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ABSTRACT 

What makes people trust algorithms? We know that demonstrated accuracy, high interpretability, 

and prior familiarity with AI, among other factors, increase the likelihood that subjects comply 

with an algorithmic recommendation. However, most of the prior research investigates 

compliance with an algorithmic recommendation relative to one’s belief, which is usually 

confounded by human overconfidence. We mitigate this confound by exposing subjects to 

identical advice labeled as either algorithmic or from a human crowd. Thus, we isolate the effect 

of algorithmic recommendations relative to the recommendations of a crowd without being 

confounded by natural human overconfidence. This three-experiment dissertation submits three 

research projects that investigate how people choose to respond to an algorithmic 

recommendation, moderated by the type and difficulty of task. The tasks are taken from three 

quadrants of McGrath’s Circumplex Model of Group Tasks, to achieve task type diversity. Paper 

One investigates how humans weigh the estimates of a crowd compared with estimates of an 

algorithm for an objective, intellective task. Paper Two investigates how humans respond to 

recommendations from a crowd and an algorithm in the context of a creative task. Paper Three 

investigates how humans respond to recommendations from an algorithm when resolving 

conflicting interests.  

INDEX WORDS: algorithms, wisdom of crowds, social influence, McGrath’s Circumplex 

Model, human-computer interaction 
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1 Chapter 1 
 

1. Problem Statement and Motivation 
When humans make decisions, their minds apply logic, statistics, or heuristics (Gigerenzer and 

Gaissmaier 2011). Investigating when humans use each of these methods has been the subject of 

multiple Nobel prize-winning efforts. Herbert Simon, in his Nobel acceptance speech, framed his 

research around how humans reason, given they are boundedly rational (Simon 1979). 

Kahneman and Tversky treated heuristics as a crutch that removes humans from pure rationality, 

and Kahneman earned his Nobel prize for identifying biases that guide human behavior 

(Kahneman 2011; Kahneman and Tversky 1979). The research in this paper examines how 

human and non-human sources of information influence decision making.  

When humans make decisions using any type of aid, such as an algorithm, they rarely act 

optimally. They might lean on its recommendations too heavily, overutilization, or not heavily 

enough, underutilization. Both overutilization and underutilization can result in suboptimal 

outcomes. For example, when humans overutilize an aid, they become less vigilant towards 

information gathering and processing, and demonstrate an automation bias that clouds their 

judgment (Mosier and Skitka 1996). Automation bias is not limited to input from machines – it is 

also a factor with non-automated input, such as that from other humans (Dzindolet et al. 2002).  

There are two important sources of automation bias (Parasuraman and Dietrich 2010). First, 

humans are cognitive misers (Kahneman and Tversky 1972, 1974) – they tend to do that which is 

least taxing on their limited rationality. Thus, when humans receive advice, they typically expend 

less cognitive effort, as measured by physiological indicators such as heart rate, than they do 
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when they receive no advice (Alexander et al. 2018). Second, humans are predisposed to social 

loafing, employing less effort in teams than they would working alone (Karau and Williams 

1993). Automation bias causes humans to over-prioritize external data. Of course, the goal of 

system designers should be to persuade individuals to trust the advice that is most likely to lead 

them in the correct direction, rather than to always trust themselves, other people, or AI.  

It is likely that automation bias is affected by the type of task an individual is assigned. Humans 

may be naturally predisposed towards thinking some tasks are more worthy of their time or 

inclined to their unique skillset than others, which may affect the degree to which they lean on 

external advice. Depending on the task, an external source of advice might be tremendously 

helpful or horribly detrimental. For example, Steve Kerr might be an excellent basketball coach, 

and most humans would be happy to take his advice on basketball strategy. But those same 

people would likely be reluctant to take his advice on writing an MIS dissertation.  

1.1.1 McGrath’s Circumplex Model 
To investigate how humans evaluate advice based on the juxtaposition of the task and source, we 

use McGrath’s circumplex model of group tasks (McGrath 1984) (Figure 1.1). The circumplex 

model has been used as a foundation for the study of group behavior, particularly in the context 

of communication technologies and groups (Connolly et al. 1990; DeSanctis and Gallupe 1987; 

Straus 1999). Prior research has advocated using the circumplex model in the study of how task 

type affects human propensity to act on, be confident in, and expend effort on advice (Bonaccio 

and Dalal 2006).  

The circumplex model of group tasks has four quadrants. Tasks that are closer together are more 

similar than those further apart.   



3 

 

 

Figure 1.1: Circumplex Model of Group Tasks (McGrath 1984, p. 61) 

The Choose quadrant contains both intellective and decision-making tasks. The original paper 

defining intellective tasks posited tasks on a continuum, with judgment tasks anchoring the 

opposite side of the continuum (Laughlin 2011). Most geometry, physics, chemistry, and other 

hard science problems are intellective problems (Laughlin 2011). This is in contrast to judgment 

tasks, such as which website design is more appealing (Laughlin 2011). Originally,  intellective 

tasks were broken into three further types of tasks: first, tasks that create a “eureka” moment 

when the answer is explained; second, tasks with a correct answer that is difficult to demonstrate 

in an intuitively compelling way; third, tasks for which the consensus of experts is the correct 

answer. Decision-making tasks, on the other hand, are “based on peer consensus about what is 
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morally right or what is to be preferred” (McGrath 1984, p. 64). These tasks can involve social 

comparison between group members and answers can vary by culture. Decision-making tasks 

share some characteristics with intellective tasks, and with Negotiate tasks, which McGrath 

views as an extension of Choosing tasks (McGrath 1984, p. 64). In this paper, we use an 

intellective task in the first experiment.  

The Generate quadrant contains planning tasks and creativity tasks. Tasks on the upper half of 

the circumplex model generally involve cooperation.  The key goal for planning tasks is to create 

an “action-oriented plan” (McGrath 1984), and the key notions for creative tasks are 

brainstorming and creativity (McGrath 1984). In this dissertation, the task type in the Generate 

quadrant is a creative task, expanded upon in the second experiment. 

In Negotiating tasks, the key is to resolve, not solve. Tasks on the lower portion of the 

circumplex model typically generate conflict within groups. Negotiating tasks pit two sets of 

conflicting interests against one another, such as labor and management. Our third experiment 

explores this type of task, in the context of a decision on whether to grant a suspect bail. 

Decisions on bail pit the interests of the public, who want to live in a safe society, against the 

interests of suspects who should be assumed innocent until proven guilty, and who face steep 

costs if they are not granted bail (Dobbie et al. 2018).  

Executing tasks deal with physical behavior. Within the Execute quadrant there are two types: 

Contests and Performances. Contests pit two teams against one another, and crown one a clear 

winner and loser, such as in sports. Performances pit a team against what McGrath calls “nature” 

– examples include digging a hole or building a structure. These general purpose physical 

activities are the essence of execute tasks, which are defined as “those requiring physical 

movement, coordination, or dexterity, such as psychomotor tasks and athletic contests” (Straus 
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1999).   This dissertation does not include a task from the Execute quadrant, because such tasks 

do not result in recommendations. Prior MIS literature has excluded the Execute quadrant for 

similar reasons (DeSanctis and Gallupe 1987).  

Prior work on the effect of task types on majority influence has shown that the type of task has a 

direct effect on majority influence, and that the effect is stronger for preference tasks than 

intellective tasks (Tan et al. 1998). These effects are also not moderated by whether the groups 

are communicating through computers (Tan et al. 1998) – which is important because this 

dissertation focuses on people doing tasks while using a computer.  

1.1.2 Overconfidence in Estimations 
A thorough review of human preferences in decision making must begin with a simple 

observation: Most humans are overconfident (Harvey 1997; Moore and Healy 2008) for three 

reasons (Gino and Moore 2007). First, people are egocentric (Soll and Mannes 2011). They 

believe they are smarter and more skilled than average (Kruger and Dunning 1999). This is 

because people like to construe vaguely-defined, positive traits, such as intelligence, in a way 

that indicates they have high levels of that trait (Logg et al. 2018). This overconfidence is driven 

by confirmation bias when people observe that their predictions are correct (Nickerson 1998). 

Overconfidence prevents people from inculcating the predictions of other people as fully as they 

should. It is also a primary reason why people underutilize the advice of their peers. For 

example, in tasks of prediction in a dyad of peers, if each believed that the other person was 

equally capable, then they should simply average both predictions (Dawes and Corrigan 1974). 

Instead, humans tend to overweight their predictions and underweight those of their peers (Yaniv 

and Kleinberger 2000).  
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Second, humans understand their own calculus better than their advisor’s. This leads them to 

trust their decision more (Yaniv and Kleinberger 2000). For example, people believe that their 

own predictions are more “objective” than those of their peers (Liberman et al. 2012).  

Third, in studies in which advice is revealed only after an estimate is given, there is an anchoring 

effect on the original estimate (Kahneman and Tversky 1974). People take new advice only in 

the context of their original estimate, and thus discount it more than if they had received the 

advice prior to creating an estimate.  

However, there are ways to elicit a greater dependence on other people. When humans pay for 

advice, they use it more (Gino 2008) – this is related to the sunk cost fallacy. When the 

experience of the advisor is emphasized, the advice is used more (Harvey and Fischer 1997). 

Believing advice comes from more individuals, rather than from fewer individuals, also makes 

people use it more (Mannes 2009; Minson and Mueller 2012).  

Overconfidence is a confounding variable that plagues prior research. Much of the most 

significant research (Abeliuk et al. 2020; Dietvorst et al. 2015; Kawaguchi 2020; Logg et al. 

2019) evaluating algorithmic advice compare a subject’s weight on advice after being exposed to 

an algorithm, without a comparison of how subjects respond to advice from other people. This 

research setting makes sense in the context of the business world in the past decades, in which 

managers could access a recommendation system but not the opinion of a large crowd. However, 

the Internet makes it easy to access the opinions of crowds. Online reviews of movies, books, 

cars, and nearly every other consumer item are readily available (Dellarocas 2003). Most humans 

are exposed to a bevy of information – sometimes misinformation – from crowds on social 

media websites (Lazer et al. 2018). The human response to algorithmic versus crowd 

recommendations has gone from being an esoteric topic without a use case to an issue that has 
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dramatic implications for society. This has become relevant to social media platforms trying to 

optimize disinformation flags, for e-commerce platforms determining how to frame 

recommendations to potential consumers, and to a plethora of other Internet companies who can 

frame recommendations.  

1.1.3 Preferences Toward Human Advisors 
It has long been posited (Meehl 1954) that people prefer human to algorithmic advice. In a recent 

survey of academics who specialize in psychology and decision-making, the majority expected 

human subjects to respond more strongly to advice from humans than advice from algorithms 

(Logg et al. 2019). This preference toward human advice is generally labeled algorithmic 

aversion (Dietvorst et al. 2015), which is particularly strong after observing an algorithmic make 

a mistake (Dietvorst et al. 2015). However, what matters most after observing a mistaken 

algorithmic recommendation is whether a subject believes that the algorithm is relatively better 

than their abilities (Moray and Lee 1994). Algorithmic aversion is observed in preference tasks, 

such as joke recommendations (Yeomans et al. 2019); in subjective tasks, such as dating (Castelo 

et al. 2019); and in lab experiments comparing human doctors and algorithms giving advice 

(Promberger and Baron 2006).  

A close reading of the seminal algorithmic aversion article (Dietvorst et al. 2015) reveals that 

before they observe an algorithm’s mistake, subjects prefer the algorithm’s advice (Logg et al. 

2019). When people demonstrate a preference for recommendations from algorithms, they 

exhibit algorithmic appreciation (Logg et al. 2019).  

Algorithmic aversion is not rational. A simple algorithm, such as weighting all variables equally, 

can outperform human prediction (Dawes 1979). More sophisticated strategies can perform even 

better. In a landmark meta-analysis of 136 studies, algorithms were 10% more accurate, on 
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average, than non-algorithmic judgment, and non-algorithmic judgment rarely outperformed 

algorithms (Grove et al. 2000). However, despite the evidence against human assessment, 

humans consistently prefer their judgment (Diab et al. 2011; Eastwood et al. 2011). This is not 

simply due to interpretability. When the process an algorithm uses is clear and easy to follow 

(clear box), people do not follow a machine learning algorithm’s predictions more than when it is 

opaque and impossible to know the process (black box), and they are less likely to identify 

significant mistakes in predictions of clear-box algorithms (Poursabzi-Sangdeh et al. 2018). 

However, this is a rapidly changing field. New techniques such as Local Interpretable Model-

Agnostic Explanation (LIME) are allowing even black-box algorithms to become more 

interpretable (Rai 2020).  

Algorithms that are perceived as more similar to humans are preferred over algorithms that are 

perceived as less human (Castelo et al. 2019). Evolutionary psychology indicates that an innate 

disposition to trust has been key to homo sapiens’ success as a species (Taylor 2014). Humans 

are more likely to trust other humans who look like them, ostensibly because they are more 

likely to be family or tribe members (DeBruine 2002).  As AI becomes more human-like, it is 

possible that the trust calculus changes increasingly in favor of algorithms as AIs eventually 

become both human-like, more familiar, and seemingly super intelligent.  

Unfortunately, humans are often exposed to algorithms that are flawed by design, likely tainting 

their overall trust toward algorithmic suggestions and forecasts. For example, weather forecasts 

from The Weather Channel are intentionally biased towards rain when the true probability is less 

than 30%, and The Weather Channel intentionally avoids forecasting a 50% chance of rain 

(Bickel and Kim 2008). When The Weather Channel predicts a 20% chance of rain, rain 

historically occurs about 5% of the time (ibid). This bias exists because people notice, and are 



9 

 

more annoyed by, unexpected rain than by unexpected sunshine (Silver 2012, p. 135). The 

Weather Channel is thus incentivized to lie about the true underlying probabilities to avoid irate 

consumers. In fact, one of the best ways to ensure one does not get caught by unexpected rain is 

to crowdsource the question – by looking out the window and seeing whether passerby are 

carrying umbrellas (Surowiecki 2004). Large samples of human guesses often yield estimates 

that are highly accurate.  

1.1.4 Social Influence 
When a decision is affected by other people, the force acting on the decision-maker is social 

influence. Social influence can be particularly strong when the subject is exposed to large 

numbers of people. An early test of the limits of social influence was to explore whether it could 

convince people to agree with the group assessment even when the group was obviously 

incorrect. In the 1950s, this was tested in very small human groups, some groups small enough 

that they barely fit the definition of a crowd, in a series of experiments by Solomon Asch. As the 

size of a crowd grows, the propensity to follow the crowd grows (Asch 1951; Milgram et al. 

1969). In the seminal study on conformity in groups, Asch found that as the size of groups 

increase from 2-4 people, the propensity to agree with the group increases, even when the group 

consensus is clearly wrong (Asch 1951). However, this effect plateaus with larger majorities – 

majorities of 16 do not have more power to dissuade people than even majorities of 3. Later tests 

of social influence reveal that humans do not shift their beliefs as much as they should when they 

are exposed to the guess of a crowd (Mannes 2009; Soll and Mannes 2011). 

When the number of people increases, given the right conditions, eventually the group develops 

a property where the average guess of the group becomes very accurate. This happens because a 

crowd combines its unique knowledge, although there is often an error in each person’s estimate. 
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Under certain conditions, the errors of these estimates will cancel, resulting in highly accurate 

guesses. The ability of large human groups to accurately estimate an unknown quantity is the 

wisdom of the crowd. Crowds are wise when three conditions are true: 1) there is a diversity of 

opinion, 2) opinions are independent, 3) and opinions are decentralized (Surowiecki 2004). 

These three criteria were fulfilled in the seminal paper on the wisdom of the crowd, when it was 

discovered that the average guess of the weight of a dressed, butchered cow at a county fair was 

within 1% of the cow’s true weight (Galton 1907).  

Historically, it has been assumed that guesses need to be independent of one another to generate 

accurate crowd-based guesses. There are two commonly cited reasons for this. First, 

independence prevents guesses from becoming correlated with one another. Second, 

independence increases the likelihood that new information is utilized (Surowiecki 2004, p. 41). 

In practice, it is often difficult to get independent assessments. For instance, even though 

President Kennedy consulted with multiple people when considering the Bay of Pigs invasion, 

there was little cognitive diversity amongst them (Surowiecki 2004). This lack of diversity and 

drive to create consensus can create groupthink (Janis 1972; Surowiecki 2004, p. 37). 

However, recent evidence has emerged that social influence can generate learning that increases 

the wisdom of the crowd over multiple iterations of guesses (Becker et al. 2017). Social 

influence can even improve overall network-level predictions of tasks containing highly 

motivated, politically contentious reasoning, even when people know the ideologically opposed 

motivations of their peers in the network (Guilbeault et al. 2018). However, people might be 

reluctant to listen to the wisdom of the crowd, if they believe they have above-average 

intelligence or expertise. They would be wise to abandon their initial guess and listen to the 

wisdom of the crowd, because crowds often outperform their wisest member, if given enough 
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time (Bauer et al. 2003). This is observed, for example, in financial markets. Although there are 

outliers such as Renaissance Technologies that have beaten the returns of the S&P 500 

consistently (Zuckerman 2019), the vast majority of funds do worse than the S&P 500 over the 

long term (Fama 1970), as predicted by the efficient markets hypothesis (EMH). In other 

economic cases, such as in forecasts of macroeconomic variables such as real GDP or the CPI, 

consensus estimates outperform even the very best individual estimates over time (Bauer et al. 

2003). In sports betting markets, the aggregate guess of prediction markets outperforms over 

99% of all individual experts (Servan-Schreiber et al. 2004). 

The wisdom of crowds is hugely important to the functioning of the United States’ most 

important institutions. That the stock market, perhaps the most essential ingredient to sustaining 

American capitalism, cannot be consistently outperformed by managed funds is fundamentally a 

massive, real-time instantiation of the wisdom of crowds. One understudied facet of the wisdom 

of the crowds is how people weigh inputs from other humans compared to inputs from non-

human sources, such as AI.  

Humans are also likely to continue listening to what they perceive to be expert human judgment 

even when it underperforms aggregate human judgment. This is most strongly displayed by the 

propensity of humans to invest their money with expensive fund managers who, on average, 

dramatically underperform benchmark passive funds after fees  (Malkiel 1973). It is likely that 

this is due to a mistaken belief that a fund manager will improve in the subsequent years. This is 

evidence that humans are likely to forgive inaccurate human guesses in certain contexts. 

However, it is also possible that the mystique of an AI makes humans believe that it 

fundamentally knows something that they do not, particularly when the AI makes a significantly 

different prediction than its human counterparts. This could be because it has been trained on 
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large datasets, or because it can do more calculations per second than humans, or some other 

factor.  

Surprisingly, even small groups can outperform not only the average member of the group, but 

also the smartest member (Blinder and Morgan 2005). The Asch experiments, for example, were 

designed so that the non-confederate member of the group was asked their opinion only after 

each confederate had revealed their erroneous guess.  This reveals how early decisions can affect 

later decisions. In their most extreme form, these early decisions can create an information 

cascade, which occur when “it is optimal for an individual, having observed the actions of those 

ahead of him, to follow the behavior of the preceding individual without regard to his own 

information” (Bikhchandani et al. 1992). Early decisions are reinforced by later decision makers, 

who ignore their private information (Bikhchandani et al. 1992; Surowiecki 2004). In a situation 

where people are close to the borderline between two decisions, such as what restaurant to go to 

or what clothes to buy,  a small informational shock can cause significant downstream effects 

(Bikhchandani et al. 1992). 

1.1.5 Task Difficulty 
One reason why we might observe under-reliance on advice (Soll and Mannes 2011; Yaniv and 

Kleinberger 2000) in some tasks and over-reliance on advice on other tasks (Malkiel 1973) is 

that lab experiments demonstrating under-reliance might be easier than, for example, predicting 

the stock market (Gino and Moore 2007). Thus, manipulating task difficulty is important to 

understanding of how humans use algorithmic advice.  

Prior IS research indicates that humans use technology differently depending on the task 

difficulty. In group decision support systems (GDSS), for example, teams facing harder tasks 

coalesce on better decisions when they are supported by technology, even though the technology 
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reduces confidence in their answer (Gallupe et al. 1988). Task difficulty is a known predictor of 

system use. Surprisingly, the easier the task, the more IS success (Petter et al. 2013). This is 

likely because of higher satisfaction with the supporting MIS (Gelderman 2002).  

Task difficulty has important interaction effects with the human psyche. Overconfidence, for 

example, remains high despite task difficulty. Overconfidence does not vary with task difficulty  

(Klayman et al. 1999), however people are more overconfident for difficult tasks (meaning they 

create overly narrow confidence intervals) while incorrectly believing they are worse than others 

at those tasks (Moore and Healy 2008). Crucially, people also tend to use advice more for 

difficult tasks and less on easy tasks (Gino and Moore 2007).  

1.1.6 Other Relevant MIS Literature 

1.1.6.1 Recommendation Agents 
The literature on recommendation agents (RAs) is relevant to any discussion of how humans 

respond to input from algorithms. The vast majority of research on recommendation agents is set 

in an e-commerce context (e.g. Komiak and Benbasat 2008; Qiu and Benbasat 2009; Xiao and 

Benbasat 2007; Xu et al. 2014). This setting is fundamentally a decision-making task – there is 

no objectively correct answer. In an e-commerce context, each decision to purchase (or not to 

purchase) a product has an associated utility payoff, which can be heterogeneous among 

individuals. The recommendation agent literature is thus distinct from the decision-making 

literature. We now briefly review the important findings of the recommendation agent stream of 

research.  

Many recommendation agent papers focus on trust in the RA, which is a process, and trust and 

distrust in RAs are different constructs (Komiak and Benbasat 2008; Wang and Benbasat 2008). 

Unlike the algorithms we use, which provide the same recommendation to all individuals, RAs 
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are designed to elicit the preferences of consumers (Xiao and Benbasat 2007) and make 

recommendations that would maximize the utility of the recommendation agent owner (usually 

an e-commerce corporation).  

RAs that use voice-based communication and other forms of human embodiment are considered 

to have greater social presence, which makes people trust, enjoy, and intend to use them more 

(Qiu and Benbasat 2009). Consumers prefer RAs that explain their decision processes – 

explanations make consumers view an RA as more competent and benevolent (Wang and 

Benbasat 2007). We can build on the edifice created by the recommendation agent literature in 

an intelligent way. For example, we know that trust is a process that changes based on use with a 

recommendation agent. We statistically control for this in our experimental designs, by 

randomizing the order of survey questions, so that later questions with recommendations from 

algorithms are not systematically more trusted. Similarly, we know that social presence predicts 

intention to use an RA – we keep the level of social presence static throughout experiments and 

within experiments, so that we can more concretely identify the effect of our other 

manipulations. Lastly, we keep the explanation underlying our algorithm identical between and 

within experiments.  

Because recommendation agents help consumers in decision-making tasks, we expect there to be 

different effects in how people respond to algorithms. However, the Group Decision Support 

Systems Literature (GDSS) is a branch of research that also studies how humans respond to 

recommendations. 

1.1.6.2 Group Decision Support Systems 
A Group Decision Support System (GDSS) “combines communication, computing, and decision 

support technologies to facilitate formulation and solution of unstructured problems by a group 
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of people” (DeSanctis and Gallupe 1987). GDSS research looks at two dependent variables that 

are similar to what we evaluate in our study: time to arrive at a solution, and solution quality 

(Benbasat and Lim 1993). A third dependent variable GDSS research often includes is 

satisfaction, which is similar to confidence, the variable we measure.  

The GDSS literature also uses task types from McGrath’s circumplex model. Although we do 

not consider our research to be directly contributing to the GDSS literature, for reasons we will 

later discuss, it can still be informed in part by this paradigm. In the context of the DeSanctis and 

Gallupe’s model (Figure 1.2) we keep group sizes identical within an experiment, and we keep 

participants dispersed. Thus, we precisely focus on what the effect of moving between tasks is.  

