5.694 1.375 9.673 2.661
GIAL (w/o CD) 4.284 0.812 6.127 1.435 11.524 3.564

We separately calculate the average numbers of homogeneous edges and heterogeneous

edges for the BlogCatalog datasets and Flickr datasets, and report them in Table 6.2. We

can observe that the homogeneous edges are consistently greater than heterogeneous edges

for both datasets with different k. This result totally agrees with our expectation that, in the

causal inference problem, the network structure is imbalanced. Therefore, the relationship is

more likely to appear among people who are in the same group. This is the major difference

between traditional graph learning tasks and the causal inference task on networked data,

which is also the motivation of our proposed model.

6.4.4 Experimental Settings

In the following experiments, we randomly sample 60% and 20% of the units as the training

set and validation set, and use the remaining 20% units to form the test set. For each dataset

with different imbalance k, the simulation procedures are repeated 10 times and we report

the average mean.
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GIAL. By using different graph neural networks to learn the representation space from

networked dataset, the proposed GIAL method has two variants denoted as GIALGCN and

GIALGAT, which adopt the original implementation of graph convolutional network (Kipf

& Welling, 2016) and graph attention network (GAT) (Velickovic et al., 2019), respectively.

Besides, a squared l2 norm regularization with hyperparameter 10−4 is added into our model

to mitigate the overfitting issue. The hyperparameters of our method are chosen based on

performance on the validation dataset, and the searching range is shown in Table 6.5. The

Adam SGD optimizer (Kingma & Ba, 2014) is used to train the final objective function

Eq. (6.3.12) with an initial learning rate of 0.001 and an early stopping strategy with a

patience of 100 epochs.

Table 6.5: Hyperparameters and ranges.

Hyperparameter Range

α, β 0, 10−4,10−3 ,10−2 ,10−1

Dim. of confounder representation 50, 100, 150, 200

No. of GCN and GAT layers 1, 2, 3

No. of attention heads in GAT 1, 2, 3, 4

No. of outcome generator layer 1, 2, 3, 4

Baseline Methods. BART, CF, CEVAE, TARNet, and CFRNET are not originally

designed for the networked observational data, so they cannot directly utilize the network

information. To be fair, we concatenate the corresponding row of adjacency matrix to

the original features (Guo et al., 2019), but this strategy cannot effectively improve the

performance of baselines due to the curse of dimensionality. Besides, we adopt their default

hyperparameter settings.
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6.4.5 Results

For the BlogCatalog and Flickr datasets, we adopt two commonly used evaluation metrics

to evaluate the performance of our method and baselines. The first one is the error of ATE

estimation, which is defined as εATE = |ATE − ÂTE|, where ATE is the true value and

ÂTE is an estimated ATE. The second one is the error of expected precision in estimation of

heterogeneous effect (PEHE) (Hill, 2011), which is defined as εPEHE = 1
n

∑n
i=1(ITEi− ÎTEi)

2,

where ITEi is the true ITE for unit i and ÎTEi is an estimated ITE for unit i.

Table 6.3 shows the performance of our method and baseline methods on the BlogCatalog

and Flickr datasets over 10 realizations. We report the average results of
√
εPEHE and εATE on

the test sets. GIALGCN achieves the best performance with respect to
√
εPEHE and εATE in all

cases of both datasets. Although the GIALGAT also has obvious improvements compared to

baseline methods, it is outperformed by GIALGCN. GCN demonstrates clear superiority over

GAT when recognizing patterns of hidden confounders from imbalanced network structure.

Because k = 0.5, 1, and 2 is used to represent the magnitude of the confounding bias in

both datasets, results show that GIAL consistently outperforms the baseline methods under

different levels of divergence, and our method is robust to a high level of confounding bias.

Compared to baseline methods (e.g., CFRNET) only relying on observed confounders but

without utilizing the network information, our model is capable of recognizing the patterns of

hidden confounders from the network structure. Compared to baseline methods with learning

network information (e.g., ND), our model has significant performance advantages, which

demonstrates our model can capture more information from imbalanced network structure.

The reason is that our method maximizes the structure mutual information, instead of

directly adopting graph learning method without considering the specificity of networked

data in the causal inference problem.
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6.4.6 Model Evaluation

Experimental results on both datasets show that GIAL obtains a more accurate estimation

of the ATE and ITE than the state-of-the-art methods. We further evaluate the perfor-

mance of GIAL from two perspectives, including the effectiveness of each component, and

its robustness to hyper-parameters.

We perform two ablation studies of GIALGCN on both datasets. The first one is GIAL

(w/o SMI) where structure mutual information maximizing module is removed. We directly

adopt graph neural networks to learn the representation space without considering structural

imbalance of networked data. The second ablation study is GIAL (w/o CD) where the

counterfactual outcome discriminator is removed and there is not any restriction on the

divergence between the representation distributions of treatment and control groups.

As shown in Table 6.4, the performance becomes poor after removing either the struc-

ture mutual information or counterfactual outcome discriminator, compared to the original

GIAL. More specifically, after removing the structure mutual information,
√
εPEHE and εATE

increase dramatically and have similar performance to other baseline methods. Besides, as

the bias (k) increases, the difference between the performance of GIAL (w/o CD) and per-

formance of original GIAL increases further. Therefore, the structure mutual information

and counterfactual outcome discriminator are essential components of our model.

Next, we explore the model’s sensitivity to the most important parameters α and β, which

control the ability to capture the graph structure and handle the confounding bias when

estimating the potential outcomes. We show the results of
√
εPEHE and εATE on BlogCatalog

dataset with different k in Fig. 6.5. We observe that the performance is stable over a

large parameter range. It confirms the effectiveness and robustness of structure mutual

information and counterfactual outcome discriminator in GIAL, which is consistent with our

ablation studies, i.e., GIAL (w/o SMI) and GIAL (w/o CD).
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Figure 6.5: Sensitivity analysis for α and β of structure mutual information and counterfac-

tual outcome discriminator.

6.5 Related Work

The related work is presented along with two directions: learning causal effects from obser-

vational data and graph neural networks.

Embracing the rapid developments in machine learning and deep learning, various causal

effect estimation methods for observational data have sprung up. Balancing neural net-

works (BNNs) (F. Johansson et al., 2016) and counterfactual regression networks (CFR-

NET) (Shalit et al., 2017) are proposed to balance covariate distributions across treatment

and control groups by formulating the problem of counterfactual inference as a domain adap-

tation problem. For most of existing methods, the strong ignorability assumption is the most

important prerequisite. However, this assumption might be untenable in practice. A series of

methods have been proposed to relax the strong ignorability assumption. A latent variable is

inferred as a substitute for unobserved confounders and then uses that substitute to perform

causal inference (Y. Wang & Blei, 2019). Variational autoencoder has been used to infer

the relationships between the observed confounders based on the assumption joint distribu-

tion of the latent confounders and the observed confounders can be approximately recovered
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solely from the observations (Louizos et al., 2017). However, they still rely on the assump-

tion that the model is capable of extracting the latent information to represent confounders

from observational data. Recently, some work aims to relax the strong ignorability assump-

tion to estimate the causal inference in the presence of unobserved confounding, where the

network connecting the units is a proxy is for the unobserved confounding. The network

deconfounder (Guo et al., 2019) learns representations of confounders from network data

by adopting the graph convolutional networks and reduces the selection bias by minimizing

Wasserstein distance. Another work utilizes graph attention networks to learn representa-

tions and mitigates confounding bias by representation balancing and treatment prediction,

simultaneously (Guo, Li, Li, et al., 2020). Causal network embedding (CNE) (Veitch et al.,

2019) is proposed to learn node embeddings from network data to represent confounders by

reducing the causal estimation problem to a semi-supervised prediction of both the treat-

ments and outcomes. For the existing methods about networked data, they do not dig deeply

on what is the essential difference between the networked data under causal inference prob-

lem and the networked data for traditional graph learning tasks such as node classification,

link detection, etc. This is the reason why we propose this Graph Informax Adversarial

Learning model, instead of directly adopting the GCN or GAT to learn the representation

from the networked data.

Graph learning is increasingly becoming fascinating as more and more real-world data can

be modeled as networked data. Graph convolutional network (Kipf & Welling, 2016) is an

effective approach for semi-supervised learning on networked data, via a localized first-order

approximation of spectral graph convolutions. Graph attention network (GAT) (Veličković

et al., 2017) is an attention-based architecture leveraging masked self-attentional layers where

nodes are able to attend over their neighborhoods’ features. Deep graph infomax (DGI)

(Velickovic et al., 2019) is one approach for learning node representations within networked

data in an unsupervised manner, which relies on maximizing mutual information between
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patch representations and high-level summaries of graphs. In our model, we extend the

idea in DGI originally aimed for unsupervised learning to representation learning under the

causal inference setting. Utilizing the structure mutual information can help representations

capture the imbalanced structure that is specific to the causal inference problem.

6.6 Summary

In this chapter, we propose the Graph Infomax Adversarial Learning method (GIAL) to catch

hidden confounders and estimate the treatment effects from networked observational data.

