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ABSTRACT 

 In this dissertation, we present three novel contributions, providing a new methodology, 

examining the proposed method's performances, and extensive the study in literature. The first 

paper of this dissertation focuses on  statistical methods for developing biomarkers that provide 

integration of reliable indicators of effectiveness for  guiding adjuvant chemotherapy treatment 

selection for cases utilizing the tumor's biological makeup. When we directly attempt to evaluate 

a biomarker’s performance without considering the influence of covariates on treatment 

assignment, the result can lead to inaccurate evaluation of biomarker performance. To minimize 

the influence of covariates on treatment, outcome, or both, that can produce bias, we have 

employed various causal inference methods in a lung cancer dataset. Chapter 3 aims to present the 

general framework for the treatment selection process in literature, consisting of the intersection 



of machine learning, causal inference, and biomarkers. We use parametric, and machine learning 

techniques to estimate propensity scores and then apply pair matching techniques that rely on these 

scores to adjust the existence of extraneous factors. Different associations between treatment or 

outcome and covariates are studied and assessed in terms of results in outcome models. After that, 

we use the results of parametric and machine learning methods to evaluate biomarkers that may 

be used to identify patients who will benefit from a specific treatment from observational data. In 

chapter 4, the positivity assumption, which states that the propensity score must be constrained 

away from 0 and 1, is a crucial criterion for inverse probability weighting estimation. However, 

when the positivity assumption is violated in propensity score distributions between treatment 

groups, some weights can be approximately 0 and 1. These weights led to uncertainty, bias and 

large variance in estimators. We study various techniques to eliminate poor overlap. We propose 

different levels of nonoverlap scenarios to examine the performance of balance weighting family 

and generalized propensity score matching across true propensity model and misspecified 

propensity score models in multiple treatment cases. We present results of different methods of 

variance estimation when estimating the causal effect. 
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CHAPTER 1 

Literature Review 

1.1   Introduction 

The thesis's purpose has been to work within the framework of causal inference and biomarker 

research to eliminate gaps in the literature in terms of theory and application. Two main parts 

included in this chapter will provide literature reviews. The first section introduces the history of 

randomized and non-randomized studies --the framework of potential outcomes, identifiability 

assumptions under a different types of treatment (i.e., binary, multiple, and continuous treatment 

scenarios) are offered. The cornerstone tool of causal inference is propensity score adjustment, 

which removes imbalance between treatment groups, which is reviewed in terms of its definition 

and estimation. While different methods have explored propensity score evaluation, the 

discussions of methods' pros and cons in literature are examined in this chapter. 

This chapter includes a literature review in which causal inference topics are presented. The 

first part of this chapter is motivated by causal inference in section 1.1, including a review of 

history in causal effect in section 1.2, an overview of the potential outcomes framework in section 

1.3, describing identifiability assumptions in section 1.4 , revising propensity score and its theory 

in section 1.5, implementation of propensity score estimation process based on the different 

methods in section 1.5.1, presentation of the type of propensity score methods (i.e., matching on 
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the propensity score, sub-classification, inverse probability of treatment and covariate adjustment) 

in section 1.6. 

 

1.2   Causal Inference in Observational Studies 

Biostatistics has been an important discipline that guides many researchers in many disciplines, 

such as epidemiology, health science, health economics,  pharmacy, and other fields. There is a 

great deal of statistical literature that has addressed various methodologies over the last century. 

Classic statistical analysis includes regression analysis, estimation of parameters, hypothesis 

testing and examining the asymptotic distribution of parameter estimates. Even though we can 

compute the probability of past and future events using such standard statistical analysis, classic 

statistical analysis may not provide estimates with a causal interpretation. In other words, 

researchers may desire to understand the causal relationships that are beyond the information 

present in the observed likelihood. Causal analysis is one crucial tool of many disciplines. The 

objective of causal analysis is not to only make inferences based on the probability of events, but 

also to examine causal relationships among variables of interest. Thus, Pearl (2010) revealed the 

difference between causation and association and Pearl’s framework shows how "correlation does 

not imply causation". There is a rich statistical literature in causal inference for both observational 

and randomized studies. Randomized experiments have been considered as the gold standard to 

make inferences about causal relationships. Randomized Controlled Trials (RCT) cannot be used 

in many instances because of being non-feasible, unethical, reasons of timeliness, and cost. Hence, 

observational data is an alternative to RCT’s for use in medical research. The observational study 

is sometimes called a non-randomized experiment or quasi-experimental in literature. 



 

3 

However,  there may be an imbalance between treatment groups due to lack of randomization in 

the observational study, and bias in the estimated treatment effect can be the result. 

Moreover, confounder variables can induce a relationship with treatment or outcome or 

both treatment and outcome. These difficulties in causal inference have led us to formulate 

different frameworks of potential outcomes in observational studies. Thus, the remarkable question 

arises as to how a covariate's characteristic influences other covariate's characteristics. I will 

consider the context of potential outcomes in observational experiments in Neyman(1923) and 

Rubin(1978) through this dissertation. 

 

1.3   A History of Causal Inference 

Scientists in the biomedical field aimed to predict causal effects of binary, continuous, or multiple 

treatments on an outcome. They have utilized observational or randomized control trial data to 

investigate causal effects. Different types of data sets (i.e., randomized and observational studies) 

can lead to varying results in terms of estimation of treatment effects. In medical science, 

observational experiments are frequently used to estimate the treatment impacts on the outcomes. 

Owing to the lack of random treatment assignment of subjects in observational experiments, there 

can be an existing differences between the two groups. As a result, these differences may create 

bias in estimates of the treatment effect. In this way, statistical methods are a needed to eliminate 

or reduce the effects of confounding variables. In literature, researchers have conducted many 

causal effect studies using observational data sets  (such as Cochran and Chambers,1965;  

Campbell and Stanley,1963,1966; Cochran,1965,1968; Cochran and Rubin,1973; 

Rubin,1970,1973a,1973b,1973c) and randomized experiments data sets (Fisher, 1935; Anscombe 

,1974; Kempthorne,1952,1955). The foundation of potential outcomes in the context of 
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randomized experiments, not in observational studies, was introduced by Neyman (1923). After 

Neyman's seminal works on the notation of potential outcomes, Fisher (1925) put forward the 

necessity of physical randomization in addition to Neyman's study to examine causal effects. 

However, there was no scientific development on potential outcomes for more than half a century, 

between 1923 and 1974. Rubin (1974) extended Neyman's(1923) idea that reinvented the 

framework's notation defining causal effects to examine potential outcomes in observational study 

settings.  

At the end of the 70’s, Rubin's work using observational datasets brought to forefront 

widespread methods to assess causal effects. Holland(1986) called it the Rubin-causal model in a 

series of papers that provided a general framework of potential outcomes in observational studies. 

Another approach that is alternative to potential outcomes: Directed acyclic graphs(DAGs), 

introduced by Judea Pearl(2012). DAG method offered the formulation of causal models that 

extract confounding from the estimates. 

 

1.4   Potential Outcome Framework 

Holland (1986) coined the term the Rubin Causal Model (RCM), which defines the causal 

inference framework based on article series (Rubin, 1976,1979,1980 and 1983). RCM focuses on 

two main objectives -- first modeling the 'potential outcome' to estimate causal effect and, 

secondly, defining ‘assignment mechanism' to approximate a designed experiment from observed 

data. We work with binary or dichotomous treatment in Chapter 2 and Chapter 3. So, we have two 

possible treatments arms, which we call treatment and control groups. We assume that a pair of 

potential outcomes denoted 𝑌𝑖(0) and 𝑌𝑖(1), represent outcomes on treated and untreated for an 
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individual 𝑖.  Difference between outcomes on treated and outcomes on untreated  express the 

treatment’s causal effect on individual 𝑖: 

∆𝑖= 𝑌𝑖(1) − 𝑌𝑖(0) 

Then, we  can propose the potential outcomes for observed one unit as :  

𝑌𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 − 𝑇𝑖)𝑌𝑖(0) 

where  is 𝑇 = 0 for control group vs  𝑇 = 1 for treatment group. Imbens (2004) specifies average 

treatment effect (ATE): 

𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] 

where treatment effect is known as 𝑌𝑖(1) − 𝑌𝑖(0).  Besides, average treatment effect among treated 

(ATT) is defined by 

𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑇 = 1] 

focusing on the subjects who received treatment as the target population. In RCT, there is no 

differences in covariates distribution between treatment and control arms because of 

randomization. Thus, ATE and ATT can be directly applied because their estimates are unbiased. 

We want to find an unbiased estimate of ATE , which will have mean 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]. Besides, 

if we assume an RCT: 

𝐸[𝑌|𝑇 = 1] = 𝐸[𝑇𝑌(1) + (1 − 𝑇)𝑌(0)|𝑇 = 1] = 

             𝐸[𝑇𝑌(1)|𝑇 = 1] + 𝐸[(1 − 𝑇)𝑌(0)|𝑇 = 1] = 𝐸[𝑌(1)|𝑇 = 1] = 𝐸[𝑌(1)]                   (1.1) 

In the same way, 

𝐸[𝑌|𝑇 = 0] = 𝐸[𝑇𝑌(1) + (1 − 𝑇)𝑌(0)|𝑇 = 0] = 

  𝐸[𝑇𝑌(1)|𝑇 = 0] + 𝐸[(1 − 𝑇)𝑌(0)|𝑇 = 0] = 𝐸[𝑌(0)|𝑇 = 0] = 𝐸[𝑌(0)]                            (1.2) 
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Equality (1.1) and (1.2) are valid if treatment assignments are independent of outcome: 

(𝑌(0), 𝑌(1)) ⊥ 𝑇 ), where ⊥ signifies statistical independence. Thus, we can rewrite mathematical 

notation for estimate of ATE without bias as in following: 

                                                          𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)]                            (1.3) 

However, treatment effects are systematically different for covariates between treatment groups in 

observational studies. In other terms, treatment exposure T may not be independent of potential 

outcomes (i.e., 𝑌𝑖(1) 𝑎𝑛𝑑 𝑌𝑖(0) ). Hence, covariate characteristics can be associated with exposure 

or outcome, or  both of these. So,  Equality (1.3)  does not hold in observational studies  which can 

produce bias in estimates of because 𝐸[𝑌|𝑇 = 1] ≠  𝐸[𝑌(1)] or 𝐸[𝑌|𝑇 = 0] ≠  𝐸[𝑌(0)].     

 

1.5   Assumptions 

Two assumptions that allow appropriate causal inference were recommended by Rubin and 

Rosenbaum (1983): strong ignorable treatment assignment (SITA) and stable unit treatment value 

assumptions (SUTVA). Hernan and Robins (2018) state that SUTVA is known as consistency. 

The first principal assumption in the estimation of a causal effect is stable unit treatment value 

condition (SUTVA) (Rubin,1978,1980,1990a,1990b) that includes: i-) no interaction between 

subjects ii-) interference among subjects is unavailable. Thus, SUTVA stipulates that we can 

observe only one version of the outcome under each treatment case. In other terms, the potential 

outcome has consistently occurred for each subject when the treatment assignment is fixed. The 

nonexistence of interference also means that this treatment did not affect another subject's outcome 

when we applied it to one subject. Moreover, "no interaction between subjects" means no hidden 

variations of treatment, so the outcome is properly described.  
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SUTVA led to denoting the observed outcome for unit i as 𝑌𝑖(𝑇),where treatment T is 

defined with control group (T=0) and treatment group (T=1) under binary treatment. This 

assumption alludes that we express the observed outcome as 𝑌𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 −

𝑇𝑖)𝑌𝑖(0).However, If assumption of SUTVA is infringed, it produces inconsistent causal effect 

estimates. In other phrases, we do not receive a unique potential outcome of each subject under 

each treatment status. The major cause of this circumstance emerges when the "treatment variant" 

is present. Often, discrepancies of treatment assessments and uncertainties in the treatments 

received have led to the emergence of various treatment variants. The second assumption of 

estimates of causal effect is exchangeability that claimed that treatment and outcomes, given 

variables, are independent. The exchangeability condition is known as unconfoundedness. We can 

claim this assumption : 

𝑌𝑖(1), 𝑌𝑖(0)  ⊥ 𝑇𝑖|𝑋𝑖 

The second is the principal assumption of positivity means that every unit in the sample of interest 

is capable of being assigned to all treatment levels. The positivity is sometimes called an overlap 

assumption in the literature. This assumption is written in mathematical notation as follows: 

0 < 𝑃(𝑇𝑖 = 1|𝑋𝑖) < 1 

which stipulates that each subject has a nonzero probability of obtaining treatment. Also, 𝑃(𝑇𝑖 =

1|𝑋𝑖) is referred to propensity score (i.e., 𝑒𝑖) in next sections. 

If strong ignorability assumption is met, it means that we can measure all confounders and 

then estimate the unbiased treatment effect. Moreover, this implies that overlap between treatment 

and control groups is encountered at least. Unfortunately, this assumption can be frequently 

violated, i.e. treatment or covariates can be effected by covariates’ characteristics, because we 
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cannot sometimes control the impact between exposure and covariates or outcome and covariates 

in non-randomized studies.  

 

1.6   Overview of Propensity Score 

Under the identifiability conditions, the exchangeability assumption might not be true given the 

absence of randomization in observational studies. Causal estimation based on a direct comparison 

of outcomes may be deceptive. In other words, there could be substantial variations between the 

observed covariates in the two groups, and these differences also may bias estimates of treatment 

effects. Rosenbaum and Rubin's seminal paper defines the propensity score in 1983 as the 

probability of treatment assignment conditional on observed baseline covariates. In the two groups, 

the propensity score can be utilized to balance the variables and thereby decrease this bias in 

observational research in many areas. In particular, the applications discussed in articles have come 

from a range of areas, including epidemiology, research in medical care, biostatistics, economics, 

and social sciences. There are different processes to estimate propensity scores based on binary, 

multiple, continuous, and ordinal treatments. Binary treatment denoted as 𝑇𝑖(e.g., 𝑇𝑖=1 if 

individual 𝑖 is in treated condition versus 𝑇𝑖=0 if the individual 𝑖 is in the untreated condition ) for 

individual 𝑖, where specify index  for number of units, 𝑖 =1,2,…, n and also, 𝑋𝑖 represent observed 

covariates: 

𝑒𝑖 = 𝑒(𝑋𝑖) = 𝑃(𝑇𝑖 = 1|𝑋𝑖) 

where we assume  

𝑝𝑟(𝑇1 = 𝑡1, … , 𝑇𝑁 = 𝑡𝑁|𝑋1 = 𝑥1 , … , 𝑋𝑁 = 𝑥𝑁) =∏𝑒(𝑥𝑖)
𝑡𝑖

𝑁

𝑖=1

{1 − 𝑒(𝑥𝑖)}
1−𝑡𝑖 
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The  remarkable article of Rosenbaum and Rubin summarized propensity score with five 

fundamental theorems as follows : 

1. Propensity score is known as a balancing score. 

2. Any score, which is better than propensity score, is a balancing score. Thus, observed covariates 

can be "best" balancing score and propensity score is referred as " coarsest". 

3. The treatment assessment is strongly ignored if presented x, then it is strongly ignored provided 

any balancing score. 

4.The discrepancy between treatment group at every value of the balancing score is an unbiased 

estimation of the mean treatment effect at that value of the balancing score if the treatment 

assignment is strongly ignorable. 

5.Sample balance on observed covariates can be generated by using sample estimates of balancing 

scores. 

 

1.6.1 Estimating Propensity Score 

The propensity score can be employed in both randomized trials and observational research. Even 

though the true propensity score is typically established in randomized experiments and is 

determined by the study's design, the probability e(X) is unknown outside of randomized 

experiments and must be estimated using the study's data. Given the estimated propensity score, a 

significant part of the propensity score analysis is to verify whether pretreatment regressors have 

been balanced. Suppose we desire to use the method in the context of a binary treatment variable. 

In that case, the most common and traditional approach to obtain propensity scores is logistic 

regression, in which a parametric model is suggested. Let the binary treatment assignment be 𝑇𝑖  

(e.g. particular treatment 𝑇𝑖 =1 versus nontreatment 𝑇𝑖 =0 ), consider a collection of p independent 
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covariates described by 𝑋′ = (𝑋1, 𝑋2, … , 𝑋𝑝), and the vector of unknown parameters  of interest 

be 𝛽.  So, propensity score is defined as  

𝑃𝑟(𝑇𝑖 = 1 | 𝑋𝑖 , 𝛽) = 𝑒(𝑋𝑖)=𝑒𝑖 

The conditional likelihood of receiving treatment relies on using logistic regression can be 

expressed as: 

𝑃𝑟(𝑇𝑖 = 1 | 𝑋𝑖 , 𝛽) = 𝑒(𝑋𝑖) =
𝑒𝑥𝑝(𝑋𝑖

𝑇𝛽)

1 + 𝑒𝑥𝑝(𝑋𝑖
𝑇𝛽)

 

Generalized linear model is described by using logit function. We can make transformation 

covariates variable through the logit function to obtain a linear function of 𝑋: 

𝑙𝑜𝑔𝑒 (
𝑃

1 − 𝑃
) = 𝑋𝑖

𝑇𝛽 

where 𝑃 represents 𝑃(𝑇𝑖 = 1). 

Moreover, Covariate Balance Propensity Score(CBPS) has been another alternative  

parametric model to estimate the probability of treatment given observed variables. Unlike the 

well-known approach logistic regression, more advanced strategies have been adopted to eliminate 

the conflict of potential model misrepresentation in the parametric model, such as bagging, 

boosting, random forests, recursive partition regression trees, neural networks, and bayesian 

additive regression tree (BART). Generalized boosted model, established by McCaffrey et al. 

(2004), has been a popular method in machine learning and nonparametric techniques when 

population studies have contained a large number of covariates to estimate treatment effects. GBM 

is an iterative algorithm that relies on generating the number of trees using tuning parameters to 

estimate treatment effects from many covariates. Another common machine learning method is 

bagged (or bootstrap aggregated) CART that uses the original sample to match a CART to a 

bootstrap sample to replace it and repeat it multiple times(Breiman, 1996). Although random forest 



 

11 

and bagged CART (Classification And Regression Tree) resemble to resemble the context of the 

application process, the random forest method considers subgroups of predictors in every CART 

structure (Breiman, 1996).BART represents a Bayesian approach utilizing the sum of regression 

trees to predict a nonparametric function (Chipman,2010). 

The most widespread way to estimate PS values is logistic regression, even though there is 

increased interest in multiple treatments, especially in health science. Imbens (2000) suggested the 

extension of causal effects based on the binary case to multiple (more than two) treatment arms. 

The framework of identifiability assumptions (especially exchangeability and positivity 

assumptions) to estimate causal effect is expanded for multiple treatments. Also, propensity score 

can be estimated using different methods, such as boosted regression, CART, and random forest 

in multiple treatment cases. 

PS models depend on a model of exposure or treatment, unlike traditional statistical 

approaches that focus on a model of the outcome under examination. A critical point confronting 

scientists utilizing PS techniques is how to choose the parameters to be employed in the PS model. 

Theoretically, the model specification would be directed by the subject matter experience, such as 

a thorough understanding of how patients are referred to a given procedure. Imbens and 

Rubin(2015) discussed how to choose the covariates and interactions. They said that in many 

empirical studies, the number of variates is large relative to the number of units. As a result, it is 

not always feasible to include all covariates in a propensity score model. Moreover, it may not be 

sufficient for some of the most critical covariates to include them only linearly. We may wish to 

have functions, such as logarithms, and higher-order terms, such as quadratic terms, or interactions 

between the primary covariates. Here we describe a stepwise procedure for selecting the covariates 

and higher-order terms for inclusion in the propensity score. Thus, Imbens and Rubin(2015) follow 
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a stepwise process with three stages: primary covariates, additional linear/quadratic terms, and 

interaction terms. 

The next phase of analysis often involves some control participants' methods based on the 

estimated propensity scores after we estimated the propensity score. Four propensity score 

methods have been expressed and applied in the next section: propensity score matching, sub-

classification, covariate adjustment, and inverse probability of treatment weight. In other words, 

those propensity score methods would be critical analysis techniques to remove imbalances 

between the groups and for removing confounding between the treatment effect and other covariate 

effects. 

 

1.7   Propensity Score Methods 

Researchers have developed several propensity score-founded approaches for treatment effect 

measurement in many fields over the past three decades. The most preferred and well-known 

technique in propensity score analysis is matching. The purpose of the PS matching technique is 

to create a new sample of individuals with similar propensity score values or covariates values for 

treatment and control groups. Then the unmatched individuals are excluded from the 

sample(Rosenbaum & Rubin, 1980). Hence, the PS matching process basically may not use all of 

the data. The implementation of PS matching has included a variety of approaches, including the 

following. 

Pair Matching: In literature, the most preferred propensity score matching methods are 

"pair matching " or "1:1 matching," consisting of couples of treated and untreated subjects. There 

are similar propensity scores for treatment and control participants in the matched pairs (Rubin 

and Thomas,1996; Austin,2011). Other less preferred alternative methods than 1:1 matching are 
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many-to-one (M:1) based on the propensity score.  M:1 matching on the propensity score method 

indicates that a treatment subject matched control subjects. Also, M represents a number greater 

than one (Austin and Elizabeth,2014). 

Mahalanobis matching: Even though pair propensity matching has been frequently used, 

the Mahalanobis metric matching technique was discovered prior to that (Cochran and 

Rubin,1973; Rubin,1976(a), Rubin,1980). We randomly ordered individuals and then calculate the 

distance between the first treatment individual and all untreated. After selecting the minimum 

distance value as a match for the treated individual, a pair of subjects is discarded from the potential 

matching set. This process is repeated until all treated individuals are matched. Also, the distance 

is expressed as  

𝑑(𝑖, 𝑗) = (𝑥 − 𝑦)𝑇 ∑−1 (𝑥 − 𝑦) 

where covariate values x and y for treated individual i and untreated individual j. The sample 

covariance matrix Σ specifies the matching variables from sets of the treated group and untreated 

population individuals. There are some drawbacks to using Mahalanobis metric matching. This 

method is based on the high-dimensional score, making it difficult when the model contains many 

covariates (Guo and Fraser,2015). 

Nearest Neighbor Matching: A treatment unit is chosen, and then the control unit with the 

propensity score that is nearest to the treatment unit is picked as a matched control unit(Austin and 

Schuster,2016). If many control participants have propensity scores comparable to the treatment 

participants, we randomly prefer one of the control participants. The most important point in this 

method is that there is no use of any maximum threshold value between matches participants' 

propensity score values(Rosenbaum et al.,1985). 
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Caliper Matching: Caliper matching and NN matching techniques are identical methods in 

terms of implementation (Cochran and Rubin, 1973). This technique stipulates that the absolute 

difference between matched participants' propensity scores must be less than a certain threshold. 

A researcher has preferred different pre-determined thresholds in literature; for example, used 0.20 

threshold (Austin,2011,2012) and 0.25 threshold (Rosenbaum and Rubin,1985) for standard 

deviation on the propensity score. 

Optimal Matching: Optimal matching aims to construct matched pairs with the smallest 

average between the difference in propensity scores. An advantage of optimal matching is that the 

implementation of the network flow principle to improve matching. Austin(2014) indicates that 

NNM and optimal matching have been more biased than caliper matching. Moreover, caliper 

matching is preferable to the other two methods because optimal matching was discovered late 

compared to greedy matching techniques.  

The combination of the caliper and nearest-neighbor matching led to creating new 

techniques:  Nearest neighbor matching within a caliper starts by ordering the treatment and 

control participants and then select first treatment participant i and provide the control participant 

j as matched for ith participant; after that, one selects the minimum absolute difference between i 

and j participants within prespecified caliper value.  So, one discards i and js participants from the 

sample considered for matching. As indicated before, the caliper threshold is decided by 

researchers. The nearest available Mahalanobis metric matching within calipers specified by the 

propensity scores is produced by modifying nearest neighbor matching within a caliper(Guo and 

Fraser, 2015). 

The central idea of employing sub-classification to balance data was developed by Cochran 

(1968) and formulated even before the development of propensity score analysis. However, exact 
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sub-classification suffers from the same dimensionality problem as matching.  Cochran states that 

the number of subclasses grows exponentially when variables numbers are increased. According 

to Cochran, as the count of variables grows, the number of subclasses or strata rises exponentially, 

i.e., we would have 2𝑠 subclasses for s covariates when binary variables in the population are 

considered. For some subclasses, which include only units from the treatment group, estimating a 

treatment effect is difficult. Besides, Cochran employed stratification on the quintiles of a 

continuous variable, and then removing almost ninety percent of  the bias due to imbalance 

between treatment and control groups. Even though Rosenbaum et al. and Cochran agreed on 

removing bias at 90 percent using the confounding variables between treated and untreated groups, 

the study of Rosenbaum et al. applied stratification based on propensity score values. If the  

propensity score is estimated correctly based on the model in observational studies, the distribution 

of variables within the same strata will be similar. Then,  between treated and untreated subjects 

in the same strata there would not be bias in comparisons (Cochran,1968; Rosenbaum and 

Rubin,1983,1984; Imbens and Rubin,2015; Guo and Fraser 2015).  A remarkable number of 

studies on sub-classification methods have been conducted in literature (such as Hullsiek and 

Louis,2002; D'agostino,1998;Rubin1983,2007; Rosenbaum,1991; Austin and Mamdani,2005; 

Austin,2007,2012;  Austin and Schuster,2016). 

IPTW aims to obtain a weighted population, which has a similar distribution of observed 

baseline covariates between treatment and control individuals, to remove imbalance between two 

groups (or more than two groups).  In a paper published in the field of surveys, the concept of 

probability score weighting was originally suggested by Horvitz and Thompson (1952); the paper 

focused on sample averages and their method is commonly used in the weighted regression. In  

1987(a), Rosenbaum recommended the inverse probability of treatment weighting, rely on the 
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model direct optimization. Although researchers have published many papers about matching on 

propensity score because it is the oldest propensity score techniques, IPTW method has been more 

attractive in many fields in recent years compared to matching, sub-classification, and covariate 

adjustment (see Xie and Liu,2005; Lee et al.,2009; Shen et al.,2011; Austin,2011; Li et al.,2013; 

Austin and Stuart,2015). One of the most important purposes of the weighting is that no sacrifice 

in the data set matching is required, such as a trimming step. 

The last propensity score approach is covariate adjustment using a propensity score that 

estimates linear treatment effects for continuous outcomes. The outcome on two covariates is 

regressed: estimated propensity score and indicator covariate for treatment case. The selection of 

model would is chosen according to a state of the outcome variable, i.e., we could select logistic 

regression for binary(or dichotomous) treatment, or linear model could be preferred for a 

continuous outcome. 
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CHAPTER 2 

Evaluation a Biomarker for Treatment Selection   

in Observational Study 

 

2.1 Introduction 

Globally, growing income disparities have been followed by rising inequality in health outcomes. 

