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ABSTRACT
In this dissertation, we present three novel contributions, providing a new methodology,
examining the proposed method's performances, and extensive the study in literature. The first
paper of this dissertation focuses on statistical methods for developing biomarkers that provide
integration of reliable indicators of effectiveness for guiding adjuvant chemotherapy treatment
selection for cases utilizing the tumor's biological makeup. When we directly attempt to evaluate
a biomarker’s performance without considering the influence of covariates on treatment
assignment, the result can lead to inaccurate evaluation of biomarker performance. To minimize
the influence of covariates on treatment, outcome, or both, that can produce bias, we have
employed various causal inference methods in a lung cancer dataset. Chapter 3 aims to present the

general framework for the treatment selection process in literature, consisting of the intersection



of machine learning, causal inference, and biomarkers. We use parametric, and machine learning
techniques to estimate propensity scores and then apply pair matching techniques that rely on these
scores to adjust the existence of extraneous factors. Different associations between treatment or
outcome and covariates are studied and assessed in terms of results in outcome models. After that,
we use the results of parametric and machine learning methods to evaluate biomarkers that may
be used to identify patients who will benefit from a specific treatment from observational data. In
chapter 4, the positivity assumption, which states that the propensity score must be constrained
away from 0 and 1, is a crucial criterion for inverse probability weighting estimation. However,
when the positivity assumption is violated in propensity score distributions between treatment
groups, some weights can be approximately 0 and 1. These weights led to uncertainty, bias and
large variance in estimators. We study various techniques to eliminate poor overlap. We propose
different levels of nonoverlap scenarios to examine the performance of balance weighting family
and generalized propensity score matching across true propensity model and misspecified
propensity score models in multiple treatment cases. We present results of different methods of

variance estimation when estimating the causal effect.
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CHAPTER 1

Literature Review

1.1 Introduction

The thesis's purpose has been to work within the framework of causal inference and biomarker
research to eliminate gaps in the literature in terms of theory and application. Two main parts
included in this chapter will provide literature reviews. The first section introduces the history of
randomized and non-randomized studies --the framework of potential outcomes, identifiability
assumptions under a different types of treatment (i.e., binary, multiple, and continuous treatment
scenarios) are offered. The cornerstone tool of causal inference is propensity score adjustment,
which removes imbalance between treatment groups, which is reviewed in terms of its definition
and estimation. While different methods have explored propensity score evaluation, the
discussions of methods' pros and cons in literature are examined in this chapter.

This chapter includes a literature review in which causal inference topics are presented. The
first part of this chapter is motivated by causal inference in section 1.1, including a review of
history in causal effect in section 1.2, an overview of the potential outcomes framework in section
1.3, describing identifiability assumptions in section 1.4 , revising propensity score and its theory
in section 1.5, implementation of propensity score estimation process based on the different

methods in section 1.5.1, presentation of the type of propensity score methods (i.e., matching on



the propensity score, sub-classification, inverse probability of treatment and covariate adjustment)

in section 1.6.

1.2 Causal Inference in Observational Studies

Biostatistics has been an important discipline that guides many researchers in many disciplines,
such as epidemiology, health science, health economics, pharmacy, and other fields. There is a
great deal of statistical literature that has addressed various methodologies over the last century.
Classic statistical analysis includes regression analysis, estimation of parameters, hypothesis
testing and examining the asymptotic distribution of parameter estimates. Even though we can
compute the probability of past and future events using such standard statistical analysis, classic
statistical analysis may not provide estimates with a causal interpretation. In other words,
researchers may desire to understand the causal relationships that are beyond the information
present in the observed likelihood. Causal analysis is one crucial tool of many disciplines. The
objective of causal analysis is not to only make inferences based on the probability of events, but
also to examine causal relationships among variables of interest. Thus, Pearl (2010) revealed the
difference between causation and association and Pearl’s framework shows how "correlation does
not imply causation”. There is a rich statistical literature in causal inference for both observational
and randomized studies. Randomized experiments have been considered as the gold standard to
make inferences about causal relationships. Randomized Controlled Trials (RCT) cannot be used
in many instances because of being non-feasible, unethical, reasons of timeliness, and cost. Hence,
observational data is an alternative to RCT’s for use in medical research. The observational study

IS sometimes called a non-randomized experiment or quasi-experimental in literature.



However, there may be an imbalance between treatment groups due to lack of randomization in
the observational study, and bias in the estimated treatment effect can be the result.

Moreover, confounder variables can induce a relationship with treatment or outcome or
both treatment and outcome. These difficulties in causal inference have led us to formulate
different frameworks of potential outcomes in observational studies. Thus, the remarkable question
arises as to how a covariate's characteristic influences other covariate's characteristics. 1 will
consider the context of potential outcomes in observational experiments in Neyman(1923) and

Rubin(1978) through this dissertation.

1.3 A History of Causal Inference

Scientists in the biomedical field aimed to predict causal effects of binary, continuous, or multiple
treatments on an outcome. They have utilized observational or randomized control trial data to
investigate causal effects. Different types of data sets (i.e., randomized and observational studies)
can lead to varying results in terms of estimation of treatment effects. In medical science,
observational experiments are frequently used to estimate the treatment impacts on the outcomes.
Owing to the lack of random treatment assignment of subjects in observational experiments, there
can be an existing differences between the two groups. As a result, these differences may create
bias in estimates of the treatment effect. In this way, statistical methods are a needed to eliminate
or reduce the effects of confounding variables. In literature, researchers have conducted many
causal effect studies using observational data sets (such as Cochran and Chambers,1965;
Campbell and Stanley,1963,1966; Cochran,1965,1968; Cochran and Rubin,1973;
Rubin,1970,1973a,1973b,1973c) and randomized experiments data sets (Fisher, 1935; Anscombe

,1974; Kempthorne,1952,1955). The foundation of potential outcomes in the context of



randomized experiments, not in observational studies, was introduced by Neyman (1923). After
Neyman's seminal works on the notation of potential outcomes, Fisher (1925) put forward the
necessity of physical randomization in addition to Neyman's study to examine causal effects.
However, there was no scientific development on potential outcomes for more than half a century,
between 1923 and 1974. Rubin (1974) extended Neyman's(1923) idea that reinvented the
framework's notation defining causal effects to examine potential outcomes in observational study
settings.

At the end of the 70’s, Rubin's work using observational datasets brought to forefront
widespread methods to assess causal effects. Holland(1986) called it the Rubin-causal model in a
series of papers that provided a general framework of potential outcomes in observational studies.
Another approach that is alternative to potential outcomes: Directed acyclic graphs(DAGS),
introduced by Judea Pearl(2012). DAG method offered the formulation of causal models that

extract confounding from the estimates.

1.4 Potential Outcome Framework

Holland (1986) coined the term the Rubin Causal Model (RCM), which defines the causal
inference framework based on article series (Rubin, 1976,1979,1980 and 1983). RCM focuses on
two main objectives -- first modeling the ‘potential outcome' to estimate causal effect and,
secondly, defining ‘assignment mechanism' to approximate a designed experiment from observed
data. We work with binary or dichotomous treatment in Chapter 2 and Chapter 3. So, we have two
possible treatments arms, which we call treatment and control groups. We assume that a pair of

potential outcomes denoted Y;(0) and Y;(1), represent outcomes on treated and untreated for an



individual i. Difference between outcomes on treated and outcomes on untreated express the
treatment’s causal effect on individual i:
A=Y (1) = Y;(0)
Then, we can propose the potential outcomes for observed one unit as :
Y, =Tv;(1D) + (1 - T)Y;(0)
where is T = 0 for control group vs T = 1 for treatment group. Imbens (2004) specifies average
treatment effect (ATE):
ETY;(1) - Y;(0)]
where treatment effect is known as Y; (1) — Y;(0). Besides, average treatment effect among treated
(ATT) is defined by
ETY;(1) - Y;,(0)|T =1]
focusing on the subjects who received treatment as the target population. In RCT, there is no
differences in covariates distribution between treatment and control arms because of
randomization. Thus, ATE and ATT can be directly applied because their estimates are unbiased.
We want to find an unbiased estimate of ATE , which will have mean E[Y;(1) — Y;(0)]. Besides,
if we assume an RCT:
E[YIT=1]=E[TY(1))+ (1 -T)Y(O)IT =1] =

E[TY(D)|T = 1] + E[(1 = T)Y(0)|T = 1] = E[Y(D)|T = 1] = E[Y(1)] (1.1)

In the same way,
E[Y|IT=0]=E[TY(1)+ (1 -T)Y(0)|T =0] =

E[TY(1)|T = 0] + E[(1 = T)Y(0)|T = 0] = E[Y(0)|T = 0] = E[Y(0)] (1.2)



Equality (1.1) and (1.2) are valid if treatment assignments are independent of outcome:
(Y(0),Y(1)) L T), where L signifies statistical independence. Thus, we can rewrite mathematical
notation for estimate of ATE without bias as in following:
E[Y;(1) = Y;(0)] = E[Y;(1)] — E[Y;(0)] (1.3)

However, treatment effects are systematically different for covariates between treatment groups in
observational studies. In other terms, treatment exposure T may not be independent of potential
outcomes (i.e., Y;(1) and Y;(0) ). Hence, covariate characteristics can be associated with exposure
or outcome, or both of these. So, Equality (1.3) does not hold in observational studies which can

produce bias in estimates of because E[Y|T = 1] # E[Y(1)] or E[Y|T = 0] # E[Y(0)].

1.5 Assumptions

Two assumptions that allow appropriate causal inference were recommended by Rubin and
Rosenbaum (1983): strong ignorable treatment assignment (SITA) and stable unit treatment value
assumptions (SUTVA). Hernan and Robins (2018) state that SUTVA is known as consistency.
The first principal assumption in the estimation of a causal effect is stable unit treatment value
condition (SUTVA) (Rubin,1978,1980,1990a,1990b) that includes: i-) no interaction between
subjects ii-) interference among subjects is unavailable. Thus, SUTVA stipulates that we can
observe only one version of the outcome under each treatment case. In other terms, the potential
outcome has consistently occurred for each subject when the treatment assignment is fixed. The
nonexistence of interference also means that this treatment did not affect another subject's outcome
when we applied it to one subject. Moreover, "no interaction between subjects" means no hidden

variations of treatment, so the outcome is properly described.



SUTVA led to denoting the observed outcome for unit ias Y;(T),where treatment T is
defined with control group (T=0) and treatment group (T=1) under binary treatment. This
assumption alludes that we express the observed outcome asY;=T;Y;(1)+ (1—
T;)Y;(0).However, If assumption of SUTVA is infringed, it produces inconsistent causal effect
estimates. In other phrases, we do not receive a unique potential outcome of each subject under
each treatment status. The major cause of this circumstance emerges when the "treatment variant”
is present. Often, discrepancies of treatment assessments and uncertainties in the treatments
received have led to the emergence of various treatment variants. The second assumption of
estimates of causal effect is exchangeability that claimed that treatment and outcomes, given
variables, are independent. The exchangeability condition is known as unconfoundedness. We can
claim this assumption :

Y:(1),Y,(0) L TlX;
The second is the principal assumption of positivity means that every unit in the sample of interest
is capable of being assigned to all treatment levels. The positivity is sometimes called an overlap
assumption in the literature. This assumption is written in mathematical notation as follows:
0<P(T;=1lX) <1
which stipulates that each subject has a nonzero probability of obtaining treatment. Also, P(T; =
1|X;) is referred to propensity score (i.e., e;) in next sections.

If strong ignorability assumption is met, it means that we can measure all confounders and
then estimate the unbiased treatment effect. Moreover, this implies that overlap between treatment
and control groups is encountered at least. Unfortunately, this assumption can be frequently

violated, i.e. treatment or covariates can be effected by covariates’ characteristics, because we



cannot sometimes control the impact between exposure and covariates or outcome and covariates

in non-randomized studies.

1.6 Overview of Propensity Score

Under the identifiability conditions, the exchangeability assumption might not be true given the
absence of randomization in observational studies. Causal estimation based on a direct comparison
of outcomes may be deceptive. In other words, there could be substantial variations between the
observed covariates in the two groups, and these differences also may bias estimates of treatment
effects. Rosenbaum and Rubin's seminal paper defines the propensity score in 1983 as the
probability of treatment assignment conditional on observed baseline covariates. In the two groups,
the propensity score can be utilized to balance the variables and thereby decrease this bias in
observational research in many areas. In particular, the applications discussed in articles have come
from a range of areas, including epidemiology, research in medical care, biostatistics, economics,
and social sciences. There are different processes to estimate propensity scores based on binary,
multiple, continuous, and ordinal treatments. Binary treatment denoted as T;(e.g., T;=1 if
individual i is in treated condition versus T;=0 if the individual i is in the untreated condition ) for
individual i, where specify index for number of units, i =1,2,..., n and also, X; represent observed
covariates:
e; = e(X;) = P(T; = 1|1X;)

where we assume

N
pr(Ty =ty, .. Ty = tylX; = x4, ..., Xy = xy) = ne(xi)ti {1- e(xi)}l_ti

i=1



The remarkable article of Rosenbaum and Rubin summarized propensity score with five
fundamental theorems as follows :

1. Propensity score is known as a balancing score.

2. Any score, which is better than propensity score, is a balancing score. Thus, observed covariates
can be "best" balancing score and propensity score is referred as " coarsest".

3. The treatment assessment is strongly ignored if presented X, then it is strongly ignored provided
any balancing score.

4.The discrepancy between treatment group at every value of the balancing score is an unbiased
estimation of the mean treatment effect at that value of the balancing score if the treatment
assignment is strongly ignorable.

5.Sample balance on observed covariates can be generated by using sample estimates of balancing

Scores.

1.6.1 Estimating Propensity Score

The propensity score can be employed in both randomized trials and observational research. Even
though the true propensity score is typically established in randomized experiments and is
determined by the study's design, the probability e(X) is unknown outside of randomized
experiments and must be estimated using the study's data. Given the estimated propensity score, a
significant part of the propensity score analysis is to verify whether pretreatment regressors have
been balanced. Suppose we desire to use the method in the context of a binary treatment variable.
In that case, the most common and traditional approach to obtain propensity scores is logistic
regression, in which a parametric model is suggested. Let the binary treatment assignment be T;

(e.g. particular treatment T; =1 versus nontreatment 7; =0 ), consider a collection of p independent



covariates described by X' = (X1, X5, ..., X;,), and the vector of unknown parameters of interest
be 5. So, propensity score is defined as

Pr(T; =1|X;,p) = e(X)=¢;
The conditional likelihood of receiving treatment relies on using logistic regression can be

expressed as:

exp(X{ )

Prily=11X,p) = e(X) = T e

Generalized linear model is described by using logit function. We can make transformation

covariates variable through the logit function to obtain a linear function of X:

toge (=) = XT§
1-P
where P represents P(T; = 1).

Moreover, Covariate Balance Propensity Score(CBPS) has been another alternative
parametric model to estimate the probability of treatment given observed variables. Unlike the
well-known approach logistic regression, more advanced strategies have been adopted to eliminate
the conflict of potential model misrepresentation in the parametric model, such as bagging,
boosting, random forests, recursive partition regression trees, neural networks, and bayesian
additive regression tree (BART). Generalized boosted model, established by McCaffrey et al.
(2004), has been a popular method in machine learning and nonparametric techniques when
population studies have contained a large number of covariates to estimate treatment effects. GBM
is an iterative algorithm that relies on generating the number of trees using tuning parameters to
estimate treatment effects from many covariates. Another common machine learning method is

bagged (or bootstrap aggregated) CART that uses the original sample to match a CART to a

bootstrap sample to replace it and repeat it multiple times(Breiman, 1996). Although random forest

10



and bagged CART (Classification And Regression Tree) resemble to resemble the context of the
application process, the random forest method considers subgroups of predictors in every CART
structure (Breiman, 1996).BART represents a Bayesian approach utilizing the sum of regression
trees to predict a nonparametric function (Chipman,2010).

The most widespread way to estimate PS values is logistic regression, even though there is
increased interest in multiple treatments, especially in health science. Imbens (2000) suggested the
extension of causal effects based on the binary case to multiple (more than two) treatment arms.
The framework of identifiability assumptions (especially exchangeability and positivity
assumptions) to estimate causal effect is expanded for multiple treatments. Also, propensity score
can be estimated using different methods, such as boosted regression, CART, and random forest
in multiple treatment cases.

PS models depend on a model of exposure or treatment, unlike traditional statistical
approaches that focus on a model of the outcome under examination. A critical point confronting
scientists utilizing PS techniques is how to choose the parameters to be employed in the PS model.
Theoretically, the model specification would be directed by the subject matter experience, such as
a thorough understanding of how patients are referred to a given procedure. Imbens and
Rubin(2015) discussed how to choose the covariates and interactions. They said that in many
empirical studies, the number of variates is large relative to the number of units. As a result, it is
not always feasible to include all covariates in a propensity score model. Moreover, it may not be
sufficient for some of the most critical covariates to include them only linearly. We may wish to
have functions, such as logarithms, and higher-order terms, such as quadratic terms, or interactions
between the primary covariates. Here we describe a stepwise procedure for selecting the covariates

and higher-order terms for inclusion in the propensity score. Thus, Imbens and Rubin(2015) follow
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a stepwise process with three stages: primary covariates, additional linear/quadratic terms, and
interaction terms.

The next phase of analysis often involves some control participants' methods based on the
estimated propensity scores after we estimated the propensity score. Four propensity score
methods have been expressed and applied in the next section: propensity score matching, sub-
classification, covariate adjustment, and inverse probability of treatment weight. In other words,
those propensity score methods would be critical analysis techniques to remove imbalances
between the groups and for removing confounding between the treatment effect and other covariate

effects.

1.7 Propensity Score Methods

Researchers have developed several propensity score-founded approaches for treatment effect
measurement in many fields over the past three decades. The most preferred and well-known
technique in propensity score analysis is matching. The purpose of the PS matching technique is
to create a new sample of individuals with similar propensity score values or covariates values for
treatment and control groups. Then the unmatched individuals are excluded from the
sample(Rosenbaum & Rubin, 1980). Hence, the PS matching process basically may not use all of
the data. The implementation of PS matching has included a variety of approaches, including the
following.

Pair Matching: In literature, the most preferred propensity score matching methods are

"pair matching " or "1:1 matching,"” consisting of couples of treated and untreated subjects. There
are similar propensity scores for treatment and control participants in the matched pairs (Rubin

and Thomas,1996; Austin,2011). Other less preferred alternative methods than 1:1 matching are
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many-to-one (M:1) based on the propensity score. M:1 matching on the propensity score method
indicates that a treatment subject matched control subjects. Also, M represents a number greater
than one (Austin and Elizabeth,2014).

Mahalanobis matching: Even though pair propensity matching has been frequently used,

the Mahalanobis metric matching technique was discovered prior to that (Cochran and
Rubin,1973; Rubin,1976(a), Rubin,1980). We randomly ordered individuals and then calculate the
distance between the first treatment individual and all untreated. After selecting the minimum
distance value as a match for the treated individual, a pair of subjects is discarded from the potential
matching set. This process is repeated until all treated individuals are matched. Also, the distance
is expressed as
d@i, ) =x-»"3"(x—-y)

where covariate values x and y for treated individual i and untreated individual j. The sample
covariance matrix X specifies the matching variables from sets of the treated group and untreated
population individuals. There are some drawbacks to using Mahalanobis metric matching. This
method is based on the high-dimensional score, making it difficult when the model contains many
covariates (Guo and Fraser,2015).

Nearest Neighbor Matching: A treatment unit is chosen, and then the control unit with the

propensity score that is nearest to the treatment unit is picked as a matched control unit(Austin and
Schuster,2016). If many control participants have propensity scores comparable to the treatment
participants, we randomly prefer one of the control participants. The most important point in this
method is that there is no use of any maximum threshold value between matches participants'

propensity score values(Rosenbaum et al.,1985).
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Caliper Matching: Caliper matching and NN matching techniques are identical methods in

terms of implementation (Cochran and Rubin, 1973). This technique stipulates that the absolute
difference between matched participants' propensity scores must be less than a certain threshold.
A researcher has preferred different pre-determined thresholds in literature; for example, used 0.20
threshold (Austin,2011,2012) and 0.25 threshold (Rosenbaum and Rubin,1985) for standard
deviation on the propensity score.

Optimal Matching: Optimal matching aims to construct matched pairs with the smallest

average between the difference in propensity scores. An advantage of optimal matching is that the
implementation of the network flow principle to improve matching. Austin(2014) indicates that
NNM and optimal matching have been more biased than caliper matching. Moreover, caliper
matching is preferable to the other two methods because optimal matching was discovered late
compared to greedy matching techniques.

The combination of the caliper and nearest-neighbor matching led to creating new
techniques: Nearest neighbor matching within a caliper starts by ordering the treatment and
control participants and then select first treatment participant i and provide the control participant
j as matched for ith participant; after that, one selects the minimum absolute difference between i
and j participants within prespecified caliper value. So, one discards i and js participants from the
sample considered for matching. As indicated before, the caliper threshold is decided by
researchers. The nearest available Mahalanobis metric matching within calipers specified by the
propensity scores is produced by modifying nearest neighbor matching within a caliper(Guo and
Fraser, 2015).

The central idea of employing sub-classification to balance data was developed by Cochran

(1968) and formulated even before the development of propensity score analysis. However, exact
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sub-classification suffers from the same dimensionality problem as matching. Cochran states that
the number of subclasses grows exponentially when variables numbers are increased. According
to Cochran, as the count of variables grows, the number of subclasses or strata rises exponentially,
i.e., we would have 25 subclasses for s covariates when binary variables in the population are
considered. For some subclasses, which include only units from the treatment group, estimating a
treatment effect is difficult. Besides, Cochran employed stratification on the quintiles of a
continuous variable, and then removing almost ninety percent of the bias due to imbalance
between treatment and control groups. Even though Rosenbaum et al. and Cochran agreed on
removing bias at 90 percent using the confounding variables between treated and untreated groups,
the study of Rosenbaum et al. applied stratification based on propensity score values. If the
propensity score is estimated correctly based on the model in observational studies, the distribution
of variables within the same strata will be similar. Then, between treated and untreated subjects
in the same strata there would not be bias in comparisons (Cochran,1968; Rosenbaum and
Rubin,1983,1984; Imbens and Rubin,2015; Guo and Fraser 2015). A remarkable number of
studies on sub-classification methods have been conducted in literature (such as Hullsiek and
Louis,2002; D'agostino,1998;Rubin1983,2007; Rosenbaum,1991; Austin and Mamdani,2005;
Austin,2007,2012; Austin and Schuster,2016).