GIAL makes full use of the network structure to capture more information by recognizing the

imbalance in network structure. Our work clarifies the greatest particularity of networked

data under the causal inference problem compared with traditional graph learning tasks,

that is, the structural imbalance due to confounding bias between treatment and control

groups. Extensive experimental results on two benchmark datasets show the effectiveness

and advantages of the proposed GIAL method.
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Chapter 7

Continual Lifelong Causal Effect

Inference with Observational Data

7.1 Introduction

Causal effect inference is a critical research topic across many domains, such as statistics,

computer science, public policy, and economics. Randomized controlled trials (RCT) are

usually considered as the gold-standard for causal effect inference, which randomly assigns

participants into a treatment or control group. As the RCT is conducted, the only expected

difference between the treatment and control groups is the outcome variable being studied.

However, in reality, randomized controlled trials are always time-consuming and expensive,

and thus the study cannot involve many subjects, which may be not representative of the

real-world population the intervention would eventually target. Nowadays, estimating causal

effects from observational data has become an appealing research direction owing to a large

amount of available data and low budget requirements, compared with RCT (Yao et al.,

2020). Researchers have developed various strategies for causal effect inference with obser-

vational data, such as tree-based methods (Chipman et al., 2010; Wager & Athey, 2018a),
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representation learning methods (Z. Chu et al., 2020; F. Johansson et al., 2016; S. Li & Fu,

2017b; Shalit et al., 2017), adapting Bayesian algorithms (A. M. Alaa & van der Schaar,

2017), generative adversarial nets (Yoon et al., 2018), variational autoencoders (Louizos

et al., 2017) and so on.

Although significant advances have been made to overcome the challenges in causal effect

estimation with observational data, such as missing counterfactual outcomes and selection

bias between treatment and control groups, the existing methods only focus on source-specific

and stationary observational data. Such learning strategies assume that all observational

data are already available during the training phase and from the only one source. This

assumption is unsubstantial in practice due to two reasons. The first one is based on the

characteristics of observational data, which are incrementally available from non-stationary

data distributions. For instance, the number of electronic medical records in one hospital is

growing every day, or the electronic medical records for one disease may be from different

hospitals or even different countries. This characteristic implies that one cannot have access

to all observational data at one time point and from one single source. The second reason is

based on the realistic consideration of accessibility. For example, when the new observational

are available, if we want to refine the model previously trained by original data, maybe the

original training data are no longer accessible due to a variety of reasons, e.g., legacy data

may be unrecorded, proprietary, too large to store, or subject to privacy constraint (J. Zhang

et al., 2020). This practical concern of accessibility is ubiquitous in various academic and

industrial applications. That’s what it boiled down to: in the era of big data, we face the new

challenges in causal inference with observational data: the extensibility for incrementally

available observational data, the adaptability for extra domain adaptation problem except

for the imbalance between treatment and control groups in one source, and the accessibility

for a huge amount of data.
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Existing causal effect inference methods, however, are unable to deal with the afore-

mentioned new challenges, i.e., extensibility, adaptability, and accessibility. Although it is

possible to adapt existing causal inference methods to address the new challenges, these

adapted methods still have inevitable defects. Three straightforward adaptation strategies

are described as follows. (1) If we directly apply the model previously trained based on

original data to new observational data, the performance on new task will be very poor due

to the domain shift issues among different data sources; (2) If we utilize newly available

data to re-train the previously learned model, adapting changes in the data distribution,

old knowledge will be completely or partially overwritten by the new one, which can result

in severe performance degradation on old tasks. This is the well-known catastrophic forget-

ting problem (French, 1999; McCloskey & Cohen, 1989); (3) To overcome the catastrophic

forgetting problem, we may rely on the storage of old data and combine the old and new

data together, and then re-train the model from scratch. However, this strategy is memory

inefficient and time-consuming, and it brings practical concerns such as copyright or privacy

issues when storing data for a long time (Samet et al., 2013). Our empirical evaluations in

Section 4 demonstrate that any of these three strategies in combination with the existing

causal effect inference methods is deficient.

To address the above issues, we propose a Continual Causal Effect Representation

Learning method (CERL) for estimating causal effect with incrementally available obser-

vational data. Instead of having access to all previous observational data, we only store

a limited subset of feature representations learned from previous data. Combining the se-

lective and balanced representation learning, feature representation distillation, and feature

transformation, our method preserves the knowledge learned from previous data and update

the knowledge by leveraging new data, so that it can achieve the continual causal effect

estimation for new data without compromising the estimation capability for previous data.

To summarize, our main contributions include: Our work is the first to introduce the con-
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tinual lifelong causal effect inference problem for the incrementally available observational

data and three corresponding evaluation criteria, i.e., extensibility, adaptability, and acces-

sibility; We propose a new framework for continual lifelong causal effect inference based on

deep representation learning and continual learning; Extensive experiments demonstrate the

deficiency of existing methods when facing the incrementally available observational data

and our model’s outstanding performance.

7.2 Background and Problem Statement

Suppose that the observational data contain n units collected from d different domains

and the d-th dataset Dd contains the data {(x, y, t)|x ∈ X, y ∈ Y, t ∈ T} collected from d-th

domain, which contains nd units. Let X denote all observed variables, Y denote the outcomes

in the observational data, and T is a binary variable. Let D1:d = {D1, D2, ..., Dd} be the set

of combination of d dataset, separately collected from d different domains. For d datasets

{D1, D2, ..., Dd}, they have the common observed variables but due to the fact that they are

collected from different domains, they have different distributions with respect to X, Y , and

T in each dataset. Each unit in the observational data received one of two treatments. Let

ti denote the treatment assignment for unit i; i = 1, ..., n. For binary treatments, ti = 1 is

for the treatment group, and ti = 0 for the control group. The outcome for unit i is denoted

by yit when treatment t is applied to unit i; that is, yi1 is the potential outcome of unit i

in the treatment group and yi0 is the potential outcome of unit i in the control group. For

observational data, only one of the potential outcomes is observed. The observed outcome

is called the factual outcome and the remaining unobserved potential outcomes are called

counterfactual outcomes.

In this chapter, we follow the potential outcome framework for estimating treatment

effects (Rubin, 1974; Splawa-Neyman et al., 1990). The individual treatment effect (ITE)
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for unit i is the difference between the potential treated and control outcomes, and is defined

as ITEi = yi1 − yi0. The average treatment effect (ATE) is the difference between the mean

potential treated and control outcomes, which is defined as ATE = 1
n

∑n
i=1(yi1 − yi0).

The success of the potential outcome framework is based on the following assump-

tions (G. W. Imbens & Rubin, 2015b), which ensure that the treatment effect can be iden-

tified. Stable Unit Treatment Value Assumption (SUTVA): The potential outcomes

for any units do not vary with the treatments assigned to other units, and, for each unit,

there are no different forms or versions of each treatment level, which lead to different poten-

tial outcomes. Consistency: The potential outcome of treatment t is equal to the observed

outcome if the actual treatment received is t. Positivity: For any value of x, treatment

assignment is not deterministic, i.e.,P (T = t|X = x) > 0, for all t and x. Ignorabil-

ity: Given covariates, treatment assignment is independent to the potential outcomes, i.e.,

(y1, y0) ⊥⊥ t|x.

The goal of our work is to develop a novel continual causal inference framework, given

new available observational data Dd, to estimate the causal effect for newly available data

Dd as well as the previous data D1:(d−1) without having access to previous training data in

D1:(d−1).

7.3 The Proposed Framework

The availability of “real world evidence” is expected to facilitate the development of causal

effect inference models for various academic and industrial applications. How to achieve

continual learning from incrementally available observational data from non-stationary data

domains is a new direction in causal effect inference. Rather than only focusing on handling

the selection bias problem, we also need to take into comprehensive consideration three
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aspects of the model, i.e., the extensibility for incrementally available observational data,

the adaptability for various data sources, and the accessibility for a huge amount of data.

We propose the Continual Causal Effect Representation Learning method (CERL) for

estimating causal effect with incrementally available observational data. Based on selective

and balanced representation learning for treatment effect estimation, CERL incorporates

feature representation distillation to preserve the knowledge learned from previous obser-

vational data. Besides, aiming at adapting the updated model to original and new data

without having access to the original data, and solving the selection bias between treatment

and control groups, we propose one representation transformation function, which maps

partial original feature representations into new feature representation space and makes the

global feature representation space balanced with respect to treatment and control groups.

Therefore, CERL can achieve the continual causal effect estimation for new data and mean-

while preserve the estimation capability for previous data, without the aid of original data.

7.3.1 Model Architecture

To estimate the incrementally available observational data, the framework of CERL is mainly

composed of two components: (1) the baseline causal effect learning model is only for the

first available observational data, and thus we don’t need to consider the domain shift issue

among different data sources. This component is equivalent to the traditional causal effect

estimation problem; (2) the continual causal effect learning model is for the sequentially

available observational data, where we need to handle more complex issues, such as knowledge

transfer, catastrophic forgetting, global representation balance, and memory constraint. We

present the details of each component as follows.
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The Baseline Causal Effect Learning Model

We first describe the baseline causal effect learning model for the initial observational dataset

and then bring in subsequent datasets. For causal effect estimation in the initial dataset,

it can be transformed into the traditional causal effect estimation problem. Motivated by

the empirical success of deep representation learning for counterfactual inference (Z. Chu

et al., 2020; Shalit et al., 2017), we propose to learn the selective and balanced feature

representations for treated and control units, and then infer the potential outcomes based

on learned representation space.