 

Figure 1.2: Desanctis and Gallupe's (1987) GDSS Summary 

Task and technology have to fit in order for a GDSS to be effective (Zigurs and Buckland 1998). 

A GDSS increases the time to reach a decision (DeSanctis and Gallupe 1987), GDSSs result in 

more information being shared (Dennis 1996), and GDSS support more participation from 

lower-ranking group members (Dennis and Garfield 2003; George et al. 1990).  
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There are several reasons why we believe our work is distinct from the GDSS research. First, a 

GDSS is about group-level outcomes. Our research is interested in how individuals respond to 

different types of recommendations. Thus, the unit of analysis is different. Second, the goals of 

GDSS, such as directing discussion, removing communication barriers, and structuring decision 

analysis (DeSanctis and Gallupe 1987), are not our goals. Third, GDSS research is about 

designing technologies that improve decision outcomes. This can mean varying the anonymity of 

the group (George et al. 1990), the size of the group (DeSanctis and Gallupe 1987), whether 

there is a leader in the group (George et al. 1990) or other factors. Our research keeps the 

technology, group size, leadership presence, anonymity, and other factors static, and evaluates 

how people decide to incorporate recommendations based on differences in the information 

source. We believe there is no GDSS research that changes the information source between 

algorithmic and human sources.  

1.1.7 Definitions 
The following table of definitions define the key terms used in this paper. Note that we use the 

words advice and recommendation interchangeably.  

Table 1.1: Definitions of Key Terms 

Term Definition Paper Authors 

Algorithm A mathematical, step‐

by‐step procedure or 

formula for 

computation 

A systematic review 

of algorithm aversion 

in augmented 

decision making 

 

Burton et al. (2020) 

Algorithmic Aversion The reluctance of 

human decision 

makers to use 

superior but 

imperfect algorithms 

A systematic review 

of algorithm aversion 

in augmented 

decision making 

 

Burton et al. (2020) 
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Anchoring Bias Different starting 

points yield different 

estimates, which are 

biased toward the 

initial values. 

Judgment Under 

Uncertainty: 

Heuristics and Biases 

Tversky and 

Kahneman (1974) 

Automation Bias Errors made when 

decision makers rely 

on automated cues as 

a heuristic 

replacement for 

vigilant information 

seeking and 

processing 

Human Decision 

Makers and 

Automated Decision 

Aids: Made for Each 

Other? 

Mosier and Skitka 

(1996) 

Availability Bias Estimating frequency 

or probability by the 

ease with which 

instances or 

associations could be 

brought to mind. 

Availability: A 

heuristic for judging 

frequency and 

probability 

Tversky and 

Kahneman (1973) 

Bounded Rationality Organisms adapt well 

enough to ‘satisfice’; 

they do not, in 

general, ‘optimize’ 

Rational Choice and 

the structure of the 

environment 

Simon (1956) 

Cognitive Effort the engaged 

proportion of limited-

capacity central 

processing 

Cognitive Effort and 

Memory 

Tyler et al. (1979) 

Creative tasks Generating ideas 

(e.g., brainstorming) 

Groups, Interaction, 

and Performance 

McGrath (1984) 

Intellective Tasks Tasks for which there 

is a demonstrable 

right answer 

Groups, Interaction, 

and Performance 

McGrath (1984) 

Mixed-motive tasks Tasks that resolve 

conflicting interests 

Groups, Interaction, 

and Performance 

McGrath (1984) 

Overconfidence Believing you are 

better than you are in 

reality 

The Evolution of 

Overconfidence 

Johnson and Fowler 

(2011) 

Wisdom of the crowd The ability of human 

groups to accurately 

estimate an unknown 

quantity 

The Wisdom Of 

Crowds: Why the 

Many Are Smarter 

Than the Few and 

How Collective 

Wisdom Shapes 

Business, Economies, 

Societies and Nations 

Suroweicki (2004) 
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In order to maximize clarity and brevity, please assume that each research project inherits the 

discussion in sections 1.1.1 through section 1.1.5.  

1.2  Research Designs:  
We propose a conceptual model of decision making in which humans respond to decision tasks 

based on two factors: information source and task characteristics (Figure 1.3). We acknowledge 

there are likely other factors influencing a response, but a review of the prior research indicates 

information source and task characteristics are central factors. We posit that an information 

source has a direct effect on an individual’s response to the task. Information sources are 

perceived differently. Humans think non-algorithmic advice can more effectively incorporate 

qualitative data and believe algorithms can be dehumanizing (Grove and Meehl 1996). Humans 

are also prone to recollect instances when algorithms were outperformed by human judgement, 

due to the availability bias (Dawes 1979; Kahneman and Tversky 1974) These effects are 

moderated by characteristics of the task. For example, in highly important tasks humans prefer 

non-algorithmic advice because it is considered more ethical (Dawes 1979).  There is also a 

direct effect of task characteristics on an individual’s response. In easier tasks humans will 

usually expend less cognitive effort, be more confident, and be less willing to incorporate advice.  
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Figure 1.3: Research Model 

We study the response to two types of information sources, the wisdom of crowds and 

algorithms. We also study two facets of task characteristics. First, we vary the task type by using 

three types of tasks drawn from McGrath’s circumplex model. Second, we study difficult and 

easy tasks. This leads to the central proposition of the research.  

Proposition 1: An individual’s response to decision advice is determined by characteristics of the 

task and the information source. 

We believe that the type of task will determine how people respond to new information. There 

are several reasons for this. First, it’s speculated that humans are likely to be more accepting of 

algorithmic input if they are in a context in which algorithms are commonly used, such as 

weather forecasting (Castelo et al. 2019; Logg et al. 2019). This has its roots in the mere 

exposure effect of human psychology  – exposure alone creates a preference towards something 
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(Zajonc 2001). Algorithms are used at a far greater rate in intellective tasks than creative or 

negotiating tasks, although we are not aware of research that quantifies this difference. Thus, if 

the public is more cognizant of algorithms in intellective tasks, they are more likely to be willing 

to use algorithmic advice for intellective tasks than in other tasks.  

Second, humans who are familiar with the current landscape of AI know that algorithms are 

currently incapable of human-quality creative output. Thus, people may be less likely to use 

algorithms for creative tasks.  

Third, many intellective tasks are numerical, more so than creative tasks such as writing a novel. 

It is easier to write or train algorithms for numerically driven tasks, and thus we expect that 

humans will show preference toward algorithms for intellective tasks.  

Fourth, people might be less inclined to inculcate algorithmic advice in important tasks, because 

they are afraid of the consequences of the algorithm failing (Castelo et al. 2019). It is possible 

that intellective tasks are more or less important to people than creative or mixed-motive tasks.  

Fifth, informing people of the superiority of algorithmic recommendations makes them more 

likely to use algorithms (Castelo et al. 2019). This indicates that if some people are already 

aware of algorithmic superiority on most intellective tasks, they will display a slight preference, 

on average, for algorithmic recommendations for intellective tasks.  

Lastly, humans are prone to trust algorithmic recommendations more than human 

recommendations in situations that humans perceive as objective (Castelo et al. 2019).  It is 

possible that people will perceive an intellective task as more objective than a creative or 

negotiating tasks. 
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Task difficulty is an important, understudied concept in the literature on decision preferences 

between algorithms and human decision assistance. Prior research on the effects of task difficulty 

does not compare algorithmic to human advice. Rather, the seminal papers on task difficulty 

simply look at the effect of learning the estimate of a peer for easy or difficult tasks (Gino and 

Moore 2007). We build on this in two ways. First, by evaluating the interaction of algorithmic 

and human advice across task difficulty. Second, we vary the degree to which effort predicts 

success across tasks – prior research uses tasks such as guessing weight, where effort has a 

weaker relationship to an accurate answer. In a task such as guessing weight, skill matters more 

than effort.  

In tasks where effort is a strong predictor of accuracy, algorithms should strongly outperform 

humans. Humans are cognitive misers and prefer to shirk work (Simon 1956). Algorithms, in 

contrast, are tireless, and have no preference towards “working” or not. Furthermore, most 

humans likely have an innate understanding that humans prefer to be lazy, despite probably 

never hearing the phrase “cognitive miser”. Thus, humans might have conscious or sub-

conscious biases toward algorithms depending on the difficulty of the question, because they 

might assume that their peers’ laziness for hard questions subsumes any benefits of another 

humans’ cognition.   

We now discuss the dependent concepts we measure, followed by the corollaries to our 

proposition. Rather than repeat the suggested effects of overconfidence, preferences toward 

human advice, wisdom of the crowds, and the effects of task difficulty, we very briefly review 

these effects and state how we propose they should affect each dependent concept.  

1.2.1 Dependent Variables 
We use three dependent variables: Cognitive Effort, Confidence, and Belief Change.  
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1.2.1.1 Cognitive Effort 
Cognitive effort is an increasingly important topic in the MIS community. The objectives of all 

decision makers are to minimize effort and increase accuracy (Payne et al. 1993). The 

preponderance of research indicates that the effect of effort is stronger than the effect of accuracy 

(Johnson et al. 1988; Johnson and Payne 1985). Originally, cognitive effort was brought to the 

forefront in IS research by the Decision Support Systems (DSS) literature. The theory was that 

decision strategies would be improved if a DSS could make better strategies cognitively easier 

than worse strategies, then people would adopt those better strategies, thus improving the 

efficacy of the decision (Todd and Benbasat 1999).  

In the DSS literature, perceived effort expenditure dictates the type of decision strategy people 

use, and they determine performance. We control for this by keeping effort expenditure the same 

between algorithmic and human crowd conditions. We differentiate from the DSS literature by 

taking a true measure of effort (discussed in the operationalization section), rather than a self-

reported measure of effort.  Furthermore, we build on the edifice of the DSS literature by treating 

effort as a dependent concept (Tiwana and Kim 2019).  

There are two possible effects that algorithmic or crowd recommendations can have on cognitive 

effort. First, the more humans are disposed toward recommendations from an information 

source, the more they will rely on it without spending effort vetting its advice. Thus, if we 

observe algorithmic appreciation, we should see decreased cognitive effort when receiving 

recommendations from algorithms. Second, cognitive effort can increase if a person is 

unfamiliar with the recommendation source in that context. These two effects can happen 

simultaneously. Imagine a machine learning researcher who is naturally disposed to believe AI 

can outperform humans is writing a novel with an AI recommendation system. If that person sees 
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the AI recommends a beautiful, topical, crisp ending to the novel, they may be inclined to use it 

because they naturally trust AI or confused because they are aware AI is not capable of writing 

beautiful prose. 

1.2.1.2 Confidence 
Humans are naturally overconfident in their predictions. We control for this overconfidence 

because subjects are not choosing between their estimation and that of an AI, rather they are 

choosing how to incorporate information depending on the type of information source. In most 

intellective tasks, people are more confident when receiving advice from algorithms relative to 

advice from humans (Logg et al. 2019). Confidence is likely tied to our other concepts – if 

people expend significant cognitive effort, that likely affects their confidence. For example, 

confidence usually increases with effort (Paese and Sniezek 1998). Similarly, if someone is not 

confident in their answer, they may be more likely to respond strongly to new advice.  

1.2.1.3 Belief Change 
Lastly, we measure how much individuals shift their beliefs in response to advice. This is the 

most often studied dependent concept in the algorithmic appreciation literature (Castelo et al. 

2019; Gino 2008; Gino and Moore 2007; Logg et al. 2019), and oftentimes it is the only 

dependent variable in an experiment. This is currently considered the best measure of whether 

people prefer the advice of algorithms relative to the advice of humans. Ultimately, this research 

seeks to understand how people rely differently on advice depending on the information source 

and task difficulty, and thus belief change is the key dependent variable.  

1.2.2 Proposition Development: Intellective Tasks 
There is substantial heterogeneity in algorithmic appreciation between tasks (Castelo et al. 2019). 

Perceived task objectivity predicts algorithmic appreciation – the more objective the more 

algorithmic appreciation. In subjective tasks such as recommending jokes, people prefer 
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receiving recommendations from humans, and report that human recommendations are easier to 

understand (Yeomans et al. 2019). However, people also demonstrate algorithmic appreciation in 

seemingly subjective tasks, including predicting how popular music will be, or predicting how 

romantically compatible two people will be (Logg et al. 2019).  

Although perceived objectivity influences algorithmic appreciation, there are other features that 

make algorithmic appreciation stronger. In intellective tasks that have answers that are directly 

observable, but which require significant mental calculations (e.g., arithmetic on large sets of 

digits) it is likely that humans display significant algorithmic appreciation, because humans 

intuitively understand that algorithms do not tire, whilst humans do. Many humans also have 

experience using algorithms for numerical problems. Spreadsheets, calculators, and depictions in 

pop culture of algorithms being highly numerical all should drive humans to believe that 

algorithms are accurate for well-defined numerical tasks. Overconfidence magnifies this effect – 

humans are likely to believe their own estimates more than a crowd’s estimate.  

Thus, we propose the following supplements to Proposition 1: 

Corollary 1: For intellective tasks, the effect of algorithmic advice on belief change will be 

stronger than the advice of a crowd. 

Although humans are likely to place more weight on the advice of algorithms than the advice of 

a human crowd, this is likely to decrease as tasks get easier. An oversimplified example can 

intuitively explain this. Humans are likely to think an algorithm simply made a mistake if an 

algorithm states that there are 5 people in an image that very clearly shows three people and two 

dogs. However, if an image is of a crowded park, with 2,000 people and 2,000 dogs, and the 

algorithm states there are 5,000 people, humans are far more likely to believe the algorithm. We 
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expect that task difficulty moderates the effect of algorithmic advice on belief change. Thus, we 

propose: 

Corollary 2: For intellective tasks, the effect of algorithmic advice on belief change will be 

stronger for a more difficult task. 

We believe these factors will have a similar impact on cognitive effort. People will respond more 

strongly to an algorithm’s estimates, because answering intellective decision tasks correctly is a 

function of effort.   When humans trust their advisors and understand how they arrive at a 

conclusion, they will use less cognitive effort. Furthermore, and most importantly, they are likely 

to assume that their peers are unlikely to put in as much effort as an algorithm. Thus, we 

propose: 

Corollary 3: For intellective tasks, algorithmic advice will result in less cognitive effort 

compared to the advice of crowds. 

We also propose that there are competing effects on how algorithmic advice will affect cognitive 

effort based on difficulty. In more difficult tasks, people may be more inclined to rely on 

algorithms, because they suspect that their human peers are unlikely to expend the necessary 

cognitive effort for an accurate answer. When executing easy tasks, on the other hand, humans 

may believe that human abilities outweigh an algorithm’s tirelessness. This is because humans 

are less likely to think their peers are unwilling to put in the requisite effort during easy tasks 

compared to difficult tasks. In easier tasks, the work humans are adept at is also magnified. If a 

person believes that they, or other humans, are better than algorithms at some subset of tasks, 

and easier tasks make it more obvious which of those subset of tasks are embedded in the 

problem, then people will likely trust a crowd’s answer more in easier tasks. Thus, the effect of 
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algorithmic advice should be weighted more heavily in hard intellective tasks than in easy 

intellective tasks.   

Corollary 4: For intellective tasks, the effect of algorithmic advice on cognitive effort will be 

stronger for a more difficult task. 

There are two overriding effects that point to algorithmic advice resulting in greater confidence 

for difficult tasks. First, people are more confident of their decisions than the decisions of other 

humans, because of egocentrism and by perceiving themselves as more objective than other 

humans. Second, in prior research on intellective tasks, people exposed to algorithmic estimates 

reported greater confidence than people exposed to the estimate of a crowd (Logg et al. 2019). 

Confidence alone did not predict how accurate someone’s guess was. Furthermore, confidence in 

algorithmic guesses was higher than confidence in the guess of another individual, but lower 

than confidence in one’s own guess (Logg et al. 2019). This is in general agreement with the 

overconfidence literature. In intellective decision tasks, it has previously been established that 

confidence increases with algorithmic advice relative to the advice of a crowd of humans. We 

expect this effect to be even larger in our setting, in which the answer is more strongly a function 

of effort. Thus, we hypothesize: 

Corollary 5: For intellective tasks, algorithmic advice makes humans more confident in their 

decisions than the advice of crowds. 

Lastly, we expect that for difficult intellective decision tasks, algorithmic advice will have a 

stronger effect than it will for easy tasks. This is because humans know algorithms are tireless, 

and they know fellow humans are likely to expend minimal effort when possible. Thus, in easier 

tasks, when humans must spend relatively little effort, the average human effort expended should 
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be relatively closer to the effort an algorithm expends. In harder tasks, when the gap between 

human effort and algorithmic effort widens, then humans will respond accordingly and prefer the 

advice of algorithms even more strongly. Thus, we propose: 

Corollary 6: For intellective tasks, the effect of algorithmic advice on decision confidence will be 

stronger for a more difficult task. 

1.2.3 Proposition Development: Creative Tasks 
When humans are given a recommendation in a decision task, they usually expend less effort on 

that decision. This is automation bias. Prior research on how humans exhibit automation bias is 

focused on intellective tasks (Dzindolet et al. 2002; Mosier and Skitka 1996). Our research takes 

this further by focusing on a creative decision task, in which effort alone does not predict 

success. This is a significant difference from intellective tasks. In creative tasks there is a strong 

relationship between long-term effort and success (Gladwell 2008). However, creating a high-

quality output for a difficult creative task is a function innate ability and hours of practicing the 

creative act, rather than hours spent on the task. For example, extremely few could produce a 

painting as good as one by Van Gogh, even if they were given orders of magnitude more time. 

Thus, the relationship between effort and quality is weaker in creative tasks. We believe that this 

will cause humans to rely more on a human recommendation in a creative task than they would 

an algorithmic recommendation. 

However, we expect this will be moderated by task difficulty. In an easy creative task, such as 

labeling a landscape, it is unlikely that subjects judge algorithms’ recommendations to be 

significantly worse than those of a human crowd. If humans believe there are many good 

answers, then they will likely believe even an algorithm can provide a satisfactory answer. Thus, 

in an easy creative task, humans will show no preference between human and algorithmic 
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recommendations because they believe the optimal answer is not significantly better than many 

other answers. We conclude that for easy tasks, there is likely no effect of algorithmic 

recommendations compared with human recommendations. However, we expect the differences 

to manifest in hard tasks, where there is no obvious optimal solution. 

In creative tasks, human effort still reigns supreme over algorithmic effort. No algorithm has 

won a contest in a creative domain against human experts, and it is not close. For example, 

algorithms have begun to pass the Turing test in extremely limited scenarios, such as when the 

algorithm claims that English is its second language, and that it is a young child (McCormick 

2014). Given that algorithms can rarely pass the Turing Test, it is not surprising that they have 

yet to win a major award in a creative domain.  

Lastly, most creative tasks are judged by human crowds, not algorithms. People care about 

reading books on the New York Times Bestseller List. Citations are a mark of influence in 

academia. Nobel prizes are awarded based on the vote of a committee. We thus expect the 

influence of crowds expect to be stronger and lead people to change more toward the advice of a 

crowd in a difficult, creative task.  

Corollary 7: For creative tasks, the effect of algorithmic advice on belief change will be stronger 

for a more difficult task. 

Prior research has looked at the outcomes of algorithmic and human advice, but not the process. 

Our investigation into cognitive effort bridges that gap. We expect that humans perform an 

evaluation, perhaps even a subconscious one, of input from any source and that this evaluation 

includes an assessment of how that recommendation occurred. If humans are confused about 

how their advisor arrived at a recommendation, then resolving this confusion could require 
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intense cognitive effort. The type of source likely has an effect on cognitive effort when humans 

are not familiar with the recommender’s expertise at a given task, for example a computer’s 

ability to be humorous.   

We expect that for easy creative tasks, algorithmic recommendations will not cause different 

levels of cognitive effort compared to crowd recommendations. For easy creative tasks with an 

obvious suitable answer, people are not likely to be concerned with the source of the advice. 

However, in hard tasks, this changes. We believe that humans will spend more cognitive effort 

when they receive algorithmic suggestions in hard creative tasks, because they will be puzzled 

that the algorithm was able to come up with such a sophisticated solution.  

It is possible that people are taken aback by what appears to be an algorithm that can make 

witticisms that surpass the subject’s abilities. This may lead to the subject thinking about the 

nature of the algorithm (or even about the nature of their intelligence). When people spend time 

to puzzle about how an algorithm could possibly be so creative, they are likely to be expending 

more cognitive effort than they would if they were told that the same suggestion came from a 

crowd of humans. This is because people are familiar with suggestions from crowds for creative 

tasks. We believe these factors will lead to more cognitive effort, and thus we propose:  

Corollary 8: For creative tasks, the effect of algorithmic advice on cognitive effort will be 

stronger than the effect of crowd advice for a more difficult task.  

These effects should also manifest in confidence. Confidence is also likely to be negatively 

affected by algorithmic advice for difficult creative tasks. This is because we expect that some 

people are aware that algorithms are not adept at creative tasks, which will cause confusion and 

possibly a diminished assessment of the self. If an individual receives a recommendation from a 
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crowd, by contrast, they may have hope that there was a luminary in the given creative task in 

that crowd, and they are thus receiving particularly effective advice. Thus, we propose the 

following:  

Corollary 9: For creative tasks, the effect of algorithmic advice on confidence will be weaker for 

a more difficult task.  

1.2.4 Proposition Development: Mixed Motive Tasks 
Algorithmic recommendations have recently become the subject of controversy in tasks such as 

hiring, autonomous cars, and determining bail. What these tasks have in common is that they 

involve a choice weighing the interests of multiple stakeholders. Algorithmic recommendations 

were initially heralded as a lifeline to companies – no longer would they need to rely on human 

judgment, with the messy implicit biases that humans subconsciously incorporate in their 

decisions. However, more recent research has indicated that these algorithms often incorporate 

racist or sexist criteria in their decision, even when race or sex is not specifically incorporated as 

a variable (Noble 2018).  

In mixed motive tasks, people weigh conflicting interests. There is an innate human component 

to this – most of the time when we consider conflicting interests, there are human interests on 

both sides. Of course, it can be possible to have non-human interests in a mixed motive task, 

such as weighing the interests of animals versus humans in a debate about vegetarianism.  

The algorithmic appreciation literature is not clear what humans would respond more strongly to 

in mixed-motive tasks. We believe people view this task as not entirely subjective but also not 

entirely objective. There is not a correct answer that a mathematical proof can deliver – it is not 

entirely objective. But there are degrees of how correct a reasonable person can be. It is not as 

subjective as arguing whether Brahms or Bach was the better composer.  
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The degree to which people change their beliefs mixed-motive tasks is likely to incorporate large 

numbers of unobserved characteristics. These could include how much a person already knows 

about algorithmic biases, how much they know about existing algorithms used mixed-motive 

tasks, and their beliefs about the biases of an average crowd.  

There are strong reasons to argue for either algorithmic appreciation or aversion influencing 

mixed motive tasks. While writing the dissertation proposal, we argued there would be 

algorithmic aversion in mixed motive tasks, and that difficulty would not moderate the effect of 

advice source on reliance. However, after observing the effects for the intellective and creative 

tasks, we changed our position and proposed that there would be algorithmic appreciation and 

that it would be stronger in difficult tasks. We have updated the corollaries below.  

Corollary 10: For mixed motive tasks, the effect of algorithmic advice on belief change will be 

greater than the effect of the advice of a crowd on belief change. 

Corollary 11: For mixed motive tasks, the effect of algorithmic advice will be moderated by task 

difficulty. 