IPTW aims to obtain a weighted population, which has a similar distribution of observed
baseline covariates between treatment and control individuals, to remove imbalance between two
groups (or more than two groups). In a paper published in the field of surveys, the concept of
probability score weighting was originally suggested by Horvitz and Thompson (1952); the paper
focused on sample averages and their method is commonly used in the weighted regression. In

1987(a), Rosenbaum recommended the inverse probability of treatment weighting, rely on the
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model direct optimization. Although researchers have published many papers about matching on
propensity score because it is the oldest propensity score techniques, IPTW method has been more
attractive in many fields in recent years compared to matching, sub-classification, and covariate
adjustment (see Xie and Liu,2005; Lee et al.,2009; Shen et al.,2011; Austin,2011; Li et al.,2013;
Austin and Stuart,2015). One of the most important purposes of the weighting is that no sacrifice
in the data set matching is required, such as a trimming step.

The last propensity score approach is covariate adjustment using a propensity score that
estimates linear treatment effects for continuous outcomes. The outcome on two covariates is
regressed: estimated propensity score and indicator covariate for treatment case. The selection of
model would is chosen according to a state of the outcome variable, i.e., we could select logistic
regression for binary(or dichotomous) treatment, or linear model could be preferred for a

continuous outcome.
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CHAPTER 2

Evaluation a Biomarker for Treatment Selection

in Observational Study

2.1 Introduction

Globally, growing income disparities have been followed by rising inequality in health outcomes.
Dickman et al. (2017) states that the wealthiest Americans have a 10-to-15 year longer life
expectancy because of receiving better health care than poorer Americans. The rising health needs
have led people to buy more health insurance. However, growing premiums and burden sharing
also stifled income growth for those with private health insurance driving more households into
debt; and, for patients who do not hold insurance, bankruptcy can result from medical expenses.
According to the WHO?! (2020), cancer has been registered as the sixth of the top 10 causes of
death. Cancer is seen as a significant world public health problem because of the high mortality
and morbidity rates in the world (Favoriti et al., 2010), with about nearly 10 million deaths in 2020,

and 70 % of these deaths occurring in low and middle-income countries. Cancer is a remarkable

! https://www.who.int/health-topics/cancer
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disease that grows uncontrollably in any tissue or organ of the body and invades nearby in the
body to other organs(WHO) .1t has been observed that smoking, lifestyle disorders, unhealthy diet,
alcohol use, air pollution, and late age at first births in women increase the risk of cancer in middle
or less developed countries (Torre et al., 2012), which are least prepared to handle the cancer
burden. According to WHO's report in 2020, lung (1.8 million deaths,18 % of total), colorectum
and rectum (935 000 deaths,9.3%), and liver (830 000 deaths, 8.3%) are recognized as the most
common cancer types worldwide, as seen in the below table. Fortunately, biotechnology,
chemistry, and software accumulate resources to reduce the disease's side effects and decrease
death rates (Pothur,2002).

Precision medicine has progressed due to improvements in our knowledge of disease
molecular biology and treatment response pathways, as well as raised patient genetic profiling
capabilities. The identification and clarification of treatment selection markers is one part of such
personalized care (Janes,2011). It is thus critical to recognize and evaluate signs capable of guiding
clinical decisions in order to prevent specific types of events(e.g., disease development, recurrence,
or mortality) within a given post-treatment period(Blangero et al.,2019). Thus, biomarkers have
taken an essential place in the medical field. Biomarkers can ensure the integration of a reliable
indicator of effectiveness for a particular mechanism-depending on medication, or guide treatment
selection for each case relying on the tumor's biological makeup and the patient's genotype. But,
owing to the variety of biomarker evaluation techniques, the accessibility of collecting samples,
the efficacy and reproducibility of the trial, and the increased expenses associated with evaluating
the marker status on each patient, the confirmation of biomarkers by clinical testing, leading to
effective utilization of the biomarker in clinical settings, remains a significant obstacle (Mandrekar

and Sargent,2009; Dobbin et al., 2016; Mandrekar et al.,2015). Blangero et al. (2019) state that
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when comparing the success of two treatments (advanced vs. standard), such markers are supposed
to maximize clinical outcomes by recognizing people who will improve the most from the
advanced intervention and eliminating those who will not.

The terms "prognostic™ and "predictive" have been utilized to describe markers of diverse
components. Simon(2010) made clear the difference between markers. A prognostic marker is a
measurement that is linked to a patient's health outcome in the absence of treatment or with the
use of a conventional medication that they are expected to undergo. A predictive markers is a
measurement that is related to the response or absence of response to treatment. However, we will
not examine the prognostics-type biomarkers in this study. Besides, there is no agreement about
how to name such a marker, which are called "treatment selection”, "prescriptive,” and "predictive"
in literature (Holly et al.,2014). One of the best examples of treatment selection in the medical
field is KRAS gene expression in colorectal cancer. Patients who do not have KRAS variants have
illustrated better anti-epidermal growth factor receptor therapy performance than patients who
have KRAS mutations. As a result, the expression of KRAS can be used to influence treatment
selection. The US Food and Drug Administration has updated the labeling of two EGFR inhibitors,
which are cetuximab and panitumumab, to state that they are not eligible for colorectal cancer
treatment in patients with KRAS mutations in codon 12 or 13. It indicates that some markers
related to treatment selection and require effective methods to measure how well they do. At the
same time, KRAS mutation illustrates a strong association with treatment selection.

There are many different perspectives in the literature to evaluate treatment selection
markers. Some papers studied descriptive analysis for treatment effect modeling(Cai et al.,2011;

Claggett et al.,2011; Zhao et al.,2013); meanwhile, other articles focused on assessing individual

measures for markers (Song and Pepe,2004; Vickers et al.,2007; Janes et al.,2011).The current
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popular method of biomarker assessment in the health literature has been utilized for statistical
interaction between the marker and treatment variables in randomized control trials ( Sargent et
al., 2005; Simon, 2008; Huang et al.,2012). Janes et al.(2011) emphasize that interaction terms
between treatment and biomarker based on the model might lead to inaccurate evaluations of
markers performance as well as assessments that might not be scientifically helpful. The
measurement metric known as (®) is globally utilized to determine the performance measure of
the marker(Bonetti and Gelber,2004; Song and Pepe,2004; Cai et al., 2011.; Janes et al., 2014b;
Janes et al., 2015). These studies were led by using data from randomized and controlled trials.
However, the researchers can find themselves in a challenging situation because of a number of
studies of biomarkers that use observational study data.

We aim to recommend a suitable method by designing and testing a treatment selection process
based on data obtained from non-randomized trial settings where the subject's characteristics may
influence treatment, outcomes, or both. So, we look at how treatment selection is evaluated in
situations that raise some specific questions, such as:

1. This research's target question is whether causal inference adjustment is necessary to

evaluate biomarker performance in lung cancer.

2. What type of causal inference techniques should we choose to eliminate bias on covariate

characteristics and then assess the biomarker's performance?

3. Which features may affect treatment assignment and therefore need to be taken into

account as confounders?.

4. s there any remarkable difference between whether or not using causal inference for

implementation of treatment selection?.
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We emphasize developing and assessing treatment selection in cancer datasets, and questions
that have not previously been studied in the literature. So we discuss the paper's unique
contributions.

The remainder of the article is structured as follows. We present comprehensive data
information on our motivation data in Section 2.2. We construct a statistical framework for causal
inference and treatment selection in cancer biomarker from non-randomized settings in Section
2.3. We have developed our assumptions based on existing literature techniques while creating
the framework of methodology part in Section 2.4. Then, we implement the methods on lung
cancer experiments with adjuvant chemotherapy treatment in Section 2.5. Finally, we end with a

discussion of our conclusions and potential future study subjects in Section 2.6.

2.2 Motivational Context

We demonstrate our approaches in the lung cancer treatment context. Patients with lung cancer are
treated with or without adjuvant chemotherapy following the cancer surgery. A limited proportion
of patients receive benefit from adjuvant chemotherapy. In contrast, the rest of the patients endure
chemotherapy' toxic side effects, not to mention the stress and expenditure of unnecessary
treatment. So, the top priority of public health is to define biomarkers that can be used to determine
whether or not patients benefit from this specific chemotherapy.

As data were obtained from an observational study, we use it to illustrate the methods in
this section for studying the effect of exposure variable (chemotherapy) on lung cancer outcomes
in non-randomized setting. The data contains N=505 patients, and research records whether or
not patients received adjuvant chemotherapy treatment. Then the researchers collected clinical

variable and outcomes data on each patient. After some of the missing responses for the adjuvant
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chemotherapy and other variables were cleaned, 350 individuals remained, N¢ eqtment = 94 men
and women had been exposed to adjuvant chemotherapy; meanwhile, the comparison group
consisted of N.,nror = 256 individuals from the same cohort who were not exposed to adjuvant
chemotherapy. The data set involves twenty-seven covariates, although many covariates did not
relate to the adjuvant chemotherapy variable in the sense of lung cancer. Then, ten
covariates remained, including: “gender” based on the sex of a patient , “race” which identifies
the racial origination, “adjuvant RT” which presents yes/no indicator for whether the patient had
adjuvant radiation therapy as part of the primary treatment plan, “Smoking history” variable
represents that the smoking history of a patient, “pathologic n stage” illustrates pathologic
N(nodal) stage of lung cancer, using the AJCC TNM system of numbered categories for
representation of data, “site” from which patient sample came and at which the microarray assay
was performed, “age at diagnosis” is that age at which condition or disease was diagnosed,
“surgical margins” represents the degree of cancer involvement of the surgical margins,
“pathologic t stage” is that code for pathologic T(tumor) stage of lung cancer and using the AJCC
TNM system of numbered categories for representation of the data and “histological grade”
represents histologic grade. The lung cancer data set contains the total of 350 patients that were
measured for the expression of 22500 biomarkers. The flow chart of lung cancer is taken place as

follows in Figure-2.1.
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Figure 2.1: Lung cancer data flow
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2.3 Methods

2.3.1 Conceptual Framework of Treatment Effect

In the Rubin Causal Model (RCM), causal effects are described using three fundamental
principles: supposed n observations (T, X,Y ). We denote T as observed treatment under the binary
case circumstances (T=1 if treatment and T=0 if control) and let X signify a vector of observed
covariates. Also, let Y be a binary outcome variable. We propose two alternative treatments and
outcomes in the future consequences setting. Let i specify the number of units, i=1,2,3...,n. Each
individual has two possible outcomes: Y;(0) and Y;(1) for treated and untreated outcomes,
respectively. So, an outcome is written as: Y; = T;Y;(1) + (1 — T;)Y;(0). There are two ways to
estimate treatment effects in causal inference: the first is average treatment effect(ATE) that is

defined to be E[Y;(1) — Y;(0)]. The second measure of treatment effect is the average treatment
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effect for the treated (ATT) that is defined to be E[Y;(1) — Y;(0)|T = 1](Rubin,2008; Imai and

Ratkovic, 2013).

2.3.2 Propensity Score

Rosenbaum and Rubin (1983) defined the propensity score as the estimated probability of each
patient getting treatment based on the patient’s variables:e; = e(X;) = P(T; = 1|X;). Using
propensity scores is different between randomized and observational studies, even though
propensity scores can be applied in both settings. Because we know the true propensity score value
in randomized studies (at least if randomization and blinding are perfect), however, it is not always
needed; but in observational studies we don’t know the true propensity score and therefore must
estimate propensity score from the fitted logistic regression model using the data set. The second
significant difference between those studies is whether all covariates related to treatment (T;) or
outcome (Y;) are present in the collected data set.

We do not know the true propensity score in observational studies, and so we estimate
propensity score using data. An adequate examination of the propensity score has been highly
critical in observational studies. Use of the standardized difference can be beneficial to compare
binary and continuous variables between control and treatment groups. Besides, Austin (2009e)
proposed using a set of binary variables to demonstrate a standardized difference for multilevel

categorical variables. Austin (2011) define the standardized difference for continuous variable:

d = (xtreatment—xcontrol)

2 2
\/Streatment+ Scontrol
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where the sample means of covariates in treatment and control subjects are denoted as X;yeqtment
and X.oneror aNd While let sZ.cqtmene  and sZ,,,.-o;are sample variance of treatment and control
subjects, respectively.

Standardized difference for dichotomous variable is defined as:

d = (ptreatment - pcontrol)

\[ﬁtreatment(l — pAtreatmentz) + ﬁCOTltTOl (1 — ﬁCOTLtTOl)

where prevalence or means of dichotomous variables are denoted in treatment and control subject
aS Drrearment aNd Peontror FeSpectively. Besides, the sample size does not influence the
standardized difference, and it is also used to compare the balance of variables measured between
groups. In the literature, the researchers do not agree upon specific criteria to determine the
standardized mean difference threshold. However, Normand et al.(2001) suggest that the

imbalance may not be important if the standard mean value is less than 0.1.

2.3.3 Related Work in Literature

In 1983, Rosenbaum and Rubin published a seminal paper on propensity score analysis. That paper
articulated the theory and application principles for a variety of propensity score models. Ever
since this work, the propensity score method has grown rapidly and moved in various directions.
Before we start to look over these propensity techniques, we should emphasize the need to assess
balance of the covariates. Rubin and Imbens in 2015 state that such a lack of covariate balance
creates two problems. Firstly, it might lead to sensitivity in subsequent inferences where small
changes in methods are made and produce large variation. Secondly, it is difficult to obtain an
accurate estimate of treatment effects in the limited number of control or treatment groups in

covariates. So, propensity score methods are highly critical analysis techniques to remove
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imbalances between the groups and help remove confounding between the treatment effect and
other covariate effects. Many research fields such as statistics, economics, education,
epidemiology, medical care have been focused on the propensity score to achieve balance between
distributions of treated and untreated groups. The propensity score method is examined under the
four main techniques: propensity score matching, the propensity score stratification, covariate
adjustment using the propensity score, and inverse probability of treatment weighting (IPTW).

In the past decades, many articles have studied propensity score methods through matching
(e.g. Cochran and Rubin,1973; Rosenbaum and Rubin ,1985; D’Agostino ,1998;Heckman et. al
,1998; Dehejia et al.,2002; Stuart,2010; Subroto et al.,2010), sub-classification on propensity score
(Cochran ,1968; Rosenbaum and Rubin,1984; Lunceford and Davidian,2004), covariate
adjustment on propensity score(Speroff,1996; Austin,2011), and inverse probability of treatment
weighting (IPTW)(Rosenbaum and Rubin,1983; Rosenbaum,1987; Hirano and Imbens ,2001;
McCaffrey et al., 2004 and Austin,2015). These four main propensity score methods have aimed
to eliminate bias in estimates of the treatment effect between treatment and control groups and
achieve overlap of covariates distributions. In other words, assumptions of unconfoundedness and
overlap of distribution are key point to estimate causal effects. Besides, there are notable studies
that look at limitations of overlap in covariates among groups (Dehajia and Wahba ,1999; King
and Zeng,2005;Crump et al. ,2009). If propensity score values are close or equal to zero or one,
these extreme values can cause bias in estimates of causal effects. Thus, it is essential to reduce
the impact of extreme values through the trimming method. In literature, there are limited number
of studies of trimming methods (see Crump et al. 2009; Sturmer et al. ,2010; Lee et all. ,2011;

Rothman ,2018).
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2.3.4 Propensity Score Trimming

A crucial purpose of applied statistical methods is to understand the causal relationship between
treatment and outcome. In studies where treatment assignments are assigned randomly(and
perfectly blinded with 100% compliance), the researcher can directly apply to estimate causal
effects under the unconfoundedness assumptions. We desire to assess the covariate balance and
provide that any propensity methods lead to comparable in terms of the assessed covariates.
However, observational studies have violated this assumption due to an absence of randomization.
In other words, covariates' characteristics can influence the treatment, outcome, or both. So,
different distributions between treatment and control groups in covariates can produce the limited
overlap issue. We stated that propensity score has some assumptions such as SUTVA, positivity,
or exchangeability (see details in chapter 1 of this thesis) to infer appropriate causality. One
assumption is the positivity assumption that looked at PS distributions' overlap between treated
and untreated groups. Suppose there is limited overlap between treatment groups. In that case, it
means that the absence of overlap may indicate a failure of the positivity principle, which could
lead to propensity scores very near to zero or one. We employ matching, sub-classification,
weighting, or covariate adjustment to eliminate bias between treatment groups. But few samples
of extreme values are present, and estimators may be overly skewed, resulting in biased and
unstable performance. Unfortunately, estimators of propensity score methods might be extremely
affected by some covariates and cause biased and inconsistent results. Another technique has been
recommended to address this problem intrinsic to estimators of propensity score techniques: the
trimming method. Unluckily, researchers have rarely been concerned with utilizing propensity

score trimming to estimate causal effects in the literature. A number of approaches have been
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advanced for determining the trimming method that has helped the overlap between treatment
groups. Individuals whose propensity score values drop below the limit of propensity score values
in the subpopulation with the opposing treatment are often excluded.

All trimming methods aim to identify a sample population that is as inclusive as possible
but still has adequate overlap that extrapolation is redundant and the overall treatment effect can
be accurately measured. Even though all researchers, who studied the trimming method, aim to
thrive a systematic approach to target the absence of overlap in covariate distributions between
treated and untreated groups, the implementation of all trimming techniques has employed
different processes. Stirmer et al.(2010) proposed an asymmetric trimming method that relies on
the distribution of propensity score values in two treatment groups. The bound of threshold on
propensity scores to employ trimming method is determined based on the treatment and control

groups, separately. Stiirmer et al.(2010) defined the trimming method as follows:

I={i€l:e€[F (al),F,}r,(1—al0)]}

e

Thus, 100*q th percentile of the propensity score in the treatment arm represents for lower bound
of the trimming method (L). Besides, 100*(1-q) th percentile of the propensity score in control
arm indicates upper bound (U). After the bounds [L,U]] are established, outside bound propensity
score values are removed from the treatment and control groups' data sample. Another trimming
method is suggested by Walker that recommended a technique for measuring covariate overlap
that also acts as a trimming tool. Walker et al.(2013) suggested a technique for assessing covariate
overlap that also acts as a trimming tool.

The last trimming method, which is utilized throughout this paper, is recommended by

Crump et al. (2009). This study aims employ this method in some circumstances, such as extreme
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propensity score values, a large variance, poor finite sample properties, or bias. Thus, the
propensity score trimming intervenes to ensure balance in distribution between two groups by
excluding close to 0 and 1 values. Computing the asymptotic sampling variance for each subset's
average treatment effect (ATE) is more appropriate because one cannot compute the exact sample
variance. ATE is defined as
1= Egp[T(X)|X; € C] (2.1)

where X is in some subset C of the covariate space, t¢.

So, we focus on the asymptotic sampling variance for the efficient estimator for average

treatment effect, which is

2(x. .
AV (€) = =5 By [Z50 + 280 x e (] (22)

)’ e(X;) 1-e(X;)

where q(C) = Pr,(X; € C) is covariate probability in subset of C.The question in here is how
we can make minimized the asymptotic sampling variance of an efficient estimator. If there is
homoscedasticity, we define that the optimal sampling variance as

a2 1 1
a© " [e(X) —e(X;)

Aweff(«:)— | X eC

where

V(¥]X,) = o?
So, C~ is defined by optimal C. So we have two possibilities to minimize asymptotic sampling
variance under all subset C of X (Imbens and Rubin,2015).

Firstly, if we consider that,

SUPxex

1 1 1
e(x).(1—e(x)) = sp [e(Xi) + 1—e(Xi)] (2:3)
then, entire covariate space C* = X and the optimal C is same. On the other hand, we can define

the optimal C*:
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C={xeXla<e(x)<1-—al,

where the threshold « is equal to

where y is defined as

1 1
v=2 IESp [e(Xi)(l—e(Xi)) | e(Xp(1—e(Xy) = }/] (2.4)

This procedure implementation can be done step by step as follows.
Step 1: We should estimate propensity score , é(X;) as discussed it in section 2.3.2.
Step 2: After estimated propensity scores é(X;), we need check in (2.5) inequality as taken in
below.
1 1 @n 1

MATi=1,.N Gy a-at) = 2 N = B a-20) @5)

When (2.5) inequality holds, then C=X.
Step 3: if (2.5) inequality does not hold, so we consider in (2.6) inequality to solve for a value of

y satisfying,

2 N 1

YN 1_ _ _
v 2i=1 1o a-eon sy = § Li=1 300 ety LEEDa-e@o) sy (2.6)

Step 4: If inequality (2.6) does not hold and then y = min;(é(X;)(1 — é(X;)))~1, right hand side
is larger than left-hand side in inequality (2.6). Thus, we will get largest value of ¥ and then it’s
called as y. Finally, we compute in following

A~ 1
a=--

! and C={xeXla <é(x)<1-a} 2.7)

I
|
=)=
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é(X;) value of outside C will be discarded and then we will focus on balance and estimate average

treatment effect for subset class.

2.3.5 Subclassification on Propensity Score

On the basis of propensity score ranking, stratification is sometimes called sub-classification,
divides all sample into equal subclasses. Some researchers (Cochran 1968; Rubin and
Imbens,2015) emphasized that employing percentiles of estimated propensity score values to split
into five subclasses. Then those subclasses have illustrated to eliminate ninety percentile of bias
due to calculated confounding variables. Each subclass will have a similar propensity score value
for treatment and control groups. Thus, we will eliminate bias between treatment and control

groups regarding the distribution of evaluated variables.