Learning Selective and Balanced Representation. Firstly, we adopt a deep feature

selection model that enables variable selection in one deep neural network, i.e., gw1 : X → R,

where X denotes the original covariate space, R denotes the representation space, and w1 are

the learnable parameters in function g. The elastic net regularization term (Zou & Hastie,

2005) is adopted in our model, i.e., Lw1 = ‖w1‖2
2 + ‖w1‖1. Elastic net throughout the fully

connected representation layers assigns larger weights to important features. This strategy

can effectively filter out the irrelevant variables and highlight the important variables.

Due to the selection bias between treatment and control groups and among the sequen-

tial different data sources, the magnitudes of confounders may be significantly different. To

effectively eliminate the imbalance caused by the significant difference in magnitudes be-

tween treatment and control groups and among different data sources, we propose to use

cosine normalization in the last representation layer. In the multi-layer neural networks,

we traditionally use dot products between the output vector of the previous layer and the

incoming weight vector, and then input the products to the activation function. The result

of dot product is unbounded. Cosine normalization uses cosine similarity instead of simple

dot products in neural networks, which can bound the pre-activation between −1 and 1.

The result could be even smaller when the dimension is high. As a result, the variance can
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be controlled within a very narrow range (Luo et al., 2018). Cosine normalization is defined

as r = σ(rnorm) = σ
(

cos(w, x)
)

= σ( w·x
|w||x|), where rnorm is the normalized pre-activation, w

is the incoming weight vector, x is the input vector, and σ is nonlinear activation function.

Motivated by Shalit et al., 2017, we adopt integral probability metrics (IPM) when

learning the representation space to balance the treatment and control groups. The IPM

measures the divergence between the representation distributions of treatment and control

groups, so we want to minimize the IPM to make two distributions more similar. Let

P (g(x)|t = 1) and Q(g(x)|t = 0) denote the empirical distributions of the representation

vectors for the treatment and control groups, respectively. We adopt the IPM defined in the

family of 1-Lipschitz functions, which leads to IPM being the Wasserstein distance (Shalit et

al., 2017; Sriperumbudur et al., 2012). In particular, the IPM term with Wasserstein distance

is defined as Wass(P,Q) = infk∈K
∫
g(x)
‖k(g(x))− g(x)‖P (g(x))d(g(x)), where γ denotes the

hyper-parameter controlling the trade-off between Wass(P,Q) and other terms in the final

objective function. K = {k|Q(k(g(x))) = P (g(x))} defines the set of push-forward functions

that transform the representation distribution of the treatment distribution P to that of the

control Q and g(x) ∈ {g(x)i}i:ti=1.

Inferring Potential Outcomes. We aim to learn a function hθ1 : R × T → Y that

maps the representation vectors and treatment assignment to the corresponding observed

outcomes, and it can be parameterized by deep neural networks. To overcome the risk of los-

ing the influence of T on R, hθ1(gw1(x), t) is partitioned into two separate tasks for treatment

and control groups, respectively. Each unit is only updated in the task corresponding to its

observed treatment. Let ŷi = hθ1(gw1(x), t) denote the inferred observed outcome of unit i

corresponding to factual treatment ti. We minimize the mean squared error in predicting

factual outcomes: LY = 1
n1

∑n1

i=1(ŷi − yi)2.
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Putting all the above together, the objective function of our baseline causal effect learning

model is: L = LY + αWass(P,Q) + λLw1 , where α and λ denote the hyper-parameters

controlling the trade-off among Wass(P,Q), Lw, and LY in the objective function.

The Sustainability of Model Learning

By far, we have built the baseline model for causal effect estimation with observational data

from a single source. To avoid catastrophic forgetting when learning new data, we propose

to preserve a subset of lower dimensional feature representations rather than all original

covariates. We also can adjust the number of preserved feature representations according to

the memory constraint.

After the completion of baseline model training, we store a subset of feature representa-

tions R1 = {gw1(x)|x ∈ D1} and the corresponding {Y, T} ∈ D1 as memory M1. The size of

stored representation vectors can be reduced to satisfy the pre-specified memory constraint

by a herding algorithm (Rebuffi et al., 2017; Welling, 2009). The herding algorithm can

create a representative set of samples from distribution and requires fewer samples to achieve

a high approximation quality than random subsampling. We run the herding algorithm sep-

arately for treatment and control groups to store the same number of feature representations

from treatment and control groups. At this point, we only store the memory set M1 and

model gw1 , without the original data (D1).

The Continual Causal Effect Learning Model

For now, we have stored memory M1 and baseline model. To continually estimate the causal

effect for incrementally available observational data, we incorporate feature representation

distillation and feature representation transformation to estimate causal effect for all seen

data based on balanced global feature representation space. The framework of CERL is

shown in Fig. 7.1.
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Figure 7.1: The framework of continual causal effect learning model.

Feature Representation Distillation. For next available dataset D2 = {(x, y, t)|x ∈

X, y ∈ Y, t ∈ T} collected from second domain, we adopt the same selective representation

learning gw2 : X → R2 with elastic net regularization (Lw2) on new parameters w2. Because

we expect our model can estimate causal effect for both previous and new data, we want the

new model to inherit some knowledge from previous model. In continual learning, knowledge

distillation (Hinton et al., 2015; Z. Li & Hoiem, 2017) is commonly adopted to alleviate the

catastrophic forgetting, where knowledge is transferred from one network to another network

by encouraging the outputs of the original and new network to be similar. However, for the

continual causal effect estimation problem, we focus more on the feature representations,

which are required to be balanced between treatment and control, and among different data

domains. Inspired by Dhar et al., 2019; Hou et al., 2019; Iscen et al., 2020, we propose

feature representation distillation to encourage the representation vector {gw1(x)|x ∈ D2}

based on baseline model to be similar to the representation vector {gw2(x)|x ∈ D2} based

on new model by Euclidean distance. This feature distillation can help prevent the learned

representations from drifting too much in the new feature representation space. Because we

apply the cosine normalization to feature representations and ‖A−B‖2 = (A−B)ᵀ(A−B) =
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‖A‖2 + ‖B‖2 − 2AᵀB = 2
(
1 − cos(A,B)

)
, the feature representation distillation is defined

as LFD(x) = 1− cos
(
gw1(x), gw2(x)

)
,where x ∈ D2.

Feature Representation Transformation. We have previous feature representations

R1 stored in M1 and new feature representations R2 extracted from newly available data.

R1 and R2 lie in different feature representation space and they are not compatible with

each other because they are learned from different models. In addition, we cannot learn

the feature representations of previous data from the new model gw2 , as we no longer have

access to previous data. Therefore, to balance the global feature representation space in-

cluding previous and new representations between treatment and control groups, a feature

transformation function is needed from previous feature representations R1 to transformed

feature representations R̃1 compatible with new feature representations space R2. We define

a feature transformation function as φ1→2 : R1 → R̃1. We also input the feature represen-

tations of new data D2 learned from old model, i.e., gw1(x), to get the transformed feature

representations of new data, i.e., φ1→2(gw1(x)). To keep the transformed space compatible

with the new feature representation space, we train the transformation function φ1→2 by

making the φ1→2(gw1(x)) and gw2(x) similar, where x ∈ D2. The loss function is defined

as LFT (x) = 1 − cos
(
φ1→2(gw1(x)), gw2(x)

)
, which is used to train the function φ1→2 to

transform feature representations between different feature spaces. Then, we can attain the

transformed old feature representations R̃1 = φ1→2(R1), which is in the same space as R2.

Balancing Global Feature Representation Space. We have obtained a global fea-

ture representation space including the transformed representations of stored old data and

new representations of new available data. We adopt the same integral probability metrics

as baseline model to make sure that the representation distributions are balanced for treat-

ment and control groups in the global feature representation space. In addition, we define

a potential outcome function hθ2 : (R̃1, R2) × T → Y . Let ŷMi = hθ2
(
φ1→2(ri), t

)
, where

ri ∈ M1, and ŷDj = hθ2
(
gw2(xj), t

)
, where xj ∈ D2 denote the inferred observed outcomes.
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We aim to minimize the mean squared error in predicting factual outcomes for global feature

representations including transformed old feature representations and new feature represen-

tations: LG = 1
ñ1

∑ñ1

i=1(ŷMi − yMi )2 + 1
n2

∑n2

j=1(ŷDj − yDj )2, where ñ1 is the number of units

stored in M1 by herding algorithm, yMi ∈M1, and yDj ∈ D2.

In summary, the objective function of our continual causal effect learning model is L =

LG+αWass(P,Q)+λLw2 +βLFD+δLFT , where α, λ, β, and δ denote the hyper-parameters

controlling the trade-off among Wass(P,Q), Lw2 , LFD, LFT , and LG in the final objective

function.