Dickman et al. (2017) states that the wealthiest Americans have a 10-to-15 year longer life 

expectancy  because of receiving better health care than poorer Americans. The rising health needs 

have led people to buy more health insurance. However, growing premiums and burden sharing 

also stifled income growth for those with private health insurance driving more households into 

debt; and, for patients who do not hold insurance, bankruptcy can result from medical expenses. 

According to the WHO1 (2020), cancer has been registered as the sixth of the top 10 causes of 

death. Cancer is seen as a significant world public health problem because of the high mortality 

and morbidity rates in the world (Favoriti et al., 2010), with about nearly 10 million deaths in 2020, 

and 70 % of these deaths occurring in low and middle-income countries. Cancer is a remarkable 

 
1 https://www.who.int/health-topics/cancer 
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disease that grows uncontrollably in any tissue or organ of the body and invades nearby in the 

body to other organs(WHO) .It has been observed that smoking, lifestyle disorders, unhealthy diet, 

alcohol use, air pollution, and late age at first births in women increase the risk of cancer in middle 

or less developed countries (Torre et al., 2012), which are least prepared to handle the cancer 

burden. According to WHO's report in 2020, lung (1.8 million deaths,18 % of total), colorectum 

and rectum (935 000 deaths,9.3%), and liver (830 000 deaths, 8.3%) are recognized as the most 

common cancer types worldwide, as seen in the below table. Fortunately, biotechnology, 

chemistry, and software accumulate resources to reduce the disease's side effects and decrease 

death rates (Pothur,2002).  

Precision medicine has progressed due to improvements in our knowledge of disease 

molecular biology and treatment response pathways, as well as raised patient genetic profiling 

capabilities. The identification and clarification of treatment selection markers is one part of such 

personalized care (Janes,2011). It is thus critical to recognize and evaluate signs capable of guiding 

clinical decisions in order to prevent specific types of events(e.g., disease development, recurrence, 

or mortality) within a given post-treatment period(Blangero et al.,2019). Thus, biomarkers have 

taken an essential place in the medical field. Biomarkers can ensure the integration of a reliable 

indicator of effectiveness for a particular mechanism-depending on medication, or guide treatment 

selection for each case relying on the tumor's biological makeup and the patient's genotype. But, 

owing to the variety of biomarker evaluation techniques, the accessibility of collecting samples, 

the efficacy and reproducibility of the trial, and the increased expenses associated with evaluating 

the marker status on each patient, the confirmation of biomarkers by clinical testing, leading to 

effective utilization of the biomarker in clinical settings, remains a significant obstacle (Mandrekar 

and Sargent,2009; Dobbin et al., 2016; Mandrekar et al.,2015). Blangero et al. (2019) state that 
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when comparing the success of two treatments (advanced vs. standard), such markers are supposed 

to maximize clinical outcomes by recognizing people who will improve the most from the 

advanced intervention and eliminating those who will not.  

The terms "prognostic" and "predictive" have been utilized to describe markers of diverse 

components. Simon(2010)  made clear the difference between markers.  A prognostic marker is a 

measurement that is linked to a patient's health outcome in the absence of treatment or with the 

use of a conventional medication that they are expected to undergo.  A predictive markers is a 

measurement that is related to the response or absence of response to treatment. However, we will 

not examine the prognostics-type biomarkers in this study. Besides, there is no agreement about 

how to name such a marker, which are called "treatment selection", "prescriptive," and "predictive" 

in literature (Holly et al.,2014). One of the best examples of treatment selection in the medical 

field is KRAS gene expression in colorectal cancer. Patients who do not have KRAS variants have 

illustrated better anti-epidermal growth factor receptor therapy performance than patients who 

have KRAS mutations. As a result, the expression of KRAS can be used to influence treatment 

selection. The US Food and Drug Administration has updated the labeling of two EGFR inhibitors, 

which are cetuximab and panitumumab, to state that they are not eligible for colorectal cancer 

treatment in patients with KRAS mutations in codon 12 or 13. It indicates that some markers 

related to treatment selection and require effective methods to measure how well they do. At the 

same time, KRAS mutation illustrates a strong association with treatment selection.  

There are many different perspectives in the literature to evaluate treatment selection 

markers. Some papers studied descriptive analysis for treatment effect modeling(Cai et al.,2011; 

Claggett et al.,2011; Zhao et al.,2013); meanwhile, other articles focused on assessing individual 

measures for markers (Song and Pepe,2004; Vickers et al.,2007; Janes et al.,2011).The current 
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popular method of biomarker assessment in the health literature has been utilized for statistical 

interaction between the marker and treatment variables in randomized control trials ( Sargent et 

al., 2005; Simon, 2008; Huang et al.,2012). Janes et al.(2011) emphasize that interaction terms 

between treatment and biomarker based on the model might lead to inaccurate evaluations of 

markers performance as well as assessments that might not be scientifically helpful. The 

measurement metric known as (Θ) is globally utilized to determine the performance measure of 

the marker(Bonetti and Gelber,2004; Song and Pepe,2004; Cai et al., 2011.; Janes et al., 2014b; 

Janes et al., 2015). These studies were led by using data from randomized and controlled trials. 

However, the researchers can find themselves in a challenging situation because of a number of 

studies of biomarkers that use observational study data. 

We aim to recommend a suitable method by designing and testing a treatment selection process 

based on data obtained from non-randomized trial settings where the subject's characteristics may 

influence treatment, outcomes, or both. So, we look at how treatment selection is evaluated in 

situations that raise some specific questions, such as: 

1. This research's target question is whether causal inference adjustment is necessary to 

evaluate biomarker performance in lung cancer. 

2. What type of causal inference techniques should we choose to eliminate bias on covariate 

characteristics and then assess the biomarker's performance?   

3. Which features may affect treatment assignment and therefore need to be taken into 

account as confounders?. 

4. Is there any remarkable difference between whether or not using causal inference for 

implementation of treatment selection?. 
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We emphasize developing and assessing treatment selection in cancer datasets, and questions 

that have not previously been studied in the literature. So we discuss the paper's unique 

contributions. 

The remainder of the article is structured as follows. We present comprehensive data 

information on our motivation data in Section 2.2. We construct a statistical framework for causal 

inference and treatment selection in cancer biomarker from non-randomized settings in Section 

2.3.  We have developed our assumptions based on existing literature techniques while creating 

the framework of methodology part in Section 2.4. Then, we implement the methods on lung 

cancer experiments with adjuvant chemotherapy treatment in Section 2.5.  Finally, we end with a 

discussion of our conclusions and potential future study subjects in Section 2.6. 

 

2.2   Motivational Context 

We demonstrate our approaches in the lung cancer treatment context. Patients with lung cancer are 

treated with or without adjuvant chemotherapy following the cancer surgery. A limited proportion 

of patients receive benefit from adjuvant chemotherapy. In contrast, the rest of the patients endure 

chemotherapy' toxic side effects, not to mention the stress and expenditure of unnecessary 

treatment. So, the top priority of public health is to define biomarkers that can be used to determine 

whether or not patients benefit from this specific chemotherapy. 

As data were obtained from an observational study, we use it to illustrate the methods in 

this section for studying the effect of exposure variable (chemotherapy) on lung cancer outcomes 

in non-randomized setting.  The data contains  N=505 patients, and research records whether or 

not patients received adjuvant chemotherapy treatment. Then the researchers collected clinical 

variable and outcomes data on each patient. After some of the missing responses for the adjuvant 
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chemotherapy and other variables were cleaned, 350 individuals remained, 𝑁𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 94 men 

and women had been exposed to adjuvant chemotherapy; meanwhile, the comparison group 

consisted of 𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 256 individuals from the same cohort who were not exposed to adjuvant 

chemotherapy.   The data set involves twenty-seven covariates, although many covariates did not 

relate to the adjuvant chemotherapy variable in the sense of lung cancer. Then, ten 

covariates remained, including: “gender”  based on the sex of a patient , “race” which identifies 

the racial origination, “adjuvant RT” which presents yes/no indicator for whether the patient had 

adjuvant radiation therapy as part of the primary treatment plan, “Smoking history” variable 

represents that the smoking history of a patient, “pathologic n stage” illustrates pathologic 

N(nodal) stage of lung cancer, using the AJCC TNM system of numbered categories for 

representation of data, “site”  from which patient sample came and at which the microarray assay 

was performed, “age at diagnosis”  is that age at which condition or disease was diagnosed, 

“surgical margins” represents the degree of cancer involvement of the surgical margins, 

“pathologic t stage” is that code for pathologic T(tumor) stage of lung cancer and using  the AJCC 

TNM system of numbered categories for representation of the data and “histological grade” 

represents histologic grade. The lung cancer data set contains the total of 350 patients that were 

measured for the expression of 22500 biomarkers. The flow chart of lung cancer is taken place as 

follows in Figure-2.1. 
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Figure 2.1:  Lung cancer data flow  

 

 

2.3   Methods 

2.3.1   Conceptual Framework of Treatment Effect 

In the Rubin Causal Model (RCM), causal effects are described using three fundamental 

principles: supposed n observations (𝑇, 𝑋, 𝑌 ). We denote 𝑇 as observed treatment under the binary 

case circumstances (T=1 if treatment and T=0 if control) and let X signify a vector of observed 

covariates. Also, let Y be a binary outcome variable. We propose two alternative treatments and 

outcomes in the future consequences setting. Let 𝑖 specify the number of units, 𝑖=1,2,3…,n. Each 

individual has two possible outcomes: 𝑌𝑖(0) and 𝑌𝑖(1)  for treated and untreated outcomes, 

respectively. So, an outcome is written as: 𝑌𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 − 𝑇𝑖)𝑌𝑖(0).  There are two ways to 

estimate treatment effects in causal inference: the first is average treatment effect(ATE) that is 

defined to be 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)].  The second measure of treatment effect is the average treatment 
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effect for the treated (ATT) that is defined to be 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑇 = 1](Rubin,2008; Imai and 

Ratkovic, 2013). 

 

2.3.2   Propensity Score 

Rosenbaum and Rubin (1983) defined the propensity score as the estimated probability of each 

patient getting treatment based on the patient’s variables:𝑒𝑖 = 𝑒(𝑋𝑖) = 𝑃(𝑇𝑖 = 1|𝑋𝑖).  Using 

propensity scores is different between randomized and observational studies, even though 

propensity scores can be applied in both settings. Because we know the true propensity score value 

in randomized studies (at least if randomization and blinding are perfect), however, it is not always 

needed; but in observational studies we don’t know the true propensity score and therefore must 

estimate propensity score from the fitted logistic regression model using the data set. The second 

significant difference between those studies is whether all covariates related to treatment (𝑇𝑖) or 

outcome (𝑌𝑖) are present in the collected data set.  

We do not know the true propensity score in observational studies, and so we estimate 

propensity score using data. An adequate examination of the propensity score has been highly 

critical in observational studies. Use of the standardized difference can be beneficial to compare 

binary and continuous variables between control and treatment groups. Besides, Austin (2009e) 

proposed using a set of binary variables to demonstrate a standardized difference for multilevel 

categorical variables. Austin (2011) define the standardized difference for continuous variable: 

𝑑 =
(𝑥̅𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−𝑥̅𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

√𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡+ 
2 𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2

2
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where the sample means of covariates in treatment and control subjects are denoted as 𝑥̅𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 

and 𝑥̅𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and while let 𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡      
2 and 𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2 are sample variance of treatment and control 

subjects, respectively. 

Standardized difference for dichotomous variable is defined as: 

𝑑 =
(𝑝̂𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝑝̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

√𝑝̂𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(1 − 𝑝̂𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) + 𝑝̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙(1 − 𝑝̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
2

 

where prevalence or means of dichotomous variables are denoted in treatment and control subject 

as 𝑝̂𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡   and 𝑝̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙  ,respectively. Besides, the sample size does not influence the 

standardized difference, and it is also used to compare the balance of variables measured between 

groups. In the literature, the researchers do not agree upon specific criteria to determine the 

standardized mean difference threshold. However, Normand et al.(2001) suggest that the 

imbalance may not be important if the standard mean value is less than 0.1. 

 

2.3.3   Related Work in Literature 

In 1983, Rosenbaum and Rubin published a seminal paper on propensity score analysis. That paper 

articulated the theory and application principles for a variety of propensity score models. Ever 

since this work, the propensity score method has grown rapidly and moved in various directions. 

Before we start to look over these propensity techniques, we should emphasize the need to assess 

balance of the covariates.  Rubin and Imbens in 2015 state that such a lack of covariate balance 

creates two problems. Firstly, it might lead to sensitivity in subsequent inferences where small 

changes in methods are made and produce large variation. Secondly, it is difficult to obtain an 

accurate estimate of treatment effects in the limited number of control or treatment groups in 

covariates. So, propensity score methods are highly critical analysis techniques to remove 
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imbalances between the groups and help remove confounding between the treatment effect and 

other covariate effects. Many research fields such as statistics, economics, education, 

epidemiology, medical care have been focused on the propensity score to achieve balance between 

distributions of treated and untreated groups.  The propensity score method is examined under the 

four main techniques: propensity score matching, the propensity score stratification, covariate 

adjustment using the propensity score, and inverse probability of treatment weighting (IPTW). 

In the past decades, many articles have studied propensity score methods through matching 

(e.g. Cochran and Rubin,1973; Rosenbaum and Rubin ,1985; D’Agostino ,1998;Heckman et. al 

,1998; Dehejia et al.,2002; Stuart,2010; Subroto et al.,2010), sub-classification on propensity score 

(Cochran ,1968; Rosenbaum and Rubin,1984; Lunceford and Davidian,2004), covariate 

adjustment on propensity score(Speroff,1996; Austin,2011), and inverse probability of treatment 

weighting (IPTW)(Rosenbaum and Rubin,1983; Rosenbaum,1987; Hirano and Imbens ,2001; 

McCaffrey et al.,2004 and Austin,2015). These four main propensity score methods have aimed 

to eliminate bias in estimates of the treatment effect between treatment and control groups and 

achieve overlap of covariates distributions. In other words, assumptions of unconfoundedness and 

overlap of distribution are key point to estimate causal effects. Besides, there are notable studies 

that look at limitations of overlap in covariates among groups (Dehajia and Wahba ,1999; King 

and Zeng,2005;Crump et al. ,2009). If propensity score values are close or equal to zero or one, 

these extreme values can cause bias in estimates of causal effects. Thus, it is essential to reduce 

the impact of extreme values through the trimming method. In literature, there are limited number 

of studies of trimming methods (see Crump et al. 2009; Sturmer et al. ,2010; Lee et all. ,2011; 

Rothman ,2018).  
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2.3.4    Propensity Score Trimming 

A crucial purpose of applied statistical methods is to understand the causal relationship between 

treatment and outcome. In studies where treatment assignments are assigned randomly(and 

perfectly blinded with 100% compliance), the researcher can directly apply to estimate causal 

effects under the unconfoundedness assumptions. We desire to assess the covariate balance and 

provide that any propensity methods lead to comparable in terms of the assessed covariates. 

However, observational studies have violated this assumption due to an absence of randomization. 

In other words, covariates' characteristics can influence the treatment, outcome, or both. So, 

different distributions between treatment and control groups in covariates can produce the limited 

overlap issue. We stated that propensity score has some assumptions such as SUTVA, positivity, 

or exchangeability (see details in chapter 1 of this thesis) to infer appropriate causality. One 

assumption is the positivity assumption that looked at PS distributions' overlap between treated 

and untreated groups. Suppose there is limited overlap between treatment groups. In that case, it 

means that the absence of overlap may indicate a failure of the positivity principle, which could 

lead to propensity scores very near to zero or one. We employ matching, sub-classification, 

weighting, or covariate adjustment to eliminate bias between treatment groups. But few samples 

of extreme values are present, and estimators may be overly skewed, resulting in biased and 

unstable performance. Unfortunately, estimators of propensity score methods might be extremely 

affected by some covariates and cause biased and inconsistent results. Another technique has been 

recommended to address this problem intrinsic to estimators of propensity score techniques: the 

trimming method. Unluckily, researchers have rarely been concerned with utilizing propensity 

score trimming to estimate causal effects in the literature. A number of approaches have been 
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advanced for determining the trimming method that has helped the overlap between treatment 

groups. Individuals whose propensity score values drop below the limit of propensity score values 

in the subpopulation with the opposing treatment are often excluded. 

 All trimming methods aim to identify a sample population that is as inclusive as possible 

but still has adequate overlap that extrapolation is redundant and the overall treatment effect can 

be accurately measured. Even though all researchers, who studied the trimming method, aim to 

thrive a systematic approach to target the absence of overlap in covariate distributions between 

treated and untreated groups, the implementation of all trimming techniques has employed 

different processes. Stürmer et al.(2010) proposed an asymmetric trimming method that relies on 

the distribution of propensity score values in two treatment groups. The bound of threshold on 

propensity scores to employ trimming method is determined based on the treatment and control 

groups, separately. Stürmer et al.(2010) defined the trimming method as follows:  

𝐼 = {𝑖 ∈ 𝐼 ∶ 𝑒𝑖 ∈ [𝐹𝑒𝑖|𝑇𝑖
−1 (𝛼|1), 𝐹𝑒𝑖|𝑇𝑖

−1 (1 − 𝛼|0)]} 

Thus, 100*q th percentile of the propensity score in the treatment arm represents for lower bound 

of the trimming method (L). Besides, 100*(1-q) th percentile of the propensity score in control 

arm indicates upper bound (U). After the bounds [L,U]] are established, outside bound propensity 

score values are removed from the treatment and control groups' data sample. Another trimming 

method is suggested by Walker that recommended a technique for measuring covariate overlap 

that also acts as a trimming tool. Walker et al.(2013) suggested a technique for assessing covariate 

overlap that also acts as a trimming tool. 

The last trimming method, which is utilized throughout this paper, is recommended by 

Crump et al. (2009). This study aims employ this method in some circumstances, such as extreme 
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propensity score values, a large variance, poor finite sample properties, or bias. Thus, the 

propensity score trimming intervenes to ensure balance in distribution between two groups by 

excluding close to 0 and 1 values. Computing the asymptotic sampling variance for each subset's 

average treatment effect (ATE) is more appropriate because one cannot compute the exact sample 

variance. ATE is defined as      

                                                 𝜏ℂ= 𝔼𝑠𝑝[𝜏(𝑋𝑖)|𝑋𝑖 ∈ ℂ]                                                      (2.1) 

where 𝑋 is in some subset ℂ of the covariate space, 𝜏ℂ. 

So, we focus on the asymptotic sampling variance for the efficient estimator for average 

treatment effect, which is 

                                              𝔸𝕍𝑓𝑠
𝑒𝑓𝑓(ℂ) =

1

𝑞(ℂ)
. 𝔼𝑠𝑝 [

𝜎𝑡
2(𝑋𝑖)

𝑒(𝑋𝑖)
+

𝜎𝑐
2(𝑋𝑖)

1−𝑒(𝑋𝑖)
| 𝑋 ∈ ℂ]                               (2.2) 

where  𝑞(ℂ) = 𝑃𝑟𝑠𝑝(𝑋𝑖 ∈ ℂ) is covariate probability in subset of ℂ. The question in here is how 

we can make minimized the asymptotic sampling variance of an efficient estimator. If there is 

homoscedasticity, we define that the optimal sampling variance as 

𝔸𝕍𝑓𝑠
𝑒𝑓𝑓(ℂ) =

𝜎2

𝑞(ℂ)
. 𝔼𝑠𝑝 [

1

𝑒(𝑋𝑖)
+

1

1 − 𝑒(𝑋𝑖)
| 𝑋 ∈ ℂ] 

where 

𝕍(𝑌𝑖|𝑋𝑖) = 𝜎2 

So,  ℂ⋆ is defined by optimal ℂ. So we have two possibilities to minimize asymptotic sampling 

variance under all subset ℂ of X (Imbens  and Rubin,2015). 

Firstly, if we consider that, 

                                              𝑠𝑢𝑝𝑥∈𝑋  
1

𝑒(𝑥).(1−𝑒(𝑥))
≤ 2 𝔼𝑠𝑝 [

1

𝑒(𝑋𝑖)
+

1

1−𝑒(𝑋𝑖)
]                                   (2.3) 

then, entire covariate space ℂ⋆ = 𝑋 and the optimal ℂ is same. On the other hand, we can define 

the optimal   ℂ⋆ : 
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ℂ⋆ = {𝑥 ∈ 𝕏|𝛼 ≤ 𝑒(𝑥) ≤ 1 − 𝛼}, 

where the threshold 𝛼 is equal to  

𝛼 =
1

2
− √

1

4
−
1

𝛾
 

where   𝛾 is defined as 

𝛾 = 2 𝔼𝑠𝑝 [
1

𝑒(𝑋𝑖)(1−𝑒(𝑋𝑖))
| 

1

𝑒(𝑋𝑖)(1−𝑒(𝑋𝑖))
≤ 𝛾]                            (2.4) 

 

This procedure implementation can be done step by step as follows. 

Step 1:  We should estimate propensity score , 𝑒̂(𝑋𝑖) as discussed it in section 2.3.2.  

Step 2: After estimated propensity scores 𝑒̂(𝑋𝑖), we need check in (2.5) inequality as taken in 

below. 

                                    𝑚𝑎𝑥𝑖=1,…,𝑁  
1

𝑒̂(𝑋𝑖)(1−𝑒̂(𝑋𝑖))
≤ 2 

1

𝑁
∑

1

𝑒̂(𝑋𝑖)(1−𝑒̂(𝑋𝑖))

𝑁
𝑖=1                                      (2.5) 

 

When (2.5) inequality holds, then ℂ̂=X. 

Step 3: if (2.5) inequality does not hold, so we consider in (2.6) inequality to solve for a value of 

𝛾 satisfying, 

             
𝛾

𝑁
∑ 1(𝑒̂(𝑋𝑖)(1−𝑒̂(𝑋𝑖)))−1≤𝛾
𝑁
𝑖=1 =

2

𝑁
∑

1

𝑒̂(𝑋𝑖)(1−𝑒̂(𝑋𝑖))
.  1(𝑒̂(𝑋𝑖)(1−𝑒̂(𝑋𝑖)))−1≤𝛾

𝑁
𝑖=1                      (2.6) 

 

Step 4: If inequality (2.6) does not hold and then 𝛾 = 𝑚𝑖𝑛𝑖(𝑒̂(𝑋𝑖)(1 − 𝑒̂(𝑋𝑖)))
−1,  right hand side 

is larger than left-hand side in inequality (2.6). Thus, we will get largest value of 𝛾 and then it’s 

called as 𝛾̂. Finally, we compute in following  

                            𝛼̂ =
1

2
 - √

1

4
−
1

𝛾
    and    ℂ̂ = {𝑥 ∈ 𝕏|𝛼̂  ≤ 𝑒̂(𝑥) ≤ 1 − 𝛼̂}                            (2.7) 
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𝑒̂(𝑋𝑖) value of outside ℂ̂ will be discarded and then we will focus on balance and estimate average 

treatment effect for subset class.      

 

2.3.5   Subclassification on Propensity Score 

On the basis of propensity score ranking, stratification is sometimes called sub-classification, 

divides all sample into equal subclasses.  Some researchers (Cochran 1968; Rubin and 

Imbens,2015) emphasized that employing percentiles of estimated propensity score values to split 

into five subclasses. Then those subclasses have illustrated to eliminate ninety percentile of bias 

due to calculated confounding variables. Each subclass will have a similar propensity score value 

for treatment and control groups. Thus, we will eliminate bias between treatment and control 

groups regarding the distribution of evaluated variables. 

 

2.3.6   Propensity Score Weighting 

We define inverse probability of treatment weighted as 𝑤 =
𝑇

𝑒
+
1−𝑇

1−𝑒
 . Lunceford and Davidian 

(2004) discuss theory of inverse probability of treatment effect to estimate ATE and ATT. We 

have that estimate of ATE as  
1

𝑛
∑

𝑇𝑖𝑌𝑖

𝑒𝑖

𝑛
𝑖=1 − 

1

𝑛
∑

(1−𝑇𝑖)𝑌𝑖

𝑒𝑖

𝑛
𝑖=1  .There is another alternative way to 

define estimate of ATE as following: (∑
𝑇𝑖

𝑒𝑖

𝑛
𝑖=1 )

−1
∑

𝑇𝑖𝑌𝑖

𝑒𝑖

𝑛
𝑖=1 − (∑

1−𝑍𝑖

1−𝑒𝑖

𝑛
𝑖=1 )

−1
∑

(1−𝑇𝑖)𝑌𝑖

𝑒𝑖

𝑛
𝑖=1  .In 

addition, an estimate of ATT is 𝑇𝑖 +
(1−𝑇𝑖)𝑒𝑖

1−𝑒𝑖
  receive one weight and besides, estimate average 

effect of treatment in the controls is that (1 − 𝑇𝑖) +
𝑇𝑖   (1−𝑒𝑖)

𝑒𝑖
  (Lunceford and Davidian, 2004; 

Morgan & Todd,2008; Austin, 2011). Weights can be sometimes large and highly influential.  
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Robins (1998 and 1999) defines stabilization in weights that provide to decrease variability of 

estimation. Using stabilization for estimating ATE in IPTW is 𝑃𝑟(𝑇 = 1)
𝑇

𝑒
+ Pr (𝑇 = 0)

1−𝑇

1−𝑒
 

,where 𝑃𝑟(𝑇 = 1) and 𝑃𝑟(𝑇 = 0) represent marginal of probability in treated and control 

groups. To sum up, we can apply propensity weighting step by step as following : i) Estimate 

propensity score using covariates in fitted logistic regression. ii) There are two types of weights 

to compute estimates: weights for ATE and weights for ATT. If we have large weights, 

stabilization is applied. iii)After computing weights, we need to assess balance of baseline 

covariates in treated and untreated subjects in weighted sample. 

 

2.4 Proposed Approach to Evaluate Biomarker Performance 

Janes et al. (2015) performed a comprehensive review of an earlier study and suggested Θ 

parameter as a marker performance metric. This study suggest related to each biomarker versus 

linear regression model with interaction term between treatment as defined T and biomarker as 

defined B as follows:  

                                      𝑙𝑜𝑔𝑖𝑡 𝑃(𝑌 = 1|𝑇, 𝐵) = 𝛿0 + 𝛿1𝑇 + 𝛿2𝐵 + 𝛿3𝑇𝐵                             (2.8) 

where the 𝛿0, 𝛿1, 𝛿2, and 𝛿3 represent model parameters and let denote Y as the outcome of interest. 

