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Abstract

Compared to classical data which take a single value, there is another type of data,

symbolic data, which can be a list, an interval, and even a distribution into consideration.

Symbolic data are very common in our daily life; however, the analysis methods for symbolic

data are very limited. For instance, a famous and useful method for supervised learning such

as regression or classification is the decision tree. There are many useful algorithms based

on the decision tree. However, the decision tree is only useful to classic data taking a single

value, either numerical or categorical. In this dissertation, we will extend the classification

and regression tree method (CART) to symbolic data.

Index words: Symbolic data, Interval-valued data, Modal multi-valued data,

Decision Tree, Classification and Regression Tree (CART)
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Chapter 1

Introduction

For supervised learning including regression or classification methodologies, a famous and

useful method is a decision tree. There are a lot of useful algorithms based on the decision tree

such as XGBoost proposed by T. Chen and Guestrin, 2016, and LightGBM introduced by Ke

et al., 2017. Those methods have been widely used in distributed computing in industry. The

tree model has excellent interpretability and is relatively accurate for classification prediction

problems, which makes it attain prominence in data science competitions and real-life data

analyses. However, classification and regression tree methods are only useful for classical

data taking a single value, either numerical or categorical. The focus of this research is to

propose an approach to tree methods for symbolic data, specifically for modal multi-valued

data and interval-valued data.

Symbolic data were first introduced by Diday, 1987. Most of the data we collect and

analyze are classical data, which can be analyzed by standard classical analysis methods.

However, when the sample size is very large, for instance, 100 million, some traditional

methods for analyzing such data sets will be problematic. One method to deal with the large

data set is by aggregating the individuals into classes or categories so that the aggregated

data set is greatly reduced in its sample size. In this case, the random variable does not take

values at a single point anymore, no matter if it is quantitative or qualitative. In addition,
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there are many situations where the raw data cannot be collected. For example, if we want to

investigate the employees of companies, they often are reluctant to provide the information

of individual employees because of privacy issues. In this case, to analyze the company’s

employees, we can consider a certain type of employee rather than separate individuals. Then

independent variables and responses will take values in the form of an interval, a list, or

even a distribution. What is more, symbolic data can also be used for time-series data to

unified the dimension. For instance, if we are considering the classification of the charging

process for shared bicycles, a traditional classification model is not applicable because the

data matrix dimensions are inconsistent due to the fact that the charging time is not fixed.

In these cases, converting the data into symbolic data to make the data dimension consistent

with each charging process is a good choice to handle the analysis of the data. Billard and

Diday, 2006, also provides many examples of natural and aggregated symbolic data that need

to be analyzed. Hence, it is of vital importance for us to find methods for symbolic data

analysis.

There are many existing works for symbolic data analysis, for instance, properties of the

sample mean and variance, principal component analysis (PCA), and clustering methods. As

for supervised learning, the simple linear regression for interval-valued data is first published

by Billard and Diday, 2000. In addition, Billard and Diday, 2002, introduced linear regression

for the other types of symbolic data such as histogram-valued data. Xu, 2010, proposed

another approach for linear regression for interval-valued data. Due to the reason that

symbolic data are very common in our daily life but the methods to analyze symbolic data

are very limited, the analysis methods that contain symbolic variables need to be explored,

especially for the classification and regression parts. Classification and Regression Tree

(CART) is not only widely used for both classification and regression but also it is very easy

to explain the tree structure. In addition, the forecasting of CART is very impressive. That

is the main reason why it is necessary to explore this tree-based model for symbolic data.
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Based on the previous work such as descriptive statistics and clustering methods for symbolic

data, and classification and regression tree method (CART) for classical data, we propose a

new method to analyze symbolic data called Classification and Regression Tree for Symbolic

data (CART for SD).

In Chapter 2, Section 2.1 introduces what are symbolic data and what is the difference

between symbolic data and classical data. In addition, some statistical concepts, properties,

and basic analyzing methods are also introduced in this section. Section 2.2 describes the

commonly used decision tree method, the classification and regression tree method which

is originally developed by Breiman et al., 1984. In Chapter 3, we first consider one type

of symbolic data, multi-valued data as the explanatory or the response variables in Section

3.1. Section 3.2 and 3.3 introduce the situations where we consider several other symbolic

data types as explanatory and response variables. Chapter 4 gives some simulations and real

data examples using the algorithms. In Chapter 5, some conclusions and future work are

discussed.
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Chapter 2

Literature Review

To establish a foundation for the classification and regression tree for symbolic data, we give

a brief definition of symbolic data with some examples in Section 2.1. For the classification

or regression tree method (CART), we always hope that with as few groups as possible, the

higher the similarity in the same group, the better. There are many ways to divide the

data set, among which clustering is a good step to pre-process the attributes. Some existing

cluster methods for symbolic data are reviewed in Section 2.1.4. Then we summarize the

main idea of a decision tree in Section 2.2.

2.1 Symbolic Data

Compared with classical observations which are points either qualitative or quantitative,

symbolic data takes values as lists, intervals, histograms, and so on. All of the definitions and

notations in this subsection are from Chapter 2 and Chapter 3 of Billard and Diday, 2006.

To understand the definitions and properties better, we can use the Bank-marketing data set

from https://archive.ics.uci.edu/ml/datasets/Bank+Marketing#. Here, there are n = 41188

observations and p = 20 explanatory variables. We just choose five variables to obtain a brief

understanding of symbolic data. The descriptions of the variables in this Bank-marketing

4
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data set are shown in Table 2.1.

Table 2.1: Description of Bank-marketing data set

No. Variable Type Description
V1 Age numerical (in years): ≥ 0

V2 Job categorical
Type: administration, blue-collar(BC), entrepreneur,
housemaid, management, retired, self-employed(SE),
services, student, technician, unemployed, unknown

V3 Marital categorical Type: married, divorced, single, unknown
V4 Duration numerical Last contact duration, in seconds
V5 Housing categorical Housing loan (Yes, No, unknown)

We just choose ten of the n = 4188 observations to obtain a brief understanding of

symbolic data, shown in Table 2.2. The explanatory variables “Age” and “Duration” are

numerical and the other three explanatory variables are categorical.

Table 2.2: Part of the Bank-marketing data set (Classical)

No. Age Job Marital Duration Housing
1 56 housemaid married 261 no
2 57 services married 149 no
3 37 services married 226 no
4 40 administration married 151 no
5 56 services married 307 yes
6 45 services married 198 no
7 59 administration married 139 no
8 41 blue-collar married 217 no
9 24 technician single 380 no
10 25 services single 50 no

Since there are only n = 41188 observations and p = 20 explanatory variables, these data

can be analyzed using classical techniques at this size. However, if the sample size is very

large, such as 100 million, some traditional methods do not work when analyzing such data

sets. Therefore, reducing the sample size is critical.
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There is another situation that due to privacy restrictions, the bank cannot provide the

specific value of each individual for some special variables, such as the number of deposits. If

we divide clients into several groups and only record the variable values of the groups, we can

solve this problem well while retaining key information. Another important issue that we

need to consider is how to reconfigure the data set to a size that allows the analysis to proceed.

At first, we need to consider what we want to learn from the data to “reduce” the sample size

in a meaningful way. For example, it may be of greater interest to the researcher to determine

whether a certain category, such as married management denoted by ‘married-management’,

or a technician who is between 25 and 35 years old denoted by ‘technician between 25-35

years old’ rather than considering all the individuals. Since each of these categories may

consist of more than one individual, the observed value becomes a list or an interval rather

than a single point. For example, if we consider the category ‘technician between 25-35 years

old’, the number of contacts performed during this campaign for the whole group will take

values in the interval [1, 21] and the marital status will be the list {married, divorced, single}.

2.1.1 Notations and Definitions

Before we study the existing analytical methods of symbolic data, we first need to know some

basic notations and definitions.

Notation 2.1.1.1 Let E = {ωu, u = 1, . . . ,m} be a set of m symbolic concepts/cate-

gories.

Notation 2.1.1.2 For the random variables Xj, j = 1, ..., p, let the notation xij represent a

classical value or realization on the individual i = 1, ..., n and ξij be a symbolic realization.

Therefore, for a classical realization of the variable Xi, we have Xj(i) = xu, while for a

symbolic one, Xj(i) = ξu.
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If the random variables are measured on a category ωu ∈ E rather than an individual, it

could be written as Xj(ωu) = ξu. Let Xj be the domain of Xj and X = X1 × ...×Xp be the

domain of X = (X1, ..., Xp). We have further definitions.

Definition 2.1.1 Every point x = (x1, ..., xp) in X is called a description vector.

Definition 2.1.2 The p-dimensional subspace D = (D1, ..., Dp) ⊆ X is called a description

set, where Dj ⊆ Xj, j = 1, ..., p. If D = Πp
j=1Dj is the Cartesian product of the sets Dj, D

is called a Cartesian description set.

2.1.2 Several Types of Symbolic Data

Compared with classical data which consist of qualitative and quantitative single point values,

symbolic data contain several different types: multi-valued, interval-valued, modal multi-

valued, and histogram interval-valued. In this subsection, we will introduce the definitions

of these four types with examples. The examples are still drawn from the Bank-marketing

data set.

Definition 2.1.3 A multi-valued symbolic random variable X is one whose possible value

takes one or more values from the list of values in its domain X .

Example 2.1.1 Suppose we are interested in observations of different ages and we want to

know the difference in “Job” (X1) between categories, the domain={administration, unknown,

unemployed,..., (list of jobs), technician, services}. Then for the group of 22-year-old:

X1(ω1) = X1(22-year-old) = ξ11 = {administrate, student, technician};

for the group of 75-year-old:

X1(ω2) = X1(75-year-old) = ξ12 = {housemaid, retired};
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and so on.

Another example in life is the multiple-choice questionnaire. There are multiple options

in one question. We can select all the options that apply. Therefore, the value for each

problem is a list that contains unfixed elements.

Definition 2.1.4 An interval symbolic random variable takes values in an interval, which

can be closed or open at either end.

After aggregating the individuals, some continuous values emerge as an interval. The two

sides of the interval can be calculated by

auj = min
i∈Ωu

xu, buj = max
i∈Ωu

xu

where Ωu is the set of i ∈ Ω values which make up the category ωu.

Example 2.1.2 Suppose we are interested in observations of different ages and we want to

know the difference in “Duration”(X2) between categories. The domain is {x ≥ 0}. Then,

for the group of 20-year-old:

X2(ω3) = X2(20-year-old) = ξ23 = [172, 274];

for the group of 80-year-old:

X2(ω4) = X2(80-year-old) = [123, 712];

and so on.

In addition, a common question when applying for a job is, what is your expected salary.

In this case, we should provide a range of values rather than a single value. As a result,

8



the realization will be an interval. Here, we have a special case that if we only have one

observation a in a group or all the observations take just one numerical value a, the interval

value becomes [a, a]. Based on the assumption that the values within intervals are uniformly

distributed over the interval [a, b], we have

P (z ≤ ξ) =


0, ξ < a,

ξ − a
b− a

, a ≤ ξ ≤ b,

1, ξ ≥ b.

(2.1)

Definition 2.1.5 Let X = {η1, η2, ...} be the domain of a multi-valued random variable X.

A modal multi-valued variable is one whose observed outcomes take values that are a

subset of X with a nonnegative measure.

That is, for the category ωu, the realization takes the form

X(ωu) = {ηu1, pu1; ...; ηusu , pusu}

where η1, η2, ... ⊆ X and where the outcome ηuk occurs with weight puk,k = 1, ..., su, and

with
∑su

k=1 puk = 1.

Example 2.1.3 Suppose we are interested in observations of different ages and we want to

know the difference in “Marital” (X3) between categories, the domain is {married, divorced,

single}. Then, for the group of 21-year-old:

X3(ω5) = X3(21-year-old) = ξ35 = {married, 0.22; divorced, 0.02; single, 0.76};

for the group of 62-year-old:

X3(ω6) = X3(62-year-old) = ξ36 = {married, 0.67; divorced, 0.33; single, 0.00};
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and so on.

If we consider a multi-valued type here rather than the modal multi-valued, the value of

Marital for both ω5 and ω6 is {married, divorced, single}, which makes it difficult for us to

find the difference of the variable between groups. Adding weights to the values makes it

better to distinguish different groups and to capture more information than the multi-valued

type does. There are plenty of examples in life. For instance, suppose we want to study the

daily behavior of one animal. If we only use a multi-valued variable to represent the daily

behavior of the animal, it is difficult for us to distinguish animals of different species through

living habits.

Definition 2.1.6 Let X be a quantitative random variable that can take values on a finite

number of non-overlapping intervals {[ak, bk), k = 1, 2, ...} with ak ≤ bk. Then, a histogram

random variable takes the form

X(ωu) = {[auk, buk), puk; k = 1, ..., su}

where su is the finite number of intervals forming the support for the outcome X(ωu) for

observation ωu with weight puk, k = 1, ..., su, and
∑su

k=1 puk = 1.

Example 2.1.4 Suppose we are interested in observations of different ages and we want to

know the difference in “Campaign” (X4) between categories, the domain is {0 ≤ x ≤ 50}.

Then, for the group of 35-year-old:

X4(ω7) = X4(35-year-old) = ξ47 = {[0, 2], 0.62; (2, 4], 0.25; (4, 6], 0.07; (6, 50], 0.06};

for the group of 75-year-old:

X4(ω8) = X4(75-year-old) = ξ47 = {[0, 2], 0.83; (2, 4], 0.00; (4, 6], 0.00; (6, 50], 0.17};
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and so on.

Take the daily rainfall in a city as an example. Because there are multiple regions in one

city, the rainfall situation in different regions is not the same. If we only use the average

or median of the rainfall in all regions to represent the rainfall situation in the entire city,

we will lose part of the information. Therefore, using histogram-valued type to record data

will make the recorded data more complete. There are more examples in Billard and Diday,

2006.

2.1.3 Descriptive Statistics For Symbolic Data

After giving the basic definition of different types of symbolic data, some descriptive statistics,

such as sample means, sample variance, covariance, and histograms are described by Billard

and Diday, 2006.

Multi-valued Random Variable

The sample mean and variance for multi-valued random variable is defined in Bertrand and

Goupil, 2000.

Definition 2.1.7 LetX be a multi-valued random variable taking values in X = {X1, . . . , Xs},

and let Xu = {Xuk, puk; k = 1, . . . , s}, u = 1, . . . , n, be a random sample of size n. Then, the

sample mean for modal multi-valued observations is given by:

X̄ = {Xk, p̄k; k = 1, . . . , s} , p̄k =
1

n

n∑
u=1

puk. (2.2)

Definition 2.1.8 LetX be a multi-valued random variable taking values in X = {X1, . . . , Xs},

and Xu = {Xuk, puk; k = 1, . . . , s}, u = 1, . . . , n, be a random sample of size n. Then, the
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sample variance for modal multi-valued observations is given by:

S2 =
{
Xk, S

2
k ; k = 1, . . . , s

}
, S2

k =
1

n− 1

n∑
u=1

(puk − p̄k)2 (2.3)

where p̄k is given by Equation 2.2.

Multi-valued attributes can be transferred to a similar form with modal multi-valued

variable, that is, {xk, pk; k = 1, . . . , s} with pk = 1/nk if xk occurs in the sample, pk = 0

otherwise, where nk is the number of values from the domain X which occur in the observation.

Thus, the sample mean and variance for multi-valued observations also can be calculated by

Equation 2.2 and Equation 2.3.

Interval-valued Random Variable

The sample mean and variance for interval-valued random variable is first introduced by

Bertrand and Goupil, 2000.

Definition 2.1.9 Let Xu = [au, bu], u = 1, . . . , n, be a random interval sample of size n.

Then, the sample mean for interval observations is given by:

X̄ =
1

2n

n∑
u=1

(au + bu) . (2.4)

Definition 2.1.10 Let Xu = [au, bu], u = 1, . . . , n, be a random interval sample of size n.

Then, the sample variance for interval observations is given by:

S2 =
1

3n

n∑
u=1

(
a2
u + aubu + b2

u

)2 − 1

4n2

[
n∑
i=1

(au + bu)

]2

(2.5)

where X̄ is given by Equation 2.4.

Billard, 2007, and Billard, 2008, show that the sample variance in Equation 2.5 is a function

of the total sum of squares (TSS), which can be divided into two terms: within sum of
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squares (WSS) represents the internal variation and between sum of squares (BSS) represents

external variation. This means

nS2 = TSS = BSS + WSS, (2.6)

where

BSS =
n∑
u=1

[
(au + bu) /2− X̄

]2
, (2.7)

and

WSS =
n∑
u=1

[(
au − X̄u

)2
+
(
au − X̄u

) (
bu − X̄u

)
+
(
bu − X̄u

)2
]
/3, (2.8)

where X̄u = 1
2

(au + bu) is the sample mean of the observation Xu and X̄ is given by Equation

2.4.

Definition 2.1.11 Let Xu = {[auk, buk) , puk; k = 1, . . . , su} , u = 1, . . . , n, be a random his-

togram sample of size n. Then, the sample mean for histogram observations is given

by:

X̄ =
1

2n

n∑
u=1

su∑
k=1

(auk + buk) puk. (2.9)

Definition 2.1.12 Let Xu = {[auk, buk) , puk; k = 1, . . . , su} , u = 1, . . . , n, be a random his-

togram sample of size n. Then, the sample variance for histogram observations is given

by:

S2 =
1

3n

n∑
u=1

su∑
k=1

{[(
auk − X̄

)2
+
(
auk − X̄

) (
buk − X̄

)
+
(
buk − X̄

)2
]
puk

}
(2.10)

where X̄ is given by Equation 2.9.

In addition, for histogram realizations we have that

nS2 = TSS = BSS + WSS, (2.11)
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where

BSS =
n∑
u=1

su∑
k=1

{[
(auk + buk) /2− X̄

]2
puk

}
, (2.12)

and

WSS =
1

3

n∑
u=1

su∑
k=1

{[(
auk − X̄u

)2
+
(
auk − X̄u

) (
buk − X̄u

)
+
(
buk − X̄u

)2]
puk

}
, (2.13)

where X̄u =
∑s

k=1 (auk + buk) puk/2 is the sample mean of the observation Xu and X̄ is

defined in Equation 2.9.

2.1.4 Cluster Analysis For Symbolic Data

In this section, some clustering methods for symbolic data are introduced. As the first step

of the classical data clustering method, dissimilarity and distance measurement are very

basic in cluster analysis. Gowda and Diday, 1991, proposed the Gowda-Diday dissimilarity

of interval value data. Ichino and Yaguchi, 1994, proposed another distance of interval

value data, called Ichino-Yaguchi distance. They also extended the Minkowski distance to

the generalized (weighted) Minkowski distance. de Carvalho, 1994, and de Carvalho, 1998,

proposed two extensions of the Ichino-Yaguchi distance. Kim, 2009, extended the Gowda-

Diday distance and the Ichino-Yaguchi distance from interval value data to histogram value

data. The definitions of Gowda-Diday dissimilarity measure are given below, which is used

as our main tools to split the data and evaluate the performance of the models. In addition,

there are some extensions of the Hausdorff distance, such as the Euclidean Hausdorff distance

and the normalized Euclidean Hausdorff distance. Y. Chen, 2014, compared these Hausdorff

distances.

Dissimilarity and Distance Measures

Suppose we have a one-dimensional multi-valued random variable Y taking values in X =

{X1, . . . , Xs}, The observation ωu can be rewritten in the following form:
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ξ (ωu) = {Xuk, puk; k = 1, . . . , s} (2.14)

for u = 1, . . . ,m, where puk is the relative frequency of Xuk. Then the multi-valued random

variable X has a similar form with that for a modal multi-valued variable. Now, puk = 0 if

Yuk does not occur in the observation, puk = 1/nu if Yuk occurs where nu is the number of

values from Y which do occur. In this case, the realization of multi-valued variable is the

same with that of modal multi-valued one. As a result, only modal multi-valued typed will

be considered.

Definition 2.1.13 gives a simple modal multi-valued distance, introduced by Chavent,

2000.

Definition 2.1.13 For a multi-valued variable of the form of Equation 2.14 or a modal multi-

valued data, a modal multi-valued distance measure between any two observations ωu1

and ωu2 is d (ωu1 , ωu2) which can be calculated by

d2 (ωu1 , ωu2) =
s∑

k=1

(
m∑
u=1

puk

)−1

(pu1k − pu2k)
2 . (2.15)

In addition, Kim and Billard, 2012, extended the measures in Gowda and Diday, 1991, and

Gowda and Diday, 1992, to the modal multi-valued random variable shown in Definition

2.1.16. At first step, one should define the union and intersection operators for modal

multi-valued data.

Definition 2.1.14 For a multi-valued data of the form of Equation 2.14 or a modal multi-

valued data, the realization of the union of ωu1 and ωu2 , ωu1 ∪ ωu2 is described by

ξ(ωu1 ∪ ωu2) = {Xk, p(u1∪u2)k; k=1, . . . , s}, (2.16)

where p(u1∪u2)k = max(pu1k, pu2k).
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Definition 2.1.15 For a multi-valued data of the form of Equation 2.14 or a modal multi-

valued data, the realization of the intersection of ωu1 and ωu2 , ωu1 ∩ ωu2 is described by

ξ(ωu1 ∩ ωu2) = {Xk, p(u1∩u2)k; k=1, . . . , s}, (2.17)

where p(u1∩u2)k = min(pu1k, pu2k).

After knowing the definition of the union and intersection operators, Kim and Billard,

2012, proposed the extended multi-valued Gowda-Diday dissimilarity.

Definition 2.1.16 For a multi-valued variable of the form of Equation 2.14 or a modal

multi-valued data, the extended multi-valued Gowda-Diday dissimilarity between

any two observations ωu1 and ωu2 is d (ωu1 , ωu2) which can be calculated by

d2 (ωu1 , ωu2) = d1 (wu1 , wu2) + d2 (wu1 , wu2) , (2.18)

where

d1 (wu1 , wu2) =
s∑

k=1

|pu1k − pu2k| /
s∑

k=1

p(u1∪u2)k, (2.19)

and

d2 (wu1 , wu2) =
s∑

k=1

(
pu1k + pu2k − 2p(u1∩u2)k

)
/

s∑
k=1

(pu1k + pu2k) , (2.20)

with the union and intersection operators as introduced in Definition 2.1.14 and 2.1.15.

What is more, Kim and Billard, 2012, extended the Ichino and Yaguchi, 1994 distances.

Definition 2.1.17 For a multi-valued variable of the form of Equation 2.14 or a modal

multi-valued data, the extended multi-valued Ichino-Yaguchi dissimilarity measure

between any two observations ωu1 and ωu2 is d (ωu1 , ωu2) which can be calculated by

d (wu1 , wu2) =
s∑

k=1

[
p(u1∪u2)k − p(u1∩u2)k + γ

(
2p(u1∩u2)k − pu1k − pu2k

)]
, (2.21)
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with the union and intersection operators as introduced in Definition 2.1.14 and 2.1.15, and

0 ≤ γ ≤ 0.5 is a pre-specified constant.

As for interval-valued data, only the Gowda-Diday dissimilarity measure will be defined

here; we can find the other distance/dissimilarity measures in Billard and Diday, 2006. Let

us denote a one-dimensional interval-valued random variable X with the following form:

ξu = [au, bu] , u = 1, . . . ,m. (2.22)

Definition 2.1.18 The Gowda-Diday dissimilarity measure between two interval-

valued observations wu1 and wu2 of the form of Equation 2.22 is given by:

D (wu1 , wu2) =
3∑

k=1

Dk (wu1 , wu2) (2.23)

with

D1 (wu1 , wu2) = ‖bu1 − au1| − |bu2 − au2‖ /k (2.24)

where

k = |Max (bu1 , bu2)−Min (au1 , au2)| (2.25)

is the length of the entire distance spanned by wu1 and wu2 , with

D2 (wu1 , wu2) = (|bu1 − au1|+ |bu2 − au2| − 2I) /k (2.26)

where

I = Max (Min (bu1 , bu2)−Max (au1 , au2) , 0) (2.27)

is the length of the intersections of the intervals [au1 , bu1 ] and [au2 , bu2 ] if the intervals overlap,

and 0 otherwise with

D3 (wu1 , wu2) = |au1 − au2| / |x| (2.28)
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where x is the total length covered by the observed values of X, i.e.,

|x| = max
u
{bu} −min

u
{au}. (2.29)

As for the histogram type data, Kim, 2009, and Kim and Billard, 2013, not only introduced

the extended multi-valued Gowda-Diday dissimilarity and the extended multi-valued Ichino-

Yaguchi dissimilarity measure for histogram-valued data, but also proposed a cumulative

density function dissimilarity for histogram data.

Clustering Methods For Symbolic Data

After defining the distance between symbolic variables, we can obtain some clustering methods

for symbolic data, such as hierarchical-divisive clustering and hierarchical-pyramid clustering.

There are many clustering methods for symbolic data. Gowda and Diday, 1991, proposed

a symbol clustering method using minimum similarity. In addition, Chavent, 1998, also

developed a single partition hierarchical clustering algorithm for symbolic objects. The

algorithm assigns the initial sequence to the time interval through the midpoint value of the

time interval of each clustering stage. In addition, Chavent, 2000, published a clustering

method based on hierarchical methodology. Guru et al., 2004, and Guru and Kiranagi, 2005,

proposed clustering method for interval-valued data. Irpino and Verde, 2006, proposed an

agglomerative hierarchical clustering of histogram data based on the Ward criterion. Kim

and Billard, 2011, developed quality indices for histogram observations in a hierarchical

clustering environment based on Dunn, 1974, and Davies and Bouldin, 1979, which can be

used to identify the best value of the number of clusters. Brito and Chavent, 2012, proposed

a monothetic divisive clustering algorithm for both interval-valued and histogram-valued

variables. Kim and Billard, 2018, introduced a method called histogram clustering to process

the data of histogram values. In contrast to these techniques based on the hierarchical

methodology, El-Sonbaty and Ismail, 1998, applied the concept of fuzziness on a data set
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of symbolic objects to their clustering method. What is more, Zhu, 2019, proposed three

monothetic divisive clustering algorithms for interval-valued data. We can find more clustering

methods in Billard and Diday, 2019.

2.2 Decision Trees

A decision tree is a popular machine learning method, including regression trees and classifi-

cation trees. The most outstanding advantage of decision trees is that they will be easier for

people to understand and explain than other machine learning methods. In addition, many

decision tree-based integration algorithms are widely used in big data mining algorithms.

For example, Ho, 1995, proposed a bagging method called Random Forest, which constructs

a multitude of decision trees at training time to make a stable prediction. Friedman, 2001,

and Friedman, 2002, subsequently developed a stage-wise model as an ensemble of weak pre-

diction models. Typically decision trees are based on the idea of gradient boosting proposed

by Breiman, 1997. In addition, there are many other publications such as Mason et al., 1999,

and Ridgeway, 2007, for gradient boosting, the base of which is a decision tree.