7.3.2 Overview of CERL

In the above sections, we have provided the baseline and continual causal effect learning

models. When the continual causal effect learning model for the second data is trained,

we can extract the R2 = {gw2(x)|x ∈ D2} and R̃1 = {φ1→2(r)|r ∈ M1}. We define a

new memory set as M2 = {R2, Y2, T2} ∪ φ1→2(M1), where φ1→2(M1) includes R̃1 and the

corresponding {Y, T} stored in M1. Similarly, to satisfy the pre-specified memory constraint,

M2 can be reduced by conducting the herding algorithm to store the same number of feature

representations from treatment and control groups. We only store the new memory set M2

and new model gw2 , which are used to train the following model and balance the global

feature representation space. It is unnecessary to store the original data (D1 and D2) any

longer.

We follow the same procedure for the subsequently available observational data. When

we obtain the new observational data Dd, we can train hθd(gwd) and φd−1→d : Rd−1 → R̃d−1

based on the continual causal effect learning model. Besides, the new memory set is defined

as: Md = {Rd, Yd, Td}∪φd−1→d(Md−1). So far, our model hθd(gwd) can estimate causal effect
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for all seen observational data regardless of the data source and it doesn’t require access to

previous data. As shown in Algorithm 1, we summarize the procedures of CERL as follows:

Algorithm 1: Continual Causal Effect Representation Learning

Data: Given d incrementally available observational data from D1 to Dd

if {x, y, t} ∈ D1 then
*** Train baseline causal effect model hθ1(gw1) ***
w1, θ1 = OPTIMIZE(LY + αWass(P,Q) + λLw1)
R1 = {gw1(x)|x ∈ D1}
M1 = HERDING{R1, Y1, T1}

else
for {x, y, t} ∈ D2, ..., Dd do

*** Train continual causal effect model hθd(gwd) ***
wd, θd, φd−1→d = OPTIMIZE(LG + αWass(P,Q) + λLw2 + βLFD + δLFT )
R̃d−1 = φd−1→d(Rd−1)
Rd = {gwd(x)|x ∈ Dd}
Md = HERDING

(
{Rd, Yd, Td} ∪ {R̃d−1, Yd−1 ∈Md−1, Td−1 ∈Md−1}

)
end

end

7.4 Experiments

We adapt the traditional benchmarks, i.e., News (F. Johansson et al., 2016; Schwab et al.,

2018) and BlogCatalog (Guo, Li, & Liu, 2020) to continual causal effect estimation. Specif-

ically, we consider three scenarios to represent the different degrees of domain shifts among

the incrementally available observational data, including the substantial shift, moderate

shift, and no shift. Besides, we generate a series of synthetic datasets and also conduct ab-

lation studies to demonstrate the effectiveness of our model on multiple sequential datasets.

The model performance with different numbers of preserved feature representations, and the

robustness to hyperparameters are also evaluated.
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7.4.1 Dataset Description

We utilize two semi-synthetic benchmarks for the task of continual causal effect estimation,

which are based on real-world features, synthesized treatments and outcomes.

News. The News dataset consists of 5000 randomly sampled news articles from the NY

Times corpus1. It simulates the opinions of media consumers on news items. The units are

different news items represented by word counts xi ∈ NV and outcome y(xi) ∈ R is the news

item. The intervention t ∈ {0, 1} represents the viewing device, desktop (t = 0) or mobile

(t = 1). We extend the original dataset specification in F. Johansson et al., 2016; Schwab et

al., 2018 to enable the simulation of incrementally available observational data with different

degrees of domain shifts. Assuming consumers prefer to read certain media items on specific

viewing devices, we train a topic model on a large set of documents and define z(x) as the

topic distribution of news item x. We define one topic distribution of a randomly sampled

document as centroid zc1 for mobile and the average topic representation of all document

as centroid zc0 for desktop. Therefore, the reader’s opinion of news item x on device t is

determined by the similarity between z(x) and zct , i.e., y(xi) = C(z(x)ᵀzc0 + ti · z(x)ᵀzc1) + ε,

where C = 60 is a scaling factor and ε ∼ N(0, 1). Besides, the intervention t is defined

by p(t = 1|x) = ek·z(x)
ᵀzc1

ek·z(x)
ᵀzc0+ek·z(x)

ᵀzc1
, where k = 10 indicates an expected selection bias. In

the experiments, 50 LDA topics are learned from the training corpus and 3477 bag-of-words

features are in the dataset. To generate two sequential datasets with different domain shifts,

we combine the news items belonging to LDA topics from 1 to 25 into first dataset and

the news items belonging to LDA topics from 26 to 50 into second dataset. There is no

overlap of the LDA topics between the first dataset and second dataset, which is considered

as substantial domain shift. In addition, the news items belonging to LDA topics from 1 to

35 and items belonging to from 16 to 50 are used to construct the first dataset and second

1https://archive.ics.uci.edu/ml/datasets/bag+of+words
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dataset, respectively, which is regarded as moderate domain shift. Finally, randomly sampled

items from 50 LDA topics compose the first and second dataset, resulting in no domain shift,

because they are from the same distribution. Under each domain shift scenario and each

dataset, we randomly sample 60% and 20% of the units as the training set and validation

set and let the remaining be the test set.

BlogCatalog. BlogCatalog (Guo, Li, & Liu, 2020) is a blog directory that manages

the bloggers and their blogs. In this semi-synthetic dataset, each unit is a blogger and the

features are bag-of-words representations of keywords in bloggers’ descriptions collected from

real-world source. We adopt the same settings and assumptions to simulate the treatment

options and outcomes as we do for the News dataset. 50 LDA topics are learned from the

training corpus. 5196 units and 2160 bag-of-words features are in the dataset. Similar to the

generation procedure of News datasets with domain shifts, we create two datasets for each

of the three domain shift scenarios. Under each domain shift scenario and each dataset, we

randomly sample 60% and 20% of the units as the training set and validation set and let the

remaining be the test set.

7.4.2 Results and Analysis

Evaluation Metrics. We adopt two commonly used evaluation metrics. The first one is the

error of ATE estimation, which is defined as εATE = |ATE−ÂTE|, where ATE is the true value

and ÂTE is an estimated ATE. The second one is the error of expected precision in estimation

of heterogeneous effect (PEHE) Hill, 2011, which is defined as εPEHE = 1
n

∑n
i=1(ITEi−ÎTEi)

2,

where ITEi is the true ITE for unit i and ÎTEi is an estimated ITE for unit i.

We employ three strategies to adapt traditional causal effect estimation models to incre-

mentally available observational data: (A) directly apply the model previously trained based

on original data to new observational data; (B) utilize newly available data to fine-tune the
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Table 7.1: Performance on two sequential data and M=500.

News BlogCatalog

Previous data New data Previous data New data

Strategy
√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

Substantial CFR-A 2.49 0.80 3.62 1.18 ↑ 9.92 4.25 13.65 6.21 ↑
shift CFR-B 3.23 1.06 ↑ 2.71 0.91 14.21 6.98 ↑ 9.77 4.11

CFR-C 2.51 0.82 2.70 0.92 9.93 4.24 9.77 4.12
CERL 2.55 0.84 2.71 0.91 9.96 4.25 9.78 4.12

Moderate CFR-A 2.58 0.85 3.06 1.02 ↑ 9.89 4.22 11.26 5.03 ↑
shift CFR-B 2.98 0.99 ↑ 2.65 0.92 12.35 5.67 ↑ 9.83 4.18

CFR-C 2.56 0.85 2.63 0.90 9.88 4.21 9.81 4.16
CERL 2.59 0.86 2.66 0.92 9.90 4.24 9.82 4.17

No CFR-A 2.58 0.87 2.62 0.88 9.86 4.20 9.85 4.19
shift CFR-B 2.60 0.88 2.60 0.87 9.85 4.18 9.83 4.18

CFR-C 2.58 0.87 2.59 0.87 9.84 4.18 9.83 4.18
CERL 2.59 0.87 2.60 0.87 9.85 4.19 9.83 4.18

Table 7.2: Performance on two sequential data and M = 10000.

Previous data New data

Strategy
√
εPEHE εATE

√
εPEHE εATE

CFR-A 1.47 0.35 2.51 0.73 ↑
CFR-B 1.82 0.47 ↑ 1.63 0.45
CFR-C 1.49 0.36 1.62 0.44

CERL 1.49 0.37 1.63 0.44
CERL (w/o FRT) 1.71 0.43 ↑ 1.63 0.44
CERL (w/o herding) 1.57 0.40 ↑ 1.63 0.44
CERL (w/o cosine norm) 1.51 0.38 ↑ 1.65 0.44
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Figure 7.2: The relationship among different types of covariates.

previously learned model; (C) store all previous data and combine with new data to re-train

the model from scratch. Among these three strategies, (C) is expected to be the best per-

former and get the ideal performance with respect to ATE and PEHE, although it needs to

take up the most resources (all the data from previous and new dataset). We implement the

three strategies based on the counterfactual regression model (CFR) (Shalit et al., 2017),

which is a representative causal effect estimation method.