Absolute treatment effect provided biomarker value is defined as Δ(𝐵) = 𝑃(𝑌 = 1|𝑇 = 0,𝐵) −

𝑃(𝑌 = 1|𝑇 = 1, 𝐵). So, The rule is described to reduce the incidence of population events as 

Δ(𝐵) < 0.Moreover, Janes et al. (2014) identify Θ parameter to enhanced outcomes by reduction 

in population incidence rate under biomarker-based treatment selection as following : 

Θ = [Pr(Y = 1|T = 1, Δ(𝐵) < 0) − Pr(Y = 1|T = 0,Δ(𝐵) < 0)] ∗ Pr (Δ(𝐵) < 0) 
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But alternative equations for estimating Θ parameter is established through this paper. We use the 

Cox regression model because this dataset has survival outcomes and not simple binary outcomes; 

the model has interaction between T and B,  

ℎ(𝑤|𝑇, 𝐵) = ℎ0(𝑤)𝐸𝑥𝑝[𝛽1𝐵 + 𝛽2𝑇 + 𝛽3𝐵𝑇] 

where ℎ0(𝑤) is the baseline hazard, 𝐵 is the biomarker, and 𝑇 is the treatment assignment (𝑇 =

0 for control arm, and 𝑇 = 1 for active treatment arm) and also, 𝛽1, 𝛽2 𝑎𝑛𝑑 𝛽3 are coefficient 

parameters of cox model. In addition, the overall survival time is the endpoint. When the biomarker 

,B is not associated with  patient outcomes in control group,  we can inform that 𝛽1 = 0. However, 

if   the biomarker is not associated with patient outcomes on the treatment group, 𝛽1 + 𝛽3 = 0 is 

hold. Under the additional assumption of an exponential baseline hazard, we can write the baseline 

hazard as  

ℎ0(𝑤) = 𝜆 

for some 𝜆 > 0. Then, 

ℎ(𝑤|𝑇, 𝐵) = 𝜆𝐸𝑥𝑝[𝛽1𝐵 + 𝛽2𝑇 + 𝛽3𝐵𝑇] 

 

The cumulative hazard is then, 

𝐻(𝑤|𝑇,𝐵) = ∫ ℎ(𝑤|𝑇, 𝐵)𝑑𝑠
𝑠=𝑤

𝑠=0

 

                                          = ∫ 𝜆
𝑠=𝑤

𝑠=0
𝐸𝑥𝑝[𝛽1𝐵 + 𝛽2𝑇 + 𝛽3𝐵𝑇] 

                                       = 𝑡𝜆𝐸𝑥𝑝[𝛽1𝐵 + 𝛽2𝑇 + 𝛽3𝐵𝑇] 
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Now , recalling that  𝑆(𝑤) = 𝐸𝑥𝑝[−𝐻(𝑤)] we have, 

𝑆(𝑤) = 𝐸𝑥𝑝[−𝑤𝜆𝐸𝑥𝑝[𝛽1𝐵 + 𝛽2𝑇 + 𝛽3𝐵𝑇]] 

         = Pr (𝑊 > 𝑤) 

Now if we set 𝑤 = 𝑤0 we have 

Pr(𝑊 > 𝑤0|𝑇, 𝐵) = 𝐸𝑥𝑝[−𝑤0𝜆𝐸𝑥𝑝[𝛽1𝐵 + 𝛽2𝑇 + 𝛽3𝐵𝑇]] 

 

So, for an individual assigned to control the probability would be: 

Pr(𝑊 > 𝑤0|𝑇 = 0,𝐵) = 𝐸𝑥𝑝[−𝑤0𝜆𝐸𝑥𝑝[𝛽1𝐵]] 

 

and for an individual assigned to treatment  

Pr(𝑊 > 𝑤0|𝑇 = 1,𝐵) = 𝐸𝑥𝑝[−𝑤0𝜆𝐸𝑥𝑝[𝛽1𝐵 + 𝛽2 + 𝛽3𝐵]] 

 

The treatment hazard ratio is described as  

ℎ(𝑤|𝑇 = 1,𝐵)

ℎ(𝑤|𝑇 = 0,𝐵)
= 𝑒𝛽2+𝛽3𝐵 

 

Hence, I can re-write optimal strategy as: 

𝑇𝑜𝑝𝑡(𝐵 = 𝑏) ⟹

{
 
 
 
 

 
 
 
 

𝑖𝑓 ∶  𝛽3 < 0

{
 

 𝑇 = 1:    𝑏 >
−𝛽2
𝛽3

𝑇 = 0:    𝑏 ≤
−𝛽2
𝛽3

𝑖𝑓 ∶  𝛽3 > 0

{
 

 𝑇 = 1:   𝑏 <
−𝛽2
𝛽3

 

𝑇 = 0:   𝑏 ≥
−𝛽2
𝛽3
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After the biomarker cut-off point is determined, we have  

𝑃𝑟(𝑊 > 𝑤0|𝑇𝑜𝑝𝑡) = ∫ 𝐸𝑥𝑝[−𝑤0𝜆𝐸𝑥𝑝[𝛽1𝐵 + 𝛽2 + 𝛽3𝐵]] + ∫ 𝐸𝑥𝑝[−𝑤0𝜆𝐸𝑥𝑝[𝛽1𝐵]]
𝑑0

𝑐0

𝑑1

𝑐1

 

 

where (𝑐0, 𝑑0) and (𝑐1, 𝑑1) are the intervals for control and treatment assignments, respectively. 

The parameters of interest is developed as follows : 

Θ0 = ∫ 𝐸𝑥𝑝[−𝑤0𝜆 𝑒
𝛽1𝐵+𝛽2+𝛽3𝐵] − 𝐸𝑥𝑝[−𝑤0𝜆 𝑒

𝛽1𝐵]𝑑𝑏

𝑑1

𝑐1

 

and  

Θ1 = ∫ 𝐸𝑥𝑝[−𝑤0𝜆 𝑒
𝛽1𝐵] − 𝐸𝑥𝑝[−𝑤0𝜆 𝑒

𝛽1𝐵+𝛽2+𝛽3𝐵]𝑑𝑏

𝑑0

𝑐0

 

 

2.5 Application to Lung Cancer Dataset 

To provide a proposed method, this paper has included an overview of the broad scientific areas. 

The first objective in the article is the assessment of causal inference using data on lung cancer, 

which is from an observational study. Since treatment assignment processes are neither known nor 

random, obtaining causal effects from retrospective trials in non-equivalent populations is difficult. 

Treated and untreated samples often vary systematically in both measured and unmeasured 

baseline characteristics. When estimating the impact of treatment on results using observational 

data, methodological approaches must be used to account for systemic discrepancies between 

treated and untreated subjects. So, those issues lead us to implement methodologies based on the 

propensity score. After we eliminated imbalance between groups using a variety of propensity 
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score methods, we assess the performance of predictive biomarkers based on the results of causal 

inference techniques. Thus, this paper's second aim is to focus on the treatment selection process 

for lung cancer. Figure 2.2 clearly illustrates the flow diagram of the application processing. 

Figure 2.2:  Flow diagram of analysis 

 

We used lung cancer data on 350 patients who were treated with chemotherapy. Overall, 256 

patients were not treated by chemotherapy treatment, whereas 94 of whom were exposed to 

chemotherapy treatment for lung cancer. We also have ten covariates, age, gender, adjuvant RT, 

race, surgical margin, site, historical grade, smoking history, path N stage, and path T stage 

collected from patients' medical archives. The propensity score was estimated using a logistic 

regression model to regress individual assignments on the ten covariates that might affect the 

outcome. This approach has been demonstrated to perform better by including some variables that 

influence treatment selection. We can use a stepwise procedure for selecting the covariates for 

inclusion in the propensity scores. Race, adjuvant RT, path N stage, site, age, path T stage, and 
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their interaction terms are particularly important covariates and inclusion of estimated propensity 

score. Table 2.1 presents the mean of dichotomous/ categorical baseline variables between treated 

and untreated groups. We can use the Wilcoxon rank-sum test/chi-squared test to check the 

prevalence of variables between groups for continuous and categorical variables, respectively. 

Also,  we report the standardized difference for each of the ten baseline variables in the 

original lung cancer data, untrimmed or unweighted, in table 2.1. There are standardized difference 

values in the original data that exceeded 0.10, with an adjuvant RT covariate having the greatest 

standardized differential (1.045). It is emphasized that there are most of the covariates are 

particularly unbalanced.  One of the imbalanced issues could be that there is a remarkable 

difference in the percent between chemotherapy and non-chemotherapy groups. Such differences 

may bias a simple comparison of outcomes by treatment status and suggest that, at the very least, 

adjustments for pre-treatment differences are required to obtain credible inferences for the causal 

effect of chemotherapy exposure on outcomes. That's why we apply propensity score trimming 

that removes the imbalance of those differences between groups in the next step. 

 

Table 2.1: Baseline characteristics of treatment and control  subjects in lung cancer dataset 

 CONTROL 

N=256 

TREATMENT 

N=94 

SMD P value 

AGE=TRUE(%) 127 (49.6) 36(38.3) 0.229 0.078 

GENDER=2(%) 140(54.7) 49(52.1) 0.051 0.760 

ADJUVANT RT=Yes (%) 24(9.4) 49(52.1) 1.045 < 0.0001 

RACE (%) 

                                         White 

                                    Unknown 

                                          Other 

 

216(84.4) 

25(9.8) 

15(5.9) 

 

66(70.2) 

26(27.7) 

2(2.1) 

0.496 < 0.0001 
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Table 2.2 presents summary statistics and standardized mean difference in trimming sample. One 

observes that trimming on the propensity score has diminished or eliminated many systematic 

differences in means or prevalence between treated and untreated subjects reported in Table 2.2, 

which compares it with Table 2.1.  In this case, trimming the sample by removing units with 

extreme values of the estimated propensity score to improve overlap should lead to more robust 

inferences at the subsequent analysis stage. 

SURGICAL MARGINAL (%) 

                                             All 

                        Microscopically 

                                   Unknown 

 

242(94.5) 

5(2.0) 

9 (3.5) 

 

91(96.8) 

1(1.1) 

2(2.1) 

0.112 0.678 

SITE (%) 

                                          DFCI 

                                        HLM 

                                            MI 

                                    MSKCC 

 

23 (9.0) 

79 (30.9) 

78 (30.5) 

76 (29.7) 

 

25(26.6) 

19(20.2) 

19(20.2) 

31(33.0) 

 

0.531 

 

< 0.0001 

HISTORICAL GRADE (%) 

                                    Moderate 

                                        Poorly 

                                   Unknown 

                                           Well 

 

118(46.1) 

85(33.2) 

13(5.1) 

40(15.6) 

 

41(43.6) 

39(41.5) 

4(4.3) 

10(10.6) 

0.437 0.437 

SMOKING HISTORY (%) 

                          Currently 

                                         Never 

                                 Smoked 

                             Unknown 

 

21(8.2) 

31(12.1) 

197(77.0) 

7 (2.7) 

 

8(8.5) 

15(16.0) 

69(73.4) 

2(2.1) 

0.118 0.802 

PATH N STAGE (%) 

                                              N0 

                                              N1 

                                              N2 

                                   Unknown 

 

183(71.5) 

37(14.5) 

27(10.5) 

9(3.5) 

 

43(45.7) 

26(27.7) 

23(24.5) 

2(2.1) 

0.413 < 0.0001 

PATH T STAGE (%) 

                                              T1 

                                              T2 

                                              T3 

                                   Unknown 

   

 

97(37.9) 

134(52.3) 

15(5.9) 

10(3.9) 

 

13(13.8) 

71(75.5) 

5(5.3) 

5(5.3) 

 

0.583 <0.0001 
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Table 2.2: Baseline characteristics of treatment and control subjects in the trimming sample 

 CONTROL 

N=83 

 TREATMENT 

N=59 

      SMD 

AGE=TRUE(%) 44(53.0)  25(42.4)  0.214 

GENDER=Male(%) 34(41.0)  33(55.9)  0.033 

ADJUVANT RT=Yes(%) 20(24.1)  22(37.3)  0.289 

RACE (%) 

                                   WHITE 

                            UNKNOWN 

                                   OTHER 

 

64(77.1) 

19(22.9) 

0 

  

38(64.4) 

21(35.6) 

0 

 0.282 

SURGICAL MARGINAL (%) 

                                         ALL 

         MICROSCOPICALLY 

                            UNKNOWN 

 

78 (94.0) 

3 (3.6) 

2 (2.4) 

  

56(94.9) 

1 (1.7) 

2 (3.4) 

 

 

0.132 

SITE (%) 

                                     DFCI 

                                      HLM 

                                          MI 

                                   MSKCC 

 

22(26.5) 

17(20.5) 

44(53.0) 

0 

  

24(40.7) 

14(23.7) 

21(35.6) 

0 

 0.371 

HISTRIGOCIAL GRADE (%) 

                                 Moderate 

                                       Poorly 

                                 Unknown 

                                         Well 

 

4(4.8) 

29(34.9) 

40(48.2) 

10(12.0) 

  

3(5.1) 

24(40.7) 

23(39.0) 

9(15.3) 

 0.190 

SMOKING HISTORY (%) 

                                Currently 

                                    Never 

                                   Smoked 

                               Unknown 

 

10(12.0) 

12(14.5) 

59(71.1) 

2(2.4) 

  

6(10.2) 

8(13.6) 

44(74.6) 

1(1.7) 

 0.089 

PATH N STAGE (%) 

                                           N0 

                                           N1 

                                           N2 

                                Unknown 

 

2(2.4) 

49(59.0) 

21(25.3) 

11(13.3) 

  

2(3.4) 

27(45.8) 

20(33.9) 

10(16.9) 

 0.269 

PATH T STAGE  (%) 

                                         T1 

                                         T2 

                                         T3 

                              Unknown 

 

2(2.4) 

10(12.0) 

63(75.9) 

8(9.6) 

  

2(3.4) 

2(3.4) 

51(86.4) 

4(6.8) 

 0.383 
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After we present the implementation of the covariates selection procedure on the lung cancer data 

set, Figure 2.3 in left side illustrates the propensity score value identification with adjuvant 

chemotherapy versus without adjuvant chemotherapy in original sample. They display a limited 

overlap in preintervention characteristics between treated and control groups. In other words, 

Figure 2.3 reveals a considerable imbalance between treatment and control groups. As Figure 

2.3  in left sides indicates, two groups' density differs from each other on the distribution of 

estimated propensity scores, and so, the common support region is especially problematic. 

However, the key to applying the trimming method is that if the true propensity score values are 

equal to zero or one, it is supposed that there are no counterparts with alternative treatment for 

such units. Hence, We cannot credibly and accurately estimate the effect of treatment. We perform 

a propensity trimming score technique to reduce the impact of confounding variables on the model. 

Right side of Figure 2.3 illustrates a remarkable performance in terms of the removing bias 

between treatment groups. In other terms, overlap between chemotherapy and non-chemotherapy 

groups seems to be satisfied. It seems that propensity score trimming works well and is reasonably 

balanced. 
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Figure 2.3: Density plot of treated and untreated groups in original sample (left) and trimming 

sample (right) 

 

 

 

Table 2.3 shows our methods in the lung cancer treatment context. Lung cancer patients are 

typically treated with adjuvant chemotherapy (treatment arm) and no chemotherapy groups. In 

other terms,  we want to identify a biomarker that can be used to predict which patients are  and 

are not likely to benefit from adjuvant chemotherapy.  The final biomarker would have been the 

gene with expression values corresponding to the “Max” column, and the cutoff value which is a 

function of the Cox regression parameters. 
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Table 2.3: Summarizing marker performance that depend on PS trimming and IPTW method 

 Parameter Min 𝟏𝒔𝒕 

quantile 

Median Mean 𝟑𝒓𝒅 

quantile 

Max 

 

 

 

Trimming 

Method 

Θ0 0.0000 0.0000 0.0000 0.0036 0.0035 0.0901 

Θ1 0.0909 0.1486 0.1529 0.1544 0.1592 0.2432 

No chemo      

prob 

0.6618 0.7106 0.7140 0.7127 0.7157 0.7489 

Chemo 

prob 

0.4968 0.5591 0.5628 0.5619 0.5655 0.5971 

Optimal 

prob 

0.6762 0.7126 0.7150 0.5619 0.7183 0.7914 

 

 

Sub-

classification 

Method 

Θ0 0.0000 0.0000 0.0000 0.0007 0.0002 0.0352 

Θ1 0.1252 0.1471 0.1490 0.1504 0.1527 0.1959 

No chemo      

prob 

0.6937 0.7109 0.7118 0.7117 0.7126 0.7271 

Chemo 

prob 

0.5225 0.5602 0.5621 0.5621 0.5649 0.5841 

Optimal 

prob 

0.6937 0.7113 0.7120 0.7125 0.7133 0.7424 

 

 

IPTW 

Method 

Θ0 0.0000 0.0000 0.000 0.0006 0.0001 0.0303 

Θ1 0.1339 0.1573 0.1592 0.1603 0.1627 0.2082 

No chemo      

prob 

0.6941 0.7138 0.7148 0.7147 0.7157 0.7309 

Chemo 

prob 

0.5115 0.5534 0.5561 0.5550 0.5574 0.5774 

Optimal 

Prob 

0.6974 0.7142 0.7150 0.7154 0.7163 0.7421 

 

Abbreviations: PS: Propensity Score , IPTW: Inverse Probability of Treatment Weight  

As seen in Table 2.3, Θ0 , Θ1, “No chemotherapy probability”, “chemotherapy probability” and 

“optimal biomarker probability” are presented to examine biomarker  that explains whether or not 

chemotherapy is necessary to treat the lung cancer. The optimal biomarker  for target population 

is biomarker  treatment that maximizes the probability of surviving past the prespecified time w0 

=41weeks: Θ0, if we consider the standard of care treatment ( no chemotherapy); Θ1 if the default 

treatment is “adjuvant chemotherapy treatment”(i.e. T=1 arm).  Besides,  we presented a method 

based on the Cox hazard model that provides an unbiased estimate of Θ0  and  Θ1 in the presence 



 

43 

of right censoring. We studied the observational data set herein. So, it is hard to examine  relevant 

results in biomarker because  covariates’ characteristics can impact treatment assignments. So, we 

needed to apply appropriate causal effect techniques (i.e., trimming, sub-classification and IPTW) 

to eliminate bias in estimates of the treatment effect between treatment and control groups. Table 

2.3 shows that each method causes getting different results that correspond to  Θ0 and  Θ1 

parameters. Θ0 has a larger range in using  the trimming technique than in IPTW. Similarly, the 

largest probability value of  Θ1(i.e., Θ1 =0.2432)  is hold by trimming methods. We understood 

from table 3 that different propensity score technique can lead to different the result when assessing 

the performance of the biomarker. In other words,  Table 2.3 illustrates that using the different 

propensity score methods has influenced the assessment of the biomarker's performance. We 

understand that removing bias between treated and untreated has been vital to making appropriate 

therapy decisions. 

 

2.6   Summary & Discussion 

This study proposed a descriptive analysis and a summary measure to evaluate cancer biomarkers 

using observational studies. This paper is a rare study in observational studies investigating causal 

inference and presenting summary measures for cancer markers. Few studies in the understanding 

of biomarker rely on observational studies instead of randomized control trial. Using randomized 

control trial data for evaluating treatment selection guarantees that there should be no systematic 

difference in treated or untreated covariates between units assigned to the different treatments. But, 

in a non-randomized observational study, researchers have no control over the treatment. Thus, we 

perform various propensity techniques, such as propensity score trimming, sub-classification on 

propensity score and inverse probability of treatment weighting, to eliminate confounding effects 
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when used in observational lung cancer data. According to three methods, Propensity score 

trimming is an essential and appropriate technique to look at the marker's impact and understand 

the average benefit of treatment policies suggested. 

Dobbin and  Song (in revision) proposed that no genes had both Θ0 and  Θ1, values greater 

than 0.001 when any causal inference methods were not considered in their research proposal. In 

addition, Shedden et al.(2008) studied various approaches, not rely on the propensity score 

adjustment, establish simply weak signal genes. However, we found a group of genes with a value 

roughly 0.1 or over 0.1 for Θ0 and  Θ1, respectively. According to proof of results in Section 2.5, 

propensity score methods have been remarkably significant for describing treatment selection. To 

be clear, each propensity method, i.e., trimming, sub-classification and weighting, had different 

performance in removing bias between adjuvant chemotherapy and standard therapy. The results 

suggest that treatment selection based on the propensity score trimming method has performed 

slightly better than treatment selection on other propensity scores. To sum up, we strongly 

recommend using any propensity score techniques that give sensible results in observational 

studies. In other terms, we understand that propensity score adjustment has been vital to employ 

in the non-randomized trial. 
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2.7   Appendix  

Figure : Histogram-based estimate of the distribution of propensity score for treated and untreated 

group for original sample 

 

 

Figure: Histogram-based estimate of the distribution of propensity score for treated and untreated 

group for trimming sample 
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CHAPTER 3 

Development of Biomarker in Propensity Score-Adjusted of 

Parametric and Machine Learning Methods 

 

 

3.1 Introduction 

Treatment selection biomarkers are indispensable tools for determining whether or not a 

participant improves from a specific treatment. Numerous research on tumor markers has been 

conducted in oncology throughout the years, but the number of indicators that have been found to 

be medicinally valuable is few. In addition, while markers in initial studies often illustrate great 

promise, large inconsistencies are observed in subsequent studies conducted with the same marker. 

Discrepancies have been attributed to various factors, including general methodologic variations, 

inadequate research design, non-standardized or non-reproducible assays, and improper or 

misleading statistical analyses. So, choosing the proper treatment selection biomarker is highly 
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important to ensure benefits for the patient. In literature,  there are various approaches to illustrate 

treatment selection biomarkers. Some researchers have focused on the descriptive analysis of 

modeling treatment selection (see Bonetti and Gelber ,2004; Cai et al.,2011; Janes et al.,2014) 

while others have studied optimizing markers for treatment selection (Lu et al.,2011; Gunter et 

al.,2011; McKeague and Qian,2013).  

The main question in the assessment of treatment selection is what statistical method we 

should use to identify essential markers. A well-known methodology in the development of 

treatment selection markers in the literature is the statistical interaction between marker and 

treatment arm as a fundamental measure of biomarker performance(see Sargent et al. ,2005; 

Simon,2008; Janes,2011; Janes et al,2013). Even though the interaction between marker value and 

treatment assignment is essential, it is not sufficient to determine marker performance( Huang et 

al. ,2012; Janes,2012). Most of the studies on treatment selection have been based on data coming 

from a randomized clinical trial. The treatment effect can be relatively simple to estimate in a 

randomized study. However, when we consider observational studies, we never know what 

determined the treatment selection process because it is non-randomized. 

In many scientific circumstances, researchers want to know how an intervention affects an 

outcome. In many cases, allocation of the intervention and evaluation in a randomized clinical trial 

can offer rigorous assessment, but, in other cases, such research is not possible owing to ethical 

restrictions. This has stimulated a lot of study in causal inference, especially using the potential 

outcomes approach. Causal inference is required due to imbalances in baseline factors between 

treated and untreated, which can act as confounders. In contrast to a randomized trial, the 

assignment system in an observational study is not controlled by the scientist. Therefore it is 

unknown how subjects' attributes impact their chances of being assigned to the treatment or control 
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group in the observational study. As a result, the data must be used to assess the participants' 

chances of obtaining treatment. A coherent approach for examining causal effects of the treatment 

effect on the outcome recommended by Rubin (1974) and Rosenbaum and Rubin are based on the 

potential outcomes proposed by Rosenbaum and Rubin (1983). Propensity score aims to reduce 

confounding bias in treatment average effect estimates. So, it assists in achieving this aim by 

predicting the exposure's probability provided individual covariates and, especially, by employing 

a propensity score to establish balance on confounders. The fundamental assumption is that, given 

similar propensity scores for exposed and unexposed individuals, treatment assignment for these 

two individuals is independent of all confounding variables. So the two observations may be 

utilized as counterfactuals for causal inference. This method reduces the need to balance a 

multivariate set of observable features to the simpler task of adjusting based on a one-dimensional 

propensity score. 

An important topic covered in the paper is the selection of the propensity score modeling 

approach. It's feasible that alternative methods for estimating the propensity scores will result in 

different treatment effect estimates. Propensity scores have traditionally been evaluated using 

logistic regression. Some papers (see  Westreich et al.,2010; Lee,2010; Wyss et al., 2014) address 

some of the pros and drawbacks of logistic regression for propensity score prediction. This paper 

will discuss and examine the relative advantages and disadvantages of various representative 

methods. Imai and Ratkovic (2014) suggested covariate balance propensity score as an alternative 

parametric approach to logistic regression. CBPS technique substitutes MLE with an extended 

form of moments estimation to improve treatment assessment estimation and covariate balancing 

simultaneously. Despite the fact that the CBPS has been demonstrated to work well in some 

particular circumstances, it has not been used in medical settings or with a large dataset. Even 
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though parametric methods, especially logistic regression, are more preferable techniques, 

parametric methods, on the other hand, need assumptions about the variable selection process, 

covariates' distributions, and interaction term definition. So, there can be an imbalance between 

treated and untreated groups in covariates if the models do not meet the assumptions or are defined 

wrong. Note that throughout this thesis, variable selection refers to the variables used in the model 

fitting and not to the process of selecting variables from the full list of all variables for inclusion 

in the model. So, there can be an imbalance between treated and untreated groups in covariates if 

the models do not meet the assumptions or are defined incorrectly.  

Machine learning techniques might be used in place of parametric approaches, i.e., logistic 

regression (LR) or covariate balance propensity score (CBPS). In health care research, machine 

learning is a machine algorithm that is growing more widespread. Even though many studies have 

been focused on prediction issues, the latest advances in machine learning (ML) have expanded 

their implementations from predictive models into the statistical inference field, allowing for more 

widespread use in the area( Connell and Lindner ,2019; Fang et al. ,2011).  

Machine learning is a broad concept that encompasses a wide range of categorization and 

prediction algorithms with uses ranging from economics to health care, engineering, accounting 

fields. While statistical techniques to modeling presume a data model with parameters determined 

from the data, machine learning uses an algorithm to identify an association between the result and 

a predictor without utilizing any data model. We apply some machine learning techniques, such as 

generalized boosted model (GBM), random forest (RF),  bagging (BAG), and classification and 

regression trees (CART) models, to estimate propensity scores. Then those values are employed 

to perform one-to-one matching. 
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When these methodologies aim to reduce the influence of treatment selection bias, the 

researcher seeks to identify which factor/covariates to include in or exclude from the estimation 

model. Any factors may be characterized in terms of two features for a particular treatment and 

outcome. These relationships are defined as associated with treatment, outcome, both of them or 

neither of them. So, it is highly critical to determine whether included variables should be 

connected with treatment, outcome, both of them, or confounders variables. There are limited 

studies for variable selection (Austin et al., 2007; Brookhart et al.; 2004). However, there is no 

comprehensive review to explore variable importance in several parametric and machine learning 

methods. 