2.3.6 Propensity Score Weighting

We define inverse probability of treatment weighted as w = g + ? . Lunceford and Davidian

(2004) discuss theory of inverse probability of treatment effect to estimate ATE and ATT. We

TiY; 1 1-T;)Y
- =y 1@ .There is another alternative way to

e n e

have that estimate of ATE as —Z”

-1
( n 1_Zi) n (1-Tyy; In
i=1 1-e; i=1 e; '

define estimate of ATE as following: (Z?zlz—ii) Xi= T? -

e

l)l

—€i

addition, an estimate of ATT is T; + &T0 receive one weight and besides, estimate average

T; (1-¢;)

effect of treatment in the controls is that (1 —T;) + (Lunceford and Davidian, 2004;

ej

Morgan & Todd,2008; Austin, 2011). Weights can be sometimes large and highly influential.
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Robins (1998 and 1999) defines stabilization in weights that provide to decrease variability of
estimation. Using stabilization for estimating ATE in IPTW is Pr(T = 1)§ +Pr (T = O)E
\where Pr(T =1) and Pr(T = 0) represent marginal of probability in treated and control
groups. To sum up, we can apply propensity weighting step by step as following : i) Estimate
propensity score using covariates in fitted logistic regression. ii) There are two types of weights
to compute estimates: weights for ATE and weights for ATT. If we have large weights,
stabilization is applied. iii)After computing weights, we need to assess balance of baseline

covariates in treated and untreated subjects in weighted sample.

2.4 Proposed Approach to Evaluate Biomarker Performance
Janes et al. (2015) performed a comprehensive review of an earlier study and suggested ©
parameter as a marker performance metric. This study suggest related to each biomarker versus
linear regression model with interaction term between treatment as defined T and biomarker as
defined B as follows:

logit P(Y = 1|T,B) = 8, + 6,T + 8,B + 6;TB (2.8)
where the §,, 61, 6,, and 65 represent model parameters and let denote Y as the outcome of interest.
Absolute treatment effect provided biomarker value is defined as A(B) = P(Y = 1|T = 0,B) —
P(Y = 1|T = 1,B). So, The rule is described to reduce the incidence of population events as
A(B) < 0.Moreover, Janes et al. (2014) identify ® parameter to enhanced outcomes by reduction

in population incidence rate under biomarker-based treatment selection as following :

® = [Pr(Y = 1|T = 1,A(B) < 0) — Pr(Y = 1|T = 0,A(B) < 0)] * Pr (A(B) < 0)
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But alternative equations for estimating ® parameter is established through this paper. We use the
Cox regression model because this dataset has survival outcomes and not simple binary outcomes;
the model has interaction between T and B,

h(w|T,B) = ho(W)Exp[B,B + B,T + B3BT]
where hy(w) is the baseline hazard, B is the biomarker, and T is the treatment assignment (T =
0 for control arm, and T = 1 for active treatment arm) and also, S,, S, and 5 are coefficient
parameters of cox model. In addition, the overall survival time is the endpoint. When the biomarker
,B is not associated with patient outcomes in control group, we can inform that 8, = 0. However,
if the biomarker is not associated with patient outcomes on the treatment group, f; + 3 = 0 is
hold. Under the additional assumption of an exponential baseline hazard, we can write the baseline
hazard as

ho(w) =21

for some 1 > 0. Then,

h(w|T,B) = AExp[B,B + B,T + 3BT]

The cumulative hazard is then,

S=

H(w|T,B) = J C hwIT, B)ds

s=0
= [_) AExp[ByB + BT + B3BT]

= tAExp[B.B + B,T + B3BT]
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Now , recalling that S(w) = Exp[—H(w)] we have,
S(w) = Exp[—wAExp[B,B + B,T + B3BT]]
=Pr(W >w)

Now if we set w = w, we have

So, for an individual assigned to control the probability would be:

Pr(W > wy|T = 0,B) = Exp[—wyAExp[B,B]]

and for an individual assigned to treatment

Pr(W > wy|T = 1,B) = Exp[—wyAExp[BB + B, + B3 B]]

The treatment hazard ratio is described as

h(w|T = 1,B) _ oBothsB
h(w|T = 0,B)
Hence, | can re-write optimal strategy as:
( (T =1 b> _'8—'82
if + Bz <03 _[f,
7=0: b< B_Z
Topte(B =Db) = 5 p —,83
T=1: b< ﬁ—z
if + B3> 054 _;
T=0: h>—2
\ \ — Bs
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After the biomarker cut-off point is determined, we have

d, do
Pr(W > W0|Topt) = j Exp[—wo/lExp[,BlB + £, + ,B3B]] + j Exp[—wyAExp[B,B]]

0

where (c,, dy) and (c¢q, d,) are the intervals for control and treatment assignments, respectively.

The parameters of interest is developed as follows :

dq

00 = [ Expl-wad e515:55] - Expl-wy elab

C1
and

do

0, = j Exp[—woA eP1B] — Exp[—wyA ePrB+F2*FsEBqp

Co

2.5 Application to Lung Cancer Dataset

To provide a proposed method, this paper has included an overview of the broad scientific areas.
The first objective in the article is the assessment of causal inference using data on lung cancer,
which is from an observational study. Since treatment assignment processes are neither known nor
random, obtaining causal effects from retrospective trials in non-equivalent populations is difficult.
Treated and untreated samples often vary systematically in both measured and unmeasured
baseline characteristics. When estimating the impact of treatment on results using observational
data, methodological approaches must be used to account for systemic discrepancies between
treated and untreated subjects. So, those issues lead us to implement methodologies based on the

propensity score. After we eliminated imbalance between groups using a variety of propensity
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score methods, we assess the performance of predictive biomarkers based on the results of causal
inference techniques. Thus, this paper's second aim is to focus on the treatment selection process
for lung cancer. Figure 2.2 clearly illustrates the flow diagram of the application processing.

Figure 2.2: Flow diagram of analysis

Step 1 l

Step 2 {

S e Led |
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We used lung cancer data on 350 patients who were treated with chemotherapy. Overall, 256
patients were not treated by chemotherapy treatment, whereas 94 of whom were exposed to
chemotherapy treatment for lung cancer. We also have ten covariates, age, gender, adjuvant RT,
race, surgical margin, site, historical grade, smoking history, path N stage, and path T stage
collected from patients' medical archives. The propensity score was estimated using a logistic
regression model to regress individual assignments on the ten covariates that might affect the
outcome. This approach has been demonstrated to perform better by including some variables that
influence treatment selection. We can use a stepwise procedure for selecting the covariates for

inclusion in the propensity scores. Race, adjuvant RT, path N stage, site, age, path T stage, and
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their interaction terms are particularly important covariates and inclusion of estimated propensity
score. Table 2.1 presents the mean of dichotomous/ categorical baseline variables between treated
and untreated groups. We can use the Wilcoxon rank-sum test/chi-squared test to check the
prevalence of variables between groups for continuous and categorical variables, respectively.
Also, we report the standardized difference for each of the ten baseline variables in the
original lung cancer data, untrimmed or unweighted, in table 2.1. There are standardized difference
values in the original data that exceeded 0.10, with an adjuvant RT covariate having the greatest
standardized differential (1.045). It is emphasized that there are most of the covariates are
particularly unbalanced. One of the imbalanced issues could be that there is a remarkable
difference in the percent between chemotherapy and non-chemotherapy groups. Such differences
may bias a simple comparison of outcomes by treatment status and suggest that, at the very least,
adjustments for pre-treatment differences are required to obtain credible inferences for the causal
effect of chemotherapy exposure on outcomes. That's why we apply propensity score trimming

that removes the imbalance of those differences between groups in the next step.

Table 2.1: Baseline characteristics of treatment and control subjects in lung cancer dataset

CONTROL TREATMENT SMD  Pvalue

N=256 N=94
AGE=TRUE(%0) 127 (49.6) 36(38.3) 0.229 0.078
GENDER=2(%) 140(54.7) 49(52.1) 0.051 0.760
ADJUVANT RT=Yes (%) 24(9.4) 49(52.1) 1.045 <0.0001
RACE (%) 0.496 <0.0001
White 216(84.4) 66(70.2)
Unknown 25(9.8) 26(27.7)
Other 15(5.9) 2(2.1)
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SURGICAL MARGINAL (%) 0.112 0.678
All 242(94.5) 91(96.8)
Microscopically 5(2.0) 1(1.1)
Unknown 9 (3.5 2(2.1)
SITE (%) 0.531  <0.0001
DFCI 23 (9.0) 25(26.6)
HLM 79 (30.9) 19(20.2)
Ml 78 (30.5) 19(20.2)
MSKCC 76 (29.7) 31(33.0)
HISTORICAL GRADE (%) 0.437 0.437
Moderate 118(46.1) 41(43.6)
Poorly 85(33.2) 39(41.5)
Unknown 13(5.1) 4(4.3)
Well 40(15.6) 10(10.6)
SMOKING HISTORY (%0) 0.118 0.802
Currently 21(8.2) 8(8.5)
Never 31(12.1) 15(16.0)
Smoked 197(77.0) 69(73.4)
Unknown 7(2.7) 2(2.1)
PATH N STAGE (%) 0.413 < 0.0001
NO 183(71.5) 43(45.7)
N1 37(14.5) 26(27.7)
N2 27(10.5) 23(24.5)
Unknown 9(3.5) 2(2.1)
PATH T STAGE (%) 0.583 <0.0001
T1 97(37.9) 13(13.8)
T2 134(52.3) 71(75.5)
T3 15(5.9) 5(5.3)
Unknown 10(3.9) 5(5.3)

inferences at the subsequent analysis stage.
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Table 2.2 presents summary statistics and standardized mean difference in trimming sample. One
observes that trimming on the propensity score has diminished or eliminated many systematic
differences in means or prevalence between treated and untreated subjects reported in Table 2.2,
which compares it with Table 2.1. In this case, trimming the sample by removing units with

extreme values of the estimated propensity score to improve overlap should lead to more robust



Table 2.2: Baseline characteristics of treatment and control subjects in the trimming sample

CONTROL TREATMENT SMD
N=83 N=59
AGE=TRUE(%0) 44(53.0) 25(42.4) 0.214
GENDER=Male(%) 34(41.0) 33(55.9) 0.033
ADJUVANT RT=Yes(%) 20(24.1) 22(37.3) 0.289
RACE (%) 0.282
WHITE  64(77.1) 38(64.4)
UNKNOWN  19(22.9) 21(35.6)
OTHER 0 0
SURGICAL MARGINAL (%) 0.132
ALL 78 (94.0) 56(94.9)
MICROSCOPICALLY 3(3.6) 1(1.7)
UNKNOWN 2(2.4) 2(3.4)
SITE (%) 0.371
DFCI 22(26.5) 24(40.7)
HLM 17(20.5) 14(23.7)
Ml 44(53.0) 21(35.6)
MSKCC 0 0
HISTRIGOCIAL GRADE (%) 0.190
Moderate 4(4.8) 3(5.1)
Poorly  29(34.9) 24(40.7)
Unknown 40(48.2) 23(39.0)
Well 10(12.0) 9(15.3)
SMOKING HISTORY (%) 0.089
Currently 10(12.0) 6(10.2)
Never 12(14.5) 8(13.6)
Smoked 59(71.1) 44(74.6)
Unknown 2(2.4) 1(1.7)
PATH N STAGE (%) 0.269
NO 2(2.4) 2(3.4)
N1 49(59.0) 27(45.8)
N2 21(25.3) 20(33.9)
Unknown 11(13.3) 10(16.9)
PATH T STAGE (%) 0.383
T1 2(2.4) 2(3.4)
T2 10(12.0) 2(3.4)
T3 63(75.9) 51(86.4)
Unknown 8(9.6) 4(6.8)
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After we present the implementation of the covariates selection procedure on the lung cancer data
set, Figure 2.3 in left side illustrates the propensity score value identification with adjuvant
chemotherapy versus without adjuvant chemotherapy in original sample. They display a limited
overlap in preintervention characteristics between treated and control groups. In other words,
Figure 2.3 reveals a considerable imbalance between treatment and control groups. As Figure
2.3 in left sides indicates, two groups' density differs from each other on the distribution of
estimated propensity scores, and so, the common support region is especially problematic.
However, the key to applying the trimming method is that if the true propensity score values are
equal to zero or one, it is supposed that there are no counterparts with alternative treatment for
such units. Hence, We cannot credibly and accurately estimate the effect of treatment. We perform
a propensity trimming score technique to reduce the impact of confounding variables on the model.
Right side of Figure 2.3 illustrates a remarkable performance in terms of the removing bias
between treatment groups. In other terms, overlap between chemotherapy and non-chemotherapy
groups seems to be satisfied. It seems that propensity score trimming works well and is reasonably

balanced.
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Figure 2.3: Density plot of treated and untreated groups in original sample (left) and trimming

sample (right)
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Table 2.3 shows our methods in the lung cancer treatment context. Lung cancer patients are
typically treated with adjuvant chemotherapy (treatment arm) and no chemotherapy groups. In
other terms, we want to identify a biomarker that can be used to predict which patients are and
are not likely to benefit from adjuvant chemotherapy. The final biomarker would have been the
gene with expression values corresponding to the “Max” column, and the cutoff value which is a

function of the Cox regression parameters.
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Table 2.3: Summarizing marker performance that depend on PS trimming and IPTW method

Trimming
Method

Sub-
classification
Method

IPTW
Method

Abbreviations: PS: Propensity Score , IPTW: Inverse Probability of Treatment Weight

Parameter

0
0,

No chemo
prob
Chemo
prob
Optimal
prob
0
0,

No chemo
prob
Chemo
prob
Optimal
prob

Min

0.0000

0.0909
0.6618

0.4968

0.6762

0.0000
0.1252
0.6937

0.5225

0.6937

0.0000
0.1339
0.6941
0.5115

0.6974

1St
quantile
0.0000

0.1486
0.7106

0.5591

0.7126

0.0000
0.1471
0.7109

0.5602

0.7113

0.0000
0.1573
0.7138
0.5534

0.7142

Median

0.0000

0.1529
0.7140

0.5628

0.7150

0.0000
0.1490
0.7118

0.5621

0.7120

0.000

0.1592
0.7148
0.5561

0.7150

Mean

0.0036

0.1544
0.7127

0.5619

0.5619

0.0007
0.1504
0.7117

0.5621

0.7125

0.0006
0.1603
0.7147
0.5550

0.7154

3rd
quantile
0.0035

0.1592
0.7157

0.5655

0.7183

0.0002
0.1527
0.7126

0.5649

0.7133

0.0001
0.1627
0.7157
0.5574

0.7163

Max

0.0901

0.2432
0.7489

0.5971

0.7914

0.0352
0.1959
0.7271

0.5841

0.7424

0.0303
0.2082
0.7309
0.5774

0.7421

As seen in Table 2.3, 0, , 0, “No chemotherapy probability”, “chemotherapy probability” and

“optimal biomarker probability” are presented to examine biomarker that explains whether or not

chemotherapy is necessary to treat the lung cancer. The optimal biomarker for target population

is biomarker treatment that maximizes the probability of surviving past the prespecified time wo

=41weeks: 0, if we consider the standard of care treatment ( no chemotherapy); 0, if the default

treatment is “adjuvant chemotherapy treatment”(i.e. T=1 arm). Besides, we presented a method

based on the Cox hazard model that provides an unbiased estimate of ®, and ©, in the presence
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of right censoring. We studied the observational data set herein. So, it is hard to examine relevant
results in biomarker because covariates’ characteristics can impact treatment assignments. So, we
needed to apply appropriate causal effect techniques (i.e., trimming, sub-classification and IPTW)
to eliminate bias in estimates of the treatment effect between treatment and control groups. Table
2.3 shows that each method causes getting different results that correspond to ©, and ©,
parameters. ©, has a larger range in using the trimming technique than in IPTW. Similarly, the
largest probability value of ©,(i.e., ®; =0.2432) is hold by trimming methods. We understood
from table 3 that different propensity score technique can lead to different the result when assessing
the performance of the biomarker. In other words, Table 2.3 illustrates that using the different
propensity score methods has influenced the assessment of the biomarker's performance. We
understand that removing bias between treated and untreated has been vital to making appropriate

therapy decisions.

2.6 Summary & Discussion

This study proposed a descriptive analysis and a summary measure to evaluate cancer biomarkers
using observational studies. This paper is a rare study in observational studies investigating causal
inference and presenting summary measures for cancer markers. Few studies in the understanding
of biomarker rely on observational studies instead of randomized control trial. Using randomized
control trial data for evaluating treatment selection guarantees that there should be no systematic
difference in treated or untreated covariates between units assigned to the different treatments. But,
in a non-randomized observational study, researchers have no control over the treatment. Thus, we
perform various propensity techniques, such as propensity score trimming, sub-classification on

propensity score and inverse probability of treatment weighting, to eliminate confounding effects
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when used in observational lung cancer data. According to three methods, Propensity score
trimming is an essential and appropriate technique to look at the marker's impact and understand
the average benefit of treatment policies suggested.

Dobbin and Song (in revision) proposed that no genes had both ®, and ©,, values greater
than 0.001 when any causal inference methods were not considered in their research proposal. In
addition, Shedden et al.(2008) studied various approaches, not rely on the propensity score
adjustment, establish simply weak signal genes. However, we found a group of genes with a value
roughly 0.1 or over 0.1 for ®, and ©,, respectively. According to proof of results in Section 2.5,
propensity score methods have been remarkably significant for describing treatment selection. To
be clear, each propensity method, i.e., trimming, sub-classification and weighting, had different
performance in removing bias between adjuvant chemotherapy and standard therapy. The results
suggest that treatment selection based on the propensity score trimming method has performed
slightly better than treatment selection on other propensity scores. To sum up, we strongly
recommend using any propensity score techniques that give sensible results in observational
studies. In other terms, we understand that propensity score adjustment has been vital to employ

in the non-randomized trial.
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2.7 Appendix

Figure : Histogram-based estimate of the distribution of propensity score for treated and untreated

group for original sample
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Figure: Histogram-based estimate of the distribution of propensity score for treated and untreated
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CHAPTER 3
Development of Biomarker in Propensity Score-Adjusted of

Parametric and Machine Learning Methods

3.1 Introduction

Treatment selection biomarkers are indispensable tools for determining whether or not a
participant improves from a specific treatment. Numerous research on tumor markers has been
conducted in oncology throughout the years, but the number of indicators that have been found to
be medicinally valuable is few. In addition, while markers in initial studies often illustrate great
promise, large inconsistencies are observed in subsequent studies conducted with the same marker.
Discrepancies have been attributed to various factors, including general methodologic variations,
inadequate research design, non-standardized or non-reproducible assays, and improper or

misleading statistical analyses. So, choosing the proper treatment selection biomarker is highly
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important to ensure benefits for the patient. In literature, there are various approaches to illustrate
treatment selection biomarkers. Some researchers have focused on the descriptive analysis of
modeling treatment selection (see Bonetti and Gelber ,2004; Cai et al.,2011; Janes et al.,2014)
while others have studied optimizing markers for treatment selection (Lu et al.,2011; Gunter et
al.,2011; McKeague and Qian,2013).

The main question in the assessment of treatment selection is what statistical method we
should use to identify essential markers. A well-known methodology in the development of
treatment selection markers in the literature is the statistical interaction between marker and
treatment arm as a fundamental measure of biomarker performance(see Sargent et al. ,2005;
Simon,2008; Janes,2011; Janes et al,2013). Even though the interaction between marker value and
treatment assignment is essential, it is not sufficient to determine marker performance( Huang et
al. ,2012; Janes,2012). Most of the studies on treatment selection have been based on data coming
from a randomized clinical trial. The treatment effect can be relatively simple to estimate in a
randomized study. However, when we consider observational studies, we never know what
determined the treatment selection process because it is non-randomized.

In many scientific circumstances, researchers want to know how an intervention affects an
outcome. In many cases, allocation of the intervention and evaluation in a randomized clinical trial
can offer rigorous assessment, but, in other cases, such research is not possible owing to ethical
restrictions. This has stimulated a lot of study in causal inference, especially using the potential
outcomes approach. Causal inference is required due to imbalances in baseline factors between
treated and untreated, which can act as confounders. In contrast to a randomized trial, the
assignment system in an observational study is not controlled by the scientist. Therefore it is

unknown how subjects' attributes impact their chances of being assigned to the treatment or control
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group in the observational study. As a result, the data must be used to assess the participants'
chances of obtaining treatment. A coherent approach for examining causal effects of the treatment
effect on the outcome recommended by Rubin (1974) and Rosenbaum and Rubin are based on the
potential outcomes proposed by Rosenbaum and Rubin (1983). Propensity score aims to reduce
confounding bias in treatment average effect estimates. So, it assists in achieving this aim by
predicting the exposure's probability provided individual covariates and, especially, by employing
a propensity score to establish balance on confounders. The fundamental assumption is that, given
similar propensity scores for exposed and unexposed individuals, treatment assignment for these
two individuals is independent of all confounding variables. So the two observations may be
utilized as counterfactuals for causal inference. This method reduces the need to balance a
multivariate set of observable features to the simpler task of adjusting based on a one-dimensional
propensity score.

An important topic covered in the paper is the selection of the propensity score modeling
approach. It's feasible that alternative methods for estimating the propensity scores will result in
different treatment effect estimates. Propensity scores have traditionally been evaluated using
logistic regression. Some papers (see Westreich et al.,2010; Lee,2010; Wyss et al., 2014) address
some of the pros and drawbacks of logistic regression for propensity score prediction. This paper
will discuss and examine the relative advantages and disadvantages of various representative
methods. Imai and Ratkovic (2014) suggested covariate balance propensity score as an alternative
parametric approach to logistic regression. CBPS technique substitutes MLE with an extended
form of moments estimation to improve treatment assessment estimation and covariate balancing
simultaneously. Despite the fact that the CBPS has been demonstrated to work well in some

particular circumstances, it has not been used in medical settings or with a large dataset. Even
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though parametric methods, especially logistic regression, are more preferable techniques,
parametric methods, on the other hand, need assumptions about the variable selection process,
covariates' distributions, and interaction term definition. So, there can be an imbalance between
treated and untreated groups in covariates if the models do not meet the assumptions or are defined
wrong. Note that throughout this thesis, variable selection refers to the variables used in the model
fitting and not to the process of selecting variables from the full list of all variables for inclusion
in the model. So, there can be an imbalance between treated and untreated groups in covariates if
the models do not meet the assumptions or are defined incorrectly.

Machine learning techniques might be used in place of parametric approaches, i.e., logistic
regression (LR) or covariate balance propensity score (CBPS). In health care research, machine
learning is a machine algorithm that is growing more widespread. Even though many studies have
been focused on prediction issues, the latest advances in machine learning (ML) have expanded
their implementations from predictive models into the statistical inference field, allowing for more
widespread use in the area( Connell and Lindner ,2019; Fang et al. ,2011).