As shown in Table 7.1, under no domain shift scenario, the three strategies and our model

have the similar performance on the News and BlogCatalog datasets, because the previous

and new data are from the same distribution. CFR-A, CFR-B, and CERL need less resources

than CFR-C. Under substantial shift and moderate shift scenarios, we find strategy CFR-A

performs well on previous data, but significantly declines on new dataset; strategy CFR-B

shows the catastrophic forgetting problem where the performance on previous dataset is

poor; strategy CFR-C performs well on both previous and new data, but it re-trains the

whole model using both previous and new data. However, if there is a memory constraint
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Figure 7.3: The work flow of continual learning task.

or a barrier to accessing previous data, the strategy CFR-C cannot be conducted. Our

CERL has a similar performance to strategy CFR-C, while CERL does not require access

to previous data. Besides, by comparing the performance under substantial and moderate

shift scenarios, the larger domain shift leads to worse performance of CFR-A and CFR-

B. However, no matter what the domain shift is, the performance of our model CERL is

consistent with the ideal strategy CFR-C.

7.4.3 Model Evaluation

Synthetic Dataset. Our synthetic data include confounders, instrumental, adjustment,

and irrelevant variables. The interrelations among these variables, treatments, and outcomes

are illustrated in Figure 8.4. We totally simulate five different data sources with five different

multivariate normal distributions to represent the incrementally available observational data.

In each data source, we randomly draw 10000 samples including treatment units and control
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units. Therefore, for five datasets, they have different selection bias, magnitude of covariates,

covariance matrices for variables, and number of treatment and control units. To ensure a

robust estimation of model performance, for each data source, we repeat the simulation

procedure 10 times and obtain 10 synthetic datasets.

Results. Similar to the experiments for News and BlogCatalog benchmarks, we still

utilize two sequential datasets to compare our model with CFR under three strategies on

the more complex synthetic data. As shown in Table 8.1, the result is consistent with the

conclusions on News and BlogCatalog. Our model’s performance demonstrates its superiority

over CFR-A and CFR-B. CERL is comparable with CFR-C, while it does not need to have

access to the raw data from previous dataset. Besides, we also conduct three ablation studies

to test the effectiveness of the important components in CERL, i.e., CERL (w/o FRT), CERL

(w/o herding), and CERL (w/o cosine norm). CERL (w/o FRT) is the simplified CERL

without the feature representation transformation, which is based on traditional continual

learning with knowledge distillation. Because the previous feature representation is not

stored or transformed into new feature space, we only utilize new data to balance the bias

between treatment and control groups. CERL (w/o herding) adopts random subsampling

strategy to select samples into memory, instead of herding algorithm. CERL (w/o cosine

norm) removes the cosine normalization in the last representation layer. Table 8.1 shows

that the performance becomes poor after removing anyone in the feature representation

transformation, herding, or cosine normalization modules compared to the original CERL.

More specifically, after removing the feature representation transformation,
√
εPEHE and

εATE increase dramatically, which demonstrates that the knowledge distillation always used

in continual learning task is not enough for the continual causal effect estimation. Also, using

herding to select a representative set of samples from treatment and control distributions is

crucial for the feature representation transformation.
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Figure 7.4: Performance of CERL under different settings.

CERL Performance Evaluation. As illustrated in Figure 7.3, the five observational

data are incrementally available in sequence, and the model will continue to estimate the

causal effect without having access to previous data. We further evaluate the performance

of CERL from three perspectives, i.e., the impact of memory constraint, effeteness of cosine

normalization, and its robustness to hyper-parameters. As shown in Figure 7.4 (a) and (b),

as the model continually learns a new dataset, every time when finishing training one new

dataset, we report the
√
εPEHE and εATE on test sets composed of previous data and new data.

Our model with memory constraints has a similar performance to the ideal situation, where

all data are available to train the model from scratch. However, our model can effectively

save memory space, e.g., when facing the fifth dataset, our model only stores 1000, 5000,

or 10000 feature representations, but the ideal situation needs to store 5 × 10000 = 50000

observations with all covariates. For the cosine normalization, we perform an ablation study

of CERL (M=5000, 5 datasets), where we remove cosine normalization in the representation

learning procedure. We find the
√
εPEHE increases from 1.80 and 1.92 and εATE from 0.55

to 0.61. Next, we explore the model’s sensitivity to the most important parameter α and δ,

which controls the representation balance and representation transformation. From Fig. 7.4
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(c) and (d), we observe that the performance is stable over a large parameter range. In

addition, the parameter β for feature representation distillation is set to 1 (Iscen et al., 2020;

Rebuffi et al., 2017).

7.5 Summary

It is the first time to propose the continual lifelong causal effect inference problem and

the corresponding evaluation criteria. As the real world evidence is becoming more promi-

nent, how to integrate and utilize these powerful data for causal effect estimation becomes

a new research challenge. To address this challenge, we propose the Continual Causal Ef-

fect Representation Learning method for estimating causal effect with observational data,

which are incrementally available from non-stationary data distributions. Extensive exper-

iments demonstrate the superiority of our method over baselines for continual causal effect

estimation.
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Chapter 8

Learning Informative and

Domain-Independent

Representations for Causal Effect

Inference

8.1 Introduction

Nowadays, the study of causal effect estimation is much facilitated by the dramatically

growing availability of observational data. Although a huge amount of observational data is

accumulated to conduct treatment effect estimation, it brings a new challenge, i.e., missing

counterfactual outcomes, compared with randomized controlled trials (RCT). As the RCT

is conducted, the only expected difference between the treatment and control groups is the

outcome variable being studied. However, when estimating causal effects with observational

data, we only observe one factual outcome and never all potential outcomes that would

potentially have happened had we chosen other treatment options. Due to the hallmark of
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observational data, subjects would have a preference for a certain treatment option, which

leads to a bias of the distribution for the covariates among different treatment options. The

selection bias makes the distribution of the covariates in the treatment group different from

the control group, and such a huge discrepancy between the treatment and control groups

exacerbates the difficulty of counterfactual outcome estimation. Therefore, how to handle

the selection bias is a challenging problem in causal effect estimation.

Recent causal effect estimation methods (F. Johansson et al., 2016; S. Li & Fu, 2017a;

Shalit et al., 2017) have built a strong connection with domain adaptation, by enforcing

domain invariance with distributional distances such as the Wasserstein distance and maxi-

mum mean discrepancy. Inspired by metric learning, some methods (Yao et al., 2018) use

hard samples to learn representations that preserve local similarity information and balance

the data distributions. In (Y. Zhang et al., 2020), the authors argue that distribution in-

variance is often too strict a requirement, and they propose to use counterfactual variance

to measure the domain overlap. Thus, which is the best measurement for the imbalanced

domains remains unsettled and the choice highly relies on the characteristics of the domain

distributions (Yao et al., 2020). Besides, despite the empirical success of such methods,

enforcing balance can, to various extents, remove predictive information and lead to a loss in

predictive power, regardless of which type of domain divergence metric is employed (A. Alaa

& Schaar, 2018).

Besides, when handling the selection bias, there is another issue that can lead to poor

potential outcome estimation, i.e., the types of observed variables. The major drawback

of existing causal inference methods is that they always treat all observed variables as pre-

treatment variables, which are not affected by treatment assignments but may be predictive

of outcomes. This assumption is not tenable for observational data. If all observed variables

are directly used to estimate treatment effects, more impalpable bias may be introduced into

the model. For example, conditioning on an instrumental variable, which is associated with
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the treatment assignment but not with the outcome, can increase both bias and variance of

estimated treatment effects (Myers et al., 2011).

To sum up, successfully estimating the causal effect needs three desiderata, i.e., filter-

ing out information about instrumental and irrelevant variables, capturing the predictive

information, and mitigating the covariate imbalance between treatment and control groups.

To achieve these three desiderata simultaneously, we propose an Informative and Domain-

Independent Representation Learning (IDRL) method to estimate the causal effects with

observational data by seeking a representation space, which not only contains the common

predictive information about potential outcome estimation but also excludes the domain-

dependent information. IDRL relies on two mutual information structures: one is to maxi-

mize the mutual information between global summary representation and individual feature

representation, which can maximally capture the common predictive information for both

treatment and control groups and filter out the noise only for specific individual or group;

the other is to minimize the mutual information between feature representation vector and

treatment options, which makes feature representations independent from treatment option

domains.

Our main contributions are summarized in the following: Our work utilizes the global

summary representation to capture the common predictive information for both treatment

and control groups; Circumventing the strategy of enforcing balance between treatment

and control groups (adopting various domain divergence metrics), our IDRL method learns

the domain-independent representation to solve the selection bias problem in causal effect

estimation.
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8.2 Background

Suppose that the observational data contain n units and that each unit received one of two

or more treatments. Let ti denote the treatment assignment for unit i; i = 1, ..., n. For

binary treatments, ti = 1 is for the treatment group, and ti = 0 for the control group. The

outcome for unit i is denoted by Y i
t when treatment t is applied to unit i; that is, Y i

1 is

the potential outcome of unit i in the treatment group and Y i
0 is the potential outcome of

unit i in the control group. For observational data, only one of the potential outcomes is

observed as the actual treatment assignment of unit i. The observed outcome is called the

factual outcome, and the remaining unobserved potential outcomes are called counterfactual

outcomes. Let X ∈ Rd denote all observed variables of a unit. Then the observational data

can be denoted as {xi, ti, yi}ni=1.

We follow the potential outcome framework for estimating treatment effects (Rubin,

1974) and the strong ignorability assumption, which ensures that the treatment effect can

be identified (G. W. Imbens & Rubin, 2015b).