2.2.1 Introduction of Decision Tree

In this Section, an example about the hepatitis data set available from https://archive.ics.uci.

edu/ml/datasets/Hepatitis will be used to introduce the definition of the decision tree. The

response variable of this hepatitis data set is categorical with two categories, 1 for death and 2

for alive. The descriptions of the explanatory variables in this data set are shown in Table 2.3.

To understand the data better, we choose the first ten observations as shown in Table

2.4. All of the explanatory variables except “Age” are binary.
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Table 2.3: Description of hepatitis data set

No. Variable Type Description
V1 Age numerical (in years): ≥ 0
V2 Sex categorical 1=male, 2=female
V3 Steroid categorical 1=no, 2=yes
V4 Malaise categorical 1=no, 2=yes
V5 Anorexia categorical 1=no, 2=yes
V6 Histology categorical 1=no, 2=yes

Table 2.4: Part of the hepatitis data set

No. Class Age Sex Steroid Malaise Anorexia Histology
1 2 30 2 1 2 2 1
2 2 50 1 1 2 2 1
3 2 78 1 2 2 2 1
5 2 34 1 2 2 2 1
6 2 34 1 2 2 2 1
7 1 51 1 1 2 1 1
8 2 23 1 2 2 2 1
9 2 39 1 2 2 2 1
10 2 30 1 2 2 2 1

It is of interest to know what kind of hepatitis patients will die or survive. This is a

binary classification case, and is used as an example to illustrate how decision trees work. If

we just consider all the discrete variables, we can divide the data set into two groups by one

feature. For instance, the data set can be divided into two groups based on gender and there

will be four groups if we keep dividing two subsets by the steroid situation.

Decision trees contain a root node, several internal nodes, and leaf nodes. For a decision

tree, the root node is the set of all samples that construct the tree. According to one of the

features, the root node is divided into several child nodes. The child nodes are recursively

constructed through other features, thereby generating new branches. Let us now think

about when we should stop dividing the data set. In the basic algorithm of the decision tree,

several situations cause the set to be undivided. When the node cannot be divided anymore,

the node is a leaf node. One case is when all samples of one subset belong to one category
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and do not need to be divided (for classification), or the Mean Square Error (MSE) is small

enough to be ignored (for regression). Another situation is when the child set is empty or

the samples have the same value of that attribute. In addition, the set cannot be divided if

all the features have been used to divide the sets. In other words, there is no improvement

on the Gini index defined in Definition 2.2.4 or MSE defined in Definition 2.2.6 by splitting

the data.

In the process of constructing a decision tree, the most critical step is how to choose the

partitioning attribute. Several splitting rules and how those rules help us find a classification

tree will be stated in Section 2.2.2. What is the order of explanatory variables we should use?

How to measure one splitting result? These two questions can be answered in Section 2.2.2.

2.2.2 Classification Tree

Information entropy is one of the most commonly used indicators for measuring samples and

purity, which was first introduced by Breiman et al., 1984.

Definition 2.2.1 Assume the proportion of the kth group in the sample set D is pk, k =

1, ..., |Y|. Then the information Entropy of D is defined as:

Ent(D) = −
|Y|∑
k=1

pk log2 pk. (2.30)

The smaller the value of Ent(D) is, the higher the purity of D. Suppose we divide the

set based on a discrete attribute X with V possible values {x1, . . . , xV } and this gives V

child nodes {D1, . . . , DV }. To consider the fact that the sample sizes of those child nodes

are different, a weight |Dv| /|D| is added to calculate the new information entropy since the

more samples we have, the greater the influence of branch nodes on purity.

21



Definition 2.2.2 Information Gain (IG) measures how much “information” a feature

gives us about the class. The information gain of D is defined as:

IG(D,X) = Ent(D)−
V∑
v=1

|Dv|
|D|

Ent (Dv) . (2.31)

The well-known ID3 decision tree algorithm was introduced by Quinlan, 1986, to divide

the data set by information gain. However, there is a huge disadvantage in using information

gain as a splitting rule. For instance, if we consider an attribute that has only one sample per

branch, such as the ID number, the purity of the branch node can be maximized. However,

the decision tree obtained in this way cannot be generated to predict new samples effectively,

so it does not make any sense. Quinlan, 1993, introduced another algorithm named C4.5,

which used the combination of information gain and gain ratio to choose the attribute with

the best division rather than the information gain alone.

Definition 2.2.3 The Gain ratio of set D is defined as:

Gain ratio (D,X) =
IG(D,X)

IV(X)
(2.32)

where

IV(X) = −
V∑
v=1

|Dv|
|D|

log2

|Dv|
|D|

(2.33)

is called the intrinsic value. Generally speaking, the intrinsic value will increase as the number

of the attribute (V ) increased. Thus, the gain ratio has a preference for attributes with a

small number of values. The C4.5 algorithm by Quinlan, 1993, first chooses the attributes

with higher information gain than average and then obtains the attribute by calculating the

gain ratio.
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Another well-known algorithm based on the decision tree is the classification and regression

tree (CART), which was first introduced by Breiman et al., 1984. The CART algorithm used

the Gini index to measure the impurity of the data set.

Definition 2.2.4 The Gini index of one data set D for a categorical attribute X is defined

as:

Gini(D) =

|Y|∑
k=1

∑
k′ 6=k

pkpk′ = 1−
|Y|∑
k=1

p2
k, (2.34)

Gini index (D,X) =
V∑
v=1

|Dv|
|D|

Gini (Dv) . (2.35)

Figure 2.1 shows a decision tree for the same Hepatitis data set with only categorical

attributes using the Gini index. At first, we have the whole data set with 153 samples in it,

121 of which belong to class 2. After splitting the data set by the explanatory variable called

“Malaise”, there will be two subgroups. For these two sub-groups, we can keep splitting the

subgroups until all the explanatory variables are used already or the subgroup is pure enough.

Here, pure means the proportion of one class is approximately 1.

We just consider the discrete variables and discuss how a data set can be divided into

several groups by those features. Data in our daily life tend to contain continuous attributes.

How to divide continuous attributes becomes a problem. Compared to discrete variables,

continuous attributes cannot divide nodes by possible values. Therefore, discretization is

needed to deal with the problem. The simplest strategy is the bi-partition method, which is

used by Quinlan, 1993.

Suppose we want to divide the set based on a continuous attribute X with n different

values with sorted values {x1, . . . , xn} on the data set D. For any arbitrarily dividing point

t, the set D can be divided into two subsets, D−t and D+
t , where D−t contains the value

not greater than t on attribute X and D−t contains the value greater than t on attribute X.

Since any value in the interval [ai, ai+1) , (i = 1, . . . , n − 1) is divided into the same result,
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Figure 2.1: An example of decision tree with categorical variable by Gini index.

the partition point set of n− 1 elements can be considered for the continuous attribute X,

which is shown as Equation 2.36, i.e.,

T =

{
xi + xi+1

2
|1 ≤ i ≤ n− 1

}
. (2.36)

Then, as in the discrete case, the optimal segmentation point is selected to divide the

sample set. The optimazation rule is to maximize the information gain by Equation 2.31.
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Definition 2.2.5 The Gini index of D for a continuous attribute X is defined as:

IG(D,X) = max
t∈T

IG(D,X, t)

= max
t∈T

(Ent(D)−
∑

λ∈{−,+}

∣∣Dλ
t

∣∣
|D|

Ent
(
Dλ
t

)
),

(2.37)

where a weight
∣∣Dλ

t

∣∣ /|D| is added to resolve the uneven number of subsets.

If the current partition attribute is continuous, it can also be used as the partition attribute

of its descendant node. Figure 2.2 shows a decision tree based on the same Hepatitis data

set with categorical attributes and one continuous attribute, “Age”. It is easy to see that

the attribute “Age” is used to divide the data set more than once.

2.2.3 Regression Tree

There are two splitting rules introduced in Section 2.2.2, Information Gain and Gini Index,

the main idea of which is to obtain several subsets by measuring the purity. However, if the

response is continuous, it is meaningless for us to measure a set of samples by purity. Thus,

Breiman et al., 1984, introduced the regression tree with the least-squares error criterion to

choose the splitting attribute for a continuous response.

Suppose a learning sample D consists of n cases (x1, y1), . . . , (xn, yn). Our aim is to

predict a continuous response y by a predictor d(x,β) where d(x,β) is a function of x with

parameters β. For instance, d(x,β) = x′β if we choose a linear model. Before we describe

the principles of the regression tree, we need to know the definition of the cost function.

The cost function (loss function) returns to a non-negative value to measure the quality

of the predictor. In statistics, a loss function is used for parameter estimation.

Notation 2.2.3.1 Let RD(d(x,β)) denote the value of the cost function based on the model

d(x,β) on the sample set D, where β is the parameter.
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Figure 2.2: An example of decision tree with continuous variable.

For easier computation, the accuracy classically used in regression is the average squared

error. Breiman et al., 1984, used the least-squares error criterion to choose the splitting

attribute for a continuous response.

Definition 2.2.6 The Mean Squared Error(MSE) is defined as:

MSE(D) =
1

n

n∑
i=1

(yi − d(xi,β))2. (2.38)
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To have a good prediction of y based on the value of x, we want the cost function to be as

small as possible. Then, the parameter β is estimated by β̂ which minimizes the RD(d(x,β)).

That is,

β̂ = argmin
β

RD(d(x,β)) . (2.39)

Breiman et al., 1984, mentioned the value that minimizes the Equation 2.38 is the

average of yi. That is, for a group of data (x1, y1), . . . , (xn, yn), the estimate that minimizes

the average squared error is

ȳ =
1

n

n∑
i=1

yi. (2.40)

For a set of data D with a continuous response, the best division for this data set is the

one that maximizes the difference between the Mean Square Error (MSE) before division

and after:

∆MSE = MSE(D)−MSE(D1)−MSE(D2). (2.41)

Thus, a regression tree is formed by iteratively splitting the nodes to maximize the

decrease in the MSE of Equation 2.41.

2.2.4 Evaluation of Classification and Regression

Once we stop dividing the entire data set, we can obtain a complete tree model similar to

what we have in Figure 2.1 and Figure 2.2. For data that need to be classified or regressed in

the future, we will obtain a corresponding child node after entering all the inputs into the tree

model. For the classification tree, we use the mode of the response of all the training data

in the child node to predict the label corresponding to the new data. As for the regression

tree, we can use the mean value of the response of all the training data in the child node to

predict the numerical value corresponding to the new data.
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For classification problems, we generally use four values specifically, true positive, true

negative, false positive, and false negative to measure the quality of the classification. The

definitions of these four measurements are in Definition 2.2.7.

Definition 2.2.7 A false positive (FP) is an error in binary classification in which a

test result incorrectly predicts a negative case. A false negative (FN) is an opposite error

where the test result incorrectly predicts a positive case. Contrary to the two incorrect results,

there are two correct results, called true positive (TP) and true negative (TN).

One simple measurement to evaluate one classification model is accuracy, which is the

number of cases with correct prediction over the total number of cases for prediction. The

method to calculate accuracy is in Definition 2.2.8.

Definition 2.2.8 Accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2.42)

where TP, FP, TN, FN are defined in Definition 2.2.7.

Accuracy only works well when the number of samples belonging to each category is

equal. For example, suppose 98% of samples are in class 1, and only 2% of samples are in

class 2. Then, by simply predicting each training sample belonging to class 1, our model can

easily obtain 98% training accuracy. However, the prediction is meaningless. It may also

cause a dangerous result in real life. For instance, suppose we are fitting a model to predict

whether a patient has a kind of cancer or not, class 1 for no and class 2 for yes. Ignoring

the 2% error is fatal to those patients with cancer. As a result, there are many possible

measurements proposed for classification, such as recall, precision, and F-score. Precision

(also called positive predictive value) is the fraction of relevant instances among the retrieved

instances, while recall (also known as sensitivity) is the fraction of relevant instances that
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were retrieved. The F-score is calculated from the precision and recall of the test, which is

the harmonic mean of the precision and recall. Generally speaking, recall and precision trade

each other, so that an F-score considers these two metrics at the same time, making it better

to evaluate the performance of the model. The definition of precision, recall, and F-score is

in Definition 2.2.9.

Definition 2.2.9 Precision and recall are defined as:

Precision =
TP

TP + FP
, (2.43)

Recall =
TP

TP + FN
, (2.44)

where TP, FP, TN, FN are defined in Definition 2.2.7. After calculating the value of precision

and recall, the F-score is defined by:

F− score = 2× Precision× Recall

Precision + Recall
. (2.45)

As for the regression problems, Mean Square Error (MSE), Root Mean Square Error

(RMSE), Mean Absolute Error (MAE), and R- Square (R2) are widely used to evaluate the

performance of the model. The MSE is defined in Definition 2.2.6. The RMSE is the square

root of MSE, making the metric more sensitive to the scale of response. The method to

calculate the RMSE is in Definition 2.2.10.

Definition 2.2.10 Suppose the model d(x,β) on the sample set D is used to predict the

response y, where β is the parameter. The Root Mean Squared Error(RMSE) is defined as:

RMSE(D) =

√√√√ 1

n

n∑
i=1

(yi − d(xi,β))2. (2.46)
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Generally speaking, when we have a set of data and want to use this data to fit a regression

or classification model, our first step is to divide the training set, the validation set, and the

testing set. The training set is used to fit the model. The validation set is used to adjust

high-dimensional parameters. We use the testing set to simulate future unknown data to test

the predictive effect of the model on future data. Therefore, the predictions of the model on

the testing set are often not as good as on the training set, because in the process of fitting

the model, we make full use of the information in the training set, while the testing set does

not contribute any information to the model. What we hope is that we can achieve an ideal

performance on the testing set. Therefore, there are two bad situations when evaluating the

model. The first one, called under-fitting, is when the model is not very good even on the

training set. This means that the information we extracted is not enough, and often we need

to increase the number of explanatory variables or collect more samples. Another situation

is over-fitting. Under this situation, the model is useful only to the training set, and not to

any other data sets.

In Chapter 3, we will not only propose how to build a tree model for symbolic data but

also how to come up with some evaluation methods for symbolic trees. In the next chapter,

we will also introduce some metrics for evaluation for symbolic responses.
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Chapter 3

Methodology

In this chapter, we classify the methods to be developed according to different types of

variables. Although there are four different types of symbolic variables, we will only consider

modal multi-valued, interval-valued, and histogram-valued variables in this chapter. There

are multiple reasons why it is unnecessary to consider the multi-valued data no matter they

be as a response variable or as explanatory variables. Section 3.1, Section 3.2 and Section 3.3,

respectively, describe the methods to deal with different kinds of response and explanatory

variables. Section 3.4 considers all the scenarios that use the new methodologies related to

symbolic data.

3.1 Multi-valued Variable

To develop our methodology, we need a splitting variable. Suppose we have a multi-valued

variable X as our splitting attribute. One problem that cannot be ignored is the size of the

domain of X. Definition 2.1.3 defines a multi-valued variable showing that it takes one or

more values from the list of values in its domain X . In this case, the number of possible

values of X should be 2n − 1, where n is the number of values in X . In other words, the

number would be huge even if we only have a slightly large number of n. Take n = 5 as an
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instance; this size is analyzable in traditional decision tree methods. However, 2n − 1 = 31

is an unmanageable size if we consider all possible scenarios since the gain ratio tends to

avoid the attributes with a large number of possible values. As a result, if we consider

a modal multi-valued variable with 31 possible values, it is likely to remove the attribute

by information gain, resulting in a loss of information. One possible way to avoid a huge

number of values is to have a much smaller number of possible values by clustering. There

are many clustering methods for symbolic data such as the hierarchy-pyramid clusters in

Billard and Diday, 2019. Whatever clustering method we use, a multi-valued variable first

needs to be changed to a similar form as for a modal multi-valued realization for calculating

the dissimilarity measure. As a result, the approach for a multi-valued explanatory variable

is the same as that for a model multi-valued attribute, which will be explained in detail in

Section 3.2.1.

On the other hand, suppose there is a multi-valued response variable Y with domain Y

requiring analysis. When the number n of values in Y is large, there are too many categories

to obtain an accurate result. If we still use clustering methods to find smaller sizes of category,

we can only know that each response variable on the testing set belongs to one cluster and

cannot know the specific value. As a result, we cannot achieve good prediction results since we

usually do not know what the practical meaning of each cluster is. Even if we can predict to

which cluster one testing set belongs, it is hard to interpret the result. However, the data still

cannot be analyzed even though n is small enough. For instance, we may have many different

types of employees and want to know the turnover of each type of employee. In this situation,

the data we collect are in the symbolic type because we are not focusing on individuals but a

group of people. If we use a multi-valued response variable, it is unreasonable because each

type of employee has either resigned or not resigned for example. Then the response variables

of all groups are the same, {yes, no}. In this case, it is meaningless to analyze data in this
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situation. Generally speaking, it would be more meaningful to use the modal multi-valued

type when n is small because we can then distinguish the groups by weights.

3.2 Splitting Measures for Symbolic Response Variable

For classic decision trees, one of the most important steps is to find a splitting rule for each

kind of response variable. In other words, how can we compare different divisions. Section 2.2

introduced the Information Gain and Gini index for classification problems with a categorical

response variable and Mean Square Error (MSE) for regression problems with numerical

response variables. In this section, we will consider the splitting rule for four different types

of response variables.

3.2.1 Modal Multi-valued Response Variable

In this section, we assume that the response variable is modal multi-valued with different

types of explanatory variables. Suppose we have a random sample of size n, Yu, u = 1, . . . , n,

with Yu taking modal multi-valued values from the domain Y = {Y1, . . . , Ys}. The observation

ωu can be rewritten as the following form:

ξ (ωu) = {Yk, puk; k = 1, . . . , s}. (3.1)

Since the domain Y is fixed, the possible values of the response variable are the same for

different categories. The only way to distinguish the response variable of observations is by

comparing the probability set {puk; k = 1, . . . , s} for u = 1, . . . , n, where n is the number of

aggregated groups in the data. What we want to predict are the probabilities rather than

the possible values. Therefore, the decision tree for a modal multi-valued response variable

is more like a regression tree than a classification tree.
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There are two approaches to deal with the modal multi-valued response variable. The

first one is to use the difference in MSE to evaluate the splitting as in a classical decision

tree since the output is a numerical probability. Here, we are analogous to the situation

of a regression tree for numerical outputs; our goal is to divide the data set into several

subsets. The closer the output in each subset, the better the splitting is. In other words, the

smaller the MSE, the smaller is the variation in the subsets. The second approach is using

the similarity or the distance between multi-valued values introduced in Section 2.1.4. In

this method, we use the similarity or the distance to measure the purity or variation within

each subset. The details of these two methods are listed below.

Mean Square Error (MSE)

To simplify the question, we first consider the binary case. That means there are only two

possible values in Y = {Y1, Y2}. Then, the observation ωu for u = {1, . . . , n} becomes:

ξ (ωu) = {Y1, pu;Y2, 1− pu}. (3.2)

In this binary case, the only thing we need to predict is the probability of the value (Y1, p) for

any one observation. The output is one single numerical variable p with 0 ≤ p ≤ 1. Suppose

we have a set of symbolic data D with n categories and a modal multi-valued response variable

taking values as in Equation 3.2 and the index set for D is I = {1, . . . , n}. The estimate

of p based on the whole set D is the sample mean of pu, u ∈ I, which can be calculated by

p̂ = 1
n

∑
u∈I pu. Then, the MSE for the set is

MSE(D) =
1

n

∑
u∈I

(pu − p̂)2. (3.3)

34



Suppose the set is divided into two groups D1 and D2 by an attribute. The MSE of these

two subsets can be calculated by:

MSE(D1) =
1

n1

∑
u∈I1

(pu − p̂1)2, (3.4)

MSE(D2) =
1

n2

∑
u∈I2

(pu − p̂2)2, (3.5)

where I1 and I2 are the index sets, n1 and n2 are the sizes of two groups D1 and D2,

respectively, and p̂1 and p̂2 are the respective sample means.

Definition 3.2.1 For a set of symbolic data D with a modal multi-valued response variable

taking binary values as in Equation 3.2, a best division for this data set is the one which

maximizes the following equation:

∆MSE = MSE(D)−MSE(D1)−MSE(D2), (3.6)

where MSE(D), MSE(D1), and MSE(D2) are given in Equation 3.3, Equation 3.4, and

Equation 3.5, respectively.

For a modal multi-valued response variable with multiple possible values in the domain

Y = {Y1, . . . , Yk}, the observation ωu becomes:

ξ (ωu) = {Y1, pu1;Y2, pu2; . . . ;Yk, 1−
k−1∑
i=1

pui}. (3.7)

In this multiple case with k possible values, the only thing we need to predict is the probability

of all the values except the last value for any observation. The output is the (k−1) dimensional

numerical variable p = (p1, . . . , pk−1)′ with 0 ≤ pi ≤ 1 for i = 1, . . . , k − 1. Suppose there

is a set of symbolic data D with n categories and a modal multi-valued response variable

taking values as in Equation 3.7 and the index set is I = {1, . . . , n}. There are n groups in
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D with response variable p1 = (p11, . . . , p1,k−1)′, . . . , pn = (pn1, . . . , pn,k−1)′. The estimate of

p based on the whole set D is the sample mean of pu, u ∈ I, which can be calculated by

p̂ =
1

n

∑
u∈I

pu = (
1

n

∑
u∈I

pu1, . . . ,
1

n

∑
u∈I

pu,k−1)′.

Then, the MSE for the set is

MSE(D) =
1

n

∑
u∈I

(pu − p̂)′(pu − p̂) =
1

n

∑
u∈I

k−1∑
j=1

(puj − p̄.j)2 (3.8)

where p̄.j = 1
n

∑
u∈I puj. Suppose the set is divided into two groups D1 and D2 by an attribute.

The MSE of these two subsets can be calculated by:

MSE(D1) =
1

n1

∑
u∈I1

k−1∑
j=1

(puj − p̄(1)
.j )2, (3.9)

MSE(D2) =
1

n2

∑
u∈I2

k−1∑
j=1

(puj − p̄(2)
.j )2, (3.10)

where I1 and I2 are the index sets, n1 and n2 are the sizes of two groups D1 and D2,

respectively, and p̄(1) and p̄(2) are the sample means calculated by p̄
(1)
.j = 1

n1

∑
u∈I1 puj and

p̄
(2)
.j = 1

n2

∑
u∈I2 puj, respectively.

Definition 3.2.2 For a set of symbolic data D with a modal multi-valued response variable

taking multiple values as in Equation 3.7, a best division for this data set is the one which

maximizes the following equation:

∆MSE = MSE(D)−MSE(D1)−MSE(D2), (3.11)

where MSE(D), MSE(D1), and MSE(D2) are given in Equation 3.8, Equation 3.9, and

Equation 3.10, respectively.
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Similarity or Distance

Suppose there is a set of symbolic data D with a modal multi-valued response variable taking

values as in Equation 3.7 and the index set is I = {1, . . . , n}. The output is the (k − 1)

dimensional numerical variable p = (p1, . . . , pk−1)′ with 0 ≤ pi ≤ 1 for i = 1, . . . , k − 1. The

ith output in the symbolic set is: ξ (ωi) = {Yk, pik; k = 1, . . . , s}.

In Section 2.1.4, several similarity measures for multi-valued data are introduced. Here

we take the simple distance introduced by Definition 2.1.13 as an example. As a result, the

distance between for any two observations i and j in the symbolic set D can be calculated

by:

d2 (ωi, ωj) =
s∑

k=1

(
n∑
u=1

puk

)−1

(pik − pjk)2 . (3.12)

Definition 3.2.3 For a set of symbolic data D with a modal multi-valued response variable

taking multiple values as in Equation 3.7 and n observations, the average distance within

the set can be calculated by

d(D) =
1

n

n−1∑
i=1

n∑
j=i+1

d (ωi, ωj) =
1

n

n−1∑
i=1

n∑
j=i+1

√√√√ s∑
k=1

(
n∑
u=1

puk

)−1

(pik − pjk)2. (3.13)

Suppose the set is divided into two groups D1 and D2 by an attribute. The average

distance of these two subsets can be calculated by:

d(D1) =
1

n1

∑
i∈I1

∑
j>i

d (ωi, ωj) =
1

n1

∑
i∈I1

∑
j>i

√√√√ s∑
k=1

(∑
u∈I1

puk

)−1

(pik − pjk)2, (3.14)

and

d(D2) =
1

n2

∑
i∈I2

∑
j>i

d (ωi, ωj) =
1

n2

∑
i∈I2

∑
j>i

√√√√ s∑
k=1

(∑
u∈I2

puk

)−1

(pik − pjk)2, (3.15)
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where I1 and I2 are the index sets, and n1 and n2 are the sizes of two groups D1 and D2,

respectively.

Definition 3.2.4 For a set of symbolic data D with a modal multi-valued response variable

taking multiple values as in Equation 3.7, a best division for this data set is the one which

maximizes the following equation:

∆d = d(D)− d(D1)− d(D2), (3.16)

where d(D), d(D1), and d(D2) are given in Equation 3.13, Equation 3.14, and Equation 3.15,

respectively.

Since there are several possible dissimilarity measurements introduced in Section 2.1.4,

only one of them is selected as an example here. We can replace the distance in Definition

3.2.3 and use the difference in other kinds of distances after division according to the splitting

rules.

3.2.2 Interval-valued Response Variable

In this section, we assume that the response variable is interval-valued. Suppose we have

a random sample of size n, D = {Yu, u ∈ I} and the index set is I = {1, . . . , n}, with Yu

taking values as in the following form:

ξ (ωu) = [au, bu]. (3.17)

For the set D, we use the corresponding mean to estimate the upper and lower bounds,

respectively. That is,

â = ā =
1

n

∑
u∈I

au, b̂ = b̄ =
1

n

∑
u∈I

bu. (3.18)
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We want to make the intervals in the set as similar as possible. Here “similar” is measured

in terms of the overlap; thus the more overlap there is between two intervals, the more they

are similar to each other. Considering that the sample size cannot have a significant impact

on the measurement, rather than using the total sum of squares (SST) introduced in Equation

2.6, we use the sample variance which can be calculated by SST(D)/n to measure the purity

of the set D, i.e.,

MSE(D) = SST(D)/n =
∑
u∈I

[
(au + bu) /2− Ȳ

]2
/n

+
∑
u∈I

[(
au − Ȳu

)2
+
(
au − Ȳu

) (
bu − Ȳu

)
+
(
bu − Ȳu

)2
]
/3n,

(3.19)

where Ȳ = 1
2n

∑
u∈I (au + bu) and Ȳu = 1

2
(au + bu).