1.2.5 Operationalization of Concepts 
Cognitive effort 

Cognitive effort is measured by the time required to complete a task. This operationalization has 

been used before in MIS (Moravec et al. 2019). We acknowledge that on the Mechanical Turk 

platform we may not observe different levels of time used on questions. Our review of tasks on 

Mechanical Turk indicated that many tasks do not reward hard work. Thus, even though in some 

tasks we reward effort with bonuses, we may observe significant changes across experiments and 

experimental conditions because the Turkers may not have viewed working hard on the assigned 

task as worth the effort.  
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Confidence 

Confidence is measured using a four-point Likert scale in each experiment, by asking a question 

about the respondent’s confidence that is appropriate to the task. For the intellective task, we ask 

how confident the participant is that their answer is within 10% of the true value. This is similar 

to the operationalization used in Logg et al. (2019). For the creative task, we ask whether the 

participant believes their answer is within the top 10% of submissions. For the mixed-motive 

task, we ask whether a subject is confident that their decision was fair. 

We use a single-item measure to assess decision confidence. This is common in the algorithm 

appreciation literature. See Table 1.2.  

Table 1.2: Prior Operationalizations of Confidence 

Authors Question Scale Publication 

Logg et al. 2019 “How likely is it that 

your estimate is within 

10 lb of the person's 

actual weight? 

0 (no chance) to 100 

(absolutely certain) 

Organizational Behavior 

and Human Decision 

Processes 

Dietvorst et al. 

2016 

“How much confidence 

do you have in your 

estimates?” 

 

(None, Little, Some, 

A Fair Amount, a 

Lot) 

Management Science 

 

Belief Change 

For the intellective and mixed-motive tasks, where belief change is relative to a numerical 

benchmark, we use weight on advice (WOA) as the dependent variable (Dawes and Corrigan 

1974). WOA is the absolute value of the difference between the initial and revised judgment 

divided by the absolute value of the difference between the initial judgment and the advice (Logg 

et al. 2019).  

𝑊𝑂𝐴 =  
|𝑓𝑖𝑛𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒|

|𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒|
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For the creative task, we measure weight on advice by using the final answer provided by the 

subject. The four answer choices were as follows, with the first two choices having text boxes 

allowing for input from the subjects. More details are available in Chapter 3. 

1. I want to create a new caption to improve my chances of receiving a bonus 

2. I want to tweak the recommended caption to improve my chances of receiving a bonus 

3. Use the recommended caption 

4. Keep my first caption 

We synthesize how we operationalize our dependent variables in Table 1.3.  

Table 1.3 Dependent Variables Across Experiments 

 Confidence Belief Change Cognitive Effort 

Intellective Likert Scale WOA Time 

Creative Likert Scale Custom Measure of WOA 

 

 

Time 

Mixed-motive Likert Scale WOA Time 

 

1.3  Dissertation Structure 
In Chapter One we use theory to inform the Proposition and Corollaries. Chapters 2, 3, and 4 

focus on how each experiment was conducted. All three chapters use a similar strategy for 

measuring the dependent variables and for manipulating the independent variables.  

1.3.1 Intellective task experiment 
The intellective task experiment explores how humans respond to human and algorithmic input, 

by asking subjects to estimate the size of a crowd in an image. This experiment brings together 

machine learning and automation bias in the context of large, diverse, connected crowds. Crowd 

counting is a task with an objective, correct answer, and thus is an intellective task, in the choose 
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quadrant of the task circumplex model. The experimental subjects were exposed to the guesses 

of an apparent crowd and an AI. In order to ensure that we were isolating the effect of receiving 

recommendations from an algorithm versus from a crowd, each subject will be told that the 

advice they receive is the product of either an algorithm or crowd, when in reality all 

recommendations will identical, and all will be the correct answer. Subjects will have the option 

to revise their answers, and the manipulation will allow us to observe whether humans are more 

influenced by humans or algorithms depending on task difficulty. 

The scholarly implications are important – knowing the theoretical mechanisms behind when 

people shift their behavior in the perceived presence of fellow humans or algorithms is a novel, 

important contribution.  

The practical implications are also significant – counting crowds is important for government 

services, and unbiased estimates from crowd-counting algorithms can be useful in situations such 

as estimating the size of the medical or policing resources needed. Furthermore,  it is important 

to determine the general level of confidence that the public has in these machine generated 

counts.  

1.3.2 Creative task experiment 
The creative task experiment will explore how humans differentially rely on AI suggestions 

compared to human suggestions for a creative task. Each subject will write a caption for an 

image. It is likely that humans will perceive AI-provided advice differently from human-

provided, because creative tasks such as writing do not have a correct answer, though they can be 

of differing quality.  

Intellective tasks with correct answers have been deeply investigated (Alexander et al. 2018; 

Grove et al. 2000; Parasuraman and Riley 1997), as have decision-making tasks with no correct 
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answers, such as moral dilemmas (Awad et al. 2018; Bonnefon et al. 2016).  However, how 

humans interact with AI in creative tasks is underexplored, because it is harder to measure 

outcome quality.  

For the creative task, knowing how people respond to algorithmic help could inform a huge 

swathe of tasks algorithms are currently employed in. Recommending songs or genres on apps 

such as Spotify, recommending dates on apps such as OkCupid, or recommending phrasing 

using apps such as Grammarly, are all non-intellective tasks with creative components that might 

be informed by this research. 

1.3.3 Mixed-motive task experiment 
The Mixed-motive task experiment will investigate how human suggestions are perceived 

differently from algorithmic suggestions in mixed-motive tasks resolving conflicts of interests, 

which belong to the Negotiate quadrant of the circumplex model. Subjects will be asked to assess 

how much bail an accused individual should pay.  

The closest research to our experiment is the research on moral situations, which focuses on what 

the algorithm should do and who should receive blame (e.g. Ames and Fiske 2015; Awad et al. 

2018).  We are aware of no research that investigates the cognitive effort of subjects, nor their 

confidence, nor their change in beliefs depending on the type of information source in mixed 

motive (or morality-related) tasks.  

The mixed-motive task also has significant social value. There is a push towards more 

algorithmic assessment in bail decisions, and learning how the public perceives this decisions is 

an important step in the acceptance or rejection of these technologies.   



36 

 

1.4  Experimental Procedures Common to all Research Projects 
All experiments will use the Judge Advisor System, in which subjects submit their answer to a 

prompt, and then are exposed to new information (Sniezek and Buckley 1995). All will compare 

subjects’ responses to the advice of an algorithm or to a crowd. Each will keep the quality of 

advice identical. This will let us isolate the effect of the type of task, the difficulty of the task, 

and the type of advice.  

A graphical summary of the experimental design for each survey is shown below in Figure 1.4.  

 

Figure 1.4: Survey Design 

1.4.1 Incentives 

Because incentives cause higher levels of effort (Camerer and Hogarth 1999), we provide 

incentives where applicable. For the intellective and creative tasks, we tell each participant, 

during their first guess and their revised estimate, that the closer they are to the true answer the 

more money they will earn. We do not provide incentives for the mixed-motive task, because it 

is possible that providing an incentive would cause the subject to view it as an intellective task, 

thus confounding our results. Providing incentives through bonuses is an extremely widespread 

practice in studies on Amazon Mechanical Turk. In addition to bonuses, we pay all subjects a 
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baseline of $10.00 per hour. The widespread consensus is that paying $0.10 per minute ($6.00 

per hour) is the minimum ethical standard for payment.  

1.4.2 Task timing 

For each question, subjects submit both their answer and how confident they are in it. We 

automatically collect how much time the subject spends on the question. We also conduct a 

robustness check to see whether excluding people based on time changes the results 

meaningfully. 

1.4.3 Disclosure of answers 

We never disclose the correct answers to our questions to the participants. This prevents the 

possibility that people inform later participants of the answers. We award bonuses only after we 

have collected all responses.  

1.4.4 Preregistration 
We preregistered experiments at the Open Science Framework (osf.io). The intellective task 

(https://osf.io/ym3ug) and creative task (https://osf.io/mjvre), are publicly viewable. The mixed-

motive task (https://osf.io/7v4p3) is currently under embargo and thus cannot be viewed at the 

time of the publication of this dissertation. 

1.4.5 Experimental consistency 
We keep the underlying advice quality the same to control for the effect on belief change, and we 

keep the incentive structure the same. However, in a supplemental experiment for the intellective 

task we introduce bad advice. We have not conducted the same type of supplemental 

experiments for the creative and mixed-motive tasks, although this would be an area for future 

experiments.  

https://osf.io/ym3ug
https://osf.io/mjvre
https://osf.io/7v4p3
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1.4.6 Control Variables:  

We randomly assign the subjects into one of the two groups in each experiment. This random 

assignment makes it more likely that any differences we observe between groups are likely the 

result of the experimental conditions (Van de Ven 2007). Control variables that are likely to 

covary with both the independent and dependent variables should be included in an experiment. 

However, it is possible to use unnecessary control variables, and a strong principle for control 

variables is “When in doubt, leave it out” (Carlson and Wu 2012). Prior research in algorithmic 

appreciation has observed that age, and gender do not effect algorithmic appreciation (Logg et al. 

2019), and there is no theoretical reason to assume demographic characteristics such as gender or 

race will predict algorithmic appreciation. Thus, we do not collect data on those characteristics.  

Systematic differences between the sample and the population are important when researchers 

want to make claims about point estimates of populations. However, for research that simply 

wants to observe the relationship between measured variables, then systematic differences 

become less important. In our case, even though workers on AMT have systematic variation 

from the population, it is very unlikely that AMT workers will display different behavior in 

relation to the manipulated variables. Thus, even if the true population effect of, for example 

algorithmic aversion, is different from what we observe, the difference in effects between easy 

and hard tasks is very likely to approximate the true value, and the difference between types of 

tasks is likely to approximate the true value. Prior research has noted that if researchers are not 

interested in population-level estimates then AMT is likely an excellent source of subjects for 

experimental studies (Chandler and Shapiro 2016).  

 We gather experiment-specific control variables for the creative and mixed-motive 

experiments. For the creative task we collect data on general word-play creativity through the 
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Remote Associates Test (RAT) (Mednick 1968). Because the experiment focuses on the ability 

to generate a caption, we control for innate word-play ability, and are able to test whether people 

who are more skilled at wordplay are more likely to rely on algorithms.  

For the mixed-motive task we gather data on how much a subject identifies with criminal others 

(ICO) (Simourd 1997) and an individuals beliefs about cutting-edge technologies, through the 

Insecurity component of the Technology Readiness Index 2.0 (TRI) (Parasuraman and Colby 

2015). We collect these two measures to control for any biases towards criminals and general 

inclinations towards technology.  

1.4.7 Subject Selection Plan  
We recruit human subjects from Amazon Mechanical Turk (AMT), an online platform which 

connects people with Human Intelligence Tasks (HITs). Workers on Mechanical Turk are often 

called Turkers, a phrasing we adopt in this thesis. Common HITs on AMT include labeling 

images, transcription, and filling out surveys.  Samples from Amazon Mechanical Turk are 

transforming academic studies that rely on human participants, because studies on Mechanical 

Turk are generally cheaper and more convenient (Dance 2015). Samples from Mechanical Turk 

are usually more diverse than other online samples (Buhrmester et al. 2011; Paolacci and 

Chandler 2014), and the quality of data produced by individuals from Mechanical Turk can rival 

engineering graduate students on complex tasks, provided there is a sufficient tutorial 

(Staffelbach et al. 2015). In comparison to student samples, Turkers are more representative of 

the US population than college students and people in college towns (Berinsky et al. 2013). 

Turkers are also generally younger and better educated than the US population (Paolacci and 

Chandler 2014). Turkers are also usually honest and consistent with non-identifying 
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demographic data, such gender or age. For example, personality characteristics measured three 

weeks apart using the Big Five Inventory averaged  r = .85 (Buhrmester et al. 2011). 

There has been some criticism of Mechanical Turk samples. For example, Mechanical Turk 

workers are often asked to take IQ tests – after enough IQ tests, individual IQ test scores increase 

significantly, despite their true intelligence remaining unchanged. An interesting instantiation of 

this is that there is a high correlation between number of HITs a Turker has completed and that 

Turker’s Cognitive Reflection Task score (Chandler et al. 2014).  

We exclude responses from subjects who do not complete the survey, fail the attention check 

(see Appendix 3), or fail the manipulation check (see Appendix 4). This is in accordance with the 

practices used in other studies of algorithmic and human recommendations (Yeomans et al. 

2019). We exclude responses of people whose initial guess is equal to the advice they receive, in 

accordance with the best practices of using the Weight on Average measure (Gino and Moore 

2007). We also exclude people who always either reject or accept the advice, due to the high 

probability that they are not paying attention.  

1.4.8 Manipulation check 

We check whether subjects register the source of the advice. Thus, at the end of each survey we 

ask subjects whether they were given advice from a human crowd or from an algorithm. If a 

subject does not recall the source of advice, or recalls incorrectly, they are excluded from further 

analysis. 

1.5  Summary of the Dissertation: 
 

As a summary of the dissertation, we present our model, proposition, and corollaries in  Figure 

1.5.  
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Figure 1.5: Research Model 

  

The proposition and their corollaries are as follows: 

Proposition 1: An individual’s response to decision advice is determined by characteristics of the 

task and the information source. 

Corollary 1: For intellective tasks, the effect of algorithmic advice on belief change will be 

stronger than the advice of a crowd. 

Corollary 2: For intellective tasks, the effect of algorithmic advice on belief change will be 

stronger for a more difficult task.  

Corollary 3: For intellective tasks, algorithmic advice will result in less cognitive effort 

compared to the advice of crowds. 
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Corollary 4: For intellective tasks, the effect of algorithmic advice on cognitive effort will be 

stronger for a more difficult task. 

Corollary 5: For intellective tasks, algorithmic advice makes humans more confident in their 

decisions than the advice of crowds. 

Corollary 6: For intellective tasks, the effect of algorithmic advice on decision confidence will be 

stronger for a more difficult task. 

Corollary 7: For creative tasks, the effect of algorithmic advice on belief change will be stronger 

for a more difficult task. 

Corollary 8: For creative tasks, the effect of algorithmic advice on cognitive effort will be 

stronger than the effect of crowd advice for a more difficult task.  

Corollary 9: For creative tasks, the effect of algorithmic advice on confidence will be weaker for 

a more difficult task.  

Corollary 10: For mixed-motive tasks, the effect of algorithmic advice on belief change will be 

greater than the effect of the advice of a crowd on belief change. 

Corollary 11: For mixed-motive tasks, the effect of algorithmic advice will be moderated by task 

difficulty. 
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2 Chapter 2 
Humans Rely More on Algorithms than Social Influence as a Task Becomes More 

Difficult1 

 
1 Bogert, E., Schecter, A. & Watson, R.T. Humans rely more on algorithms than social influence as a task 

becomes more difficult. Sci Rep 11, 8028 (2021). 

Reprinted here with permission of the publisher.  
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2.1  Abstract 
Algorithms have begun to encroach on tasks traditionally reserved for human judgment and are 

increasingly capable of performing well in novel, difficult tasks. At the same time, social 

influence, through social media, online reviews, or personal networks, is one of the most potent 

forces affecting individual decision-making. In three preregistered online experiments, we found 

that people rely more on algorithmic advice relative to social influence as tasks become more 

difficult. All three experiments focused on an intellective task with a correct answer and found 

that subjects relied more on algorithmic advice as difficulty increased. This effect persisted even 

after controlling for the quality of the advice, the numeracy and accuracy of the subjects, and 

whether subjects were exposed to only one source of advice, or both sources. Subjects also 

tended to more strongly disregard inaccurate advice labeled as algorithmic compared to equally 

inaccurate advice labeled as coming from a crowd of peers. 
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Algorithms have mastered checkers (Schaeffer et al. 2007), chess (Dockrill 2017; Silver et al. 

2017), poker (Brown and Sandholm 2019), and tasks with fewer boundaries such as information 

search (Brin and Page 1998). This expertise has led humans to rely heavily on algorithms. For 

example, people rely so heavily on Google that they treat it as an external memory source, 

resulting in them being less able to remember searchable information (Sparrow et al. 2011). As 

big data has flourished, people have become so comfortable with algorithms that drivers will 

sleep in their self-driving cars (Baker 2019), go on dates with algorithmically-recommended 

matches (Hickey 2019), and allow algorithms to run their retirement accounts (Chafkin and 

Verhage 2018). However, there are some tasks for which humans prefer to take advice from 

other humans, such as in medical advice (Promberger and Baron 2006) or predicting how funny 

a joke will be (Castelo et al. 2019).  

Humans often demonstrate greater reliance on advice from algorithms compared to non-

algorithmic advice, exhibiting algorithmic appreciation (Logg et al. 2019). Relying upon 

algorithms for analytical tasks is typically advantageous. Even simple algorithms, such as 

weighting all variables equally, can outperform human prediction (Dawes 1979). In a meta-

analysis of 136 studies, algorithms were 10% more accurate, on average, than non-algorithmic 

(human) judgment (Grove et al. 2000). Consequently, for analytical tasks, we would expect a 

rational human to demonstrate algorithmic appreciation.  

Of course, much of human behavior is not strictly rational (Kahneman 2011). People tend to 

discount or disregard advice, even when it is not logical to do so (Yaniv and Kleinberger 2000). 

Often, the source of advice dictates how much it is discounted. When people discount advice 

from other people less than they discount advice from algorithms, particularly after observing an 

algorithm make a mistake, they demonstrate algorithmic aversion – the opposite of algorithmic 
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appreciation. There is evidence for both algorithmic aversion (Yeomans et al. 2019) and 

appreciation (Abeliuk et al. 2020; Kawaguchi 2020; Logg et al. 2019), and it is task dependent 

(Castelo et al. 2019). Prior research has also shown that people rely on advice more heavily when 

tasks become more difficult (Gino and Moore 2007). However, this effect may not be uniform 

across sources of advice. 

Given these empirical observations, we question whether task difficulty is an important 

explanatory variable in determining whether people demonstrate algorithmic appreciation or 

aversion. In our studies of reliance on algorithmic advice, we consider two critical factors: the 

source of advice and task difficulty. We conducted three preregistered experiments with N = 

1,500 participants to test the influence of algorithmic advice, compared to social influence, on 

human decision making. Broadly speaking, social influence encapsulates the myriad ways that 

humans change their behavior based on the actions of other people. Prior experiments show that 

when humans are exposed to social influence, the wisdom of the crowd can be reduced (Lorenz 

et al. 2011), and that the structure of the social network dictates how social influence affects 

decision-making (Becker et al. 2017). Based on subject responses across multiple tasks and 

under different manipulation conditions, we find that people rely more on algorithmic relative to 

social advice, measured using Weight on Advice (WOA) (Dawes and Corrigan 1974). Further, 

we establish that advice acceptance varies as tasks increase in objective difficulty and as advice 

varies in quality. 

2.2  Results 

In each experiment, subjects were asked how many people were in a photograph and provided 

advice that was purported to be from either “an algorithm trained on 5,000 images” or “the 

average guess of 5,000 other people.” There was no other introduction to the algorithm or a 
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description of what types of people made the estimates. An equal number of subjects were in 

each group. We used a large group of peers as a reference group because large groups often 

makes guesses that are accurate, on average (Galton 1907; Lorenz et al. 2011; Surowiecki 2004), 

and people respond more strongly to advice from large numbers of people compared to advice 

from a single person(Mannes 2009). We chose to design the experiment such that the only 

difference between the two sources of advice was the label, so that we could isolate the effect of 

advice source. This is a common method of judging reliance on algorithmic advice (Castelo et al. 

2019; Logg et al. 2019).  

We use the Judge Advisor System (JAS) in every experiment. The JAS is an experimental 

method in which subjects answer a question, are provided advice related to that question, and 

then asked to answer the question again (Bonaccio and Dalal 2006; Liberman et al. 2012; 

Sniezek and Buckley 1995; Sniezek and Van Swol 2001). In experiments using the JAS, a 

common dependent variable is Weight on Advice (WOA). WOA calculates the degree to which 

an individual changes their answer towards the advice, and thus is a useful measure for 

describing the extent of algorithmic appreciation or aversion. 

All tests described below are two-tailed at the alpha 0.05 significance level and are t-tests of 

coefficient values from a regression. Summary statistics of the data can be found in Table S1.  

2.2.1 Experiment 1: Advice as Between Subjects Treatment 

In the initial experiment, subjects were asked to determine how many people were in a picture 

and received advice that was labeled as either algorithmic or the average of human guesses, and 

they never received advice from the other source. All advice was the true answer, which was 

determined by the publisher of the dataset (Idrees, Saleemi, et al. 2013).  

https://www.crcv.ucf.edu/data/ucf-cc-50/
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2.2.2 Task Validation and Randomization Check 

We first assessed whether subjects responded to more difficult problems by taking more time, 

being less confident, and being less accurate. When comparing within-person easy to hard 

questions, individuals are significantly more accurate (t = 2.745; P = 0.006; 95% confidence 

interval (CI) = 0.281 to 1.684), more confident (𝑡 = 24.291; P < 0.001; 95% CI = 0.536 to 

0.630) and take less time (𝑡 = 4.179; P < 0.001; 95% CI = 0.041 to 0.113) for easy problems. In 

all three models we observed that subjects relied more on advice in difficult questions. Subjects 

placed more weight on advice for hard questions in our baseline model (B = 0.150; P < 0.001; 

95% CI = 0.134 to 0.167), in the model including hypothesized interactions (B = 0.132; P < 

0.001; 95% CI = 0.108 to 0.155), and in the model including all interactions and control 

variables (B = 0.081; P < 0.001; 95% CI = 0.057 to 0.105). Thus, we conclude that subjects 

perceived the relative difficulty of the questions as designed. 

We compared the average initial accuracy, initial confidence, and initial time taken across 

treatments using a two-sample t-test. For individuals exposed to algorithmic advice, there was 

not a statistically significant difference in initial accuracy (𝑡 = −0.767; P = 0.443; 95% CI = -

1.000 to 0.438). Individuals receiving algorithmic advice reported higher initial confidence (𝑡 =

3.93; P < 0.001, 95% CI = 0.149 to 0.050) and spent less time on a problem (𝑡 = 2.00; P = 

0.045; 95% CI = 0.00076 to 0.07293) when we analyzed all questions. However, if we compare 

confidence for only the first question subjects saw (before they received any advice), the 

difference in initial confidence is not significant (t = −0.20; P = 0.403; 95% CI = -0.203 to 

0.082). The difference in time spent on a problem is also not significant when looking at only the 

first question (𝑡 = 0.054; P = 0.586; 95% CI = -0.084 to 0.149). These results indicate that 

subjects were effectively equivalent in both conditions, as expected from random assignment. In 
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the aggregate, when they received algorithmic advice, subjects became more confident in their 

initial guesses and spent less time on a problem in later questions.  

2.2.3 Main Analyses 

To test the preregistered hypotheses, we fit a series of mixed effects linear regressions with 

random slopes for each subject. The regression results are given in Table S2.  

Effect sizes and confidence intervals are shown for the effect of algorithmic advice and difficulty 

in Figure 2.1 below. All figures were made using ggplot2 (Wickham 2016), version 3.3. 

 

Figure 2.1 Source of Advice Affects Subject Weight on Advice (Experiment 1). Each bar chart depicts results of the mixed effects 

regression model on N = 5,083 observations. All models include accuracy as a control. Error bars correspond to the standard 

error of the estimated effect. (A) shows the main effect of advice source on WOA; the difference across conditions is significant (p 

< 0.001). (B) shows the effect of advice source on WOA across levels of difficulty; all differences are significant (p < 0.05). 

Panel A shows the effects using Model 1 from Table S2, Panel B shows the effects using Model 2 from Table S2. 

There is a positive and significant main effect of algorithmic advice on WOA (B = 0.108; P < 

0.001; 95% CI = 0.058 to 0.158). Similarly, we find a positive and significant interaction effect 

of algorithmic advice and difficulty on WOA (B = 0.036; P = 0.029; 95% CI = 0.004 to 0.068)). 

That is, subjects who receive advice from algorithms on easy problems will revise their 

responses 11% more than subjects receiving advice from the crowd. Further, if a problem is 
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difficult, subjects revised their answers by an additional 3.6% more when they receive advice 

from an algorithm, indicating that subjects rely even more on algorithms than they do on the 

advice of a crowd when the task is difficult.  