Machine learning is a broad concept that encompasses a wide range of categorization and
prediction algorithms with uses ranging from economics to health care, engineering, accounting
fields. While statistical techniques to modeling presume a data model with parameters determined
from the data, machine learning uses an algorithm to identify an association between the result and
a predictor without utilizing any data model. We apply some machine learning techniques, such as
generalized boosted model (GBM), random forest (RF), bagging (BAG), and classification and
regression trees (CART) models, to estimate propensity scores. Then those values are employed

to perform one-to-one matching.
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When these methodologies aim to reduce the influence of treatment selection bias, the
researcher seeks to identify which factor/covariates to include in or exclude from the estimation
model. Any factors may be characterized in terms of two features for a particular treatment and
outcome. These relationships are defined as associated with treatment, outcome, both of them or
neither of them. So, it is highly critical to determine whether included variables should be
connected with treatment, outcome, both of them, or confounders variables. There are limited
studies for variable selection (Austin et al., 2007; Brookhart et al.; 2004). However, there is no
comprehensive review to explore variable importance in several parametric and machine learning
methods.

This paper is motivated by two fundamental purposes. Firstly, we investigate the
performance of one-to-one matching techniques depending on LR, CBPS, GBM, RF, CART, and
BAG methods when considering different sets of variables in the models. Secondly, we present a
detailed framework for evaluating markers in the context of treatment selection. The proposed
tools ( Janes et al.,2012) are utilized to identify descriptive analysis and summary measurements.
In literature, all studies are based on a randomized trial. However, we present the methods that rely
on using the results of causal inference under many scenarios. At the end of the study, we reveal a
general framework for the performance of causal inference and then treatment selection
biomarkers.

The remainder of this paper is laid out as follows. Section 3.2 highlights the major
fundamental principles of propensity score methodologies and the disadvantages or advantages of
employing machine learning techniques for propensity score estimates and balance diagnostics.
We discuss about variable selection importance and previous studies in Section 3.3.Also, the

treatment selection process is summarize in Sect. 3.4. We present the comprehensive results from
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the simulation study to examine the performance of parametric and non-parametric methods and
then performed marker assessment for treatment selection in Sect 3.5 .We present a summary of
our results as well as some recommendations for professionals interested in using propensity score

approaches in Section 3.6.

3.2 Parametric and Machine Learning Methods

3.2.1. The Framework of Causal Effects

In the potential outcomes framework, let T be the treatment variable, Y signify outcome (or
sometimes called response), and X be the vector of baseline covariates. Thus, we define data as

(Y;,T;,X;),i =1,...,n,and random sample (Y, T, X). A pair of potential outcomes: Y (0) and
Y (1) represent the potentially unobserved response under the control and treatment groups,
respectively. We denote T=1 if an individual is assigned to active treatment, T=0 if control. We

can observe an outcome as Y (¥; = T;¥;(1) + (1 — T,)Y;(0)) in the case of a binary treatment.

3.2.2. Methods to Estimate the Propensity Score

Researchers in various fields have recently introduced several propensity score estimation
approaches that emphasize reducing the covariates' imbalance. There are two main guidelines as
parametric and nonparametric methods for predicting propensity scores under any of the
propensity score approaches in the literature. Logistic regression is a parametric approach
commonly preferred to estimate propensity score. Later, CBPS is recently proposed alternative
methods to logistic regression. Nevertheless, parametric methods require meeting with
assumptions concerning variable selection, covariates' distributions, or defining interaction terms.

Also, Nonparametric techniques, i.e., random forest, generalized boosted model, bagging and
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classification, and regression trees methods, are reviewed in terms of the theoretical and

application process in this section.

3.2.2.1 Logistic Regression

A great deal of effort has been taken into developing techniques for estimating propensity scores.

In fact, parametric approaches along with logistic regression are most frequently used to predict

propensity scores. Logistic regression is also a well-known technique to estimate the conditional

probability of receiving treatment when there are two treatment conditions. Logistic regression

starts including main effects for supplied covariates characteristics. Logistic regression starts

including main effects for supplied covariates characteristics and then adding squared terms of

variables and interaction terms of covariates to enhance propensity score values if adequate

balance is not achieved. The logistic regression is written to estimate propensity score :

where let covariates be X;, ..., X, with p independent variables. &, is described as an intercept and

§’s are unknown parameters. The log odds of the probability is as follows:

logit (T; = 11X) = log (oo =)

1-Pr(T;=1)

Equation (3.1) is re-written for the estimated propensity scores

exp(logit(T; = 1|X)
e(X) = :
1+ exp(loglt(Ti = 1|X))

We can predict the propensity score using the maximum likelihood estimator:

N
BMLe = arg maxgee Z Tilog{e(X;)} + (1 — Tj) log{1 — e(X;)}

i=1

where e(.) is twice differentiable with respect to # maximizes the likelihood function,
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Ti e/(X) _ (1-Ti)e'(Xy)
e(Xj) 1-e(Xp) '

ST sp(Ty X)) = 0, 56(T;, X;) = (3.2)

where e’'(X;) = 0 e(X;)/ 0BT is the gradient. So, we state that equation 2 represents first derivation

of e(X,).

3.2.2.2 Covariate Balance Propensity Score

There may be deviations in estimated propensity score when considering parametric models such
as logistic regression due to the incorrect model specification, for example, when the true
propensity score model is not logistic. This has led researchers to use different parametric models
to minimize imbalance in treated and untreated groups and reduce bias and variability. One of the
popular alternative approaches to estimating the propensity score was discovered by Imai and
Ratkovic in 2014.Various CBPS models to estimate causal effects have been presented in the
literature (see Hainmueller,2012; Graham et al. ,2012). However, the difference between Imai and
Ratkovic's paper and other papers is that it is based on a single model for determining treatment
assignment and covariate balancing weightings. Estimating treatment assignment based on
the CBPS model is usually implemented with the generalized method of moments or empirical
likelihood framework.

CBPS technique is a parametric model and has remarkable advantages for estimation of
causal effects. CBPS estimation helps reduce the causal effects misidentification in the parametric
model by choosing parameter values that make important covariates balance. Even if the CBPS
model is correctly determined, the CBPS method may further improve the balance of covariates in
observational data compared to using logistic regression. In addition to maximizing the model
likelihood, the covariate balancing technique includes a balance requirement for the weighted

averages of the factors in the variable prediction process. As mentioned earlier, the crucial
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challenge of standard approaches e.g., logistic regression, is that misidentification of models can
lead to biased estimates in treatment effects. It may be appropriate to use more complex non-
parametric models, but covariate X's with high dimensionality can challenge the estimating
propensity score. . In this case, CBPS estimation is a robust method chosen to mitigate a
parametric model's misrepresentations.

Imai and Ratkovic (2014) proposed a logistic regression model, i.e.,

1
1+ exp{—B'X}

e(X) =eg(X) =

Then B is solved by satisfying the following condition:

TX _ 1-TX ) _
E{e,g(X) 1—eB<X)}_0 (3.3)

9 eg(X)

where X = f(X) is measurable function of X. Choosing f(.) , i.e. X = is solved the

maximum likelihood estimator (MLE) of 8 because equation (3.3) is the score function of MLE.
The above balancing condition is for the estimation of ATE. Besides, we use CBPS method to

estimates the parameters of propensity score by solving estimating equation:

1 n
9p(T,X) == E g9(T;, X)) =0,
nNidi=

where

T; 1-T;

9T X)) = (55— 1ot ) F (D) (3.4)

for some covariate balancing function f(.): R? - R™ when we hold that parameter number, p is
equal to (3.4) equation numbers, n. However, if n > p, we estimate $ by optimizing the covariate

balance using the generalized method of moments (GMM) method :

p = argmingee gg(T,X)"W g (T, X)
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where © is the parameter space for g in RP and W is an (n X n) positive define weighting matrix.

For estimating ATT, the balancing condition gets

_ (X1 -1X) _
E{TX— T— ;) }_0

3.2.2.3 Generalized Boosted Model

Researchers prefer using different approaches when they acknowledge logistic regression has
disadvantages in estimating the propensity score. Nonparametric methods (i.e., boosting) have
been shown to outperform parametric methods ( i.e., logistic regression or CBPS methods) to
estimate propensity score for dichotomous or multiple treatment factors. Boosting is an automated
and data-adaptive algorithm. It can be used with many pretreatment covariates to fit several models
through a regression tree and predict treatment assignment. It is an ensemble method that combines
simple models into a nonparametric approach. There are many variants of boosting studies in
machine learning, such as the AdaBoost algorithm by Freund and Schapire(1997), generalized
boosted models by Ridgeway in 1999, LogitBoost by Friedman et al. in 2000, and gradient
boosting machine by Friedman in 2001. McCaffrey et al. (2004) recommended one of the versions
in machine learning to estimate propensity score using a generalized boosted model (GBM). So,
GBM derives propensity scores by fitting numerous regression trees given the covariates
repeatedly. After that, it is linearly merging all of the regression trees to obtain a smoothed function
for the overall estimate of propensity scores.

Moreover, interactions between covariates and the treatment variables, or between
covariates and nonlinear variables can be systematically incorporated because all machine learning

algorithms are nonparametric structures. Like logistic regression, GBM models can be written as
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Pr(T=1|X)

fX) = logm . Then, we start algorithm with log-odds of treatment as f(X) =
log % ,where let Pr(T = 1) is the average probability of the treatment indicator variable

in the sample. Let f(X) denote iteration updating to f(X) + y.h(X) , where y represents a
shrinkage factor and fitting regression trees estimate h(X). Also, shrinkage parameter helps
decreasing variance with small adjustments without growing bias and so, small shrinkage

parameter might give a more accurate fit for the model.

3.2.2.4 Random Forest

There has been much interest in "ensemble learning" methods based on decision trees, representing
classification or regression. The most known methods are boosting (Shapire et al., 1998) and
bagging(Breiman,1996) of decision trees and random forest (Breiman,2001). The most famous
tree-based algorithm is random forests that first recommend by Breiman (2001). It corresponds to
the class of nonparametric methods, which build multiple classification trees rather than just one.
So, it selects a random subgroup of the variables at every node of the tree, and then, a node is
divided utilizing the optimal split among the chosen variables.1 It corresponds to a class of
nonparametric methods, which build multiple classification trees rather than just one. It selects a
random subgroup of the variables at every node of the tree, and the node is divided. Each tree is
individually constructed, relying on a bootstrap of the data set's sample. Finally, a simple majority
vote is utilized to make a prediction. Each tree was generated using all of the data. Consequently,
each observation's propensity score was predicted and between any pair of observations,
respectively, based on each tree. The paper results present using 500 trees and nodes to use a

predetermined minimum size of 25, according to Zhao et al.(2016). Breiman and Cutler (2016)
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provide a "randomForest" package in R, and it is very user-friendly in the sense that easy

implementation.

3.2.2.5 Classification and Regression Trees (CART)

One of best-known and oldest machine learning techniques is classification and regression trees
developed by Breiman et al.,1984. CART is a kind of decision tree, which is known with regards
to easy implementation and interpretation. While some non-parametric models, such as neural
networks or support vector machines, do not offer the probabilities of class membership,
fortunately, CART is eligible to supply probabilities (Westreich et al. 2010). Hastie et al.(2001)
provide that CART, on the other hand, is classified as an unstable learner due to its bias towards
overfitting. CART is a recursive automated system for identifying the most relevant explanatory
factors (x) in deciding the dependent variables (y) to be interpreted from a vast number of
explanatory factors (x). CART is constructed based on a classification tree and a regression tree.
So, the split at each phase is determined by selecting the variable that minimizes the prediction
error or classification error. So, Relative error is specified to minimizes the sum of a square as

follows:

RE() = ) (0 =V + (s = 79)?
k=0

let y, and y, defined as left and right partition corresponds to K and S observations of y in each

step with means y, and ys.
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3.2.2.6 Bagging

Bootstrap aggregating, also known as bagging, is an ensemble approach. Breiman(1996b)
recommended the method of bagging. The method's aim seeks to decrease the variance of a
predictor in order to increase prediction efficiency. Also, it can be utilized to increase the
predictability and consistency of classification and regression trees. However, it has not had any
restriction to advance tree-based predictions. Bagging is a technique for generating independent
classification trees from a set of bootstrap samples selected randomly from a set of results. The
data will differ significantly from the prior bootstrap study for each new sample. Besides that,
every tree will differ significantly from the one before it. The algorithm then averages the expected
category participation probability over the whole set of classification chains. When the baseline
regression or classification technique being bagged is not particularly reliable, bagging performs
well. In addition, bagging can yield a notable decrease in average prediction error when minor
modifications in the learning sample can often result in considerable variations in the predictions
made using a defined technique (Sutton ,2004; Breiman et al. , 1984;Breiman 1996b; Breiman

2001a).

3.2.3 Propensity Score Matching

Matching is an intriguing statistical tool for estimating the impact of treatments owing to its clarity
and simplicity whereby the results may be presented. Considerable diversity of different matching
algorithms have been explored in literature. This study intends to review matching on propensity
score (pair matching), which is focused on a scalar function of the covariates, and is utilized to
balance all variables and mimic randomization. There are two main objectives in applying

propensity score matching. The primary purpose is to remove systematic biases associated with
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differences in observed covariates when adjusting differences in propensity score between
treatment and control groups. Secondly, it is easier to determine near matches on scalar variables
than to get close matches on all variables jointly.

Let N, represents the total number of treated units, indexed by i =1, ..., N; , and a set of
potential controls , of size N/, larger than N,. We select N. < N/ units from this set to establish
asample of size N = N, + N, that will be utilized to estimate treatment effects. Let I. symbolize
the pool of indices for set of possible controls, I;. = {N, + 1, ..., N; + N;}. We concentrate on the
difficulty of selecting a subgroup I of the total control sets, 1. < 1. , that has better balance with
respect to the treated units than a random sample of the full set of possible controls. For the sake
of clarity, this procedure will be applied to case M=1 throughout this paper. Fixing N, = N, may
be a reasonable choice if we consider the effect of N, on the sampling variance of estimators for
causal effects. We simply denote I, = {1, ..., N, } ordered set of indices for treated units. Assume
that the treated units are sorted depending on the propensity score value. The largest average
propensity score is matched first, which corresponds to matching the units that are a priori the most
difficult to match first in many real data problems. d(x, x") describe a measure of “distance”
between two vectors of covariates. Let M < I denote the set of matched controls for treated unit
i. Mf = {m;}, where {m;} is the index of control units that is matched to treated unit i . For the

i" treated unit, the set containing the closest match is

Mmf ={je I, —UGZ, M5 | d(X;, X;) = mingg UiE? d(X;, X;) }

where I, — Uf,:jl]v[f, is subset of I excluding the set of all the control units used as matches,
I, =Vl M with N, distinct elements.

As indicated in the previous part, the estimated propensity score is denoted as é(x) and then we

define
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() = (169 - 1) = (l” <1i(—:2x>> i (1 i(zgc')))

where [(x) is linearized estimated propensity score (Ips) or the logarithm of the odds ratio. This
is the squared Euclidean distance between the linearized propensity scores (Hansen,2004; Austin

et al.,2007; Imbens and Rubin ,2015).

3.3 Variable Selection for Propensity Score Models

The propensity score method seeks to decrease the effectiveness of treatment selection bias when
assessing treatment effects in non-randomized studies. Estimated propensity scores are employed
to assure that the distribution of measured risk indicators for the outcome between treatment and
outcome groups is similar and adjust for confounding variables. Furthermore, the PS is not
exclusively intended to predict treatment well. Balancing covariates so as to control confounding
and create a model for the prediction of treatment are different goals that require different
approaches to variable selection. This raises an important question: Which covariates in the
propensity score model should be added or exempted. It might be that variables that influence the
treatment selection should be included. One of the essential features of the propensity score is
highlighted in these circumstances: It is a balancing score.

Consequently, there might not be equal importance for all covariates when we consider
balancing scores. According to Austin et al. (2007), the true model ( factors connected to treatment
and result) and the confounder model (variables related to the outcome alone) can be preferable
to models that solely incorporate variables that impact the treatment selection procedure in

predicting propensity score. Myers et al. (2011), Wooldridge (2009), and Brookhart MA (2006)
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found that instrumental variables related to treatment but not the outcome can cause inflation in
bias and variance of the treatment effect estimate.

Moreover, the treatment-outcome relationship based on the measured baseline covariates
is crucial for identifying causal diagrams. (Austin and Stuart, 2015). This relationship is described
for four categories of variables. First of all, if all covariates are linked with both treated and
untreated assignments, it is called a true confounder model. The second definition is a true
propensity confounder which is when covariates are related to only treatment but not the outcome.
Third, some variables are related to the outcome but not treatment. This model is called a potential
confounders model. Lastly, all measured variables are included is a full model.(Austin et al. ,

2007).

3.4 Evaluate Biomarkers for Treatment Selection

3.4.1 Setting

In this study, two treatment alternatives are considered as "treatment"(T=1) and "Control" (T=0).
Clinical binary outcome is denoted as Y, state whether or not outcome represents death after
providing treatment/control. The marker, D is useful to explain the subgroup that can be avoided

or defines the necessity of treatment.

3.4.2 Treatment Rule ,Estimation and Summary Measures

Janes et al.[2014] stated that the absolute treatment effect given marker value in randomized
control trial in the following:
A(D)=P(Y =1|T=0,D)—P(Y =1|T =1,D) (3.5)

when there is no benefit from treatment, marker performances are considered based on the rule
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A(D) <0
A(D)<0 and A (D)>0 are called as “marker negatives” and “marker-positive”, respectively.
Generalized linear regression risk model is considered with an interaction between treatment and
marker in following:
g(P(Y =1|T, D)) = By + B1T + 2D + BsTD (3.6)

where g is denoted as logit function.
Following Janes et al. (2014), we propose a comparison of marker performance based on the
characterization of the treatment rule at following:

e Proportion marker-negative,

Paeg = P(A(D) = 0)
e The average utility of untreated among marker-negatives
Bpeg = P(Y = 1|T = 1,A(D) = 0) — P(Y = 1|T = 0,A(D) = 0)

= E(=A(D)|A(D) = 0)

e The average utility of treated among marker-positives,
Bpos = P(Y =1|T =1,A(D) =1) — P(Y = 1|T = 0,A(D) = 1)

= E(AMD)|AMD) = 1)

e Decreasing in the population event rate in marker-based treatment assignment

@=P(Y =1T=1)—[P(Y =1|T = 1,A(D) = 1)P(A(D) = 1)
+P(Y = 1|T = 0,A(D) = 0)P(A(D) = 0)

= [P(Y = 1|T = 1,A(D) = 0) — P(Y = 1|T = 0,A(D) = 0)]P(A(D) = 0)

= Bneg Ig neg

62



where we assume that P(Y = 1|T,A(D) = 0) = 0 if P(A(D) = 0) = 0.So, © is acceptable as
measure of treatment selection performance. The risk and treatment effect estimates are written

as
P(y = 1T =0,D) = mo (D) = g_l(BO +32D),
P(Y =1|T = 1,D) = Risk, (D) = g7*(By + p1 + B.D + B5D)
So, A, (Y) = Risk, — Risk,
Equation (3.5) identifies the estimation of direct treatment effects given marker value. Because
covariates characteristics have not affected the treatment estimation of treatment effects is
straightforward. We can propose the absolute treatment effect given marker value:

AD)=P(Y =1T=0,D,X) —P(Y =1|T=1,D,X) ... (3.7)

Risk model involves one of covariates ,which is related to treatment subject:

g(P(Y =1|T,D, X)) = Bo + BoT + B2D + B3TD... (3.8)

| consider risk and treatment effects predicts that result from fitting the model (3.8) is given
P(Y =1|T = 0,D,X) = Risky (D) = g~ (B, + B,D),
P(Y = 1|T = 1,D,X) = Risk; (D) = g*(Bo + B, + B.D + fsD)

So, A,(Y) = Risk, — Risk,

“Empirical” and “Model-based” estimators are written as

B, = Pr(Y = 1|T = 1,A(D) = 0) — Pr(Y = 1|T = 0,A(D) = 0)

BT, = E(-A(D)|A(D) = 0)
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B%ys = Pr(Y = 1|T = 0,A(D) = 1) — Pr(Y = 1|T = 0,A(D) = 1)

B, = E(A(D)|A(D) = 1)

Ptyey = Pr(A(D) = 0)

—

0° = B,

g Prneg

OMm=B . Proo, = | —A (D)I[A(D) = 0 |dF,
where e and m superscripts define empirical and model-based estimators, we denote Pr to an

empirical probability estimate and £ to an empirical mean.

3.5 Simulation Study

In this section, | demonstrate results from a large simulation study that compares the statistical
properties and performance of proposed methodologies with that of various alternative methods. |
used modification of the simulation structure defined by Setouchi et al (2008). This study performs
a set of Monte Carlo simulations. Twelve variables each varying in their association with the
treatment and outcome were considered ; these are shown in the following diagram:

Figure 3.1: Simulation diagram

0.2 0.9 0.2

0.9 0.9

X13 X114
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T: exposure X 1-X 4: confounders
Y: outcome Xs-X7: exposure predictors/

X11-X17 idistractors Xg-X10: outcome predictors
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As seen in above Figure 3.1, covariates X, X,, X3, X4, X5, Xg and X, are connected with
exposure assignment, whereas seven variables X,,X,, X5, X,, Xg, X9 and X, are related to
outcome variable( outcome predictors). Moreover, only the four covariates X;, X,, X5 and X, are
related with both treatment and outcome assignments, in that those four covariates are true
confounders. But covariates X,, -X;, are not associated with treatment or outcome and so, those
variables are called as distractors variables. But X,; and X,, variables are correlated to X,, and
X, variables, respectively.