Suppose the set D is divided to two groups D1 and D2 by an attribute with the index set

I1 and I2. The sample variance of these two subsets can be calculated by:

MSE(D1) =
∑
u∈I1

[
(au + bu) /2− Ȳ1

]2
/n1

+
∑
u∈I1

[(
au − Ȳu

)2
+
(
au − Ȳu

) (
bu − Ȳu

)
+
(
bu − Ȳu

)2
]
/3n1,

(3.20)

MSE(D2) =
∑
u∈I2

[
(au + bu) /2− Ȳ2

]2
/n2

+
∑
u∈I2

[(
au − Ȳu

)2
+
(
au − Ȳu

) (
bu − Ȳu

)
+
(
bu − Ȳu

)2
]
/3n2,

(3.21)

where n1 and n2 are the sizes of two groups D1 and D2, respectively, and Ȳ1 and Ȳ2 are the

sample means of the two groups, respectively.

Definition 3.2.5 For a set of symbolic data D with an interval response variable taking

values as in Equation 3.17, a best division for this data set is the one which maximizes the

following equation:

∆MSE = MSE(D)−MSE(D1)−MSE(D2), (3.22)
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where MSE(D), MSE(D1), and MSE(D2) are given in Equation 3.19, Equation 3.20, and

Equation 3.21, respectively.

Similarity or Distance

Suppose there is a set of symbolic data D with an interval-valued response variable taking

values as in Equation 3.17 and the index set is I = {1, . . . , n}. The output is an interval

variable [au, bu] for the uth observation.

In Section 2.1.4, the similarity for interval-valued data is introduced by Definition 2.1.18.

As a result, the distance between any two interval observations i and j in the symbolic set

D can be calculated by:

d (wi, wj) =
3∑

k=1

dk (wi, wj) , (3.23)

with

d1 (wi, wj) = ‖bi − ai| − |bj − aj‖ /k, (3.24)

where

k = |Max (bi, bj)−Min (ai, aj)| (3.25)

is the length of the entire distance spanned by wi and wu2 , with

d2 (wi, wj) = (|bi − ai|+ |bj − aj| − 2I) /k, (3.26)

where

I = Max (Min (bi, bj)−Max (ai, aj) , 0) (3.27)

is the length of the intersection of intervals [ai, bi] and [aj, bj] if the intervals overlap, and 0

otherwise with

d3 (wi, wj) = |ai − aj| / |x| , (3.28)

40



where x is the total length covered by the observed values of X, i.e.,

|x| = max
u
{bu} −min

u
{au}. (3.29)

Definition 3.2.6 For a set of symbolic data D with a interval-valued response variable and

n elements, the average distance within the set can be calculated by

d(D) =
1

n

n−1∑
i=1

n∑
j=i+1

d (ωi, ωj) , (3.30)

where d (ωi, ωj) is defined in Equation 3.23.

Suppose the set is divided into two groups D1 and D2 by an attribute. The average

distance of these two subsets can be calculated by:

d(D1) =
1

n1

∑
i∈I1

∑
j>i

d (ωi, ωj) , (3.31)

and

d(D2) =
1

n2

∑
i∈I2

∑
j>i

d (ωi, ωj) , (3.32)

where I1 and I2 are the index sets, and n1 and n2 are the sizes of two groups D1 and D2,

respectively, and d (ωi, ωj) is defined in Equation 3.23.

Definition 3.2.7

For a set of symbolic data D with an interval-valued response variable taking multiple

values as in Equation 3.17, a best division for this data set is the one which maximizes the

following equation:

∆d = d(D)− d(D1)− d(D2), (3.33)

where d(D), d(D1), and d(D2) are given in Equation 3.30, Equation 3.31, and Equation 3.32,

respectively.
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Similarly, we can replace the measurement of distance in Definition 3.2.6 to capture other

kinds of splitting measures. There are many existing works for interval-valued regression. In

addition to the above two methods similar to modal multi-valued, we can also refer to the

measurement of interval-valued regression.

Measurements from Interval-valued Regression

Since Billard and Diday, 2000, proposed the first method, different methods have been

introduced to perform linear regression analysis on symbolic data, especially interval-valued

data. By fitting a linear regression model to the center point and the range of the interval,

their model can predict the upper and lower boundaries, respectively. de Carvalho et al., 2004,

converted the interval variables into the center point and range variables, and performed

classical regression analysis on the central point and the range variables. Billard and Diday,

2006, introduced the bi-variate center and range method (BCRM method) based on the

center and range method (CRM method) in de Carvalho et al., 2004. Therefore, it is obvious

that the key point of these linear regressions for interval-valued data is to consider the center

and range of intervals.

There are two ways to fit the regression, either to use the upper and lower boundaries,

respectively, or to use the center point and range. Generally speaking, we choose range and

center instead of the lower bound and upper bound when fitting a linear regression model.

The main reason is that there is an assumption that explanatory variables are independent

of each other in a linear model. In the tree-based model, we do not have any assumptions

about the relationship between explanatory variables. Here we choose the upper and lower

boundaries to fit two regression trees. The main reason is we can obtain the value of the

center and range once we collect the two boundaries of the intervals because there is a one-to-

one correspondence between the two endpoints and the center-range values. In addition, we

do not have to calculate the range and center for the interval on the training set or calculate
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the estimated bounds by the estimated center and range on the testing set. We can directly

use the traditional regression tree to predict the estimated lower bound and estimated upper

bound of the testing set.

Here are the steps to obtain the prediction of intervals on the testing set:

Step 1: For the samples in the training set, we can fit a regression tree called the lower-bound

tree, TL, where TL uses all the explanatory variables to predict the lower-bound of all the

intervals. Here the response variable is a numerical variable representing the lower bound,

and MSE will be used to construct the tree.

Step 2: For the samples in the training set, we can fit another regression tree called the

upper-bound tree, TU , where TU uses all the explanatory variables to predict the upper-bound

of all the intervals.

Step 3: Given the values of explanatory variables on the testing set, we can use TL to

estimate the lower bound for all the samples. For the uth sample from the testing set, the

estimated lower-bound is assumed to be âu, which is defined in Equation 3.18.

Step 4: Given the values of explanatory variables on the testing set, we can use TU to

estimate the upper bound for all the samples. For the uth sample from the testing set, the

estimated upper-bound is assumed to be b̂u, which is also defined in Equation 3.18.

Step 5: For the uth sample from the testing set, the estimated interval is [âu, b̂u].

3.2.3 Histogram-valued Response Variable

In this section, we assume that the response variable is histogram-valued. Suppose we have

a random sample of size n, D = {Yu, u ∈ I} and the index set is I = {1, . . . , n}, with Yu

taking values in the following form:

ξ(ωu) = {[ak, bk), puk; k = 1, ..., s}. (3.34)
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Here, we assume su = s is the same for all categories; otherwise, we can reorganize the

sub-intervals [ak, bk). As in the modal multi-valued case, what we need to estimate are the

probabilities of each interval, pu = (pu1, . . . , pu,k−1)′. There are n groups in D with response

variable p1 = (p11, . . . , p1,k−1)′, . . . , pn = (pn1, . . . , pn,k−1)′. We use the sample mean of pu,

u ∈ I, to estimate p based on the whole set D, which can be calculated by

p̂ =
1

n

∑
u∈I

pu = (
1

n

∑
u∈I

pu1, . . . ,
1

n

∑
u∈I

pu,k−1)′.

We want to make the histograms within one set as close as possible to each other, and

the histograms between different sets as heterogeneous as possible. Here “close” is measured

in terms of the overlap; thus the more overlap there is between two histograms, the closer

they are to each other. In other words, we would like to have the overlap between those

histograms as large as possible. Therefore, we use S2 which can be calculated by SST/n

where SST is defined in Equation 2.6 to measure the purity of set D, i.e.,

MSE(D) =
∑
u∈I

s∑
k=1

{[
(ak + bk) /2− Ȳ

]2
puk

}
/n

+
∑
u∈I

s∑
k=1

{[(
ak − Ȳu

)2
+
(
ak − Ȳu

) (
bk − Ȳu

)
+
(
bk − Ȳu

)2
]
puk

}
/3n,

(3.35)

where Ȳ = 1
2n

∑
u∈I
∑s

k=1 (ak + bk) puk and Ȳu =
∑s

k=1 (ak + bk) puk/2.

Suppose the set is divided into two groups D1 and D2 by an attribute with the index sets

I1 and I2, respectively. The S2 of these two subsets can be calculated by:

MSE(D1) =
∑
u∈I1

s∑
k=1

{[
(ak + bk) /2− Ȳ1

]2
puk

}
/n1

+
∑
u∈I1

s∑
k=1

{[(
ak − Ȳu

)2
+
(
ak − Ȳu

) (
bk − Ȳu

)
+
(
bk − Ȳu

)2
]
puk

}
/3n1,

(3.36)
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and

MSE(D2) =
∑
u∈I2

s∑
k=1

{[
(ak + bk) /2− Ȳ2

]2
puk

}
/n2

+
∑
u∈I2

s∑
k=1

{[(
ak − Ȳu

)2
+
(
ak − Ȳu

) (
bk − Ȳu

)
+
(
bk − Ȳu

)2
]
puk

}
/3n2,

(3.37)

where n1 and n2 are the sizes of two groups D1 and D2, respectively, and where Ȳ1 and Ȳ2

are the sample means of the two groups, respectively.

Definition 3.2.8 For a set of symbolic data D with a histogram response variable taking

values as in Equation 3.34, the best splitting measure for the histogram-valued response

variable is the one which maximizes the change of SST, which can be calculated by the

following equation:

∆MSE = MSE(D)−MSE(D1)−MSE(D2), (3.38)

where MSE(D), MSE(D1), and MSE(D2) are given in Equation 3.35, Equation 3.36, and

Equation 3.37, respectively.

Since there are also many distance/dissimilarity measurements defined for histogram-

valued data, we can use those measurements to define some splitting measurements based

on distance/dissimilarity like what we have for interval-valued data and modal multi-valued

data.

3.3 Splitting Rules for Symbolic Dividing Attribute

3.3.1 Modal Multi-valued Explanatory Variable

Suppose we want to divide the set based on a model multi-valued explanatory variable X =

{xk, pk; k = 1, . . . , s} taking values in X = {x1, . . . , xs}, with n different values {xk, puk; k =

1, . . . , s}, u = 1, . . . , n, on the symbolic data set D.
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For a binary situation, there are only two possible values in X = {x1, x2} with n different

values {x1, p
x
u;x2, 1−pxu}, u = 1, . . . , n, on the symbolic data set D, where pxu is the probability

of x1 in the uth observation. In this case, the only value we can use to distinguish different

observations is one single numerical variable px with 0 ≤ px ≤ 1. Thus, we can regard px

as a numerical variable. However, there are too many variables to consider if the number

of values in X is large. We need to change one single modal multi-valued variable to s− 1

numerical variables where s is the number of values in X = {x1, . . . , xs}. Thus the number of

variables will be greatly increased by this method when there are many variables to consider,

making the analysis more complicated. In this case, we are dividing the sample set by a

(s− 1)-dimensional vector rather than a single value. It is complex and time-consuming to

find a threshold that can divide a set of vectors well and in a meaningful way. Thus, neither

using the vectors as categories nor comparing a vector with one single value or a fixed vector

is applicable in this case.

One way to deal with the multiple-cases modal multi-valued variable is to use cluster

methods. Although it is impossible to exhaust all possible values for the vectors and regard

them as categories, we can convert the modal multi-valued data into several clusters according

to cluster methods and treat the clusters as divided category attributes. There are some

definitions of dissimilarity and cluster methods in Section 2.1.4.

As we mentioned in Section 2.1.3, a multi-valued attribute can be transferred to a similar

form with a modal multi-valued variable. Therefore, the methods in this section are also

useful for a multi-valued variable.

3.3.2 Interval-valued Explanatory Variable

In Section 2.2.2 we talked about how to divide data based on continuous attributes. Compared

to the continuous variable, the interval-valued realization is hard to be divided when using the

bi-partition strategy introduced by Quinlan, 1993, since given a critical value, it is difficult
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to compare an interval with a single value. However, it is possible to compare the lower

and upper bound of an interval with a specific value. Therefore, a method to deal with the

partition based on the interval-valued variable can be described as one that treats the lower

and upper bounds to be two continuous variables.

Suppose we want to divide the set based on an interval attribute V = [a, b] withN different

sorted values {[a1, b1], . . . , [aN , bN ]} on the symbolic data set D. Rather than consider the

interval attribute V , we take two sub-variables Vmin and Vmax into consideration. Also, since

the range and mean have a one-to-one correspondence with the lower and upper bound, this

is equivalent to using the range and the midpoint as two numerical variables.

In addition, based on the idea of bi-partition, we can have three different situations

when comparing an interval with a specific value. We still have to consider how to divide

the set based on an interval attribute V = [a, b] with N samples {[a1, b1], . . . , [aN , bN ]} on

the symbolic data set D. For arbitrary dividing point t, a set D can be divided into three

subsets, D−t , D0
t , D

+
t , where D−t contains intervals with the upper bound not greater than

t on attribute V , D0
t consists of intervals which contain t on attribute V and D−t contains

intervals with the lower bound greater than t on attribute V .

To achieve the best performance of division, we need to find the critical value which

maximizes the splitting measures we proposed in Section 3.2. At first, we should com-

bine the bounds of the intervals and sort them. Suppose the sorted non-decreasing list of

{a1, b1, . . . , aN , bN} is {c1, . . . , c2N}. Since any value in the interval [ci, ci+1) (i = 1, . . . , 2n−1)

divides the whole data set into the same result, we can consider a partition point set TV

which contains all the possible splitting values. There are 2N − 1 elements in the partition

point set TV for the interval-valued attribute V , which is shown in Equation 3.39:

TV =

{
ci + ci+1

2
|1 ≤ i ≤ 2N − 1

}
. (3.39)
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Then, as in the classical case, the optimal segmentation point is selected to divide the

sample set. The optimization rule is to maximize the information gain given by Equation

2.31. If the current partition attribute is interval-valued, then it can also be used as the

partition attribute of its descendant node as in the classical case.

3.3.3 Histogram Explanatory Variable

Suppose we have an explanatory variable, Xu taking values in the following form:

ξ(ωu) = {[ak, bk), puk; k = 1, . . . , s}, u = 1, . . . , n. (3.40)

Here, we assume su = s is the same for all categories; otherwise, we can reorganize the

sub-intervals [ak, bk). Since the sub-intervals for each realization can be the same and fixed

by reorganizing the sub-intervals, the most important information from the realizations is

the probability set {puk; k = 1, . . . , s} for u = 1, . . . , n, where n is the number of aggregated

groups in the data. Therefore, a straightforward method is to treat the probability puk

corresponding to each sub-interval [ak, bk) as a numerical variable with a value between 0 and

1. In this way, we can convert a histogram-valued variable into several numerical variables.

It is not easy to divide the data set into several groups by a histogram explanatory variable

since the histogram variable contains lots of information, which makes it hard to find a rule

to split the data set. Another way to deal with the histogram variable is to use cluster

methods. Although it is impossible to exhaust all possible values for the histograms and

regard them as categories, we can convert the histogram data into several clusters according

to cluster methodology and treat the clusters as divided category attributes. There are some

definitions of dissimilarity and cluster methods in Section 2.1.4.
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3.4 Methodologies for Different Scenarios

In this section, several scenarios will be introduced with details and examples. First, all

possible single types of explanatory variables will be stated and expanded to the situation

with mixed explanatory variables.

Scenario 1 (Multi-valued/modal multi-valued explanatory variable and categori-

cal response variable):

There are many questionnaires in life, for which most questions are often multiple-choice

questions. For example, a game company will investigate which type of game users like. Each

user may like more than one type of game. Therefore, the result collected for this problem is

a list of game types rather than one single option. The first scenario is that a game company

designs a set of questionnaires for a new advertisement of a certain game. The company

would like to fit a classification model based on each user’s feedback on the game (whether

or not a user is willing to download the game), to predict the main audience of this game to

target advertising better. For this study, the input (explanatory variables) are the answers to

each user’s questionnaire, and the output (response variable) is a binary categorical variable,

which is or is not downloaded. To analyze the data in this situation, the steps are:

Step 1: Transfer all the multi-valued explanatory variables to modal multi-valued type as

described in Section 3.1.

Step 2: The sample group can be divided into several subsets as described in Section 3.3.1.

Consider all explanatory variables and select an explanatory variable that maximizes the

difference of gain ratio of Equation 2.32.

Step 3: Repeat Step 2 until the group cannot be divided anymore.

What is more, if the feedback of the users is a rating score that is numerical, then Step 2

will be changed to the difference of the MSE defined in Equation 2.41.

49



Scenario 2 (Multi-valued/modal multi-valued explanatory variable and multi-

valued/modal multi-valued response variable):

The game company can be also used as an example for this scenario. The game company

designed a set of questionnaires for recommending suitable games to new users, to predict the

games that each new user might like and recommend to the user accordingly. In this study,

the input (explanatory variable) is the answer to each user’s questionnaire, and the output

(response variable) is the appropriate game name. Since multiple games can be recommended

here, the output is also a multi-valued type. To analyze the data, in this case, the following

the steps below are:

Step 1: Transfer all the multi-valued explanatory variable to modal multi-valued type as

described in Section 3.1.

Step 2: The sample group can be divided into several subsets as described in Section 3.3.1.

Consider all explanatory variables and select an explanatory variable that maximizes the

difference of gain ratio in Equation 2.32.

Step 3: Repeat Step 2 until the group cannot be divided anymore.

Scenario 3 (Interval-valued explanatory and categorical response variable):

When applying for a job, a common question in the questionnaire is what is your expected

salary. At this time, we are asked to provide a range of values instead of a fixed value. A

website that helps job seekers find a job may need to collect the information, such as expected

salary, expected working hours per week, etc. Based on the corresponding information of a

user, we can decide whether or not to recommend a certain job to the user. The company

would like to fit a classification model based on each user’s feedback on the job (whether or

not he/she is willing to apply for the job). For this study, the input (explanatory variables)

are the answers to each user’s questionnaire (expected salary, expected working hours per

week, etc), and the output (response variable) is a binary categorical variable, corresponding

to whether or not they are willing to apply. To analyze the data in this situation, we can use
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the following steps:

Step 1: The sample group can be divided into several subsets as described in Section 3.3.2.

Step 2: Consider all explanatory variables and select an explanatory variable that maximizes

the difference of gain ratio in Equation 2.32.

Step 3: Repeat Step 2 until the group cannot be divided anymore.

What is more, if the feedback of the users is a numerical rating score, then Step 2 will

be changed to the difference of the MSE defined in Equation 2.41. If we collect the response

variable with other types of data, the splitting measures can be changed accordingly.

Scenario 4 (Histogram-valued explanatory and categorical response variable):

When studying the relevant information of a certain area, such as rainfall, the rainfall

of that day is not very representative if only a certain day is considered due to randomness.

However, when the time window is set at one week or one month, using the mean or median

to estimate the overall rainfall will lose a lot of information; so histogram-valued data should

be considered. If we would like to classify areas by the rainfall situation during one month,

the input becomes histogram-valued data and the output is a binary categorical variable. To

analyze the data in this situation, the following steps are needed:

Step 1: The sample group can be divided into several subsets as described in Section 3.2.3.

Step 2: Consider all explanatory variables and select an explanatory variable that maximizes

the difference of gain ratio in Equation 2.32.

Step 3: Repeat Step 2 until the group cannot be divided anymore.

Similarly, if the output is numerical or other types of symbolic data, the splitting measures

can be changed accordingly.

Scenario 5 (Mixed-type explanatory variables and categorical response variable):

After discussing some of the above special cases, we note that only one type of explanatory

variable is considered. Below, we discuss how to analyze mixed types of explanatory variables.

In this case, the steps for mixed-type variables are:
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Step 1: The sample group can be divided into several subsets as described in Section 3.3. If

the explanatory variable is multi-valued or modal multi-valued type, then we can use methods

discussed in Section 3.3.1. If interval-valued type is considered, then methods of Section

3.3.2 should be used. The sample group can be divided into several subsets as described in

Section 3.2.3 if a histogram-valued explanatory variable is considered.

Step 2: Consider all explanatory variables and select an explanatory variable that maximizes

the difference of gain ratio in Equation 2.32.

Step 3: Repeat Step 2 until the group cannot be divided anymore.

Similarly, if the output is numerical or other types of symbolic data, the splitting measures

can be changed accordingly.
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Chapter 4

Real Data Examples and

Simulations

In this chapter, two real-data examples and several simulations will be used to check the

performance of the methodologies developed in Chapter 3. Section 4.1 used a real-life data

set to verify the application of our CART methodology for histogram-valued explanatory

variables and a binary response variable. Section 4.2 used another real-life data set to verify

the application of our CART methodology for interval-valued explanatory variables and a

binary response variable. Section 4.3 generated some symbolic data and gave the results of

simulations. Here only histogram-valued and interval-valued type of data is collected in real

life. As for other types of symbolic data, simulation methods will be used to generate data.

4.1 Charging Data Example

Nowadays, electric transportation is becoming more and more popular. For example, many

cities such as Boston have lots of shared bicycles to be used anywhere. Shared bikes provide

convenience for people in life. In addition, electric cars are also popular because of their

sustainability and environmental protection. However, for this kind of electric vehicle, one
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problem is that the battery is consumable and needs to be repaired by professionals after

use. In addition, different devices have different usage times and driving conditions, making

it difficult to determine an exact inspection period. What is more, every time the battery is

taken out of the device to check the battery condition, it is usually very labor-intensive and

time-consuming. Energy researchers hope to classify the situation based on the data obtained

during the charging process to predict the battery states, either normal or abnormal. This

method not only reduces the number of times to take out the battery for quality inspection but

also provides an early warning of an abnormal battery immediately. After all, the frequency

of charging is much higher than taking the battery out for maintenance for these electric

vehicles. Therefore, it is easier to find battery abnormalities as soon as possible by the

charging data, avoiding many dangerous situations. This method reduces the possibility of

danger and saves material resources and time.

4.1.1 Data Description

The data are collected from multiple bicycles. For each bike, multiple charging processes are

recorded. The output (or the response variable) is the situation of the battery, either normal

or abnormal. As for the input (or the explanatory variables), there are five features recorded

during charging. The five features are explained in Table 4.1.

Table 4.1: Description of bicycle charging data set (Classical)

No. Variable Type Description
V1 Voltage numeric Voltage when charging
V2 Current numeric Current when charging
V3 State of charge (SOC) numeric State of charge (0-100%)
V4 max temp numeric The maximum cell temperature at the moment
V5 min temp numeric The minimum cell temperature at the moment

Table 4.2 shows how the observations look. Assume there are N observations in total.

Suppose that the nth charging process n = 1, . . . , N , is from time 0 to tqn ; then, the time
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length is tqn , where qn is the number of records collected for the nth charging process. As a

result, the nth charging process is a qn× J matrix, where J = 5 is the number of explanatory

variables described in Table 4.1. Generally speaking, most of the data we collect in life is

in the form of a table, where each row represents a sample, and each column represents an

explanatory variable. For each sample, the features we collected are the same. Therefore, the

feature dimensions of this type of data are consistent. In other words, for general classical

data, each sample is a row vector, and each number or category represents the value of the

corresponding feature. However, each charging process is a matrix, and the dimensions are

not consistent in this charging data.

Table 4.2: The nth sample of the bicycle charging data set (Classical)

Record. Voltage Current max temp min temp SOC
t1 v1 c1 max1 min1 soc1

t2 v2 c2 max2 min2 soc2

t3 v3 c3 max3 min3 soc3

. . . . . . . . . . . . . . . . . .
tqn vqn cqn maxqn minqn socqn

Figure 4.1 shows the data collected for one charging process. Each charging data value

does not only record the current, voltage, and other variables at a fixed moment but rather

values are recorded across time, i.e., for several moments. Suppose the nth observation records

all multivariate input during a period from time t1 to tqn ; here, we call the period as the

time series length. Suppose we have J input variables (J = 5 in this case), and the time

series length is the tqn − t1 with qn as the number of records. For any n, n = 1, . . . , N , the

curve of Xj consists of all the values for the jth, j = 1, . . . , J , explanatory variable during

the charging process. In other words, the observations for this example have the form of

a matrix with dimension qn × J rather than just a row vector. What makes the data even

harder to analyze is that the dimension of the matrices for different observations is not fixed.

55



Figure 4.1: Description of one charging process of shared bicycles.

A matrix-type of data is not rare; we have lots of data in our daily life with a matrix type

of observations. Take an image recognition problem as an instance. The inputs in the image

recognition problem are matrices recording the information of the pixels. To analyze this

image recognition data, we will first transfer all the images to matrices with the same size,

(N × J)-dimensional matrix, where J is the number of explanatory variables and N is the

number of classical observations. Then we will convert the matrices into a 1× (N × J) row

vector when processing the data with each sample as a matrix. However, compared to the

image detection example, the charging process example is much more complex. The fact that

different charging processes have different charging times makes it difficult to analyze the data

by traditional methods because of the inconsistency of the data matrix dimension. That is,

the row number qn of each charging process is not fixed. For example, suppose there are two

charging process observations collected, and that they are called charging A and charging B.

Suppose the charging time of charging A is long and the charging is complete, with the state

of charge (SOC) from 20% to 100%, including 200 records of current and voltage data; and

suppose charging B changes from 50% to 60%, containing 50 records. Therefore, charging A
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contains far more information than charging B. Such a non-fixed data dimension makes the

traditional classification model not suitable for bicycle charging data. In addition, another

reason why traditional classification methods are not suitable for this data set is that even

though there are a lot of data recorded, the number of basic features is only five. This small

number of features tends to cause an underfitting problem.

4.1.2 Methods

There are several possible solutions to deal with an inconsistent dimension for the data. In

this section, three possible methods with figures are listed in detail.

Method 1: Basic Statistics

Suppose we have J input variables (J = 5 in this case) and N observations, the time series

length is qn records for the nth, n = 1, . . . , N , charging process; then, the nth charging process

observation is an qn × J matrix. Although the time length qn is not fixed for different

n, n = 1, . . . , N , several basic statistics can be used to represent the whole process. For

instance, three basic statistics, mean, median, and variance are chosen to summarize the

process. Then each sample can be transformed to a S×M matrix, where S is the number of

statistics used in the method. Since the three basic statistics, mean, median, and variance

are chosen to summarize the process, S = 3 in this example. Figure 4.2 intuitively illustrates

the way of data transformation by basic statistics for one charging process, where J is the

number of input variables.