Finally, we checked whether highly accurate subjects were disproportionately relying on 

algorithmic advice and found there was no significant difference (B = -0.007, P = 0.81, 95% CI = 

-0.067 to 0.053). We did not hypothesize this in our preregistration for the first experiment, 

although we investigated this further in experiments two and three. 

2.2.4 Experiment 2: Advice Source as Within-Subjects Treatment 

In the second experiment we again show subjects pictures of human crowds and ask them to 

guess how many people are in the picture. However, in experiment two we make advice source a 

within-subjects condition. We do so because within-subject designs better control for any 

differences among subjects (Gueorguiva and Krystal 2004). Subjects received five questions for 

which they received advice that was labeled as the average of 5,000 human guesses, and five 

questions for which they received advice that was labeled as being from an algorithm trained on 

5,000 pictures. We also introduced numeracy as a new control variable in this experiment 

(Schwartz et al. 1997). The second experiment includes 514 people, after following the same 

exclusion procedures for the first experiment, with the exception of the manipulation check, 

which we did not use because the advice condition was within-subjects.   

Results from the second experiment reinforced the results from the first experiment. In the 

baseline model without interactions, subjects relied more strongly on advice when it was labeled 

as algorithmic (B = 0.069; P < 0.001; 95% CI = 0.052 to .086). When interactions are analyzed 

however, the main effect of algorithmic advice becomes non-significant (B = 0.027; P = 0.18; 
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95% CI = -0.013 to 0.0670). We also found that participants relied more on algorithmic than 

crowd advice for difficult questions (B = 0.038; P = 0.037; 95% CI = 0.002 to 0.074). The results 

indicate that there is a net effect of algorithmic appreciation, but that a positive impact is driven 

entirely by a reliance on algorithms for hard problems. The effects and associated standard errors 

can be seen in Figure 2.2.  

 
Figure 2.2. Source of Advice Affects Weight on Advice (Experiment 2). Each bar chart depicts results of the mixed effects 

regression model on N = 4,905 observations. All models include accuracy as a control. Error bars correspond to the standard 

error of the estimated effect. (A) shows the main effect of advice source on WOA; the difference across conditions is significant (p 

< 0.001). (B) shows the effect of advice source on WOA across levels of difficulty; all differences are significant (P < 0.05). 

Panel A is for Model 1 in Table S3, Panel B is for Model 2. 

Finally, more accurate subjects relied on algorithmic advice to the same degree as less accurate 

subjects (B = 0.045; P = 0.15, 95% CI = -0.017 to 0.107). 

 

2.2.5 Experiment 3: Incorporating Low-Quality Advice  

In the third experiment, we relax a significant assumption made in the other two experiments, in 

which the advice provided was always the correct answer, and thus was strictly high-quality 

advice. In the third experiment, we introduce low quality advice, to test whether the findings 

relied on providing subjects with high quality advice. Low quality advice was a within-subjects 

condition such that all participants saw the correct answer as advice for half of the questions, and 
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advice that was 100 percent too high for the other half of the questions. The choice of 100 

percent too high was based on pilot that tested advice that was too high by 50 percent, 100 

percent, and 150 percent. Experiment three reinforced the results from the first two experiments. 

We show the effects of quality and advice source below in Fig. 3 – these effects are taken from 

Model 3 in Table S4.  

 
Figure 2.3. Source of Advice Affects Weight on Advice (Experiment 3). Each bar chart depicts results of the mixed effects 

regression model on N = 4,365 observations. The exact model used is Model 3 in Table S4. Error bars correspond to the 

standard error of the estimated effect.  

 

Subjects relied more strongly on algorithmic advice (B = 0.059; P < 0.048; 95% CI = 0.0004 to 

0.1180), and this effect was magnified for difficult tasks (B = 0.037; P = 0.028; 95% CI = 0.004 

to 0.071). Subjects who were more accurate initially did not rely more on algorithmic advice 

than the advice of a crowd (B = 0.064; P = 0.052). Subjects relied more strongly on good advice 

than on bad advice (B = 0.11; P < 0.001, 95% CI = 0.084 to 0.144), and this effect was greater 

when the source was an algorithm (B = 0.035; P = 0.043; 95% CI = 0.001 to 0.068). Another 

way to interpret this finding is that subjects penalized algorithms more for providing bad advice. 

When a crowd of peers provided low quality advice compared to high quality advice, the 

baseline from experiments one and two, subjects exhibited a WOA of 11% lower, while bad 
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advice from an algorithm reduced WOA by more than 14%. Lastly, the effect of bad advice was 

moderated by the difficulty of the question (B = -0.146; P < 0.001; 95% CI = -0.181 to -0.111). 

What this means in light of the research question is more nuanced. Our research question is 

whether people rely more on algorithmic advice than social advice when intellective tasks 

become harder, and whether advice quality moderates that effect. The interaction of advice 

quality and question difficulty may not specifically answer that question, but what it does tell us 

is that subjects are sensitive to both difficulty and quality in tandem, even after accounting for 

other factors. Further, we find that our primary treatment – advice source – has a significant 

effect on WOA even after including this interaction. This result suggests that source has a robust 

effect across combinations of conditions, lending additional support to one of our main claims. 

2.2.6 Additional Analyses and Robustness Checks 

It is possible that the findings are due to some unobservable individual skill or quality not 

eliminated by random assignment. Consequently, we conducted an analysis of 

covariance(Keppel 1991) to predict WOA and change in confidence using initial accuracy, initial 

confidence, and initial time spent on the task across each level of advice source and difficulty. 

Thus, we are able to determine the effect of advice source and difficulty on WOA after 

controlling for differences in individuals’ skill (accuracy), perceived skill (confidence), and 

effort (time).  

Across all levels of accuracy, initial confidence, and initial time, subjects consistently exhibited 

higher WOA when receiving advice from an algorithm, when comparing hard questions to hard 

questions and easy questions to easy questions, see Figure 2.4 below. This combination of 

algorithmic advice and problem difficulty creates the most significant change in subject 

estimates, with virtually no overlap of the 95% confidence intervals. 
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Figure 2.4 Effects of Accuracy, Confidence, and Initial Time. Each plot depicts a linear regression using a control variable to 

explain WOA delineated by advice condition and difficulty (N = 1,249). The shaded areas depict 95% confidence intervals. WOA 

is regressed on (Panel A) initial accuracy, (Panel B) initial confidence, and (Panel C) the number of questions a subject has 

completed thus far.  

Finally, we conducted robustness checks on the main models (Fig. S2). We removed subsets of 

the data to ensure extreme values were not adversely impacting the findings. We excluded the 

top and bottom 2.5% responses for confidence, time per question, and overall time spent. Across 

all alternative regressions the findings are consistent. To check for multicollinearity, we removed 

control variables stepwise. Removing accuracy, initial confidence, and both accuracy and initial 

confidence did not change the results.   

 

2.2.7 Summary of Experimental Results  

When comparing effects across all three experiments, there is remarkable consistency in the most 

important finding, namely, people rely more on algorithmic advice than crowd advice as tasks 

become more difficult. When using the baseline model outlined in the Analytical Approach in 

the following section, we find no significant differences in the interaction between algorithmic 
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advice and question difficulty. For all three experiments, the effect is between 0.035 and 0.038, 

indicating that people rely substantially more on algorithmic advice for difficult questions than 

for easy questions, even after accounting for numeracy, accuracy, confidence, advice quality, and 

the number of prior questions answered. A summary of the results in each experiment in Table 1.  

2.3  Discussion 

These three experiments contribute to the burgeoning literature on social influence, the wisdom 

of the crowds, (Becker et al. 2017; Guilbeault et al. 2018; Lorenz et al. 2011) and the role of 

algorithms in decision making. We provide large-sample experimental evidence that for 

intellective  tasks, humans are more accepting of algorithmic advice relative to the consensus 

estimates of a crowd, echoing the results of prior literature (Logg et al. 2019). Most importantly, 

we found that subjects exhibit greater algorithmic appreciation as intellective tasks became more 

difficult. With difficult intellective tasks, there is a robust and practically significant impact of 

algorithmic appreciation.  

Other findings using experiments and the Judge Advisor System have found that the difficulty of 

a task had no effect on algorithmic appreciation (Logg et al. 2019), or that as tasks became more 

difficult humans would rely less on algorithms (Abeliuk et al. 2020). Our paper finds the 

opposite, while more strongly and precisely manipulating difficulty, in an environment with 

incentives to do well, while controlling for the accuracy of subjects, whether the advice was 

within or between subjects, the quality of the advice, the numeracy of the subjects, and the 

confidence of the subject.   
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Table 2.1. Summary of Experimental Findings 

Claim Experimental support 

 1 2 3 

Subjects will rely more on algorithmic advice than 

equally good human advice. 

Yes Partial* Yes 

Subjects receiving algorithmic advice will rely more on 

advice in difficult questions. 

Yes Yes Yes 

Highly accurate subjects will rely more on algorithmic 

advice than inaccurate subjects** 

No No No 

Bad advice from an algorithm more strongly reduces 

weight on advice than bad advice from a crowd 

N/A N/A Yes 

*supported in baseline model without interactions and controls 

**This hypothesis was preregistered only for Experiment 3. When using an alternative measure of accuracy that allowed for significant 

outliers, we observed a positive and significant effect of the interaction between accuracy and algorithmic advice in both Experiment 

1 and 2, so we preregistered a hypothesis about this effect for Experiment 3. We then observed that the observed post-hoc effect in 

Experiment 1 and 2 were due to outliers. We thus changed the accuracy measure to be the percentile rank of accuracy on a question, 

to prevent outliers from strongly influencing results.  

 

Humans may show a preference toward algorithmic advice depending on how close their initial 

guess is to the advice they receive (Abeliuk et al. 2020). Those with a history of recent accuracy 

may strongly discount the advice of others, while incorporating the advice of an algorithm, 

because if people perceive they are good at intellective tasks then they likely question why they 

should accept the advice of the less skilled crowd (Abeliuk et al. 2020). Thus, we expected that 

highly accurate individuals would demonstrate algorithmic appreciation more than the less 

accurate; however, our experiments did not support this claim.  

Humans can discriminate between good and bad advice, and rely less on low-quality advice than 

they do on high-quality advice (Harvey et al. 2000). However, the interaction between advice 

quality and whether the advice comes from an algorithm or group of other humans is largely 

ignored – humans might respond differently to algorithmic mistakes compared to mistakes from 

a wise crowd when a question is easy or hard. We build on prior research that examines 

algorithmic advice-taking (Abeliuk et al. 2020; Dietvorst et al. 2015) and advice quality by 
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introducing a reference group, the advice of a crowd, with equally good (bad) advice. We tested 

whether low-quality advice from algorithms creates a stronger negative effect than low-quality 

advice from humans. Our experimental results suggest that when advice quality deteriorates (i.e., 

goes from high to low), algorithms will be penalized to a greater degree than a crowd of 

advisors.   

An important feature of our experiment is the choice of reference group relative to algorithmic 

advice. Large, dispersed human crowds have both historically made accurate guesses(Galton 

1907; Surowiecki 2004) and people strongly respond to the wisdom of the crowd(Mannes 2009). 

Indeed, we observed that subjects who received advice from the crowd significantly revised their 

answers. However, the recommendation of an algorithm still had a stronger effect, across 

multiple specifications and experimental conditions. Thus, we argue that simply labeling advice 

as “algorithmic” or derived from machine learning can cause a meaningful shift in human 

behavior. We used a relatively weak manipulation –simply changing the label of the advice as 

either algorithmic or the average of a crowd. The consistent, statistically robust differences 

observed by changing only a few words demonstrate that these effects are strong.  

The study has some limitations. The subjects recruited might have been more comfortable with 

technology and thus had a higher propensity towards algorithmic advice than the larger public. 

However, even if the subjects demonstrate more algorithmic appreciation than the public overall, 

we expect that the shift towards algorithmic advice for difficult, intellective tasks is a universal 

effect. Further, as experiment two demonstrates, there is equal appreciation for crowd and 

algorithmic advice when completing easy tasks. It is also possible that this task, which is 

relatively mundane and tedious, may have unique characteristics that cause people to lean 

disproportionately on algorithmic advice as difficulty increases. Specifically, for intellective 
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tasks, people may be more likely to rely on algorithmic recommendations, whereas for tasks that 

have significant negotiation or generative components, which require subjective judgments, 

people may feel less comfortable relying on algorithms entirely. However, we leave these 

alternative task types to future research.  

Governments and corporations have a strong interest in leveraging AI. This can be at the expense 

of consumers and citizens, who may not know that their data are harvested, stored, and analyzed. 

People whose data are used to calibrate algorithms could be affected by them, positively or 

negatively, by social or corporate policies based on AI. The public seeks interventions that solve 

important societal problems, such as income inequality, medical research, or systemic biases in 

institutions. Because interventions can be harmful, carefully managed research, followed by 

trials, is necessary to minimize unintended effects. If governments wish to spend citizens’ taxes 

wisely, we need them to take an evidence-based approach to social policy, with AI as a potential 

research methodology. Citizens need to be engaged by freely sharing data that might address 

private matters, such as spending patterns when evaluating the potential outcomes of universal 

basic income. There is an inherent trade-off in evidence-based public decision making in that 

some proportion of the population need to take a health, privacy, or other risk to support societal 

goals. Further research should investigate how improving predictive capabilities can be 

responsibly leveraged across government and private enterprises.   

As tasks become more complex and data intensive algorithms will continue to be leveraged for 

decision making. Already, algorithms are used for difficult tasks such as medical diagnoses 

(Gruber 2019), bail decisions (Arnold et al. 2018), stock picking (Zuckerman 2019), and 

determining the veracity of content on social media(Field and Lapowsky 2020). The findings 

reveal a reliance on algorithms for difficult tasks and it is important for decision-makers to be 
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vigilant in how they incorporate algorithmic advice, particularly because they are likely 

predisposed towards leaning on it for difficult, thorny problems. While algorithms can generally 

be very accurate, there are instances of algorithms quietly making sexist hiring decisions in one 

of the largest companies in the United States (Dastin 2018), initiating plane crashes (MacGillis 

2019), or causing racist bail decisions (Stevenson 2017). Consequently, individuals and 

organizations leveraging big data to make decisions must be cognizant of the potential biases that 

accompany algorithmic recommendations, particularly for difficult problems. Decision makers 

should remember that they are likely to rely more on algorithms for harder questions, which may 

lead to flawed, biased, or inaccurate results. Accordingly, extreme algorithmic appreciation can 

lead to not only complacency, but also ineffective policies, poor business decisions, or 

propagation of biases. 

2.4  Methods 

This study was approved by the University of Georgia Institutional Review Board, project 

00001012. Subjects gave written informed consent both before and after participation in the 

study. All methods were carried out in accordance with relevant guidelines and regulations. We 

conducted three preregistered experiments to test the conditions under which humans accept 

advice. Following a Judge Advisor System approach (Sniezek and Buckley 1995), subjects were 

asked to answer a question, then were exposed to advice, and then asked to submit a second 

answer. The preregistrations can be found for experiment 1, experiment 2, and experiment 3 at 

the Open Science Foundation. 

2.4.1 Subjects 

For experiment 1, we conducted a power analysis that indicated we needed 235 subjects per 

group. With two groups that is 470 subjects. We used a t-test for evaluating the difference 

https://osf.io/ym3ug/?view_only=d7358c8ff4914800ac0239b0a264e036
https://osf.io/hyz6d/?view_only=3158bd8c1f9b42fba34f08dd3f55fa6e
https://osf.io/vgh9k/?view_only=1d093d454e424a559a53d4cc54b8a6f8
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between two independent means using the statistical software G Power (Faul et al. 2007). We 

conducted a two tailed test, with an effect size of 0.3, an error probability of 0.05, power of 0.90, 

and an allocation ratio of 1. Subjects were recruited from Amazon Mechanical Turk (AMT). We 

started with 611 respondents recruited from AMT. Of those, 16 were duplicate IP addresses, 27 

failed the attention check, 3 did not consent to their data being used, and 21 failed the 

manipulation check. Lastly, we excluded 14 subjects who had no deviation in their weight on 

advice, i.e. subjects who always either took the advice perfectly or who always completely 

ignored the advice. The analysis is based on the 530 remaining subjects, compared with the 

preregistered plan of 470 subjects. We oversampled because we did not know a priori how many 

subjects would be excluded. As part of our robustness checks we removed subjects based on time 

spent on a problem and confidence. The findings did not meaningfully change. Each subject was 

paid USD 1.50 to complete the experiment, and an additional bonus of USD 0.50 was given to 

subjects in the top 20% of accuracy in their final answers. Subjects were aware that a bonus was 

available for the most accurate respondents, but were not told the exact amount of the bonus, 

following prior usage of bonuses in online experiments (Guilbeault et al. 2018).  

For experiments two and three we followed a similar approach, again recruiting subjects from 

Amazon Mechanical Turk. Subjects who participated in one of the experiments were not allowed 

to participate in a subsequent experiment, because we wanted to obtain as large a cross-section of 

the population as possible, and because we informed subjects of the experimental manipulation 

after the experiment was completed. We review the details of how we excluded subjects for 

experiments two and three in the Supplementary Information. 
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2.4.2 Task 

All subjects saw ten images with crowds of between 15 (for the easiest question) and 5,000 (for 

the hardest question) humans. Easier questions were either the bottom left or bottom right 

quadrant of a harder image and were zoomed in so that each picture was the same size. The 

pictures were from an annotated dataset with professional assessments of the number of people 

in a picture (Idrees, Tayyab, et al. 2013). For each picture, a subject submitted an initial guess, 

along with their confidence. Subjects were then given advice and asked to resubmit an estimate 

along with their new level of confidence. Each subject saw ten pictures, five easy and five hard, 

which vary by the number of people pictured. The difficulty manipulation was within-subjects – 

all respondents saw the same questions. The type of advice was between subjects. Each subject 

was placed in one of two groups – one received advice described as “an algorithm trained on 

5,000 images” and one received advice described as “the average of 5,000 other people”. To 

control for advice quality, which is known to affect advice discounting (Yaniv and Kleinberger 

2000), the advice was always the correct number of people in an image, as reported in the image 

database. We later manipulate advice quality in experiment three.  

Subjects were reminded of their prior answer when answering the question the second time. 

Subjects answered how confident they were in both the initial and subsequent guess. Easier 

questions are subsets of harder questions – for each picture the easier version of the question was 

always the bottom left or bottom right quadrant of the harder picture. We bolded the source of 

the advice, which was described as either “an algorithm trained on 5,000 images similar to this 

one” or “the average guess 5,000 other people”. In experiment 1 the source of the advice was 

between subjects, and thus never changed for a subject. In experiment two we relaxed this 

assumption and showed advice as within-subjects. Question order was randomized, so that 
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subjects could see easy or hard questions in any order, but subjects always saw the Post question 

directly after the Initial Question.   

2.4.3 Analytical Approach 

We used multilevel mixed-effects linear regression with random intercepts – fit using the lme4 

package, version 1.1.23, in the R computing environment (Bates et al. 2014) – to analyze the 

effects of the advice type and task difficulty on weight on advice, time, and confidence. WOA as 

dependent variables, we control for both the initial confidence in an estimate prior to seeing 

advice, and for accuracy prior to advice. Our main model is: 

𝑦𝑖𝑘 = 𝛽0𝑖 + 𝛽1AlgoCondition𝑖 + 𝛽2Difficulty𝑘  

+𝛽3AlgoCondition𝑖 ×  Difficulty𝑘 + 𝛽𝑋𝑖𝑘 + 𝜀𝑖𝑘 

Here, 𝑦𝑖𝑘 is one of the dependent variables for participant 𝑖 and problem 𝑘; 𝛽0𝑖 is the slope for 

participant 𝑖; AlgoCondition𝑖 and Difficulty𝑘 are categorical variables indicating the advice 

condition and problem difficulty respectively; and 𝑋𝑖𝑘 is a vector of control variables. For 

experiment three we added categorical variables for quality of advice and the interaction between 

quality of advice and algorithmic advice. We also added variables for accuracy of an estimate 

prior to advice being given, and the interaction of accuracy with algorithmic advice. We tested 

for the appropriateness of using a linear mixed effects model by plotting the standardized 

residuals against the standard normal distribution, see Fig. S3 in the Supplemental Information. 

2.4.4 Dependent Variable  

Weight on Advice (WOA): The formula for WOA is 𝑊𝑂𝐴𝑖𝑘 =  
|𝑓𝑖𝑛𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑖𝑘−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑖𝑘|

|𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑘−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑖𝑘|
 

.A WOA of one means an individual changed their answer to equal the advice given. A WOA of 

zero means an individual did not change their answer at all after receiving advice, and a WOA of 
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0.5 means an individual took the average of the advice given and their initial answer. According 

to recommended practices, we drop observations where the initial estimate is equal to the 

recommendation. We excluded observations where WOA was greater than two and less than 

negative one (Gino and Moore 2007).  

 

2.4.5 Independent Variables 

Difficulty: Categorical variable representing whether an image was easy or hard. Hard images 

coded as 1.  

Algorithmic Advice: Categorical variable representing whether a subject received algorithmic 

advice for that question. Algorithmic advice coded as 1.  

Accuracy: To control for skill in estimating crowd size, we calculate a subject’s relative 

question-level accuracy as follows: 

𝐸𝑟𝑟𝑜𝑟𝑖𝑘 = |𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝑛𝑠𝑤𝑒𝑟𝑖𝑘 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐴𝑛𝑠𝑤𝑒𝑟𝑘| 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐴𝑛𝑠𝑤𝑒𝑟𝑘⁄ . 

To improve interpretability, we take the inverse of a subject’s error: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑘 = 𝐸𝑟𝑟𝑜𝑟𝑖𝑘
−1. 

Thus, subjects who are more accurate had lower error estimates. To control for outliers, we then 

transform each subject’s accuracy into the percentile rank for that question.  

Advice Quality: Dummy variable representing whether advice was accurate or inaccurate. 

Inaccurate advice was 100% too high. Accurate advice coded as 1.  
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2.4.6 Control Variables 

Initial Confidence: a subject’s response to the question “How confident are you that your answer 

is within 10% of the true answer?” prior to receiving advice. 1 = Not at all confident, 2 = Not 

very confident. 3 = Somewhat confident. 4 = Extremely confident.  

Round Number: Because questions were in a random order, this variable described how many 

questions a subject had worked on thus far. Ranges from one to ten.  

Numeracy: A measure to determine how well a subject understands fractions, decimals, and 

other numbers, previously used to establish numeracy in assessments of algorithmic advice 

taking (Logg et al. 2019) and  medical decisions  (Schwartz et al. 1997). Ranges from one to 

eleven.  

 

Data availability 

The datasets generated and analyzed during the current study are available in the Open Science Foundation repository:   

experiment 1, experiment 2, and experiment 3.  
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Table S1. Summary Statistics of Experiment 1 

 

 

 

 

 

 

 

 

  

Variable Experiment 1 Experiment 2 Experiment 3 

 Mean SD Mean SD Mean SD 

WOA 

0.487 0.370 0.525 0.367 

0.451 0.381 

Change in Confidence 

0.178 0.440 0.192 0.453 

0.116 0.380 

Change in Time 

-0.146 1.212 0.068 2.720 

0.063 10.04 

Initial Accuracy 

0.500 0.287 0.501 0.288 

0.500 0.287 

Initial Confidence 

2.438 0.904 2.637 0.823 

2.696 0.826 
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Table S2. Model Results predicting Weight on Advice (Experiment 1: Algorithmic Advice Between-Subjects). 

The dependent variable is Weight on Advice. Initial Accuracy is the percentile rank score (0.00 to 1.0) of how accurate a 

subject’s first guess was, relative to other subjects for that question. Initial confidence is on a Likert scale from 1-4. Algorithmic 

Advice is a categorical variable (algorithmic condition = 1, human advice = 0) and Difficulty is an ordinal variable (hard 

questions = 1, easy questions = 0). Standard errors are in parentheses. There were N = 530 subjects in Experiment 1. 