Assumption 8.2.1. Strong Ignorability: Given covariates X, treatment assignment T

is independent of the potential outcomes, i.e., (Y1, Y0) ⊥⊥ T |X and for any value of X,

treatment assignment is not deterministic, i.e., P (T = t|X = x) > 0, for all t and x.

8.3 Proposed Framework

8.3.1 Motivation

The most challenging issue in causal effect estimation from observational data is how to

properly handle the covariate shift between treatment and control groups caused by treat-

ment selection bias. This phenomenon exacerbates the difficulty of counterfactual outcome
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estimation. In the traditional distribution balancing strategies, different domain divergence

metrics are sensitive to the characteristics of data distributions and the predictive infor-

mation may be inadvertently removed when enforcing the balance procedure. Besides, the

instrumental and irrelevant variables also can bring bias and variance into the counterfac-

tual outcome estimation. To address the above issues, we propose the Informative and

Domain-Independent Representation Learning (IDRL) method.

8.3.2 Model Architecture

As shown in Fig. 8.1, our IDRL method consists of four main components, including feature

representation learning, information maximization learning, domain-independent learning,

and potential outcome generator. In the feature representation learning, IDRL first learns

an individual representation vector for each subject via the standard feed-forward deep

neural network. At the same time, the information maximization learning and domain-

independent learning are incorporated into the representation learning procedure to filter out

domain-dependent information, solve the selection bias, and preserve the common predictive

information for treatment and control groups. Finally, the potential outcomes can be inferred

by the outcome generator based on the learned representation.

Feature Representation Learning. This step is to learn the feature representations

of observed covariates by a function g : X → R,R ∈ Rd, which is parameterized by a deep

neural network. The function g(·) maps the original covariate space X into a d-dimensional

representation space R = {r1, r2, ..., rn}.

Information Maximization Learning. Inspired by a recent unsupervised representa-

tion learning method that exploits individual and global information (Hjelm et al., 2018;

Velickovic et al., 2019), we maximize the mutual information between the individual rep-

resentation and global representation, such that the representation space could capture the
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Figure 8.1: The framework of the proposed IDRL.

common predictive information for treatment and control groups. Specifically, we utilize a

summary function, f : Rn×d → S, S ∈ Rd, which summarizes the learned individual repre-

sentation into a global representation vector, i.e., s = f(g(X)). From the observations in

empirical evaluations, the summary function could be defined as weighted averaging of all

the subjects’ representations: s = σ( 1
2nt

∑
i∈nt ri + 1

2nc

∑
i∈nc ri) to best capture the global

representation, where σ is the logistic sigmoid activation function, nt and nc are the subject

numbers of treatment and control groups, respectively. Our goal is to make all the subjects’

representations preserve the common predictive information used to estimate the potential

outcomes for treatment and control groups. Therefore, we aim at maximizing the mutual

information MI(ri, s) between the learned individual representation ri and global summary

representation s, where the feature representation learning can pick and choose what type

of information in the original covariates is preserved into the learned representation vector.
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If the feature representation learning passes information specific to only some individuals

or certain treatment options, this does not increase the mutual information with any of the

other subjects. This encourages the feature representation learning to prefer information

that is shared across the subjects.

Domain-Independent Learning. To handle the selection bias, we incorporate a

domain-independent learning module, which helps the subject’s feature representation to

be independent of its domain, instead of enforcing the domain invariance by various metrics

(e.g., Wasserstein distance, maximum mean discrepancy). When the feature representations

are independent of the domains, we cannot tell which domain the subject is from and thus

filter out the information about the treatment assignments. Because the mutual informa-

tion is small when the two variables are statistically independent, while it is large when

two variables preserve the same information content, we employ the mutual information to

measure the independence between feature representations and domains. To give full expres-

sion to the treatment domain information, we utilize the treatment domain prediction H to

represent the treatment domain by function φ : X → H → T , rather than directly using

treatment domain indicator T . Therefore, we aim at minimizing the mutual information

MI(ri, hi) between learned representation space ri and treatment domain prediction hi.

Potential Outcome Generator. So far, we have learned the feature representation

space from feature representation learning, along with information maximization learning

and domain-independent learning. The function ψ : R × T → Y maps the representation

vectors as well as the treatment assignment to the corresponding potential outcome, which

is parameterized by a feed-forward deep neural network with multiple hidden layers and

non-linear activation functions. To avoid the risk of losing the influence of T when the

dimension of representation space is high, ψ : R×T → Y is partitioned into two head layers

for treatment and control groups, separately. The output of ψ estimates potential outcomes

across treatment and control groups, including the estimated factual outcome ŷf and the
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estimated counterfactual outcomes ŷcf . The factual outcomes yf are used to minimize the

loss of prediction ŷf . We aim to minimize the mean squared error in predicting factual

outcomes:

LY =
1

n

N∑
i=1

(ŷfi − y
f
i )2, (8.3.1)

where ŷi = ψ(ri, ti) denotes the inferred observed outcome of unit i corresponding to the

factual treatment ti.

Mutual Information Estimation. Mutual information is a fundamental quantity

for measuring the relationship between random variables. For example, the dependence of

two random variables W and Z is quantified by mutual information as (Belghazi, Baratin,

Rajeswar, et al., 2018):

MI(W ;Z) =

∫
W×Z

log
dPWZ

dPW ⊗ PZ
dPWZ , (8.3.2)

where PWZ is the joint probability distribution, and PW ⊗ PZ are the product of marginals

PW =
∫
W dPWZ and PZ =

∫
Z dPWZ . The mutual information is small when the two variables

W and Z are statistically independent, while is large when two variables preserve the same

information content.

However, mutual information has historically been difficult to compute. From Shannon

information theory, mutual information can be estimated as the Kullback-Leibler divergence

(DKL) between the joint distribution PWZ and the product of their marginal distributions

PW ⊗ PZ :

MI(W ;Z) = DKL(PWZ ||PW ⊗ PZ). (8.3.3)

Actually, in our method, it is unnecessary to use the exact KL-based formulation of MI,

as we only want to maximize the mutual information MI(ri, s) between individual repre-

sentation ri and global representation s, and minimize the mutual information MI(ri, hi)
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between individual representation ri and treatment domain prediction hi. A simple and

stable alternative based on the Jensen-Shannon divergence (JSD) can be utilized. Some

recent work (Belghazi, Baratin, Rajeswar, et al., 2018; Hjelm et al., 2018) has proved that

an implicit estimation of mutual information can be attained with an encoder-discriminator

architecture. Thus, we follow the intuitions from Deep Infomax (Hjelm et al., 2018) to op-

timize the mutual information involved in our method. To act as an agent for optimizing

the mutual information, one discriminator is employed, which relies on a sampling strategy

that draws positive and negative samples from the joint distribution and the marginal prod-

uct, respectively. To implement the discriminator, we need to create the negative samples

compared with the original samples, and then use the discriminator to distinguish which

one is from positive samples (original data) and which one is from the negative samples

(created fake data). The choice of the negative sampling procedure will govern the specific

kinds of information that is desirable to be captured (Velickovic et al., 2019). Under causal

inference settings, our main challenge is the covariate shift caused by selection bias, so we

independently shuffle feature variables of positive samples X to generate negative samples

X̃ as shown in Fig. 8.2, which can break the imbalanced feature variable patterns in original

X. Thus, for each feature variable in X̃, there is no imbalance with respect to treatment

options.

For MI(ri, s), one discriminator ds : R × S → P, P ∈ R is employed. The dis-

criminator is formulated by a simple bilinear scoring function with nonlinear activation:

ds(ri, s) = σ(ri
TWs), which estimates the probability of the i-th subject representation con-

tained within the global representation s. W is a learnable scoring matrix. We also conduct

the feature representation learning for the negative samples X̃ to get the r̃i. With the pro-

posed discriminator, we could have ds(ri, s) and ds(r̃i, s), which indicate the probabilities

of containing the representations of the i-th positive sample and negative sample in the

global summary representation, respectively. We optimize the discriminator ds to maximize
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Figure 8.2: The strategy of generating negative samples.

mutual information between ri and s based on the Jensen Shannon divergence via a noise-

contrastive type objective with a standard binary cross-entropy (BCE) loss (Hjelm et al.,

2018; Velickovic et al., 2019). The LMI(ri,s) is defined as:

1

2n

( n∑
i=1

EX [log d(ri, s)] +
n∑
j=1

EX̃ [log (1− d(r̃j, s))]
)
. (8.3.4)

For MI(ri, hi), one discriminator dh : R ×H → P, P ∈ R is adopted. Our method aims

at optimizing the discriminator dh, i.e., minimizing the mutual information between learned

representation space ri and treatment domain prediction hi. Similarly, the discriminator
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is formulated by a simple bilinear scoring function with nonlinear activation: dh(ri, hi) =

σ(ri
TWhi), where ri is the i-th subject’s representation learned in feature representation

learning procedure and hi is the i-th subject’s treatment domain prediction learned from

function φ. We also attain the treatment domain prediction h̃i for negative samples X̃ by

function φ. Therefore, in discriminator dh, we could have dh(ri, hi) and dh(r, h̃i), so the

LMI(ri,hi) is defined as:

1

2n

( n∑
i=1

EX [log d(ri, hi)] +
n∑
j=1

EX̃ [log (1− d(rj, h̃j))]
)
, (8.3.5)

8.3.3 Overview of IDRL

The proposed IDRL method leverages the synergy between two mutual information modules

to filter out the treatment domain information and noise, and thus capture the common

predictive information for both treatment and control groups. In this way, our method can

effectively increase the capability of predicting potential outcomes. As shown in Fig. 8.3, we

summarize the procedures of IDRL as follows:

1. Create the negative samples X̃ by independently shuffling feature variables of positive

samples X.