This paper is motivated by two fundamental purposes. Firstly, we investigate the 

performance of one-to-one matching techniques depending on LR, CBPS, GBM, RF, CART, and 

BAG methods when considering different sets of variables in the models. Secondly, we present a 

detailed framework for evaluating markers in the context of treatment selection. The proposed 

tools ( Janes et al.,2012) are utilized to identify descriptive analysis and summary measurements.  

In literature, all studies are based on a randomized trial. However, we present the methods that rely 

on using the results of causal inference under many scenarios. At the end of the study, we reveal a 

general framework for the performance of causal inference and then treatment selection 

biomarkers. 

The remainder of this paper is laid out as follows. Section 3.2 highlights the major 

fundamental principles of propensity score methodologies and the disadvantages or advantages of 

employing machine learning techniques for propensity score estimates and balance diagnostics. 

We discuss about variable selection importance and previous studies in Section 3.3.Also, the 

treatment selection process is summarize in Sect. 3.4. We present the comprehensive results from 
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the simulation study to examine the performance of parametric and non-parametric methods and 

then performed marker assessment for treatment selection in Sect 3.5 .We present a summary of 

our results as well as some recommendations for professionals interested in using propensity score 

approaches in Section 3.6. 

 

3.2  Parametric and Machine Learning  Methods 

3.2.1. The Framework of Causal Effects 

In the potential outcomes framework,  let 𝑇 be the treatment variable, Y signify outcome (or 

sometimes called response), and X be the vector of baseline covariates. Thus, we define  data as 

(𝑌𝑖 , 𝑇𝑖 , 𝑋𝑖) , 𝑖 = 1,… , 𝑛 , and random sample (𝑌, 𝑇, 𝑋). A pair of potential outcomes: 𝑌(0) and 

𝑌(1) represent the potentially unobserved response under the control and treatment groups, 

respectively. We denote T=1 if an individual is assigned to active treatment, T=0  if control. We 

can observe an outcome as 𝑌 (𝑌𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 − 𝑇𝑖)𝑌𝑖(0)) in the case of a binary treatment. 

 

3.2.2. Methods to Estimate the Propensity Score 

Researchers in various fields have recently introduced several propensity score estimation 

approaches that emphasize reducing the covariates' imbalance. There are two main guidelines as 

parametric and nonparametric methods for predicting propensity scores under any of the 

propensity score approaches in the literature. Logistic regression is a parametric approach 

commonly preferred to estimate propensity score. Later, CBPS is recently proposed alternative 

methods to logistic regression. Nevertheless, parametric methods require meeting with 

assumptions concerning variable selection, covariates' distributions, or defining interaction terms. 

Also, Nonparametric techniques, i.e., random forest, generalized boosted model, bagging and 
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classification, and regression trees methods, are reviewed in terms of the theoretical and 

application process in this section. 

 

3.2.2.1   Logistic Regression 

A great deal of effort has been taken into developing techniques for estimating propensity scores. 

In fact, parametric approaches along with logistic regression are most frequently used to predict 

propensity scores. Logistic regression is also a well-known technique to estimate the conditional 

probability of receiving treatment when there are two treatment conditions. Logistic regression 

starts including main effects for supplied covariates characteristics. Logistic regression starts 

including main effects for supplied covariates characteristics and then adding squared terms of 

variables and interaction terms of covariates to enhance propensity score values if adequate 

balance is not achieved. The logistic regression is written to estimate propensity score : 

logit (𝑇𝑖 = 1|𝑋) = 𝛿0 + 𝛿1𝑋1𝑖 +⋯+ 𝛿𝑝𝑋𝑝𝑖 

where let covariates be  𝑋𝑖 , … , 𝑋𝑝 with p independent variables. 𝛿0 is described as an intercept and 

𝛿’s are unknown parameters. The log odds of the probability is as follows: 

                                            logit (𝑇𝑖 = 1|𝑋) = 𝑙𝑜𝑔 (
Pr (𝑇𝑖=1)

1−𝑃𝑟(𝑇𝑖=1)
)                                              (3.1) 

Equation (3.1) is re-written for the estimated propensity scores 

ei(X) =
exp(logit(Ti = 1|X)

1 + exp(logit(Ti = 1|X))
 

We can predict the propensity score using the maximum likelihood estimator: 

β̂MLE = argmaxβ∈Θ∑Tilog{e(Xi)} + (1 − Ti)

N

i=1

log{1 − e(Xi)} 

where 𝑒(. ) is twice differentiable with respect to 𝛽 maximizes the likelihood function, 
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1

N
∑ sβ(Ti, Xi)
N
i=1 = 0, sβ(Ti, Xi) =

Ti   e
′(Xi)

e(Xi)
−
(1−Ti )e

′(Xi)

1−e(Xi)
 ,                     (3.2) 

where e′(Xi) = ∂ e(Xi)/ ∂β
T is the gradient. So, we state that  equation 2 represents first derivation 

of  𝑒(𝑋𝑖). 

 

3.2.2.2 Covariate Balance Propensity Score 

There may be deviations in estimated propensity score when considering parametric models such 

as logistic regression due to the incorrect model specification, for example, when the true 

propensity score model is not logistic. This has led researchers to use different parametric models 

to minimize imbalance in treated and untreated groups and reduce bias and variability. One of the 

popular alternative approaches to estimating the propensity score was discovered by Imai and 

Ratkovic in 2014.Various CBPS  models to estimate causal effects have been presented in the 

literature (see Hainmueller,2012; Graham et al. ,2012). However, the difference between Imai and 

Ratkovic's paper and other papers is that it is based on a single model for determining treatment 

assignment and covariate balancing weightings. Estimating treatment assignment based on 

the  CBPS model is usually implemented with the generalized method of moments or empirical 

likelihood framework. 

CBPS technique is a parametric model and has remarkable advantages for estimation of 

causal effects. CBPS estimation helps reduce the causal effects misidentification in the parametric 

model by choosing parameter values that make important covariates balance. Even if the CBPS 

model is correctly determined, the CBPS method may further improve the balance of covariates in 

observational data compared to using logistic regression. In addition to maximizing the model 

likelihood, the covariate balancing technique includes a balance requirement for the weighted 

averages of the factors in the variable prediction process. As mentioned earlier, the crucial 
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challenge of standard approaches e.g., logistic regression, is that misidentification of models can 

lead to biased estimates in treatment effects. It may be appropriate to use more complex non-

parametric models, but covariate X's with high dimensionality can challenge the estimating 

propensity score. . In this case,   CBPS estimation is a robust method chosen to mitigate a 

parametric model's misrepresentations. 

Imai and Ratkovic (2014) proposed a logistic regression model, i.e., 

𝑒(𝑋) = 𝑒𝛽(𝑋) =
1

1 + 𝑒𝑥𝑝{−𝛽′𝑋}
 

Then 𝛽 is solved by satisfying the following condition:  

                                                                   𝐸 {
𝑇𝑋̃

𝑒𝛽(𝑋)
−

(1−𝑇)𝑋̃

1−𝑒𝛽(𝑋)
} = 0                                                             (3.3) 

where 𝑋̃ = 𝑓(𝑋)  is measurable function of 𝑋. Choosing 𝑓(. ) , i.e. 𝑋̃ =
𝜕 𝑒𝛽(𝑋)

𝜕𝛽
  is solved the 

maximum likelihood estimator (MLE) of 𝛽 because equation (3.3) is the score function of MLE. 

The above balancing condition is for the estimation of ATE. Besides, we use CBPS method to 

estimates the parameters of propensity score by solving estimating equation: 

𝑔𝛽̅̅̅̅ (𝑇, 𝑋) =
1

𝑛
∑ 𝑔(𝑇𝑖 , 𝑋𝑖) = 0,

𝑛

𝑖=1
 

where  

𝑔(𝑇𝑖 , 𝑋𝑖) = (
𝑇𝑖

𝑒(𝑋𝑖)
−

1−𝑇𝑖

1−𝑒(𝑋𝑖)
)𝑓(𝑋𝑖)                                           (3.4) 

for some covariate balancing function 𝑓(. ): ℝ𝑝 → ℝ𝑛 when we hold that parameter number, 𝑝  is 

equal to (3.4) equation numbers, n. However, if 𝑛 > 𝑝, we estimate 𝛽̂ by optimizing the covariate 

balance using the generalized method of moments (GMM) method : 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈Θ 𝑔̅𝛽(𝑇,𝑋)
𝑇𝑊̂𝑔̅𝛽(𝑇, 𝑋)  



 

55 

where Θ is the parameter space for 𝛽 in ℝ𝑝 and 𝑊̂ is an (𝑛 × 𝑛) positive define weighting matrix. 

For estimating ATT, the balancing condition gets 

𝐸 {𝑇𝑋̃ −
𝑒𝛽(𝑋)(1 − 𝑇)𝑋̃

1 − 𝑒𝛽(𝑋)
} = 0 

 

3.2.2.3 Generalized Boosted Model 

Researchers prefer using different approaches when they acknowledge logistic regression has 

disadvantages in estimating the propensity score. Nonparametric methods (i.e., boosting)  have 

been shown to outperform parametric methods ( i.e., logistic regression or CBPS methods) to 

estimate propensity score for dichotomous or multiple treatment factors. Boosting is an automated 

and data-adaptive algorithm. It can be used with many pretreatment covariates to fit several models 

through a regression tree and predict treatment assignment. It is an ensemble method that combines 

simple models into a nonparametric approach.  There are many variants of boosting studies in 

machine learning, such as the AdaBoost algorithm by Freund and Schapire(1997),  generalized 

boosted models by Ridgeway in 1999, LogitBoost by Friedman et al. in 2000, and gradient 

boosting machine by Friedman in 2001. McCaffrey et al. (2004) recommended one of the versions 

in machine learning to estimate propensity score using a generalized boosted model (GBM). So, 

GBM derives propensity scores by fitting numerous regression trees given the covariates 

repeatedly. After that, it is linearly merging all of the regression trees to obtain a smoothed function 

for the overall estimate of propensity scores. 

Moreover, interactions between covariates and the treatment variables, or between 

covariates and nonlinear variables can be systematically incorporated because all machine learning 

algorithms are nonparametric structures. Like logistic regression, GBM models can be written as 
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𝑓(𝑋) = 𝑙𝑜𝑔
𝑃𝑟(𝑇=1|𝑋)

1−𝑃𝑟(𝑇=1|𝑋)
 . Then, we start algorithm with log-odds of treatment as 𝑓(𝑋) =

𝑙𝑜𝑔
𝑃𝑟̂(𝑇=1|𝑋)

1−𝑃𝑟̂(𝑇=1|𝑋)
 ,where let 𝑃𝑟̂(𝑇 = 1) is the average probability of the treatment indicator variable 

in the sample. Let 𝑓(𝑋) denote iteration updating to 𝑓(𝑋) + 𝛾. ℎ(𝑋) , where 𝛾 represents a 

shrinkage factor  and fitting regression trees estimate  ℎ(𝑋). Also, shrinkage parameter helps 

decreasing variance with small adjustments without growing bias and so, small shrinkage 

parameter might give a more accurate fit for the model. 

 

3.2.2.4 Random Forest 

There has been much interest in "ensemble learning" methods based on decision trees, representing 

classification or regression. The most known methods are boosting (Shapire et al., 1998) and 

bagging(Breiman,1996) of decision trees and random forest (Breiman,2001). The most famous 

tree-based algorithm is random forests that first recommend by Breiman (2001). It corresponds to 

the class of nonparametric methods, which build multiple classification trees rather than just one. 

So, it selects a random subgroup of the variables at every node of the tree, and then, a node is 

divided utilizing the optimal split among the chosen variables.1 It corresponds to a class of 

nonparametric methods, which build multiple classification trees rather than just one. It selects a 

random subgroup of the variables at every node of the tree, and the node is divided. Each tree is 

individually constructed, relying on a bootstrap of the data set's sample. Finally, a simple majority 

vote is utilized to make a prediction. Each tree was generated using all of the data. Consequently, 

each observation's propensity score was predicted and between any pair of observations, 

respectively, based on each tree. The paper results present using 500 trees and nodes to use a 

predetermined minimum size of 25, according to Zhao et al.(2016). Breiman and Cutler (2016) 
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provide a "randomForest" package in R, and it is very user-friendly in the sense that easy 

implementation. 

 

3.2.2.5 Classification and Regression Trees (CART) 

One of best-known and oldest machine learning techniques is classification and regression trees 

developed by Breiman et al.,1984.  CART is a kind of decision tree, which is known with regards 

to easy implementation and interpretation. While some non-parametric models, such as neural 

networks or support vector machines, do not offer the probabilities of class membership, 

fortunately, CART is eligible to supply probabilities (Westreich et al. 2010). Hastie et al.(2001) 

provide that CART, on the other hand, is classified as an unstable learner due to its bias towards 

overfitting. CART is a recursive automated system for identifying the most relevant explanatory 

factors (x) in deciding the dependent variables (y) to be interpreted from a vast number of 

explanatory factors (x). CART is constructed based on a classification tree and a regression tree. 

So, the split at each phase is determined by selecting the variable that minimizes the prediction 

error or classification error. So, Relative error is specified to minimizes the sum of a square as 

follows: 

𝑅𝐸(𝑑) = ∑(𝑦𝑘 − 𝑦𝐾̅̅̅̅ )
2 + (𝑦𝑠 − 𝑦𝑆̅̅̅)

2

𝐾

𝑘=0

 

 

let 𝑦𝑘 and 𝑦𝑠 defined as left and right partition corresponds to K and S observations of y  in each 

step with means 𝑦𝐾̅̅̅̅  and 𝑦𝑆̅̅̅. 
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3.2.2.6 Bagging 

Bootstrap aggregating, also known as bagging, is an ensemble approach. Breiman(1996b) 

recommended the method of bagging. The method's aim seeks to decrease the variance of a 

predictor in order to increase prediction efficiency. Also,  it can be utilized to increase the 

predictability and consistency of classification and regression trees. However, it has not had any 

restriction to advance tree-based predictions. Bagging is a technique for generating independent 

classification trees from a set of bootstrap samples selected randomly from a set of results. The 

data will differ significantly from the prior bootstrap study for each new sample. Besides that, 

every tree will differ significantly from the one before it. The algorithm then averages the expected 

category participation probability over the whole set of classification chains. When the baseline 

regression or classification technique being bagged is not particularly reliable, bagging performs 

well. In addition, bagging can yield a notable decrease in average prediction error when minor 

modifications in the learning sample can often result in considerable variations in the predictions 

made using a defined technique (Sutton ,2004; Breiman et al. , 1984;Breiman 1996b; Breiman 

2001a). 

 

3.2.3 Propensity Score Matching  

Matching is an intriguing statistical tool for estimating the impact of treatments owing to its clarity 

and simplicity whereby the results may be presented. Considerable diversity of different matching 

algorithms have been explored in literature. This study intends to review matching on propensity 

score (pair matching), which is focused on a scalar function of the covariates, and is utilized to 

balance all variables and mimic randomization. There are two main objectives in applying 

propensity score matching. The primary purpose is to remove systematic biases associated with 
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differences in observed covariates when adjusting differences in propensity score between 

treatment and control groups. Secondly, it is easier to determine near matches on scalar variables 

than to get close matches on all variables jointly. 

Let 𝑁𝑡 represents the total number of treated units, indexed by 𝑖 = 1, … , 𝑁𝑡 , and a set of 

potential controls , of size 𝑁𝑐
′ , larger than 𝑁𝑡. We select 𝑁𝑐  < 𝑁𝑐

′ units from this set to establish 

a sample of size 𝑁 = 𝑁𝑐 + 𝑁𝑡  that will be utilized  to estimate treatment effects. Let 𝕀𝑐
′  symbolize 

the pool of indices for set of possible controls, 𝕀𝑐
′ = {𝑁𝑡 + 1,… ,𝑁𝑡 + 𝑁𝑐

′}. We concentrate on the 

difficulty of selecting a subgroup 𝕀𝑐  of the total control sets, 𝕀𝑐 ⊆ 𝕀𝑐
′  , that has better balance with 

respect to the treated units than a random sample of the full set of possible controls. For the sake 

of clarity, this procedure will be applied to case M=1 throughout this paper. Fixing 𝑁𝑐 = 𝑁𝑡 may 

be a reasonable choice if we consider the effect of 𝑁𝑐 on the sampling variance of estimators for 

causal effects. We simply denote 𝕀𝑡 = {1,… , 𝑁𝑡} ordered set of indices for treated units. Assume 

that the treated units are sorted depending on the propensity score value. The largest average 

propensity score is matched first, which corresponds to matching the units that are a priori the most 

difficult to match first in many real data problems. 𝑑(𝑥, 𝑥′) describe a measure of “distance” 

between two vectors of covariates. Let ℳ𝑖
𝑐 ⊆ 𝕀𝑐

′  denote the set of matched controls for treated unit 

𝑖 . ℳ𝑖
𝑐 = {𝑚𝑖} , where {𝑚𝑖} is the index of control units that is matched to treated unit 𝑖 . For the 

𝑖𝑡ℎ treated unit, the set containing the closest match is 

ℳ𝑖
𝑐 = {𝑗 ∈ 𝕀𝑐

′ −∪𝑖′=1
𝑖−1 ℳ𝑖′

𝑐  | 𝑑(𝑋𝑖 , 𝑋𝑗) =  𝑚𝑖𝑛𝑗′∈ 𝕀𝑐′− ⋃𝑖′=1
𝑖=1 ℳ

𝑖′
𝑐  𝑑(𝑋𝑖 , 𝑋𝑗′)   } 

where 𝕀𝑐
′ − ⋃𝑖′=1

𝑖=1 ℳ𝑖′
𝑐 is subset of  𝕀𝑐

′  excluding the set of all the control units used as matches, 

𝕀𝑐 =∪𝑖′=1
𝑖−1 ℳ𝑖

𝑐 with 𝑁𝑡 distinct elements.  

As indicated in the previous part, the estimated propensity score is denoted as 𝑒̂(𝑥) and then we 

define  
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𝑑𝑙(𝑥, 𝑥
′) = (𝑙(𝑥) − 𝑙(𝑥′))

2
= (𝑙𝑛 (

𝑒̂(𝑥)

1 − 𝑒̂(𝑥)
) − 𝑙𝑛 (

𝑒̂(𝑥′)

1 − 𝑒̂(𝑥′)
))

2

 

where 𝑙(𝑥) is linearized estimated propensity score (lps) or the logarithm of the odds ratio.  This 

is the squared Euclidean distance between the linearized propensity scores (Hansen,2004; Austin 

et al.,2007;  Imbens and Rubin ,2015). 

 

3.3 Variable Selection  for Propensity Score Models 

The propensity score method seeks to decrease the effectiveness of treatment selection bias when 

assessing treatment effects in non-randomized studies. Estimated propensity scores are employed 

to assure that the distribution of measured risk indicators for the outcome between treatment and 

outcome groups is similar and adjust for confounding variables. Furthermore, the PS is not 

exclusively intended to predict treatment well. Balancing covariates so as to control confounding 

and create a model for the prediction of treatment are different goals that require different 

approaches to variable selection. This raises an important question: Which covariates in the 

propensity score model should be added or exempted. It might be that variables that influence the 

treatment selection should be included. One of the essential features of the propensity score is 

highlighted in these circumstances: It is a balancing score. 

Consequently, there might not be equal importance for all covariates when we consider 

balancing scores. According to Austin et al. (2007), the true model ( factors connected to treatment 

and result) and the confounder model (variables related to the outcome alone)  can be preferable 

to models that solely incorporate variables that impact the treatment selection procedure in 

predicting propensity score. Myers et al. (2011), Wooldridge (2009), and Brookhart MA (2006) 
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found that instrumental variables related to treatment but not the outcome can cause inflation in 

bias and variance of the treatment effect estimate. 

Moreover, the treatment-outcome relationship based on the measured baseline covariates 

is crucial for identifying causal diagrams. (Austin and Stuart, 2015). This relationship is described 

for four categories of variables. First of all, if all covariates are linked with both treated and 

untreated assignments, it is called a true confounder model. The second definition is a true 

propensity confounder which is when covariates are related to only treatment but not the outcome. 

Third, some variables are related to the outcome but not treatment. This model is called a potential 

confounders model. Lastly, all measured variables are included is a full model.(Austin et al. , 

2007). 

 

3.4   Evaluate Biomarkers for Treatment Selection 

3.4.1   Setting 

In this study, two treatment alternatives are considered as "treatment"(T=1) and "Control" (T=0). 

Clinical binary outcome is denoted as Y, state whether or not  outcome represents death  after 

providing treatment/control. The marker, D is useful to explain the subgroup that  can be avoided 

or defines the necessity of treatment. 

 

3.4.2   Treatment Rule ,Estimation and Summary Measures 

Janes et al.[2014] stated that the absolute treatment effect  given marker value in randomized 

control trial in the following:  

                                      ∆(𝐷) = 𝑃(𝑌 = 1|𝑇 = 0,𝐷) − 𝑃(𝑌 = 1|𝑇 = 1, 𝐷)                                 (3.5) 

when  there is no benefit from treatment, marker performances are considered based on the rule 
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∆(𝐷) < 0 

∆(D)<0   and ∆ (D)>0  are called as “marker negatives” and “marker-positive”, respectively.  

Generalized linear regression risk model is considered with an interaction between treatment and 

marker in following:  

                                            𝑔(𝑃(𝑌 = 1|𝑇, 𝐷)) = 𝛽0 + 𝛽1𝑇 + 𝛽2𝐷 + 𝛽3𝑇𝐷                                 (3.6) 

where g is denoted as logit function.  

Following Janes et al. (2014), we propose a comparison of marker performance based on the 

characterization of the treatment rule at following: 

• Proportion marker-negative, 

𝑃𝑛𝑒𝑔 = 𝑃(∆(𝐷) = 0) 

• The average utility of untreated among marker-negatives 

𝐵𝑛𝑒𝑔 = 𝑃(𝑌 = 1|𝑇 = 1,∆(𝐷) = 0) − 𝑃(𝑌 = 1|𝑇 = 0,∆(𝐷) = 0) 

= 𝐸(−∆(𝐷)|∆(𝐷) = 0) 

 

• The average utility of  treated among marker-positives, 

𝐵𝑝𝑜𝑠 = 𝑃(𝑌 = 1|𝑇 = 1,∆(𝐷) = 1) − 𝑃(𝑌 = 1|𝑇 = 0, ∆(𝐷) = 1) 

= 𝐸(∆(𝐷)|∆(𝐷) = 1) 

 

• Decreasing in the population event rate in marker-based treatment assignment 

Θ = 𝑃(𝑌 = 1|𝑇 = 1) − [𝑃(𝑌 = 1|𝑇 = 1,∆(𝐷) = 1)𝑃(∆(𝐷) = 1)

+ 𝑃(𝑌 = 1|𝑇 = 0,∆(𝐷) = 0)𝑃(∆(𝐷) = 0) 

= [P(Y = 1|T = 1, ∆(D) = 0) − P(Y = 1|T = 0,∆(D) = 0)]P(∆(D) = 0) 

= 𝐵𝑛𝑒𝑔𝑃𝑛𝑒𝑔 
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where we assume that 𝑃(𝑌 = 1|𝑇, ∆(𝐷) = 0) = 0 𝑖𝑓 𝑃(∆(𝐷) = 0) = 0.So, Θ is acceptable as 

measure of treatment selection performance. The risk and treatment effect estimates are written 

as 

𝑃̂(𝑌 = 1|𝑇 = 0, 𝐷) = 𝑅𝑖𝑠𝑘̂0 (𝐷) = 𝑔
−1(𝛽̂0 + 𝛽̂2𝐷),   

 𝑃̂(𝑌 = 1|𝑇 = 1, 𝐷) = 𝑅𝑖𝑠𝑘̂1 (𝐷) = 𝑔−1(𝛽̂0 + 𝛽̂1 + 𝛽̂2𝐷 + 𝛽̂3𝐷)  

So, ∆̂1(𝑌) = 𝑅𝑖𝑠𝑘̂0 − 𝑅𝑖𝑠𝑘̂1 

Equation (3.5) identifies the estimation of direct treatment effects given marker value. Because 

covariates characteristics have not affected the treatment estimation of treatment effects is 

straightforward. We can propose the absolute treatment effect  given marker value: 

                                  ∆(𝐷) = 𝑃(𝑌 = 1|𝑇 = 0, 𝐷, 𝑋) − 𝑃(𝑌 = 1|𝑇 = 1,𝐷, 𝑋)   …                   (3.7) 

 

Risk model involves one of covariates ,which is related to treatment subject: 

                                 𝑔(𝑃(𝑌 = 1|𝑇,𝐷, 𝑋)) = 𝛽0 + 𝛽1𝑇 + 𝛽2𝐷 + 𝛽3𝑇𝐷…                               (3.8) 

 

I consider risk and treatment effects predicts that result from fitting the model (3.8) is given 

𝑃̂(𝑌 = 1|𝑇 = 0, 𝐷, 𝑋) = 𝑅𝑖𝑠𝑘̂0 (𝐷) = 𝑔
−1(𝛽̂0 + 𝛽̂2𝐷),   

𝑃̂(𝑌 = 1|𝑇 = 1, 𝐷,𝑋) = 𝑅𝑖𝑠𝑘̂1 (𝐷) = 𝑔−1(𝛽̂0 + 𝛽̂1 + 𝛽̂2𝐷 + 𝛽̂3𝐷) 

So, ∆̂2(𝑌) = 𝑅𝑖𝑠𝑘̂0 − 𝑅𝑖𝑠𝑘̂1 

 

  “Empirical” and “Model-based” estimators are written as  

𝐵𝑛𝑒𝑔
𝑒̂ = 𝑃𝑟̂(𝑌 = 1|𝑇 = 1, ∆̂(𝐷) = 0) − 𝑃𝑟̂(𝑌 = 1|𝑇 = 0, ∆̂(𝐷) = 0) 

𝐵𝑛𝑒𝑔
𝑚̂ = 𝐸̂(−∆̂(𝐷)|∆̂(𝐷) = 0) 
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𝐵𝑝𝑜𝑠
𝑒̂ = 𝑃𝑟̂(𝑌 = 1|𝑇 = 0, ∆̂(𝐷) = 1) − 𝑃𝑟̂(𝑌 = 1|𝑇 = 0, ∆̂(𝐷) = 1) 

𝐵𝑝𝑜𝑠
𝑚̂ = 𝐸̂(∆̂(𝐷)|∆̂(𝐷) = 1) 

𝑃𝑟𝑛𝑒𝑔̂ = 𝑃𝑟̂(∆̂(𝐷) = 0) 

Θ𝑒̂ = 𝐵𝑛𝑒𝑔
𝑒̂  𝑃𝑟𝑛𝑒𝑔̂ 

Θ𝑚̂=𝐵̂𝑛𝑒𝑔
𝑚 . 𝑃𝑟𝑛𝑒𝑔̂ = ∫−∆̂ (𝐷)𝐼[∆̂(𝐷) = 0 ]𝑑𝐹̂∆ 

where 𝑒 and 𝑚 superscripts define empirical and model-based estimators,  we denote   𝑃𝑟̂  to an 

empirical probability estimate and 𝐸̂ to an empirical mean. 