*** p < 0.001; **p<0.01; *p<0.05.   

  

Variable Model 1 Model 2 Model 3 

Intercept 0.455 *** 0.466 *** 0.683 *** 

(0.016)    (0.018)    (0.026)    

Algorithmic Advice 0.114 *** 0.094 *** 0.108 *** 

(0.018)    (0.026)    (0.025)    

Difficulty 0.150 *** 0.132 *** 0.081 *** 

(0.008)    (0.012)    (0.012)    

Initial Accuracy -0.203 *** -0.205 *** -0.202 *** 

(0.016)    (0.022)    (0.022)    

Algorithmic Advice * 
Difficulty 

         0.037 *   0.036 *   

         (0.017)    (0.017)    

Algorithmic Advice * Initial 
Accuracy 

         0.002     -0.007     

         (0.031)    (0.031)    

Initial Confidence                   0.003 *   

                  (0.001)    

Round Number                   -0.088 *** 

                  (0.006)    

Observations 5083         5083         5083         

AIC 3043.487     3054.017     2892.011     
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Table S3. Model Results Predicting Weight on Advice (Experiment 2: Algorithmic Advice Within-Subjects). 

The dependent variable is Weight on Advice. Initial Accuracy is the percentile rank score (0.00 to 1.0) of how accurate a 

subject’s first guess was, relative to other subjects for that question. Initial confidence is on a Likert scale from 1-4. Algorithmic 

Advice is a categorical variable (algorithmic condition = 1, human advice = 0) and Difficulty is a categorical variable (hard 

questions = 1, easy questions = 0). Standard errors are in parentheses. There were N = 514 subjects in Experiment 2. 

*** P < 0.001; ** P <0.01; * P <0.05 

  

Variable Model 1 Model 2 Model 3 

Intercept 0.444 *** 0.465 *** 0.730 *** 

(0.014)    (0.017)    (0.054)    

Algorithmic Advice 0.069 *** 0.027     0.027     

(0.009)    (0.020)    (0.020)    

Difficulty 0.139 *** 0.120 *** 0.089 *** 

(0.009)    (0.013)    (0.014)    

Initial Accuracy -0.050 **  -0.072 **  -0.069 **  

(0.016)    (0.023)    (0.023)    

Algorithmic Advice * 
Difficulty 

         0.039 *   0.038 *   

         (0.018)    (0.018)    

Algorithmic Advice * Initial 
Accuracy 

         0.045     0.045     

         (0.032)    (0.031)    

Initial Confidence                   -0.043 *** 

                  (0.008)    

Numeracy                   -0.014 **  

                  (0.005)    

Round Number                   -0.003     

                  (0.002)    

Observations 4905         4905         4905         

AIC 3110.667     3119.503     3111.134    
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Table S4. Model Results predicting Weight on Advice (Experiment 3: Including Low-Quality Advice). 

The dependent variable is Weight on Advice. Initial Accuracy is the percentile rank score (0.00 to 1.0) of how accurate a 

subject’s first guess was, relative to other subjects for that question. Initial confidence is on a Likert scale from 1-4. Algorithmic 

Advice is a categorical variable (algorithmic condition = 1, human advice = 0) and Difficulty is a categorical variable (hard 

questions = 1, easy questions = 0). Standard errors are in parentheses. There were N = 456 subjects in Experiment 3. 

*** P < 0.001; ** P < 0.01; * P <0.05 

 

  

Variable Model 1 Model 2 Model 3 

Intercept 0.329 *** 0.609 *** 0.865 *** 

(0.019)    (0.034)    (0.059)    

Algorithmic Advice 0.135 *** 0.092 **  0.059 *   

(0.023)    (0.030)    (0.030)    

Difficulty 0.160 *** 0.098 *** 0.167 *** 

(0.009)    (0.013)    (0.016)    

Initial Accuracy -0.052 **  -0.080 *** -0.080 *** 

(0.017)    (0.023)    (0.023)    

Initial Confidence          -0.071 *** -0.074 *** 

         (0.008)    (0.008)    

Round Number          -0.008 *** -0.008 *** 

         (0.002)    (0.001)    

Algorithmic Advice * 
Difficulty 

         0.035 *   0.037 *   

         (0.017)    (0.017)    

Algorithmic Advice * Initial 
Accuracy 

         0.058     0.063     

         (0.033)    (0.033)    

Quality                   0.114 *** 

                  (0.015)    

Numeracy                   -0.036 *** 

                  (0.005)    

Algorithmic Advice * 
Quality 

                  0.035 *   

                  (0.017)    

Difficulty * Advice Quality                   -0.146 *** 

                  (0.018)    

Observations 4365         4365         4365         

AIC 2459.132     2390.082     2272.17 
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2.5.1  Preregistered Hypotheses and Analyses with Alternate Dependent 

Variables 
In addition to studying how people responded behaviorally by their weight on advice, we 

preregistered hypotheses related to how people responded cognitively, both through the time they 

spent on a question and their self-reported confidence in their answers. This allowed us to study 

both behavioral (weight on advice) and cognitive (confidence and time spent on a problem) 

manifestations of reliance on machine intelligence relative to social influence. We chose to report 

these results on alternate dependent variables in the supplementary information to increase the 

readability and decrease the length of the main paper. 

We hypothesized that subjects would demonstrate greater reliance on machine intelligence than 

social influence, and most importantly, that effect would be stronger in more difficult tasks. For 

time-related measurements this would manifest through subjects spending less time when they are 

advised by an algorithm, and that this effect would be stronger in more difficult tasks. Using time 

as a measure of cognitive dependence is a previously established measure of cognitive effort 

(Alexander et al. 2018). For confidence-related measurements this would result in subjects 

becoming more confident, based on a measure using a Likert scale, when receiving algorithmic 

advice, and this effect being stronger in more difficult tasks.  

For experiment 1 and 2, our hypotheses were as follows.  

Table S5. Preregistered Hypotheses for Experiment 1 and Experiment 2 

# Hypothesis 

H1a The effect of algorithmic advice on weight on advice will be greater than the advice of a crowd. 

H1b The effect of algorithmic advice on weight on advice will be stronger for a more difficult problem. 

H2a Algorithmic advice will result in less time spent determining an answer relative to advice from a 

crowd. 

H2b The effect of algorithmic advice on time, relative to advice from a crowd, will be stronger for a 

more difficult problem. 

H3a Algorithmic advice makes humans more confident in decisions than the advice of crowds. 

H3b The effect of algorithmic advice on decision confidence will be stronger for a more difficult 

problem.  
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In experiment three we introduced low-quality advice, and added several hypotheses related to 

those effects. Those additional hypotheses are listed below. Because we preregistered these 

hypotheses we include them here, because it is a best practice of preregistered research to include 

all hypotheses from a preregistration (Simmons et al. 2011). We believe the most interesting 

hypothesized effects are for Hypothesis 4 and Hypothesis 5b because those effects are related to 

algorithmic advice.  

 Table S6. Additional Preregistered Hypotheses for Experiment 3 

 

# Hypothesis 

H4 Subjects who are more skilled at a task will rely more strongly on algorithmic advice than advice 

from a crowd.  

H5a Low quality advice reduces future reliance on the advice source 

H5b Low quality advice will more strongly reduce reliance on algorithmic advice than reliance on crowd 

advice 

H5c  Low quality advice will more strongly reduce reliance on advice for easy questions than hard 

questions.  

These hypotheses directly measured effects related to machine intelligence and social influence, 

whereas Hypothesis 5a and Hypothesis 5c did not hypothesize about differences between 

machine intelligence and social influence. Thus, Hypothesis 5a and 5c are more applicable to 

general behavior and decision-making literature, whereas Hypothesis 4 and 5b are directly 

applicable to the burgeoning literature on algorithmic appreciation.  

2.5.2 Results 

2.5.2.1 Experiment 1: 
Increase in confidence is higher when receiving advice from an algorithm and increases with 

task difficulty  

We found that algorithmic advice increased confidence (B = 0.043; P = 0.046; 95% Confidence 

Interval (CI) = 0.002 to 0.083), supporting H3a and in line with the effect we observed on weight 

on advice. Furthermore, the interaction between algorithmic advice and difficulty was significant 

and positive (B = 0.053; P = 0.003; CI = 0.022 to 0.093), supporting H3b and in line with the 
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effect we observed on weight on advice. When individuals receive advice from an algorithm 

rather than a crowd for a hard task, they are 5.3% more confident in their final answer compared 

to their initial guess. Overall, the results suggest that when subjects receive advice from an 

algorithm rather than a purported crowd of other humans, they become more confident in their 

answers, and this effect is stronger as tasks become more difficult. Contrary to our hypotheses, 

these results were not observed when we studied time as a dependent variable, indicating no 

support for H2a and H2b. Results are in Table S7 below.   

Table S7: Experiment 1 Analyses on Alternative DVs 

*** p < 0.001; **p < 0.01; *p < 0.05.   

The dependent variables are the percentile change in confidence (model 1, 2, and 3) and the percentile change in time spent on a 

problem (model 4, 5, and 6). Initial Accuracy is the percentile rank score (0.00 to 1.0) of how accurate a subject’s first guess 

was, relative to other subjects for that question. Initial confidence is on a Likert scale from 1-4. Algorithmic Advice is a dummy 

variable (algorithmic condition = 1, human advice = 0) and Difficulty is a dummy variable (hard questions = 1, easy questions = 

0). Standard errors are in parentheses. There were N = 530 subjects in Experiment 1. 

2.5.2.2 Experiment 1: Robustness Checks  
Finally, we conducted several robustness checks on our main models. See Figure S1A for change 

in time spent on a problem and S1B for change in confidence. We removed subsets of our data to 

ensure extreme values were not adversely impacting our findings. The subgroups exclude the 

 Change in Confidence DV Change in Time DV 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept -0.035     0.001     0.777 *** -0.097 *   -0.097     0.023     

(0.018)    (0.021)    (0.029)    (0.043)    (0.055)    (0.085)    

Algorithmic Advice 0.043 *   -0.031     0.016     0.048     0.049     0.047     

(0.021)    (0.030)    (0.027)    (0.038)    (0.078)    (0.078)    

Difficulty 0.092 *** 0.060 *** -0.103 *** 0.263 *** 0.238 *** 0.236 *** 

(0.011)    (0.015)    (0.014)    (0.033)    (0.047)    (0.048)    

Initial Accuracy 0.287 *** 0.246 *** 0.253 *** -0.413 *** -0.387 *** -0.389 *** 

(0.020)    (0.028)    (0.024)    (0.059)    (0.083)    (0.083)    

Algorithmic Advice * 
Difficulty 

         0.064 **  0.058 **           0.049     0.047     

         (0.021)    (0.018)             (0.066)    (0.066)    

Algorithmic Advice * 
Initial Accuracy 

         0.081 *   0.053              -0.053     -0.047     

         (0.039)    (0.034)             (0.117)    (0.117)    

Round Number                   -0.002                       -0.018 **  

                  (0.002)                      (0.006)    

Initial Confidence                   -0.286 ***                   -0.007     

                  (0.007)                      (0.021)    

Observations 5083       5083       5083       5083       5083       5083       

AIC 5255.830   5257.079   3880.841   16279.534  16288.811  16296.853  
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following people: the top 5% and bottom 5% and both top and bottom 2.5% in accuracy, and 

initial time spent on a question, and the top and bottom 2.5% in confidence on initial questions. 

Across all alternative regressions our findings were consistent. To check for multicollinearity, we 

removed control variables step-wise. Removing accuracy, initial confidence, and both accuracy 

and initial confidence did not change our results – all supported hypotheses remained supported 

at the 0.05 level, and all unsupported hypotheses remained unsupported.   

 

  

(A) (B) 

Figure S1. Robustness checks for (A) change in time and (B) change in confidence across a variety of subsets. 

We ran identical exclusions for WOA, our dependent variable from the main text. We removed 

subsets of our subjects to ensure our results were robust to outliers. Figure S2 shows that our 

effects are robust to removing these subsets. 
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Figure S2. Robustness checks for Weight on Advice across subsets 

2.5.2.3 Experiment 2 
In experiment two, we followed the same procedure, but this time making it so that subjects 

received advice as a within-subjects condition, resulting in each subject receiving advice labeled 

as algorithmic five times and advice labeled as the average of other humans five times. We used 

the same hypotheses from experiment one, and observed similar effects, shown in Table S8 

below.  Again, we observe that the effect of algorithmic advice on a change in confidence is 

positive and significant (B = 0.055; P < 0.001; 95% CI = 0.034 to 0.077), but that effect 

disappears after incorporating the interaction between algorithmic advice and difficulty, 

indicating partial support for H3a and support for H3b. We also observe consistent effects related 

to time – subjects did not statistically significantly change the amount of time spent on a 

problem, regardless of advice source and whether we include interactions or other controls, 

indicating no support for H2a and H2b.  

 

Table S8: Experiment 2 Analyses on Alternative DVs 

 Change in Confidence DV Change in Time DV 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept -0.071 *** -0.053 **  1.084 *** 0.363 *** 0.374 ** 0.717 *** 

(0.017)    (0.020)    (0.030)    (0.096)    (0.123)   (0.217)    
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*** p < 0.001; **p<0.01; *p<0.05.   

The dependent variable is the percentile change in confidence (model 1, 2, and 3) and the percentile change in time spent on a 

problem (model 4, 5, and 6). Initial Accuracy is the percentile rank score (0.00 to 1.0) of how accurate a subject’s first guess 

was, relative to other subjects for that question. Initial confidence is on a Likert scale from 1-4. Algorithmic Advice is a 

categorical variable (algorithmic condition = 1, human advice = 0) and Difficulty is a categorical variable (hard questions = 1, 

easy questions = 0). Standard errors are in parentheses. There were N = 514 subjects in Experiment 2. 

2.5.2.4 Experiment 3 
In experiment three we introduced low-quality advice and returned advice source to a between-

subjects condition. We found that the effects related to confidence reinforced the results related 

to weight on advice. Subjects became more confident after receiving algorithmic advice relative 

to crowd advice, although this effect lost significance after controlling for advice quality (B = 

0.020; P = 0.718; 95% CI = -0.038 to 0.069), demonstrating partial support for H1. Most 

importantly, subjects became more confident in difficult questions when receiving algorithmic 

advice, relative to advice of equal quality from a crowd, demonstrating support for hypothesis 2 

(B = 0.067; P < .001; 95% CI = 0.032 to 0.102). Highly accurate subjects did not become 

statistically significantly more confident when receiving algorithmic advice relative to human 

advice (B = 0.066; P = 0.050; 95% CI = -0.00005 to 0.13185), although this effect is significant 

at a p value of 0.1. This indicates that we cannot reject the null hypothesis for hypothesis 4. 

Subjects became more confident when receiving high quality advice (B = 0.065; p < 0.001; 95% 

CI = 0.034 to 0.097), supporting hypothesis 5a. Unlike our results for weight on advice, subjects 

Algorithmic Advice 0.055 *** 0.018     0.021     -0.114     -0.135    -0.137     

(0.011)    (0.026)    (0.021)    (0.077)    (0.175)   (0.175)    

Difficulty 0.170 *** 0.135 *** -0.132 *** 0.136     0.032    0.020     

(0.011)    (0.016)    (0.014)    (0.077)    (0.109)   (0.115)    

Initial Accuracy 0.294 *** 0.294 *** 0.282 *** -0.615 *** -0.528 ** -0.515 **  

(0.021)    (0.029)    (0.024)    (0.135)    (0.191)   (0.191)    

Algorithmic Advice * 
Difficulty 

         0.070 **  0.074 ***          0.207    0.202     

         (0.023)    (0.019)             (0.155)   (0.155)    

Algorithmic Advice * 
Initial Accuracy 

         0.001     0.003              -0.172    -0.166     

         (0.040)    (0.032)             (0.269)   (0.269)    

Round Number                   0.000                      -0.059 *** 

                  (0.002)                     (0.013)    

Initial Confidence                   -0.378 ***                  -0.007     

                  (0.008)                     (0.054)    

Observations 4905       4905       4905       4905       4905       4905       

AIC 5247.113   5252.188   3385.244   23726.639  23731.135  23726.567  
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did not become significantly less confident when receiving low-quality algorithmic advice 

relative to low-quality crowd advice, as hypothesized in h5b (B = 0.014; p = 0.410; 95% CI = -

0.020 to 0.050). Subjects also became significantly less confident when receiving low-quality 

advice for hard questions relative to easy questions, supporting hypothesis 5c (B = 0.049; P = 

0.008; 95% CI = -0.085 to -0.013), demonstrating support for hypothesis 5c. 

No hypotheses related to changes in time spent on a question were supported, regardless of 

whether we include only main effects used in our prior experiments (model 1), main effects plus 

the interaction between difficulty and algorithmic advice (model 2), or all interactions related to 

hypotheses plus main effects and controls (model 3).  

Table S9: Experiment 3 Analyses on Alternative DVs 

*** p < 0.001; **p<0.01; *p<0.05.   

 Change in Confidence DV Change in Time DV 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept 
 

-0.028     -0.012     1.019 *** 0.006   0.244  1.353    

(0.017)    (0.018)    (0.051)    (0.378)  -0.415 (1.171)   

Algorithmic Advice 
 

0.077 *** 0.048 *   0.010     0.418   -0.020  0.224    

(0.017)    (0.020)    (0.027)    (0.304)  -0.436 (0.750)   

Difficulty 
 

0.113 *** 0.084 *** -0.073 *** 0.633 * 0.202  -0.202    

(0.010)    (0.015)    (0.017)    (0.304)  -0.433 (0.545)   

Accuracy Rank 
0.092 *** 0.090 *** 0.067 **  -0.961   -0.994  0.063    

(0.019)    (0.019)    (0.024)    (0.529)  -0.53 (0.752)   

Algorithmic Advice * 
Difficulty 
 

         0.057 **  0.067 ***        0.850  0.829    

         (0.021)    (0.018)           -0.609 (0.608)   

Advice Quality 
 

                  0.065 ***              -0.517    

                  (0.016)                 (0.533)   

Initial Confidence 
 

                  -0.288 ***              0.130    

                  (0.008)                 (0.204)   

Numeracy                   -0.021 ***              -0.230 ** 

                   (0.004)                 (0.079)   

Round Number                   -0.001                  0.025    

                   (0.002)                 (0.053)   

Algorithmic Advice * 
Accuracy Rank 

                  0.066                  -1.462    

                  (0.034)                 (1.059)   

Algorithmic Advice * 
Advice Quality 

                  0.015                  0.877    

                  (0.018)                 (0.607)   

Difficulty * Quality 
 

                    - 0.049 **               1.023    

                  (0.019)                 (0.608)   

N 4365       4365       4365       4365       4365      4365       

AIC 3541.062   3541.574   2406.201   32532.609  32531.812  32532.145  
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The dependent variable is the percentile change in confidence (model 1, 2, and 3) and the percentile change in time spent on a 

problem (model 4, 5, and 6). Initial Accuracy is the percentile rank score (0.00 to 1.0) of how accurate a subject’s first guess 

was, relative to other subjects for that question. Initial confidence is on a Likert scale from 1-4. Algorithmic Advice is a 

categorical variable (algorithmic condition = 1, human advice = 0) and Difficulty is a categorical variable (hard questions = 1, 

easy questions = 0). Standard errors are in parentheses. There were N = 456 subjects in Experiment 3. 

2.5.3 Synthesized Results 
In Table S10 we summarize results across each experiment and dependent variable. We combine 

H1A, H2A, and H3A into a single hypothesis, listed first in Table S10 below and combine H1B, 

H2B, and H3B into a single hypothesis, listed second in Table S10 below. We say a hypothesis 

was supported if, across all three experiments and all specifications of the experiments, we 

observed the relevant effect. We indicate partial support if, in at least one of the experiments, 

there was support for the hypothesis.  

 
 Table S10: Analyses on All Dependent Variables Across All Experiments 

 

Hypothesis Support  
(WOA) 

Support 
(Time) 

Support 
(Confidence) 

Algorithmic advice will result in greater 
reliance on the advice than advice from a 
crowd 

Yes No Partial 

Algorithmic advice will be relied on more 
than advice from a crowd as task difficulty 
increases  

Yes No Yes 

Subjects who are more skilled at a task will 
rely more strongly on algorithmic advice 
than advice from a crowd.  

No No No 

Low quality advice reduces future reliance 
on the advice source* 

Yes No Yes 

Low quality advice will more strongly reduce 
reliance on algorithmic advice than reliance 
on crowd advice* 

Yes No No 

Low quality advice will more strongly reduce 
reliance on advice for easy questions than 
hard questions* 

Yes No Yes 

*Tested on experiment three exclusively 

 

Overall, we observed that subjects became more confident when receiving algorithmic advice 

than when receiving crowd advice for difficult questions. This result provides further evidence 

that 1) the manipulation was salient, and 2) that participants relied meaningfully on the 

algorithmic advice to improve their answers. Clearly, people not only followed algorithmic 
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advice, but felt better about themselves when they did so. Our null results related to time could 

be accounted for through several explanations. The most plausible is that time spent on a 

problem is not a manifestation of cognitive effort in the same way as weight on advice or scales 

related to confidence. Alternatively, this might be attributed to the fact that we recruited subjects 

from Amazon Mechanical Turk, resulting in our subjects being highly incentivized to work 

quickly, because they are paid per task rather than per unit of time.  

2.5.4 Methods 

2.5.4.1 Subjects:  
We reviewed how we excluded subjects from experiment one in the main text of this article. In 

experiment two we used the same procedure for recruiting and excluding participants as we did 

in experiment one, with the additional criterion that we did not allow subjects from experiment 

one to participate. We started with data from 593 subjects. We oversampled slightly, relative to 

our stated sample size in the preregistration, because we did not know in advance how many 

subjects would fail our exclusion criteria. All subjects consented to their data being used. Nine 

failed the attention check. We removed three subjects because all of their weights on advice were 

either above two or below negative two, following prior literature and our preregistration (Logg 

et al. 2019). We removed 67 subjects because they exclusively put either no weight on advice or 

exactly the advice for every question. Multiple subjects emailed us explaining that they thought 

the instructions, which said to “note the source of the advice”, meant that they were supposed to 

simply write the advice itself rather than their best estimate. We did not use a manipulation 

check for this experiment, because subjects were exposed to both sources of advice. We ran our 

models on the remaining 514 subjects.  

In experiment three we used the same procedure for recruiting and excluding participants as we 

did in experiment one and two. We did not allow subjects who completed either experiment one 
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or experiment two to participate in experiment three. We started with 673 responses. 100 of 

those respondents claimed they were in the army, and thus we did not allow them to complete the 

experiment (due to limitations imposed by our funding). Of those 573, four did not consent to 

our use of their data. 73 subjects failed the attention check. 39 subjects either exclusively took 

the advice without consideration for their initial estimate (WOA always equal to one) or 

exclusively disregarded the advice completely (WOA always equal to 0). We ran our models on 

the remaining 461 subjects.  

2.5.4.2 Analytical Approach 
As with our analyses on weight on advice, we again used multilevel mixed-effects linear 

regression with random intercepts – fit using the lme4 package in the R computing environment 

(Bates et al. 2014) – to analyze the effects of the advice type and task difficulty on weight on 

advice, time, and confidence. For the models with the change in time spent as the dependent 

variables, we control for both the initial confidence in an estimate prior to seeing advice, and for 

accuracy prior to advice. For the model with the change in confidence as the dependent variable, 

we do not control for initial confidence so as to not include initial confidence on both sides of 

our structural equation. Our main model: 

𝑦𝑖𝑘 = 𝛽0𝑖 + 𝛽1AlgoCondition𝑖 + 𝛽2Difficulty𝑘  

+𝛽3AlgoCondition𝑖 ×  Difficulty𝑘 + 𝛽𝑋𝑖𝑘 + 𝜀𝑖𝑘 

Here, 𝑦𝑖𝑘 is one of the dependent variables for participant 𝑖 and problem 𝑘; 𝛽0𝑖 is the slope for 

participant 𝑖; AlgoCondition𝑖 and Difficulty𝑘 are dummy variables indicating the advice 

condition and problem difficulty respectively; and 𝑋𝑖𝑘 is a vector of control variables. As with 

the main analysis, we also included terms for advice quality and the corresponding interactions 

for experiment three. 
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2.5.4.3 Variables Unique to the Supplemental Analysis: 
Time Change: The percentage change in the amount of time taken to submit the page, between 

the first answer and second answer. It includes both the time taken to answer the question about 

crowd size and time taken to submit confidence. A negative value indicates the subject spent less 

time on their answer after receiving advice than on their answer prior to receiving advice.  