Table 4.3 shows how the new sample looks by Method 1 using basic statistics. Take the

explanatory variable “Current” as an example. Since the time series length is qn records for

the nth charging process, we can collect qn values of “Current” during charging. Let us denote

the values as c1, . . . , cqn . We can calculate the mean of current by c̄n = 1
qn

∑qn
m=1 ck for the

nth observation. Similarly, we can find the median(c)n and var(c)n for the nth observation.
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Figure 4.2: Method 1 - Reducing the dimension by statistics.

Compared with the original with its qn × 5 dimension, the new format has a fixed dimension

3 × 5, making it possible to transform the matrices to vectors with the same dimension,

1× 15.

Table 4.3: The nth sample of the bicycle charging data set by Basic Statistics Method

Statistics. Voltage Current max temp min temp SOC
mean v̄n c̄n m̄ax m̄in ¯soc

median median(v)n median(c)n median(max)n median(min)n median(soc)n
variance var(v)n var(c)n var(max)n var(min)n var(soc)n

However, one drawback of this method is that we delete too many records which contain

a lot of information. In this way, only a few statistics are selected to summarize the whole

process very crudely, losing a lot of information. As a result, Method 1 will greatly increase

the predicted bias.

Method 2: Filling by Time Series Model

Another method is to use time series models to predict the rest of the charging data, making

all the observations have the same data dimension. Assume that the time length required

to charge the battery from zero to full is T . For all of the observations where the charging

process has a length smaller than T, we can predict the rest of the values to time T from
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the previous time-series data based on the information collected. Time series models such as

Auto Regressive Integrated Moving Average Model (ARIMA) and Recurrent Neural Networks

(RNN) can be fitted to the actual values recorded. For example, if one charging process

collected is from 20% to 80%, we can predict the charging data from 0% to 20% and 80%

to 100% by the charging information collected (all the values from 20% to 80%). Figure 4.3

illustrates this way of data transformation by completing data where the filled-in data are

shown in red curves.

Figure 4.3: Method 2 - Filling data by a time series model.

However, in this case, we have to fill in all the variables for all the observations. This

action will increase the number of calculations, and there will be an extra error when filling

the data. Especially when the period of charging process we collected is not large enough,

the increased calculation and errors can be very problematic.

Method 3: Histogram-valued Explanatory Variables

To analyze data with inconsistent feature dimensions, Method 3 first converts the data matrix

into a symbolic type. Since all the six explanatory variables are numeric, we can obtain either

interval or histogram type symbolic data. The interval data only contain the maximum and

minimum values without considering the distribution of the data within the interval. For

these data with such a small number of features, a lot of information will be missing if an
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interval type is considered. As a result, histogram data will be used for the following analysis.

This method is very similar to Method 1 which considers basic statistics, while Method 3 uses

the histogram-valued variable to summarize the time series data, capturing more information

from the original data.

There are two ways to convert the explanatory variables to histogram-valued. Take

variable “Current” as an example; for each sample, we can collect lots of values. The first

method is to convert directly. Suppose we have n charging processes in total. Then the nth

histogram-valued realization has the following formula:

I(1)
n = {[I(1)

ns , I
(2)
ns ), pns; s = 1, . . . , Sn}, n = 1, . . . , N, (4.1)

where Sn is the finite number of sub-intervals forming the support for the outcome qn for

observation n with weight pns, s = 1, ..., Si, and
∑sn

s=1 pns = 1. The [I
(1)
ns , I

(2)
ns ) are the sub-

intervals we defined. In addition, the notation (1) in I
(1)
n refers to the first way to convert

to the histogram-valued data. However, one disadvantage of this method is that we directly

capture all the recorded current values together and ignore the current fluctuation process.

That means we fail to consider the order of recording. For the same set of values, different

orders will result in different results.

The second method is to use the state of charge (SOC) to split the charging processes

into several sub-charging processes. For example, we can consider ten sub-charging processes,

0%− 10%, 10%− 20%, · · · , 90%− 100% and one explanatory variable “Current”. For each

sub-process, we use the mean of values for the explanatory variables to represent the whole

sub-process. Suppose we have N charging processes in total. Then the nth realization has

the following formula:

I(2)
n = {[soc(1)

nl , soc
(2)
nl ), Īnl; l = 1, ..., L}, n = 1, . . . , N, (4.2)
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where L is the finite number of sub-processes for all the observations, and Īnl is the mean

value of current in the lth sub-process for the nth observation. In addition, the notation

(2) in I
(2)
n refers to the second way to convert to the histogram-valued data. The symbolic

realization obtained by this conversion method is somewhat different from the previous

definition. For the histogram-valued data defined in Definition 2.1.6, we add the frequency of

the corresponding sub-interval to each sub-interval as a weight. As a result, all the weights

should sum up to 1. Compared with splitting the intervals into several sub-intervals, we

cut the whole charging process into several sub-processes. Here, we use the mean of the

current to summarize the values within the sub-process. Similarly with the splitting methods

for histogram-valued data introduced in Section 3.3.3, we use a set of continuous values

{Īn1, . . . , ĪnL} to represent the nth histogram-valued data.

Figure 4.4 shows the way of data transformation by histogram-valued method. Suppose

we have J explanatory variables and N observations. For each j, j = 1, . . . , J , and n, n =

1, . . . , N , the nth observation has a series of values Xj
n for the jth explanatory variable. For any

j, j = 1, . . . , J , X(j) is the histogram-valued variable transformed by the original series Xj.

By using symbolic type of data, each charging data set becomes one row with a histogram-

valued element for each explanatory variable. Different ranges of SOC are indicated by

different colors in the figure.

Figure 4.4: Method 3 - Histogram-valued explanatory variables.
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4.1.3 Results

Since the output of this data set is a binary categorical variable, it belongs to a binary

classification problem. From Section 2.2.4, there are two metrics to measure the performance

of each model, recall, and precision. The metric accuracy is not appropriate because of the

imbalanced classes. Only 10% of observations we collected are abnormal. Here, we are more

focused on the abnormal batteries. As a result, we assume the abnormal charging process

as a positive case. After defining the positive case, we can calculate the precision and recall

by Equation 2.43 and Equation 2.44 in Definition 2.2.9. Type I error is defined as wrongly

predicting a normal battery as abnormal, and Type II error is erroneously predicted an

abnormal battery as normal. Both of the errors will cause great losses to us. Type I error

will increase our subsequent workload and consume a lot of time and material resources to

repair the normal battery. However, it will be very dangerous if we have a Type II error. The

result of large precision is to reduce Type I error, and the result of large recall is to reduce

Type II error. Recall and precision are both trade-offs; we give priority to the model with

high recall because the consequences of the two errors are quite different. Table 4.4 shows

the result of classification for the charging data set by the three methods.

Table 4.4: Comparison of different methods for charging data set

Method. Recall (training) Precision (training) Recall (testing) Precision (testing)
1 1 0.77 0.69 0.31
2 1 0.92 0.2 0.5
3 1 0.86 1 0.45

As can be seen from Table 4.4, the prediction of the three methods on the training set

is good enough, especially Method 2. To compare the prediction of the model for future

data without a known output, either normal or abnormal, we should mainly compare the

performance on the testing set. Here, collecting a low recall rate for Method 1 means that

we have mistakenly predicted too much abnormal charging, which has the consequence that
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some dangerous vehicles are not discovered. A low precision rate represents that we predict

many normal charging processes incorrectly. The result will increase the subsequent series

of further inspections and the time to check the vehicles. In addition, it will consume more

material resources. In contrast, the harm of a low recall rate is greater. As a result, we

should choose a model with a larger recall when attaining a proper value of precision. From

Table 4.4, we can see that performance on the testing set by Method 3 is significantly better

than the other two methods. Method 3 can capture a high precision value while keeping

recall at 1. It shows that there might be some normal charging process to be predicted as

abnormal incorrectly based on the precision. However, we can give an early warning of all

the abnormal charging processes. As a result, the prediction of Method 3 for future data

without a known output is much better than the other two methods.

4.2 Iris Data Example

4.2.1 Data Description

We apply our proposed CART for symbolic data method to the Iris data set. The Iris data

were first collected by Anderson, 1935, to determine the geographic variation of Iris flowers.

Fisher, 1936, used the data set as an application of discriminant analysis, making the Iris

data well-known and popular in data analysis. The Iris data set contains measurements of

50 Iris flowers each from three species: setosa, versicolor, and virginica. For each observation,

four numerical explanatory variables, V1 = sepal length, V2 = sepal width, V3 = petal length

and V4 = petal width were measured. All of the four features and the categorical response

variable are explained in Table 4.5.

To analyze a classical data set like this, one important step is to visualize the data to

obtain some intuitive conclusion. Figure 4.5 shows a scatter plot of all attribute pairs with

the points of different species taking different colors (blue if the iris is setosa, pink if the
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Table 4.5: Description of Iris data set (Classical)

No. Variable Type Description
V1 sepal length numerical in cm
V2 sepal width numerical in cm
V3 petal length numerical in cm
V4 petal width numerical in cm
Y Species categorical setosa, versicolor, virginica

iris is versicolor, and green if the iris is virginica). In addition, since the scatter plot shows

that the points of each species are well-separated, ellipses are drawn around them. We can

see that there are some clear relationships between input attributes (trends) and between

attributes and species of the iris.

There are 150 classical observations in the original iris data set. Billard and Diday, 2006,

assume that every five consecutive flowers listed in the original data set come from the

same location, e.g., a nursery. In addition, suppose we are interested in the characteristics

of species by location rather than the characteristics of individual flowers. Then, each

group of five classical observations can be summarized into an interval value observation.

As a result, the interval-valued data set after aggregation includes ten observations for

setosa species, ten observations for variegated species, and ten observations for virginica

species. After aggregating the data, the four numerical variables V1, V2, V3, and V4 become

interval-valued type. The four interval-valued explanatory variables are V(1) = sepal length,

V(2) = sepal width, V(3) = petal length and V(4) = petal width, where V(i) is the interval-

valued variable for the numerical variable Vi for i = 1, 2, 3, 4. Table 4.6 shows the interval-

valued Iris data.

Similar to the steps of analyzing classical data, we can obtain some preliminary intuitive

conclusions through some visualization methods. Figure 4.6 shows the scatter plot of interval

type iris data set of Table 4.6. Since there are four interval-valued type of explanatory

variables in the data set, in order to see the distribution of the data intuitively, we select
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Figure 4.5: The scatter plot of original Iris data set.

two variables as the axis each time to capture six scatter plots. In addition, we still use

the different colors to distinguish the different species. From the Figure 4.6, we can see

that through these four interval-valued variables, we can distinguish irises with different

species, especially from the scatter plot with petal length and petal width in Figure 4.6. This

conclusion is consistent with the finding from Figure 4.5. It is easy to show that although we

have lost some information when aggregating the data, interval-valued data greatly reduce

the number of observations while retaining the original distribution characteristics.
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Table 4.6: Interval-valued Iris data set

No. Species Sepal Length Sepal Width Petal Length Petal Width
1 S1 [4.6, 5.1] [3.0, 3.6] [1.3, 1.5] [0.2, 0.2]
2 S2 [4.4, 5.4] [2.9, 3.9] [1.4, 1.7] [0.1, 0.4]
3 S3 [4.3, 5.8] [3.0, 4.0] [1.1, 1.6] [0.1, 0.2]
4 S4 [5.1, 5.7] [3.5, 4.4] [1.3, 1.7] [0.3, 0.4]
5 S5 [4.6, 5.4] [3.3, 3.7] [1.0, 1.9] [0.2, 0.5]
6 S6 [4.7, 5.2] [3.0, 3.5] [1.4, 1.6] [0.2, 0.4]
7 S7 [4.8, 5.5] [3.1, 4.2] [1.4, 1.6] [0.1, 0.4]
8 S8 [4.4, 5.5] [3.0, 3.5] [1.2, 1.5] [0.1, 0.2]
9 S9 [4.4, 5.1] [2.3, 3.8] [1.3, 1.9] [0.2, 0.6]
10 S10 [4.6, 5.3] [3.0, 3.8] [1.4, 1.6] [0.2, 0.3]
11 Ve1 [5.5, 7.0] [2.3, 3.2] [4.0, 4.9] [1.3, 1.5]
12 Ve2 [4.9, 6.6] [2.4, 3.3] [3.3, 4.7] [1.0, 1.6]
13 Ve3 [5.0, 6.1] [2.0, 3.0] [3.5, 4.7] [1.0, 1.5]
14 Ve4 [5.6, 6.7] [2.2, 3.1] [3.9, 4.5] [1.0, 1.5]
15 Ve5 [5.9, 6.4] [2.5, 3.2] [4.0, 4.9] [1.2, 1.8]
16 Ve6 [5.7, 6.8] [2.6, 3.0] [3.5, 5.0] [1.0, 1.7]
17 Ve7 [5.4, 6.0] [2.4, 3.0] [3.7, 5.1] [1.0, 1.6]
18 Ve8 [5.5, 6.7] [2.3, 3.4] [4.0, 4.7] [1.3, 1.6]
19 Ve9 [5.0, 6.1] [2.3, 3.0] [3.3, 4.6] [1.0, 1.4]
20 Ve10 [5.1, 6.2] [2.5, 3.0] [3.0, 4.3] [1.1, 1.3]
21 Vi1 [5.8, 7.1] [2.7, 3.3] [5.1, 6.0] [1.8, 2.5]
22 Vi2 [4.9, 7.6] [2.5, 3.6] [4.5, 6.6] [1.7, 2.5]
23 Vi3 [5.7, 6.8] [2.5, 3.2] [5.0, 5.5] [1.9, 2.4]
24 Vi4 [6.0, 7.7] [2.2, 3.8] [5.0, 6.9] [1.5, 2.3]
25 Vi5 [5.6, 7.7] [2.7, 3.3] [4.9, 6.7] [1.8, 2.3]
26 Vi6 [6.1, 7.2] [2.8, 3.2] [4.8, 6.0] [1.6, 2.1]
27 Vi7 [6.1, 7.9] [2.6, 3.8] [5.1, 6.4] [1.4, 2.2]
28 Vi8 [6.0, 7.7] [3.0, 3.4] [4.8, 6.1] [1.8, 2.4]
29 Vi9 [5.8, 6.9] [2.7, 3.3] [5.1, 5.9] [1.9, 2.5]
30 Vi10 [5.0, 6.7] [2.5, 3.4] [5.0, 5.4] [1.8, 2.3]

4.2.2 Results

There are four interval-valued explanatory variables V(1), V(2), V(3) and V(4), and one categorical

response variable which is species in this data set. Therefore, two splitting rules can be used to

divide the data set, as explained in Section 3.3.2. The first method is to regard the maximum

and minimum values of each independent interval-valued variable as two correlated numerical
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Figure 4.6: The scatter plot of interval-valued Iris data set.

variables. The other method is to divide the data set by interval-valued variables with the

rule of three partitions in Section 3.3.2. Both methods will be used for this data set and the

results will be compared. The 30 symbolic observations will be divided into two subsets, a

training set with 24 observations to build the tree model, and the remaining 6 observations

will be used as the testing set to check the prediction of the models. Figure 4.7 shows the

decision trees on the training set by these two methods.

Both of these methods provide a good prediction on the testing set. All observations are

correctly predicted by these two methods. The key point in these two methods is to find

the “best” feature and the corresponding value compared with the two edges of the interval.

However, the two sides of the interval are considered separately in the first method, while the
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Figure 4.7: The CART for interval-typed Iris data: the left plot shows the tree structure by
the bi-partition for interval-valued explanatory variables, and the right one shows the tree
structure by the triple-partition method.

two sides are compared at the same time when using the second method. Even though results

of these two methods show our CART for symbolic data method has an ideal performance

when predicting binary classification problems, the sample size in the data set is too small

to conclude the overall situation. Therefore, several raw data will be simulated to compare

these methods with traditional methods in the rest of this chapter. In addition, different

situations will be simulated to draw convincing conclusions.

4.3 Simulation Methods

In this section, we will introduce the method to generate the classical data with I groups

and J explanatory variables, where Ki classical observations will be in the ith group for

i = 1, . . . , I. After aggregating the classical observations in one group, we can obtain a

symbolic data with I symbolic observations and J symbolic explanatory variables.
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4.3.1 Multi-valued Data Generation

To obtain a data set with modal multi-valued or interval-valued variables, we should know

how to generate categorical or numerical variables first. As a result, we should clarify how

to generate single multi-valued and interval-valued data first.

To simplify the process, only multi-valued variables with binary possible values are con-

sidered as explanatory variables during the simulation. At first, it is necessary to clarify

the method to simulate one binary variable. Suppose we would like to generate one modal

multi-valued variable with I groups. For the ith group, i = 1, . . . , I, we will generate Ki

classical values to obtain one group. The process to generate one modal multi-valued variable

is listed in Process 1.

Process 1 : Generate one modal multi-valued variable

1: Generate I values from a uniform distribution U(0,1) as p1, . . . , pI .

2: For each i = 1, . . . , I, generate Ki data points xik, k = 1, . . . , Ki from a Bernoulli

distribution with p = pi.

3: For each i = 1, . . . , I, aggregate the data points xik, k = 1, . . . , Ki to one group with

modal multi-valued realization ξi = {1, qi; 0, (1− qi)}, where qi = 1
Ki

∑Ki

k=1 xik.

From the first two steps, there will be I groups of values with Ki values in the ith group.

In addition, the values in each group are generated from the same distribution. Values from

different groups are generated from the Bernoulli distribution but with different parameters.

In this way, we can distinguish observations from different groups. As a result, there are∑I
i=1Ki realizations in total to be generated in these two steps. As the last step in Process

1, we can obtain I multi-valued realizations by aggregating the data points in the different

groups.

After introducing the method to simulate one modal multi-valued variable, we can con-

struct a data frame with several multi-valued explanatory variables, as shown in Process 2.
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Suppose we would like to generate J modal multi-valued variable with I groups. The Ki

in Step 2 of Process 2 is the same for different variables since we assume the aggregating

method is the same for different variables.

Process 2 : Generate several modal multi-valued variables

1: For the jth, j = 1, . . . , J , variable, generate I values from a uniform distribution U(0,1)

as p1j, . . . , pIj.

2: For each i = 1, . . . , I, generate Ki data points xijk, k = 1, . . . , Ki, from a Bernoulli

distribution with p = pij.

3: Repeat Step 1 and Step 2 J times to generate J binary explanatory variables.

4: For each i = 1, . . . , I, groups and each j = 1, . . . , J , explanatory variables, aggregate

the data points xijk, k = 1, . . . , Ki, to one group with J-dimensional modal multi-valued

realization ξi = (ξi1, . . . , ξiJ)′ with ξij = {1, qij; 0, (1− qij)}, where qij = 1
Ki

∑Ki

k=1 xijk.

For a better understanding of Process 2, consider an example with Ki = 5, i = 1, . . . , I.

Table 4.7 shows part of the original data, where xijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , Ki,

refers to the kth realization in the ith group for the jth variable. Each xijk is Bernoulli

distributed with parameter p = pij. In other words, xijk will be either 0 or 1. Since

Ki = 5, i = 1, . . . , I, in this case, there will be 5 classical observations in each group with

I groups in total. There are 5× I rows and J columns in the table, each row represents a

classical observation, and each column represents one categorical explanatory variable with

two possible outputs.

There are I groups in total with K = 5 classical observations in each group. For each

observation, there are J categorical variables collected. After aggregating the observations

in the same group, there will be I groups of classical observations. For each group, there are

J explanatory variables with 5 realizations for each variable. Table 4.8 shows the aggregated

data.

To analyze the data with more than one realization for each observation, we can transfer

the data type to a symbolic one. That means we can summarize all the information of one
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Table 4.7: One example of a data frame with binary explanatory variables

Group Variable 1 Variable 2 ... Variable J
Group 1 x111 x121 · · · x1J1

Group 1 x112 x122 · · · x1J2

Group 1 x113 x123 · · · x1J3

Group 1 x114 x124 · · · x1J4

Group 1 x115 x125 · · · x1J5

...
...

...
...

Group I xI11 xI21 · · · xIJ1
...

...
...

...
Group I xI15 xI25 · · · xIJ5

Table 4.8: The aggregated data frame with binary explanatory variables

Group Variable 1 Variable 2 ... Variable J
Group 1 x111,x121,x131,x141,x151 x112,x122,x132,x142,x152 · · · x11J ,x12J ,x13J ,x14J ,x15J

Group 2 x211,x221,x231,x241,x251 x212,x222,x232,x242,x252 · · · x21J ,x22J ,x23J ,x24J ,x25J
...

...
...

...
Group I xI11,xI21,xI31,xI41,xI51 xI12,xI22,xI32,xI42,xI52 · · · xI1J ,xI2J ,xI3J ,xI4J ,xI5J

cell to obtain the modal multi-valued data. The aggregated multi-valued data are shown in

Table 4.9. There are J modal multi-valued explanatory variables in the table. The symbolic

data frame is a I × J matrix with modal multi-valued type cells.

Table 4.9: Data frame with modal multi-valued explanatory variables

Group Variable 1 Variable 2 ... Variable J
Group 1 ξ11 = {1, q11; 0, (1− q11)} ξ12 · · · ξ1J = {1, q1J ; 0, (1− q1J)}
Group 2 ξ21 = {1, q21; 0, (1− q21)} ξ22 · · · ξ2J = {1, q2J ; 0, (1− q2J)}

...
...

...
...

Group I ξI1 = {1, qI1; 0, (1− qI1)} ξI2 · · · ξIJ = {1, qIJ ; 0, (1− qIJ)}

To simplify the process, we only consider multi-valued variables with binary possible

values as explanatory variables during the simulation processes. If we want to generate multi-

valued variables with more than two possible values, we can change the Bernoulli distribution

to a Multinomial distribution in Process 1 and Process 2. In addition, we can also use some
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other discrete distributions such as truncated Poisson and binomial distributions to simulate

other situations.

4.3.2 Interval-valued Data Generation

To obtain a data set with an interval-valued explanatory variable and interval-valued response

variable, we should generate the numerical variables first. Therefore, we first need to clarify

the method to simulate one numerical variable. Suppose we would like to generate one

interval-valued variable with I groups. For the ith group, i = 1, . . . , I, we will generate Ki

classical values to obtain one group. The process to generate one interval-valued variable is

described in Process 3.

Process 3 Generate one interval-valued variable

1: Generate I values from a normal distribution with mean = η1, and variance = η2; denote

them as µ1, . . . , µI . The µi is generated for the mean value for the ith group, i = 1, . . . , I.

2: For each i, i = 1, . . . , I, generate one value from a chi-square distribution with df = Ki−1

as vi, where Ki is the number of classical observations in the ith group, and vi is generated

for the variance for the ith group.

3: For each pair of (µi, vi), i = 1, . . . , I, generate Ki data points xik, k = 1, . . . , Ki, from a

normal distribution with mean = µi, and variance = vi.

4: For each i = 1, . . . , I, aggregate Ki data points xik, k = 1, . . . , Ki, to one group with

interval-valued realization ξi = [ai, bi] where ai = mink{xik} and bi = maxk{xik}.

From these four steps, we will have I groups of values with Ki in the ith group. In addition,

the values in each group are generated from the exact same normal distribution. Values from

different groups are generated from a normal distribution but with different parameters. In

this way, we can distinguish the observations from different groups. Similarly to the modal
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multi-valued case, there will be
∑I

i=1Ki realizations in total which are generated as classical

numeric variables. The values in one group are aggregated together in the last step.

After obtaining the method to simulate one interval-valued variable as in Process 3, several

interval-valued variables can be generated as the explanatory variables for the simulated data.

Suppose we would like to generate J interval-valued variable with I groups and Ki classical

observations in the ith group, i = 1, . . . , I. Process 4 describes the steps to generate multiple

interval-valued explanatory variables.

Process 4 : Generate multiple interval-valued variables

1: For the jth variable, generate I values from a from a normal distribution with mean =

η1j, and variance = η2j; denote them as µ1j, . . . , µIj. Let µij be the mean value for the

ith group and jth explanatory variable.

2: For each i, i = 1, . . . , I, and j, j = 1, . . . , J , generate one value from a chi-square distri-

bution with df = Ki − 1 as vij, where Ki is the number of classical observations in the

ith group. Let vij be the variance for the ith group and jth explanatory variable.

3: For each pair of (µij, vij), i = 1, . . . , I, generate Ki data points xijk, k = 1, . . . , Ki from

a normal distribution with mean = µik, and variance = vik.

4: Repeat step 1 - step 3 J times to generate J continuous explanatory variables.

5: For each i = 1, . . . , I groups and each j = 1, . . . , J explanatory variables, aggregate

Ki classical data points xijk, k = 1, . . . , Ki, to one group with J-dimensional interval-

valued realizations ξi = (ξi1, · · · , ξiJ)′ with ξij = [aij, bij], where aij = mink{xijk} and

bij = maxk{xijk}.

Similarly to Process 2, we can obtain J continuous variables with I ×K classical obser-

vations. By aggregating all the classical observations based on the groups and calculating

the minimal and maximal of each group, we can capture a data frame with interval-valued

explanatory variables, as shown in Table 4.10. Here for continuous variables, normal dis-

tributions are assumed because the normal distribution is the most common distribution
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encountered in real-life applications. We can also assume other continuous distributions such

as a chi-square distribution, or a Beta distribution to simulate different situations.

Table 4.10: One example of data frame with interval-valued explanatory variables

Group Variable 1 Variable 2 ... Variable J
Group 1 ξ11 = [a11, b11] ξ12 = [a12, b12] · · · ξ1p = [a1J , b1J ]
Group 2 ξ21 = [a21, b21] ξ22 = [a22, b22] · · · ξ2p = [a2J , b2J ]

...
...

...
...

Group I ξI1 = [aI1, bI1] ξI2 = [aI2, bI2] · · · ξIJ = [aIJ , bIJ ]

4.4 Simulations and Results

In this section, several symbolic variables will be generated as explanatory variables, including

modal multi-valued types and interval-valued types. For the response variables, categorical

variables, multi-valued variables, and interval-valued variables will be considered. For all

the situations in all the scenarios, we will first generate classical data with I groups and J

explanatory variables, where K classical observations will be in each group. After aggregating

the classical observations in one group, we can obtain a symbolic data set with I symbolic

observations and J symbolic explanatory variables. For different situations, we will choose

different values of I and J , while K is fixed as 10 for all the situations. We considered four

different scenarios, which are listed in Table 4.11.

Table 4.11: Different scenarios for simulation.

Explanatory variables Response variable
Scenario 1 Multi-valued Categorical
Scenario 2 Multi-valued Multi-valued
Scenario 3 Interval-valued Categorical
Scenario 4 Interval-valued Interval-valued

For the first two scenarios, the only type of explanatory variable is multi-valued. Sim-

ulations with different numbers of explanatory variables, different numbers of groups, and

74



multiple situations of the distance between groups will be used to compare the performances.

The situations are listed in Table 4.12.