 

3.5   Simulation Study 

In this section, I demonstrate results from a large simulation study that compares the statistical 

properties and performance of proposed methodologies with that of various alternative methods. I 

used modification of the simulation structure defined by Setouchi et al (2008). This study performs 

a set of Monte Carlo simulations. Twelve variables each varying in their association with the 

treatment and outcome were considered ; these are shown in the following diagram: 

Figure 3.1: Simulation diagram 
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As seen in above Figure 3.1, covariates 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6  and 𝑋7 are connected with 

exposure assignment, whereas seven variables  𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋8, 𝑋9  and 𝑋10 are related to 

outcome variable( outcome predictors). Moreover, only the four covariates 𝑋1, 𝑋2, 𝑋3  and 𝑋4 are 

related with both treatment and outcome assignments, in that those four covariates are true 

confounders. But covariates  𝑋11 -𝑋17  are not associated with treatment or outcome and so, those 

variables are called as distractors variables. But  𝑋11 𝑎𝑛𝑑 𝑋12  variables are correlated to 𝑋10 and 

𝑋7 variables, respectively.  

Seventeen covariates are generated as a mixture of continuous and binary variables. I 

generate continuous predictors based on the standard normal distribution and the binary variables 

were dichotomized versions of standard normal distributions. So, 𝑋1, 𝑋3, 𝑋5, 𝑋6, 𝑋8, 𝑋9 , 𝑋11 , 𝑋13, 

𝑋14 , 𝑎𝑛𝑑 𝑋16 variables were dichotomize and 𝑋2, 𝑋4, 𝑋7, 𝑋10 ,𝑋12, 𝑋15, 𝑋17 variables were 

represented as continuous variables. Moreover, there are correlations between some of the 

variables with correlation coefficients varying 0.2 to 0.9. These correlation coefficients are defined 

before dichotomizing some of the covariates. Also, correlation coefficient set up between two 

covariates in following: (𝑋1  , 𝑋5) = 0.2,(𝑋2  , 𝑋6) = 0.9 , (𝑋3  , 𝑋8) = 0.2 , (𝑋4  , 𝑋9) = 0.9, 

(𝑋10  , 𝑋11) = 0.9 and (𝑋7  , 𝑋12) = 0.9. The data is simulated for a cohort study ( n=1000) and 

also, datasets were generated  1000 times for all scenarios. 

 

3.5.1 Simulation Design 

Treatment  Simulation and Scenarios 

First of all, treatment assignments are generated using logistic regression, covariate balancing 

propensity score, generalized boosted model, random forest, classification and regression trees  

and bagging models with function of 𝑋𝑖.Six scenarios are considered for generating treatment 
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assignments and the form is defined by  𝑃𝑟[𝑇 = 1|𝑋𝑖] = (1 + 𝑒𝑥𝑝{−(𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 𝜏𝜁)}). Version 

is shown below and  𝜏 is denoted for this variable’s variability effect.  𝜁 represents a random 

number , standard normal distributed and 𝜁 variable is not associated with treatment or outcome. 

Various  versions for generating  treatment assignment are as follows: 

A- Additive and linear (main effects terms only): 

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴=𝛼1𝑋1+𝛼2𝑋2+𝛼3𝑋3+𝛼4𝑋4+𝛼5𝑋5+𝛼6𝑋6+𝛼7𝑋7 

B- Moderate non-linearity (three quadratic terms): 

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐵=𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴+𝛼1𝑋2
2+𝛼4𝑋4

2+𝛼7𝑋7
2 

C- Mild non-additivity (four two-way interaction terms) 

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐶=𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴+𝛼1𝑋1𝑋3+𝛼2𝑋2𝑋4+𝛼3𝑋4𝑋5+𝛼4𝑋5𝑋6 

D- Mild non-additivity and non-linearity ( a quadratic and four two-way interaction terms) 

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐷=𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐶+𝛼2𝑋2
2 

E- Moderate non-additivity (ten two-way interaction terms): 

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐸=𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴+𝛼1 𝑋1𝑋3+𝛼2𝑋2𝑋4+𝛼3 𝑋3𝑋5+𝛼4𝑋4𝑋5 + 𝛼5𝑋5𝑋6+ 𝛼5 𝑋5𝑋7+ 

𝛼1 𝑋1𝑋6+𝛼2𝑋2𝑋3+𝛼3 𝑋3𝑋4+𝛼4𝑋4𝑋6  

F- Moderate non-linearity and non-additivity (3 quadratic term and 10 two-way interaction 

terms): 

𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐹=𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐸+𝛼2𝑋2
2+𝛼4𝑋4

2+𝛼7𝑋7
2 

Then, the number is generated based on the uniform distribution between 0 and 1. T is equal to 1 

when 𝑃𝑟[𝑇 = 1|𝑋𝑖] (true propensity score value) is larger than random number that is generated 

based on uniform distribution. Otherwise, treatment assignment set to 0 value. 𝛼′𝑠 variables are 

defines as 𝛼1 = 0.8,  𝛼2 = −0.25, 𝛼3 = 0.6, 𝛼4 = −0.4,  𝛼5 = −0.8, 𝛼6 = −0.5,  𝛼7 = 0.7, 

respectively. There is no intercept on the generating treatment model. 
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Outcome Simulation and Scenarios 

The simulated data includes realizations of a dichotomous outcome. Two versions were of the 

form 𝑃𝑟[𝑌 = 1|𝑇, 𝑋𝑖](1 + 𝑒𝑥𝑝{−(𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 + 𝜑𝜉)}). "𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒" represents 

the complexity of association between outcome and treatment assignment. If 𝑃𝑟[𝑌|𝑇, 𝑋𝑖]  value is 

larger than randomly generated number , I denote outcome as 1 value. Otherwise, outcome  set up 

to 0. The" scenario outcome" was obtained in two different ways as follows.  The first scenario in 

the outcome model is promoted to rely on the additive and linearity model with no intercept and 

treatment exposure -0.4.Also, non-linearity model is considered for second scenario, which 

includes exponential interaction among variables that associated with outcome and using the same 

values as the first scenario for intercept and treatment effect.   𝜑 terms is   random error term in 

the outcome model.  𝜉 is random error and term and it is generated with standard normal mean 0 

and  variance 1.5.The outcome versions are generated based on a range of covariates and treatment 

assignment versions. 

Two versions for generating  outcome assignments are as follows: 

I. Additive and linear outcome model: 

       𝑉𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖=𝛽0+𝛿1𝑇+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4+𝛽5𝑋8+𝛽6𝑋9+𝛽7𝑋10    

II. Non-linearity outcome model: 

       𝑉𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖𝑖=𝛽0+𝛿1𝑇+ exp (𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4+𝛽5𝑋8+𝛽6𝑋9+𝛽7𝑋10 )  

 𝛽’s parameters are defined as 0.3, -0.36,-0.73,-0.2,0.71,-0.19,0.26,-0.4  from 𝛽1 to 𝛽7, 

respectively.  

Biomarker Simulations 

The biomarker is simulated to compare the results under different scenarios, which rely on the 

results of propensity score analysis. A biomarker is generated based on the standard normal 
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distribution and second stronger marker considered. This marker is similar in structure to the 

simulation described by Janes et al. (2015). Thus,  each marker is associated to outcome, Y via a 

logistic regression model 

𝑙𝑜𝑔𝑖𝑡 𝑃(𝑌 = 1|𝑇, 𝐷)=𝛽0 + 𝛽1𝑇 + 𝛽2𝐷 + 𝛽3𝑇𝐷 

Propensity Score Estimation Scenarios  

The Monte Carlo simulation examines how well various propensity score models can balance the 

seventeen variables between treated and untreated individuals. Estimation propensity scores are 

generated from an LR, CBPS, GBM, RF, CART, and BAG models using treatment scenarios and 

outcome versions. Then, estimated values are employed for assessing the pair matching technique.  

So, we can determine which variables to include in estimation processes. These approaches are 

modeled after some of those selections. The following alternatives were considered for the model 

strategies: 

PSM1: This model encompasses 𝑋1 − 𝑋10 covariates, which are associated with both exposure 

or/and outcome. 

PSM2: Seven covariates (i.e., 𝑋1 − 𝑋7) are connected with treatment assignment and this model 

is called as a “ true propensity score model”. 

PSM3: This model is referred to “potential confounder model” that includes 𝑋1 − 𝑋4 and 𝑋8 −

𝑋10 covariates that are related with the outcome subject. 

PSM4: The only four main 𝑋1 − 𝑋4 covariates, are connected with outcome and exposure 

subjects at same time, included in model that is called as “true confounder model”. 

PSM5: This model was created by including 𝑋1 − 𝑋12 covariates. So, it mean that this model 

covered only two distractor variables. 

PSM6: All variables (𝑋1 − 𝑋17) are involved in the model is referred to “full model”. 
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Performance metrics 

The performance of the different propensity score models fitting approaches was measured using 

numerous metrics, including bias, SE,RMSE, relative bias and standardized difference. 

Bias: We compute bias based on the difference between the mean estimated treatment effect and 

the true effect set at 𝜃 = -0.4.So, it is formulated as 
1

𝑛
∑ (𝜃𝑖̂ − 𝜃)
𝑛
𝑖=1  

Empirical Standard Error (ESE): Standard deviation of treatment effects estimates for each 

simulated data in each scenario represent standard error. 

𝐸𝑆𝐸 = √ 
1

𝑛
   ∑(𝜃𝑖̂ − 𝜃̅̂)

𝑛

𝑖=1

 2  

where n denoted for number of datasets. 

Theoretical standard errors (SE): standard errors are produced based on the standard errors of 

average treatment effect and then taking average of n standard errors as 

𝑆𝐸 =
1

𝑛
∑𝑆𝐸𝑗̂

𝑛

𝑖=1

 

RMSE: It is represented taking square root of means square error for each estimator. It’s formula 

is√  
1

𝑛
∑ (𝜃𝑖 − 𝜃)2
𝑛
𝑖=1    . 

Relative Bias: It is computed as 100𝑥 (
𝐵𝑖𝑎𝑠

𝜃
) 
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3.6  Results 

3.6.1  The Results of  Simulation in Causal Inference 

We performed a comprehensive simulation study to assess the performance of our recommended 

techniques. We modified the simulation design of Setoguchi et al. (2008). Parametric and machine 

learning are employed to estimate propensity scores and investigate how the elements in the 

propensity score model impact the number of matched treatment and control individuals. We 

performed logistic regression(LR), and covariate balance propensity score (CBPS)  as parametric 

approaches, while generalized boosted model (GBM), Random Forest(RF), classification and 

regression trees (CART), and bagging(BAG) are employed for the machine learning methods. 

When Propensity score model scenarios (i.e., PMS1-6) were fitted utilizing parametric and 

machine learning methods, we used six different treatment scenarios (called by Treatment A-F) 

and two outcome scenarios (called Outcome1-2) shown in below tables. All results examined rely 

on 1:1 matching on propensity score data. 

Performance of bias and RMSE in Treatment A-D-F and Outcome-1 (Table-3.1):  

The performance metric we use in Tables 3.1 and 3.2 below to compare models is the bias and 

RMSE of the propensity score estimates. The performances of LR and CBPS showed variability 

in the results in the linearity and additivity treatment (Treatment-A) and linear outcome assignment 

(i.e., outcome-1) scenarios accompanied by propensity score models (PSM1-6). The performance 

of CBPS was the slightly better with a mean of bias of 0.88,1.476 for PSM1 and PSM2 in the 

linearity and additivity treatment (Treatment A) and linearity and additivity outcome(Outcome 1) 

versions, whereas the remainder PSMs methods illustrate the smaller bias values in LR, which 

correspond to 1.022, 0.522, 0.943, and 1.064 for PSM3-6, respectively. There is a significant rise 

in RMSE values when more variables are added to the propensity score models or confounders are 
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added in the LR and CBPS methods. For example, RMSEs of LR and CBPS were 0.230 and 0.237 

in true confounder models; meanwhile, their values correspond to 0.270 and 0.273 in full models, 

respectively. The bias and RMSE of LR and CBPS techniques seem to be large across all PSMs 

in moderate nonlinearity and non-additivity treatment (Treatment F) compared to the simpler 

additivity and linear treatment setting (Treatment-A). Overall, the performance of LR is generally 

smaller biased in scenario of additivity and linearity (Treatment F) with a mean bias of 

2.73,1.377,1.050, 1.576,1.509, and 1.873 across PSM1-6 compared to CBPS. In other words, we 

can state that it doesn't matter which variables are included in the PS model of LR method when 

using moderate nonlinearity and non-additivity treatment assignment in linearity outcome 

scenarios (Table 3.1). There is a significant rise in RMSE values when more variables or 

confounders are added to the propensity score models in the LR and CBPS methods. For example, 

RMSEs of LR and CBPS were 0.230 and 0.237 in true confounder models (PSM4); meanwhile, 

their values correspond to 0.270 and 0.273 in full models (PSM6), respectively. The bias and 

RMSE of LR and CBPS techniques seem to be large across all PSMs in moderate nonlinearity and 

non-additivity treatment (Treatment F) compared to the simpler additivity and linear treatment 

setting (Treatment-A).  

 The machine learning techniques reveal a large variety of results in evaluating bias and 

RMSE metrics. For example, the CART method has the lowest biases with a respective mean of 

0.004 for PSM1 and PSM5 among the machine learning techniques even though BAG method 

corresponds to 4.666 and 4.206 for PSM1 and PSM5, respectively in linearity and additivity 

treatment. Also, CART presents the most downward bias in the all full propensity score model, 

which is included X1-X17 (i.e., full model) in all treatment scenarios. Moreover, there is a huge 

increasing trend in bias from Treatment-A to Treatment-F across in RF methods. When 
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considering more complex treatment scenarios (i.e., Treatment-F), CART performs more reliable 

than the rest of the three machine learning methods across all PSMs models. However, exclusion 

or inclusion variables in models do not make a remarkable difference in assessing BAG model 

performance. So, BAG method performs poorest compared to other methods across all PSMs and 

all treatments and outcome scenarios. Moreover, the second poor performance among all methods 

is showed by GBM.  

We can conclude from this result that the RF method estimates tended to make smaller bias 

when PSM models included all variables related to treatment, outcome, both them or confounders 

in simpler treatment (Treatment-A). . But CART managed to produce less bias if PSMs are formed 

by covariates X1-X10, which are associated with treatment or outcome assignments. Both RF and 

CART were pretty close RMSE values for all PSM versions according to the rest of the four 

methods (LR, CBPS, GBM, and CART), as seen in table 3.1. However, the bagging method 

performed poorly no matter which of PSMs were considered to assess bias and RMSE metrics in 

Treatment A-D-F versions. 
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Performance of bias and RMSE in Treatment A-D-F and Outcome-2  (Table-3.2):  

The difference between table 3.1 and table 3.2 is to use only different outcome versions: 

linearity and additivity outcome version (Outcome 1), and nonlinearity and non-additivity outcome 

version (Outcome-2). As illustrated in table 3.2, the LR consistently resulted in a smaller bias when 

PSM1-2-5-6 were considered, but the trend reversed for PSM3-4. There is no difference between 

PSM1 and PSM5 LR for biases that correspond to 2.537 percent in linearity and additive treatment 

version (Treatment-A) via nonlinearity and non-additivity outcome version (Table 3.2). It is 

observed that there is no effect by covariates X11 and x12, which are not associated with treatment 

nor outcome but related with X7 and X10, respectively. So, PSM1 and PSM5 displayed similar 

bias and RMSE measurement values in Treatment-A(Table 3.2). Machine learning techniques in 

linearity and additivity treatment, Treatment-A and non-linearity outcome,Outcome-2 are partly 

more complicated than the same techniques in Treatment-A and Outcome-1. Those results imply 

that CBPS produce better performance for bias in PSM1,2,5,6 while PSM3 and PSM4 were the 

slightest bias in Treatment-A and Outcome-2 for the parametric approach. Nevertheless, there is a 

remarkable growth in bias values from simple treatment assignment form (Treatment-A ) to mild 

or moderate complex treatment assignment versions (Treatment -D and F). The CART yields less 

bias, especially in the presence of adding confounder and distractors variables on propensity score 

models. RF method in PSM3 and PSM4 appears to be lower bias in Treatment-A and Treatment-

F, as seen in table-3.2.To conclude the findings of table 3.1 and table-3.2, random forest is the best 

for PSM3, and CART tends to produce less bias for PSM1-2-5 scenarios across all scenarios (i.e., 

treatment A via outcome-1 or outcome-2, treatment F via outcome-1 or outcome-2).In the sense 

of bias, permanently across all method and model versions, the BAG method demonstrated higher 

bias and RMSE for the simple, all treatment and outcome versions. 
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Performance of absolute relative bias(%): 

The relative bias is investigated based on the pair matching on propensity score across all 

scenarios.  Figure 3.2 illustrates the relative bias percent for three treatment versions (A, D, F)  

versus two outcomes (i.e., linearity and additivity outcome (Outcome-1) and non-linearity and 

non-additivity outcome (Outcome-2)). Each propensity score method resulted in additivity and 

linearity treatment (Treatment-A), mild non-additivity and non-linearity (Treatment-D), and 

moderate non-linearity treatment versions (Treatment E)  show various fluctuations for propensity 

score models (PSMs) output in Figure 3.2. According to panels from Treatment-A and Treatment-

D, it is evident that the bagging method had tended to largest the relative bias. Indeed, the second-

largest relative bias is represented by GBM across all propensity score models. In contrast, we can 

generally conclude that RF and CART partially presented better performance than others, and 

CBPS may not be an alternative for LR across all propensity score models when PSMs are 

constructed based on then additivity model. 
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Figure 3.2:  Absolute relative bias (%) of propensity score matching on different parametric and 

machine learning techniques  using various PSMs by Treatment A-D-F versus Outcome 1-2 

scenarios 

 

 

Abbreviations:  GLM: Generalized Linear Model , CBPS: Covariate Balance Propensity Score,  

GBM: Generalized Boosted Model, RF: Random Forest,  CART: Classification and Regression 

trees. PMS1: 𝑋1 − 𝑋10 covariates are included ,PMS2: 𝑋1 − 𝑋7 covariates are included ,PMS3: 

𝑋1 − 𝑋4  and 𝑋8  − 𝑋10covariates are included , PMS4: 𝑋1 − 𝑋4 covariates are included, PMS5: 

𝑋1 − 𝑋12 covariates are included, PMS6: 𝑋1 − 𝑋17 covariates are included. Treatment A: linearity 

and additivity, Treatment D: Mild non-additivity and non-linearity, Treatment F: Moderate non-

additivity and non-linearity, Outcome-1: Additive and linear outcome model, Outcome-2: non-

linearity outcome model 
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Performance of empirical standard error (ESE) and theoretical standard error (SE) : 

We preferred to use standard errors, which investigate treatment effects on the outcome. Standard 

errors were computed based on the model-based for every simulated dataset (i.e.,  the 1000  

standard error for 1000 simulated datasets). Then, we take averages of all estimated standard errors 

according to the simulated dataset's sample size. Model-based standard error represented as "SE" 

in tables.SE results for propensity estimation methods versus propensity score models are informed 

in table 3.7-3.10 (see Appendix) for all treatment and outcome scenarios. The second metric is the 

empirical standard error (ESE) that considered the sample standard deviation of average estimates 

of treatment effects. LR and CBPS methods obtained similar SEs for all estimation methods and 

PSMs under all treatment versions of nonlinearity outcome (Outcome-1).However, slightly 

increasing the SEs from outcome-1 to outcome-2 versions i.e., compared the SEs for each 

treatment version between table-3.7 and table-3.8  across all treatment assignments. Hence, 

outcome complexity may lead to increasing variation of estimated treatment effects. 

In contrast, the CART performs the low mean SEs in all PMSs for linearity outcome, 

ranging from SEs: 0.027-0.030  for PSM1 across all treatment scenarios in  linearity outcome 

(Outcome 1). Also, the ESE yields a remarkable difference between BAG methods and the 

remaining methods for all PMSs. For example, the ESE from the BAG method was almost two 

times larger than the other methods. The ESE performance for all PMSs is parallel among 

propensity score estimation methods, and so, there is a constant pattern throughout all PMSs. In 

other words,  there are growing patterns in the ESEs from linearity outcome  version (Outcome-1) 

to non-linearity outcome (Outcome-2) against the same treatment assignment. 
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3.6.2   The  Results of  Simulation in Treatment Selection 

As seen in table 3.1-3.2 and 3.5-3.10 (in Appendix), to perform the different propensity score 

estimation methods utilizing several PSMs across different generated treatment and outcome 

assignments, we obtained the results from those tables. We then saved the datasets, which are 

based on each scenario. Finally, we aim to examine treatment selection markers based on those 

observational datasets in tables 3.3-3.4 and tables 3.11-3.12 (Appendix) in this section. Table 3.3 

presents marker evaluation using 𝐵𝑛𝑒𝑔, 𝐵𝑝𝑜𝑠metrics  for "linearity and additivity treatment" (i.e., 

treatment-A assignment)  and  "linearity and additivity outcome"(outcome-1 assignment). , 𝐵𝑛𝑒𝑔, 

𝐵𝑝𝑜𝑠parameters are beneficial for analyzing the marker's effects. To make comparisons, we first 

look at PSM1 using six alternatives propensity score methods. CART represents the smallest 

, 𝐵𝑛𝑒𝑔, 𝐵𝑝𝑜𝑠metric in Table 3.3.CART has a 1.9 percent reduction in sample impact. In 

comparison, GBM has a 2.6 percent reduction in population impact as it has the bigger theta 

measure among of methods. 

This is attributable to the fact that 50 percent (𝑃𝑛𝑒𝑔 metric) of participants avoided specific 

treatment, resulting in a 5.1(𝐵𝑛𝑒𝑔 metric) percent decrease in the occurrence rate. The treated group 

reduces the event rate by 13% for average among marker-positive patients according to consider 

the RF method in PSM1 (Table-3.3). This method corresponds to 0.002 as variance in treatment 

effect and    0.044 for width from the marginal exposure impact to exposure impact curve. 
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Table 3.3: Estimates of measures of marker performance based on the resulted LR, CBPS, GBM, 

RF, CART, BAG propensity score methods  across PSM 1-4-6 scenarios  in Treatment-A and 

Outcome 1 versions 

                                                       𝐏𝐧𝐞𝐠               𝐁𝐧𝐞𝐠                    𝐁𝐩𝐨𝐬             𝐕          TG 

                              Model    Emp.                  Model    Emp.       Model   Emp.    

PSM1 LR 0.023 0.023 0.501 0.047 0.047 0.132 0.132 0.003 0.047 

 CBPS 0.023 0.023 0.502 0.046 0.046 0.130 0.130 0.003 0.047 

 GBM 0.026 0.026 0.498 0.054 0.053 0.157 0.157 0.003 0.056 

 RF 0.025 0.025 0.498 0.051 0.051 0.128 0.128 0.002 0.044 

 CART 0.019 0.019 0.500 0.038 0.038 0.123 0.123 0.003 0.042 

 BAG 0.023 0.023 0.488 0.052 0.052 0.226 0.226 0.013 0.091 

PSM4 LR 0.028 0.028 0.502 0.057 0.057 0.128 0.128 0.002 0.041 

 CBPS 0.026 0.026 0.501 0.053 0.053 0.130 0.130 0.002 0.044 

 GBM 0.031 0.031 0.494 0.064 0.064 0.149 0.149 0.003 0.046 

 RF 0.20 0.021 0.498 0.041 0.042 0.119 0.119 0.003 0.044 

 CART 0.028 0.028 0.499 0.057 0.057 0.130 0.130 0.001 0.036 

 BAG 0.041 0.042 0.493 0.085 0.086 0.202 0.202 0.006 0.062 

PSM6 LR 0.023 0.023 0.497 0.046 0.046 0.128 0.129 0.003 0.046 

 CBPS 0.023 0.023 0.498 0.047 0.047 0.137 0.138 0.004 0.050 

 GBM 0.027 0.027 0.492 0.056 0.056 0.168 0.168 0.005 0.060 

 RF 0.021 0.021 0.500 0.043 0.042 0.120 0.120 0.003 0.044 

 CART 0.021 0.021 0.503 0.042 0.042 0.120 0.128 0.002 0.042 

 BAG 0.012 0.012 0.487 0.029 0.029 0.259 0.259 0.001 0.116 

 

Abbreviations:  LR: Logistic Regression , CBPS: Covariate Balance Propensity Score,  

GBM: Generalized Boosted Model, RF: Random Forest,  CART: Classification and Regression 

trees. PMS1: 𝑋1 − 𝑋10 covariates are included,PMS4: 𝑋1 − 𝑋4 covariates are included, PMS6: 

𝑋1 − 𝑋17 covariates are included. Treatment A: linearity and additivity, Outcome-1: Additive and 

linear outcome model 
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When looking performance of methods from PSM4 to PSM1 and PSM6, respectively,   we notice 

a growing trend for each method corresponding to each PSM for the mean benefit of treatment 

among people who have found evidence for a marker (𝐵𝑝𝑜𝑠) .In contrast, reduced trends for 

𝐵𝑛𝑒𝑔from  PSM4 to PSM1, PSM6, respectively. For example, it was a consequence of 15 

percent,16 percent,17 percent mean utility of treatment assignment in marker-positivities for GBM 

methods of  PSM4, PSM1, and PSM4 models. BAG method in PSM6 produced bigger total 

gain(TG)  than the others, with respective ranges of 0.062-0.116 across the three propensity score 

models. Indeed, we notice that the RF method performed the lowest value in examining the 

reduction in sample occurrence rate under marker-based treatment. 
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Table 3.4: Estimates of measures of marker performance based on the resulted LR, CBPS, GBM, 

RF, CART, BAG propensity score methods  across PSM 1-4-6 scenarios  in Treatment-F and 

Outcome 2 versions 

                                                        𝐏𝐧𝐞𝐠              𝐁𝐧𝐞𝐠                   𝐁𝐩𝐨𝐬              𝐕          TG 

                                Mod.     Emp.                   Mod.       Emp.     Mod.      Emp. 