Confidence Change: the percentage change in confidence between and initial answer and an 

answer after advice was received. A negative value indicates a subject became less confident 

after receiving advice.  

2.5.4.4 Normality Analysis 
We assessed the appropriateness of using linear mixed-effects models on our Weight on Advice 

variable by plotting the theoretical quantiles of the random intercept against the sample quantiles 

(Figure S3a below) and the standardized residuals against the quantiles of the standard normal 

(Figure S3b below). These plots indicate that a linear mixed effects model is an appropriate tool 

to analyze our data.  
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(A)                                                                                    (B)  

Figure S3. Plotting theoretical quantiles against sample quantiles (A) and standardized residuals against the normal distribution 

(B) 

2.5.5 Consent and Debrief Materials 
 

2.5.5.1 Consent Form 
 

Dear Participant, 

My name is Aaron Schecter and I am a faculty member in the Management Information Systems 

Department at the University of Georgia. I am inviting you to take part in a research study. I am doing 

research on how individuals work in teams to complete problem-solving tasks. Specifically, I am 

investigating how different technologies such as artificial intelligence or virtual communication can affect 

teamwork. Your responses may help us understand how teams can function effectively while using these 

advanced technologies. 

I am looking for individuals age 18 and older who are residents of the United States and not current 

military personnel. 

If you agree to take part in this study, you will be asked to view an image and assess how many elements 

are contained in that image. As part of the decision-making process, you will be shown an image twice. 

The first time you see it you will not have any advice. Your guesses may be visible to future 

participants. In order to make this study a valid one, some information about the study will be withheld 

until completion of the task. You will also be asked to complete a set of survey questions regarding your 

experience. This task should take approximately ten minutes, including time to answer survey questions. 

Participation is voluntary.  You can refuse to take part or stop at any time without penalty. Your decision 

to participate will have no impact in your participation in future studies. You may find the task difficult or 

frustrating. There is no penalty for submitting an incorrect answer or not completing the task accurately. If 

any survey questions make you uncomfortable, you can skip these questions if you do not wish to answer 

them. 

Research records will be labeled with study IDs only. There will be no record of your name or other 

identifiable information. Because all responses are anonymous, the information may be used in future 

research studies or shared with other researchers without additional consent. This research involves the 

transmission of data over the Internet. Every reasonable effort has been taken to ensure the effective use 

of available technology; however, confidentiality during online communication cannot be guaranteed.    

As compensation for your participation, you will receive money in your worker account. For completing the 

task, you will receive $1.50. We will give more money, in the form of a bonus, to workers who are 

more accurate.  

This research is supported by the Army Research Office. Representatives of the Department of Defense 

are authorized to review research records. 

If you are interested in participating or have questions about this research, please feel free to contact me 

at aschecter@uga.edu.  If you have any complaints or questions about your rights as a research 

volunteer, contact the IRB at 706-542-3199 or by email at IRB@uga.edu. 

Please keep this letter for your records. 
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Sincerely, 

Aaron Schecter 

  

Debrief Form 

 

Thank you for your participation in this research study.  For this study, it was important that we withhold information 

about some aspects of the study.  Now that your participation is completed, we will describe the withheld information 

to you, why it was important, answer any of your questions, and provide you with the opportunity to make a decision 

on whether you would like to have your data included in this study. 

 

What you should know about this study 

During the study, you were able to view the guesses of other participants or the guess of an algorithm and factor 

them into your decisions. In reality, the only difference was the label, the advice was always the same. All 

participants, including yourself, viewed the same images, and no participant had an advantage over another. Not 

explaining that the advice was identical is an important component of this study. Humans typically interact with other 

people differently than they interact with technology, and they have different expectations about what each are 

capable of. By keeping the advice identical but labelling it differently, we can determine if your actions and 

perceptions are dependent on the label “algorithm". This research helps us better understand how beliefs regarding 

AI technology affects problem solving and teamwork.     

 

Right to withdraw data  

You may choose to withdraw the data you provided prior to debriefing, without penalty or loss of benefits to which you 

are otherwise entitled.  Please check the box below if you do, or do not, give permission to have your data included in 

the study: 

 

 I give permission for the data collected from or about me to be included in the study. 

 

 I DO NOT give permission for the data collected from or about me to be included in the study. 

 

Whether you agree or do not agree to have your data used for this study, you will still receive the $1.50 in your 

worker account. 

 

Disclosure 

Please do not disclose research procedures and/or purpose to anyone who might participate in this study in the future 

as this could affect the results of the study. This includes online forums, message boards, or social media sites. 

 

If you have questions 
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The main researcher conducting this study is Aaron Schecter.  If you have questions, you may contact the IRB at 

706-542-3199.  If you have any questions or concerns regarding your rights as a research participant in this study, 

you may contact the Institutional Review Board (IRB) Chairperson at irb@uga.edu. 
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3 Chapter 3 

Algorithmic Recommendations for Creative Tasks 

3.1  Introduction 
In creative tasks, we expect algorithmic appreciation to disappear, and algorithmic aversion to 

manifest, because the nature of creative tasks is to come up with new ideas in tasks with an 

infinite number of possibilities. Algorithms excel when the possibilities are finite – even in 

complex games such as chess or poker there are limited moves, but in creative tasks such as 

brainstorming ideas or writing poetry there are practically infinite options at every turn, with no 

clear mechanism to evaluate those options computationally. Highly creative tasks, such as 

writing a coherent novel, are thus far out of reach for algorithms. At different levels of creative 

writing, such as the novel, chapter, and paragraph, there is no objective metric that dictates 

success. Even the rules of grammar and English are not immutable or untouchable. Sentences, a 

highly granular unit of storytelling, do not have to follow prescribed grammatical structures. The 

most highly acclaimed grammar books recommend following grammatical rules in almost all 

cases, but concede there are  exceptions (Strunk and White 2005, p. 32). For example, in Infinite 

Jest, considered the magnum opus by David Foster Wallace, Wallace strings together multiple 

conjunctions to start sentences (e.g. “And, but, so”) (Wallace 1996). This would be considered 

flawed by an algorithm but was considered brilliant by human reviewers.  

The best AI-generated text uses a long-short-term-memory that allows it to “remember” prior 

phrases in a given corpus and thus avoid repetition (Sutskever et al. 2011). Despite this ability to 

remember at a sentence level, AI is currently unable to author a multi-page coherent plot. 

However, pop-culture projects using recurrent neural networks (RNNs) have created imitation 
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Kanye West songs (Alexander 2017) and additional chapters of the Game of Thrones series 

(Tewari 2019). These chapters follow grammatical rules but do not tell an intelligible story. See 

Appendix 1 for examples of both.  

Early efforts at creativity, such as digital portraits, produced grotesque results (Kageki 2012). 

Recently, picture generation has improved dramatically – NVIDIA has released software that 

makes realistic human faces (Kerras et al. 2019; “Thispersondoesnotexist.Com” 2019). Despite 

this, no AI-generated paintings, novels, or poetry have won competitions against human artists. 

This is likely because algorithmic paintings, novels, and poetry are necessarily derivative, and 

creative art competitions reward ingenuity.  

Text creation by AI is improving. Online reviews generated by RNNs  have fooled humans into 

believing the review’s author is human (Yao et al. 2017), but this is only possible because 

reviews are short and extremely similar to one another. Image labeling is also improving rapidly. 

Google and Microsoft have both recently debuted image labeling software (Kamps 2016; Torbet 

2019). Google claims 93.9% accuracy in labeling images. Of course, these labels are hardly 

artful prose. In a picture of several cows grazing, Microsoft’s AI outputs “I think it's a herd of 

cattle standing on top of a grass covered field.” See Figure 3.1.  
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Figure 3.1: I think it's a herd of cattle standing on top of a grass covered field 

3.2  Operationalization of Corollaries as Hypotheses 
We operationalize the creative task as an image captioning problem. In each case, a hypothesis is 

an operationalization of its correspondingly numbered corollary. We list the hypotheses for the 

convenience of the reader.  

Hypothesis 7: For a writing problem {creative task}, task difficulty will negatively moderate the 

effect of algorithmic advice on belief change. 

Hypothesis 8: For a writing problem {creative task}, task difficulty will  positively moderate the 

effect of algorithmic advice on believe change.  

Hypothesis 9: For a writing problem {creative task}, task difficulty will negatively moderate the 

effect of algorithmic advice on confidence.   

 

3.3  Experimental Design 
We use a two-by-two between-and-within-subjects design (Table 3.1). The first condition is 

information source: algorithm or a crowd of humans. The second condition is difficulty. All 

subjects are told there is a prize for authoring better captions. Although this may cause the task to 
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lean more towards being an intellective task, subjects are told that there is a prize for better 

captions to increase the likelihood that subjects expend real effort while captioning. 

Table 3.1: Experiment Two Design 

Task difficulty Algorithm Description Human Description 

Descriptive vs 

humorous 

An algorithm, trained on 5,000 pictures 

similar to this one, recommends X. 

A crowd, comprised of 5,000 

people, recommends X.  

It is likely that some subjects are better at captioning cartoons than others, because  it requires a 

mastery of English. To measure each subject’s knowledge of English and capability with 

wordplay, we use the Remote Associates Test (RAT) (Mednick 1968). The Test gives three 

words that are tied together by some unspecified word, which the test-taker is required to 

provide. For example, the three words “cottage”, “swiss”, and “cake” are tied together with the 

word “cheese”. Each subject received 6 questions from a repository of the Remote Associates 

Test. Using the difficulty scores provided from an external website, https://www.remote-

associates-test.com/, we give each subject the same six questions. One very easy question, one 

hard question, two easy questions, and two medium questions. We collect these data so that we 

can examine whether people who were skilled at wordplay rely differently on advice sources, 

although we did not make a formal hypothesis about this effect.   

We also collect data on a subject’s affect toward technology, through the Insecurity components 

of the Technology Readiness Index (TRI) 2.0 (Parasuraman and Colby 2015). The TRI measures 

feelings about technology, and capturing this data enables us to see whether self-reported affect 

toward technology affects reliance on technology.  

3.3.1 Cartoon Choice 
We used a publicly accessible dataset of 177 New Yorker cartoons that were used in the weekly 

New Yorker Cartoon Caption Contest. In that contest, people submit a caption to a cartoon and 

then vote on whether they believe other captions are funny. The top captions are shown a week 

https://www.remote-associates-test.com/
https://www.remote-associates-test.com/
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later. Our dataset contained a minimum of 2,919 captions per cartoon, and a maximum of 13,314 

captions.  

Our goal was to choose 5 cartoons based on how successfully a machine could predict that a 

given caption belonged to a cartoon. To test how well a machine matched a cartoon with a 

caption, we downloaded the 992,050 captions for the 177 cartoons in our sample.  We removed 

any stopwords (e.g., “the”, “a”, “an”) from the captions, and held out 30% of our data as a test 

set. We used Doc2Vec to create a 300 column vector space out of the training data, with a row 

for each caption. We then used three logistic regression, a neural network, and a random forest to 

predict which captions in our test set belonged to each cartoon. A naïve model assigning captions 

to cartoons at random would assign 
1

# 𝐶𝑎𝑟𝑡𝑜𝑜𝑛𝑠 
 accurately. With 177 cartoons in our sample, this 

meant a naïve model would correctly assign a caption to a cartoon about 0.5% of the time.  

We chose the five cartoons with the average highest F-Scores when using our three models, 

where the F score is: 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. Using an F-Score as the criterion for selection balances 

false positives and false negatives. We then paid the New Yorker for licensing their cartoons in 

our experiment. 

3.4  Operationalization 
We manipulate difficulty by changing the type of image. Difficult images to caption are political 

cartoons because they need to be entertaining enough that the subjects might be more engaged 

than they would be with other material, and are currently beyond the abilities of AI to caption 

well. The goal of a political cartoon is usually humor, often in the form of irony or sarcasm. 

although not always. We will tell subjects that the goal is to be humorous. Political cartoon 
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caption contests are also an activity that laypeople can engage in for fun. They can garner 

hundreds of entrants, and captioning political cartoons is an elite profession (Donnelly 2019). 

The easy creative tasks will be to caption simple pictures of landscapes. Landscapes are usually 

easy enough for even children to caption well. For example, most parents can attest to hearing 

their young children narrate the landscape as they go on a long drive (e.g., “Mom, it’s a herd of 

cows!”). 

We measure confidence by asking subjects whether they believe they are in the top 10% of 

submissions. We measure cognitive effort using time elapsed to make a caption. 

In addition to those baseline experimental procedures, we use a unique measure of belief change. 

In the dissertation proposal, we proposed several ways of measuring belief change, because there 

is no best way to measure change in text. In the proposal we stated that we may use other MTurk 

workers to assess how much a caption has changed or use an algorithm such as Doc2Vec to 

assess how much text has changed. However, in our design of the experiment we realized that 

reviewers may have pushed back against these measures of belief change, so we chose to use a 

four-option multiple choice answer with an optional free response, see Figure 3.2 
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Figure 3.2. Example of Multiple Choice Questions Used to Determine Weight on Advice 
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3.5  Experimental Procedures 
We follow the methodology outlined in sections 1.2, 1.3, and 1.4.  

3.5.1 AMT Procedure 
Subjects are instructed that they will be given images to caption. In the hard (easy) condition, 

subjects will be told that their captions should be funny (accurate). Once subjects submit a 

caption, they are taken to another screen with the same image. For the easy images of 

landscapes, subjects then see a recommended caption written by the first author. For the hard 

images, the caption that won The New Yorker caption cartoon contest for the associated cartoon 

was used. After viewing the advice, subjects are asked to write the best caption they can think of 

and are told that writers of the best captions will receive a bonus. Captions need to be at least 

three characters long, and each subject assesses 10 images.  

3.6  Results 
We deviated slightly from our preregistration, which indicated that we would gather results from 

at least 470 participants. After removing participants for failing the attention checks, 

manipulation check, and subjects who stated that they answered at random, we had 419 subjects 

in our sample. An analysis of the strength of our effects indicated that it was unlikely that any 

effect that was not significant would become significant if we gathered another 51 responses, so 

we did not gather additional responses. We conducted this analysis by calculating the what the p 

values for all effects would be if we had 470 subjects as the number of people in our sample 

while keeping the effect size the same. Using this analysis, no effects that were not significant 

would have become significant if we had gathered more responses. 

Subjects were significantly less confident in their final answer (β = -0.33, p< 0.001) and initial 

answer (β = -0.48, p < 0.001), and took more time when writing their first caption (β = 21.82, p < 
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0.001), when they were captioning hard questions relative to easy questions. Thus, we conclude 

that subjects perceived the difficult and easy questions differently.  

When analyzing belief change and confidence change, use a cumulative link mixed model 

(CLMM) from the ordinal package in R to fit each model. This is a deviation from the 

dissertation proposal, because in the dissertation proposal we had a different dependent variable 

in mind. Using a cumulative link mixed model is appropriate when the dependent variable is an 

ordered categorical variable. Our analytical approach was: 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 ≤   𝑗))

=  𝜃𝑗 −  𝛽1(𝐴𝑑𝑣𝑖𝑐𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝑖) −  𝛽2(𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖)

− 𝛽3(𝐴𝑑𝑣𝑖𝑐𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝑖 ∗  𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖) −  𝜇(𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑖) 

i = 1,…,n, j = 1,…, J – 1 

This models the cumulative probability that caption i is in the answer j or below, where i index 

the observations and j index the possible answer choices (J = 4) (Christensen 2019). We assume 

the subject effects are random and that the subject effects are independently and identically 

distributed normally (Christensen 2019).  

Across all models the effect of algorithmic advice is non-significant. While we did not formally 

hypothesize about this effect in the proposal, we believed we would see that subjects would 

change their beliefs more when receiving non-algorithmic advice. In a CLMM, a positive and 

statistically significant coefficient for algorithmic advice would indicate that subjects relied more 

on algorithmic advice than advice from a crowd. Across all models there is no significant effect 

of the interaction between algorithmic advice and difficulty, indicating no support for H7. These 

effects are displayed in Table 3.2.  
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3.6.1 Belief Change 
 

Table 3.2. Weight on Advice Models 

 Model 1 P Value Model 2 P Value Model 3 P Value 

1|2 
0.994 < 0.001 0.825 < 0.001 -0.757     0.398 

(0.097)     (0.168)     (0.896)     

2|3 
1.217 < 0.001 1.048  < 0.001 -0.510     0.569 

(0.098)     (0.169)     (0.896)     

3|4 
1.409 < 0.001 1.240  < 0.001 -0.296     0.741 

(0.099)     (0.169)     (0.895)     

Algorithmic 
Advice 

0.101     0.454 0.087     0.523 0.518     0.117 

(0.136)     (0.136)     (0.331)     

Difficulty 
0.220  0.026 0.221  0.0258 -0.190     0.600 

(0.099)     (0.099)     (0.362)     

Algorithmic 
Advice * 
Difficulty 

-0.002     0.989 -0.003     0.985 0.042     0.774 

(0.139)    
 

(0.139)    
 

(0.146)    
 

Remote 
Associates 
Test 

          -0.039     0.220 -0.021     0.695 

         
 

(0.032)    
 

(0.053)    
 

TRI 
                    -0.006     0.731 

                    (0.017)     

Initial 
Confidence 

                    -0.691 <0.001 

                    (0.055)     

English 
                    0.428     0.582 

                    (0.778)     

Round 
                    0.006     0.637 

                    (0.013)     

Algorithmic 
Advice * 
Remote 
Associates 
Test 

                    -0.116 0.104 

         

 

         

 

(0.072)    

 

N 4190.000     4190.000     4190.000     

Log 
likelihood -3476.531     -3475.782     -3307.781     

AIC 6967.06 6967.563     6643.562     
The dependent variable is a categorical variable based on a subject’s final answer. TRI is a subject’s score on the Insecurity 

Component of the TRI. Confidence is on a Likert scale from 1-4. Algorithmic Advice is a categorical variable (algorithmic 

condition = 1, human advice = 0) and Difficulty is a categorical variable (hard questions = 1, easy questions = 0). Standard 

errors are in parentheses. There were N = 419 subjects. 

3.6.2 Confidence  
Next, we observe the effects on confidence. In the model below, the dependent variable is the 

final level of confidence stated by the subject. As expected, subjects were less confident (p =  in 

their final answers for hard problems (political cartoons), than easy problems (landscapes), 

across all models. Subjects exposed to algorithmic advice were not statistically significantly 
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more confident than subjects exposed to advice from other people, across all models. Most 

importantly, subjects did not rely more on algorithmic advice or advice from other people as 

questions changed in difficulty, and this effect was not significant across all models.  

Table 3.3. Confidence Models 

 Model 1 P Value Model 2 P Value Model 3 P Value 

1|2 
-4.838 < 0.001 0.260     0.488 0.431     0.303 

(0.185)     (0.376)     (0.418)     

2|3 
-2.458 < 0.001 3.080 < 0.001 3.257 < 0.001 

(0.166)     (0.374)     (0.417)     

3|4 
1.057 < 0.001 7.225 < 0.001 7.415 < 0.001 

(0.160)     (0.388)     (0.430)     

Algorithmic 
Advice 

-0.047     0.834 -0.041     0.799 0.370     0.317 

(0.224)     (0.160)     (0.370)     

Difficulty 
-1.064 < 0.001 -0.254 0.012 -0.267 0.027 

(0.094)     (0.101)     (0.120)     

Algorithmic 
Advice * 
Difficulty 

-0.122     0.349 -0.146     0.284 -0.146     0.287 

(0.130)    
 

(0.137)    
 

(0.137)    
 

Initial 
Confidence 

          2.070 < 0.001 2.061 < 0.001 

          (0.062)     (0.063)     

TRI 
          -0.006     0.765 -0.007     0.694 

          (0.019)     (0.019)     

Remote 
Associates 
Test 

          -0.057     0.153 -0.005     0.937 

         
 

(0.040)    
 

(0.059)    
 

Initial Time 
                    0.000     0.437 

                    (0.000)     

Algorithmic 
Group * 
Remote 
Associates 
Test 

                    -0.099     0.216 

         

 

         

 

(0.080)    

 

N 4190.000     4190.000     4190.000     

Log Likelihood -4014.003     -3382.595     -3380.311     

AIC 8042.007     6785.190     6786.621     
The dependent variable is a categorical variable based on a subject’s final stated level of confidence. TRI is a subject’s score on 

the Insecurity Component of the TRI. Confidence is on a Likert scale from 1-4. Algorithmic Advice is a categorical variable 

(algorithmic condition = 1, human advice = 0) and Difficulty is a categorical variable (hard questions = 1, easy questions = 0). 

Standard errors are in parentheses. There were N = 419 subjects. 

3.6.3 Time 
For our models related to time, we used the percent change in time spent on a question as the 

dependent variable, to remain in accordance with the analysis plan from the first experiment. 

This dependent variable forced us to use a linear mixed effects model rather than a cumulative 

linked mixed model. Similar to the results related to time in experiment one, we did not observe 
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significant effects related to time, across any models for any variables. Most importantly, we did 

not observe a significant interaction between difficulty and advice source, indicating no support 

for H9.   

Table 3.4. Time Models 

 Model 1 p Value Model 2 p Value Model 3 p Value 

(Intercept) -0.361  <0.001 -0.356  <.001 -0.534  0.046 
 

(0.04)  (0.063)  (0.267)  

Algorithmic Advice -0.068  0.227 -0.069  0.226 -0.115  0.298 
 

(0.056)  (0.057)  (0.11)  

Difficulty -0.181  0.001 -0.181  0.001 -0.188  0.001 
 

(0.055)  (0.055)  (0.056)  

Algorithmic Advice * 
Difficulty 

0.036  0.639 0.036  0.639 0.036  0.640 

 
(0.078)  (0.078)  (0.078)  

SD (Intercept) 0.134   0.135   0.138   
 

(NA)       (NA)       (NA)       

SD (Observation) 1.257   1.257   1.257   
 

(NA)       (NA)       (NA)       

Remote Associates 
Test 

       -0.001  0.923 -0.007  0.667 

 
       (0.011)  (0.017)  

Initial Confidence               -0.015  0.511 
 

              (0.023)  

English               0.253  0.301 
 

              (0.244)  

Algorithmic Advice * 
Remote Associates 
Test 

              0.011  0.639 

 
              (0.023)  

N 4190       4190       4190       

Log Likelihood -6932.438   -6935.997   -6941.340   

AIC 13876.877   13885.995   13902.681   

The dependent variable is a categorical variable based on the change in time that a subject spent on a question. TRI is a 

subject’s score on the Insecurity Component of the TRI. Confidence is on a Likert scale from 1-4. Algorithmic Advice is a 

categorical variable (algorithmic condition = 1, human advice = 0) and Difficulty is a categorical variable (hard questions = 1, 

easy questions = 0). Standard errors are in parentheses. There were N = 419 subjects. 

3.7  Post-Hoc Results 
We expected that TRI and RAT would strongly predict belief change and confidence, but we did 

not observe either to be a significant predictor, regardless of the dependent variable. This was 
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especially surprising because the Remote Associates Test, which requires significant thought, 

had a high average score: 4.12 out 6.00. Given this high score, we thought this was strong 

evidence that the subjects were paying attention and were especially paying attention when 

answering questions related to the control variables.  However, the results indicate that both TRI 

and RAT are not predictive of reliance on advice.  