Table 4.12: Different situations for data set with modal multi-valued explanatory variables.

J I The distance between groups
Situation 1 4 100 Small
Situation 2 4 1000 Small
Situation 3 20 100 Small
Situation 4 4 100 Large

The J in Table 4.12 represents the number of explanatory variables, and I is the number

of groups. Suppose the output is a categorical variable with two possible values, 1 for the

first class and 2 for the second class. In addition, we assume all the explanatory variables

are modal multi-valued variables with only two possible values, 0 and 1. That means the

symbolic realization of the jth explanatory variable for the ith group is {1, pij; 0, (1 − pij)}.

Since only a binary multi-valued explanatory variable is considered here, the distance is

the absolute value of the difference between the probability corresponding to the value 1,

which is represented by pij. For instance, suppose we have a symbolic realization with the

first explanatory variable as s = {1, 0.2; 0, 0.8}, and there are two other observations to be

compared with the symbolic realization, with the first explanatory variable s1 = {1, 0.3; 0, 0.7}

and s2 = {1, 0.8; 0, 0.2} for the two observations, respectively. It is obvious that the distance

between s and s1 calculated by |0.2− 0.3| = 0.1 is much smaller than the distance between

s and s2 calculated by |0.2− 0.8| = 0.6. Generally speaking, the larger the distance between

different groups, the easier it is to distinguish groups and classify them.

By comparing Situation 1 and Situation 2, we can find how the performance of the CART

produced for symbolic data with modal multi-valued explanatory variables will change when

the number of groups changes. By comparing Situation 1 and Situation 3, the influence of the

number of explanatory variables on the performance can be discovered. Based on the results
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of Situation 1 and Situation 4, we can obtain a measure of the effect of distance between

groups on the prediction of the classes.

For the last two scenarios of Table 4.11, the explanatory is interval-valued. Not only

simulations with different numbers of explanatory variables and groups will be compared, but

also simulations with different scales of explanatory variables will be generated. In addition,

the Signal-to-Noise Ratio (SNR) and the correlation between explanatory variables should

also be considered. For Situation 3, we assume the noise is equal to the signal (SNR = 1).

In this case, the noise is very large compared to our signal. For Situation 1, which is also

the base situation, the noise is a little bit larger than the signal (SNR = 1.5). Here, the

SNR value of 1.5 is chosen because the assumption is that there exists an overlap between

intervals under this situation. To ensure that there is an overlap between the intervals of two

classes, we should not choose a value that is too large. For Situation 4, the noise is much

smaller than the signal (SNR = 3). Why is SNR = 3 is a good value for this case? To ensure

that the intervals in different classes can be well-separated, we should choose a value that is

large enough. Another reason for choosing the SNR value as 3 is that this value is not large

enough to completely separate the data of the two classes, and there is still a small amount

of overlap. This also makes our simulated data closer to real-world data, and it is more

necessary to fit the model. Otherwise, if the data from different classes have no intersection

at all, then a very simple classification rule can be used to separate the two classes perfectly,

and it is not so necessary to fit a complex model.

All of the seven different situations to be studied for the last two scenarios are presented

in Table 4.13. The meanings of J and I in Table 4.13 are exactly the same as the definitions

in Table 4.12, i.e., J represents the number of explanatory variables and I is the number of

groups. By comparing Situation 1 and Situation 2, we can find out how the performance of

CART for symbolic data with modal multi-value explanatory variables will change when the

number of groups changes. By comparing Situation 1, Situation 3 and Situation 4, it can
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be found how the SNR will affect performance. According to the results of Situation 1 and

Situation 5, data with different numbers of explanatory variables are compared. Based on

the results of Situation 1 and Situation 6, different scales are compared. Based on the results

of Situation 1 and Situation 7, we can obtain the influence by whether or not there exists a

correlation between explanatory variables.

Table 4.13: Different situations for data set with interval-valued explanatory variables.

J I SNR Scale of explanatory variables Correlation
Situation 1 4 100 1.5 Same Independent
Situation 2 4 1000 1.5 Same Independent
Situation 3 4 100 1 Same Independent
Situation 4 4 100 3 Same Independent
Situation 5 20 100 1.5 Same Independent
Situation 6 4 100 1.5 Different Independent
Situation 7 4 100 1.5 Same Correlated

4.4.1 Scenario 1

Suppose we would like to generate a data frame with J modal multi-valued explanatory

variables and I groups of data with K classical observations in each group. To simulate

this data set, I ×K classical observations are randomly drawn from the same distribution.

For the kth observation in the ith group, the jth explanatory variable is distributed with a

Bernoulli distribution which is given in Equation 4.3. Every K classical observations are

aggregated into one single modal multi-valued object and thus we obtain a data set that

consists of several modal multi-valued explanatory variables.

Xijk ∼ bernoulli(pij), i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K, (4.3)
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where pij is decided by the different situations and different classes. Table 4.12 shows the

four different situations to be considered. In the rest of this section, we will consider these

four situations one by one.

Situation 1

Let us consider the values of the response variable first. Suppose the response variable is

a binary categorical variable with two possible classes, class 1 and class 2. Suppose we

would like to generate a data frame with J = 4 modal multi-valued explanatory variables

and I = 100 groups of data with K = 10 classical observations in each group. To simulate

this data set, N = I ×K = 1000 classical observations are randomly drawn from the same

distribution. Since there are 1000 observations in total, we can assume that the first 500

observations are in class 1, and the remaining 500 are in class 2. Since the response variable is

a binary categorical variable with two possible classes, class 1 and class 2, we assume different

variables for pij for class 1 and class 2 to make sure the values of the explanatory variables

are good enough to distinguish the data from different classes well. We treat Situation 1

as the baseline; here we take p(1) = (p
(1)
1 , p

(1)
2 , p

(1)
3 , p

(1)
4 ) = (0.1, 0.2, 0.3, 0.4) for class 1 and

p(2) = (0.4, 0.5, 0.6, 0.7) for class 2. Here, we set different probabilities for the variables in

the same group because we want each explanatory variable to contain different information.

For instance, we choose p
(1)
1 = 0.1 as the probability for the first explanatory variable in

class 1 and p
(1)
2 = 0.2 as the probability for the second one in class 1. If we choose the same

probability for different explanatory variables, then each explanatory variable is independent

and identically distributed. In addition, because we assume that the distance between the

data from different classes is small in this case, 0.3 is chosen here as the distance. As a result,

we set p
(2)
1 = p

(1)
1 + 0.3 = 0.4 as the probability for the first explanatory variable in class 2

and p
(2)
2 = p

(1)
2 + 0.3 = 0.5 as the probability for the second one in class 2. We assume all

the explanatory variables are modal multi-valued variables with only two possible values, 0
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and 1. Therefore, for each explanatory variable, the probability of taking value 1 in class 2

is 0.3 greater than the probability in class 1.

Suppose every K = 10 consecutive classical observations are in one group and can be

aggregated into a modal multi-valued object and thus we can obtain a data set which consists

of J = 4 modal multi-valued explanatory variables. There will be I = 100 groups after

aggregation. The first two and the last groups are listed in Table 4.14. From the first row,

the probability vector of value 1, (0.1, 0.2, 0.3, 0.3) is good estimate of p(1) = (0.1, 0.2, 0.3, 0.4)

for class 1; from the last row, the probability vector of value 1 is also very close to p(2) =

(0.4, 0.5, 0.6, 0.7) for the class 2.

Table 4.14: Part of modal multi-valued data set in Scenario 1 under Situation 1.

Group Variable 1 Variable 2 Variable 3 Variable 4 Class
1 {1, 0.1; 0, 0.9} {1, 0.2; 0, 0.8} {1, 0.3; 0, 0.7} {1, 0.3; 0, 0.7} 1
2 {1, 0.1; 0, 0.9} {1, 0.4; 0, 0.6} {1, 0.4; 0, 0.6} {1, 0.5; 0, 0.5} 1
...

...
...

...
...

...
100 {1, 0.6; 0, 0.4} {1, 0.4; 0, 0.6} {1, 0.8; 0, 0.2} {1, 0.5; 0, 0.5} 2

Assume the case is positive if the observation is in class 1. The true positive means

the number of observations in class 1 has a correct prediction. Similarly, we can find the

value of true negative, false positive, and false negative. Then, the accuracy for the model

can be calculated by Equation 2.42 in Definition 2.2.8. After defining the positive case,

we can calculate the precision, recall, and F-score by Equation 2.43, Equation 2.44, and

Equation 2.45, respectively, in Definition 2.2.9. Table 4.15 summarizes the results for all the

comparisons of the performances of CART and CART for symbolic data (SD) with modal

multi-valued explanatory variables. We split the symbolic data set into a training set and a

testing set, B = 100 times, and record the B = 100 values of the prediction metrics on the

testing set. Then, we can use the mean of the four measurements to evaluate the CART for

SD model, and use the variance of the four measurements to compare the stability of the

CART for classical data and the CART for symbolic data. Take the accuracy for classical
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CART as an example, the value 0.90 is the mean of all the B = 100 accuracies, and the value

0.003 is the variance.

Table 4.15: Comparison of the performances of CART and CART for symbolic data (SD)
with modal multi-valued explanatory variables in Scenario 1 under Situation 1.

accuracy recall precision F-score running time
CART 0.74 (0.0004) 0.75 (0.001) 0.72 (0.001) 0.74 (0.0005) 0.008 (<1e-5)

CART for SD 0.86 (0.005) 0.93 (0.008) 0.78 (0.011) 0.85 (0.006) 0.004 (0.001)

By comparing CART for classical data and CART for symbolic data, all the means of the

prediction metrics are improved a lot for the symbolic data analysis, while the variances are

slightly increased by aggregating the classical data to a symbolic type. One possible reason is

that the randomness of the sample is reduced by aggregating the classical data. As a result,

we can obtain a better prediction. However, the number of the symbolic observations is

much less than the number of classical observations, making the variance higher. In addition,

the running time of CART for symbolic data is much less after aggregation. The sample

size is greatly reduced by aggregating the classical data to a symbolic type, thus reducing

the running time accordingly. In addition, the variance of the running time increased after

aggregating the classical data since the sample size is decreased.

Situation 2

Suppose we would like to generate a data frame with J = 4 modal multi-valued explanatory

variables and I = 1000 groups of data with K = 10 classical observations in each group. To

simulate this data set, I ×K = 10000 classical observations are randomly drawn from the

same distribution. Compared with Situation 1 which had only 1000 observations, there will

be 10000 observations in Situation 2. Suppose the first 5000 observations are in class 1, and

the remaining 5000 are in class 2. We assume different pij for class 1 and class 2. Here, we

take p(1) = (0.1, 0.2, 0.3, 0.4) for the class 1 and p(2) = (0.4, 0.5, 0.6, 0.7) for the class 2 the
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same as we assumed for Situation 1. In this way, we can control the other conditions to be

the same and so can find the influence of sample size.

Suppose every K = 10 consecutive classical observations are in one group and are aggre-

gated into a modal multi-valued object. Thus, we can obtain a data set that consists of J = 4

modal multi-valued explanatory variables. There will be I = 1000 groups after aggregation.

Table 4.16 summarizes all the comparisons of the performances of CART and CART for

symbolic data with modal multi-valued explanatory variables for Situation 2. The method

to obtain the values is the same as for Situation 1. We split the symbolic data set into a

training set and a testing set, B = 100 times, and record the B = 100 values of the prediction

metrics on the testing set. Then, we can use the mean of the four measurements to evaluate

the CART for SD model, and use the variance of the four measurements to compare the

stability of the CART for classical data and the CART for symbolic data. All values are the

mean of the corresponding column, the values in brackets are the variances.

Table 4.16: Comparison of the performances of CART and CART for symbolic data (SD)
with modal multi-valued explanatory variables in Scenario 1 under Situation 2.

accuracy recall precision F-score running time
CART 0.75 (<1e-4) 0.77 (0.0002) 0.71 (0.0001) 0.74 (<1e-4) 0.045 (<1e-5)

CART for SD 0.94 (0.0001) 0.95 (0.0006) 0.94 (0.0005) 0.94 (0.0001) 0.010 (0.003)

From Table 4.16, all the means of the prediction metrics are highly improved, while

the variances are slightly increased by aggregating the classical data to a symbolic type.

One possible reason is that the randomness of the sample is reduced by aggregating the

classical data. As a result, we can obtain a better prediction. However, the number of

symbolic observations is much less than the number of classical observations, making the

variance higher. In addition, the running time of CART for symbolic data is much less

after aggregation. The sample size is greatly reduced by aggregating the classical data to a

symbolic type, thus reducing the running time accordingly. In addition, the variance of the

running time increased after aggregating the classical data since the sample size is decreased.
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Situation 3

Suppose we would like to generate a data frame with J = 20 modal multi-valued explanatory

variables and I = 100 groups of data with K = 10 classical observations in each group. To

simulate this data set, I × K = 1000 classical observations are randomly drawn from the

same distribution. Assume the first 500 observations are in class 1, and the remaining 500

observations are in class 2, which is the same as for Situation 1. Compared with Situation 1

which consists of 4 explanatory variables, we consider 20 explanatory variables in Situation 3.

Similarly, we assume different pij for class 1 and class 2. Here we take p(1) = (p
(1)
1 , . . . , p

(1)
20 )

for the class 1 and p(2) = (p
(2)
1 , . . . , p

(2)
20 ) for the class 2. For this situation, instead of assuming

the specific value of each probability as in Situation 1, we randomly generate a value from

0 to 0.7. The reason for choosing 0.7 here is to ensure that our assumptions about distance

are consistent with Situation 1. In Situation 1, the probability to obtain value 1 for each

explanatory variable in class 2 is 0.3 greater than the corresponding probability in class 1.

In other words, we have

p(2) = (p
(2)
1 , · · · , p(2)

20 ) = p(1) + (0.3, . . . , 0.3) = (p
(1)
1 + 0.3, · · · , p(1)

20 + 0.3). (4.4)

Suppose every K = 10 consecutive classical observations are in one group and can be

aggregated into a modal multi-valued object. Thus, we can obtain a data set that consists

of J = 20 modal multi-valued explanatory variables. There will be I = 100 groups after

aggregation. Table 4.17 lists all the comparisons of the performances of CART and CART

for symbolic data with modal multi-valued explanatory variables. We split the symbolic data

set into a training set and a testing set, B = 100 times, and record the B = 100 values of the

prediction metrics on the testing set. Then, we can use the mean of the four measurements to

evaluate the CART for SD model, and use the variance of the four measurements to compare

the stability of the CART for classical data and the CART for symbolic data.
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Table 4.17: Comparison of the performances of CART and CART for symbolic data (SD)
with modal multi-valued explanatory variables in Scenario 1 under Situation 3.

accuracy recall precision F-score running time
CART 0.83 (0.0004) 0.84 (0.001) 0.82 (0.002) 0.83 (0.0005) 0.032 (0.011)

CART for SD 0.95 (0.001) 0.96 (0.005) 0.95 (0.003) 0.95 (0.001) 0.008 (0.001)

From Table 4.17, all the means of the prediction metrics are highly improved when using

CART for SD, while the variances are slightly increased by aggregating the classical data

to a symbolic type. One possible reason is that the randomness of the sample is reduced

by aggregating the classical data. As a result, we can obtain a better prediction. However,

the number of symbolic observations is much less than the number of classical observations,

making the variance higher. In addition, the running time of CART for symbolic data is much

less after aggregation. The sample size is greatly reduced by aggregating the classical data

to a symbolic type, thus reducing the running time accordingly. In addition, the variance

of the running time decreased after aggregating the classical data since the sample size is

decreased. Compared with Situation 1 and Situation 2, the conclusion about the variance of

the running time is the opposite of the previous conclusions. The sample size is reduced after

aggregating, reducing the stability of the prediction. While the randomness is also reduced

when grouping the data, improving the stability of the prediction. As a result, the impact

on stability may be positive or negative after these two effects offset each other.

Situation 4

Suppose we would like to generate a data frame with J = 4 modal multi-valued explanatory

variables and I = 100 groups of data with K = 10 classical observations in each group. To

simulate this data set, I × K = 1000 classical observations are randomly drawn from the

same distribution. Assume that the first 500 observations are in class 1, and the remaining

500 observations are in class 2. Under this situation, a large distance between the data

within the two classes is assumed. In this case, not only should we choose different pij for
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the class 1 and class 2, but also the distance should be large. Under Situation 1, we take

p(1) = (0.1, 0.2, 0.3, 0.4) for the class 1 and p(2) = (0.4, 0.5, 0.6, 0.7) for the class 2. The

distance between the two classes is 0.3 for all the explanatory variables. Here we still take

p(1) = (0.1, 0.2, 0.3, 0.4) as the base line for the class 1, while the value of p(2) will be changed

to p(2) = (0.6, 0.7, 0.8, 0.9) for the class 2. We have assumed that there are two possible

values, 0 and 1, for each explanatory variable. Therefore, the probability for each explanatory

variable to obtain value 1 in class 2 is 0.5 greater than the corresponding probability of class

1.

Suppose every K = 10 consecutive classical observations are in one group and can be

aggregated into a modal multi-valued object. Thus, we can obtain a data set that consists

of J = 4 modal multi-valued explanatory variables. There will be I = 100 groups after

aggregation. Table 4.18 shows all the comparisons of the performances of CART and CART

for symbolic data with modal multi-valued explanatory variables. We split the symbolic data

set into a training set and a testing set, B = 100 times, and record the B = 100 values of the

prediction metrics on the testing set. Then, we can use the mean of the four measurements to

evaluate the CART for SD model, and use the variance of the four measurements to compare

the stability of the CART for classical data and the CART for symbolic data.

Table 4.18: Comparison of the performances of CART and CART for symbolic data (SD)
with modal multi-valued explanatory variables in Scenario 1 under Situation 4.

accuracy recall precision F-score running time
CART 0.84 (0.0003) 0.82 (0.001) 0.86 (0.002) 0.84 (0.0004) 0.011 (0.002)

CART for SD 0.97 (0.001) 0.96 (0.003) 0.99 (0.001) 0.97 (0.001) 0.006 (0.001)

From Table 4.18, all the means of the prediction metrics are highly improved, while the

variances are slightly increased by aggregating the classical data to a symbolic type when

using CART for SD. One possible reason is that the randomness of the sample is reduced

by aggregating the classical data. As a result, we can obtain a better prediction. However,

the number of symbolic observations is much less than the number of classical observations,
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making the variance higher. In addition, the running time of CART for symbolic data is much

less after aggregation. The sample size is greatly reduced by aggregating the classical data

to a symbolic type, thus reducing the running time accordingly. In addition, the variance

of the running time decreased after aggregating the classical data since the sample size is

decreased.

Comparison and Conclusions

Based on the previous tables (Table 4.15, Table 4.16, Table 4.17, and Table 4.18), the

CART for symbolic data greatly reduces the running time because of the reduced number of

observations for the four different situations according to the previous comparison between

CART and CART for symbolic data. Therefore, CART for symbolic data can not only greatly

improve the accuracy of prediction for all the situations in Scenario 1, but also reduces the

running time. The only problem is that the sample size will be reduced after grouping the

classical data, making the prediction less stable. However, the randomness is also reduced

when grouping the data, improving the stability of the prediction. As a result, the impact

on stability may be positive or negative after these two effects offset each other.

After comparing the CART for symbolic data and the CART for classical data for each

situation, we can conclude that the CART for SD reduces the running time with a high

accuracy. In addition, we can compare the results of different situations. All the results for

the four situations are summarized in Table 4.19, including the mean and variance of the

B = 100 values of accuracy, recall, precision, and F-score. The running time is also listed in

Table 4.19.

By comparing Situation 1 and Situation 2, we can conclude that the performance of CART

for symbolic data is improved when the sample size increases while the running time is much

larger. According to the results of Situation 1 and Situation 3, the performance of CART

for symbolic data is much better when the numbers of explanatory variables increase from
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Table 4.19: Comparison of different situations for Scenario 1 using CART for SD.

accuracy recall precision F-score running time
Situation 1 0.86 (0.005) 0.93 (0.008) 0.78 (0.011) 0.85 (0.006) 0.008 (0.001)
Situation 2 0.94 (0.0001) 0.95 (0.0006) 0.94 (0.0005) 0.94 (0.0001) 0.010 (0.003)
Situation 3 0.95 (0.001) 0.96 (0.005) 0.95 (0.003) 0.95 (0.001) 0.008 (0.001)
Situation 4 0.97 (0.001) 0.96 (0.003) 0.99 (0.001) 0.97 (0.001) 0.006 (0.001)

4 to 20. By checking the performance of Situation 1 and Situation 4, we can conclude that

if the distance between the data from different classes is larger, the model is more accurate

in predicting to which class the new observation belongs. This conclusion is very consistent

with what we expected; that is, the larger the distance between the two classes of data, the

easier it is to divide them correctly. In addition, the running time is increased if the number

of input variables is increasing.

4.4.2 Scenario 2

In this scenario, we use the same method as for Scenario 1 to generate the response variable

and explanatory variables. Therefore, we will not explain how to generate the variables in

detail. We generate a data set with J explanatory variables and I groups with K classical

observations in each group. The response variable will be categorical after aggregating since

all the K classical observations in one group are in the same class as we assumed in Scenario 1.

However, in Scenario 2, we would like to obtain a modal multi-valued response variable after

aggregating. One way to simulate the modal multi-valued response variable is to randomly

select several classical observations and change the value of the class. Take the first group

as an example, there are K classical observations and all of them belong to class 1. If we

group these K classical observations together, the aggregated response variable is categorical

since all the classical observations are in class 1. If we change the response variable of 20%

classical observations to construct class 2, then the aggregated response variable will be a

modal multi-valued type realization, with ξi = {1, 0.8; 2, 0.2} for the ith group. Here, we
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would like to simulate the scenario that there is one binary categorical response variable with

two different classes and I groups of classical observations. In each group, there will be a

major class in which most of the observations in the group are in that class and there will

be several outliers in the group. As a result, there will be two kinds of group, the first kind

of group with most of the observations in class 1 and the second kind of group with most of

the observations in class 2.

Compared with Scenario 1 which assumes that the first half of the observations are in

class 1 and the remaining observations are in class 2, in Scenario 2, the response variable of

the first half of the observations are generated from a Bernoulli distribution with probability

0.8, and the remaining observations are from a Bernoulli distribution with probability 0.2.

Here, the probability means the probability that the observation is from class 1. By this

method, we can obtain observations in two different kinds of group, one with most of the

observations in class 1 and the other one with most of the observations in class 2.

Situation 1

Suppose we would like to generate a data frame with J = 4 modal multi-valued explanatory

variables and I = 100 groups of data with K = 10 classical observations in each group. To

simulate this data set, I×J = 1000 classical observations are randomly drawn from the same

distribution. Assume there will be two kinds of group, the first kind of group with most of

the observations in class 1 and the second kind of group with most of the observations in class

2. Suppose the first 50 groups belong to the first kind of group with the response variable

generated from a Bernoulli distribution with probability 0.8, and the remaining 50 groups

belong to the second kind of group with the response variable generated from a Bernoulli

distribution with probability 0.2. To make sure the values of the explanatory variables are

good enough to distinguish the data from different kinds of group well, we assume different

variables for pij for two kinds of group. We treat Situation 1 as the baseline; here we take
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p(1) = (0.1, 0.2, 0.3, 0.4) for the first kind of group and p(2) = (0.4, 0.5, 0.6, 0.7) for the second

kind of group.

Suppose every K = 10 consecutive observations are in one group and can be aggregated

into modal multi-valued objects and thus we can obtain a data set which consists of J = 4

modal multi-valued explanatory variables and one modal multi-valued response variable.

There will be I = 100 groups after aggregation. The first two and the last groups are listed

in Table 4.20. Compared with Table 4.7 for Scenario 1 with the categorical response variable,

we have a modal multi-valued response variable in Scenario 2.

Table 4.20: Part of modal multi-valued data set in Scenario 2 under Situation 1.

Group Variable 1 Variable 2 Variable 3 Variable 4 Response variable
1 {1, 0.2; 0, 0.8} {1, 0.3; 0, 0.7} {1, 0.3; 0, 0.7} {1, 0.4; 0, 0.6} {1, 0.9; 2, 0.1}
2 {1, 0.1; 0, 0.9} {1, 0.5; 0, 0.5} {1, 0.5; 0, 0.5} {1, 0.3; 0, 0.7} {1, 0.9; 2, 0.1}
...

...
...

...
...

...
100 {1, 0.3; 0, 0.7} {1, 0.5; 0, 0.5} {1, 0.7; 0, 0.3} {1, 0.9; 0, 0.9} {1, 0.2; 0, 0.8}

For the original data set, we have a categorical response variable and it belongs to a

classification problem. However, the response variable for the symbolic data set is the

modal multi-valued type and the prediction is more like a regression problem, making the

performance metrics different and therefore cannot be compared directly. One way to compare

these two methods is to use the predicted probability for a modal multi-valued response

variable to predict the original class. Take the group 1 in Table 4.20 as an example, where

the true value of the response variable is {1, 0.9; 2, 0.1}. After simulating the data, we can

see there are 10 observations in group 1 and only one observation belongs to class 2. We can

obtain the predicted response variable for group 1 by the CART for SD model. After fitting

the model, the predicted response variable is {1, 0.89; 2, 0.11}. To predict the original class,

the probability of class 1 is 0.89 for each observation in group 1. As a result, we can use the

CART for SD model to predict the original class for classical data.
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Assume the observation is positive if it is in class 1. The true positive means the number

of classical observations in class 1 which we predict as being in class 1. Similarly we can find

the value of true negative, false positive, and false negative. Then, the accuracy for the model

can be calculated by Equation 2.42 in Definition 2.2.8. After defining the positive case, we

can calculate the precision, recall, and F-score by Equation 2.43, Equation 2.44, and Equation

2.45 in Definition 2.2.9, respectively. Table 4.21 lists all the comparisons of the performances

of CART and CART for symbolic data (SD) with modal multi-valued explanatory variables

to predict the class of the original classical data. We split the symbolic data set into a

training set and a testing set, B = 100 times, and record the B = 100 values of the prediction

metrics on the testing set. Then, we can use the mean of the four measurements to evaluate

the CART for SD model, and use the variance of the four measurements to compare the

stability of the CART for classical data and the CART for symbolic data. Take the accuracy

for classical CART as an example, the value 0.65 is the mean of all the B = 100 values of

accuracy, and the value 0.0005 is the variance.