 

 

 

PSM1 

LR 0.021 0.021 0.495 0.044 0.044 0.123 0.123 0.003 0.044 

CBPS 0.022 0.022 0.495 0.044 0.044 0.113 0.114 0.002 0.040 

GBM 0.011 0.011 0.508 0.022 0.022 0.134 0.134 0.005 0.059 

RF 0.029 0.029 0.498 0.059 0.059 0.131 0.131 0.003 0.042 

CART 0.019 0.019 0.500 0.038 0.038 0.123 0.123 0.003 0.042 

BAG 0.018 0.018 0.489 0.039 0.039 0.214 0.215 0.012 0.090 

 

 

PSM4 

LR 0.020 0.020 0.498 0.041 0.041 0.119 0.119 0.003  0.044 

CBPS 0.023 0.023 0.500 0.045 0.045 0.122 0.122 0.003 0.044 

GBM 0.027 0.027 0.494 0.057 0.057 0.145 0.146 0.003 0.048 

RF 0.016 0.016 0.499 0.033 0.033 0.114 0.114 0.003 0.045 

CART 0.020 0.020 0.500 0.040 0.040 0.139 0.139 0.003 0.049 

BAG 0.027 0.027 0.496 0.056 0.056 0.181 0.181 0.006 0.066 

 

 

PSM6 

LR 0.022 0.022 0.493 0.046 0.046 0.127 0.127 0.003 0.046 

CBPS 0.017 0.017 0.494 0.036 0.036 0.122 0.122 0.003 0.047 

GBM 0.002 0.002 0.500 0.007 0.007 0.139 0.139 0.007 0.070 

RF 0.020 0.020 0.498 0.041 0.041 0.131 0.131 0.003 0.049 

CART 0.011 0.011 0.501 0.024 0.024 0.127 0.127 0.003 0.051 

BAG 0.006 0.006 0.493 0.007 0.007 0.222 0.222 0.021 0.115 

 

Abbreviations:  LR: Logistic Regression , CBPS: Covariate Balance Propensity Score,  

GBM: Generalized Boosted Model, RF: Random Forest,  CART: Classification and Regression 

trees. PMS1: 𝑋1 − 𝑋10 covariates are included , PMS4: 𝑋1 − 𝑋4 covariates are included, PMS6: 

𝑋1 − 𝑋17 covariates are included. Treatment F: Moderate non-additivity and non-linearity, 

Outcome-2: non-linearity outcome model. 
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3.7   Summary & Discussion 

In literature, researchers in healthcare and public health studies frequently use propensity score 

estimation methods such as logistic regression, random forest, neural network, CART, pruned 

CART, etc. Unfortunately, there are significant challenges for the implementation procedure of 

these methods and comparing the performance of these methods. Therefore, we examine two main 

fields in this paper using Monte Carlo simulations: assessing the propensity score methods to 

eliminate bias and satisfy covariate balance between treated and untreated groups and examined 

the biomarker performance for treatment selection. 

 The first purpose of this paper is to evaluate six methods to estimate propensity score: logistic 

regression(LR) and covariate balance propensity (CBPS) as parametric approaches, and 

generalized boosted method (GBM), random forest (RF), classification and regression 

trees(CART) and bagging(BAG) as machine learning techniques. Secondly, the term " variable 

selection" refers to the variables included or excluded in the model, not the procedure by which 

variables were chosen and determine variables' effects on the model. Also, we performed these 

methods fitting different propensity score models across several treatment and outcome 

assignment versions throughout this study. We use six treatment scenarios (called Treatment A-F) 

and two outcome scenarios (called Outcome1-2) below tables. All results examined rely on 1:1 

matching on propensity score data. We modified the simulation design of Setoguchi et al. (2008) 

along with this paper. Finally, we give the relevant recommendations for researchers: Firstly, 

Setodji et al. (2017) recommend that using logistic regression has been observed to have the 

drawback to employed estimation of the weighting on the propensity score. That's why CBPS 

always might not be an alternative technique for logistic regression. According to this paper, 

Setodji paper’ recommendation might not be valid under different conditions and scenarios from 
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simulations. We show that logistic regression might consistently be practical using treatment and 

outcome scenarios for employing different propensity score models (PSMs).Also, We cannot 

generalize about LR’s good performance when considering complex propensity score models and 

complex treatment and outcome scenarios. However, even though the GBM method was not the 

best method among all the machine learning techniques, GBM might be an excellent alternative to 

estimate treatment effects instead of preferring bagging methods. Moreover, Throughout this 

paper, bagging performed the worst method, even utilizing different PSMs, considering 

complexity or simplest treatment and outcomes assignments. RF and CART can be comparable 

techniques in even parametric or non-parametric techniques. But we realize that choosing a 

variable selection on the models has been a critical thing for these two methods. In other words, 

results illustrated which including or excluded variables have been influenced the performance of 

RF and CART methods. Besides, there is a remarkable difference between different treatment 

assignments and outcome versions, i.e., the complexity of treatment or outcomes is highly crucial 

on propensity score estimation performance on RF and CART. Finally, we provided a statistical 

methodology for analyzing treatment selection markers based on using datasets of causal 

inference. This paper makes the first generalization about treatment selection implementation in 

observational studies under considering several versions. We used the same biomarker with 

different produced datasets from causal inference. We exactly make sure that there is a significant 

effect from which methods or models are preferred in causal inference application. 
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3.8   Appendix 
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Figure 3.3: Absolute relative bias (%) of propensity score matching on different parametric and 

machine learning techniques  using various PSMs by Treatment B-C-E versus Outcome 1-2 

scenarios 

 

Abbreviations:  GLM: Generalized Linear Model , CBPS: Covariate Balance Propensity Score, 

GBM: Generalized Boosted Model, RF: Random Forest,  CART: Classification and Regression 

trees. PMS1: 𝑋1 − 𝑋10 covariates are included ,PMS2: 𝑋1 − 𝑋7 covariates are included ,PMS3: 

𝑋1 − 𝑋4  and 𝑋8  − 𝑋10covariates are included , PMS4: 𝑋1 − 𝑋4 covariates are included, PMS5: 

𝑋1 − 𝑋12 covariates are included, PMS6: 𝑋1 − 𝑋17 covariates are included. Treatment B: linearity 

and additivity, Treatment C: Mild non-additivity and non-linearity, Treatment D: Moderate non-

additivity and non-linearity, Outcome-1: Additive and linear outcome model, Outcome-2: non-

linearity outcome model 
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Table 3.11: Estimates of  measures of marker performance based on the resulted 

LR,CBPS,GBM,RF,CART,BAG propensity score methods across PSM 2-3-5 scenario in 

Treatment-A against Outcome-1  assignments 

 

                                                      𝐏𝐧𝐞𝐠               𝐁𝐧𝐞𝐠                    𝐁𝐩𝐨𝐬              𝐕          TG 

                                Mod.     Emp.                Mod.       Emp.     Mod.      Emp. 

PSM2 LR 0.024 0.024 0.499 0.048 -0.048 0.130 0.130 0.003 0.046 

 CBPS 0.023 0.023 0.501 0.045 -0.045 0.128 0.130 0.003 0.047 

 GBM 0.033 0.033 0.496 0.066 -0.067 0.153 0.157 0.003 0.048 

 RF 0.027 0.027 0.506 0.053 -0.053 0.126 0.126 0.003 0.042 

 CART 0.018 0.018 0.498 0.036 -0.036 0.121 0.121 0.002 0.042 

 BAG 0.036 0.036 0.487 0.075 -0.074 0.204 0.204 0.007 0.068 

PSM3 LR 0.023 0.023 0.492 0.048 -0.048 0.129 0.129 0.003 0.045 

 CBPS 0.020 0.024 0.494 0.048 -0.048 0.128 0.128 0.003 0.045 

 GBM 0.029 0.029 0.502 0.057 -0.057 0.148 0.148 0.004 0.050 

 RF 0.021 0.021 0.498 0.043 -0.043 0.118 0.118 0.003 0.042 

 CART 0.027 0.027 0.502 0.055 -0.055 0.131 0.131 0.002 0.038 

 BAG 0.031 0.031 0.486 0.070 -0.070 0.203 0.203 0.008 0.069 

PSM5 LR 0.022 0.022 0.498 0.044 -0.046 0.128 0.129 0.003 0.047 

 CBPS 0.027 0.027 0.495 0.054 -0.047 0.132 0.132 0.003 0.044 

 GBM 0.032 0.032 0.499 0.065 -0.056 0.164 0.164 0.004 0.054 

 RF 0.023 0.023 0.498 0.046 -0.042 0.122 0.122 0.003 0.043 

 CART 0.018 0.018 0.498 0.035 -0.042 0.134 0.134 0.003 0.049 

 BAG 0.016 0.017 0.500 0.037 -0.029 0.224 0.224 0.013 0.095 

 

Abbreviations:  LR: Logistic Regression , CBPS: Covariate Balance Propensity Score, GBM: 

Generalized Boosted Model, RF: Random Forest,  CART: Classification and Regression trees. 

PMS1: 𝑋1 − 𝑋10 covariates are included , PMS4: 𝑋1 − 𝑋4 covariates are included, PMS6: 𝑋1 −

𝑋17 covariates are included. Treatment F: Moderate non-additivity and non-linearity, Outcome-2: 

non-linearity outcome model 
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Table 3.12: Estimates of  measures of marker performance based on the resulted 

LR,CBPS,GBM,RF,CART,BAG propensity score methods across PSM 2-3-5 scenario in 

Treatment-F against Outcome-2  assignments 

 

                                                        𝐏𝐧𝐞𝐠             𝐁𝐧𝐞𝐠                     𝐁𝐩𝐨𝐬              𝐕          TG 

                                Mod.     Emp.                 Mod.       Emp.     Mod.      Emp. 

 

 

 

PSM2 

LR 0.024 0.024 0.501 0.048 0.048 0.117 0.117 0.002 0.040 

CBPS 0.026 0.026 0.503 0.052 0.052 0.112 0.111 0.002 0.036 

GBM 0.015 0.015 0.448 0.031 0.031 0.147 0.147 0.006 0.062 

RF 0.021 0.021 0.501 0.042 0.043 0.131 0.131 0.003 0.049 

CART 0.020 0.019 0.499 0.041 0.041 0.120 0.120 0.002 0.040 

BAG 0.027 0.026 0.472 0.057 0.057 0.220 0.220 0.012 0.085 

 

 

PSM3 

LR 0.024 0.024 0.499 0.048 0.048 0.127 0.127 0.003 0.044 

CBPS 0.023 0.024 0.496 0.048 0.048 0.125 0.125 0.003 0.044 

GBM 0.028 0.028 0.502 0.056 0.056 0.148 0.148 0.004 0.050 

RF 0.019 0.019 0.500 0.038 0.039 0.128 0.128 0.003 0.049 

CART 0.020 0.020 0.503 0.040 0.040 0.144 0.144 0.003 0.052 

BAG 0.026 0.020 0.497 0.043 0.043 0.200 0.200 0.010 0.081 

 

 

PSM5 

LR 0.028 0.028 0.495 0.057 0.057 0.119 0.119 0.003 0.037 

CBPS 0.023 0.022 0.499 0.046 0.046 0.123 0.123 0.003 0.044 

GBM 0.001 0.001 0.497 0.004 0.005 0.150 0.151 0.007 0.076 

RF 0.020 0.020 0.496 0.041 0.042 0.127 0.127 0.003 0.047 

CART 0.015 0.015 0.499 0.031 0.031 0.127 0.127 0.003 0.048 

BAG 0.007 0.008 0.500 0.018 0.019 0.217 0.217 0.021 0.101 

Abbreviations:  LR: Logistic Regression , CBPS: Covariate Balance Propensity Score, GBM: 

Generalized Boosted Model, RF: Random Forest,  CART: Classification and Regression trees. 

PMS1: 𝑋1 − 𝑋10 covariates are included , PMS4: 𝑋1 − 𝑋4 covariates are included, PMS6: 𝑋1 −

𝑋17 covariates are included. Treatment F: Moderate non-additivity and non-linearity, Outcome-2: 

non-linearity outcome model. 
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CHAPTER 4 

The Performance of Propensity Score Weighting Methods 

under Limited Overlap and Model Misspecification 

 

4.1   Introduction 

Propensity score analysis has been frequently used to control for different kinds of bias in 

observational studies.  The seminal study was by Rosenbaum and Rubin (1983). The propensity 

score theory and its application to various research areas' data sets have been fundamental in causal 

inference research. Most of the studies using propensity scores have focused on binary 

treatments/exposures, i.e., treatment and control groups. In the binary case, the definition of 

propensity score is the probability of treatment conditional on X, e(X)=P(T=1|X), where X is a 

covariate or vector of covariates and T is exposure or treatment assignment. Logistic regression is 

used to estimate these probabilities. Also, in the case of a binary treatment, subjects with similar 

estimated propensity score values have similar covariate vectors which removes imbalances 

between treated and untreated groups. For randomized studies, there is probabilistic balance 
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between observed and unobserved covariates across treatment or exposure groups that eliminates 

bias and accurately estimate treatment effects so valid comparisons between groups can be made.  

While causal inference studies with two treatment groups common in the literature, assessing more 

than two treatment groups is vital in public health and medical research. But multiple treatments 

are more complicated than binary treatments for causal inference. Nonetheless, some papers have 

shown that propensity score methods can be extended to multiple treatment cases with three or 

more conditions. There are some advantages to using matching based on the propensity score. The 

main advantage of the propensity score matching is its reduction of dimensions.  X  includes 

covariates, which can have many dimensions, and the propensity score reduces all this 

dimensionality to a one-dimensional score. Secondly, the matching method considers not only 

strictly linear relationships between the outcome and propensity score, but also more complex 

relationships. 

Researchers discuss the various matching methods in literature such as Mahalanobis metric 

matching, Mahalanobis metric matching including the propensity score, nearest-neighbor 

matching, caliper matching, nearest-neighbor matching within a caliper. One of the well-known 

papers examines all matching techniques (Austin, 2014), but only with two treatments. Later, 

propensity score weighting was generalized to the more than two treatment arms (Imbens, 2000). 

Even though there is an increasing demand for using various matching and weighting methods for 

any treatment assignment circumstances, researchers tend to prefer utilizing inverse probability 

weighting in literature. While having many advantages, inverse probability weights may suffer 

when too small or large propensity score values are present. Thus, it leads to estimate bias 

treatment effects and assessing inappropriate causal relationships between treatment and outcome, 

treatment and covariate or outcome and covariates. 
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There are two ways to assess whether a consistent estimator of ATE is obtained: checking 

covariate balance and overlap assumption. Different factors may have played a critical role in 

producing unsatisfied assumptions and unsatisfactory performance. In other words, reporting the 

inaccurate propensity score model, using missing covariates, or employing  a small sample dataset 

may cause the assumptions to be violated. Trimming can sometimes be effective in reducing bias 

in nonrandomized studies.  However, it may not be appropriate to perform trimming in small 

datasets. To address excessive PS weighting problems, Crump et al. (2009) recommend excluding 

large and small weights value from the sample of the estimated propensity score because they 

increase the variance of the estimators. The threshold for removing extreme weights is fixed as 

less than 0.1 and more than 0.9 propensity values. So, extreme weights might be less influential. 

Overlap weights (OW), matching weights (MW), entropy weights (EW), treated 

weight(TW) , and inverse probability weighting(IPW) with trimming have been presented as 

alternatives to inverse probability weighting (IPW) for addressing overlap limitations (Crump et 

al.,2009; Li et al.,2018; Li et al.,2019; Mao et al.,2019; Yoshida et al.,2018; Zhou et al.,2020). Li 

et al.(2019) proposed extending those methods for multiple treatments and illustrated the 

improvement of overlap and covariate balance between each pair of treatment groups. However, 

their paper only gives a vague idea about relative performance of methods under the good overlap 

and lack of overlap conditions. Their paper did not discuss trimming with IPW, provided no 

information about the impact of the true propensity score models versus misspecified models, and 

included no study of what happens to covariate balance under violations of positivity assumptions. 

At the same time, Yoshida et al. (2018) conducted the study of trimming methods to deal with 

extreme propensity score values, but did not attempt to examine overlap of weights, matching 

weights, or other approaches. To address these gaps in the literature, this paper will examine 
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eliminating positivity assumption violations under various scenarios. Furthermore, this study 

presents the in addition to the simulation study a study with real data from the  “subset of alcohol 

and other drug treatment” dataset (AOD) where patients received one of three treatments. Lastly, 

we examined the performance of variance estimation  based on the robust sandwich-type estimator 

and bootstrap variance estimator when using balance weights family (i.e., MW,OW,IPW,TW,EW 

and IPW) and GPSM methods. 

The paper is organized as follows: we start Section 4.2 with our  symbols and brief of 

background in multiple treatment. In Section 4.3,We discuss about limitation of the positivity 

assumption. Section 4.4 extensively addressed several approaches for eliminating the difference 

between treatment groups when utilizing Generalized Propensity Score  Matching (GPSM), MW, 

OW, IPW, TW, EW, and IPW with trimming methods. We present datasets and its analysis  in 

Section 4.5, and simulation strategies briefly Section 4.6. We illustrate a comprehensive set of 

monte Carlo simulations used to analyze the results of various algorithms. The results of 

simulations and data analysis are shown.  

 

4.2   Background 

4.2.1 The Framework of Potential Outcomes in Multiple Treatments 

We offer a few notations to help explain the concepts of potential outcomes. N units are chosen 

from a large population ,indexed 𝑖 = 1,… ,𝑁. Provide 𝑇𝑖 is quantitative factors denoting which of 

the 3 or more treatments the 𝑖𝑡ℎ subject received, and 𝑋𝑖 is a vector of baseline covariates. Let 𝑌𝑖  

indicate the outcome for individual i. We receive treatment 𝑇𝑖 = 𝑡 if individual 𝑖 is observed 𝑡 ∈

ℑ = {1,… ,𝑀} in which M represents total of treatments. The set of potential outcomes are denoted 

as {𝑌(1),… , 𝑌(𝑀)} for subject 𝑖 considering  all possible treatments, and to be clear, exactly one 



 

98 

of those outcomes is observed for each subject. Thereby, the triple (𝑌𝑖 , 𝑇𝑖 , 𝑋𝑖) denoted for subject 

𝑖 throughout the paper. We also denote the indicator of observed treatment t for subject 𝑖  as : 

                                                          𝐼𝑖(𝑡) = {
1         𝑖𝑓  𝑇𝑖 = 𝑡
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                  (4.1) 

,where 𝐼𝑖(𝑡) represents  the indicator function for receiving intervention 𝑡 for individual 𝑖.  In the 

Rubin Causal Model framework, there are M potential outcomes for each subject. The observed 

outcome 𝑌𝑖 is defined as  

                                                           𝑌𝑖 = ∑ 𝑌𝑖
𝑘
𝑡=1 (𝑡) 𝐼(𝑇𝑖 = 𝑡)                                       (4.2) 

The individual treatment effect of treatment 𝑗  vs treatment 𝑡 (𝑗 ≠ 𝑡 ) for subject 𝑖 is illustrated  in 

follows: 

                                                         ∆= 𝑌𝑖(𝑗)  − 𝑌𝑖(𝑡)                                                              (4.3) 

There are two different frequently used estimands of treatment effect when employing propensity 

scoring for multinomial treatments: average treatment effect (ATE) and average treatment effect 

on the treated (ATT) .  Considering ATE of treatment j versus treatment t in population is described 

as following : 

                                         𝜇𝑗𝑡
𝐴𝑇𝐸 = 𝐸[𝑌(𝑗) − 𝑌(𝑡)] = 𝐸[𝑌(𝑗)] − 𝐸[𝑌(𝑡)]                                 (4.4)                  

=𝜇𝑗 − 𝜇𝑡 

Also, we can express the second parameter, which exemplifies the average treatment effect for the 

treated and as  

                       𝜇𝑗𝑘
𝐴𝑇𝑇 = 𝐸[𝑌(𝑗) − 𝑌(𝑡)|𝑇 = 𝑡] = 𝐸[𝑌(𝑗)|𝑇 = 𝑡] − 𝐸[𝑌(𝑡)|𝑇 = 𝑡]                   (4.5) 

=𝜇𝑗,𝑡 − 𝜇𝑡,𝑡 

Moreover, if we are interested in the binary outcome and the odds ratio to evaluate the treatment 

effect, we can employ a conditional causal treatment effect for estimands. We should point out a 
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significant thing here that treatment cases possibly depend on the outcomes in non-randomized 

studies. In this way, there might be a remarkable difference for baseline covariates between 

treatment groups, leading us to get biased estimators for ATE. Thus, we should be aware of having 

overt and hidden biases in nonrandomized studies. Use of baseline covariates might provide an 

insight to acquire less biased estimators of ATE. In literature, some GPS approaches (such as 

IPTW, doubly robust estimators, etc.) have been used to decrease the bias of resulting estimator. 

 

4.2.2. Generalized Propensity Score 

The generalized propensity score (GPS) is introduced by Imbens (2000), and its theory is extended 

to the propensity score framework from the dichotomous exposure to multiple treatment setting 

(Imai and Van Dyk,2004; Rosenbaum ,1999).The generalized propensity score (GPS) is described 

as the likelihood of getting one of the  treatments conditional on a given set of observed variables, 

e.g.,  𝑒𝑡(𝑋) = 𝑟(𝑡, 𝑋) = 𝑃𝑟(𝑇 = 𝑡|𝑋) = 𝐸{𝐼(𝑡)|𝑋 = 𝑋} for T dimensional  vector of probabilities 

𝑒(𝑋) = (𝑒1(𝑋), 𝑒2(𝑋),… 𝑒𝑡(𝑋)).These propensity scores are subject to the constraint 

∑ 𝑒𝑡(𝑋) = 1𝑡𝜖𝑇  for any value of covariates X. Because I can express each probability 𝑒𝑡(𝑋) as one 

minus the sum of the other probabilities under the  (𝑀 − 1) dimensional space.  Also, Imbens 

(2000) extended the exchangeability, consistency, and positivity for multi-treatment. Estimating 

propensity scores in the presence of multinomial treatments have been based on the GPS vector 

that is generated from the multinomial regression model, e.g.,  

                                         𝑙𝑜𝑔 [
𝑃𝑟(𝑇𝑖=𝑡)

𝑃𝑟(𝑇𝑖=𝑀)
] = 𝜃𝑡 + 𝑋𝑖

′𝛽𝑡     𝑡 = 1,… ,𝑀 − 1                                     (4.6) 
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where  𝜃𝑡 is an intercept, 𝛽𝑡 is a vector of regression coefficients, 𝑇𝑖 represents treatment and 

t={1,2,… ,𝑀 − 1} is total number of treatments. Thus, We rewrite the model to estimate generalize 

propensity score for (𝑀 − 1) treatment levels using equation (4.7)  and the generalized propensity 

score for the reference category is estimated using equation (4.8). 

                         

                               𝑃𝑟(𝑇𝑖 = 𝑡|𝑋𝑖) =
𝑒𝜃𝑡+𝑋𝑖

′𝛽𝑡

1+∑ 𝑒𝜃𝑡+𝑋𝑖
′𝛽𝑡𝑇−1

𝑡=1

,      𝑡 = 1, … ,𝑀 − 1                               (4.7) 

                                            𝑃𝑟(𝑇𝑖 = 𝑀|𝑋𝑖) =
1

1+∑ 𝑒
𝜃𝑡+𝑋𝑖

′𝛽𝑡𝑇−1
𝑡=1

                                                 (4.8) 

 

The existing applications have generally relied on the parametric estimation of the propensity score 

via the multinomial, nested, or ordinal logistic regression model for multiple treatments. We can 

use these models depending on the treatment values' characteristics to predict the generalized 

propensity score. For example, multinomial logit or probit regression are suitable for qualitative 

treatment values. Moreover, ordinal logistic regression can be used when there is ordering of 

treatment levels. 

Some key assumptions have been generalized from binary treatment cases to more than 

two treatments cases for generalized propensity score (GPS). Also, these assumptions are 

indispensable for valid causal inference. 

Assumption 4.1: Treatment assignment T, given the pre-treatment covariates X, is weakly 

unconfounded providing that, 

𝐼(𝑡) ⊥ 𝑌(𝑡)|𝑋 

for all 𝑡 ∈ ℑ and ,and ⊥  refer to independence(Imbens 2000). 
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In other words, treatment indicator 𝐼(𝑡) is independent of a set of the outcome given identified 

covariates. Also, “strong unfoundedness” or “ignorability treatment” in dichotomous case is 

stronger of version than this assumption. This assumption is known as “weak unconfoundedness” 

in literature. 

Assumption 4.2:  One of the key assumptions  for valid causal inference is an expanded version 

of the SUTVA assumption of Rubin(1978, 1980) and Rubin and Rosenbaum (1983) to the non-

binary case as recommended by Imai and Dyk (2004). 

 

(𝑌𝑖(1),… , 𝑌𝑖(𝑀)) ⊥ 𝑇𝑠     𝑓𝑜𝑟  𝑖 ≠ 𝑠 

So, we can make something of assumption-2 that odds of interference between subjects are 

excluded. 

Assumption 4.3:  Positivity states that a non-zero likelihood of being appointed to every 

treatment( Rosenbaum and Rubin, 1983; Imai and Dyk,2004). Mathematical notation can be 

written as: 

0 < Pr(𝑇𝑖 = 𝑡|𝑋𝑖 = 𝑥) < 1   for all T,X. 

Positivity assumption implies that it is possible to have at least one similar individual in each 

treatment group. Thus, estimation of ATE can be made without needing to use extrapolation. 

Nevertheless, when we consider large numbers of treatments, or high dimensional of baseline 

covariates for estimating causal inference, the positivity assumption can be more difficult to satisfy 

than in binary settings. Besides, the positivity assumption is also known as overlap assumption in 

causal inference.  So that,  checking overlap between treatment groups of multiple cases can be 

difficult.  By all means, there is a  possibility that this assumption will be violated, but we can 

modify the population of interest to supply sufficient overlap between treatment groups. 
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Assumption 4.4:  Imbens (2000) states that the treatment assignment indicator is independent of 

potential outcomes given generalized propensity score 𝑒𝑡(𝑋). 