We also expected that the RAT would moderate the effect of advice source on reliance on 

advice, although this was not a significant effect for any dependent variable.  

3.8  Limitations and Future Directions 
It is possible that the design of the experiment, with multiple-choice answers that allow for free 

response for some of the answers but not others, created incentives for the subjects to be lazy, 

and choose only the multiple choice responses that did not require a free response. Further 

research could conduct a similar experiment without this confound.  

Further post-hoc analysis could explore the time variable in greater depth. It is possible that 

outliers are greatly influencing our findings, and that a standardization of the time variable could 

provide more insight into how people spend time on problems.  

Furthermore, this research is the first we are aware of to examine cognitive effort, measured 

using time, and confidence in creative tasks informed by algorithmic and human advice. Further 

research should examine whether there are other factors that moderate the effect of advice source 

on reliance on advice in creative tasks.  

3.9  Discussion 
This paper shows that the type of task has a strong effect on the willingness to rely on 

algorithmic advice. In the intellective task there was a direct effect of algorithmic advice, and 

subjects relied more on algorithmic advice as problems became harder. In the creative task, both 



96 

 

the direct effect and interaction effect of algorithmic advice changed to become non-significant. 

This is almost assuredly due to the type of task, rather than other explanations. We believe that 

the type of task is the reason these effects changed, because the experiments were nearly 

identical except for the manipulation of difficulty and the type of task. The manipulation of 

difficulty was successful subjects took more time and were less confident on the questions we 

believed would be more difficult, just like in experiment one. These experiments were conducted 

within several months of each other, on the same platform, with different subjects from the same 

pool, and nearly identical manipulations of advice source. Thus, we conclude that type of task is 

the cause of the difference between experiments, because other factors are either identical (e.g. 

advice source), or very successfully transformed (e.g. difficulty).  

Although our results are not significant, we believe this research open new frontiers for IS 

research. We study a context that is dramatically underexplored: human responses to 

recommendations from crowds and algorithms across different levels of difficulty in creative 

tasks. Understanding how humans respond to algorithms compared to human crowds in creative 

tasks will help in designing social media platforms, e-commerce platforms, and conversational 

agents. 

 

 

  

 

 



97 

 

 

 

Chapter 4 

4 Algorithmic Appreciation in Mixed-Motive Tasks 

4.1  Introduction 
We study bail decisions for an example of a mixed motive task. Bail decisions have significant 

societal implications, and are enacted millions of times each year (Kleinberg et al. 2017). Bail 

judgments are racially biased against black defendants, and this effect is stronger among 

inexperienced and part-time judges (Arnold et al. 2018). The best economic estimates of the cost 

of being detained indicate that defendants lose approximately $30,000 in lost wages and 

government benefits (Dobbie et al. 2018). Bail decisions are determined by mostly untrained 

judges who have little interaction with the defendant (Arnold et al. 2018), indicating that 

algorithms might be a preferable societal alternative, if unbiased algorithms could be developed.  

In the context of bail, the two parties with conflicting interests are the alleged malefactor and the 

broader society. The alleged deserves to not be unjustly held, but society deserves a criminal 

justice system that does an adequate job protecting citizens from the alleged offender who might 

not willingly return for their trial. Judges may have biases when weighing these two interests – 

and algorithms could correct these biases.  

The goal of bail judges is well defined: “to set bail conditions that allow most defendants to be 

released while minimizing the risk of pretrial misconduct” (Arnold et al. 2018). The underlying 

idea is that people will be likely to return for their trial if they have a financial incentive to do so. 

Judges must also keep in mind that some alleged offenders are likely to believe that they are so 

likely to be convicted that it would be utility-maximizing for them to flee.  
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Unfortunately, a review of algorithmic risk assessment tools used by state governments indicates 

they create racist outcomes (Stevenson 2017). This can occur for several reasons. The outputs of 

the risk assessment tool can be misunderstood, ignored, or used off-label by judges (Stevenson 

2017). Judges may also misuse the algorithm in self-serving ways when elections are near 

(Stevenson 2017). However, we suspect that the general public is unaware of the problems with 

algorithmic risk assessment in bail decisions.  

Bail decisions are a thorny problem to evaluate using machine learning models. Because the 

observable outcomes are a consequence of human decision-makers, it is hard to know whether 

algorithms improve on outcomes. Thus, model evaluation is more difficult, as outcomes are not 

randomly sampling the population of cases (Lakkaraju et al. 2017). Thus, we never observe the 

crime outcomes for people who are not given bail (Kleinberg et al. 2017). Recent advances in 

model evaluation theory have led to the development of algorithms that dominate human 

judgment. New research suggests algorithmic bail could reduce post-bail crime by 24.8% with 

no change in jailing rates, or reduce jail populations by 42% with no increase in crime rates, 

while also decreasing the percentage of African-Americans and Hispanics in jail (Kleinberg et al. 

2017). 

4.2  Operationalization of Corollaries as Hypotheses 
The mixed motive task has been operationalized as an assessment of how much bail to request of 

a hypothetical alleged criminal. Our following hypotheses are informed by our research into the 

intellective and creative task experiments conducted previously. As a result of these experiments, 

we changed away from the corollaries we originally submitted in the dissertation proposal. We 

preregistered the hypotheses at the Open Science Foundation.2 The new hypotheses are: 

 
2 https://osf.io/7v4p3/?view_only=82beaf8b852a4a87865ae55cc444340f 

https://osf.io/7v4p3/?view_only=82beaf8b852a4a87865ae55cc444340f
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Hypothesis 10: When determining the level of bail for a defendant, people rely more on advice 

that is labeled as from an algorithm than that labeled as from a large number of other people.  

Hypothesis 11: The stated difficulty of a question will positively moderate the effect of advice 

source on WOA.  

We did not hypothesize about confidence and time in the preregistration. Due to the prior two 

experiments having very similar effects between confidence and WOA, and no significant effect 

related to time, we decided to leave these variables for post-hoc analysis.  

4.3 Experimental Design 

4.3.1 Scenario Acquisition 
We listened to publicly available bail hearings from a major metropolitan city in the United 

States and took contemporaneous notes about each hearing. We noted the alleged crime, the 

criminal history, the scales describing the probability of fleeing and of reoffending, and any 

mitigating information offered by the alleged criminal’s lawyer. In the jurisdiction there are two 

common outcomes: cases where the alleged criminal would have to pay money up-front for pre-

trial release (typically for more serious crimes), and cases where the alleged would not have to 

provide funds unless they failed to appear in court (typically for less serious crimes). We 

included only scenarios for which the defendant would have to pay in order to be released from 

jail. For each scenario, we removed data that would easily identify the defendant (e.g., the 

defendant’s name, jurisdiction of the crime, defendant’s hometown, etc.). For data relevant to the 

bail decision that we could make less identifying, we de-specified the data. For example, each 

subject’s age is listed as being within a bracket (e.g., “Defendant is in his 30s”). An example of a 

scenario, along with the questions we asked each subject, is in Appendix 4: Bail Scenario.  
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4.3.2 Design 
We use a 2 by 2 between-and-within subjects design (Table 4.1). The conditions are: (1) whether 

the subject received the algorithmic or crowd recommendation, and (2) whether the task is easy 

or difficult.  

Table 4.1: Mixed-Motive Experimental Design 

Task difficulty Algorithmic Recommendation Crowd Recommendation 

Stated 

Difficulty 

An algorithm, trained on 5,000 

similar cases, concluded that the 

correct bail is $X.  

5,000 people reviewing the same case 

concluded, on average, that the correct 

bail is $X.  

  

We delivered this advice at both the top and bottom of the page the second time a subject saw a 

scenario, and we asked them to “incorporate the advice.” We reminded subjects what their prior 

amount of bail set for this scenario was by stating it directly above the text box where subjects 

were asked to input the bail amount for the second time.  

4.3.3  Operationalization 
To operationalize the different advice sources, we use different labels, as shown in the table 

above. To operationalize difficulty, we state whether a judge thought the bail decision was 

difficult. During pilot testing, we tried seven methods to operationalize the difficulty of a bail 

decision, before finally deciding that subjects would be told the decision was easy or difficult.  

4.3.4 Pilot Tests 
 

First, we tested whether subjects believed scenarios were more difficult based on a contrast 

between the severity of the crime and the likelihood of fleeing. We believed that when the 

severity of a crime was high (low) and the probability of fleeing was low (high), subjects would 

perceive a bail determination as difficult compared to when these factors were either both low or 

both high. We created three categories: Unambiguous High, for alleged felons who were high 



101 

 

flight risks; Ambiguous, for alleged criminals with moderate flight risk; and Unambiguous Low, 

for alleged criminals who committed misdemeanors and had low flight risk. See examples of 

each in Table 4.2.  

Table 4.2 Pilot One Example Scenarios 

Unambiguous High Ambiguous Unambiguous Low 

Imagine an alleged criminal 
who is: 32 years old, a 
wealthy socialite, the owner 
of two passports, and 
accused of stealing money 
from investors (a felony). If 
you were the judge, at what 
level would you set the 
bond?  

Imagine an alleged criminal 
who is a father, with some 
means, will be fired if he 
can't post bail, and accused 
of robbing a 711 (a 
misdemeanor). If you were 
the judge, at what level 
would you set the bond? 

Imagine an alleged criminal 
who: is 91, has no criminal 
history, has two 
grandchildren in town he 
lives in, and is charged for 
disorderly conduct (a 
misdemeanor). If you were 
the judge, at what level 
would you set the bond? 

 

Our results indicated that this manipulation was moderately successful in causing subjects to 

perceive scenarios as different levels of difficulty. See Table 4.3.  

Table 4.3 Perceived Difficulty of Questions in Pilot One 

Scenario Perceived Difficulty 

Ambiguous 1 2.34 

Ambiguous 2  2.34 

Unambiguous High 2 2.31 

Unambiguous High 5 2.20 

Ambiguous 5  2.17 

Ambiguous 3  2.17 

Unambiguous High 4 2.06 

Unambiguous High 3 2.03 

Ambiguous 4  2.0 

Unambiguous High 1 1.86 

Unambiguous Low 3  1.86 

Unambiguous Low 2  1.48 

Unambiguous Low 4  1.48 

Unambiguous Low 5  1.41 

Unambiguous Low 1 1.37 
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Second, we tested whether subjects believed scenarios were more difficult when they had more 

information about an alleged criminal. For example, we would present no mitigating information 

for some scenarios, and we suspected that would make a scenario easier. Our results indicate that 

subjects did not believe these were easier. 

Third, we tested whether subjects believed scenarios were more difficult if they received an 

example amount of bail, providing them with some initial guidance as to what a normal amount 

of bail would be for a sample crime. Our results indicate that subjects did not report scenarios 

were easier when they received this guidance. 

Fourth, we tested whether subjects believed scenarios were more difficult based on receiving 

numbers, called scales, that quantified the likelihood of fleeing or of committing another offense. 

Subjects did not report scenarios were easier when they received this information.  

Fifth, we tested whether subjects believed scenarios were more difficult when they received both 

an example and scales. Subjects did not report scenarios were easier when they received this 

information.  

Sixth, we tested whether scales made questions easier if they were delivered within-subject 

rather than between-subject. Our results indicate that subjects did not consistently report 

scenarios with scales were easier.  

Finally, we tested whether subjects believed scenarios were more difficult based on the stated 

difficulty of a question. For each question, we would say whether a judge believed that a 

scenario was easy or hard. In fact, no judge had made these assessments and they were randomly 

assigned. This was a between-subjects condition. For five of the eight scenarios, subjects 

perceived the question labeled as difficult as harder than the easy question. We used the four 
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scenarios where the difference between hard and easy was in the right direction and strongest 

(Scenario 1, Scenario 3, Scenario 4, and Scenario 5).  

We outline the results of tests two through seven in Table 4.4.  

We also spoke with three judges responsible for bail decisions in the United States. They 

indicated that they all bail decisions to be approximately the same degree of difficulty. However, 

these judges always receive cases with all the facts and with no experimental manipulations. 

Although the judges find all scenarios approximately equally difficult, we believe that our 

manipulation of difficulty was both coherent a priori and confirmed ex post facto, through our 

results indicating that subjects treated easy and hard questions differently.   

Table 4.4 Pilot Tests 

 Test 2, 3, 4, and 5 Test 6 Test 7 
 

Scenario Both  No 
Example 
No Scale 

Example Scale Scales + No 
Mitigating 

Scales 
(within 
subject) 

No Scales 
(within 
subject) Hard Easy 

1 2.57 2.50 2.70 2.00 2.44 2.91 2.90 3.5 3.16 

2 2.70 3.00 2.00 2.33 3.00 2.92 2.71 2.25 3.4 

3 2.43 3.00 2.50 2.45 2.38 2.66 2.44 2.83 2.57 

4 2.33 2.30 2.60 2.27 2.80 3.11 3.08 2.83 1.4 

5 2.50 2.63 2.00 2.73 2.63 1.60 2.73 3.2 2.57 

6 3.00 2.50 1.75 2.33 2.67 2.81 2.63 2.66 2.5 

7 1.56 2.89 3.00 2.82 2.78 3.33 2.91 3.14 3.28 

8 2.27 2.22 3.00 2.20 2.30 2.18 2.72 2 2.44 

Average 
Difficulty 

2.42 2.63 2.44 2.39 2.62 2.69 2.77 2.80 2.66 

N 14 14 14 17 15 34 34 12 13 
Scenarios highlighted in yellow were used in the experiment.  

 

4.4   Results 
We define commonly used terms in the results tables in Table 4.5.  
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Table 4.5 Common Variables in Results Tables 

Term Definition Distribution Type 

WOA Weight on Advice 0-1 Continuous 

Initial Confidence Initial level of 

confidence in a 

scenario 

1-4 (Likert Scale) Ordered 

Categorical 

Algorithmic Advice Whether the subject 

was in a group 

receiving algorithmic 

advice 

0 (Crowd) or 1 

(Algorithmic) 

Categorical 

(Binary) 

Difficulty Whether the scenario 

was described as easy 

or hard 

0 (easy) or 1 (hard) Categorical 

(Binary) 

Technology 

Readiness Index 

(TRI) 

A subject’s score on 

the Insecurity 

Questions of the 

Technology Readiness 

Index 

4-20 (Sum of Likert 

Scales)  

Sum of Ordered 

Categorical 

Identification With 

Criminal Others 

(ICO) 

A subject’s score on 

the ICO component of 

Modified Criminal 

Sentiments Scale 

6-30 (Sum of Likert 

Scales) 

Sum of Ordered 

Categorical 

 

4.4.1 Randomization and Manipulation Check 
We first check that the manipulations were successful by comparing the averages of each group, 

with a series of two sample t-tests. Subjects in the algorithmic advice condition had similar levels 

of initial confidence in their answers as subjects in the crowd condition (p = 0.53), indicating that 

subjects were identical prior to seeing the treatment. Subjects also spent the same amount of time 

on questions when answering them for the first time (p = 0.96), reinforcing that subjects were 

identical between the groups prior to exposure to the treatment. Subjects spent more time 

answering a question for the first time when they were told the question was hard (p < 0.001). In 

practical terms, subjects spend about 31% longer on questions labeled as difficult compared to 

questions labeled as easy. This result indicates that subjects noticed the stated difficulty and is 

evidence the manipulation worked.  
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4.4.2 Testing For Multicollinearity 
We test for multicollinearity of independent variables using the variance inflation factor (VIF) 

test. Generally, a VIF above 5.0 indicates problematic multicollinearity (Sheather 2009). We 

calculated the VIFs for all variables in following models. The maximum VIF for any variable 

was 2.91, indicating multicollinearity was not likely driving bias. VIFs are not a perfect criterion 

to judge multicollinearity, and even models with low VIFs can have spurious false positives 

(Goodhue et al. 2017). However, because both of the hypotheses are not supported, false 

positives that might occur despite low VIFs are not a concern.  

We also checked the pairwise correlations for all independent variables see Table 4.6. The 

absolute value of the largest correlation was 0.15, further indicating that multicollinearity was 

not problematic. If we had problematic multicollinearity then we could have used either principal 

components analysis or a penalty function such as LASSO or Ridge regression to handle 

multicollinearity (Tibshirani 1996).  

Table 4.6 Correlations  

 WOA 

Algorithmic 

Advice Difficulty TRI ICO 

Initial 

Confidence Order Accuracy 

Initial 

Time 

WOA 1.00         

Algorithmic 

Advice 0.04 1.00        

Difficulty -0.04 -0.01 1.00       

TRI 0.03 0.04 0.02 1.00      

ICO -0.09 0.03 0.01 -0.02 1.00     

Initial 

Confidence -0.12 0.02 -0.07 0.09 0.03 1.00    
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Order -0.05 -0.01 0.00 0.00 0.01 -0.03 1.00   

Accuracy 0.05 -0.01 0.01 -0.01 -0.04 -0.06 -0.04 1.00  

Initial Time 0.01 0.00 0.02 0.04 -0.03 0.02 -0.15 0.00 1.00 

 

4.4.3 Statistical Models 
We fit two linear mixed effects models (Model 1 and Model 2) with WOA as the dependent 

variable (Bates et al. 2014) (Table 4.7). Model 1 tests the hypothesized effects without control 

variables, Model 2 adds control variables. Theoretically, a mixed effects model would indicate 

that the slope is the different across subjects and the deviation around the mean is different 

(Kennedy 2008).  

Interestingly, our simple model without control variables has a lower AIC. When comparing two 

similar models, if the difference in AIC is larger than 2, then the model with the lower AIC 

should be considered superior (Burnham and Anderson 2004). The simplicity of the first model 

overwhelms the benefits of the control variables, although this might be surprising because the 

ICO, Initial Confidence, and Accuracy variables are all statistically significant predictors of 

WOA. However, because Model 1 has a superior fit, the coefficients we report on below are 

from Model 1.   

We fail to reject the null hypothesis for H10, that people rely more heavily on algorithmic advice 

(β = 0.029, p = 0.394). The coefficients for Algorithmic Advice in Experiment 1 and the 

coefficient in this experiment can be directly compared, because the DV and independent 

variables are identical and on the same scale. For this mixed-motive task, the effect size (β = 

0.029) is about one quarter of the size we observe in the best fitting model for the intellective 

task (β = 0.108).   
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We also fail to reject the null hypothesis for H11, that difficulty moderates the effect of 

algorithmic advice, (β = -0.003, p = 0.944). Both H10 and H11 are not supported regardless of 

whether Model 1 or Model 2 are used. Clearly, task type matters!  

Table 4.7 WOA Model Results 

 Model 1 P Value Model 2 P Value 

(Intercept) 0.475 < 0.001 0.687 < 0.001 

 (0.024)  (0.081)  

Algorithmic Advice 0.029 0.394 0.032 0.343 

 (0.034)  (0.034)  

Difficulty -0.029 0.279 -0.035 0.189 

 (0.027)  (0.027)  

Algorithmic Advice *  
Difficulty 

-0.002 0.966 -0.003 0.933 

 (0.039)  (0.039)  

SD(Intercept) 0.188  0.183  

 (NA)  (NA)  

SD(Observation) 0.341  0.339  

 (NA)  (NA)  

Technology Readiness Index   0.004 0.210 

   (0.003)  

Identification With  
Criminal Others 

  -0.009 0.013 

   (0.003)  

Initial Confidence   -0.059 0.000 

   (0.015)  

Order   -0.015 0.107 

   (0.009)  

Accuracy   0.001 0.025 

   (0.000)  

Initial Time   0.000 0.410 

   (0.000)  

Mixed Effects Yes Yes 

N 1254         1254         

Log Likelihood -569.422     -585.644     

AIC 1150.843     1195.289     
The dependent variable is weight on advice. Standard errors are in parentheses. There were N = 353 subjects.  

4.5  Post-Hoc Analyses 

4.5.1 Confidence 
As a post-hoc analysis, we test whether subjects were more likely to rely on algorithmic advice, 

manifested by being more confident in their final answer or by taking less time in answering the 

question (Table 4.8). We again use mixed effects models for Model 1 and Model 2, adding 

control variables in Model 2. The AIC and log likelihood of Model 2 indicate it is the model of 
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best fit.  Subjects were less confident for hard questions, across both models, demonstrating the 

salience of the difficulty manipulation. Our models detect no significant difference between 

people who receive algorithmic advice compared to advice from a crowd (β = 0.040, p = 0.483) 

on how confident they are in their final answer. Our models also do not detect any moderating 

effect of difficulty on the relationship between algorithmic advice and confidence (β = 0.030, p = 

0.609). There is some evidence that indicates that TRI and ICO are predictive of confidence. 

Lastly, we also run a Tobit model instead of mixed effects model, because the dependent 

variable is an ordered categorical variable (Kennedy 2008). The results do not change.  

Table 4.8. Confidence Results 

 Model 1 P Value Model 2 P Value 

(Intercept) 3.173 < 0.001 1.959 < 0.001 

 (0.048)     (0.136)     

Algorithmic 
Advice 0.048     

0.486 
0.040     

0.483 

 (0.070)     (0.057)     

Difficulty -0.147 0.000 -0.113 0.005 

 (0.041)     (0.040)     

Algorithmic 
Advice * Difficulty 0.037     

0.535 
0.030     

0.609 

 (0.059)     (0.058)     

TRI           0.015 0.009 

           (0.006)     

ICO           -0.016 0.012 

           (0.006)     

Initial Confidence           0.369 < 0.001 

           (0.025)     

Order           -0.017     0.204 

           (0.014)     

Accuracy           0.002 *** < 0.001 

           (0.000)     
Random Effects Yes  Yes  

N 1254          1254          

Log Likelihood -1223.454      -1139.274      

AIC 2458.907      2300.548      
The dependent variable is the final level of confidence. Standard errors are in parentheses. There were N = 353 subjects.  
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4.5.2 Time 
We also conducted a post-hoc analysis on the time spent on a problem. Like the models using 

WOA and Confidence as a dependent variable, we use a mixed effects model without control 

variables as Model 1. We use the same model with control variables as Model 2. Model 2 had the 

lower AIC, so the effects we report are from Model 2, although the results between the two 

models are similar. The dependent variable for all models is the amount of time spent on a 

question after receiving advice. The effects for algorithmic advice (β = -2.640, p = 0.544) and the 

interaction between algorithmic advice and difficulty (β = 4.243, p = 0.479) were not statistically 

significant. The order of a problem was predictive (β = -6.831, p < 0.001), meaning that subjects 

spent less time on problems in later rounds than earlier rounds.  
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Table 4.9 Time Models 

 Model 1 P Value Model 2 P Value 

(Intercept) 28.215 < 0.001 45.390 <0.001 

 (3.078)     (10.169)     

Algorithmic 
Advice -2.252     0.609 -2.640     

0.544 

 (4.403)     (4.351)     

Difficulty -7.608     0.0726 -7.858     0.060 

 (4.233)     (4.172)     

Algorithmic 
Advice * 
Difficulty 3.984     0.5138 4.243     

0.479 

 (6.099)     (6.003)     

TRI           0.449     0.232 

           (0.375)     

ICO           -0.334     0.398 

           (0.396)     

Initial Confidence           0.302     0.879 

           (1.999)     

Order           -6.831 < 0.001 

           (1.426)     

Accuracy           -0.072  0.030 

           (0.033)     

Initial Time           0.030 0.004 

           (0.011)     

N 1254          1254          

Log Likelihood -6781.745      -6763.904      

AIC 13575.489      13551.808      
The dependent variable is the time, in seconds, spent on the question after receiving advice. Standard errors are in parentheses. 

There were N = 353 subjects.  