Seventeen covariates are generated as a mixture of continuous and binary variables. |
generate continuous predictors based on the standard normal distribution and the binary variables
were dichotomized versions of standard normal distributions. So, X;, X3, X<, X, Xg, X9 , X711 , X13,
X14,and X, variables were dichotomize and X,, X4, X;, X1 ,X12,X15, X1, Variables were
represented as continuous variables. Moreover, there are correlations between some of the
variables with correlation coefficients varying 0.2 to 0.9. These correlation coefficients are defined
before dichotomizing some of the covariates. Also, correlation coefficient set up between two
covariates in  following: (X; ,Xs) = 0.2,(X, ,X,) =09,(X5 ,Xg) =0.2,(X, ,X9) = 0.9,
(X1 ,X;1) = 0.9 and (X, ,X;,) = 0.9. The data is simulated for a cohort study ( n=1000) and

also, datasets were generated 1000 times for all scenarios.

3.5.1 Simulation Design

Treatment Simulation and Scenarios

First of all, treatment assignments are generated using logistic regression, covariate balancing
propensity score, generalized boosted model, random forest, classification and regression trees

and bagging models with function of X;.Six scenarios are considered for generating treatment
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assignments and the form is defined by Pr[T = 1|X;] = (1 + exp{—(version + 1{)}). Version
is shown below and T is denoted for this variable’s variability effect. { represents a random
number , standard normal distributed and ¢ variable is not associated with treatment or outcome.
Various versions for generating treatment assignment are as follows:
A- Additive and linear (main effects terms only):
Versiong=a; Xita, X,taz Xsta XyrasXstagXeta, X,
B- Moderate non-linearity (three quadratic terms):
Versiong=Versiong+a, X3 +a,X;+a,X?
C- Mild non-additivity (four two-way interaction terms)
Version =Versiong+a, X, X3+ta, X, Xyraz X, Xsta, X5 Xe
D- Mild non-additivity and non-linearity ( a quadratic and four two-way interaction terms)
Versionp=Version +a,X?
E- Moderate non-additivity (ten two-way interaction terms):
Versiong=Versiong+a; X Xzta, X, Xy+az Xz Xsta, Xy Xs + asXsXet a5 Xs X7+
a1 XiXeta XoXztas X3 Xta X, Xe
F- Moderate non-linearity and non-additivity (3 quadratic term and 10 two-way interaction
terms):
Versionp=Versiong+a,X2+a,X2+a,X?
Then, the number is generated based on the uniform distribution between 0 and 1. T is equal to 1
when Pr[T = 1|X;] (true propensity score value) is larger than random number that is generated
based on uniform distribution. Otherwise, treatment assignment set to 0 value. a's variables are
defines as a; =0.8, a, = —0.25, a3 =0.6,a, = —0.4, as = —0.8, agy = —0.5, a; = 0.7,

respectively. There is no intercept on the generating treatment model.
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Outcome Simulation and Scenarios

The simulated data includes realizations of a dichotomous outcome. Two versions were of the
form Pr[Y = 1|T, X;](1 + exp{—(version outcome + @¢&)}). "version outcome" represents
the complexity of association between outcome and treatment assignment. If Pr[Y|T, X;] value is
larger than randomly generated number , | denote outcome as 1 value. Otherwise, outcome set up
to 0. The" scenario outcome™ was obtained in two different ways as follows. The first scenario in
the outcome model is promoted to rely on the additive and linearity model with no intercept and
treatment exposure -0.4.Also, non-linearity model is considered for second scenario, which
includes exponential interaction among variables that associated with outcome and using the same
values as the first scenario for intercept and treatment effect. ¢ terms is random error term in
the outcome model. ¢ is random error and term and it is generated with standard normal mean 0O
and variance 1.5.The outcome versions are generated based on a range of covariates and treatment
assignment versions.
Two versions for generating outcome assignments are as follows:

Additive and linear outcome model:

Version outcome; =P +6, T+, X1+ X+ B3 X3+ L1 X4+ Bs Xg+ B XotB7X10

Non-linearity outcome model:

Version outcome;=fy+8, T+ exp (B1 X, +B2Xo+ B3 X3+BaXs+Bs Xg+PeXo+B7X10)
B’s parameters are defined as 0.3, -0.36,-0.73,-0.2,0.71,-0.19,0.26,-0.4 from f3; to £3,,
respectively.

Biomarker Simulations

The biomarker is simulated to compare the results under different scenarios, which rely on the

results of propensity score analysis. A biomarker is generated based on the standard normal
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distribution and second stronger marker considered. This marker is similar in structure to the
simulation described by Janes et al. (2015). Thus, each marker is associated to outcome, Y via a
logistic regression model

logit P(Y = 1|T,D)=By + B1T + B,D + B5TD

Propensity Score Estimation Scenarios

The Monte Carlo simulation examines how well various propensity score models can balance the
seventeen variables between treated and untreated individuals. Estimation propensity scores are
generated from an LR, CBPS, GBM, RF, CART, and BAG models using treatment scenarios and
outcome versions. Then, estimated values are employed for assessing the pair matching technique.
So, we can determine which variables to include in estimation processes. These approaches are
modeled after some of those selections. The following alternatives were considered for the model
strategies:

PSM1: This model encompasses X; — X, covariates, which are associated with both exposure
or/and outcome.

PSM2: Seven covariates (i.e., X; — X) are connected with treatment assignment and this model
is called as a “ true propensity score model”.

PSM3: This model is referred to “potential confounder model” that includes X; — X, and Xg —
X1 covariates that are related with the outcome subject.

PSM4: The only four main X; — X, covariates, are connected with outcome and exposure
subjects at same time, included in model that is called as “true confounder model”.

PSM5: This model was created by including X; — X;, covariates. So, it mean that this model
covered only two distractor variables.

PSM6: All variables (X; — X;-) are involved in the model is referred to “full model”.
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Performance metrics

The performance of the different propensity score models fitting approaches was measured using
numerous metrics, including bias, SE,RMSE, relative bias and standardized difference.
Bias: We compute bias based on the difference between the mean estimated treatment effect and

the true effect set at 6 = -0.4.So, it is formulated as - Y7 ,(8, — )
n

Empirical Standard Error (ESE): Standard deviation of treatment effects estimates for each

simulated data in each scenario represent standard error.

where n denoted for number of datasets.
Theoretical standard errors (SE): standard errors are produced based on the standard errors of

average treatment effect and then taking average of n standard errors as

RMSE: It is represented taking square root of means square error for each estimator. It’s formula

s LI 0 - 07

Relative Bias: It is computed as 100x (Bigas)
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3.6 Results

3.6.1 The Results of Simulation in Causal Inference

We performed a comprehensive simulation study to assess the performance of our recommended
techniques. We modified the simulation design of Setoguchi et al. (2008). Parametric and machine
learning are employed to estimate propensity scores and investigate how the elements in the
propensity score model impact the number of matched treatment and control individuals. We
performed logistic regression(LR), and covariate balance propensity score (CBPS) as parametric
approaches, while generalized boosted model (GBM), Random Forest(RF), classification and
regression trees (CART), and bagging(BAG) are employed for the machine learning methods.
When Propensity score model scenarios (i.e., PMS1-6) were fitted utilizing parametric and
machine learning methods, we used six different treatment scenarios (called by Treatment A-F)
and two outcome scenarios (called Outcomel-2) shown in below tables. All results examined rely
on 1:1 matching on propensity score data.

Performance of bias and RMSE in Treatment A-D-F and Outcome-1 (Table-3.1):

The performance metric we use in Tables 3.1 and 3.2 below to compare models is the bias and
RMSE of the propensity score estimates. The performances of LR and CBPS showed variability
in the results in the linearity and additivity treatment (Treatment-A) and linear outcome assignment
(i.e., outcome-1) scenarios accompanied by propensity score models (PSM1-6). The performance
of CBPS was the slightly better with a mean of bias of 0.88,1.476 for PSM1 and PSM2 in the
linearity and additivity treatment (Treatment A) and linearity and additivity outcome(Outcome 1)
versions, whereas the remainder PSMs methods illustrate the smaller bias values in LR, which
correspond to 1.022, 0.522, 0.943, and 1.064 for PSM3-6, respectively. There is a significant rise

in RMSE values when more variables are added to the propensity score models or confounders are
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added in the LR and CBPS methods. For example, RMSEs of LR and CBPS were 0.230 and 0.237
in true confounder models; meanwhile, their values correspond to 0.270 and 0.273 in full models,
respectively. The bias and RMSE of LR and CBPS techniques seem to be large across all PSMs
in moderate nonlinearity and non-additivity treatment (Treatment F) compared to the simpler
additivity and linear treatment setting (Treatment-A). Overall, the performance of LR is generally
smaller biased in scenario of additivity and linearity (Treatment F) with a mean bias of
2.73,1.377,1.050, 1.576,1.509, and 1.873 across PSM1-6 compared to CBPS. In other words, we
can state that it doesn't matter which variables are included in the PS model of LR method when
using moderate nonlinearity and non-additivity treatment assignment in linearity outcome
scenarios (Table 3.1). There is a significant rise in RMSE values when more variables or
confounders are added to the propensity score models in the LR and CBPS methods. For example,
RMSEs of LR and CBPS were 0.230 and 0.237 in true confounder models (PSM4); meanwhile,
their values correspond to 0.270 and 0.273 in full models (PSM6), respectively. The bias and
RMSE of LR and CBPS techniques seem to be large across all PSMs in moderate nonlinearity and
non-additivity treatment (Treatment F) compared to the simpler additivity and linear treatment
setting (Treatment-A).

The machine learning techniques reveal a large variety of results in evaluating bias and
RMSE metrics. For example, the CART method has the lowest biases with a respective mean of
0.004 for PSM1 and PSM5 among the machine learning techniques even though BAG method
corresponds to 4.666 and 4.206 for PSM1 and PSM5, respectively in linearity and additivity
treatment. Also, CART presents the most downward bias in the all full propensity score model,
which is included X1-X17 (i.e., full model) in all treatment scenarios. Moreover, there is a huge

increasing trend in bias from Treatment-A to Treatment-F across in RF methods. When
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considering more complex treatment scenarios (i.e., Treatment-F), CART performs more reliable
than the rest of the three machine learning methods across all PSMs models. However, exclusion
or inclusion variables in models do not make a remarkable difference in assessing BAG model
performance. So, BAG method performs poorest compared to other methods across all PSMs and
all treatments and outcome scenarios. Moreover, the second poor performance among all methods
is showed by GBM.

We can conclude from this result that the RF method estimates tended to make smaller bias
when PSM models included all variables related to treatment, outcome, both them or confounders
in simpler treatment (Treatment-A). . But CART managed to produce less bias if PSMs are formed
by covariates X1-X10, which are associated with treatment or outcome assignments. Both RF and
CART were pretty close RMSE values for all PSM versions according to the rest of the four
methods (LR, CBPS, GBM, and CART), as seen in table 3.1. However, the bagging method
performed poorly no matter which of PSMs were considered to assess bias and RMSE metrics in

Treatment A-D-F versions.
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Performance of bias and RMSE in Treatment A-D-F and Outcome-2 (Table-3.2):

The difference between table 3.1 and table 3.2 is to use only different outcome versions:
linearity and additivity outcome version (Outcome 1), and nonlinearity and non-additivity outcome
version (Outcome-2). As illustrated in table 3.2, the LR consistently resulted in a smaller bias when
PSM1-2-5-6 were considered, but the trend reversed for PSM3-4. There is no difference between
PSM1 and PSM5 LR for biases that correspond to 2.537 percent in linearity and additive treatment
version (Treatment-A) via nonlinearity and non-additivity outcome version (Table 3.2). It is
observed that there is no effect by covariates X11 and x12, which are not associated with treatment
nor outcome but related with X7 and X10, respectively. So, PSM1 and PSM5 displayed similar
bias and RMSE measurement values in Treatment-A(Table 3.2). Machine learning techniques in
linearity and additivity treatment, Treatment-A and non-linearity outcome,Outcome-2 are partly
more complicated than the same techniques in Treatment-A and Outcome-1. Those results imply
that CBPS produce better performance for bias in PSM1,2,5,6 while PSM3 and PSM4 were the
slightest bias in Treatment-A and Outcome-2 for the parametric approach. Nevertheless, there is a
remarkable growth in bias values from simple treatment assignment form (Treatment-A ) to mild
or moderate complex treatment assignment versions (Treatment -D and F). The CART vyields less
bias, especially in the presence of adding confounder and distractors variables on propensity score
models. RF method in PSM3 and PSM4 appears to be lower bias in Treatment-A and Treatment-
F, as seen in table-3.2.To conclude the findings of table 3.1 and table-3.2, random forest is the best
for PSM3, and CART tends to produce less bias for PSM1-2-5 scenarios across all scenarios (i.e.,
treatment A via outcome-1 or outcome-2, treatment F via outcome-1 or outcome-2).In the sense
of bias, permanently across all method and model versions, the BAG method demonstrated higher

bias and RMSE for the simple, all treatment and outcome versions.
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Performance of absolute relative bias(%):

The relative bias is investigated based on the pair matching on propensity score across all
scenarios. Figure 3.2 illustrates the relative bias percent for three treatment versions (A, D, F)
versus two outcomes (i.e., linearity and additivity outcome (Outcome-1) and non-linearity and
non-additivity outcome (Outcome-2)). Each propensity score method resulted in additivity and
linearity treatment (Treatment-A), mild non-additivity and non-linearity (Treatment-D), and
moderate non-linearity treatment versions (Treatment E) show various fluctuations for propensity
score models (PSMs) output in Figure 3.2. According to panels from Treatment-A and Treatment-
D, it is evident that the bagging method had tended to largest the relative bias. Indeed, the second-
largest relative bias is represented by GBM across all propensity score models. In contrast, we can
generally conclude that RF and CART partially presented better performance than others, and
CBPS may not be an alternative for LR across all propensity score models when PSMs are

constructed based on then additivity model.
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Figure 3.2: Absolute relative bias (%) of propensity score matching on different parametric and
machine learning techniques using various PSMs by Treatment A-D-F versus Outcome 1-2
scenarios

Treatment.A versus Outcome.1 Treatment.D versus Outcome-1 Treatment.F versus Outcome.1
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Abbreviations: GLM: Generalized Linear Model , CBPS: Covariate Balance Propensity Score,

GBM: Generalized Boosted Model, RF: Random Forest, CART: Classification and Regression
trees. PMS1: X; — X;, covariates are included ,PMS2: X; — X, covariates are included ,PMS3:
X; — X, and Xg — X;,covariates are included , PMS4: X; — X, covariates are included, PMS5:
X, — X, covariates are included, PMS6: X; — X,, covariates are included. Treatment A: linearity
and additivity, Treatment D: Mild non-additivity and non-linearity, Treatment F: Moderate non-
additivity and non-linearity, Outcome-1: Additive and linear outcome model, Outcome-2: non-

linearity outcome model
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Performance of empirical standard error (ESE) and theoretical standard error (SE) :

We preferred to use standard errors, which investigate treatment effects on the outcome. Standard
errors were computed based on the model-based for every simulated dataset (i.e., the 1000
standard error for 1000 simulated datasets). Then, we take averages of all estimated standard errors
according to the simulated dataset's sample size. Model-based standard error represented as "SE"
in tables.SE results for propensity estimation methods versus propensity score models are informed
in table 3.7-3.10 (see Appendix) for all treatment and outcome scenarios. The second metric is the
empirical standard error (ESE) that considered the sample standard deviation of average estimates
of treatment effects. LR and CBPS methods obtained similar SEs for all estimation methods and
PSMs under all treatment versions of nonlinearity outcome (Outcome-1).However, slightly
increasing the SEs from outcome-1 to outcome-2 versions i.e., compared the SEs for each
treatment version between table-3.7 and table-3.8 across all treatment assignments. Hence,
outcome complexity may lead to increasing variation of estimated treatment effects.

In contrast, the CART performs the low mean SEs in all PMSs for linearity outcome,
ranging from SEs: 0.027-0.030 for PSM1 across all treatment scenarios in linearity outcome
(Outcome 1). Also, the ESE Yyields a remarkable difference between BAG methods and the
remaining methods for all PMSs. For example, the ESE from the BAG method was almost two
times larger than the other methods. The ESE performance for all PMSs is parallel among
propensity score estimation methods, and so, there is a constant pattern throughout all PMSs. In
other words, there are growing patterns in the ESEs from linearity outcome version (Outcome-1)

to non-linearity outcome (Outcome-2) against the same treatment assignment.
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3.6.2 The Results of Simulation in Treatment Selection

As seen in table 3.1-3.2 and 3.5-3.10 (in Appendix), to perform the different propensity score
estimation methods utilizing several PSMs across different generated treatment and outcome
assignments, we obtained the results from those tables. We then saved the datasets, which are
based on each scenario. Finally, we aim to examine treatment selection markers based on those
observational datasets in tables 3.3-3.4 and tables 3.11-3.12 (Appendix) in this section. Table 3.3

presents marker evaluation using B4, B,,smetrics for “linearity and additivity treatment” (i.e.,

eg
treatment-A assignment) and "linearity and additivity outcome"(outcome-1 assignment). ®, B,,.,
B,,sparameters are beneficial for analyzing the marker's effects. To make comparisons, we first
look at PSM1 using six alternatives propensity score methods. CART represents the smallest
0, Byeg, Bposmetric in Table 3.3.CART has a 1.9 percent reduction in sample impact. In
comparison, GBM has a 2.6 percent reduction in population impact as it has the bigger theta
measure among of methods.

This is attributable to the fact that 50 percent (B,., metric) of participants avoided specific
treatment, resulting in a 5.1(B,,., metric) percent decrease in the occurrence rate. The treated group
reduces the event rate by 13% for average among marker-positive patients according to consider

the RF method in PSM1 (Table-3.3). This method corresponds to 0.002 as variance in treatment

effect and 0.044 for width from the marginal exposure impact to exposure impact curve.
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Table 3.3: Estimates of measures of marker performance based on the resulted LR, CBPS, GBM,
RF, CART, BAG propensity score methods across PSM 1-4-6 scenarios in Treatment-A and

Outcome 1 versions

® Preg Bheg Bpos Vi TG
Model Emp. Model Emp. Model Emp.

PSM1 LR 0.023 0.023 0.501 0.047 0.047 0.132 0.132 0.003 0.047
CBPS 0.023 0.023 0502 0.046 0.046 0.130 0.130 0.003 0.047

GBM 0.026 0.026 0.498 0.054 0.053 0.157 0.157 0.003 0.056

RF 0.025 0.025 0498 0.051 0.051 0.128 0.128 0.002 0.044

CART 0.019 0.019 0500 0.038 0.038 0.123 0.123 0.003 0.042

BAG 0.023 0.023 0488 0.052 0.052 0.226 0.226 0.013 0.091
PSM4 LR 0.028 0.028 0.502 0.057 0.057 0.128 0.128 0.002 0.041
CBPS 0.026 0.026 0.501 0.053 0.053 0.130 0.130 0.002 0.044

GBM 0.031 0.031 0.494 0.064 0.064 0.149 0.149 0.003 0.046

RF 020 0.021 0.498 0.041 0.042 0.119 0.119 0.003 0.044

CART 0.028 0.028 0.499 0.057 0.057 0.130 0.130 0.001 0.036

BAG 0.041 0.042 0493 0.085 0.086 0.202 0.202 0.006 0.062
PSM6 LR 0.023 0.023 0.497 0.046 0.046 0.128 0.129 0.003 0.046
CBPS 0.023 0.023 0.498 0.047 0.047 0.137 0.138 0.004 0.050

GBM 0.027 0.027 0.492 0.056 0.056 0.168 0.168 0.005 0.060

RF 0.021 0.021 0.500 0.043 0.042 0.120 0.120 0.003 0.044

CART 0.021 0.021 0.503 0.042 0.042 0.120 0.128 0.002 0.042

BAG 0.012 0.012 0.487 0.029 0.029 0.259 0.259 0.001 0.116

Abbreviations: LR: Logistic Regression , CBPS: Covariate Balance Propensity Score,

GBM: Generalized Boosted Model, RF: Random Forest, CART: Classification and Regression
trees. PMS1: X; — X;, covariates are included,PMS4: X; — X, covariates are included, PMS6:
X, — X, covariates are included. Treatment A: linearity and additivity, Outcome-1: Additive and

linear outcome model
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When looking performance of methods from PSM4 to PSM1 and PSM6, respectively, we notice
a growing trend for each method corresponding to each PSM for the mean benefit of treatment

among people who have found evidence for a marker (B,,;) .In contrast, reduced trends for
Bpegfrom PSM4 to PSM1, PSM6, respectively. For example, it was a consequence of 15

percent,16 percent,17 percent mean utility of treatment assignment in marker-positivities for GBM
methods of PSM4, PSM1, and PSM4 models. BAG method in PSM6 produced bigger total
gain(TG) than the others, with respective ranges of 0.062-0.116 across the three propensity score
models. Indeed, we notice that the RF method performed the lowest value in examining the

reduction in sample occurrence rate under marker-based treatment.
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Table 3.4: Estimates of measures of marker performance based on the resulted LR, CBPS, GBM,
RF, CART, BAG propensity score methods across PSM 1-4-6 scenarios in Treatment-F and

Outcome 2 versions

® Preg Bheg Bpos Vi TG
Mod. Emp. Mod. Emp. Mod. Emp.

LR 0.021 0.021 0.495 0.044 0.044 0.123 0.123 0.003 0.044

CBPS 0.022 0.022 0.495 0.044 0.044 0.113 0.114 0.002 0.040

GBM 0.011 0.011 0.508 0.022 0.022 0.134 0.134 0.005 0.059
PSM1 RF 0.029 0.029 0498 0.059 0.059 0.131 0.131 0.003 0.042
CART 0.019 0.019 0.500 0.038 0.038 0.123 0.123 0.003 0.042

BAG 0.018 0.018 0.489 0.039 0.039 0.214 0.215 0.012 0.090

LR 0.020 0.020 0.498 0.041 0.041 0.119 0.119 0.003 0.044

CBPS 0.023 0.023 0.500 0.045 0.045 0.122 0.122 0.003 0.044
PSM4 GBM 0.027 0.027 0.494 0.057 0.057 0.145 0.146 0.003 0.048
RF 0.016 0.016 0.499 0.033 0.033 0.114 0.114 0.003 0.045

CART 0.020 0.020 0.500 0.040 0.040 0.139 0.139 0.003 0.049

BAG 0.027 0.027 0.496 0.056 0.056 0.181 0.181 0.006 0.066

LR 0.022 0.022 0493 0.046 0.046 0.127 0.127 0.003 0.046

CBPS 0.017 0.017 0.494 0.036 0.036 0.122 0.122 0.003 0.047
PSM6 GBM 0.002 0.002 0500 0.007 0.007 0.139 0.139 0.007 0.070
RF 0.020 0.020 0.498 0.041 0.041 0.131 0.131 0.003 0.049

CART 0.011 0.011 0501 0.024 0.024 0.127 0.127 0.003 0.051

BAG 0.006 0.006 0.493 0.007 0.007 0.222 0.222 0.021 0.115

Abbreviations: LR: Logistic Regression , CBPS: Covariate Balance Propensity Score,

GBM: Generalized Boosted Model, RF: Random Forest, CART: Classification and Regression
trees. PMS1: X, — X;, covariates are included , PMS4: X; — X, covariates are included, PMS6:
X; — X;7 covariates are included. Treatment F: Moderate non-additivity and non-linearity,

Outcome-2: non-linearity outcome model.
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3.7 Summary & Discussion

In literature, researchers in healthcare and public health studies frequently use propensity score
estimation methods such as logistic regression, random forest, neural network, CART, pruned
CART, etc. Unfortunately, there are significant challenges for the implementation procedure of
these methods and comparing the performance of these methods. Therefore, we examine two main
fields in this paper using Monte Carlo simulations: assessing the propensity score methods to
eliminate bias and satisfy covariate balance between treated and untreated groups and examined
the biomarker performance for treatment selection.