2. Learn the representation space R for the positive samples X and R̃ for the negative

samples X̃ by function g : X → R and g : X̃ → R̃, respectively.

3. Learn the treatment domain prediction H for the positive samples (X,T ) by function

φ : X → H → T and H̃ for the negative samples by plugging X̃ into function φ.

4. Utilize a summary function f : Rn×d → S to summarize the learned representation

into a global summary representation, i.e., s = f(g(X)).
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Figure 8.3: The procedures of IDRL.

5. Employ the discriminator ds : R × S → P to obtain ds(ri, s) and ds(r̃i, s), and the

discriminator dh : R×H → P to obtain dh(hi, ri) and dh(h̃i, ri).

6. Update parameters of g, f , ds, and dh to maximize mutual information between R and

S and minimize mutual information between R and H, by applying gradient descent

to maximize Eq. (8.3.4) and minimize Eq. (8.3.5).

7. Use potential outcome generator ψ : R × T → Y to estimate the potential outcomes

by minimizing Eq. (8.3.1)
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8.4 Experiments

In this section, we conduct experiments on three benchmarks, including the IHDP, Jobs,

and News with multiple treatment options, to compare our proposed IDRL method with

the state-of-the-art causal effect estimation methods. We also experiment with the synthetic

datasets with different settings to validate the following aspects: (1) Capability of reliably

predicting potential outcomes when facing data with different characteristics of the domain

distributions and complicated variable types. (2) Robustness with respect to different levels

of treatment selection bias. (3) The contribution of each component of the proposed IDRL

method.

8.4.1 Experiments on Benchmark Datasets

Datasets and Settings. To evaluate our method and baselines on treatment effect es-

timation, we use the binary treatment benchmarks, i.e., IHDP and Jobs datasets, and a

multiple treatment benchmark News dataset (with 2, 4, 8, and 16 treatment options). We

compare our IDRL method with the following baseline methods: kNN (D. E. Ho et al.,

2007), CF (Wager & Athey, 2018b), RF (Breiman, 2001), BART (Chipman et al., 2010),

TARNET (Shalit et al., 2017), CFRNETwass (Shalit et al., 2017), SITE (Yao et al., 2018),

PM (Schwab et al., 2018), CMGP (A. M. Alaa & van der Schaar, 2017). For IHDP and

Jobs, we report in-sample and out-of-sample performance with
√
εPEHE and εATE, and the

policy risk Rpol and εATT, respectively. For News dataset with multiple treatments, we only

report the performance on the test sets with
√
εmPEHE and εmATE.

Results and Analysis. Table 8.1 and 8.2 show the performance of our method and

baseline methods on the IHDP, Jobs, and News with different treatment options. Our method

significantly outperforms all competing algorithms on the Jobs dataset and News datasets.
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Table 8.1: Performance on IHDP and Jobs of IDRL and competing methods.

IHDP Jobs

In-sample Out-sample In-sample Out-sample

Method
√
εPEHE εATE

√
εPEHE εATE Rpol εATT Rpol εATT

kNN 2.1 0.14 4.1 0.79 0.23 0.02 0.26 0.13
RF 4.2 0.73 6.6 0.96 0.23 0.03 0.28 0.09
CF 3.8 0.18 3.8 0.4 0.19 0.03 0.2 0.07
BART 2.1 0.23 2.3 0.34 0.23 0.02 0.25 0.08
TARNET 0.88 0.26 0.95 0.28 0.17 0.05 0.21 0.11
CFRNET 0.71 0.25 0.76 0.27 0.17 0.04 0.21 0.08
PM n.r. n.r. 0.84 0.24 n.r. n.r. 0.18 0.16
SITE 0.69 0.22 0.75 0.24 0.17 0.04 0.21 0.09
CMGP 0.65 0.11 0.77 0.13 0.22 0.06 0.24 0.09

IDRL (Ours) 0.68 0.18 0.73 0.20 0.13 0.02 0.16 0.04

On the IHDP dataset, our method has the best performance in the out-sample case and

achieves comparable results with the best baselines, such as CFRNET, SITE, and CMGP

in the in-sample case. Besides, the encouraging results on the News datasets with multiple

treatments show that our method is capable of handling the treatment selection bias from

multiple domains.

8.4.2 Experiments on Synthetic Datasets

We further evaluate the performance of our method when facing data with different character-

istics of the domain distributions, complicated variable types, and severe covariate imbalance.

In addition, we evaluate the contribution of each component in our method.

Synthetic Dataset. To reflect the complexity of observational data, our synthetic data

include confounders C, instrumental variables Z, adjustment A, and irrelevant variables

I. The interrelations among these variables, treatments and outcomes are illustrated in
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Table 8.2: Performance on News with 2, 4, 8, and 16 treatments of IDRL and competing

methods.

News-2 News-4 News-8 News-16

Method
√
εPEHE εATE

√
εmPEHE εmATE

√
εmPEHE εmATE

√
εmPEHE εmATE

kNN 18.14 7.83 27.92 19.40 26.20 15.11 27.64 17.27
RF 17.39 5.5 26.59 18.03 23.77 12.4 26.13 15.91
CF 17.59 4.02 23.86 13.54 22.56 9.7 21.45 8.37
BART 18.53 5.4 26.41 17.14 25.78 14.8 27.45 17.5
TARNET 17.17 4.58 23.40 13.63 22.39 9.38 21.19 8.3
CFRNET 16.93 4.54 22.65 12.96 21.64 8.79 20.87 8.05
PM 16.76 3.99 21.58 10.04 20.76 6.51 20.24 5.76

IDRL (Ours) 16.41 3.23 21.12 9.33 19.98 5.83 19.64 4.66

Fig. 8.4. The model used to generate the continuous outcome variable Y in this simulation

is the partially linear regression model (Eq. (8.4.1)), extending the ideas described in (Jacob

et al., 2019; Robinson, 1988):

Y = τ((Cᵀ, Aᵀ)ᵀ)T + g((Cᵀ, Aᵀ)ᵀ) + ε, (8.4.1)

where T
ind.∼ Bernoulli(e0((Cᵀ, Zᵀ)ᵀ)).

Results and Analysis. As shown in Table 8.3, our method significantly outperforms

competitive baselines, such as TARNET, SITE, CFRNET, and CMGP. These baseline meth-

ods all rely on the assumption that all observed variables are pre-treatment variables. How-

ever, this assumption is not tenable for observational data in practice, which may include

instrumental, adjustment, confounding, and irrelevant variables, as in our simulated dataset.

Besides, we conduct ablation studies and report the performance of our method without the

Information Maximization Module or Domain-Independent Module, respectively. From the
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Figure 8.4: The types of observed variables.

results, the performance suffers when either is left out, which demonstrates the effectiveness

of these two modules in our method.

Besides, we evaluate the robustness of our proposed method with respect to different

levels of treatment selection bias. If the propensity score e0 is equal to constant 0.5, there

is no treatment selection bias. The greater |e0((Cᵀ, Zᵀ)ᵀ)− 0.5| is, the larger selection bias

will end up getting. Following the setting in (Shalit et al., 2017), with probability 1− q, we

randomly draw the treatment and control units; with probability q, we draw the treatment

and control units that have the greatest |e0((Cᵀ, Zᵀ)ᵀ)− 0.5|. Thus, the higher the q is, the

larger the selection bias is. We run CFRNET and our method on the simulation datasets

with q from 0 to 1, and show the results in Fig. 8.5. We can observe that our method

consistently outperforms the baseline methods under different levels of divergence and is

robust to a high level of treatment bias.

To evaluate the sensitivity of our method to different characteristics of the domain dis-

tributions and the capability of handling the instrumental and irrelevant variables, we gen-
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Figure 8.5: Performance on simulation dataset with q from 0 to 1.

Figure 8.6: Performance of CFRNET (Top row) and IDRL (Bottom row) on simulated

dataset under different settings.
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Table 8.3: Performance on simulated dataset of IDRL and competing methods.

Method
√
εPEHE εATE

TARNET 1.36 0.31
SITE 1.15 0.25
CFRNET 0.98 0.19
CMGP 0.83 0.17

IDRL w/o MI(ri, s) 0.89 0.17
IDRL w/o MI(ri, hi) 1.24 0.27
IDRL 0.62 0.13

erate four different domain distributions with different correlation matrices for all observed

variables in the simulated dataset and gradually increase the numbers of instrumental and

irrelevant variables, respectively. As shown in Fig. 8.6, we can observe our IDRL consistently

outperforms the baseline CFRNET under any situation. Our method is robust to four types

of different domain distributions, and the increase of instrumental and irrelevant variables.