4.6  Limitations 
This research has several limitations. Manipulating the difficulty of a bail decision is challenging 

and might require more creative approaches so that it is correctly perceived by the subjects rather 

than stated as a treatment condition. Moral questions such as those involving punishment, and 

occasionally capital punishment, are perhaps so inherently equivocal that making difficulty a 

problem feature is near impossible. Furthermore, it is possible there is another way to establish 

or manipulate difficulty that produces a difference between treatments.  
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It is also possible that the subjects recruited were not motivated enough to thoughtfully consider 

the scenarios. Although we removed observations when subjects went too quickly, or failed the 

attention or manipulation check, it is still a possibility that they were simply not sufficiently 

motivated, though the same subject pool was used for the first experiment. 

Lastly, it is possible that the manipulation of the advice source, while salient enough to result in 

subjects passing the manipulation check, was not sufficiently realistic. However, computer 

recommendations are oftentimes offered with similarly salient labels, such as when Zillow says, 

“This house is for you”, (algorithmic advice) or when a dating application allows your friend to 

recommend you to someone else on the platform (social advice).  

4.7  Discussion 
This experiment makes several contributions. First, it provides important context around how 

people perceive algorithmic appreciation (aversion) in mixed-motive tasks. Bail decisions are a 

suitable candidate for algorithmic recommendations; already-designed algorithms are superior to 

the judgment of judges (Kleinberg et al. 2017). However, these bail decisions are often misused 

or underutilized (Stevenson 2017). Future research could investigate how to illustrate to the 

public and judges the efficacy of algorithmic bail decisions.  

Second, this chapter, in tandem with the chapter on the intellective task, indicates that the 

moderating effect of difficulty and direct effect of algorithmic advice is contingent on the type of 

task. This is valuable information and adds knowledge above and beyond what we learned from 

the creative task.  

Future work could also examine the effect of training on algorithmic appreciation in mixed 

motive tasks. It is possible people are unwilling to be persuaded by the efficacy of algorithms in 

mixed motive tasks, because they are worried about implicit biases of the algorithm makers, they 
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are aware that algorithms are trained on datasets in which the data does not include 

counterfactuals, or it might be that humans are not ready to accept AI advice for mixed motive 

tasks. AI is currently a black box and acceptance requires faith in the objectivity of algorithm 

without an explanation of how it works. 
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5 Chapter 5 

5.1  Introduction 
In this chapter we review the results of a combined model that includes observations from each 

task. First, we discuss the methods for this combined model, including a forward feature 

selection model that provides atheoretical support for identifying the most important variables in 

our models. Then, we discuss the results of our overall models on WOA and confidence 

dependent variables. The final sections of this chapter outline future research that would augment 

these findings and increase the likelihood of publishing, the limitations of this research, and the 

implications for managers and theory.  

5.2  Methods 
We test three linear mixed-effects models to determine whether there is a difference between 

task types and reliance on algorithmic advice.  

5.2.1 Data Wrangling 
Prior to running those models, we manipulate the data to make it more comparable between 

experiments. The data from the creative task was substantially different from the data from the 

other two tasks. For the creative task, we do not have a calculable initial answer, because it is a 

text caption. Thus, in our models combining the results of all three experiments we cannot use 

accuracy, which includes the distance between the initial answer and the correct answer, as an 

independent variable in the model. Furthermore, for the creative task our dependent variable was 

an ordered categorical variable. To make the data comparable, we change the dependent variable 

of the creative task to be scaled between zero and one. When subjects chose to keep their original 

caption, we assign that a WOA of zero. We changed the option to tweak a caption to have a 
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WOA of 0.33. We changed the option to create a new caption to a WOA of 0.66, and we 

changed the option to use the recommended caption to a WOA of 1. As a robustness check, we 

also coded any change as a WOA of 1, while keeping the subject who chose to keep their 

original caption as a WOA of 0. This did not meaningfully change the results.  

 

Furthermore, of the three experiments we used for the intellective task, we only include the data 

from the first experiment in this analysis, because that was the only experiment using a between-

subjects condition with high-quality advice.  

5.2.2 Model Selection: Forward Feature Selection 
We use a step-wise forward feature selection model to determine whether an atheoretical 

analysis supports our theory-driven understanding (Ferri et al. 1994). Forward selection runs a 

linear model on all possible combinations of the independent variables. It begins by choosing the 

model of best fit with one predictor, then moves to the model of best fit with two predictors, until 

all predictors are used (Figure 5.1). The leftmost graph indicates that the highest adjusted R2 

value occurs when we include six independent variables, although the adjusted R2 is similar 

when using five independent variables or seven independent variables. The middle plot indicates 

that the Bayesian Information Criteria (BIC) is lowest with five predictors, closely aligned with 

the adjusted R2, as expected. The rightmost plot tells us the most important information. It 

indicates how much the adjusted R2 improves with each new feature included in the model. The 

most important predictor of WOA across all variables in all experiments is initial confidence. A 

simple model with two terms, initial confidence and an intercept term, gives an adjusted R2 of 

0.041. The next most important term is whether the task was intellective. Adding this term 

increases the adjusted R2 by more than 50 percent, to 0.064. Adding the mixed motive variable 
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increases the R2 to 0.084. The final two useful terms of the model are Algorithmic Advice and 

Difficulty. Including these increase our R2 to 0.095. Adding the order of the questions and the 

time spent on a question prior to advice do not increase the R2 by more than 0.001.  

 

Figure 5.1 Forward Feature Selection Results 

These plots have several shortcomings that we address later in this chapter. First, forward feature 

selection tends to overfit and does not effectively predict out-of-sample data. Second, our 

forward feature selection procedure uses a simple linear model, rather than a mixed effects 

model.  

5.2.3 Analytical Approach 
Our main model is similar to our model from the intellective and mixed-motive tasks, except this 

time we introduce the Task categorical variable and an interaction between task and algorithmic 

advice: 

𝑦𝑖𝑘 = 𝛽0𝑖 + 𝛽1AlgoCondition𝑖 + 𝛽2Difficulty𝑘  

+𝛽3AlgoCondition𝑖 ×  Difficulty𝑘 + 𝛽4𝑇𝑎𝑠𝑘𝑘 + 

𝛽5𝑇𝑎𝑠𝑘𝑘  × 𝐴𝑙𝑔𝑜𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖  +  𝛽𝑋𝑖𝑘 + 𝜀𝑖𝑘 
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In this model, 𝑦𝑖𝑘 is a dependent variable for participant 𝑖 and question 𝑘; 𝛽0𝑖 is the coefficient 

for participant 𝑖; AlgoCondition𝑖 is a categorical variable indicating the advice condition and 

Difficulty𝑘 is a categorical variable indicating the problem difficulty. 𝑋𝑖𝑘 is a vector of control 

variables.  

5.3  Results 
For each dependent variable we run three models. The first model uses the variables that are of 

primary interest to this dissertation, the second model adds control variables, and the third model 

adds an interaction between task and algorithmic advice. 

5.3.1 Weight on Advice 
We use an unweighted linear mixed effects model to test whether we observe different reliance 

on advice across experiments. This is appropriate for seeing whether any variables that interact 

with the experimental condition is different from one another, but is not useful when looking at 

terms such as the effect of algorithmic advice alone, because we have far more observations from 

the intellective task and creative task than from the mixed-motive task. Thus, if we looked 

directly at the effect of algorithmic advice, for example, our results would be heavily skewed 

away from the results of the experiment with a smaller sample. We find that both the intellective 

and mixed motive experiments have positive and significant coefficients in all three models, 

indicating that subjects in those experiments relied more on advice than subjects in the 

experiment for the creative task. Lastly, we observe a positive and significant interaction 

between algorithmic advice and intellective tasks, indicating that subjects relied more heavily on 

algorithmic advice in that task than on correct advice from the creative task. See Table 5.1.  

Table 5.1 Summary Results 

 Result P Value Result P Value Result P Value 

Intercept 0.221 < 0.001 0.484 < 0.001 0.510 < 0.000 

 (0.013)     (0.021)     (0.026)  
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Algorithmic 

Advice 0.052 < 0.001 0.056 < 0.001 0.006 0.772 

 (0.014)     (0.014)     (0.021)  
Difficulty 0.079 < 0.001 0.033 < 0.001 0.033 < 0.000 

 (0.010)     (0.010)     (0.009)  
Intellective 0.195 < 0.001 0.165 < 0.001 0.112 < 0.000 

 (0.014)     (0.014)     (0.019)  
Mixed Motive 0.183 < 0.001 0.207 < 0.001 0.198 < 0.000 

 (0.017)     (0.018)     (0.024)  
Algorithmic 

Advice * 

Difficulty 0.021     0.132 0.020     0.137 0.019 0.147 

 (0.014)     (0.014)     (0.013)  

Initial Confidence           -0.094 < 0.001 -0.095 < 0.000 

           (0.005)     (0.005)  

Order           0.003 0.011 0.003 0.011 

           (0.001)     (0.001)  

Initial Time           0.000     0.724 0.000 0.747 

   (0.000)     (0.000)  
Algorithmic 

Advice * 

Intellective 

    

0.106 < 0.000 
     (0.027)  
Algorithmic 

Advice * Mixed 

Motive 

    

0.001 0.639 
     (0.003)  

N 10527          10527               10527     

Log Likelihood -4695.704      -4540.000      -4536.967  

AIC 9407.409  9102.000  9099.935  
The dependent variable is weight on advice. Standard errors are in parentheses. Statistically significant effects are denoted in 

bold. There were N = 1,302 subjects.  

As a robustness check we also run the models above using random sampling from the intellective 

and mixed motive tasks, so that there were 1,254 observations in each of the three groups (Table 

5.2). This ensures that the experiments with more observations were not biasing our results. We 

highlight any values that are different between the two models in yellow. In the models with 

equal observations for each experiment, difficulty becomes non-significant (𝛽 = 0.02, 𝑝 =

0.201), and so does order (𝛽 = 0.004, 𝑝 = 0.086).  
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Table 5.2 Equally Weighted Experiments 

 Result P Value Result P Value Result P Value 
(Intercept) 0.234 < 0.001 0.437 < 0.001 0.452 < 0.001 
 (0.018)     (0.032)     (0.034)     
Algorithmic Advice 0.054  0.006 0.058 0.003 0.033     0.262 
 (0.020)     (0.020)     (0.030)     
Difficulty 0.052 0.002 0.022     0.187 0.022     0.201 
 (0.017)     (0.017)     (0.017)     
Intellective 0.199 < 0.001 0.176 < 0.001 0.137 < 0.001 
 (0.019)     (0.019)     (0.027)     
Mixed Motive 0.185 < 0.001 0.210 < 0.001 0.213 < 0.001 
 (0.020)     (0.021)     (0.028)     
Algorithmic Advice * Difficulty 0.011     0.638 0.012     0.599 0.012     0.613 
 (0.024)     (0.024)     (0.024)     
Initial Confidence           -0.078 < 0.001 -0.078 < 0.001 
           (0.008)     (0.008)     
Order           0.004     0.087 0.004     0.086 
           (0.002)     (0.002)     
Initial Time           0.000     0.661 0.000     0.684 
           (0.000)     (0.000)     
Algorithmic Advice * Intellective                     0.077 0.042 
                     (0.038)     
Algorithmic Advice * Mixed 

Motive          
 

         
 

-0.008     
0.843 

                     (0.039)     
N 3762          3762          3762          

Log Likelihood 
-1782.7 

 
-1753.3   

 -
1755.0     

 

AIC 3581.4      3528.6  3536.1      
The dependent variable is weight on advice. Standard errors are in parentheses. Statistically significant effects are denoted in 

bold. Effects that are different from the effects in table 5.1 are highlighted in yellow. There were N = 1,247 subjects.  

 

5.3.2 Confidence 
When we evaluate the effects on confidence, we find that subjects relied on advice less in the 

intellective task than in the creative task, and more in the mixed motive task than in the creative 

task. This might indicate that creative task was inherently harder than the intellective task, or it 

may indicate that subjects are simply less confident in their creative skills than their intellective 

skills. We also find that the interaction between algorithmic advice and the intellective task is 

positive and significant, indicating that subjects were more confident in advice from algorithms 
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in the intellective task than in the creative task. The interaction between algorithmic advice and 

the mixed motive task was not significant, indicating that subjects were equally confident in 

advice from algorithms for the creative and mixed-motive tasks.   

Table 5.3 Confidence Results 

 Result P Value Result P Value Result P Value 

(Intercept) 3.128  < 0.001 1.483  < 0.001 1.516 < 0.001 

 (0.035)  (0.034)  (00.037)  

Algorithmic Advice 0.067  0.063 0.040  0.086 -0.026 0.481 

 (0.036)  (0.023)  (0.036)  

Difficulty -0.403  < 0.001 -0.141  < 0.001 -0.141 < 0.001 

 (0.017)  (0.015)  (0.015)  

Intellective -0.270  < 0.001 -0.092  < 0.001 -0.150 < 0.001 

 (0.039)  (0.024)  (0.033)  

Mixed Motive 0.171  < 0.001 0.096  0.001 0.062 0.123 

 (0.045)  (0.029)  (0.040)  

Algorithmic Advice * 
Difficulty 0.008  

0.744 
0.016  

0.427 0.016 0.438 

 (0.024)  (0.021)  (0.021)  

Initial Confidence        0.544  < 0.001 0.544 < 0.001 

        (0.008)  (0.088)  

Order        0.003  0.165 0.003 0.165 

        (0.002)  (0.002)  

Initial Time        0.000  0.187 0.000 0.192 

        (0.000)  (0.000)  

Algorithmic Advice * 
Intellective  

 
 

 0.117 0.013 

     (0.047)  

Algorithmic Advice * 
Mixed Motive  

 
 

 0.068 0.232 

     (0.057)  

N 10527       10527       10527  

Log Likelihood -10935.073   -9169.495   -9170.571  

AIC 21886.147   18360.990   18367.142  

 

Due to the tasks requiring significantly different amounts of reading and comprehension, we do 

not formally test which tasks resulted in more time spent on a problem.  

As a final result of the dissertation, we list which hypotheses were supported and not supported 

in Table 5.4. 
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Table 5.4 Summary of Results 

 

5.4  Limitations 
One of the significant limitations of this research is that it does not directly inform whether an 

individual will rely more on an algorithm or on advice from peers for a specific task. Rather, we 

Hypothesis Supported? 

For intellective tasks, the effect of algorithmic advice on belief 

change will be stronger than the advice of a crowd. 

Yes 

For intellective tasks, the effect of algorithmic advice on belief 

change will be stronger for a more difficult task.  

Yes 

For intellective tasks, algorithmic advice will result in less cognitive 

effort compared to the advice of crowds. 

No 

For intellective tasks, the effect of algorithmic advice on cognitive 

effort will be stronger for a more difficult task. 

No 

For intellective tasks, algorithmic advice makes humans more 

confident in their decisions than the advice of crowds. 

Yes 

For intellective tasks, the effect of algorithmic advice on decision 

confidence will be stronger for a more difficult task. 

Yes 

For creative tasks, the effect of algorithmic advice on belief change 

will be stronger for a more difficult task. 

No 

For creative tasks, the effect of algorithmic advice on cognitive effort 

will be stronger than the effect of crowd advice for a more difficult 

task.  

No 

For creative tasks, the effect of algorithmic advice on confidence will 

be weaker for a more difficult task.  

No 

For mixed-motive tasks, the effect of algorithmic advice on belief 

change will be greater than the effect of the advice of a crowd on 

belief change. 

No 

For mixed-motive tasks, the effect of algorithmic advice will be 

moderated by task difficulty. 

No 
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evaluate what occurs when a focal task gets harder and how that changes based on the type of 

task. Thus, our research is complementary to other efforts that more directly answer whether an 

individual will rely on algorithmic advice for a task.  

Like all experimental research, the effects we observe may be biased because subjects knew that 

they were being observed. Additionally, sampling from Mechanical Turk may have biased our 

results, if people on Mechanical Turk have different propensities to rely on algorithmic advice, 

or different interpretations of how difficulty changes in tasks. In the future research section 

below we outline several ways to address this bias.  

5.5  Future Research 
An avenue for future research is to measure cognitive effort more directly by using NeuroIS 

techniques such as EEG or fMRI technology. Future collaborations exploring this opportunity 

are in progress, and they could be helpful in understanding why we observed largely null effects 

in the creative experiment. Incorporating other types of creative tasks and using NeuroIS 

techniques would likely result in high-quality journal publications.  

Future research could also investigate whether we face a social acceptability confound. It is 

possible that we subjects rely more on advice when they thought it was socially acceptable. In 

tasks like counting, there is no risk of appearing callous when relying on an algorithm. Without 

an instrument measuring social acceptability we do not have clear evidence proving or 

disproving this possibility. In the mixed-motive task, on the other hand, relying heavily on an 

algorithm may cause someone to feel either callous or be self-conscious about their willingness 

to rely on advice. Using other relevant variables, such as whether the decision is made via Zoom 

or in person, could result in publishable findings.  
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Although the research from the intellective task is published, further research into how cultures 

affect algorithmic appreciation could shed new light on the phenomena. Specifically, if other 

cultures have greater individualism or collectivism, then they may be more willing to rely on 

advice from a crowd, which could influence the relative difference between crowd and 

algorithmic advice.  

Another way we could build on the results from the intellective task would be to observe how 

people rely on algorithmic advice using archival data. Platforms that recommend products, such 

as Amazon, Netflix, or Zillow would have perfect data to compare the relative effect of 

algorithmic versus crowd recommendations.   

5.6  Discussion 
This dissertation focuses on how difficulty affects algorithmic appreciation and algorithmic 

aversion across three types of tasks. We found that the task type affects the degree to which 

subjects rely on WOA, and that subjects relied significantly more on algorithmic advice in the 

intellective task. An important takeaway from this project is that self-reported confidence is 

strongly positively correlated with WOA, and that time spent on a problem is not correlated with 

either weight on advice or self-reported confidence.  

This research can inform several important questions relevant to managers. First, it can help 

managers realize when they may utilize algorithmic or human advice. This may have utility in 

answering questions such as when to leverage humans or machines in providing help to a client, 

such as through a help desk. It could also inform managers of technology platforms whether they 

want to frame a recommendation as stemming from their algorithms or from other people. Of 

course, the recommendations would be the same, because the algorithms are trained from other 

customer’s decisions, but the framing of the recommendation can be informed by this research. 
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Although this may require some minor deception, or would at least require the platform to gloss 

over the similarities between a crowd recommendation and an algorithm trained based on crowd 

behavior, we believe this could be accomplished through a simple A/B test that companies run 

routinely. Tests that check how people respond to different framings, colors, or other aesthetics 

are run constantly by the major tech platforms. If there were still concerns about the ethics of this 

slight deception, subjects could even be informed of the results after the experiment concluded.   

Our research also has important implications for theory. This is the first paper we are aware of 

that looks at cognitive effort, behavioral change, and confidence in tandem. Prior research has 

used physiological measurements such as heart rate to measure cognitive load, a construct 

closely related to cognitive effort (Alexander et al. 2018).  Our results highlight the noisiness of 

measuring cognitive effort using time spent, and the strong correlation between behavioral 

change and confidence. Future research could use NeuroIS techniques to determine the 

relationship between time spent and physiological measures such as brain activity or heart rate. 

We are also the first paper to investigate algorithmic appreciation in a creative task, and the first 

paper researching algorithmic appreciation to use McGrath’s Circumplex Model to inform our 

task choices. 

We believe one explanation of these results is that the public is ready to accept advice for a broad 

swathe of intellective tasks. This is demonstrated by reliance on algorithms for finance, weather 

forecasting, or games such as chess. Similarly, our results explain why people are so surprised at 

the effectiveness of algorithms in other types of tasks, such as when apps like Spotify are able to 

recommend music so well (Gershgorn 2019). As a society, we are not yet aware of how our 

music tastes can be effectively distilled into a numerical calculus.  
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We already know that task objectivity predicts whether an individual will prefer human or 

algorithmic advice (Castelo et al. 2019). These experiments are capturing a snapshot in time for 

the public’s trust in algorithms. Decades ago, it would have been unheard of to use algorithms to 

count people in a crowd, generate meaningful text, or resolve conflicts, and if these experiments 

had been conducted then we would have likely observed results indicating algorithmic aversion 

across all tasks. Given the relentless pace of progress on algorithms, and increasingly large 

datasets on which to train, we expect the public will eventually embrace algorithmic assessments 

in decisions such as mixed-motive and creative tasks. The public have heard of many bad 

examples of inequity in mixed-motive or otherwise subjective tasks, such as hiring. However, 

like most facets of news, our attention is drawn more to failures than to successes. As the success 

stories permeate and become commonplace, the public acceptance will likely also grow.  

 There are several paths that could result in algorithms gaining acceptance in new task types. One 

way is that algorithms remain biased, but their biases are unknown or hidden. A more sanguine 

perspective is that future developers may be able to make less biased algorithms, or that the 

public is introduced to successful algorithms in new task types with lower stakes, such as 

through music recommendations. If less biased algorithms can be developed, then algorithms 

may be meaningfully embraced by society in mixed-motive tasks focusing on equity and 

fairness, potentially followed by acceptance in creative tasks.   
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7 Appendix 1:  

7.1 Kanye West RNN Generated Lyrics 

Right here, history 

Where the day it’s face in. I really want some Marie weed 

Hotel to aton will reach 

If your cousing off on my free 

You can’t even though too much on the old flowed 
 

 

7.2 George R.R. Martin RNN Generated Lyrics 
“‘I feared Master Sansa, Ser,’ Ser Jaime reminded her. “She Baratheon is one of the crossing. 

The second sons of your onion concubine.'” 

(Mlot 2017) 

 

8 Appendix 2: Attention Check 
This attention check was used in (Yeomans et al. 2019). Participants who failed the attention 

check will not be not counted in our recruitment totals and were not allowed to complete the 

survey. 

First, tell us about yourself!  

To help us understand how people think about different activities, please answer this question 

correctly. Specifically, we are interested in whether you actually take the time to read the 

directions; if not, the results would not be very useful. To show that you have read the 

instructions, please ignore the items below about activities and instead type 'I will pay attention' 

in the space next to 'Other'. Thank you.  

[ ] Watching Athletics  

[ ] Attending Cultural Events  
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[ ] Participating in Athletics  

[ ] Reading Outside of Work or School  

[ ] Watching Movies  

[ ] Travel  

[ ] Religious Activities  

[ ] Needlework  

[ ] Cooking  

[ ] Gardening  

[ ] Computer Games  

[ ] Hiking  

[ ] Board or Card Games  

[ ] Other: ________________________________ 

 

9 Appendix 3: Manipulation check 
This was used at the end of the study to confirm that participants had processed the information 

they were given about the source of the recommendations they had received. 

 ————————————  

Answer a quick question about the experiment you just took part in, to make sure you were 

paying attention. What was the source of the recommendations in your study?  

[ ] An algorithm 

[ ] An average of human estimates  

[ ] Didn’t specify 

10 Appendix 4: Bail Scenario 
Charge: Armed habitual criminal and aggravated battery 

State Attorney’s reasons for high bail: 

• Routine traffic stop 

• Officers observed defendant put something in someone else’s lap 

• Officers did a pat down of defendant and felt a gun  

• Officers tried to cuff defendant, who pushed officer in chest while fist was balled up 

• There was a struggle and all officers fell to ground 
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• Officers suffered scrapes and lacerations  

• Officers recovered a gun from defendant 

• Someone else in car had 9 grams of cocaine 

• Defendant was discharged from parole 4 days ago 

• Defendant has 4 prior felony convictions (2015 possession of firearm by gang member, 

2015 aggravated fleeing, 2011 unlawful use of weapon by felon, 2006 aggravated 

criminal sex abuse) 

• Loaded weapon found on person 

Public Defender’s reasons for low bail: 

• Defendant is in his 30s 

• Lifelong resident of the county 

• Lives with a friend for last 6 days 

• Has a child who is 5 years old 

• Has GED 

• Has certificate from local college  

• Also has asthma, which could make spending time in prison complicated because of 

COVID 

• Can post $500 towards bail 

 

 