The first purpose of this paper is to evaluate six methods to estimate propensity score: logistic
regression(LR) and covariate balance propensity (CBPS) as parametric approaches, and
generalized boosted method (GBM), random forest (RF), classification and regression
trees(CART) and bagging(BAG) as machine learning techniques. Secondly, the term " variable
selection” refers to the variables included or excluded in the model, not the procedure by which
variables were chosen and determine variables' effects on the model. Also, we performed these
methods fitting different propensity score models across several treatment and outcome
assignment versions throughout this study. We use six treatment scenarios (called Treatment A-F)
and two outcome scenarios (called Outcomel-2) below tables. All results examined rely on 1:1
matching on propensity score data. We modified the simulation design of Setoguchi et al. (2008)
along with this paper. Finally, we give the relevant recommendations for researchers: Firstly,
Setodji et al. (2017) recommend that using logistic regression has been observed to have the
drawback to employed estimation of the weighting on the propensity score. That's why CBPS
always might not be an alternative technique for logistic regression. According to this paper,

Setodji paper’ recommendation might not be valid under different conditions and scenarios from
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simulations. We show that logistic regression might consistently be practical using treatment and
outcome scenarios for employing different propensity score models (PSMs).Also, We cannot
generalize about LR’s good performance when considering complex propensity score models and
complex treatment and outcome scenarios. However, even though the GBM method was not the
best method among all the machine learning techniques, GBM might be an excellent alternative to
estimate treatment effects instead of preferring bagging methods. Moreover, Throughout this
paper, bagging performed the worst method, even utilizing different PSMs, considering
complexity or simplest treatment and outcomes assignments. RF and CART can be comparable
techniques in even parametric or non-parametric techniques. But we realize that choosing a
variable selection on the models has been a critical thing for these two methods. In other words,
results illustrated which including or excluded variables have been influenced the performance of
RF and CART methods. Besides, there is a remarkable difference between different treatment
assignments and outcome versions, i.e., the complexity of treatment or outcomes is highly crucial
on propensity score estimation performance on RF and CART. Finally, we provided a statistical
methodology for analyzing treatment selection markers based on using datasets of causal
inference. This paper makes the first generalization about treatment selection implementation in
observational studies under considering several versions. We used the same biomarker with
different produced datasets from causal inference. We exactly make sure that there is a significant

effect from which methods or models are preferred in causal inference application.
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Figure 3.3: Absolute relative bias (%) of propensity score matching on different parametric and
machine learning techniques using various PSMs by Treatment B-C-E versus Outcome 1-2
scenarios

Treatment 3 versus Outcome-1 Treatment  versus Outcome-1 Treatment £ versus Outcome-1

Relative blas

Epsrh

Propensdy score modes Prapensiy score models Propeasty score modess

Treatment  versus Outcome-2 Treatment C versus Qutcome-2 Treatment £ versus Outcome-2

Relative bias (%)
Relative blas (%)

Progensty score modes Propensty score models Prapensiy score models

Abbreviations: GLM: Generalized Linear Model , CBPS: Covariate Balance Propensity Score,
GBM: Generalized Boosted Model, RF: Random Forest, CART: Classification and Regression
trees. PMS1: X; — X;, covariates are included ,PMS2: X; — X, covariates are included ,PMS3:
X, — X, and Xg — X;,covariates are included , PMS4: X; — X, covariates are included, PMS5:
X, — X, covariates are included, PMS6: X; — X, covariates are included. Treatment B: linearity
and additivity, Treatment C: Mild non-additivity and non-linearity, Treatment D: Moderate non-
additivity and non-linearity, Outcome-1: Additive and linear outcome model, Outcome-2: non-
linearity outcome model
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Table 3.11: Estimates of  measures of marker performance based on the resulted
LR,CBPS,GBM,RF,CART,BAG propensity score methods across PSM 2-3-5 scenario in
Treatment-A against Outcome-1 assignments

e Preg Bheg Bpos Vi TG
Mod. Emp. Mod. Emp. Mod. Emp.

PSM2 LR 0.024 0.024 0.499 0.048 -0.048 0.130 0.130 0.003 0.046
CBPS 0.023 0.023 0501 0.045 -0.045 0.128 0.130 0.003 0.047

GBM 0.033 0.033 0.49% 0.066 -0.067 0.153 0.157 0.003 0.048

RF 0.027 0.027 0.506 0.053 -0.053 0.126 0.126 0.003 0.042

CART 0.018 0.018 0.498 0.036 -0.036 0.121 0.121 0.002 0.042

BAG 0.036 0.036 0.487 0.0/5 -0.074 0.204 0.204 0.007 0.068
PSM3 LR 0.023 0.023 0.492 0.048 -0.048 0.129 0.129 0.003 0.045
CBPS 0.020 0.024 0.494 0.048 -0.048 0.128 0.128 0.003 0.045

GBM 0.029 0.029 0502 0.057 -0.057 0.148 0.148 0.004 0.050

RF 0.021 0.021 0.498 0.043 -0.043 0.118 0.118 0.003 0.042

CART 0.027 0.027 0502 0.055 -0.055 0.131 0.131 0.002 0.038

BAG 0.031 0.031 0486 0.070 -0.070 0.203 0.203 0.008 0.069
PSMS5 LR 0.022 0.022 0.498 0.044 -0.046 0.128 0.129 0.003 0.047
CBPS 0.027 0.027 0.495 0.054 -0.047 0.132 0.132 0.003 0.044

GBM 0.032 0.032 0.499 0.065 -0.056 0.164 0.164 0.004 0.054

RF 0.023 0.023 0.498 0.046 -0.042 0.122 0.122 0.003 0.043

CART 0.018 0.018 0.498 0.035 -0.042 0.134 0.134 0.003 0.049

BAG 0.016 0.017 0.500 0.037 -0.029 0.224 0.224 0.013 0.095

Abbreviations: LR: Logistic Regression , CBPS: Covariate Balance Propensity Score, GBM:
Generalized Boosted Model, RF: Random Forest, CART: Classification and Regression trees.
PMS1: X; — X;, covariates are included , PMS4: X, — X, covariates are included, PMS6: X; —
X, covariates are included. Treatment F: Moderate non-additivity and non-linearity, Outcome-2:

non-linearity outcome model

92



Table 3.12: Estimates of  measures of marker performance based on the resulted
LR,CBPS,GBM,RF,CART,BAG propensity score methods across PSM 2-3-5 scenario in

Treatment-F against Outcome-2 assignments

® Preg Bieg Bpos A\ TG
Mod. Emp. Mod. Emp. Mod. Emp.

LR 0.024 0.024 0.501 0.048 0.048 0.117 0.117 0.002 0.040

CBPS 0.026 0.026 0.503 0.052 0.052 0.112 0.111 0.002 0.036

GBM 0.015 0.015 0.448 0.031 0.031 0.147 0.147 0.006 0.062

PSM2 RF 0.021 0.021 0.501 0.042 0.043 0.131 0.131 0.003 0.049

CART 0.020 0.019 0.499 0.041 0.041 0.120 0.120 0.002 0.040

BAG 0.027 0.026 0.472 0.057 0.057 0.220 0.220 0.012 0.085

LR 0.024 0.024 0.499 0.048 0.048 0.127 0.127 0.003 0.044

CBPS 0.023 0.024 0.49 0.048 0.048 0.125 0.125 0.003 0.044

PSM3 GBM 0.028 0.028 0.502 0.056 0.056 0.148 0.148 0.004 0.050

RF 0.019 0.019 0.500 0.038 0.039 0.128 0.128 0.003 0.049

CART 0.020 0.020 0.503 0.040 0.040 0.144 0.144 0.003 0.052

BAG 0.026 0.020 0.497 0.043 0.043 0.200 0.200 0.010 0.081

LR 0.028 0.028 0.495 0.057 0.057 0.119 0.119 0.003 0.037

CBPS 0.023 0.022 0.499 0.046 0.046 0.123 0.123 0.003 0.044

PSM5 GBM 0.001 0.001 0.497 0.004 0.005 0.150 0.151 0.007 0.076

RF 0.020 0.020 0.49 0.041 0.042 0.127 0.127 0.003 0.047

CART 0.015 0.015 0.499 0.031 0.031 0.127 0.127 0.003 0.048

BAG 0.007 0.008 0.500 0.018 0.019 0.217 0.217 0.021 o0.101
Abbreviations: LR: Logistic Regression , CBPS: Covariate Balance Propensity Score, GBM:
Generalized Boosted Model, RF: Random Forest, CART: Classification and Regression trees.
PMS1: X; — X, covariates are included , PMS4: X, — X, covariates are included, PMS6: X; —
X, covariates are included. Treatment F: Moderate non-additivity and non-linearity, Outcome-2:

non-linearity outcome model.
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CHAPTER 4

The Performance of Propensity Score Weighting Methods

under Limited Overlap and Model Misspecification

4.1 Introduction

Propensity score analysis has been frequently used to control for different kinds of bias in
observational studies. The seminal study was by Rosenbaum and Rubin (1983). The propensity
score theory and its application to various research areas' data sets have been fundamental in causal
inference research. Most of the studies using propensity scores have focused on binary
treatments/exposures, i.e., treatment and control groups. In the binary case, the definition of
propensity score is the probability of treatment conditional on X, e(X)=P(T=1|X), where X is a
covariate or vector of covariates and T is exposure or treatment assignment. Logistic regression is
used to estimate these probabilities. Also, in the case of a binary treatment, subjects with similar
estimated propensity score values have similar covariate vectors which removes imbalances

between treated and untreated groups. For randomized studies, there is probabilistic balance
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between observed and unobserved covariates across treatment or exposure groups that eliminates
bias and accurately estimate treatment effects so valid comparisons between groups can be made.
While causal inference studies with two treatment groups common in the literature, assessing more
than two treatment groups is vital in public health and medical research. But multiple treatments
are more complicated than binary treatments for causal inference. Nonetheless, some papers have
shown that propensity score methods can be extended to multiple treatment cases with three or
more conditions. There are some advantages to using matching based on the propensity score. The
main advantage of the propensity score matching is its reduction of dimensions. X includes
covariates, which can have many dimensions, and the propensity score reduces all this
dimensionality to a one-dimensional score. Secondly, the matching method considers not only
strictly linear relationships between the outcome and propensity score, but also more complex
relationships.

Researchers discuss the various matching methods in literature such as Mahalanobis metric
matching, Mahalanobis metric matching including the propensity score, nearest-neighbor
matching, caliper matching, nearest-neighbor matching within a caliper. One of the well-known
papers examines all matching techniques (Austin, 2014), but only with two treatments. Later,
propensity score weighting was generalized to the more than two treatment arms (Imbens, 2000).
Even though there is an increasing demand for using various matching and weighting methods for
any treatment assignment circumstances, researchers tend to prefer utilizing inverse probability
weighting in literature. While having many advantages, inverse probability weights may suffer
when too small or large propensity score values are present. Thus, it leads to estimate bias
treatment effects and assessing inappropriate causal relationships between treatment and outcome,

treatment and covariate or outcome and covariates.
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There are two ways to assess whether a consistent estimator of ATE is obtained: checking
covariate balance and overlap assumption. Different factors may have played a critical role in
producing unsatisfied assumptions and unsatisfactory performance. In other words, reporting the
inaccurate propensity score model, using missing covariates, or employing a small sample dataset
may cause the assumptions to be violated. Trimming can sometimes be effective in reducing bias
in nonrandomized studies. However, it may not be appropriate to perform trimming in small
datasets. To address excessive PS weighting problems, Crump et al. (2009) recommend excluding
large and small weights value from the sample of the estimated propensity score because they
increase the variance of the estimators. The threshold for removing extreme weights is fixed as
less than 0.1 and more than 0.9 propensity values. So, extreme weights might be less influential.

Overlap weights (OW), matching weights (MW), entropy weights (EW), treated
weight(TW) , and inverse probability weighting(IPW) with trimming have been presented as
alternatives to inverse probability weighting (IPW) for addressing overlap limitations (Crump et
al.,2009; Li et al.,2018; Li et al.,2019; Mao et al.,2019; Yoshida et al.,2018; Zhou et al.,2020). Li
et al.(2019) proposed extending those methods for multiple treatments and illustrated the
improvement of overlap and covariate balance between each pair of treatment groups. However,
their paper only gives a vague idea about relative performance of methods under the good overlap
and lack of overlap conditions. Their paper did not discuss trimming with IPW, provided no
information about the impact of the true propensity score models versus misspecified models, and
included no study of what happens to covariate balance under violations of positivity assumptions.
At the same time, Yoshida et al. (2018) conducted the study of trimming methods to deal with
extreme propensity score values, but did not attempt to examine overlap of weights, matching

weights, or other approaches. To address these gaps in the literature, this paper will examine
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eliminating positivity assumption violations under various scenarios. Furthermore, this study
presents the in addition to the simulation study a study with real data from the “subset of alcohol
and other drug treatment” dataset (AOD) where patients received one of three treatments. Lastly,
we examined the performance of variance estimation based on the robust sandwich-type estimator
and bootstrap variance estimator when using balance weights family (i.e., MW,0OW,IPW, TW,EW
and IPW) and GPSM methods.

The paper is organized as follows: we start Section 4.2 with our symbols and brief of
background in multiple treatment. In Section 4.3,We discuss about limitation of the positivity
assumption. Section 4.4 extensively addressed several approaches for eliminating the difference
between treatment groups when utilizing Generalized Propensity Score Matching (GPSM), MW,
ow, IPW, TW, EW, and IPW with trimming methods. We present datasets and its analysis in
Section 4.5, and simulation strategies briefly Section 4.6. We illustrate a comprehensive set of
monte Carlo simulations used to analyze the results of various algorithms. The results of

simulations and data analysis are shown.

4.2 Background

4.2.1 The Framework of Potential Outcomes in Multiple Treatments

We offer a few notations to help explain the concepts of potential outcomes. N units are chosen
from a large population ,indexed i = 1, ..., N. Provide T; is quantitative factors denoting which of
the 3 or more treatments the ith subject received, and X; is a vector of baseline covariates. Let Y;
indicate the outcome for individual i. We receive treatment T; = t if individual i is observed t €
3 = {1, ..., M} inwhich M represents total of treatments. The set of potential outcomes are denoted

as {Y(1),...,Y(M)} for subject i considering all possible treatments, and to be clear, exactly one
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of those outcomes is observed for each subject. Thereby, the triple (Y;, T; , X;) denoted for subject
i throughout the paper. We also denote the indicator of observed treatment t for subject i as :

0 otherwise

() ={ (4.1)

,Where [; (t) represents the indicator function for receiving intervention t for individual i. In the
Rubin Causal Model framework, there are M potential outcomes for each subject. The observed
outcome Y; is defined as
V=X Y I(T; = t) (4.2)
The individual treatment effect of treatment j vs treatment t (j # t ) for subject i is illustrated in
follows:
A=Y, (j) —Yi(t) (4.3)
There are two different frequently used estimands of treatment effect when employing propensity
scoring for multinomial treatments: average treatment effect (ATE) and average treatment effect
onthe treated (ATT) . Considering ATE of treatment j versus treatment t in population is described

as following :

WP =EY() -Y@®] =EY(] - E[Y(®)] (4.4)
=Uj — U

Also, we can express the second parameter, which exemplifies the average treatment effect for the

treated and as
il = E[Y() —Y(@®)IT = t] = E[Y(DIT = t] = E[Y(D)|T = t] (4.5)

Uit — Hee

Moreover, if we are interested in the binary outcome and the odds ratio to evaluate the treatment

effect, we can employ a conditional causal treatment effect for estimands. We should point out a
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significant thing here that treatment cases possibly depend on the outcomes in non-randomized
studies. In this way, there might be a remarkable difference for baseline covariates between
treatment groups, leading us to get biased estimators for ATE. Thus, we should be aware of having
overt and hidden biases in nonrandomized studies. Use of baseline covariates might provide an
insight to acquire less biased estimators of ATE. In literature, some GPS approaches (such as

IPTW, doubly robust estimators, etc.) have been used to decrease the bias of resulting estimator.

4.2.2. Generalized Propensity Score

The generalized propensity score (GPS) is introduced by Imbens (2000), and its theory is extended
to the propensity score framework from the dichotomous exposure to multiple treatment setting
(Imai and VVan Dyk,2004; Rosenbaum ,1999).The generalized propensity score (GPS) is described
as the likelihood of getting one of the treatments conditional on a given set of observed variables,
e.g., e.(X) =r(t,X) =Pr(T =t|X) = E{I(t)|X = X} for T dimensional vector of probabilities
e(X) = (el(X), e, (X), ... et(X)).These propensity scores are subject to the constraint
Yiter €:(X) = 1 for any value of covariates X. Because | can express each probability e, (X) as one
minus the sum of the other probabilities under the (M — 1) dimensional space. Also, Imbens
(2000) extended the exchangeability, consistency, and positivity for multi-treatment. Estimating
propensity scores in the presence of multinomial treatments have been based on the GPS vector

that is generated from the multinomial regression model, e.g.,

Pr(T;=t) !
log[P:(T—i:M) =0, +X/p t=1,..M—-1 (4.6)
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where 6, is an intercept, B; is a vector of regression coefficients, T; represents treatment and
t={1,2, ..., M — 1} is total number of treatments. Thus, We rewrite the model to estimate generalize
propensity score for (M — 1) treatment levels using equation (4.7) and the generalized propensity

score for the reference category is estimated using equation (4.8).

th+XEBt
Pr(Ty=t|X)=—— " t=1,.,M—1 (4.7)

! )
14371 Ot Xibe

1

!
14371 Ot XiBe

The existing applications have generally relied on the parametric estimation of the propensity score
via the multinomial, nested, or ordinal logistic regression model for multiple treatments. We can
use these models depending on the treatment values' characteristics to predict the generalized
propensity score. For example, multinomial logit or probit regression are suitable for qualitative
treatment values. Moreover, ordinal logistic regression can be used when there is ordering of
treatment levels.

Some key assumptions have been generalized from binary treatment cases to more than
two treatments cases for generalized propensity score (GPS). Also, these assumptions are
indispensable for valid causal inference.

Assumption 4.1: Treatment assignment T, given the pre-treatment covariates X, is weakly
unconfounded providing that,
I(t) LY(t)|X

forall t € Jand,and L refer to independence(Imbens 2000).
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In other words, treatment indicator I(t) is independent of a set of the outcome given identified
covariates. Also, “strong unfoundedness” or ‘““ignorability treatment” in dichotomous case is
stronger of version than this assumption. This assumption is known as “weak unconfoundedness”
in literature.

Assumption 4.2: One of the key assumptions for valid causal inference is an expanded version
of the SUTVA assumption of Rubin(1978, 1980) and Rubin and Rosenbaum (1983) to the non-

binary case as recommended by Imai and Dyk (2004).

(;(1),...Y\(M)) LTy for i#s

So, we can make something of assumption-2 that odds of interference between subjects are
excluded.

Assumption 4.3: Positivity states that a non-zero likelihood of being appointed to every
treatment( Rosenbaum and Rubin, 1983; Imai and Dyk,2004). Mathematical notation can be
written as:

0<Pr(T; =t|X; =x) <1 forall T,X.

Positivity assumption implies that it is possible to have at least one similar individual in each
treatment group. Thus, estimation of ATE can be made without needing to use extrapolation.
Nevertheless, when we consider large numbers of treatments, or high dimensional of baseline
covariates for estimating causal inference, the positivity assumption can be more difficult to satisfy
than in binary settings. Besides, the positivity assumption is also known as overlap assumption in
causal inference. So that, checking overlap between treatment groups of multiple cases can be
difficult. By all means, there is a possibility that this assumption will be violated, but we can

modify the population of interest to supply sufficient overlap between treatment groups.
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Assumption 4.4: Imbens (2000) states that the treatment assignment indicator is independent of
potential outcomes given generalized propensity score e, (X).
I(t) LY(©)] e (X)
Lemma 1 : Assume that the assignment scheme is weakly unconfounded. Then,
E[Yi(¢) = Y,(0)] = E[E[¥"| T, = t',es 00)]| - E[E[(?| T = t e ()]

We construct subsets in which we may examine individuals at every level of treatment , resulting
in

E[Y(t) = (O] = E[E[V"| Ty = ¢/, e,(X), ., e s (0 ]| -

E [E[YiObS| T; =t e (X),..,e.-1(X) ]]: [E[[E[Yi(t') Y OI|T; =t,e;(X), ..., e,_1(X) ]]

4.3 Limitation of the Overlap Assumption

When researchers desire to make inferences about causal effects in observational studies, ATE,
ATT, or other estimands are used to estimate quantities such as the mean causal effects. When
any fundamental assumptions in causal inference are violated, it may raise significant problems to
assess causal effects. Each assumption violation may occur differently on causal inference, such
as SUTVA may be violated when two different treatment versions are independently given while
implementing it. Furthermore, the lack of overlap assumption has been crucial because it relies on
the IPW method and this method versions in this paper. Because limited overlap between treatment
and outcome may induce to occur extreme inverse probability weights. Violation of overlap
assumption implies that between treated and untreated groups do not overlap, estimated propensity

score values might close to 0 and 1 herein. So, those extreme propensity score estimation values
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are employed to examine weighting, and then, excessive propensity score values lead to having
large weights (Crump et al. ,2009;Austin and Stuart,2017; Hu et al. ,2020).