8.5 Related Work

Learning from observational data requires adjusting for the covariate shift that exists between

treatment and control groups. Balancing neural networks (BNNs) (F. Johansson et al.,

2016) and counterfactual regression networks (CFRNET) (Shalit et al., 2017) are proposed

to balance covariate distributions across treatment and control groups by formulating the

problem of counterfactual inference as a domain adaptation problem and by enforcing domain

invariance with distributional distances such as Wasserstein distance and Maximum Mean

Discrepancy. A local similarity preserved individualized treatment effect (SITE) estimation

method (Yao et al., 2018) is proposed to use hard samples to learn representations that

preserve local similarity information and balance the data distributions. In (Y. Zhang et
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al., 2020), the authors argue that domain invariance is often too strict a requirement and

use counterfactual variance to measure the distributional overlap. In (A. M. Alaa & van

der Schaar, 2017), the covariate shift problem caused by selection bias is alleviated via a

risk-based empirical Bayes method by minimizing the empirical error in factual outcomes

and the uncertainty in counterfactual outcomes.

8.6 Summary

In this chapter, we propose the Informative and Domain-independent Representation Learn-

ing (IDRL) method for treatment effect estimation with observational data. IDRL offers a

new thought in probing into the covariate imbalance problem in causal inference. Circum-

venting the traditional strategy of enforcing balance between treatment and control groups,

IDRL leverages the mutual information to capture the common predictive information and

handle the selection bias, which has been verified by extensive experiments on multiple

benchmark datasets.
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Chapter 9

Conclusion

Most studies across many fields, such as statistics, computer science, public policy, and eco-

nomics, aim to solve causal rather than associative problems. Causal inference has been an

attractive research topic for a long time as it provides an effective way to uncover causal

relationships in real-world problems. The representative method is randomized controlled

trial where the assignment of treatment or control is random. Therefore, The only expected

difference between the treatment and control groups is the outcome variable being stud-

ied. A well-blinded randomized controlled trial is often considered the gold standard for

studying causal relationships. However, in reality, randomized controlled trials are always

time-consuming and expensive, and thus the study cannot involve many subjects, which may

be not representative of the real-world population a treatment/intervention would eventually

target. Another issue is that the randomized controlled trials only focus on the average of

samples, and it does not explain the mechanism or pertain for individual subjects. In ad-

dition, ethical issues also need to be considered in most of the randomized controlled trials,

which largely limits its applications. Therefore, instead of the randomized controlled trials,

the observational data is a tempting shortcut. Observational data is obtained by the re-

searcher simply observing the subjects without any interfering. That means, the researchers
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have no control over treatments and subjects, and they just observe the subjects and record

data based on their observations.

In this dissertation, we provide a comprehensive review of the methods under the well-

known potential outcome framework and propose several novel models to deal with the

challenges of the causal inference with observational data. Extensive experiment results

and theory analysis demonstrate the superiority of our methods while facing some causal

inference problems. Despite substantial progress in the area of causal inference with obser-

vational data, there are still many important problems to be solve. For example the causal

interpretation and explainability based on the deep learning models (Moraffah et al., 2020),

most of these models are like the black-boxes, so it is hard to understand how the decisions

are made in the models, which makes the models unreliable and untrustworthy. Besides, the

existing methods only focus on source-specific and stationary observational data (Z. Chu et

al., 2021). Such learning strategies assume that all observational data are already available

during the training phase and from the only one source. This assumption is unsubstantial

in practice due to two reasons. The first one is based on the characteristics of observational

data, which are incrementally available from non-stationary data distributions. The second

reason is based on the realistic consideration of accessibility, e.g., legacy data may be un-

recorded, proprietary, too large to store, or subject to privacy constraint (J. Zhang et al.,

2020). Therefore, how to solve the continual learning of causal inference is one open ques-

tion. In addition, unlike the traditional treatment effect defined on individual experimental

units, it maybe focuses on a group of units. For example, teachers may choose groups of

students who do not know each other to teach a new curriculum. This is called treatment

entanglement (Toulis et al., 2018). It is a special case where individual treatments depend

on a common population quantity and how to deal with this new problem is also challenging.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph

attention networks. arXiv preprint arXiv:1710.10903.

Wager, S., & Athey, S. (2018a). Estimation and inference of heterogeneous treatment ef-

fects using random forests. Journal of the American Statistical Association, 113 (523),

1228–1242. https://doi.org/10.1080/01621459.2017.1319839

Wager, S., & Athey, S. (2018b). Estimation and inference of heterogeneous treatment ef-

fects using random forests. Journal of the American Statistical Association, 113 (523),

1228–1242.

Wang, C., Parmigiani, G., & Dominici, F. (2012). Bayesian effect estimation accounting for

adjustment uncertainty. Biometrics, 68 (3), 661–671.

Wang, P., Sun, W., Yin, D., Yang, J., & Chang, Y. (2015). Robust tree-based causal inference

for complex ad effectiveness analysis. Proceedings of the Eighth ACM International

Conference on Web Search and Data Mining, 67–76.

Wang, Y., & Blei, D. M. (2019). The blessings of multiple causes. Journal of the American

Statistical Association, 114 (528), 1574–1596.

Welling, M. (2009). Herding dynamical weights to learn. Proceedings of the 26th Annual

International Conference on Machine Learning, 1121–1128.

Westreich, D., Lessler, J., & Funk, M. J. (2010). Propensity score estimation: Machine learn-

ing and classification methods as alternatives to logistic regression. Journal of clinical

epidemiology, 63 (8), 826.

WHOMaternalMortality. (2020). World health organization. maternal mortality 2020.

Wilson, A., & Reich, B. J. (2014). Confounder selection via penalized credible regions. Bio-

metrics, 70 (4), 852–861.

180

https://doi.org/10.1080/01621459.2017.1319839


Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., & Zhang, A. (2020). A survey on causal inference.

arXiv preprint arXiv:2002.02770.

Yao, L., Li, S., Li, Y., Huai, M., Gao, J., & Zhang, A. (2018). Representation learning for

treatment effect estimation from observational data. Advances in Neural Information

Processing Systems, 2633–2643.

Yao, L., Li, S., Li, Y., Huai, M., Gao, J., & Zhang, A. (2019). Ace: Adaptively similarity-

preserved representation learning for individual treatment effect estimation. 2019

IEEE International Conference on Data Mining, 1432–1437.

Yao, L., Li, S., Li, Y., Xue, H., Gao, J., & Zhang, A. (2019). On the estimation of treatment

effect with text covariates. Proceedings of the 28th International Joint Conference on

Artificial Intelligence, 4106–4113.

Yoon, J., Jordon, J., & van der Schaar, M. (2018). GANITE: estimation of individualized

treatment effects using generative adversarial nets. 6th International Conference on

Learning Representations.

Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression net-

work analysis. Statistical applications in genetics and molecular biology, 4 (1).

Zhang, J., Zhang, J., Ghosh, S., Li, D., Tasci, S., Heck, L., Zhang, H., & Kuo, C.-C. J.

(2020). Class-incremental learning via deep model consolidation. The IEEE Winter

Conference on Applications of Computer Vision, 1131–1140.

Zhang, Y., Bellot, A., & van der Schaar, M. (2020). Learning overlapping representations for

the estimation of individualized treatment effects. arXiv preprint arXiv:2001.04754.

Zhao, L., Hu, Q., & Wang, W. (2015). Heterogeneous feature selection with multi-modal deep

neural networks and sparse group lasso. IEEE Transactions on Multimedia, 17 (11),

1936–1948.

181



Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., & Xie, X. (2016). Co-occurrence

feature learning for skeleton based action recognition using regularized deep lstm

networks. Proceedings of the AAAI Conference on Artificial Intelligence, 30 (1).

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American sta-

tistical association, 101 (476), 1418–1429.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal

of the royal statistical society: series B (statistical methodology), 67 (2), 301–320.

182


	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Causal Inference with Observational Data.
	Causal Inference Approaches.
	Research Challenges of Causal Inference.
	The Organization of Dissertation.

	Background
	Definitions
	Assumptions

	Causal Inference Methods
	Re-weighting Methods
	Stratification Methods
	Matching Methods
	Tree-based Methods
	Representation Learning Methods

	Deep Adaptive Variable Selection Propensity Score
	Introduction
	Background
	Deep Adaptive Variable Selection Propensity Score
	Variable Selection Consistency of DAVSPS
	Simulation Study
	Racial disparities in severe maternal morbidity  based on National Inpatient Sample
	Summary

	Adversarial Learning for Estimating Treatment Effects in Basket Trials
	Introduction
	Related Work
	The Proposed Framework
	Experiments and Analysis
	Summary

	Graph Infomax Adversarial Learning for Treatment Effect Estimation with Networked Observational Data
	Introduction
	Background
	The Proposed Framework
	Experiments
	Related Work
	Summary

	Continual Lifelong Causal Effect Inference with Observational Data
	Introduction
	Background and Problem Statement
	The Proposed Framework
	Experiments
	Summary

	Learning Informative and Domain-Independent Representations for Causal Effect Inference
	Introduction
	Background
	Proposed Framework
	Experiments
	Related Work
	Summary

	Conclusion
	Bibliography