Table 4.21: Comparison of the performances of CART and CART for symbolic data (SD)
with modal multi-valued explanatory variables in Scenario 2 under Situation 1.

accuracy recall precision F-score running time
CART 0.65 (0.0005) 0.63 (0.002) 0.67 (0.006) 0.65 (0.001) 0.013 (0.003)

CART for SD 0.63 (0.0009) 0.61 (0.003) 0.62 (0.004) 0.61 (0.002) 0.007 (0.001)

From Table 4.21, all the means of the prediction metrics are similar in these two methods,

while the variances are slightly increased by aggregating the classical data to a symbolic

type. One possible reason is that the randomness of the sample is reduced by aggregating

the classical data, reducing the random error. In addition, new errors are introduced when

using the predicted probability in modal multi-valued response to simulate the original

class. As a result, these two types of error offset each other, the predictions are almost

the same after aggregating the classical data to a symbolic type. However, the number of

symbolic observations is much less than the number of classical observations, making the
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variance higher. In addition, the running time of CART for symbolic data is much less

after aggregation. The sample size is greatly reduced by aggregating the classical data to a

symbolic type, thus reducing the running time accordingly. In addition, the variance of the

running time decreased after aggregating the classical data since the sample size is decreased.

Situation 2

Suppose we would like to generate a data frame with J = 4 modal multi-valued explanatory

variables and I = 1000 groups of data with K = 10 classical observations in each group. To

simulate this data set, I ×K = 10000 classical observations are randomly drawn from the

same distribution. Compared with Situation 1 with only 1000 observations, now there will

be 10000 observations in Situation 2. Assume there will be two kinds of group, the first kind

of group with most of the observations in class 1 and the second kind of group with most of

the observations in class 2. Suppose the first 500 groups belong to one kind of group with

the response variable generated from a Bernoulli distribution with probability 0.8, and the

remaining 500 groups belonging to another kind of group with the response variable generated

from a Bernoulli distribution with probability 0.2. Here, we take p(1) = (0.1, 0.2, 0.3, 0.4) for

the first kind of group and p(2) = (0.4, 0.5, 0.6, 0.7) for the second kind as what we assumed

for Situation 1. In this way, we can control the other conditions to be the same and so can

study the influence of sample size.

Suppose every K = 10 consecutive classical observations are in one group and are ag-

gregated into a modal multi-valued object. Thus, we can obtain a data set that consists

of J = 4 modal multi-valued explanatory variables and one modal multi-valued response

variable. There will be I = 1000 groups after aggregation. The method to obtain the ex-

planatory variables is the same as for Situation 1. Table 4.22 lists all the comparisons of the

performances of CART and CART for symbolic data (SD) with modal multi-valued explana-

tory variables to predict the class of the original classical data. We split the symbolic data
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set into a training set and a testing set, B = 100 times, and record the B = 100 values of the

prediction metrics on the testing set. Then, we can use the mean of the four measurements to

evaluate the CART for SD model, and use the variance of the four measurements to compare

the stability of the CART for classical data and the CART for symbolic data. All the means

and variances of the prediction metrics are similar in these two methods, and the running

time of CART for symbolic data is much less after aggregation.

Table 4.22: Comparison of the performances of CART and CART for symbolic data (SD)
with modal multi-valued explanatory variables in Scenario 2 under Situation 2.

accuracy recall precision F-score running time
CART 0.64 (<1e-4) 0.65 (0.0003) 0.64 (0.001) 0.64 (0.0003) 0.049 (0.006)

CART for SD 0.65 (<1e-4) 0.66 (0.0003) 0.66 (0.0003) 0.66 (0.0002) 0.010 (0.004)

Situation 3

Suppose we would like to generate a data frame with J = 20 modal multi-valued explanatory

variables and I = 100 groups of data with K = 10 classical observations in each group. To

simulate this data set, I×K = 1000 classical observations are randomly drawn from the same

distribution. Assume there will be two kinds of group, the first kind of group with most of the

observations in class 1 and the second kind of group with most of the observations in class 2.

Suppose the first 50 groups belong to one kind of group with the response variable generated

from a Bernoulli distribution with probability 0.8, and the remaining 50 groups belong to

another kind of group with the response variable generated from a Bernoulli distribution with

probability 0.2. Compared with Situation 1 which consists of J = 4 explanatory variables,

now we consider J = 20 explanatory variables for Situation 3. Similarly, we assume different

pij for the two kinds of groups. Here, we take p(1) = (p
(1)
1 , . . . , p

(1)
20 ) for the first kind of group

and p(2) = (p
(2)
1 , . . . , p

(2)
20 ) for the second one. For this situation, instead of assuming the

specific value of each probability as in Situation 1, we randomly generate a value from 0 to

0.7. The reason for choosing 0.7 is exactly the same as for Situation 3 in Scenario 1 which
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consists of J = 4 explanatory variables and for each explanatory variable, the distance of the

probability between the two classes is 0.3. As a result, the distance between p(1) and p(2) is

0.3, i.e.,

p(2) = (p
(2)
1 , . . . , p

(2)
20 ) = (p

(1)
1 + 0.3, . . . , p

(1)
20 + 0.3) = p(1) + (0.3, . . . , 03). (4.5)

Suppose every K = 10 consecutive classical observations are in one group and can be

aggregated into a modal multi-valued object. Thus, we can obtain a data set that consists

of J = 20 modal multi-valued explanatory variables and one modal multi-valued response

variable. There will be I = 100 groups after aggregation. Table 4.23 lists all the comparisons

of the performances of CART and CART for symbolic data (SD) with modal multi-valued

explanatory variables to predict the class of the original classical data. The method to

obtain the explanatory variables is the same as for Situation 1, except we generate J = 20

explanatory variables here rather than J = 4 explanatory variables as in Situation 1. Table

4.23 lists all the comparisons of the performances of CART and CART for symbolic data (SD)

with modal multi-valued explanatory variables to predict the class of the original classical

data. We split the symbolic data set into a training set and a testing set, B = 100 times,

and record the B = 100 values of the prediction metrics on the testing set.

Table 4.23: Comparison of the performances of CART and CART for symbolic data (SD)
with modal multi-valued explanatory variables in Scenario 1 under Situation 3.

accuracy recall precision F-score running time
CART 0.70 (0.0006) 0.71 (0.002) 0.68 (0.003) 0.69 (0.0009) 0.037 (0.006)

CART for SD 0.61 (0.001) 0.62 (0.003) 0.48 (0.002) 0.54 (0.001) 0.010 (0.002)

From Table 4.23, all the means of the prediction metrics are worse and the variances are

slightly increased by aggregating the classical data to a symbolic type. One possible reason

is that new errors are introduced when using the predicted probability in modal multi-valued
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response to simulate the original class. The sample size is greatly reduced by aggregating

the classical data to a symbolic type, thus reducing the running time accordingly.

Situation 4

Suppose we would like to generate a data frame with J = 4 modal multi-valued explanatory

variables and I = 100 groups of data with K = 10 classical observations in each group. To

simulate this data set, I×K = 1000 classical observations are randomly drawn from the same

distribution. Assume there will be two kinds of group, the first kind of group with most of the

observations in class 1 and the second kind of group with most of the observations in class 2.

Suppose the first 50 groups belong to one kind of group with the response variable generated

from a Bernoulli distribution with probability 0.8, and the remaining 50 groups belong to

the second kind of group with the response variable generated from a Bernoulli distribution

with probability 0.2. Under this situation, a large distance between data with the two classes

is assumed. In this case, not only should we choose different pij for the two kinds of groups,

but also the distance should be large. Under Situation 1, we take p(1) = (0.1, 0.2, 0.3, 0.4) for

the first kind of group with class 1 as the major class and p(2) = (0.4, 0.5, 0.6, 0.7) for the

second kind of group with class 2 as the majority. The distance between two classes is 0.3

for all the explanatory variables. Here we still take p(1) = (0.1, 0.2, 0.3, 0.4) as the baseline,

while the value of p(2) will be changed to p(2) = (0.6, 0.7, 0.8, 0.9).

Suppose every K = 10 consecutive classical observations are in one group and can be

aggregated into a modal multi-valued object. Thus, we can obtain a data set that consists

of J = 4 modal multi-valued explanatory variables. There will be I = 100 groups after

aggregation. Table 4.24 lists all the comparisons of the performances of CART and CART

for symbolic data (SD) with modal multi-valued explanatory variables to predict the class

of original classical data. The method to obtain the values is the same as for Situation 1.

From Table 4.24, we see that all the means of the prediction metrics are similar in these two
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methods, while the variances are slightly increased by aggregating the classical data to a

symbolic type. In addition, the sample size is greatly reduced by aggregating the classical

data to a symbolic type, thus reducing the running time accordingly.

Table 4.24: Comparison of the performances of CART and CART for symbolic data (SD)
with modal multi-valued explanatory variables in Scenario 1 under Situation 4.

accuracy recall precision F-score running time
CART 0.70 (0.0006) 0.72 (0.001) 0.70 (0.001) 0.71 (0.0006) 0.012 (0.003)

CART for SD 0.66 (0.0008) 0.68 (0.002) 0.68 (0.002) 0.68 (0.002) 0.006 (0.001)

Comparison and Conclusion

Based on the Table 4.21, Table 4.22, Table 4.23, and Table 4.24 for Scenario 2, we conclude

that the CART for symbolic data greatly reduces the running time because of the reduced

number of observations for all four different situations. Therefore, CART for symbolic data

can maintain a similar prediction accuracy while reducing running time for all four situations

in Scenario 2. It is obvious that the CART for symbolic data can also be used successfully

for classification on the classical data rather than just for symbolic data.

After comparing the CART for symbolic data and the CART for classical data for each

situation, we can conclude that the CART for SD reduces the running time with a high

accuracy. In addition, we can compare the results of different situations. Table 4.25 summa-

rizes the results for all four situations, with the root Mean Square Error (RMSE) calculated

by Equation 2.46 in Definition 2.2.10, and the running time for symbolic data. We split

the symbolic data set into a training set and a testing set, B = 100 times and record the

B = 100 values of RMSE on the testing set. Then, we can use the mean of RMSE to evaluate

the performance of the CART for symbolic data model, and use the variance of RMSE to

compare the stability under different situations.

The difference between Situation 1 and Situation 2 is that the number of groups in

Situation 1 is 100 and the number of groups in Situation 2 is 1000. By comparing Situation 1
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Table 4.25: Comparison of different situations in Scenario 2 using CART for SD.

RMSE (mean) RMSE (var) running time (mean) running time (var)
Situation 1 0.21 0.001 0.007 0.001
Situation 2 0.17 0.0001 0.010 0.006
Situation 3 0.12 0.0003 0.010 0.002
Situation 4 0.15 0.0008 0.006 0.001

and Situation 2, we can conclude that the prediction of CART for symbolic data is even worse

when the sample size increases since the Root Mean Square Error (RMSE) for Situation 2

is 0.17, which is smaller than the RMSE of 0.21 for Situation 1. This finding is consistent

with our assumptions. Generally speaking, the larger the number of observations, the more

convincing and stable is the prediction of the model. The mean value of RMSE will be

reduced to 0.12 from 0.21 if there are 20 explanatory variables, rather than the 4 explanatory

variables in Situation 1. By checking the performance of Situation 1 and Situation 3, the

performance of CART for symbolic data will be improved when the numbers of explanatory

variables increases. According to the results of Situation 1 and Situation 4, the performance

of CART for symbolic data will be better if the data with different outputs have a larger

distance from each other.

4.4.3 Scenario 3

Suppose we would like to generate a data frame with J interval-valued explanatory variables

and I groups of data with K classical observations in each group. To simulate this data

set, N = I × K classical observations are randomly drawn from the normal distributions,

i.e., {Xi1k, . . . , XiJk} ∼ Np (µ,Σ) , i = 1, . . . , I, k = 1, . . . , K, where µ and Σ are decided

by different situations. Suppose every K classical observations are aggregated into one

single interval-valued object and thus we obtain a data set that consists of J interval-valued

explanatory variables. Tables 4.13 shows thee seven different situations to be considered.

In the rest of this section, we will consider these seven situations one by one. Based on

95



the conclusion for Scenario 1 and Scenario 2, the variance of all the prediction metrics will

increase if we aggregate the classical data to a symbolic type. Therefore, for the Scenario 3,

we just split the training set and testing set once to save the running time.

Situation 1

Let us consider the values of the response variable first. Suppose the response variable is

a binary categorical variable with two possible classes, class 1 and class 2. Suppose we

would like to generate a data frame with J = 4 interval-valued explanatory variables and

I = 100 groups of data with K = 10 observations in each group. To simulate this data

set, I ×K = 1000 classical observations are randomly drawn from the multivariate normal

distribution of Equation 4.6. Here, we use a diagonal matrix with elements equal to one

since the scales for the explanatory variables are the same for this situation. In addition, we

assume no correlation between all the explanatory variables in this situation. The case for

correlated explanatory variables is considered in Situation 7. Then, we can obtain a classical

data set with I ×K = 1000 observations and J = 4 continuous explanatory variables, i.e.,

{Xi1k, . . . , Xi4k} ∼ N4





µi1

µi2

µi3

µi4


,



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, i = 1, . . . , I, k = 1, . . . , K. (4.6)

The mean value µi = (µi1, µi2, µi3, µi4)′ in Equation 4.6 is to be defined. Let us consider

the mean values of the response variable first. Since there are 1000 classical observations in

total, we can assume that the first 500 observations are in class 1, and the remaining 500

observations are in class 2. In order to make sure the values of the explanatory variables are

good enough to distinguish the data from different classes well, we assume the mean value
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µ
(1)
i = (µ

(1)
i1 , µ

(1)
i2 , µ

(1)
i3 , µ

(1)
i4 )′ = (0, 0, 0, 0)′ for the class 1 and µ

(2)
i = (µ

(2)
i1 , µ

(2)
i2 , µ

(2)
i3 , µ

(2)
i4 )′ =

(1.5, 1.5, 1.5, 1.5)′ for the class 2. After generating the classical data with I × K = 1000

observations, we can visualize the data set as shown in Figure 4.8. From Figure 4.8, we

can see that there is a large amount of overlap in the points in the two different classes,

which is consistent with our assumption. In addition, the points with different colors are

not completely overlapped, which means that different groups can be distinguished from the

information contained in the explanatory variables.

Figure 4.8: The scatter plot of classical data set in Scenario 3 under Situation 1.
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Suppose every K = 10 consecutive classical observations are in one group and can be

aggregated into an interval-valued object. Thus, we can obtain a data set that consists of

J = 4 interval-valued explanatory variables. There will be I = 100 groups after aggregation.

The first two and the last two groups are listed in Table 4.26.

Table 4.26: Part of interval-valued data set in Scenario 3 under Situation 1.

Group Variable 1 Variable 2 Variable 3 Variable 4 Class
Group 1 [−1.78, 1.06] [−0.10, 2.66] [−1.80, 1.66] [−2.18,−0.60] 1
Group 2 [−1.21, 2.25] [−1.99,−0.11] [−1.72, 0.29] [−1.19, 1.32] 1

...
...

...
...

...
...

Group 99 [0.068, 3.39] [−0.34, 2.78] [0.85, 4.37] [−0.58, 2.63] 2
Group 100 [−2.81, 2.36] [0.03, 2.77] [−0.65, 2.77] [−0.24, 3.21] 2

Figure 4.9 shows the scatter plot of these interval-valued data. From Figure 4.9, we can

see that there is a large amount of overlap between the intervals in the two different classes,

which is consistent with the assumption and the conclusion drawn in classical data.

Table 4.27 lists all the comparisons of the performance metrics of CART and CART for

symbolic data for these interval-valued explanatory variables. Two different splitting methods,

a bi-partition for two bounds of intervals and a triple partition based on the intervals, are

considered. Five metrics, accuracy, recall, precision, F-score, and the code running time as

defined in Definition 2.2.8 and Definition 2.2.9 are used to measure the performance of the

classical CART model and CART for SD. From Table 4.27 we can see that all the metrics

except running time are the same for the two different CART methods for symbolic data.

The reason is that these two methods follow the same principle, which is to select the best

explanatory variable with the corresponding “best” value and compare the “best” value with

the lower bound and upper bound of the interval-valued explanatory variable. The reason for

the difference in running time between the two CART for symbolic data methods is that the

functions we used are different. The functions in the CART for symbolic data using binary

partition are in the “rpart” package in R while the functions in the CART for symbolic data
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Figure 4.9: The scatter plot of interval-valued data set in Scenario 3 under Situation 1.

using the triple partition are written by myself. As a result, one future work is to write

more effective functions. For the other scenarios with interval-valued explanatory variables,

only the CART for symbolic data using the binary partition will be considered since it has

the same performance but much less running time. By comparing the CART for classical

data and the CART for symbolic data using the bi-partition method, all the metrics are

very similar and the running time of CART for symbolic data is much less. The sample size

is reduced by aggregating data into symbolic form, reducing the running time accordingly.
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Therefore, the CART for symbolic data maintain a high accuracy, and greatly reduces the

running time of the model at the same time.

Table 4.27: Comparison of the performances of CART and CART for symbolic data (SD)
with interval-valued explanatory variables in Scenario 3 under Situation 1.

accuracy recall precision F-score running time
CART 0.84 0.84 0.85 0.85 0.016

CART for SD (bi-partition) 0.83 0.82 0.88 0.85 0.006
CART for SD (tri-partition) 0.83 0.82 0.88 0.85 1.334

Situation 2

Suppose we would like to generate a data frame with J = 4 interval-valued explanatory

variables and I = 1000 groups of data with K = 10 classical observations in each group.

To simulate this data set, I ×K = 10000 classical observations are randomly drawn from

the multivariate normal distribution of Equation 4.6, which is the same as for Situation 1

except that the sample size has increased ten-fold. Then, we obtain a classical data set with

I ×K = 1000 observations and J = 4 continuous explanatory variables.

Let us consider the values of the response variable first. Since there are 10000 clas-

sical observations in total, we can assume that the first 5000 observations are in class

1, and the remaining 5000 observations are in class 2. Assume the mean value µ
(1)
i =

(µ
(1)
i1 , µ

(1)
i2 , µ

(1)
i3 , µ

(1)
i4 )′ = (0, 0, 0, 0)′ and µ

(2)
i = (µ

(2)
i1 , µ

(2)
i2 , µ

(2)
i3 , µ

(2)
i4 )′ = (1.5, 1.5, 1.5, 1.5)′ for the

class 1, and the class 2, respectively. Suppose every K = 10 consecutive classical observations

are in one group and can be aggregated into an interval-valued object. Thus, we can obtain a

data set that consists of J = 4 interval-valued explanatory variables. There will be I = 1000

groups after aggregation.

Table 4.28 lists all the comparisons of the performances including accuracy, recall, preci-

sion, F-score, and running time of CART and CART for symbolic data using the bi-partition

method with interval-valued explanatory variables. By comparing the CART for classical
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data and CART for symbolic data, we can conclude that all the metrics of CART for symbolic

data are slightly higher than the metrics of CART for classical data, and the running time is

much less by aggregating the classical data to a symbolic type. The reason for better perfor-

mance and less time is that grouping the data reduces the sample size and the possibility of

over-fitting.

Table 4.28: Comparison of the performances of CART and CART for symbolic data (SD)
with interval-valued explanatory variables in Scenario 3 under Situation 2.

accuracy recall precision F-score running time
CART 0.77 0.78 0.77 0.78 0.119

CART for SD (bi-partition) 0.8 0.8 0.82 0.81 0.019

Situation 3

Suppose the response variable is a binary categorical variable with two possible classes, class

1 and class 2. Suppose we would like to generate a data frame with J = 4 interval-valued

explanatory variables and I = 100 groups of data with K = 10 classical observations in each

group. To simulate this data set, I ×K = 1000 classical observations are randomly drawn

from the multivariate normal distribution of Equation 4.6. Here we use the same diagonal

matrix as in Situation 1. The only difference is that different µi will be chosen. Then, we can

obtain a classical data set with I×K = 1000 observations and J = 4 continuous explanatory

variables.

We still assume that the first 500 classical observations are in class 1, and the remaining

500 observations are in class 2. The only difference between Situation 1 and Situation 3

is the Signal-to-Noise Ratio (SNR) which is calculated by the ratio of signal power to the

noise power. The larger the value of SNR, the easier it to distinguish two different classes.

Compared to Situation 1 where SNR = 1.5, we now assume that SNR = 1. The mean value

is still µ
(1)
i = (µ

(1)
i1 , µ

(1)
i2 , µ

(1)
i3 , µ

(1)
i4 )′ = (0, 0, 0, 0)′ for the class 1, and the mean value becomes

to µ
(2)
i = (µ

(2)
i1 , µ

(2)
i2 , µ

(2)
i3 , µ

(2)
i4 )′ = (1, 1, 1, 1)′ for the class 2. After generating the classical
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data with I ×K = 1000 observations, we can visualize the data set as shown in Figure 4.10.

From Figure 4.10, we can see that the points with different colors are much closer to each

other than in Figure 4.8 under Situation 1, which is consistent with our assumption that the

observations in different classes are closer under Situation 3 than in Situation 1. Furthermore,

observations from different classes can still be distinguished by explanatory variables.

Figure 4.10: The scatter plot of classical data set in Scenario 3 under Situation 3.

Suppose every K = 10 consecutive observations are in one group and can be aggregated

into an interval-valued object. Thus, we can obtain a data set that consists of J = 4 interval-

valued explanatory variables. There will be I = 100 groups after aggregation. The first two
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and the last groups are shown in Table 4.29. The intersection of the interval value of the

same variable in the first two rows and the last row is very small, while the intersection of

the interval value of each variable in the two rows of the same category is large. The finding

is consistent with the assumption that the observations in different classes are closer under

Situation 3 than in Situation 1.

Table 4.29: Part of interval-valued data set in Scenario 3 under Situation 3.

Group Variable 1 Variable 2 Variable 3 Variable 4 Class
1 [1.56, 2.85] [−1.83, 2.66] [−2.22, 0.07] [−3.01,−1.37] 1
2 [−0.92, 1.90] [−2.87, 0.28] [−1.88, 1.03] [−3.42,−1.08] 1
...

...
...

...
...

...
100 [1.90, 4.98] [0.55, 5.49] [−0.35, 2.67] [−0.04, 2.82] 2

Figure 4.11 shows the scatter plot of these interval-valued data. From Figure 4.11, we

can see that the intervals are highly overlapped. The intervals in the different classes cannot

be separated very well, which is consistent with the assumption and the conclusion drawn in

the classical data.

Table 4.30 shows all the comparisons of the performances of CART and CART for symbolic

data using the bi-partition method with interval-valued explanatory variables. The metrics,

accuracy, recall, precision, and F-score, can be calculated by Equation 2.42 in Definition 2.2.8,

Equation 2.43, Equation 2.44, and Equation 2.45 in Definition 2.2.9, respectively. For all of

these metrics, the larger they are, the better. By comparing the CART for classical data and

CART for symbolic data, all the prediction metrics are slightly improved by aggregating the

data into the symbolic form, and the running time is the same. We can conclude that the

results are as good as the classical CART model using CART for symbolic data.

Situation 4

Suppose the response variable is a binary categorical variable with two possible classes, class

1 and class 2. Suppose we would like to generate a data frame with J = 4 interval-valued
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Figure 4.11: The scatter plot of interval-valued data set in Scenario 3 under Situation 3.

Table 4.30: Comparison of the performances of CART and CART for symbolic data (SD)
with interval-valued explanatory variables in Scenario 3 under Situation 3.

accuracy recall precision F-score running time
CART 0.68 0.74 0.55 0.63 0.004

CART for SD (bi-partition) 0.7 0.75 0.6 0.67 0.004

explanatory variables and I = 100 groups of data with K = 10 classical observations in

each group. To simulate this data set, I × K = 1000 classical observations are randomly

drawn from the multivariate normal distribution of Equation 4.6. Here we use the same

diagonal matrix as in Situation 1. The different values of mean µi will be chosen compared
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to Situation 1 and Situation 3 where the SNR in Situation 1 is 1.5 and the SNR in Situation

3 is 1. Then, we can obtain a classical data set with I ×K = 1000 observations and J = 4

continuous explanatory variables.

We still assume that the first 500 observations are in class 1, and the remaining 500 are in

class 2. The only difference between Situation 1 and Situation 3 is the Signal-to-Noise Ratio

(SNR) which is the ratio of signal power to the noise power. The larger the value of SNR,

the easier it to distinguish two different classes. Compared to Situation 1 where SNR = 1.5

and Situation 3 where SNR = 1, we now assume that SNR = 3. Situation 1, Situation 3,

and Situation 4 are used to compare the influence of SNR. In addition, we can also find

the prediction by CART for symbolic data under different situations. The mean value is

still µ
(1)
i = (µ

(1)
i1 , µ

(1)
i2 , µ

(1)
i3 , µ

(1)
i4 )′ = (0, 0, 0, 0)′ for the class 1, and the mean value becomes

to µ
(2)
i = (µ

(2)
i1 , µ

(2)
i2 , µ

(2)
i3 , µ

(2)
i4 )′ = (3, 3, 3, 3)′ for the class 2. After generating the classical

data with I ×K = 1000 observations, we can visualize the data set as shown in Figure 4.12.

From Figure 4.12, we can see that the points with two different colors are well-separated by

the explanatory variables, which is consistent with our assumption that the observations in

different classes are farther apart under Situation 4 than in Situation 1.

Suppose every K = 10 consecutive observations are in one group and can be aggregated

into an interval-valued object. Thus, we can obtain a data set that consists of J = 4 interval-

valued explanatory variables. There will be I = 100 groups after aggregation. The first

two and the last groups are shown in Table 4.31. The intersection of the interval value of

one variable in any two rows in different classes is large. The finding is consistent with the

assumption that the SNR is much larger under Situation 4 than in Situation 1.

Figure 4.13 shows the scatter plot of the interval-valued data. From Figure 4.13, we can

see that there is only a very small amount of overlap in the intervals in these two different

classes. The intervals in the different classes are separated very well, which is consistent with

the assumption and the conclusion drawn for the classical data.
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Figure 4.12: The scatter plot of classical data set in Scenario 3 under Situation 4.

Table 4.31: Part of interval-valued data set in Scenario 3 under Situation 4.

Group Variable 1 Variable 2 Variable 3 Variable 4 Class
1 [−2.01, 2.27] [−2.18, 2.23] [−2.02, 0.12] [0.55, 3.51] 1
2 [−2.14, 1.01] [−1.02, 2.32] [−1.72, 1.61] [0.54, 3.90] 1
...

...
...

...
...

...
100 [3.59, 5.81] [2.04, 5.36] [0.70, 2.37] [1.98, 5.78] 2

Table 4.32 shows all the comparisons of the performances of CART and CART for symbolic

data using the bi-partition method with interval-valued explanatory variables. By comparing

the CART for classical data and CART for symbolic data, all the prediction metrics are
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Figure 4.13: The scatter plot of interval-valued data set in Scenario 3 under Situation 4.

improved by aggregating the data. What is more, the running time is greatly reduced to half

the time for the classical CART.