We may not want excessive weights to occur because of becoming very imprecise for the
causal effects. This violation can occur for various reasons, involving data constraints, a limited
sample size, PS model misspecifications, and specified wrong relation among treatment/outcome
and covariates. This confliction encourages researchers to think about other intended samples for
whom exposure impact may be more meaningful and accurately investigated in terms of bias,
RMSE, or variance( Li et al., 2018; Li et al., 2018) . So, we argued positivity assumption by
conducting extensive simulation studies for multiple treatment cases across proposed IPW
methods to assessing causal effects.

Numeric summaries (such as bias, variance ratios, or standard error ) and some
visualization (such as Q-Q plot, box plot, or density plots) are easy and good tools to display
whether there is unbalanced between groups when considering binary cases. However, assessing
tools have become more critical and complicated for three and more treatment cases .We have
presented three different scenarios, i.e., strong lack of overlap, moderate lack of overlap, and good
overlap as simulation structure and detailed results occur in Section 4.7. Figure 4.1 proposes the
density plot as a graphical tool to illustrate those simulation scenarios. The horizontal axis is the
plot of estimated propensity score values; meanwhile, the vertical lines of the plot represent the
density values. As seen in the Figure 4.1, it is clear that difference the estimated PS values for each

treatment group.
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Figure 4.1: Distribution of estimated propensity score for strong lack of overlap ( top-left panel)
,moderate lack of overlap(top-right panel) and good overlap (bottom)

,,,,,,,,,,,
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4.4 Causal Estimand and Methods

Traditional propensity score methods, i.e., GPSM or IPW, have frequently been used in literature.
However, there are various alternatives to limit the estimate of the treatment impact to an area of
tolerable positivity , such as overlap weighting , matching weighting, entropy weighting, treated
weighting or trimming methods (Crump et al., 2009; Li and Greene, 2013; Li et al., 2018; Mao et
al., 2020).

We consider multiple treatments (i.e. t> 3) and denote the treatment for unit i as T;. As
seen in (4.1) , I;(t) refers to a multinomial indicator array. From (4.2), Y; represents potential
outcome for indexes i under the exposure t as Y;(t). Also, Imbens et al. (2000) proposed
generalized propensity score for potential outcome t as e.(X) =r(t,X) = Pr(T = t|X).To

specify t th the expectation potential outcomes among target population (Li and Li, 2019):

h — — EthG) m(0}

Also, tilting function h(x) is satisfied by ratio h(x) = g(x)/f (x). Tilting function h(x)
means that pre-defined function of variables. To describe target population, m,(x) =

E[Y(t)|X = x] define the conditional expected potential outcomes in treatment t. Consistent

; e ~h _ 2 TililYiwiljl : PR
estimates specified T’ = S TGiwil] ,where define w;|[t] pavens (X).Fmally, we recommend causal
target of inference:
h o _ SUTGYiwilil  EP Tl 1Yiwiali'] ..
Ay = Sl ST e # (4.10)

As we introduced average treatment effect or average treatment on treated effect for

multiple treatments, pairwise causal effect estimands describe 7, =u.-u,s between t and t'.
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After define causal treatment effects for balancing weights, density function for each treatment
group, t is provided by f;(X) = f(X|T = t).To target population, density of specific treatment
group f;(X) is weighted as following :

fXOhX) _ hX)
fX) eX)  eX)

Wj X) =

GPSM: Yang et al. (2016) recommend the generalized propensity score matching (GPSM)
for multiple treatment cases. The matching process of GPSM as following: i) Estimate propensity
score based on the multinomial logit model. ii) Assume that three treatment levels are available
(called ¢4, t,, t3). We matched the treatment t; closest to treatment t, based on the estimated
propensity score values without replacement. iii) matched treatment is removed from the sample
and continues the same process for the rest of the unmatched observation.

IPW: The IPW is a frequently utilized technique which employs the propensity score. IPW
is a common method that includes the weighting unit of each treatment level with the inverse of
their assigned exposure probability. IPW purpose examining the mean weighted outcome covariate
between treatment groups. The weighting literature is influenced by inverse probability weights,
which originated with the Horvitz-Thompson weight in survey sampling (IPW). To target
population, standard inverse probability weighting is defines as {1/e.}.

Overlap weighting : Li et al. (2018) proposed overlap weighting (OW) which is a
balancing weighting design to fix the problems of inverse probability weighting and trimming.
There are available studies to examine the performance of overlap weighting when considering
binary treatment cases ( see Li etal.,2018; Maou et al.,2019; Thomas et al.,2020 ). The OW is very
straightforward in terms of implementing techniques for the binary case. So, overlap weights e and

(1-e) are remarked for treatment and control groups. Also, bootstrap variance estimator and robust
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sandwich variance estimator are available in Li et al. (2018); and Stefanski and Boos (2002).
Furthmore, Li and Li (2019) extended the study of overlap weighting from binary to multiple
treatment cases. The combination of IPW and harmonic mean of GPS lead to be established
generalized OW method, which weighted each individual proportionate according to its
probability of being assigned to the other group. The GOW aims to consider sub-population, which
has probabilities of being assigned to all exposure groups. The most crucial feature of the GOW
method is that illustrate good performance when tailing exists. It means that we can limit values
between 0 and 1, and thus, we can eliminate excessive propensity score values when employing
inverse probability weighting.

Li et al. (2018) introduced the OW , which weighted each individual proportionate to its

probability of being assigned to the other group. Tilting function, h(X) is defined as

(M, 1/ek(X))_1. Balance weights for OW as

Woverlap _ (Z¥=1 1/ek(X))_1
: B e (X)

Matching weighting: Another alternative to the IPW technique is matching weight (MW)
methods. Even though the matching weighting technique is known as a balance weights technique,
pair matching and matching weights techniques have nearly similar estimands. Contrary to the
difficulties of applying pair matching techniques, matching weights are easy in terms of the
implementation process and have eliminated the challenges of pair-matching in practice ( Li and

Greene, 2013).The matching weighting (MW) is recommended by Yoshida et al. (2017) :

Wmatching — {minlskst{ek (X)}}
i e(X)
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Entropy weighting: Hainmueller(2012) recommended entropy balancing( or called entropy
weighting), which aims pre-processing approach to remove covariate imbalance. The most
important difference of the entropy balancing technique is that entropy balancing is a reweighting
technique that includes variables balance straightly in the weight function employed to the sample
units. Entropy balancing enables to achieve a high degree of variable balance by applying the
extensive set of balance requirements that include the first, second, and perhaps higher moments
of variable distributions and interactions. Another critical feature in entropy weighting is that the
reweighting method is flexible when we have weights around 0 and 1. Entropy weighting is defined
by :

WwEntropy _ - Z¥=1 ek(X)lOg{ek(X)}
: eq(x)

Treated weighting : Horvitz—Thompson (HT) weight is different version of inverse
probability weighting. HT weights can focus on the treatment effects on the treated group (Hirano

and Imbens, 2001). Hirano and Imbens (2001) provide the treated weighting( TR):

chreated — ek(X)
1 ec(X)

Variance Estimation: Lunceford and Davidian (2004) and Li et al (2019) state that the empirical

sandwich variance for PSW estimator rely on the M estimation theory. For multiple treatment
. T
cases. The parameters array is shown as 8=(v; ,..,vj, 0y, ..., n;, BT, ") .

Then{w, = o; +A;:j = 1,...,J} is solved as
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wy (%) T {Y; —my (x50 — vy}

wy (%) Iij{Yi _.mJ(Xii o) — vy}

N N
Z i (8) = z h(xi){ml({ci:a) =4} _o

h(x;){m, (5700 — n;}
Sg(Ti, i, B)
Sa(Yi' Ti' Xi» O()

where clearly that Sg(T;, x;, 8) and S, (Y;, Ty, x;, ) are score function for propensity score model

and outcome model. Also, m;(x) = E[Y(j)|X = x]. Empirical sandwich variance estimator is

90) - {Z%w(e)} {Z 1 () w(é)}{ia—;w(@)}

-1

4.5 Application to Alcohol and Other Drug Treatment Dataset
4.5.1 Dataset

We used alcohol and other drug treatment dataset (AOD), which McCaffrey (2013) introduced.
McCaffrey utilized AOD dataset to provide step-by-step guidance to estimate the average
treatment effect based on the generalized boosted method for multiple treatment settings. Three
treatment levels have been determined, including "“traditional programs (community),”
"motivational enhancement therapy plus cognitive behavior therapy (MET/CBT-5)", and
"Strengthening Communities for Youth (SCY)." There are 600 individuals with five covariates in
the twang package in R, even though McCaffrey (2013) used a larger sample. Also, the five
pretreatment variables are illicit activities scale ("illact"), criminal justice involvement

("crimjust™),substance use problem scale (“subprob’),substance use dependence scale (“subpdep”)
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and race ( “white”). The outcome variable “suf12” represents treating drug abuse following twelve

months post-intake.

4.5.2 Results

Table 4.1 examines the features of patients who received one of three treatments( i.e., CBT-
5,community, and SCY groups) for five covariates unweighted dataset and datasets using balance-
weighted techniques. There are valuable metrics such as bias, standardized bias, or relative bias to
measure balance in the binary or multiple treatment cases. These metrics allow analysis to examine
the magnitude of the different exposure between treatment groups in the distributions of covariates.
One of the preferable performance metrics is a standardized mean difference, which is computed
as a difference in the average of a variable between treatment groups, divided by a pooled estimate
of the variable's standard deviation. Even though researchers do not reach a consensus on what
threshold for standard mean difference should be used, some articles (see Austin and Stuart,2015;
Normand et al.,2001) suggest that SMD is smaller than 10% of SMD values is considered as
evidence of balance between groups. However, McCaffrey et al. (2012) recommended that SMD
keep within bounds of 20% might indicate a meaningful balance between treatment groups in
covariates. When we prefer using the 10% threshold value to examine the balance between three
treatment groups in AOD datasets in the distribution of five covariates, we see that four of 5
measured variables (i.e., illact, crimjust, subdep, and white variables) exceeded 10%, which means
that significantly imbalance between treatment groups in the unweighted dataset (Table 4.1).
Fortunately, all SMDs are less than 10%, which indicates a good balance for all covariates across

all balance weights. When SMDs are close to 0, we should realize that it is evidence of perfect
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balance in distributions of covariates. The resulting of SMDs metrics reveal that using any of
balance weight techniques provide improvements on the covariates.

In addition, there are significant means between community, CTB-5, and SCY treatment
groups in the unweighted dataset, such as illact covariates. However, means in treatment groups
are decreased difference. For example, means of illact variable for the community, CTB-5, and
SCY groups have corresponded to 0.083,0.007 and 0.120 in the unweighted dataset, respectively,
while illact covariate for those groups' means is 0.067, 0.082, and 0.078 in matching weight,
respectively. Similar results were observed for other covariates where for mean, all methods tended
to be similar. Thus, in general, all weighted methods perform close mean values for each to other
groups. Therefore, in general, treatment group means are closer to each other in all weighted

methods compared to treatment group means in the unweighted dataset.

Table 4.1: Averages for treatment groups in unweighted and weighted and standardized
mean difference in AOD dataset

Weighted means Stand. mean diff.
(SMD)
Community CTB-5 SCY
Unweighted
illact 0.083 0.007 0.120 0.112
crimjust -0.033 0.037 -0.174 0.206
Subprob -0.058 0.026 -0.013 0.085
subdep 0.052 0.058 -0.058 0.112
white 0.162 0.200 0.175 0.100
Matching
weight
illact 0.067 0.082 0.078 0.015
crimjust -0.069 -0.067 -0.066 0.003
subprob -0.018 -0.009 -0.009 0.010
subdep 0.007 0.022 0.008 0.015
white 0.178 0.179 0.182 0.010
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Overlap weight

illact 0.079 0.080 0.081 0.002
crimjust -0.058 -0.066 -0.062 0.007
subprob -0.021 -0.021 -0.016 0.006
subdep 0.018 0.022 0.010 0.012
white 0.179 0.181 0.184 0.015
Entropy weight

Illact 0.080 0.080 0.080 0.000
Crimjust -0.057 -0.066 -0.062 0.009
Subprob -0.020 -0.022 -0.016 0.006
Subdep 0.019 0.021 -0.010 0.010
white 0.179 0.182 0.185 0.015

Treated weight

illact 0.139 0.132 0.120 0.019
Crimjust -0.167 -0.195 -0.174 0.028
Subprob -0.013 -0.028 -0.013 0.016
subdep -0.054 -0.066 -0.058 0.012
white 0.179 0.182 0.175 0.018
IPW

illact 0.081 0.080 0.080 0.001
crimjust -0.056 -0.067 -0.062 0.011
subprob -0.019 -0.023 -0.015 0.007
subdep 0.020 0.019 0.010 0.009
white 0.179 0.182 0.185 0.015

Table 4.2 summarized the results of the causal estimands, standard error, and confidence intervals
for group comparisons (i.e., CBT-5 vs. community, group SCY vs. community, and group SCY
vs. CBT-5). Table 4.2 shows that average treatment effects in the GPSM method for three

comparison groups are equal to 0.176,0.217, and 0.047, which provide larger values than all
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weighted methods. It seems to receive a similar standard error for three treatment groups across

all weighting methods and GPSM.

Table 4.2 :Estimation of the treatment effect in the AOD data application employing various

balance weighting methods

Estimand Std. error 95% CI
Matching Weighting
CBT-5 vs Community 0.1440 0.097 (-0.046,0.336)
SCY vs Community 0.098 0.096 (-0.090, 0.288)
SCY vs CBT-5 -0.045 0.103 (-0.248,0.157)
Overlap Weighting
CBT-5 vs Community 0.136 0.097 (-0.053,0.326)
SCY vs Community 0.087 0.095 (-0.098,0.274)
SCY vs CBT-5 -0.049 0.102 (-0.250,0.151)
Entropy Weighting
CBT-5 vs Community 0.134 0.097 (-0.055,0.324)
SCY vs Community 0.085 0.095 (-0.100,0.272)
SCY vs CBT-5 -0.049 0.102 (-0.250,0.151)
Treated Weighting
CBT-5 vs Community 0.115 0.102 (-0.085,0.316)
SCY vs Community 0.086 0.096 (-0.102,0.275)
SCY vs CBT-5 -0.028 0.107 (-0.239,0.181)
IPW
CBT-5 vs Community 0.133 0.097 (-0.057,0.323)
SCY vs Community 0.084 0.094 (-0.101,0.270)
SCY vs CBT-5 -0.048 0.102 (-0.250,0.152)
GPSM
CBT-5 vs Community 0.176 0.100 (-0.342,-0.011)
SCY vs Community 0.217 0.103 (-0.386,-0.048)
SCY vs CBT-5 0.047 0.101 (-0.207,0.126)
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4.6 Simulation Study
We perform a comprehensive simulation study to assess performance using a variety of
methodologies. We modified the simulation structure define by Yang et al. (2016).We generate
treatment with three levels, continuous outcome and ten covariates in the simulation. X,;, X,; and
X5; covariates are generated based on the multivariate normal distribution with mean of (0,0,0) ,
variances of (2,1,1) and covariances of (1,-1,-0.5) between X; and X,, X; and X5, and X, and X5,
respectively. Also, X,; ~U[-3,3], Xs; ~x?, X¢;~Bernoulli(0.5),X,;~Bernoulli(0.7), Xg;~U[-2,2],

Xo;~Bernoulli(0.7), X;,;,~U[-2,2], all independent of each other and X, X,, and X5 . The
distribution of the treatments is

(T; (1), T;(2), T;(3)) ~Multinom(p(1|X,), p(2|1X,), p(31X))

where exposure indicator T;(t) is defines as

exp(X{ 6,) )
?:1 exp(XiTBt)

p(11X;) = <
where 87 =y, (0,0,0,0,00,0,0) , 6] =y, *(1,1,1,-1,-1,1,1,-1) and 6 =y; =
(1,1,1,1,1,1,1,1). We should make reminder that covariates X;- Xg are related to treatment
assignments. In other words, Xo; and X, ,; covariates do not have association with treatment levels.
We construct (y4,¥2,¥3) = (0,0.2,0.8) for strong lack of overlap , (y4,72,v3) = (0,0.05,0.2) for
middle lack of overlap and (y;,v,,¥3s) = (0,0.1,0.1) for good overlap. We generate the outcome
as following:

Yi(k) = (LXDay + €

where €; ~N(0,1), al =(-1511,1,1111), of =(-423,1,2,22,2) and af =
(3,3,1,2,—1,—-1,—1,2). N, = 10000 sample sizes and 500 iterations are considered with t =

1,2,3. Finally, to misspecify the true PS model, we delete the covariates X5 and X, from full model
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4.7 Results

We conducted a comprehensive simulation study to examine various weighting methods and

generalized propensity score matching method in this article. Table 4.3 presents bias, RMSE, and
empirical standard deviation. Bias is calculated by ﬁz%ﬁ?o(é)i — 8) where 0 is the population

difference in response between two treatment groups and 6; is the estimated difference for Monte

Carlo run ith between the same two treatment groups; meanwhile, RMSE is specified as

\/RMSE = ﬁz}ff”wi — 0)2. The empirical standard error is computed as the sample SD of

the point estimates. We summarized the performance of matching weighting(MW), overlap
weighting(OW), entropy weighting(EW), treated weighting (TW), IPW, IPW with trimming,
GPSM and GPSM with trimming when considering good overlap, moderate lack of overlap, and
substantial lack of overlap scenarios in Table 4.3, 4.4, 4.5. In addition, we present the results of
misspecified PS models under the good overlap, mild lack of overlap, and strong lack of overlap
scenarios. When all the methods are considered for good overlap and true PS model, MW, OW,
EW IPW, and IPW with trimming offered adequate estimation in terms of absolute bias and
RMSE. The TW method illustrates the most extensive bias, RMSE, and empirical SD in the true
PS model and misspecified model(Table 4.3). The four remaining procedures, involving MW,
oW, EW, and IPW, do a pretty good job of achieving a small bias for all treatment effects. GPSM
results in greater bias than balance weighting methods in the presence of good overlap in PS
distributions with 10000 sample size and generating 500 datasets. Table 4.3 provides the
misspecified model, which represents removing covariates X5 and X, from the full model. Table-
3 provides a misspecified model created by subtracting the X; and X, covariates from the full

model. MW, OW, and EW methods present no changes in the presence of bias from using the true
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PS model to a misspecified model under the good overlap. Unfortunately, IPW and GPSM
methods produce relatively larger bias in the misspecified PS model than the true PS model. This
leads us to conclude that IPW and GPSM may be sensitive toward defining the model in terms of
bias. Generally, MW, OW, EW, and IPW methods are related with the smallest and similar RMSE
and empirical SD. So, those methods are more effective than TW and GPSM. However, when a
moderate lack of overlap exists (Table 4.4), all methods show more bias, larger RMSE, and
empirical SD compared to existing good overlap. TW and GPSM method (Table 4.4) illustrate
huge bias, which similarly resulted. Finally, Table 4.5 reveals that all methods tend to be more
extensive measured metrics. In other terms, there is a dramatic increase in terms of values of
measured metrics from a good overlap scenario to a substantial lack of overlap ( check Table 4.3
and Table 4.5).

We report the ratio of the average estimated standard error to the empirical standard
deviation of estimated in Table 4.6-4.8. There are two different standard error estimators: i)
bootstrap standard error estimator ii) robust sandwich-type standard error estimator in literature.
So, we perform those estimators across six methods when considering good overlap, moderate
overlap, and a strong lack of overlap. Efron and Tibshirani (1993) recommended that 200 bootstrap

samples illustrate adequate to estimate the standard error. Austin (2015) provided that the

performance of variance estimator is measured by ﬁ, where the mean standard error across
the 500 iterations: y = LZ?BQVI and the standard deviation of the estimated across the 500
500

simulated datasets: sd(8;). If this ratio is close to 1 in bootstrap variance estimation, it shows that

the bootstrap estimation accurately approached the SD of the estimated empirical sample
distribution. Robust standard error in IPW with trimming method overestimated the variability of

estimates for either true PS model and misspecified PS model when considering a strong lack of
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overlap. However, GPSM, GPSM with trim, and TW methods perform underestimated the
variability of estimates for both PS models (Table-4.8). To sum up, MW, OW, EW, and IPW
methods in a ratio are approximately equal to one for three overlap scenarios. However, GPSM
and TW methods in the ratio show the worst performance when there is an increasing lack of
overlap.

We reported the standardized mean difference (SMD) to examine the balance of baseline
variables before and after using MW, OW, EW, TW, IPW, and GPSM for each pairwise treatment.
In literature, if SMD is below or around 0.1( 10%) threshold, there is a weak imbalance between
treatment groups. Austin (2008) provides that SMD does not depend on the measurement units
and size of the dataset. So, we present the average SMD that calculate across the 500 simulated
datasets for each of the 10 variables in Table 4.9-4.11. In this simulation study, SMD aims to
compare the balance in baseline covariates between whether they get specific treatment. Table-4.9
presents that there is no crude imbalance in the original, unweighted sample. Because Figure 4.2
illustrates how to distribute the estimated propensity score values of each treatment group, which
was called a good overlap scenario. We realize that there is a perfect overlap between treatment
groups in Figure 4.2. After employing any weighting techniques or GPSM, It is expected to see
perfect balance in covariates between treatment groups like Table-4.9. Because Rubin and
Rosenbaum (1983) indicated that propensity score is a balancing score. Therefore, we can
conclude that all covariates seem to be good balance when PS overlap is good. Even though six
techniques decrease the SMD of covariates X;-X;,compared with unweighted analysis (Table-
4.10), all SMD for ten covariates across all methods( Table-4.10) illustrates increased when
compared with Table-4.9. In particular, all weighting methods exact good covariate balance for

moderate-overlap scenario (Table 4.10). However, the SMD of four covariates, i.e., X;, X3, X4,
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and Xg, are more than 10% when employing the GPSM method. Due to a strong lack of overlap,
there is a massive explosion in the SMD of baseline covariates in Table-4.11. While nine of ten
measured baseline covariates in the GPSM method had SMD that overrun 10%, one covariate (i.e.,
X;) in MW techniques and two covariates (i.e., X; and X,) are more extensive than 10%, which
means that there is an imbalance for those variables. The biggest observed SMDs are for X,
(37.5%) and X, (27.5%) in the GPSM method. To conclude, if there is a substantial lack of overlap,
matching weighting and overlap weighting lead to better balance in measured baseline covariates
than EW, TW, IPW, and GPSM. However, all covariates perform well across all six methods when

there is good PS overlaps.