𝐼(𝑡) ⊥ 𝑌(𝑡)| 𝑒𝑡(𝑋) 

Lemma 1 : Assume that the assignment scheme is weakly unconfounded. Then, 

𝔼[𝑌𝑖(𝑡
′) − 𝑌𝑖(𝑡)] = 𝔼 [𝔼[𝑌𝑖

𝑜𝑏𝑠| 𝑇𝑖 = 𝑡
′, 𝑒𝑡′(𝑋)]] − 𝔼 [𝔼[𝑌𝑖

𝑜𝑏𝑠| 𝑇𝑖 = 𝑡 , 𝑒𝑡(𝑋)]] 

We construct subsets in which we may examine individuals at every level of treatment , resulting 

in 

𝔼[𝑌𝑖(𝑡
′) − 𝑌𝑖(𝑡)] = 𝔼 [𝔼[𝑌𝑖

𝑜𝑏𝑠| 𝑇𝑖 = 𝑡
′, 𝑒1(𝑋),… , 𝑒𝑡−1(𝑋) ]] – 

𝔼 [𝔼[𝑌𝑖
𝑜𝑏𝑠| 𝑇𝑖 = 𝑡, 𝑒1(𝑋),… , 𝑒𝑡−1(𝑋) ]]= 𝔼[𝔼[𝑌𝑖(𝑡

′) − 𝑌𝑖(𝑡)| 𝑇𝑖 = 𝑡, 𝑒1(𝑋),… , 𝑒𝑡−1(𝑋) ]] 

 

4.3 Limitation of the Overlap Assumption 

When researchers desire to make inferences about causal effects in observational studies, ATE, 

ATT, or other estimands are used to estimate quantities such as the mean causal effects.  When 

any fundamental assumptions in causal inference are violated, it may raise significant problems to 

assess causal effects. Each assumption violation may occur differently on causal inference, such 

as  SUTVA may be violated when two different treatment versions are independently given while 

implementing it. Furthermore, the lack of overlap assumption has been crucial because it relies on 

the IPW method and this method versions in this paper. Because limited overlap between treatment 

and outcome may  induce to occur extreme inverse probability weights. Violation of overlap 

assumption implies that between treated and untreated groups do not overlap, estimated propensity 

score values might close to 0 and 1 herein. So, those extreme propensity score estimation values 
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are employed to examine weighting, and then, excessive propensity score values lead to having 

large weights (Crump et al. ,2009;Austin and Stuart,2017;  Hu et al. ,2020). 

We may not want excessive weights to occur because of becoming very imprecise for the 

causal effects. This violation can occur for various reasons, involving data constraints, a limited 

sample size,  PS model misspecifications, and specified wrong relation among treatment/outcome 

and covariates.  This confliction encourages researchers to think about other intended samples for 

whom exposure impact may be more meaningful and accurately investigated in terms of bias, 

RMSE, or variance( Li et al., 2018; Li et al., 2018) . So, we argued positivity assumption by 

conducting extensive simulation studies for multiple treatment cases across proposed IPW  

methods to assessing causal effects.  

Numeric summaries (such as bias, variance ratios, or standard error ) and some 

visualization (such as Q-Q plot, box plot, or density plots) are easy and good tools to display 

whether there is unbalanced between groups when considering binary cases. However, assessing 

tools have become more critical and complicated for three and more treatment cases .We have 

presented three different scenarios, i.e., strong lack of overlap, moderate lack of overlap, and good 

overlap as simulation structure and detailed results occur in Section 4.7. Figure 4.1 proposes the 

density plot as a graphical tool to illustrate those simulation scenarios. The horizontal axis is the 

plot of estimated propensity score values; meanwhile, the vertical lines of the plot represent the 

density values. As seen in the Figure 4.1, it is clear that difference the estimated PS values for each 

treatment group. 
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Figure 4.1: Distribution of estimated propensity score for strong lack of overlap ( top-left panel) 

,moderate lack of overlap(top-right panel) and good overlap (bottom) 

 

 
 

 
 

 

 

 

 

 



 

105 

4.4  Causal Estimand and Methods 

Traditional propensity score methods, i.e., GPSM or IPW, have frequently been used in literature. 

However, there are various  alternatives to limit the estimate of the treatment impact to an area of 

tolerable positivity , such as overlap weighting , matching weighting, entropy weighting, treated 

weighting or trimming methods (Crump et al., 2009; Li and Greene, 2013;  Li et al., 2018; Mao et 

al., 2020). 

We consider multiple treatments (i.e.  t≥ 3) and denote the treatment for unit 𝑖 as 𝑇𝑖. As 

seen in (4.1) , Ι𝑖(𝑡) refers to a multinomial indicator array. From (4.2), 𝑌𝑖 represents potential 

outcome for indexes 𝑖 under the exposure t as 𝑌𝑖(𝑡). Also, Imbens et al. (2000) proposed 

generalized propensity score for potential outcome  t as 𝑒𝑡(𝑋) = 𝑟(𝑡, 𝑋) = 𝑃𝑟(𝑇 = 𝑡|𝑋).To 

specify t th the expectation potential outcomes among target population (Li and Li, 2019): 

                                               μt
 h = 𝔼[Y(t)] =

𝔼{h(x) mt(x)}

𝔼{h(x)}
.                                                      (4.9)    

                                      

Also, tilting function ℎ(𝑥) is satisfied by ratio ℎ(𝑥) = 𝑔(𝑥)/𝑓(𝑥). Tilting function ℎ(𝑥) 

means that pre-defined function of variables. To describe target population, 𝑚𝑡(𝑥) =

𝔼[𝑌(𝑡)|𝑋 = 𝑥]  define the conditional expected potential outcomes in treatment t. Consistent 

estimates specified τ̂j
h =

∑ Ti[j]Yiwi[j]
n
i

∑ Ti[j]wi[j]
n
i=1

 ,where define wi[t] =
1

ej(x)
.Finally, we recommend causal 

target of inference: 

                                   Δj,j′
h =

∑ Ti[j]Yiwi[j]
n
i

∑ Ti[j]wi[j]
n
i=1

− 
∑ Ti[j

′]Yiwi[j
′]n

i

∑ Ti[j′]wi[j′]
n
i=1

  ,where 𝑗 ≠ 𝑗                         (4.10) 

 

As we introduced average treatment effect or average treatment on treated effect for 

multiple treatments,  pairwise causal effect estimands  describe 𝜏𝑡,𝑡′  =𝜇𝑡-𝜇𝑡′  between 𝑡 and 𝑡′. 
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After define causal treatment effects for balancing weights, density function for each  treatment 

group, 𝑡   is provided by 𝑓𝑡(𝑋) = 𝑓(𝑋|𝑇 = 𝑡).To target population, density of specific treatment 

group 𝑓𝑡(𝑋) is weighted as following : 

wj(X) =
f(X)h(X)

f(X) et(X)
=
h(X)

et(X)
 

 

GPSM: Yang et al. (2016) recommend the generalized propensity score matching (GPSM) 

for multiple treatment cases. The matching process of GPSM as following: i) Estimate propensity 

score based on the multinomial logit model. ii) Assume that three treatment levels are available 

(called 𝑡1, 𝑡2, 𝑡3). We matched the treatment 𝑡1 closest to treatment 𝑡2 based on the estimated 

propensity score values without replacement. iii) matched treatment is removed from the sample 

and continues the same process for the rest of the unmatched observation. 

IPW: The IPW is a frequently utilized technique which employs the propensity score. IPW 

is a common method that includes the weighting unit of each treatment level with the inverse of 

their assigned exposure probability. IPW purpose examining the mean weighted outcome covariate 

between treatment groups. The weighting literature is influenced by inverse probability weights, 

which originated with the Horvitz-Thompson weight in survey sampling (IPW). To target 

population, standard inverse probability weighting is defines as  {1/𝑒𝑡}. 

Overlap weighting :  Li et al. (2018) proposed overlap weighting (OW) which is a 

balancing weighting design to fix the problems of inverse probability weighting and trimming. 

There are available studies to examine the performance of overlap weighting when considering 

binary treatment cases ( see Li et al.,2018; Maou et al.,2019; Thomas et al.,2020 ). The OW is very 

straightforward in terms of implementing techniques for the binary case. So, overlap weights e and 

(1-e) are remarked for treatment and control groups. Also, bootstrap variance estimator and robust 
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sandwich variance estimator are available in Li et al. (2018); and Stefanski and Boos (2002). 

Furthmore, Li and Li (2019) extended the study of overlap weighting from binary to multiple 

treatment cases. The combination of IPW and harmonic mean of GPS lead to be established 

generalized OW method, which weighted each individual proportionate according to its 

probability of being assigned to the other group. The GOW aims to consider sub-population, which 

has probabilities of being assigned to all exposure groups. The most crucial feature of the GOW 

method is that illustrate good performance when tailing exists. It means that we can limit values 

between 0 and 1, and thus, we can eliminate excessive propensity score values when employing 

inverse probability weighting. 

Li et al. (2018) introduced the OW , which weighted each individual proportionate to its 

probability of being assigned to the other group. Tilting function, ℎ(𝑋) is defined as 

(∑ 1/ek(X)
M
k=1 )

−1
.  Balance weights for OW as   

wi
overlap

=
(∑ 1/ek(X)

M
k=1 )

−1

et(X)
 

Matching weighting: Another alternative to the IPW technique is matching weight (MW) 

methods. Even though the matching weighting technique is known as a balance weights technique, 

pair matching and matching weights techniques have nearly similar estimands. Contrary to the 

difficulties of applying pair matching techniques, matching weights are easy in terms of the 

implementation process and have eliminated the challenges of pair-matching in practice ( Li and 

Greene, 2013).The matching weighting (MW) is recommended by Yoshida et al. (2017) : 

wi
matching

=
{min1≤k≤t{ek(X)}}

et(X)
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Entropy weighting: Hainmueller(2012) recommended entropy balancing( or called entropy 

weighting), which aims pre-processing approach to remove covariate imbalance. The most 

important difference of the entropy balancing technique is that entropy balancing is a reweighting 

technique that includes variables balance straightly in the weight function employed to the sample 

units. Entropy balancing enables to achieve a high degree of variable balance by applying the 

extensive set of balance requirements that include the first, second, and perhaps higher moments 

of variable distributions and interactions. Another critical feature in entropy weighting is that the 

reweighting method is flexible when we have weights around 0 and 1. Entropy weighting is defined 

by : 

wi
entropy

=
−∑ ek(x)log{ek(x)}

M
k=1

et(x)
 

 

Treated weighting : Horvitz–Thompson (HT) weight is different version of inverse 

probability weighting. HT weights can focus on the treatment effects on the treated group (Hirano 

and Imbens, 2001). Hirano and Imbens (2001) provide the treated weighting( TR): 

wi
treated =

ek(X)

et(X)
 

 

Variance Estimation: Lunceford and Davidian (2004) and Li et al (2019) state that the empirical 

sandwich variance for PSW estimator rely on the M estimation theory. For multiple treatment 

cases. The parameters array is shown as θ=(v1 , . . , vJ, η1, … , ηJ , β
𝑇  , αT)

T
 .  

Then{𝜇𝐽 = 𝑣𝐽  ̂ + 𝑛̂𝐽: 𝑗 = 1,… , 𝐽} is solved as 
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∑ψi(θ) =∑

(

 
 
 
 
 
 
 
 

w1 (xi)  Ii1{Yi −m1(xi; α) − v1}
.
.

wJ (xi)  Iij{Yi −mJ(xi; α) − vJ}

h(xi){m1(xi; α) − η1}
.
.

h(xj){mj(xi; α) − ηj}

Sβ(Ti, xi, β)

Sα(Yi , Ti, xi, α) )

 
 
 
 
 
 
 
 

= 0

N

i=1

N

i=1

 

where clearly that Sβ(Ti, xi, β) and Sα(Yi, Ti, xi, α)  are score function for propensity score model 

and outcome model. Also, mj(x) = E[Y(j)|X = x]. Empirical sandwich variance estimator is  

𝕍̂(θ̂) = {∑
∂

∂θT

N

i=1

ψi(θ̂)}

−1

  {∑ψi

N

i=1

(θ̂) ψi
T(θ̂)} {∑

∂

∂θT

N

i=1

ψi
T(θ̂)}

−1

 

 

4.5   Application to Alcohol and Other Drug Treatment Dataset 

4.5.1 Dataset 

We used alcohol and other drug treatment dataset (AOD), which McCaffrey (2013) introduced. 

McCaffrey utilized AOD dataset to provide step-by-step guidance to estimate the average 

treatment effect based on the generalized boosted method for multiple treatment settings. Three 

treatment levels have been determined, including "traditional programs (community)," 

"motivational enhancement therapy plus cognitive behavior therapy (MET/CBT-5)", and  

"Strengthening Communities for Youth (SCY)." There are 600 individuals with five covariates in 

the twang package in R, even though McCaffrey (2013) used a larger sample. Also, the five 

pretreatment variables are illicit activities scale ("illact"), criminal justice involvement 

("crimjust"),substance use problem scale (“subprob”),substance use dependence scale (“subpdep”) 
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and race ( “white”). The outcome variable “suf12” represents treating drug abuse following twelve 

months post-intake. 

 

4.5.2 Results 

Table 4.1 examines the features of patients who received one of three treatments( i.e., CBT-

5,community, and SCY groups) for five covariates unweighted dataset and datasets using balance-

weighted techniques. There are valuable metrics such as bias, standardized bias, or relative bias to 

measure balance in the binary or multiple treatment cases. These metrics allow analysis to examine 

the magnitude of the different exposure between treatment groups in the distributions of covariates. 

One of the preferable performance metrics is a standardized mean difference, which is computed 

as a difference in the average of a variable between treatment groups, divided by a pooled estimate 

of the variable's standard deviation. Even though researchers do not reach a consensus on what 

threshold for standard mean difference should be used, some articles (see Austin and Stuart,2015; 

Normand et al.,2001) suggest that SMD is smaller than 10% of SMD values is considered as 

evidence of balance between groups. However, McCaffrey et al. (2012) recommended that SMD 

keep within bounds of 20% might indicate a meaningful balance between treatment groups in 

covariates. When we prefer using the 10% threshold value to examine the balance between three 

treatment groups in AOD datasets in the distribution of five covariates, we see that four of 5 

measured variables (i.e., illact, crimjust , subdep, and white variables) exceeded 10%, which means 

that significantly imbalance between treatment groups in the unweighted dataset (Table 4.1). 

Fortunately, all SMDs are less than 10%, which indicates a good balance for all covariates across 

all balance weights. When SMDs are close to 0, we should realize that it is evidence of perfect 
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balance in distributions of covariates. The resulting of SMDs metrics reveal that using any of 

balance weight techniques provide improvements on the covariates. 

In addition, there are significant means between community, CTB-5, and SCY treatment 

groups in the unweighted dataset, such as illact covariates. However, means in treatment groups 

are decreased difference. For example, means of illact variable for the community, CTB-5, and 

SCY groups have corresponded to 0.083,0.007 and 0.120 in the unweighted dataset, respectively, 

while illact covariate for those groups' means is 0.067, 0.082, and 0.078 in matching weight, 

respectively. Similar results were observed for other covariates where for mean, all methods tended 

to be similar. Thus, in general, all weighted methods perform close mean values for each to other 

groups. Therefore, in general, treatment group means are closer to each other in all weighted 

methods compared to treatment group means in the unweighted dataset. 

Table 4.1: Averages for  treatment groups in unweighted and weighted and standardized 

mean difference in AOD dataset 

                                                   Weighted means                                      Stand. mean  diff. 

                                                                                                                              (SMD) 

                                    Community           CTB-5                   SCY 

Unweighted      

illact 0.083 0.007 0.120 0.112 

crimjust -0.033 0.037 -0.174 0.206 

Subprob                            -0.058 0.026 -0.013 0.085 

subdep 0.052 0.058 -0.058 0.112 

white 0.162 0.200 0.175 0.100 

Matching 

weight  

    

illact 0.067 0.082 0.078 0.015 

crimjust -0.069 -0.067 -0.066 0.003 

subprob -0.018 -0.009 -0.009 0.010 

subdep 0.007 0.022 0.008 0.015 

white 0.178 0.179 0.182 0.010 
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Overlap weight     

illact 0.079 0.080 0.081 0.002 

crimjust -0.058 -0.066 -0.062 0.007 

subprob -0.021 -0.021 -0.016 0.006 

subdep 0.018 0.022 0.010 0.012 

white 0.179 0.181 0.184 0.015 

Entropy weight     

Illact 0.080 0.080 0.080 0.000 

Crimjust -0.057 -0.066 -0.062 0.009 

Subprob -0.020 -0.022 -0.016 0.006 

Subdep 0.019 0.021 -0.010 0.010 

white 0.179 0.182 0.185 0.015 

 

Treated weight     

illact 0.139 0.132 0.120 0.019 

Crimjust -0.167 -0.195 -0.174 0.028 

Subprob                            -0.013 -0.028 -0.013 0.016 

subdep -0.054 -0.066 -0.058 0.012 

white 0.179 0.182 0.175 0.018 

IPW      

illact 0.081 0.080 0.080 0.001 

crimjust -0.056 -0.067 -0.062 0.011 

subprob -0.019 -0.023 -0.015 0.007 

subdep 0.020 0.019 0.010 0.009 

white 0.179 0.182 0.185 0.015 

 

Table 4.2 summarized the results of the causal estimands, standard error, and confidence intervals 

for group comparisons (i.e., CBT-5 vs. community, group SCY vs. community, and group SCY 

vs. CBT-5). Table 4.2 shows that average treatment effects in the GPSM method for three 

comparison groups are equal to 0.176,0.217, and 0.047, which provide larger values than all 
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weighted methods. It seems to receive a similar standard error for three treatment groups across 

all weighting methods and GPSM. 

Table 4.2 :Estimation of the treatment effect in the AOD data application employing various 

balance weighting methods 

                                             Estimand                 Std. error                         95%  CI 

Matching Weighting 

CBT-5 vs Community     0.1440 0.097 (-0.046,0.336) 

SCY vs Community    0.098 0.096 (-0.090, 0.288) 

SCY vs CBT-5 -0.045 0.103 (-0.248,0.157) 

Overlap Weighting 

CBT-5 vs Community     0.136 0.097 (-0.053,0.326) 

SCY vs Community    0.087 0.095 (-0.098,0.274) 

SCY vs CBT-5 -0.049 0.102 (-0.250,0.151) 

Entropy Weighting 

CBT-5 vs Community     0.134 0.097 (-0.055,0.324) 

SCY vs Community    0.085 0.095 (-0.100,0.272) 

SCY vs CBT-5 -0.049 0.102 (-0.250,0.151) 

Treated Weighting 

CBT-5 vs Community     0.115 0.102 (-0.085,0.316) 

SCY vs Community    0.086 0.096 (-0.102,0.275) 

SCY vs CBT-5 -0.028 0.107 (-0.239,0.181) 

IPW 

CBT-5 vs Community     0.133 0.097 (-0.057,0.323) 

SCY vs Community    0.084 0.094 (-0.101,0.270) 

SCY vs CBT-5 -0.048 0.102 (-0.250,0.152) 

GPSM 

CBT-5 vs Community     0.176 0.100 (-0.342,-0.011) 

SCY vs Community    0.217 0.103 (-0.386,-0.048) 

SCY vs CBT-5 0.047 0.101 (-0.207,0.126) 
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4.6 Simulation Study 

We perform a comprehensive simulation study to assess performance using a variety of 

methodologies. We modified the simulation structure define by Yang et al. (2016).We generate 

treatment with three levels, continuous outcome and ten covariates in the simulation. 𝑋1𝑖, 𝑋2𝑖 and 

𝑋3𝑖 covariates are generated based on the multivariate normal distribution with mean of (0,0,0) , 

variances of (2,1,1) and covariances of (1,-1,-0.5) between 𝑋1 and 𝑋2, 𝑋1  and 𝑋3, and 𝑋2  and 𝑋3, 

respectively.  Also, 𝑋4𝑖 ~U[-3,3], 𝑋5𝑖 ~𝜒1
2, 𝑋6𝑖~Bernoulli(0.5),𝑋7𝑖~Bernoulli(0.7),  𝑋8𝑖~U[-2,2], 

  𝑋9𝑖~Bernoulli(0.7),  𝑋10𝑖~U[-2,2], all independent of each other and 𝑋1, 𝑋2, and 𝑋3 .  The 

distribution of the treatments is 

 (𝑇𝑖(1), 𝑇𝑖(2), 𝑇𝑖(3)) ~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝑝(1|𝑋𝑖), 𝑝(2|𝑋𝑖), 𝑝(3|𝑋𝑖)) 

where exposure indicator   𝑇𝑖(𝑡) is defines as  

𝑝(1|𝑋𝑖) =  (
𝑒𝑥𝑝(𝑋𝑖

𝑇𝜃𝑡)

∑ 𝑒𝑥𝑝(𝑋𝑖
𝑇𝜃𝑡)

3
𝑡=1

) 

where 𝜃1
𝑇 = 𝛾1 ∗ (0,0,0,0,0,0,0,0) , 𝜃2

𝑇 = 𝛾2 ∗ (1,1,1,−1,−1,1,1,−1) and 𝜃3
𝑇 = 𝛾3 ∗

(1,1,1,1,1,1,1,1). We should make reminder that covariates 𝑋1- 𝑋8 are related to treatment 

assignments. In other words, 𝑋9𝑖  and 𝑋10𝑖 covariates do not have association with treatment levels. 

We construct (𝛾1, 𝛾2, 𝛾3) = (0,0.2,0.8) for strong lack of overlap , (𝛾1, 𝛾2 , 𝛾3) = (0,0.05,0.2) for 

middle lack of overlap and (𝛾1 , 𝛾2 , 𝛾3) = (0,0.1,0.1) for good overlap. We generate the outcome 

as following: 

𝑌𝑖(𝑘) = (1,𝑋𝑖
𝑇)𝛼𝑘 + 𝜖𝑖  

where 𝜖𝑖 ~𝑁(0,1),    𝛼1
𝑇 = (−1.5,1,1,1,1,1,1,1),    𝛼2

𝑇 = (−4,2,3,1,2,2,2,2) and 𝛼3
𝑇 =

(3,3,1 ,2,−1,−1, −1,2). 𝑁𝑡 = 10000 sample sizes and 500 iterations are considered with 𝑡 =

1,2,3. Finally, to  misspecify the true PS model, we delete the covariates 𝑋3 and 𝑋4 from full model 
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4.7  Results 

We conducted a comprehensive simulation study to examine various weighting methods and 

generalized propensity score matching method in this article. Table 4.3 presents bias, RMSE, and 

empirical standard deviation. Bias is calculated by 
1

1000
∑ (𝜃𝑖 − 𝜃)
1000
𝑖=1  where  is the population 

difference in response between two treatment groups and 𝜃𝑖 is the estimated difference for Monte 

Carlo run ith between the same two treatment groups; meanwhile, RMSE is specified as 

√RMSE =
1

1000
∑ (𝜃𝑖 − 𝜃)2
1000
𝑖=1 .  The empirical standard error is computed as the sample SD of 

the point estimates. We summarized the performance of matching weighting(MW), overlap 

weighting(OW), entropy weighting(EW), treated weighting (TW), IPW, IPW with trimming, 

GPSM and GPSM with trimming when considering good overlap, moderate lack of overlap, and 

substantial lack of overlap scenarios in Table 4.3, 4.4, 4.5. In addition, we present the results of 

misspecified PS models under the good overlap, mild lack of overlap, and strong lack of overlap 

scenarios. When all the methods are considered for good overlap and true PS model,  MW, OW, 

EW IPW, and IPW with trimming offered adequate estimation in terms of absolute bias and 

RMSE. The TW method illustrates the most extensive bias, RMSE, and empirical SD in the true 

PS model and misspecified model(Table 4.3). The four remaining procedures, involving MW, 

OW, EW, and IPW, do a pretty good job of achieving a small bias for all treatment effects. GPSM 

results in greater bias than balance weighting methods in the presence of good overlap in PS 

distributions with 10000 sample size and generating 500 datasets.  Table 4.3 provides the 

misspecified model, which represents removing covariates 𝑋3 and 𝑋4 from the full model. Table-

3 provides a misspecified model created by subtracting the 𝑋3 and 𝑋4 covariates from the full 

model.  MW, OW, and EW methods present no changes in the presence of bias from using the true 
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PS model to a misspecified model under the good overlap. Unfortunately, IPW and GPSM 

methods produce relatively larger bias in the misspecified PS model than the true PS model. This 

leads us to conclude that IPW and GPSM  may be sensitive toward defining the model in terms of 

bias. Generally, MW, OW, EW, and IPW methods are related with the smallest and similar RMSE 

and empirical SD. So, those methods are more effective than TW and GPSM. However, when a 

moderate lack of overlap exists (Table 4.4),  all methods show more bias, larger RMSE, and 

empirical SD compared to existing good overlap. TW and GPSM method (Table 4.4) illustrate 

huge bias, which similarly resulted. Finally, Table 4.5 reveals that all methods tend to be more 

extensive measured metrics. In other terms, there is a dramatic increase in terms of values of 

measured metrics from a good overlap scenario to a substantial lack of overlap ( check Table 4.3 

and Table 4.5).   

We report the ratio of the average estimated standard error to the empirical standard 

deviation of estimated in Table 4.6-4.8. There are two different standard error estimators: i) 

bootstrap standard error estimator ii) robust sandwich-type standard error estimator in literature. 

So, we perform those estimators across six methods when considering good overlap, moderate 

overlap, and a strong lack of overlap. Efron and Tibshirani (1993) recommended that 200 bootstrap 

samples illustrate adequate to estimate the standard error. Austin (2015) provided that the 

performance of variance estimator is measured by 
𝛾

𝑠𝑑(𝜃̂𝑖)
 , where the mean standard error across 

the 500 iterations: 𝛾̅̂ =
1

500
∑ 𝛾𝑖̂
500
𝑖=1   and the standard deviation of the estimated across the 500 

simulated datasets: 𝑠𝑑(𝜃̂𝑖). If this ratio is close to 1 in bootstrap variance estimation, it shows that 

the bootstrap estimation accurately approached the SD of the estimated empirical sample 

distribution. Robust standard error in IPW with trimming method overestimated the variability of 

estimates for either true PS model and misspecified PS model when considering a strong lack of 
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overlap. However, GPSM, GPSM with trim, and TW methods perform underestimated the 

variability of estimates for both PS models (Table-4.8). To sum up, MW, OW, EW, and IPW 

methods in a ratio are approximately equal to one for three overlap scenarios. However, GPSM 

and TW methods in the ratio show the worst performance when there is an increasing lack of 

overlap. 

We reported the standardized mean difference (SMD) to examine the balance of baseline 

variables before and after using MW, OW, EW, TW, IPW, and GPSM for each pairwise treatment. 