Table 4.32: Comparison of the performances of CART and CART for symbolic data (SD)
with interval-valued explanatory variables in Scenario 3 under Situation 4.

accuracy recall precision F-score running time
CART 0.85 0.82 0.9 0.86 0.008

CART for SD (bi-partition) 0.93 0.94 0.92 0.93 0.004
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Situation 5

Suppose the response variable is a binary categorical variable with two possible classes, class

1 and class 2. Suppose we would like to generate a data frame with J = 20 interval-valued

explanatory variables and I = 100 groups of data with K = 10 classical observations in

each group. To simulate this data set, I × K = 1000 classical observations are randomly

drawn from the multivariate normal distribution of Equation 4.7. A diagonal matrix with

one on the diagonal is used because of the same scale and independent assumptions. Then,

we can obtain a classical data set with I ×K = 1000 observations and J = 20 continuous

explanatory variables, i.e.,

{Xi1, . . . , Xi,20} ∼ N20





µi1

µi2
...

µi,20


,



1 0
... 0

0 1
... 0

· · · · · · 0

0 0 0 1




, i = 1, . . . , I, k = 1, . . . , K.

(4.7)

The mean value µi = (µi1, . . . , µi,20)′ in Equation 4.7 is to be defined. Let us consider the

response variable first. Since there are 1000 classical observations in total, we can assume

that the first 500 observations are in class 1, and the remaining 500 are in class 2. In order

to make sure the values of the explanatory variables are good enough to distinguish the data

from different classes well, we assume the mean value µ
(1)
i = (µ

(1)
i1 , . . . , µ

(1)
i,20)′ = (0, . . . , 0)′ for

class 1 and µ
(2)
i = (µ

(2)
i1 , . . . , µ

(2)
i,20)′ = (1.5, 1.5, . . . , 1.5)′ for class 2.

Suppose every K = 10 consecutive observations are in one group and can be aggregated

into an interval-valued object. Thus, we can obtain a data set that consists of J = 20

interval-valued explanatory variables. There will be I = 100 groups after aggregation.

Table 4.33 shows all the comparisons of the performances of CART and CART for symbolic

data using bi-partition with interval-valued explanatory variables. By comparing the CART
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for classical data and CART for symbolic data, all the prediction metrics are similar by

aggregating the data but the running time is greatly reduced.

Table 4.33: Comparison of the performances of CART and CART for symbolic data (SD)
with interval-valued explanatory variables in Scenario 3 under Situation 5.

accuracy recall precision F-score running time
CART 0.79 0.75 0.82 0.78 0.042

CART for SD (bi-partition) 0.73 0.83 0.62 0.71 0.009

Situation 6

Suppose the response variable is a binary categorical variable with two possible classes, class

1 and class 2. Suppose we would like to generate a data frame with J = 4 interval-valued

explanatory variables and I = 100 groups of data with K = 10 classical observations in each

group. To simulate this data set, I ×K = 1000 classical observations are randomly drawn

from the multivariate normal distribution of Equation 4.8. Here we use a diagonal matrix

with different diagonal elements since the scales for explanatory variables are assumed to be

different for this situation and also we assume no correlation between all the explanatory

variables. Then, we can obtain a classical data set with I×K = 1000 observations and J = 4

continuous explanatory variables, i.e.,

{Xi1, . . . , Xi4} ∼ N4





µi1

µi2

µi3

µi4


,



1 0 0 0

0 10 0 0

0 0 20 0

0 0 0 100




, i = 1, . . . , I, k = 1, . . . , K. (4.8)

The mean value µi = (µi1, µi2, µi3, µi4)′ in Equation 4.8 is to be defined. Let us consider

the response variable first. Since there are 1000 classical observations in total, we can assume

that the first 500 observations are in class 1, and the remaining 500 observations are in class 2.
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In order to make sure the values of the explanatory variables are good enough to distinguish

the data from different classes well, we assume the mean value µ
(1)
i = (µ

(1)
i1 , µ

(1)
i2 , µ

(1)
i3 , µ

(1)
i4 )′ =

(0, 0, 0, 0)′ for class 1 and µ
(2)
i = (µ

(2)
i1 , µ

(2)
i2 , µ

(2)
i3 , µ

(2)
i4 )′ = (1.5, 1.5, 1.5, 1.5)′ for class 2 similar

to what we assumed in Situation 1. After generating the classical data with I ×K = 1000

observations, we can visualize the data set as shown in Figure 4.14. From Figure 4.14, we can

see that there is a large amount of overlap in the points in the two different classes, which

is consistent with our assumptions. In addition, the distribution for the points of each class

presents an obvious ellipse shape, which is different from the approximate circle of Situation

1. This is because, in the present case, we assume that the scale of each explanatory variable

is different so that the multivariate distribution appears as an ellipse instead of a circle. In

addition, the overlap of the two colors in Figure 4.14 is more than that in Figure 4.8. The

reason is that we assume a larger scale of variance while the difference in the means does not

change. Therefore, the overlap will increase within the range of the explanatory variable.

Suppose every K = 10 consecutive observations are in one group and can be aggregated

into an interval-valued object. Thus, we can obtain a data set that consists of J = 4 interval-

valued explanatory variables. There will be I = 100 groups after aggregation. The first two

and the last groups are listed in Table 4.34. There are J = 4 interval-valued explanatory

variables in the data, the range of intervals is becoming larger from Variable 1 to Variable 4,

which is to be expected because of the assumption that the variance gradually increases.

Table 4.34: Part of interval-valued data set in Scenario 3 under Situation 6.

Group Variable 1 Variable 2 Variable 3 Variable 4 Class
1 [−1.15, 1.38] [−1.02, 4.53] [−9.29, 0.88] [−29.75, 19.68] 1
2 [−0.63, 1.57] [−7.98, 5.60] [−6.83, 4.91] [−22.57, 12.27] 1
...

...
...

...
...

...
100 [0.53, 3.29] [−3.22, 3.80] [−3.03, 7.11] [−18.23, 13.00] 2

Figure 4.15 shows the scatter plot of the interval-valued data. From Figure 4.15, we can

see that there is a large amount of overlap in the intervals in the two different classes and the
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Figure 4.14: The scatter plot of classical data set in Scenario 3 under Situation 6.

shape between intervals is more like a rectangle than a square that presented in Situation 1,

which is consistent with the assumptions and the conclusion drawn in the classical data case.

All the comparisons of the performances of CART and CART for symbolic data with

interval-valued explanatory variables are shown in Table 4.35. By comparing the CART

for classical data and CART for symbolic data, all the metrics are similar between the two

models, but the running time of CART for symbolic data is much less with a two-thirds

reduction. As a result, we see that the scale of the explanatory variable does not affect the
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Figure 4.15: The scatter plot of interval-valued type data set in Scenario 3 under Situation
6.

results. The reason is that the tree-based model is not affected by the scale of explanatory

variables.

Table 4.35: Comparison of the performances of CART and CART for symbolic data (SD)
with interval-valued explanatory variables in Scenario 3 under Situation 6.

accuracy recall precision F-score running time
CART 0.71 0.71 0.7 0.7 0.015

CART for SD (bi-partition) 0.7 0.79 0.65 0.71 0.005
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Situation 7

Suppose the response variable is a binary categorical variable with two possible classes, class

1 and class 2. Suppose we would like to generate a data frame with J = 4 interval-valued

explanatory variables and I = 100 groups of data with K = 10 classical observations in

each group. To simulate this data set, I × K = 1000 classical observations are randomly

drawn from the multivariate normal distribution of Equation 4.9. Here we use a non-diagonal

matrix with diagonals value one since the scales for explanatory variables are assumed to

be the same for this situation and also we assume the explanatory variables are positively

correlated. Then, we can obtain a classical data set with I × K = 1000 observations and

J = 4 continuous explanatory variables, i.e.,

{Xi1, . . . , Xi4} ∼ N4





µi1k

µi2k

µi3k

µi4k


,



1 0.8 0.5 0.2

0.8 1 0.8 0.5

0.5 0.8 1 0.8

0.2 0.5 0.8 1




, i = 1, . . . , I, k = 1, . . . , K.

(4.9)

The mean value µi = (µi1, µi2, µi3, µi4)′ in Equation 4.9 is to be defined. Let us consider

the response variable first. Since there are 1000 classical observations in total, we can assume

that the first 500 observations are in class 1, and the remaining 500 observations are in class 2.

In order to make sure the values of the explanatory variables are good enough to distinguish

the data from different classes well, we assume the mean value µ
(1)
i = (µ

(1)
i1 , µ

(1)
i2 , µ

(1)
i3 , µ

(1)
i4 )′ =

(0, 0, 0, 0)′ for the class 1 and µ
(2)
i = (µ

(2)
i1 , µ

(2)
i2 , µ

(2)
i3 , µ

(2)
i4 )′ = (1.5, 1.5, 1.5, 1.5)′ for the class

2. After generating the classical data with I ×K = 1000 observations, we can visualize the

data set as shown in Figure 4.16. From Figure 4.16, we can see that there is a large amount

of overlap in the points in the two different classes. In addition, the distribution of the data
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is elliptical and positively distributed. The reason for this shape is that we assume all the

explanatory variables are positively correlated to each other.

Figure 4.16: The scatter plot of classical data set in Scenario 4 under Situation 7.

Suppose every K = 10 consecutive observations are in one group and can be aggregated

into an interval-valued object. Thus, we can obtain a data set that consists of J = 4 interval-

valued explanatory variables. There will be I = 100 groups after aggregation. Figure 4.17

shows the scatter plot of the interval-valued data. From Figure 4.17, we can see that there

is a large amount of overlap in the intervals in these two different classes, which is consistent

with the assumption and the conclusion drawn in classical data.
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Figure 4.17: The scatter plot of interval-valued data set in Scenario 4 under Situation 7.

All the comparisons of the performances of CART and CART for symbolic data with

interval-valued explanatory variables are summarized in Table 4.36. From Table 4.36, we

can conclude that all the metrics are very similar overall while the running time of CART

for symbolic data is much less.

Table 4.36: Comparison of the performances of CART and CART for symbolic data (SD)
with interval-valued explanatory variables in Scenario 4 under Situation 7.

accuracy recall precision F-score running time
CART 0.73 0.73 0.71 0.72 0.015

CART for SD (bi-partition) 0.77 0.61 1 0.76 0.005

115



Comparison and Conclusions

According to the previous comparisons between CART and CART for symbolic data, the

CART for symbolic data greatly reduces the running time because of the reduced number of

observations for all seven different situations. Therefore, CART for symbolic data can reduce

the running time while maintaining the good performance metrics as for classical CART.

After comparing the CART for symbolic data and the CART for classical data for each

situation, we can conclude that the CART for SD reduces the running time with a high

value of accuracy. In addition, we can compare the results of different situations. Table

4.37 summarizes the results for all seven situations, including the accuracy, recall, precision,

F-score, and running time.

Table 4.37: Comparison of different situations for data set with interval-valued explanatory
variables for Scenario 3.

accuracy recall precision F-score running time
Situation 1 0.83 0.82 0.88 0.85 0.006
Situation 2 0.8 0.8 0.82 0.81 0.019
Situation 3 0.7 0.75 0.6 0.67 0.004
Situation 4 0.93 0.94 0.92 0.93 0.004
Situation 5 0.73 0.83 0.62 0.71 0.009
Situation 6 0.7 0.79 0.65 0.71 0.005
Situation 7 0.77 0.61 1 0.76 0.005

By comparing Situation 1 and Situation 2, we can conclude that the performance of

CART for the symbolic data model is comparable when the number of groups increases while

the running time is improved accordingly. Generally speaking, the accuracy of classification

will increase as the training sample size increases. However, the accuracy of the classical data

is similar to Situation 1. The main reason may be that we randomly take observations from

the same distribution. Even if the number of groups is greatly increased, the information gain

of the data is not very large. By checking the performance of Situation 1, Situation 3, and

Situation 4, we can conclude that if the data of different classes are originally more scattered,
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the CART for the symbolic data model is more accurate in predicting the classes. The only

difference between Situation 1, Situation 3, and Situation 4 is the value of SNR. As shown

in Table 4.13, the SNR in Situation 1 is 1.5, the SNR in Situation 3 is 1, and the SNR in

Situation 4 is 3. When the SNR is increasing, the difference between the two classes becomes

larger, and it will be much easier to classify the data. This conclusion is very consistent

with what we expected, that the larger the distance between the two classes of data, the

easier it is to divide them correctly. According to the results of Situation 1 and Situation

5, the performance of CART for symbolic data with the different number of explanatory

variables is similar. This conclusion is inconsistent with our expectation that the larger the

number of explanatory variables is, the better the fitting model. The reason here may be

that the simulation data are randomly generated from a multivariate normal distribution,

so increasing the number of explanatory variables will not bring much extra information.

In addition, if the number of input variables increases, the running time increases. From

the performance of Situation 1 and Situation 6, we can conclude that whether the scales of

explanatory variables are the same or not makes a difference in the prediction. The variation

between intervals will also increase when the variance of the explanatory variable increases.

Finally, based on the performance of Situation 1 and Situation 7, the data with correlated

explanatory variables will have a worse result than the data with independent explanatory

variables. This finding is also an intuitive conclusion. When the number of explanatory

variables is fixed, the information contained in the correlated explanatory variables is smaller

than for independent explanatory variables.

4.4.4 Scenario 4

In this scenario, the response variable is interval-valued. Suppose we would like to generate

a data frame with J interval-valued explanatory variables and I groups of data with K

observations in each group. To simulate this data set, I × K classical observations are
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randomly drawn from the multivariate normal distribution of Equation 4.10. Then, we can

obtain a classical data set with I ×K observations and J continuous explanatory variables,

i.e.,

{Xi1k, . . . , XiJk} ∼ NJ





µi1

µi2
...

µiJ


,



σ11 σ12 · · · σ1J

σ21 σ22 · · · σ2J

...
...

...

σJ1 σJ2 · · · σJJ




, i = 1, . . . , I, k = 1, . . . , K,

(4.10)

where all the parameters are to be decided. Every K classical observations are aggregated

into an interval-valued object and thus we obtain a data set that consists of J interval-valued

explanatory variables. Based on the conclusion for Scenario 1 and Scenario 2, the variance of

all the prediction metrics will increase if we aggregate the classical data to a symbolic type.

Therefore, for the Scenario 4, we still split the training set and testing set B = 100 times to

obtain the mean of Root Mean Square Error (RMSE).

Situation 1

Suppose we would like to generate a data frame with J = 4 interval-valued explanatory

variables and I = 100 groups of data with K = 10 classical observations in each group. To

simulate this data set, I × K = 1000 classical observations are randomly drawn from the

multivariate normal distribution of Equation 4.11. Here, we use a diagonal matrix with

elements equal to one since the scales for the explanatory variables are the same for this

situation. In addition, we assume no correlation between all the explanatory variables in this

situation. The case for correlated data is considered in Situation 7. Then, we can obtain a

classical data set with I×K = 1000 observations and J = 4 continuous explanatory variables,

i.e.,
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{Xi1k, . . . , Xi4k} ∼ N4





µi1

µi2

µi3

µi4


,



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, i = 1, . . . , I, k = 1, . . . , K, (4.11)

where µi = (µi1, µi2, µi3, µi4)′ is generated from normal distribution with mean 0 and variance

1. The values of the means are the same for the observations in one group and are different

for observations from different groups.

After generating the values for four explanatory variables, we can assume the numerical

response variable is from the linear regression:

yik = β0 + β1Xi1k + · · ·+ β4Xi4k + εik, i = 1, . . . , I, k = 1, . . . , K, (4.12)

where β0 is assumed to be 1, βj = j for the jth explanatory variable. Here we choose βj = j

because we would like to simulate the situation that the effects on the response variable of

the different explanatory variables are not the same. We can also choose other values. The

εik is the random error for the kth classical observation in the ith group, which is normally

distributed with mean 0 and variance 1. For example, if we want to investigate the purchase

of a product in one state to predict how many products should be shipped to the state. If the

product is invested too much, it will cause a product backlog and cause great losses. If the

product input is too small, it will lead to short supply and reduce sales. There are many cities

in a state, and each city has many selling points. We regard a city as a group and multiple

sales points in the city as multiple observations of the group. The classical data we collected

contains I cities (group), and each city has K observations. For each selling point, we record

the total number of purchases as the response variable and record some information about

the selling point as the explanatory variable. Suppose we have collected J = 4 numerical
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information, including the area of the selling point, the number of nearby communities, the

distance from the nearest subway station or bus station to the selling point, and the number

of products of the same type sold at the selling point. We hope to use these four explanatory

variables to predict the range of sales in each city. Therefore, we aggregate the sales points

in the same city into a group and obtain an interval-valued response variable and J = 4

interval-valued explanatory variables. Here, we assume the four explanatory variables, the

area of the selling point, the number of nearby communities, the distance from the nearest

subway station or bus station to the selling point, and the number of products of the same

type sold at the selling point, have an increasing influence on the sales volume. Therefore,

we choose different βj = j for the four explanatory variables. Table 4.38 shows part of the

original data set generated by R.

Table 4.38: Part of original data set in Scenario 4 under Situation 1.

Variable 1 Variable 2 Variable 3 Variable 4 response variable
1 2.70 0.90 -3.06 -0.92 -7.06
2 2.32 -1.03 -2.34 -1.68 -12.58
...

...
...

...
...

...
1000 2.02 -0.28 -0.60 0.46 2.52

Suppose every K = 10 consecutive observations are in one group and can be aggregated

into an interval-valued object. Thus, we can obtain a data set that consists of J = 4 interval-

valued explanatory variables along with an interval-valued response. There will be I = 100

groups after aggregation. Table 4.39 lists part of the symbolic data set after aggregation.

Table 4.39: Part of symbolic data set in Scenario 4 under Situation 1.

Group Variable 1 Variable 2 Variable 3 Variable 4 response variable
1 [−0.11, 3.32] [−1.77, 1.37] [−3.42, 0.20] [−1.68, 0.80] [−13.84, 6.35]
2 [−2.82, 0.45] [−3.05, 0.38] [−1.56, 0.81] [−0.18, 3.14] [−6.62, 5.13]
...

...
...

...
...

...
100 [−0.33, 3.15] [−1.52, 1.04] [−2.73, 0.63] [−2.28, 0.46] [−12.39, 2.52]
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Table 4.40 lists all the comparisons of the performance metrics of CART and CART for

symbolic data with interval-valued explanatory variables and an interval-valued response

variable. Two different splitting measurements are considered. The first one is to use the

lower and upper bounds method which uses the CART to predict the bounds of the intervals

separately. The second one is to use the Mean Square Error (MSE) to measure the prediction

of the response variable. Two metrics, Root Mean Square Error (RMSE) and the code

running time, will be used to measure the performance of the models. Since RMSE is only

calculated for numerical values, we record the RMSE for the lower bound and upper bound

separately when the response variable is interval-valued. As a result, there are two RMSE

values for CART for symbolic data methods. The first value represents the RMSE of the

lower bound and the second one means the RMSE for the upper bound. It is obvious that the

RMSE of the numerical response variable in CART and the RMSE of the two bounds of the

interval-valued response variable in CART for symbolic data are similar. The performance of

CART for symbolic data using the lower-upper method is slightly worse than that of CART

for symbolic data using MSE. However, the running time of CART for symbolic data using

MSE is much larger than the CART for symbolic data using the lower-upper method. The

main reason is still the effectiveness of the R function. Therefore, another future work will be

how to write a more effective function to solve the CART for symbolic data in R. In addition,

the RMSE of the two bounds obtained by the two CART for symbolic data methods are very

close to the RMSE of CART for classical data.

Table 4.40: Comparison of the performances of CART and CART for symbolic data (SD)
with modal-valued explanatory variables in Scenario 4 under Situation 1.

RMSE running time
CART 4.52 0.011

CART for SD (lower-upper) 4.77, 5.08 0.019
CART for SD (MSE) 3.87, 4.70 1.00
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Situation 2

Suppose we would like to generate a data frame with J = 4 interval-valued explanatory

variables and J = 1000 groups of data with K = 10 classical observations in each group. To

simulate this data set, I ×K = 10000 classical observations are randomly drawn from the

multivariate normal distribution of Equation 4.11, which is exactly the same as for Situation

1. The mean values are the same for the observations in one group and are different for

observations from different groups. After generating the values for the four explanatory

variables, we can assume the numerical output is from the same linear regression as in

Equation 4.12 in Situation 1. Suppose every K = 10 consecutive observations are in one

group and can be aggregated into an interval-valued object. Thus, we can obtain a data set

that consists of J = 4 interval-valued explanatory variables. There will be I = 1000 groups

after aggregation.

Table 4.41 lists the RMSE and the running time metrics of CART and CART for symbolic

data with interval-valued explanatory variables and an interval-valued response variable. Two

different splitting measurements are considered, the lower and upper bounds method and the

MSE method. We will use RMSE and the code running time to evaluate the models. We

record the RMSE for the lower bound and upper bound separately when the response variable

is interval-valued. Since RMSE is only calculated for numerical values, we record the RMSE

for the lower bound and upper bound separately when the response variable is interval-valued.

The first value represents the RMSE of the lower bound and the second one corresponds to

the RMSE for the upper bound. We can conclude that the RMSE of the numerical response

variable in CART and the RMSE of two bounds of the interval-valued response variable in

CART for symbolic data are similar. The performance of CART for symbolic data using the

lower-upper method is slightly better than that of CART for symbolic data using MSE. What

is more, the running time of CART for symbolic data using MSE is much larger than the

CART for symbolic data using the lower-upper method. The main reason may be that using
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different metrics to measure the division results will construct two kinds of tree structures,

causing differences in predictions. Based on the conclusions of Situation 1 and Situation 2,

we will only use CART for symbolic data using the lower-upper method for the remaining

simulations due to its effectiveness.

Table 4.41: Comparison of the performances of CART and CART for symbolic data (SD)
with modal-valued explanatory variables in Scenario 4 under Situation 2.

RMSE running time
CART 4.16 0.049

CART for SD (lower-upper) 4.14, 4.14 0.032
CART for SD (MSE) 5.36, 5.54 12.59

Situation 3

Suppose we would like to generate a data frame with J = 4 interval-valued explanatory

variables and I = 100 groups of data with K = 10 observations in each group. To simulate

this data set, I ×K = 1000 classical observations are randomly drawn from the multivariate

normal distribution of Equation 4.11 where µ = (µi1, µi2, µi3, µi4)′ is generated from the

normal distribution with mean 0 and variance 0.5. Compared with Situation 1 where the

variance of each parameter in µ is 1, here 0.5 will be used as the variance to make the

observations from different groups closer to each other. The mean values are the same for

the observations in one group and are different for observations from different groups. After

generating the values for J = 4 explanatory variables, we can assume the numerical output is

from the same linear regression as in Equation 4.12 as in Situation 1. Suppose every K = 10

consecutive observations are in one group and can be aggregated into an interval-valued

object. Thus, we can obtain a data set that consists of J = 4 interval-valued explanatory

variables. There will be I = 100 groups after aggregation.

Table 4.42 lists the RMSE and the running time metrics of CART for the classical

data with numerical response variable and CART for the symbolic data with interval-valued
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explanatory variables and an interval-valued response variable. Since RMSE is only calculated

for numerical values, we record the RMSE for the lower bound and upper bound separately

when the response variable is interval-valued. The first value represents the RMSE of the

lower bound and the second one represents the RMSE for the upper bound. It is obvious

that the RMSE of the numerical response variable in CART and the RMSE of two bounds

of the interval-valued response variable in CART for symbolic data are very similar.

Table 4.42: Comparison of the performances of CART and CART for symbolic data (SD)
with modal-valued explanatory variables in Scenario 4 under Situation 3.

RMSE running time
CART 3.31 0.01

CART for SD (lower-upper) 4.08, 4.41 0.01

Situation 4

Suppose we would like to generate a data frame with J = 4 interval-valued explanatory

variables and I = 100 groups of data with K = 10 classical observations in each group. To

simulate this data set, I × K = 1000 classical observations are randomly drawn from the

multivariate normal distribution of Equation 4.11 where µ = (µi1, µi2, µi3, µi4)′ is generated

from the normal distribution with mean 0 and variance 5. Compared with Situation 1 where

the variance of each parameter in µ is 1, here, 5 will be used as the variance to make the

observations from different groups easier to distinguish from each other. The mean values are

the same for the observations in one group and are different for observations from different

groups. After generating the values for J = 4 explanatory variables, we can assume the

numerical output is from the same linear regression as in Equation 4.12 as in Situation 1.

Suppose every K = 10 consecutive observations are in one group and can be aggregated

into an interval-valued object. Thus, we can obtain a data set that consists of J = 4

interval-valued explanatory variables. There will be I = 100 groups after aggregation.
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Table 4.43 lists the RMSE and the running time metrics of CART and CART for symbolic

data with interval-valued explanatory variables and interval-valued response variable. It is

obvious that the RMSE of the numerical response variable in CART is smaller than the

RMSE of the two bounds of the interval-valued response variable in CART for symbolic data.

The main reason is that there is some information lost when aggregating the data, especially

when the variance of the value of the explanatory variables increases.

Table 4.43: Comparison of the performances of CART and CART for symbolic data (SD)
with modal-valued explanatory variables in Scenario 4 under Situation 4.

RMSE running time
CART 14.26 0.008

CART for SD (lower-upper) 19.3, 19.78 0.009

Situation 5

Suppose we would like to generate a data frame with J = 20 interval-valued explanatory

variables and I = 100 groups of data with K = 10 observations in each group. To simulate

this data set, I ×K = 1000 classical observations are randomly drawn from the multivariate

normal distribution of Equation 4.13. Here, we use a diagonal matrix with elements equal to

one since the scales for the explanatory variables are the same for this situation. In addition,

we assume no correlation between all the explanatory variables in this situation. All the

assumptions with the variance are the same except for the dimension. Then, we can obtain

a classical data set with I × K = 1000 observations and J = 20 continuous explanatory

variables, i.e.,
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{Xi1k, . . . , Xi,20,k} ∼ N20





µi1

µi2
...

µi,20


,



1 0 · · · 0

0 1 · · · 0

· · · · · · 0

0 0 · · · 1




, i = 1, . . . , I, k = 1, . . . , K,

(4.13)

where µi = (µi1, µi2, . . . , µi,20)′ is generated from the normal distribution with mean 0 and

variance 1. The mean values are the same for the observations in one group and are different

for observations from different groups. After generating the values for J = 20 explanatory

variables, we can assume the numerical output is from the linear regression

yik = β0 + β1Xi1k + · · ·+ β20Xi,20,k + εik, i = 1, . . . , I, k = 1, . . . , K, (4.14)

where β0 is assumed to be 1, βj = j for the jth explanatory variable. Here, we choose βj = j

because we would like to simulate the situation where different explanatory variables have

different influences on the response variable. We can also choose other values. The εik is the

random error for the kth in the ith group, which is normally distributed with mean 0 and

variance 1.