4.8 Summary & Discussion

Researchers in medical, social science and public health studies frequently utilize propensity score-
based techniques that aim to eliminate bias between treatment groups. Since Rosenbaum and
Rubin introduced propensity score methods in 1983, binary treatment cases have generally been
studied. While multiple treatment groups have become popular recently, multiple treatments might
be more challenging to design, perform, and interpret. Imbens (2001) proposed the causal models
and validated them utilizing propensity scores to eliminate bias in cases with more than two
treatment. The use of the IPW methods in multiple treatment cases has posed some critical issues
that are being discussed in the literature. The main problem of using IPW is that weights become
large when the estimated PS value is approximately 0 and 1. So, large weights produce biased
treatment effects and large variability of estimates. Alternative methods to IPW have been
suggested recently to eliminate or alleviate this problem. These alternative approaches are treated

weights (Hirano and Imbens,2001), matching weights(Li and Greene,2013), overlap weights (Li
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et al.,2018), entropy weight( Zhou et al.,2020). Those weighting techniques are called 'balance
weighing. All those approaches are mainly employed based on binary treatment cases(Li et al.
2018; Mao et al.,2019; Zeng et al.,2020; Li and Greene) and multiple treatments (Yoshida et
al.,2017; Li and Li,2019; Hu et al.,2020).

This paper used balancing weighting family and generalized propensity score matching
approaches to derive causal inferences from observational studies with multiple treatment cases.
We conducted comprehensive Monte Carlo simulations to explore these issues. When levels of
violation of overlap assumption are increased, bias and RMSE metrics values across all methods
also increased. The results of table 4.3-4.6 give a clue that there is a large variability of estimated
treatment effects when the overlap assumption is violated. MW, OW, and EW methods perform
nearly identically using both the true PS model and misspecified PS model when there is no
violation of overlap assumption in Table 4.3. GPSM with or without trimming performed poorly
in Table 4.3. So, we can conclude that applying GPSM may not be a good choice to eliminate bias
in treatment effects estimates. However, MW and OW methods are consistently more effective
than the remaining methods, including both PS models when moderate lack of overlap and
substantial overlap existed. In other words, considering all measurements listed in Table 4.3-4.5,
both OW and MW made the best out of the six techniques. As can be seen, OW, MW, and EW
methods are not sensitive to model misspecification under good overlap assumption. There are no
changes in the bias metric for a misspecified PS model.

We conduct standard error estimation using balance weighting family methods and GPSM
with propensity score to estimate the treatment effect. We realize that the use of bootstrap and
sandwich robust estimator tended to result in accurate estimated standard errors in MW, OW, EW.

However, GPSM, IPW, and TW performed the worst for both bootstrap and robust sandwich-type
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standard error estimators under all overlap scenarios. However, Joffe et al. (2004) suggest using a
robust standard estimator is more appropriate when employing IPW for binary cases. Abadie and
Imbens (2008) recommend utilizing bootstrapping to estimate SE was improper. However, we
conclude that either bootstrapping and a robust sandwich-type estimator can be used for OW,
MW, and EW methods when assessing all balance weighting methods and GPSM in multiple
treatment cases. This study sheds light on the evaluating of all balance weighting methods utilizing
true propensity score model and misspecified propensity score model under different levels of

overlap.
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4.9 Appendix

Table 4.3: Performance of the various weighting and GPSM methods in simulation when both
true propensity score model and the misspecified propensity score model with good overlap.
Simulation results with t=3 groups in 1000 datasets

GOOD OVERLAP

TRUE PS MODEL MISSPECIFIED PS MODEL
T12 T13 T23 T12 T13 T23
Matching W 0.084 0.107 0.135 0.084 0.109 0.138
Overlap W. 0.080  0.100 0.123 0.080 0.100 0.124
Entropy W. 0.080  0.099 0.122 0.080 0.099 0.123
IBIAS|  Treated W. 0116 0142 0193 0115  0.142 0.192
IPW(No trim) 0.080  0.098 0.122 0.090 0.099 0.123

IPW (at0.1trim)  0.080 0.099 0.121 0.091 0.100 0.125
GPSM(No trim) 0.153 0.206 0.243 0.173 0.188 0.220
GPSM (at0.1trim) 0.152  0.206 0.240 0.173 0.189 0.221

Matching W 0.105 0.134  0.166 0.102 0.136 0.170
Overlap W. 0.102 0.123 0.153 0.102 0.125 0.154
Entropy W. 0.102 0.125 0.153 0.102 0.125 0.153
RMSE  Treated W. 0.146 0.183 0.241 0.144 0.183 0.240
IPW(No trim) 0.102 0.124  0.152 0.102 0.124 0.153

IPW (at 0.1 trim) 0.102 0.125 0.154 0.101 0.126 0.154
GPSM(No trim) 0.105 0.134 0.166 0.218 0.241 0.286

GPSM (0.1) 0.191 0.253 0.302 0.219 0.240 0.287
Matching W 0.111 0.130  0.157 0.174 0.150 0.191
Overlap W. 0.109 0.126 0.152 0.173 0.146 0.188
Emp. Entropy W. 0.109 0.125 0.152 0.174 0.145 0.188
SD Treated W. 0.167 0.184  0.250 0.205 0.172 0.225
IPW(No trim) 0.109 0.125 0.152 0.173 0.145 0.188
IPW (0.1) 0.108 0.126 0.153 0.172 0.146 0.189
GPSM(No trim) 0.204 0.248 0.316 0.264 0.248 0.327
GPSM (0.1) 0.207 0.266 0.309 0.261 0.271 0.322

Abbreviations: IPW: Inverse Probability Weighting, GPSM: Generalized Propensity
Score Matching, Emp. SD: Empirical Standard Deviation

121



Table 4.4: Performance of the various weighting and GPSM methods in simulation when both
true propensity score model and the misspecified propensity score model with good overlap.
Simulation results with t=3 groups in 1000 datasets

MODERATE LACK OF OVERLAP

TRUE PS MODEL MISSPECIFIED PS MODEL
T12 T13 123 T12 T13 123
|BIAS| Matching W 0.151 0.231 0.363 0.150 0.225 0.353
Overlap W. 0.263 0.224 0.481 0.267 0.222 0.484
Entropy W. 0.281 0.203 0.476 0.279 0.200 0.471
Treated W. 0.738 0.480 1.219 0.738 0.486 1.224
IPW(No trim) 0.251 0.167 0.404 0.256 0.164 0.402
IPW (0.1) 0.269 0.194 0.455 0.269 0.189 0.450

GPSM(No trim) 0.781  0.573 1.353 0.791 0.580 1.370
GPSM (0.1) 0.545 0.464 0.863 0.538 0.450 0.843
Matching W 0.178 0.266 0.400 0.174 0.259 0.391

Overlap W. 0283 0255 0504 0286 0253 0507
Entropy W. 0301 0235 0500 0299 0230  0.494
RMSE  Treated w. 0.767 0525 1249 0765 0530  1.252
IPW(No trim)  0.279 0200 0432 0279 0195 0428
IPW (0.1) 0292 0229 0482 0291 0223 0476
GPSM(Notrim) 0.795 0.612 1375  0.803 0625  1.394
GPSM (0.1) 0.630 0546 1044 0630 0538  1.047
MatchingW  0.127 0140 0190 0180 0146  0.205
Overlap W. 0114 0136 0168 0173 0140  1.190
Entropy W. 0113 0135 0165 0174 0140  1.190
E{E“p- Treated W. 0252 0211 0298 0272 0186  0.296
IPW(No trim) 0125 0137 0470 0481 0140  0.195
IPW (0.1) 0154 0171 0249 0181 0183 0242

GPSM(No trim)  0.343  0.447 0.445 0.297 0.318 0.301
GPSM (0.1) 0.127 0.140 0.190 0.180 0.146 0.205

Abbreviations: IPW: Inverse Probability Weighting, GPSM: Generalized Propensity
Score Matching, Emp. SD: Empirical Standard Deviation
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Table 4.5: Performance of the various weighting and GPSM methods in simulation when both true
propensity score model and the misspecified propensity score model with strong lack of overlap.
Simulation results with t=3 groups in 1000 datasets

STRONG LACK OF OVERLAP

TRUE PS MODEL MISSPECIFIED PS MODEL
T12 T13 T23 T12 T13 T23
|IBIAS| Matching W 1.054 1.392 2.447 1.049 1.304 2.354
Overlap W. 1.234 1.311 2.545 1.247 1.290 2.538
Entropy W. 1.552 1.116 2.661 1.501 1.170 2.671
Treated W. 0.935 0.323 1.089 0.920 0.327 1.136
IPW(No 1.278 1.891 2.126 1.283 1.936 2.204
trim)
IPW (0.1) 1.151 1.208 2.360 1.129 1.186 2.316
GPSM(No 2.460 2.027 4.488 2.475 2.114 4590
trim)
GPSM (0.1) 1.431 2.307 1.183 1.412 2.236 1.117
RMSE Matching W 1.064 1.401 2.454 1.057 1.313 2.361
Overlap W. 1.241 1.319 2.551 1.253 1.298 2.543
Entropy W. 1.557 1.150 2.679 1.506 1.186 2.679
Treated W. 1.246 0.438 1.352 1.184 0.456 1.352
IPW(No 1.323 1.945 2.183 1.317 1.969 2.237
trim)
IPW (0.1) 1.241 1.319 2.551 1.257 1.164 2.411
GPSM(No 2.464 2.052 4.498 2.479 2.132 4,598
trim)
GPSM (0.1) 1.459 2.416 1.213 1.433 2.328 1.147
Matching W 0.154 0.172 0.210 0.171 0.152 0.179
Overlap W. 0.137 0.164 0.195 0.162 0.149 0.176
Empr. SD Entropy W. 0.128 0.299 0.309 0.162 0.200 0.220
Treated W. 0.985 0.421 0.912 0.464 0.227 0.461
IPW(No 0.462 0.372 0.526 0.219 0.232 0.279
trim)
IPW (0.1) 0.193 0.265 0.311 0.213 0.267 0.314
GPSM(No 0.154 0.346 0.363 0.205 0.274 0.285
trim)
GPSM (0.1) 1.562 1.045 1.302 0.151 1.026 1.227
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Table 4.6 : The proportion of average estimated standard error to empirical standard deviation
of sampling variability of estimated across 1000 iterations of good overlap scenarios

Good Overlap

Methods Pairwise of = 0 hropensity score Misspecified PS
groups Model Model
Bootstrap Robust Bootstrap Robust
1o 1.039 1.049 0.972 1.132
Matching W. s 1.017 1.040 0.990 1.041
s 1.096 1.130 1.005 1.156
1o 0.989 0.989 0.958 0.965
Overlap W. Ti3 0.974 0.986 0.974 0.971
Ty 1.025 1.029 0.977 0.974
1o 1.002 0.988 0.962 0.964
Entropy W. s 0.992 0.987 0.966 0.973
Ta 1.031 1.029 0.978 0.974
1o 0.970 0.955 0.974 0.815
Treated W. T1a 1.004 1.010 0.998 0.821
s 1.007 1.006 1.014 0.816
1o 1.002 0.989 0.970 0.965
IPW Tia 1.005 0.990 0.974 0.975
s 1.042 1.030 0.975 0.976
1o 0.998 0.989 0.976 0.965
IPW (at 0.1 trim) 15 1.004 0.990 0.977 0.975
s 1.042 1.030 0.981 0.975
1o 0.956 0.963 0.747 1.002
GPSM T.3 0.644 0.657 0.630 0.702
Tys 0.721 0.749 0.676 0.760
1o 0.942 0.950 0.749 0.957
GPSM (at 0.1 trim) 13 0.601 0.659 0.606 0.660
s 0.736 0.773 0.669 0.780
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Table 4.7 : The proportion of average estimated standard error to empirical standard
deviation of sampling variability of estimated across 1000 iterations of moderate lack of
overlap scenarios

Moderate Lack of Overlap
Methods Pairwise of

True propensity score Misspecified PS
groups Model Model

Bootstrap Robust Bootstrap Robust
T 1.044 1.056 0.985 0.964
Matching W. i 1.020 1.053 1.030 1.031
Tos 1.021 1.054 0.982 0.973
1o 1.020 1.006 0.971 0.970
Overlap W. Tia 0.969 0.974 1.023 1.133
Tos 0.989 0.978 0.971 1.009
1o 1.002 1.011 0.970 0.971
Entropy W. Tis 0.984 0.979 1.042 1.042
Tos 0.962 0.979 0.977 0.978
1o 1.019 0.989 0.947 0.622
Treated W. Tia 1.034 1.024 1.061 0.784
Tos 1.007 0.988 0.898 0.627
1o 1.041 1.013 0.965 0.962
IPW Tia 1.005 0.993 1.057 1.057
T3 0.993 0.986 0.970 0.969
Ti 0.990 1.067 0.974 0.998
IPW (at 0.1 trim) T1a 0.971 0.987 1.024 1.037
Tos 0.935 0.971 0.958 0.981
1o 0.920 0.985 0.910 0.794
GPSM T.s 0.659 0.683 0.668 0.576
T3 0.859 0.863 0.841 0.656
1o 0.412 0.424 0.410 0.573
GPSM (at 0.1 trim) Trs 0.364 0.375 0.371 0.519
Tos 0.417 0.422 0.401 0.472
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Table 4.8:The proportion of average estimated standard error to empirical standard deviation

of sampling variability of estimated across 1000 iterations of strong lack of overlap scenarios

Strong Lack of Overlap

Methods Pairwise of True propensity score Misspecified PS
groups Model Model
Bootstrap Robust Bootstrap Robust
Ty, 1.057 1.060 1.052 0.887
Matching W. Ty3 1.056 1.066 1.067 0.951
Tys 1.043 1.046 1.097 0.972
1, 1.085 1.088 1.031 1.038
Overlap W. Tis 1.061 1.063 1.064 1.068
Tys 1.026 1.027 1.075 1.089
1o 1.071 1.068 1.022 1.018
Entropy W. Ty3 0.910 0.905 0.993 0.988
Tys 0.897 0.896 1.015 1.016
1, 0.705 0.700 0.902 0.355
Treated W. Tis 0.849 0.847 1.004 0.873
Tys 0.662 0.658 0.847 0.485
1o 0.728 0.714 0.972 0.967
IPW Ti3 0.909 0.897 0.968 0.962
Tys 0.785 0.781 0.984 0.968
1, 0.949 2.233 0.981 1.250
IPW (at 0.1 trim) Tis 1.008 1.728 1.012 1.233
Tys 0.892 1.788 0.973 1.275
1, 0.873 0.880 0.741 0.790
GPSM T1ia 0.447 0.470 0.528 0.394
Tys 0.492 0.501 0.612 0.467
1, 0.106 0.152 0.124 0.094
GPSM (at 0.1 trim) T1a 0.161 0.170 0.224 0.132
Tys 0.184 0.189 0.193 0.147
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Table 4.9 : Average of SMD(%) across 1000 simulate dataset of good overlap scenarios

Unweighted Matching

5.716
5.552
5.632
5.968
5.955
5.883
5.423
5.600
5.664
5.514

W.

0.451
0.461
0.479
0.442
0.531
0.411
0.421
0.439
0.398
0.409

Overlap

W.

0.388
0.356
0.369
0.352
0.405
0.326
0.318
0.356
0.325
0.320

Entropy

0.389
0.356
0.377
0.352
0.412
0.328
0.317
0.355
0.328
0.323

Treated
W

0.640
0.580
0.640
0.560
0.732
0.546
0.522
0.596
0.560
0.545

IPW

0.392
0.358
0.377
0.353
0.423
0.331
0.318
0.357
0.332
0.327

GPSM

0.944
0.912
0.997
0.995
1.002
0.957
0.901
0.920
0.939
0.924

Table 4.10 : Average of SMD (%) across 1000 simulate dataset of moderate lack of

overlap scenarios

Unweighted Matching Overlap

27.475
17.744
21.136
32.003
25.975
9.785
9.709
21.641
5.486
5.742

W.

2.364
2.114
2.177
1.121
1.415
1.202
1.269
1.143
1.234
1.230

W.
2.75
2.87
2.984
0.967
1.157
1.017
0.994
0.944
1.053
1.027
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Entropy
W.

2.989
3.169
3.297
1.032
1.276
1.067
1.026
0.990
1.106
1.063

Treated
W

4.668
4.100
4.342
2.314
4.741
2.491
2.222
2.369
2.491
2.409

IPW

3.063
3.246
3.360
1.137
1.929
1.169
1.119
1.087
1.237
1.152

GPSM

10.091
8.042
11.672
15.834
9.971
5.098
7.086
12.023
8.567
5.395



Table 4.11: Average of SMD% across 1000 simulate dataset of strong lack of overlap

scenarios
Unweighted Matching Overlap  Entropy  Treated IPW GPSM
W. W. W. w

X, 71.702 10.459 12.465 21.108  25.308 22.073  37.540
X, 33.992 6.321 10.105 20.479  18.690 21.201  27.497
X3 47.279 4.740 9.708 22.070  19.560 22.337  31.289
X, 95.279 3.156 2.798 5.318 13.688 7.876 21.509
X5 56.329 3.328 2.846 4.377 23.829 10.539  20.831
Xe 25.058 3.245 2.893 4.697 12.109 6.691 17.845
X5 23.252 3.329 2.916 4.908 11.102 6.620 16.456
Xg 59.970 3.161 2.703 4.959 12.618 7.078 19.673
Xo 5.744 3.277 2.980 4.644 11.153 6.190 9.587
X0 5.782 3.428 3.010 4.650 12.676 6.804 12.456
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Figure 4.2: Distribution of bootstrap standard error for all balance weightings across 1000

simulated for good overlap scenario
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Figure 4.3: Distribution of bootstrap standard error for all methods across 1000 simulated for

strong lack of overlap scenario
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Figure 4.4: Distribution of robust sandwich standard error for all balance weighting methods

across 1000 simulated for good overlap scenario
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Figure 4.5: Distribution of robust sandwich standard error for all balance weighting across 1000

simulated in strong lack of overlap scenario
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Chapter 5

Summary& Conclusion

This dissertation has offered three contributions to the literature. In these three papers, we
presented various topics through three application areas of biostatistics: biomarkers, causal
inference, and machine learning. Thus, this research expanded the understanding of these areas. In
this chapter, we briefly summarize our findings and contributions in this dissertation.

The first paper's main goal has to examine techniques for adjusting for an observational
dataset's treatment selection process. Identifying biomarkers that may be used to predict the
potential benefits of a specific treatment for patients is a significant challenge in developing
personalized or precision medicine techniques. Despite the extensive literature on improving
biomarkers in randomized control trials, there is relatively limited research on developing a
statistical methodology to assess the markers using observational datasets. Firstly, we derive
0, and ©, parameters metrics, which measure the performance of treatment selection for
biomarkers' based on survival outcomes. Then, we performed causal inference techniques based
on the proposed theta metric to examine how well the results of causal inference techniques impact
the performance of biomarkers. We have concluded that observational studies without using causal

inference techniques to evaluate biomarkers' effect may yield inaccurate results.
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The true propensity score is not known in observational datasets. Rubin (1983) called that
propensity score a balancing score. Even though logistic regression is the standard technique to
estimate PS, there is recently growing interest in utilizing machine learning techniques. We
implement machine learning techniques and parametric methods to estimate propensity scores in
Chapter 3. However, implementing these approaches in practice raises several critical concerns
that are currently being debated in the literature: i) how to estimate propensity score, ii) which
variables are included/excluded from PS models iii) which methods (i.e., machine learning or
parametric models) should be preferred, iv) how to estimate outcomes. The first purpose of
Chapter 3 was to assess the bias of estimates derived from PS matching relying on the model
utilized to estimate PS. Secondly, we used Monte Carlo simulations to illustrate how different
combinations of covariates influenced the potential of matching on propensity score to construct
subjects in which all measured baseline covariates were balanced between treatment groups, to
address the lack of consensus on which variables to include the propensity score model. The best
performing approaches for estimating the propensity score in our simulations were logistic
regression, random forests, and CART. In comparison to the other techniques discussed, they
frequently guaranteed significantly reduced bias and RMSE. The variations between the best-
performing methods are generally rather minor. After that, we offered the results of parametric
and machine learning methods to evaluate treatment selection biomarkers used to select a specific
treatment in observational studies.

In chapter 4, the motivation was the increasing research on improving multiple (more than
two) treatment effect estimators in observational studies. Inverse probability weighting (IPW),
among the most preferred methods in the propensity scores literature, were used to minimize

confounding effects and examine causal effects. One of the main assumptions is the positivity
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assumption, i.e., propensity score must be bounded away from 0 and 1. If the positivity assumption
is violated, we can get inaccurate results, i.e., large bias, variance, RMSE, or imbalance in
covariates between treatment groups. So, we study matching weighting, overlap weighting,
entropy weights, treated weighting, inverse probability weighting with symmetric trimming,
generalized propensity score matching, generalized propensity score matching with symmetric
trimming that are alternatives to inverse probability weighting. We propose three different levels
of overlap to investigate how positivity assumption is violated using true PS model and
misspecified PS model. When good overlap exists, MW, OW, EW, and IPW performed similarly
in terms of bias reduction. When the PS model is misspecified, MW, OW, and EW were not
sensitive against the misspecification of the model. However, GPSM was more likely to be
affected by a PS model misspecification when good overlap exists. In addition, a strong lack of
overlap led to bias, large RMSE, and average SE across all methods. In addition, we discuss
accurate standard error estimation using weighting methods and GPSM. We saw that utilizing
bootstrap and sandwich robust estimator performed well in terms of an estimated standard error in

MW, OW, and EW.
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