In literature, if SMD is below or around 0.1( 10%) threshold, there is a weak imbalance between 

treatment groups.  Austin (2008) provides that SMD does not depend on the measurement units 

and size of the dataset. So, we present the average SMD that calculate across the 500 simulated 

datasets for each of the 10 variables in Table 4.9-4.11. In this simulation study, SMD aims to 

compare the balance in baseline covariates between whether they get specific treatment.Table-4.9 

presents that there is no crude imbalance in the original, unweighted sample. Because Figure 4.2 

illustrates how to distribute the estimated propensity score values of each treatment group, which 

was called a good overlap scenario. We realize that there is a perfect overlap between treatment 

groups in Figure 4.2. After employing any weighting techniques or GPSM, It is expected to see 

perfect balance in covariates between treatment groups like Table-4.9. Because Rubin and 

Rosenbaum (1983) indicated that propensity score is a balancing score. Therefore,  we can 

conclude that all covariates seem to be good balance when PS overlap is good. Even though six 

techniques decrease the SMD of covariates 𝑋1-𝑋10compared with unweighted analysis (Table-

4.10), all SMD for ten covariates across all methods( Table-4.10) illustrates increased when 

compared with Table-4.9.  In particular, all weighting methods exact good covariate balance for 

moderate-overlap scenario (Table 4.10). However, the SMD of four covariates, i.e., 𝑋1, 𝑋3, 𝑋4, 
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and 𝑋8, are more than 10% when employing the GPSM method. Due to a strong lack of overlap, 

there is a massive explosion in the SMD of baseline covariates in Table-4.11. While nine of ten 

measured baseline covariates in the GPSM method had SMD that overrun 10%, one covariate (i.e., 

𝑋1) in MW techniques and two covariates (i.e., 𝑋1 and 𝑋2) are more extensive than 10%, which 

means that there is an imbalance for those variables. The biggest observed SMDs are for  𝑋1 

(37.5%) and 𝑋2 (27.5%) in the GPSM method. To conclude, if there is a substantial lack of overlap, 

matching weighting and overlap weighting lead to better balance in measured baseline covariates 

than EW, TW, IPW, and GPSM. However, all covariates perform well across all six methods when 

there is good PS overlaps. 

 

4.8   Summary & Discussion 

Researchers in medical, social science and public health studies frequently utilize propensity score-

based techniques that aim to eliminate bias between treatment groups. Since Rosenbaum and 

Rubin introduced propensity score methods in 1983, binary treatment cases have generally been 

studied. While multiple treatment groups have become popular recently, multiple treatments might 

be more challenging to design, perform, and interpret. Imbens (2001) proposed the causal models 

and validated them utilizing propensity scores to eliminate bias in cases with more than two 

treatment.  The use of the IPW methods in multiple treatment cases has posed some critical issues 

that are being discussed in the literature. The main problem of using IPW is that weights become 

large when the estimated PS value is approximately 0 and 1. So, large weights produce biased 

treatment effects and large variability of estimates. Alternative methods to IPW have been 

suggested recently to eliminate or alleviate this problem. These alternative approaches are treated 

weights  (Hirano and Imbens,2001), matching weights(Li and Greene,2013), overlap weights (Li 
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et al.,2018), entropy weight( Zhou et al.,2020). Those weighting techniques are called 'balance 

weighing. All those approaches are mainly employed based on binary treatment cases(Li et al. 

2018; Mao et al.,2019; Zeng et al.,2020; Li and Greene) and multiple treatments (Yoshida et 

al.,2017; Li and Li,2019; Hu et al.,2020).  

This paper used balancing weighting family and generalized propensity score matching 

approaches to derive causal inferences from observational studies with multiple treatment cases. 

We conducted comprehensive Monte Carlo simulations to explore these issues. When levels of 

violation of overlap assumption are increased, bias and RMSE metrics values across all methods 

also increased. The results of table 4.3-4.6 give a clue that there is a large variability of estimated 

treatment effects when the overlap assumption is violated.  MW, OW, and EW methods perform 

nearly identically using both the true PS model and misspecified PS model when there is no 

violation of overlap assumption in Table 4.3. GPSM  with or without trimming performed poorly 

in Table 4.3.  So, we can conclude that applying GPSM may not be a good choice to eliminate bias 

in treatment effects estimates. However, MW and OW methods are consistently more effective 

than the remaining methods, including both PS models when moderate lack of overlap and 

substantial overlap existed. In other words, considering all measurements listed in Table 4.3-4.5, 

both OW and MW  made the best out of the six techniques. As can be seen, OW, MW, and EW 

methods are not sensitive to model misspecification under good overlap assumption.  There are no 

changes in the bias metric for a misspecified PS model.  

We conduct standard error estimation using balance weighting family methods and GPSM 

with propensity score to estimate the treatment effect. We realize that the use of bootstrap and 

sandwich robust estimator tended to result in accurate estimated standard errors in MW, OW, EW. 

However, GPSM, IPW, and TW performed the worst for both bootstrap and robust sandwich-type 
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standard error estimators under all overlap scenarios. However, Joffe et al. (2004) suggest using a 

robust standard estimator is more appropriate when employing IPW for binary cases. Abadie and 

Imbens (2008) recommend utilizing bootstrapping to estimate SE was improper. However, we 

conclude that either bootstrapping and a robust sandwich-type estimator can be used for  OW, 

MW, and EW  methods when assessing all balance weighting methods and GPSM in multiple 

treatment cases. This study sheds light on the evaluating of all balance weighting methods utilizing 

true propensity score model and misspecified propensity score model under different levels of 

overlap. 
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4.9 Appendix 

Table 4.3:  Performance of the various weighting and GPSM  methods in simulation when both 

true propensity score model and the misspecified propensity score model with  good overlap. 

Simulation results with t=3 groups in 1000 datasets  

                              GOOD  OVERLAP  

    TRUE PS MODEL               MISSPECIFIED PS MODEL 

𝜏12 𝜏13 𝜏23 𝜏12 𝜏13 𝜏23 

 

 

 

 

|BIAS| 

Matching W 0.084 0.107 0.135 0.084 0.109 0.138 

Overlap W. 0.080 0.100 0.123 0.080 0.100 0.124 

Entropy W. 0.080 0.099 0.122 0.080 0.099 0.123 

Treated W. 0.116 0.142 0.193 0.115 0.142 0.192 

IPW(No trim) 0.080 0.098 0.122 0.090 0.099 0.123 

IPW ( at 0.1 trim) 0.080 0.099 0.121 0.091 0.100 0.125 

GPSM(No trim) 0.153 0.206 0.243 0.173 0.188 0.220 

GPSM (at 0.1 trim) 0.152 0.206 0.240 0.173 0.189 0.221 

 

 

 

 

RMSE 

Matching W 0.105 0.134 0.166 0.102 0.136 0.170 

Overlap W. 0.102 0.123 0.153 0.102 0.125 0.154 

Entropy W. 0.102 0.125 0.153 0.102 0.125 0.153 

Treated W. 0.146 0.183 0.241 0.144 0.183 0.240 

IPW(No trim) 0.102 0.124 0.152 0.102 0.124 0.153 

IPW (at 0.1 trim) 0.102 0.125 0.154 0.101 0.126 0.154 

GPSM(No trim) 0.105 0.134 0.166 0.218 0.241 0.286 

GPSM (0.1) 0.191 0.253 0.302 0.219 0.240 0.287 

 

 

 

Emp. 

SD 

Matching W 0.111 0.130 0.157 0.174 0.150 0.191 

Overlap W. 0.109 0.126 0.152 0.173 0.146 0.188 

Entropy W. 0.109 0.125 0.152 0.174 0.145 0.188 

Treated W. 0.167 0.184 0.250 0.205 0.172 0.225 

IPW(No trim) 0.109 0.125 0.152 0.173 0.145 0.188 

IPW (0.1) 0.108 0.126 0.153 0.172 0.146 0.189 

GPSM(No trim) 0.204 0.248 0.316 0.264 0.248 0.327 

GPSM (0.1) 0.207 0.266 0.309 0.261 0.271 0.322 

Abbreviations:   IPW: Inverse Probability Weighting, GPSM: Generalized Propensity 

Score Matching, Emp. SD: Empirical Standard Deviation 
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Table 4.4:  Performance of the various weighting and GPSM  methods in simulation when both 

true propensity score model and the misspecified propensity score model with  good overlap. 

Simulation results with t=3 groups in 1000 datasets 

 MODERATE LACK OF  OVERLAP  

  TRUE PS MODEL                MISSPECIFIED PS MODEL 

𝜏12 𝜏13 𝜏23 𝜏12 𝜏13 𝜏23 

|BIAS| Matching W 0.151 0.231 0.363 0.150 0.225 0.353 

Overlap W. 0.263 0.224 0.481 0.267 0.222 0.484 

Entropy W. 0.281 0.203 0.476 0.279 0.200 0.471 

Treated W. 0.738 0.480 1.219 0.738 0.486 1.224 

IPW(No trim) 0.251 0.167 0.404 0.256 0.164 0.402 

IPW (0.1) 0.269 0.194 0.455 0.269 0.189 0.450 

GPSM(No trim) 0.781 0.573 1.353 0.791 0.580 1.370 

GPSM (0.1) 0.545 0.464 0.863 0.538 0.450 0.843 

 

 

 

RMSE 

Matching W 0.178 0.266 0.400 0.174 0.259 0.391 

Overlap W. 0.283 0.255 0.504 0.286 0.253 0.507 

Entropy W. 0.301 0.235 0.500 0.299 0.230 0.494 

Treated W. 0.767 0.525 1.249 0.765 0.530 1.252 

IPW(No trim) 0.279 0.200 0.432 0.279 0.195 0.428 

IPW (0.1) 0.292 0.229 0.482 0.291 0.223 0.476 

GPSM(No trim) 0.795 0.612 1.375 0.803 0.625 1.394 

GPSM (0.1) 0.630 0.546 1.044 0.630 0.538 1.047 

 

 

 

Emp. 

SE 

Matching W 0.127 0.140 0.190 0.180 0.146 0.205 

Overlap W. 0.114 0.136 0.168 0.173 0.140 1.190 

Entropy W. 0.113 0.135 0.165 0.174 0.140 1.190 

Treated W. 0.252 0.211 0.298 0.272 0.186 0.296 

IPW(No trim) 0.125 0.137 0.170 0.181    0.140   0.195 

IPW (0.1) 0.154 0.171 0.249 0.181 0.183 0.242 

GPSM(No trim) 0.343 0.447 0.445 0.297 0.318 0.301 

GPSM (0.1) 0.127 0.140 0.190 0.180 0.146 0.205 

 

Abbreviations:   IPW: Inverse Probability Weighting, GPSM: Generalized Propensity 

Score Matching, Emp. SD: Empirical Standard Deviation 
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Table 4.5:  Performance of the various weighting and GPSM  methods in simulation when both true 

propensity score model and the misspecified propensity score model with strong lack of overlap. 

Simulation results with t=3 groups in 1000 datasets 

 STRONG   LACK  OF OVERLAP  

     TRUE PS MODEL                  MISSPECIFIED PS MODEL 

𝜏12 𝜏13 𝜏23 𝜏12 𝜏13 𝜏23 

|BIAS| Matching W 1.054 1.392 2.447 1.049 1.304 2.354 

Overlap W. 1.234 1.311 2.545 1.247 1.290 2.538 

Entropy W. 1.552 1.116 2.661 1.501 1.170 2.671 

Treated W. 0.935 0.323 1.089 0.920 0.327 1.136 

IPW(No 

trim) 

1.278 1.891 2.126 1.283 1.936 2.204 

IPW (0.1) 1.151 1.208 2.360 1.129 1.186 2.316 

GPSM(No 

trim) 

2.460 2.027 4.488 2.475 2.114 4.590 

GPSM (0.1) 1.431 2.307 1.183 1.412 2.236 1.117 

RMSE Matching W 1.064 1.401 2.454 1.057 1.313 2.361 

Overlap W. 1.241 1.319 2.551 1.253 1.298 2.543 

Entropy W. 1.557 1.150 2.679 1.506 1.186 2.679 

Treated W. 1.246 0.438 1.352 1.184 0.456 1.352 

IPW(No 

trim) 

1.323 1.945 2.183 1.317 1.969 2.237 

IPW (0.1) 1.241 1.319 2.551 1.257 1.164 2.411 

GPSM(No 

trim) 

2.464 2.052 4.498 2.479 2.132 4.598 

GPSM (0.1) 1.459 2.416 1.213 1.433 2.328 1.147 

 

 

 

Empr. SD 

Matching W 0.154 0.172 0.210 0.171 0.152 0.179 

Overlap W. 0.137 0.164 0.195 0.162 0.149 0.176 

Entropy W. 0.128 0.299 0.309 0.162 0.200 0.220 

Treated W. 0.985 0.421 0.912 0.464 0.227 0.461 

IPW(No 

trim) 

0.462 0.372 0.526 0.219 0.232 0.279 

IPW (0.1) 0.193 0.265 0.311 0.213 0.267 0.314 

GPSM(No 

trim) 

0.154 0.346 0.363 0.205 0.274 0.285 

GPSM (0.1) 1.562 1.045 1.302 0.151 1.026 1.227 
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Table 4.6 : The proportion of average estimated standard error to empirical standard deviation 

of sampling variability of estimated across 1000 iterations of good overlap scenarios 

 
Methods                          Pairwise  of      

                                             groups                                                 

Good Overlap 

True propensity score 

Model 

Misspecified PS 

Model 
 

 
Bootstrap Robust Bootstrap Robust 

 

Matching W. 

𝜏12 1.039 1.049 0.972 1.132 

𝜏13 1.017 1.040 0.990 1.041 

𝜏23 1.096 1.130 1.005 1.156 

 

Overlap W. 

𝜏12 0.989 0.989 0.958 0.965 

𝜏13 0.974 0.986 0.974 0.971 

𝜏23 1.025 1.029 0.977 0.974 

 

Entropy W. 

𝜏12 1.002 0.988 0.962 0.964 

𝜏13 0.992 0.987 0.966 0.973 

𝜏23 1.031 1.029 0.978 0.974 

 

Treated W. 

𝜏12 0.970 0.955 0.974 0.815 

𝜏13 1.004 1.010 0.998 0.821 

𝜏23 1.007 1.006 1.014 0.816 

 

IPW 

𝜏12 1.002 0.989 0.970 0.965 

𝜏13 1.005 0.990 0.974 0.975 

𝜏23 1.042 1.030 0.975 0.976 

 

IPW  (at 0.1 trim) 

𝜏12 0.998 0.989 0.976 0.965 

𝜏13 1.004 0.990 0.977 0.975 

𝜏23 1.042 1.030 0.981 0.975 

 

GPSM  

𝜏12 0.956 0.963 0.747 1.002 

𝜏13 0.644 0.657 0.630 0.702 

𝜏23 0.721 0.749 0.676 0.760 

 

GPSM (at 0.1 trim) 

𝜏12 0.942 0.950 0.749 0.957 

𝜏13 0.601 0.659 0.606 0.660 

𝜏23 0.736 0.773 0.669 0.780 
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Table 4.7 : The proportion of average estimated standard error to empirical standard 

deviation of sampling variability of estimated across 1000 iterations of moderate lack of  

overlap scenarios 

 
          Methods                 Pairwise  of      

                                             groups                                                 

Moderate Lack of Overlap 

True propensity score 

Model 

Misspecified PS 

Model 
 

 
Bootstrap Robust Bootstrap Robust 

 

Matching W. 

𝜏12 1.044 1.056 0.985 0.964 

𝜏13 1.020 1.053 1.030 1.031 

𝜏23 1.021 1.054 0.982 0.973 

 

Overlap W. 

𝜏12 1.020 1.006 0.971 0.970 

𝜏13 0.969 0.974 1.023 1.133 

𝜏23 0.989 0.978 0.971 1.009 

 

Entropy W. 

𝜏12 1.002 1.011 0.970 0.971 

𝜏13 0.984 0.979 1.042 1.042 

𝜏23 0.962 0.979 0.977 0.978 

 

Treated W. 

𝜏12 1.019 0.989 0.947 0.622 

𝜏13 1.034 1.024 1.061 0.784 

𝜏23 1.007 0.988 0.898 0.627 

 

IPW 

𝜏12 1.041 1.013 0.965 0.962 

𝜏13 1.005 0.993 1.057 1.057 

𝜏23 0.993 0.986 0.970 0.969 

 

IPW  (at 0.1 trim) 

𝜏12 0.990 1.067 0.974 0.998 

𝜏13 0.971 0.987 1.024 1.037 

𝜏23 0.935 0.971 0.958 0.981 

 

GPSM  

𝜏12 0.920 0.985 0.910 0.794 

𝜏13 0.659 0.683 0.668 0.576 

𝜏23 0.859 0.863 0.841 0.656 

 

GPSM (at 0.1 trim) 

𝜏12 0.412 0.424 0.410 0.573 

𝜏13 0.364 0.375 0.371 0.519 

𝜏23 0.417 0.422 0.401 0.472 
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Table 4.8:The proportion of average estimated standard error to empirical standard deviation 

of sampling variability of estimated across 1000 iterations of strong  lack of  overlap scenarios  

 

 

Methods                          Pairwise  of      

                                             groups                                                 

Strong Lack of Overlap 

    True propensity score 

Model 

Misspecified PS 

Model 

 

 
Bootstrap Robust Bootstrap Robust 

 

Matching W. 

𝜏12 1.057 1.060 1.052 0.887 

𝜏13 1.056 1.066 1.067 0.951 

𝜏23 1.043 1.046 1.097 0.972 

 

Overlap W. 

𝜏12 1.085 1.088 1.031 1.038 

𝜏13 1.061 1.063 1.064 1.068 

𝜏23 1.026 1.027 1.075 1.089 

 

Entropy W. 

𝜏12 1.071 1.068 1.022 1.018 

𝜏13 0.910 0.905 0.993 0.988 

𝜏23 0.897 0.896 1.015 1.016 

 

Treated W. 

𝜏12 0.705 0.700 0.902 0.355 

𝜏13 0.849 0.847 1.004 0.873 

𝜏23 0.662 0.658 0.847 0.485 

 

IPW 

𝜏12 0.728 0.714 0.972 0.967 

𝜏13 0.909 0.897 0.968 0.962 

𝜏23 0.785 0.781 0.984 0.968 

 

IPW  (at 0.1 trim) 

𝜏12 0.949      2.233 0.981 1.250 

𝜏13 1.008 1.728 1.012 1.233 

𝜏23 0.892 1.788 0.973 1.275 

 

GPSM  

𝜏12 0.873 0.880 0.741 0.790 

𝜏13 0.447 0.470 0.528 0.394 

𝜏23 0.492 0.501 0.612 0.467 

 

GPSM (at 0.1 trim) 

𝜏12 0.106 0.152 0.124 0.094 

𝜏13 0.161 0.170 0.224 0.132 

𝜏23 0.184 0.189 0.193 0.147 
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Table 4.9 : Average of  SMD(%) across 1000 simulate dataset of  good overlap scenarios 

 

 Unweighted Matching 

W. 

Overlap 

W. 

Entropy 
W. 

Treated 

W 

IPW GPSM 

𝑿𝟏 5.716 0.451 0.388 0.389 0.640 0.392 0.944 

𝑿𝟐 5.552 0.461 0.356 0.356 0.580 0.358 0.912 

𝑿𝟑 5.632 0.479 0.369 0.377 0.640 0.377 0.997 

𝑿𝟒 5.968 0.442 0.352 0.352 0.560 0.353 0.995 

𝑿𝟓 5.955 0.531 0.405 0.412 0.732 0.423 1.002 

𝑿𝟔 5.883 0.411 0.326 0.328 0.546 0.331 0.957 

𝑿𝟕 5.423 0.421 0.318 0.317 0.522 0.318 0.901 

𝑿𝟖 5.600 0.439 0.356 0.355 0.596 0.357 0.920 

𝑿𝟗 5.664 0.398 0.325 0.328 0.560 0.332 0.939 

𝑿𝟏𝟎 5.514 0.409 0.320 0.323 0.545 0.327 0.924 

 

 

Table 4.10 : Average of  SMD (%) across 1000 simulate dataset of  moderate lack of 

overlap scenarios 

 Unweighted Matching 

W. 

Overlap 

W. 

Entropy 
W. 

Treated 

W 

IPW GPSM 

𝑿𝟏 27.475 2.364 2.75 2.989 4.668 3.063 10.091 

𝑿𝟐 17.744 2.114 2.87 3.169 4.100 3.246 8.042 

𝑿𝟑 21.136 2.177 2.984 3.297 4.342 3.360 11.672 

𝑿𝟒 32.003 1.121 0.967 1.032 2.314 1.137 15.834 

𝑿𝟓 25.975 1.415 1.157 1.276 4.741 1.929 9.971 

𝑿𝟔 9.785 1.202 1.017 1.067 2.491 1.169 5.098 

𝑿𝟕 9.709 1.269 0.994 1.026 2.222 1.119 7.086 

𝑿𝟖 21.641 1.143 0.944 0.990 2.369 1.087 12.023 

𝑿𝟗 5.486 1.234 1.053 1.106 2.491 1.237 8.567 

𝑿𝟏𝟎 5.742 1.230 1.027 1.063 2.409 1.152 5.395 
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Table 4.11: Average of  SMD% across 1000 simulate dataset of  strong lack of  overlap 

scenarios 

 Unweighted Matching 

W. 

Overlap 

W. 

Entropy 

W. 
Treated 

W 

IPW GPSM 

𝑿𝟏 71.702 10.459 12.465 21.108 25.308 22.073 37.540 

𝑿𝟐 33.992 6.321 10.105 20.479 18.690 21.201 27.497 

𝑿𝟑 47.279 4.740 9.708 22.070 19.560 22.337 31.289 

𝑿𝟒 95.279 3.156 2.798 5.318 13.688 7.876 21.509 

𝑿𝟓 56.329 3.328 2.846 4.377 23.829 10.539 20.831 

𝑿𝟔 25.058 3.245 2.893 4.697 12.109 6.691 17.845 

𝑿𝟕 23.252 3.329 2.916 4.908 11.102 6.620 16.456 

𝑿𝟖 59.970 3.161 2.703 4.959 12.618 7.078 19.673 

𝑿𝟗 5.744 3.277 2.980 4.644 11.153 6.190 9.587 

𝑿𝟏𝟎 5.782 3.428 3.010 4.650 12.676 6.804 12.456 
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Figure 4.2: Distribution of bootstrap standard error for all balance weightings across 1000 

simulated for good overlap scenario 
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Figure 4.3: Distribution of bootstrap standard error for all methods across 1000 simulated for 

strong lack of overlap scenario 
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Figure 4.4: Distribution of robust sandwich standard error for all balance weighting methods 

across 1000 simulated for good overlap scenario 
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Figure 4.5: Distribution of robust sandwich standard error for all balance weighting across 1000 

simulated in strong lack of  overlap scenario 
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Chapter 5 

Summary& Conclusion 

This dissertation has offered three contributions to the literature. In these three papers, we 

presented various topics through three application areas of biostatistics: biomarkers, causal 

inference, and machine learning. Thus, this research expanded the understanding of these areas. In 

this chapter, we briefly summarize our findings and contributions in this dissertation. 

The first paper's main goal has to examine techniques for adjusting for an observational 

dataset's treatment selection process. Identifying biomarkers that may be used to predict the 

potential benefits of a specific treatment for patients is a significant challenge in developing 

personalized or precision medicine techniques. Despite the extensive literature on improving 

biomarkers in randomized control trials,  there is relatively limited research on developing a 

statistical methodology to assess the markers using observational datasets.   Firstly, we derive 

Θ1 𝑎𝑛𝑑 Θ0 parameters metrics, which measure the performance of treatment selection for 

biomarkers' based on survival outcomes. Then, we performed causal inference techniques based 

on the proposed theta metric to examine how well the results of causal inference techniques impact 

the performance of biomarkers. We have concluded that observational studies without using causal 

inference techniques to evaluate biomarkers' effect may yield inaccurate results. 
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The true propensity score is not known in observational datasets.  Rubin (1983) called that 

propensity score a balancing score. Even though logistic regression is the standard technique to 

estimate PS, there is recently growing interest in utilizing machine learning techniques. We 

implement machine learning techniques and parametric methods to estimate propensity scores in 

Chapter 3. However, implementing these approaches in practice raises several critical concerns 

that are currently being debated in the literature: i) how to estimate propensity score, ii) which 

variables are included/excluded from PS models iii) which methods (i.e., machine learning or 

parametric models) should be preferred, iv) how to estimate outcomes. The first purpose of 

Chapter 3 was to assess the bias of estimates derived from PS matching relying on the model 

utilized to estimate PS. Secondly, we used Monte Carlo simulations to illustrate how different 

combinations of covariates influenced the potential of matching on propensity score to construct 

subjects in which all measured baseline covariates were balanced between treatment groups, to 

address the lack of consensus on which variables to include the propensity score model. The best 

performing approaches for estimating the propensity score in our simulations were logistic 

regression, random forests, and CART. In comparison to the other techniques discussed, they 

frequently guaranteed significantly reduced bias and RMSE. The variations between the best-

performing methods are generally rather minor. After that, we offered the results of parametric 

and machine learning methods to evaluate treatment selection biomarkers used to select a specific 

treatment in observational studies. 

In chapter 4, the motivation was the increasing research on improving multiple (more than 

two) treatment effect estimators in observational studies. Inverse probability weighting (IPW), 

among the most preferred methods in the propensity scores literature, were used to minimize 

confounding effects and examine causal effects. One of the main assumptions is the positivity 
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assumption, i.e., propensity score must be bounded away from 0 and 1. If the positivity assumption 

is violated, we can get inaccurate results, i.e., large bias, variance, RMSE, or imbalance in 

covariates between treatment groups. So, we study matching weighting, overlap weighting, 

entropy weights, treated weighting, inverse probability weighting with symmetric trimming, 

generalized propensity score matching,  generalized propensity score matching with symmetric 

trimming that are alternatives to inverse probability weighting. We propose three different levels 

of overlap to investigate how positivity assumption is violated using true PS model and 

misspecified PS model.  When good overlap exists, MW, OW, EW, and IPW  performed similarly 

in terms of bias reduction. When the PS model is misspecified, MW, OW, and EW were not 

sensitive against the misspecification of the model. However, GPSM was more likely to be 

affected by a PS model misspecification when good overlap exists. In addition, a strong lack of 

overlap led to bias, large RMSE, and average SE across all methods. In addition, we discuss 

accurate standard error estimation using weighting methods and GPSM. We saw that utilizing 

bootstrap and sandwich robust estimator performed well in terms of an estimated standard error in 

MW, OW, and EW. 
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