Table 4.44 lists the RMSE and the running time metrics of CART and CART for symbolic

data with interval-valued explanatory variables and interval-valued response variable. The

first value for RMSE in the CART for SD (lower-upper) represents the RMSE of the lower

bound and the second one corresponds to the RMSE for the upper bound. We can conclude

that the RMSE of the numerical response variable in CART and the RMSE of the upper

bound of the interval-valued response variable in CART for symbolic data are very close,

while the RMSE of the lower bound of the interval-valued response variable in CART for
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symbolic data is larger than the other two RMSE values. The main reason is that there is

some information lost when aggregating the data.

Table 4.44: Comparison of the performances of CART and CART for symbolic data (SD)
with modal-valued explanatory variables in Scenario 4 under Situation 5.

RMSE running time
CART 65.79 0.072

CART for SD (lower-upper) 75.79, 64.64 0.081

Situation 6

Suppose we would like to generate a data frame with J = 4 interval-valued explanatory

variables and I = 100 groups of data with K = 10 observations in each group. To simulate

this data set, I ×K = 1000 classical observations are randomly drawn from the multivariate

normal distribution of Equation 4.15. Here we use a diagonal matrix with different diagonal

elements since the scales for explanatory variables are assumed to be different for this situation

and also we assume no correlation between all the explanatory variables. Then, we can

obtain a classical data set with I×K = 1000 observations and J = 4 continuous explanatory

variables, i.e.,

{Xi1k, . . . , Xi4k} ∼ N4





µi1

µi2

µi3

µi4


,



1 0 0 0

0 10 0 0

0 0 20 0

0 0 0 100




, i = 1, . . . , I, k = 1, . . . , K,

(4.15)

where µi = (µi1, µi2, µi3, µi4)′ is generated from the normal distribution with mean 0 and

variance 1. The mean values are the same for the observations in one group and are different

for observations from different groups. After generating the values for J = 4 explanatory
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variables, we can assume the numerical output is from the same linear regression as in

Equation 4.12 as in Situation 1. Suppose every K = 10 consecutive observations are in one

group and can be aggregated into an interval-valued object. Thus, we can obtain a data set

that consists of J = 4 interval-valued explanatory variables. There will be I = 100 groups

after aggregation.

Table 4.45 lists the RMSE and the running time metrics of CART and CART for symbolic

data with interval-valued explanatory variables and interval-valued response variable. The

first value for RMSE in the CART for SD (lower-upper) represents the RMSE of the lower

bound and the second one corresponds to the RMSE for the upper bound. It is obvious that

the RMSE of the numerical response variable in CART and the RMSE of the two bounds of

the interval-valued response variable in CART for symbolic data are similar.

Table 4.45: Comparison of the performances of CART and CART for symbolic data (SD)
with modal-valued explanatory variables in Scenario 4 under Situation 6.

RMSE running time
CART 15.47 0.009

CART for SD (lower-upper) 16.87, 15.14 0.019

Situation 7

Suppose we would like to generate a data frame with J = 4 interval-valued explanatory

variables and I = 100 groups of data with K = 10 observations in each group. To simulate

this data set, I ×K = 1000 classical observations are randomly drawn from the multivariate

normal distribution of Equation 4.16. Here, we use a non-diagonal matrix with diagonals

value equal to one since the scales for explanatory variables are assumed to be the same for

this situation and also we assume the explanatory variables are positively correlated. Then,

we can obtain a classical data set with I × K = 1000 observations and J = 4 continuous

explanatory variables, i.e.,
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{Xi1k, . . . , Xi4k} ∼ N4





µi1

µi2

µi3

µi4


,



1 0.8 0.5 0.2

0.8 1 0.8 0.5

0.5 0.8 1 0.8

0.2 0.5 0.8 1




, i = 1, . . . , I, k = 1, . . . , K,

(4.16)

where µi = (µi1, µi2, µi3, µi4)′ is generated from the normal distribution with mean 0 and

variance 1. The mean values are the same for the observations in one group and are different

for observations from different groups. After generating the values for J = 4 explanatory

variables, we can assume the numerical output is from the same linear regression as in

Equation 4.12 as in Situation 1. Suppose every K = 10 consecutive observations are in one

group and can be aggregated into an interval-valued object. Thus, we can obtain a data set

that consists of J = 4 interval-valued explanatory variables. There will be I = 100 groups

after aggregation.

Table 4.46 lists the RMSE and the running time metrics of CART and CART for symbolic

data with interval-valued explanatory variables and interval-valued response variable. The

first value for RMSE in the CART for SD (lower-upper) represents the RMSE of the lower

bound and the second one means the RMSE for the upper bound. It is obvious that the

RMSE of the numerical response variable in CART and the RMSE of two bounds of the

interval-valued response variable in CART for symbolic data are similar.

Table 4.46: Comparison of the performances of CART and CART for symbolic data (SD)
with modal-valued explanatory variables in Scenario 4 under Situation 7.

RMSE running time
CART 4.90 0.01

CART for SD (lower-upper) 5.78, 5.37 0.01
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Comparison

The scale of the response variable will be changed if we have different assumptions on the

parameters. For example, when adjusting the variance of the mean µi in Situation 3 and

Situation 4 to control the distance between different groups, the scale of the response variable

will be larger if we choose a larger variance, given the mean is fixed. Another example is the

number of explanatory variables. Since we assume the same linear regression for all situations,

the response variable will be larger if we obtain a regression with more explanatory variables.

What is more, the different scales of the explanatory variables as in Situation 6 will also

greatly influence the scale of the response variable. As a result, it is not appropriate to

compare these situations together. Based on the conclusion for each situation, we find that

the prediction for intervals is very similar to the prediction for numerical values. Although

the sample size will be reduced by grouping the data, the running time for symbolic data is

increasing because we need to predict two values in the CART for symbolic data.
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Chapter 5

Conclusion and Future Work

Symbolic data are very common in our daily life, while the analytic methods for symbolic

data are very limited. For example, a famous and useful method called decision tree is

widely used. However, decision tree methods are only useful for classic data taking a single

value. As a result, we cannot apply the algorithms on data sets with symbolic explanatory

variables or a symbolic response variable. In this dissertation, we propose a method to build

a tree-based model when analyzing a data set with symbolic variables. For different types of

symbolic data, especially modal-valued and interval-valued, we have discussed the situation

of these symbolic data as explanatory variables and response variable, respectively. To build

a tree-based model, we need to consider two important parts. The first one is how to divide

the data set according to the explanatory variable. The other part is how to evaluate the

result of the division according to the response variable. Therefore, we have proposed a

variety of methods for dividing data and evaluating the division.

Furthermore, we consider different scenarios containing symbolic data and use two real-

life data sets and several simulated data sets to illustrate our methods. According to the

real-life data analysis, we found that CART for symbolic data greatly improved the efficiency

of the algorithm and reduced the running time for the categorical response variable. This

new method solved how to handle a large amount of data in big data analysis. What
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is more, we find that the classification and regression tree (CART) for symbolic data is

very useful for a data set with inconsistent dimensions as in the electric charging example.

Generally speaking, CART for symbolic data can reduce the running time by reducing the

sample size and keeps the prediction effect similar to the original data as adjudged by some

performance measurements such as recall, precision, and accuracy. In Section 4.4.2, we

conducted several simulations to show that it is also possible to use CART for symbolic

data to predict classification problems with classical data with less running time. For an

interval-valued response variable, because we need to predict two values, either lower bound

and upper bound or range and center, the running time will be relatively larger. The only

problem of CART for symbolic data is that the sample size is reduced after aggregating the

data, making the prediction less stable.

Therefore, the CART for symbolic data method is very suitable for the following situations

in life. The first is when the data we collect contain symbolic data such as questionnaires.

In this case, traditional statistical models and machine learning methods cannot solve such

problems. Secondly, when the number of our data samples is too large and the response

variable is categorical, we can greatly reduce the running time by aggregating the data.

In this dissertation, we proposed that the clustering method for symbolic data can be

used to divide the data set, especially for histogram data. Modal multi-valued and interval-

valued are relatively simple and straightforward to divide; and histogram-valued data are

more difficult to divide because of its more complex structure. In addition, there are some

clustering methods published for symbolic data. As a result, an extended work can be

developed using clustering methods to check and compare their performance. What is more,

we can use the similarity and distance functions to measure the split as mentioned in Section

3.1. However, only Root Mean Square Error (RMSE) was used for a modal multi-valued

response variable with two possible values and interval-valued response variable. One future

work is to simulate and compare the prediction using similarity or distance. Lastly, modal
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multi-valued data and interval-valued data are simulated to evaluate the methods for the

simulation study. More simulations for histogram-valued data are under discovery. Moreover,

we only use the Bernoulli distribution for categorical generation and the Normal distribution

for numerical generation. To simulate more real-life situations, we can simulate classical data

by other kinds of distribution such as a Poisson distribution and an Exponential distribution.

Another potential problem is that using Mean Square Error (MSE) as the standard func-

tion for evaluating splitting is inefficient, so the algorithm needs to be improved. In addition,

functions based on similarities and distances are under discovery for splitting measurement.

What is more, we can compare the methods with different splitting measurements on the

same data set.

Furthermore, there are many extended works for classical CART, e.g., tree pruning, and

ensemble methods based on the tree model. A disadvantage of decision trees is overfitting,

especially when the tree structure is large. The reason is that we will end up with very few

instances on each leaf node of the tree if the tree becomes too large. As a result, the estimated

average value on each child node will be inaccurate. Therefore, it is essential to prune the

tree for a good model. For classical CART, we have post-pruning and pre-pruning. One

future work is to develop pruning CART for symbolic data. What is more, many ensemble

methods such as random forest and XGBoost based on a simple decision tree structure are

proposed. In the future, we can also investigate some ensemble methods based on the CART

for symbolic data method. Finally, we only use really data and simulations to check and

compare the performance of the CART for symbolic data. In the future, we can consider

some discussion for mathematical justification for the performance.
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Appendix A

Code

A.1 Python code

## Packages

import pandas as pd

import numpy as np

from numpy import mean

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import SelectKBest

from sklearn.model_selection import learning_curve, GridSearchCV

from sklearn import tree

from sklearn.metrics import classification_report

from sklearn import metrics
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from imblearn.pipeline import Pipeline

import seaborn as sns

from pmdarima.arima import auto_arima

from collections import Counter

from pandas.core.frame import DataFrame

import glob

import warnings

warnings.filterwarnings("ignore")

## Method 1: basic statistics

def stat_charging(data):

e1 = data[[’v’,’c’,’c_soc’,’max_temp’,’min_temp’]]

e1[’max_temp’] = e1[’max_temp’].apply(lambda x: x % 50)

e1[’min_temp’] = e1[’min_temp’].apply(lambda x: x % 50)

result = []

result += e1.mean().tolist()

result += e1.std().tolist()

result += e1.median().tolist()

result.append(0)

return result

# grab excel files only

pattern_fault = ’/Users/zouwanxue/Downloads/fault data/*.csv’

csv_files_fault = glob.glob(pattern_fault)

l = []

for file in csv_files_fault:

# Read xlsx into a DataFrame

df = pd.read_csv(file)
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# Append df to frames

l.append(df.shape[0])

print(min(l),max(l))

pattern_normal = ’/Users/zouwanxue/Downloads/normal data/*/*.csv’

csv_files_normal = glob.glob(pattern_normal)

# Check the range of charging length

l = []

for file in csv_files_normal:

df = pd.read_csv(file)

l.append(df.shape[0])

print(min(l),max(l))

frames = []

for file in csv_files_normal:

# Read xlsx into a DataFrame

df = pd.read_csv(file)

# Append df to frames

if df.shape[0] > 30:

frames.append(stat_charging(df) + [0])

for file in csv_files_fault:

df = pd.read_csv(file)

frames.append(stat_charging(df) + [1])

df = pd.DataFrame(frames)

df.head()

df.info()

# Check whether it is a balanced data set or not.
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counter = Counter(df.loc[:,24])

print(counter) # ratio (0:0.86,1:0.14)

# Transform the data

x = df.iloc[:,:-1].values

x = StandardScaler().fit_transform(x)

y = df.loc[:,16].values

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33,

random_state=42)

# Find the best parameters.

w = {0:0.14,1:0.86}

pipe=Pipeline([(’select’,SelectKBest(k=10)),

(’classify’, tree.DecisionTreeClassifier(random_state = 10,

max_features = ’sqrt’))])

param_test = {’classify__max_depth’:list(range(1,10,2)),

’classify__min_samples_split’:list(range(1,10,2)),

’classify__class_weight’:[w]}

gsearch = GridSearchCV(estimator = pipe, param_grid = param_test,

scoring=’f1_macro’, cv=5)

gsearch.fit(X_train,y_train)

print(gsearch.best_params_, gsearch.best_score_)

# Fit the model with best parameters.

DT = tree.DecisionTreeClassifier(class_weight = w, max_depth = 9,

min_samples_split = 5)

print(DT.fit(X_train, y_train))

print("accuracy on testing: ", DT.score(X_test, y_test))

141



X_train_pred = DT.predict(X_train)

X_test_pred = DT.predict(X_test)

# Get the prediction results

print(’training:’)

print(classification_report(y_train, X_train_pred))

print(’confusion matrix on traning:’)

print(metrics.confusion_matrix(y_train, X_train_pred))

print(’testing:’)

print(classification_report(y_test, X_test_pred))

print(’confusion matrix on testing:’)

print(metrics.confusion_matrix(y_test, X_test_pred))

## Method 2: filling data by ARIMA

def arima_charging(data):

e1 = data[[’v’,’c’,’c_soc’,’max_temp’,’min_temp’]]

e1[’max_temp’] = e1[’max_temp’].apply(lambda x: x % 50)

e1[’min_temp’] = e1[’min_temp’].apply(lambda x: x % 50)

n = e1.shape[0]

e1 = e1.loc[1:(n-1),:]

soc = e1.c_soc

col_list = [’v’,’c’,’max_temp’,’min_temp’]

res = []

for col in col_list:

l = e1[col]

start = 0

end = 100

tmp = {’l’ : l, ’soc’ : soc}
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data = DataFrame(tmp)

df_temp = data[[’soc’]]

df_temp.drop_duplicates(inplace=True)

data = data.iloc[df_temp.index.tolist(), :].dropna()

data.set_index([’soc’], drop=False, inplace=True)

curve = data.iloc[:, 0]

train1, train2 = curve, curve[::-1]

train1, train2 = np.transpose(np.array([train1])),

np.transpose(np.array([train2]))

soc_list = data.index.tolist()

length_1, length_2 = end - soc_list[-1], soc_list[0] - start

model1 = auto_arima(train1, start_p=1, start_q=1, max_p=5, max_q=5, m=12,

start_P=0, seasonal=True, d=1, D=1,

trace=True, error_action=’ignore’,

suppress_warnings=True)

model1.fit(train1)

pre1 = model1.predict(n_periods=int(length_1))

model2 = auto_arima(train2, start_p=1, start_q=1, max_p=5, max_q=5,

m=12, start_P=0, seasonal=True, d=1, D=1,

trace=True, error_action=’ignore’,

suppress_warnings=True)

model2.fit(train2)

pre2 = model2.predict(n_periods=int(length_2))

curve = (pre2.tolist())[::-1] + train1.T[0].tolist() + pre1.tolist()

if len(curve) > 100:

curve = curve[:100]

elif len(curve) < 100:

curve = curve + [0]*(100-len(curve))
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res += curve

return res

frames = []

for file in csv_files_normal:

# Read xlsx into a DataFrame

df = pd.read_csv(file)

# Append df to frames

try:

frames.append(arima_charging(df) + [0])

except:

pass

for file in csv_files_fault:

df = pd.read_csv(file)

try:

frames.append(arima_charging(df) + [1])

except:

pass

df = pd.DataFrame(frames)

df.head()

df.info()

counter = Counter(df.loc[:,24])

print(counter)

# Transform the data

x = df.iloc[:,:-1].values

x = StandardScaler().fit_transform(x)
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y = df.loc[:,500].values

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33,

random_state=42)

# Find the best parameters.

w = {0:0.14,1:0.86}

pipe=Pipeline([(’select’,SelectKBest(k=10)),

(’classify’, tree.DecisionTreeClassifier(random_state = 10,

max_features = ’sqrt’))])

param_test = {’classify__max_depth’:list(range(1,10,2)),

’classify__min_samples_split’:list(range(1,10,2)),

’classify__class_weight’:[w]}

gsearch = GridSearchCV(estimator = pipe, param_grid = param_test,

scoring=’f1_macro’, cv=5)

gsearch.fit(X_train,y_train)

print(gsearch.best_params_, gsearch.best_score_)

# Fit the model with best parameters.

DT = tree.DecisionTreeClassifier(class_weight = w, max_depth = 9,

min_samples_split = 5)

print(DT.fit(X_train, y_train))

print("accuracy on testing: ", DT.score(X_test, y_test))

X_train_pred = DT.predict(X_train)

X_test_pred = DT.predict(X_test)

# Get the prediction results

print(’training:’)

print(classification_report(y_train, X_train_pred))
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print(’confusion matrix on traning:’)

print(metrics.confusion_matrix(y_train, X_train_pred))

print(’testing:’)

print(classification_report(y_test, X_test_pred))

print(’confusion matrix on testing:’)

print(metrics.confusion_matrix(y_test, X_test_pred))

## Method 3: Histogram data

def hist_charging(data):

e1 =data[[’v’,’c’,’c_soc’,’max_temp’,’min_temp’]]

if max(e1.c_soc) > 100:

e1[’c_soc’] = e1[’c_soc’]/10

e1[’max_temp’] = e1[’max_temp’].apply(lambda x: x % 50)

e1[’min_temp’] = e1[’min_temp’].apply(lambda x: x % 50)

e1[’group’] = e1[’c_soc’].apply(lambda x:split(x,10))

for i in range(21):

if i not in set(e1.group):

e1 = e1.append({’v’:0,’c’:0,’c_soc’:0,

’max_temp’:0,’min_temp’:0,’group’:i}, ignore_index=True)

e2 = e1.groupby(’group’).agg({ ’v’:[’mean’], ’c’:[’mean’],

’max_temp’:[’mean’],’min_temp’:[’mean’]})

d = []

M = e2.to_numpy()

for i in M:

for j in i:

d.append(j)

d.append(0)

return d
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frames = []

for file in csv_files_normal:

# Read xlsx into a DataFrame

df = pd.read_csv(file)

# Append df to frames

if df.shape[0] > 30:

frames.append(hist_charging(df) + [0])

for file in csv_files_fault:

df = pd.read_csv(file)

frames.append(hist_charging(df) + [1])

df = pd.DataFrame(frames)

df.head()

df.info()

counter = Counter(df.loc[:,24])

print(counter)

# Transform the data

x = df.iloc[:,:-1].values

x = StandardScaler().fit_transform(x)

y = df.loc[:,16].values

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33,

random_state=42)

# Find the best parameters

w = {0:0.14,1:0.86}

pipe=Pipeline([(’select’,SelectKBest(k=10)),
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(’classify’, tree.DecisionTreeClassifier(random_state = 10,

max_features = ’sqrt’))])

param_test = {’classify__max_depth’:list(range(1,10,2)),

’classify__min_samples_split’:list(range(1,10,2)),

’classify__class_weight’:[w]}

gsearch = GridSearchCV(estimator = pipe, param_grid = param_test,

scoring=’f1_macro’, cv=5)

gsearch.fit(X_train,y_train)

print(gsearch.best_params_, gsearch.best_score_)

# Fit the model with best parameters.

DT = tree.DecisionTreeClassifier(class_weight = w, max_depth = 9,

min_samples_split = 5)

print(DT.fit(X_train, y_train))

print("accuracy on testing: ", DT.score(X_test, y_test))

X_train_pred = DT.predict(X_train)

X_test_pred = DT.predict(X_test)

# Get the prediction results.

print(’training:’)

print(classification_report(y_train, X_train_pred))

print(’confusion matrix on traning:’)

print(metrics.confusion_matrix(y_train, X_train_pred))

print(’testing:’)

print(classification_report(y_test, X_test_pred))

print(’confusion matrix on testing:’)

print(metrics.confusion_matrix(y_test, X_test_pred))
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A.2 R code

require(ggplot2)

require(rpart)

require(rpart.plot)

require(caret)

require(MASS)

require(purrr)

require(tree)

### 0. Functions

# Function to generate binary data

generatebern <- function(n,m,P){

# n means the number of groups

# m means the number of samples in each group

# P is p-dimension vector for probabilies in the class

res = NULL

p = length(P)

for (j in 1:p){

tmp = rbernoulli(n*m,p = P[j])

res = cbind(res,tmp)

}

return (res)

}

# Function to generate numerical data

generatenormal <- function(n,m,mu,v,M){

# n means the number of groups
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# m means the number of samples in each group

# M is the covariance matrix

# The output should be a dataframe with (mn)*p where p is the dimension of M.

res = NULL

p = dim(M)[1]

for (i in 1:n){

tmp_u = rnorm(p,mu,v)

tmp = mvrnorm(n = m, mu = tmp_u, Sigma = M)

res = rbind(res,tmp)

}

return (res)

}

# Function to aggregate the categorical explanatory variables

# with aggregated categorical response

aggregate_modal <- function(classic,m){

# m means the number of samples in one group

n = nrow(classic)

p = ncol(classic)-1

group = ceiling(n/m)

df_modal = NULL

for (i in 1:group){

tmp = (m*i-m+1):(m*i)

df_tmp = classic[tmp,]

row_tmp = NULL

for (j in 1:p){

row_tmp = c(row_tmp, sum(df_tmp[,j])/m)

}
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df_modal = rbind(df_modal,row_tmp)

}

df = data.frame(df_modal)

return (df)

}

# Function to aggregate the categorical explanatory variables

# with aggregated modal multi-valued or interval-valued response

aggregate_modal2 <- function(classic,m,type){

# m means the number of samples in one group

n = nrow(classic)

p = ncol(classic)-1

group = ceiling(n/m)

df_modal = NULL

for (i in 1:group){

tmp = (m*i-m+1):(m*i)

df_tmp = classic[tmp,]

row_tmp = NULL

for (j in 1:p){

row_tmp = c(row_tmp, sum(df_tmp[,j])/m)

}

if (type == ’modal’){

row_tmp = c(row_tmp, sum(df_tmp[,(p+1)])/m)

}

else{

row_tmp = c(row_tmp, min(df_tmp[,(p+1)]), max(df_tmp[,(p+1)]))

}

df_modal = rbind(df_modal,row_tmp)
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}

df = data.frame(df_modal)

return (df)

}

# Function to aggregate the numerical explanatory variables

# with aggregated categorical response

aggregate_interval <- function(classic,m){

# m means the number of samples in one group

n = nrow(classic)

p = ncol(classic)-1

group = ceiling(n/m)

df_interval = NULL

for (i in 1:group){

tmp = (m*i-m+1):(m*i)

df_tmp = classic[tmp,]

row_tmp = NULL

for (j in 1:p){

row_tmp = c(row_tmp, min(df_tmp[,j]))

row_tmp = c(row_tmp, max(df_tmp[,j]))

}

df_interval = rbind(df_interval,row_tmp)

}

df = data.frame(df_interval)

return (df)

}

# Function to aggregate the numerical explanatory variables

152



# with aggregated modal multi-valued or interval-valued response

aggregate_interval2 <- function(classic,m,type){

# m means the number of samples in one group

n = nrow(classic)

p = ncol(classic)-1

group = ceiling(n/m)

df_interval = NULL

for (i in 1:group){

tmp = (m*i-m+1):(m*i)

df_tmp = classic[tmp,]

row_tmp = NULL

for (j in 1:p){

row_tmp = c(row_tmp, min(df_tmp[,j]))

row_tmp = c(row_tmp, max(df_tmp[,j]))

}

if (type == ’modal’){

row_tmp = c(row_tmp, sum(df_tmp[,(p+1)])/m)

}

else{

row_tmp = c(row_tmp, min(df_tmp[,(p+1)]), max(df_tmp[,(p+1)]))

}

df_interval = rbind(df_interval,row_tmp)

}

df = data.frame(df_interval)

return (df)

}

# Function to calculate MSE
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MSE <- function(intervals){

# intervals is a matrix with n*2 dimention

# each row represent an interval

n = nrow(intervals)

a = intervals[,1]

b = intervals[,2]

y = (a+b)/2

Y = mean(y)

Yvec = rep(Y,n)

SST = sum((y - Yvec)^2) + sum((y - a)^2)/3 +

sum((y - b)^2)/3 + sum((y - a) * (y - b))/3

return (SST/n)

}

# Function to calculate the gini

gini <-function(v){

if (length(v) == 0){

return (0)

}

category <- unique(v)

n <- length(v)

res <- 1

for (i in 1:length(category)){

p <- length(v[v==category[i]])/n

res <- res - p^2

}

return (res)

}
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# Functions to split the data for interval explanatory variables

# and categorical response

tripart_best <- function(data){

if (nrow(data) == 0){

return (data)

}

p <- (ncol(data) -1)/2

var <- 1:p

delta_gini = NULL

col_index = NULL

mid_val = NULL

for (i in var){

vals <- unique(sort(c(data[,(2*i-1)],data[,2*i])))

tmp_n <- length(vals)

mid <- (vals[1:(tmp_n-1)]+vals[2:tmp_n])/2

for (val in mid){

D1 = data[data[,(2*i-1)] > val,]

D2 = data[(data[,(2*i-1)] <= val) & (data[,2*i] > val),]

D3 = data[data[,2*i] < val,]

ginichange = gini(data[,ncol(data)]) -

nrow(D1)/nrow(data)*gini(D1[,ncol(D1)]) -

nrow(D2)/nrow(data)*gini(D2[,ncol(D2)]) -

nrow(D3)/nrow(data)*gini(D3[,ncol(D3)])

delta_gini <- c(delta_gini,ginichange)

col_index <- c(col_index,i)

mid_val <- c(mid_val, val)

}
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}

id = which.max(delta_gini)

return (list(delta = delta_gini[id],

new_delta = gini(data[,ncol(data)]) - delta_gini[id],

col_index = col_index[id],

mid_val = mid_val[id]))

}

# Functions to split the data for interval explanatory variables

# and interval-valued response

tripart_best_MSE <- function(data){

if (nrow(data) == 0){

return (data)

}

p <- ncol(data) -2

var <- 1:p

delta_MSE = NULL

col_index = NULL

mid_val = NULL

for (i in var){

vals <- unique(data[,i])

tmp_n <- length(vals)

mid <- (vals[1:(tmp_n-1)]+vals[2:tmp_n])/2

for (val in mid){

D1 = data[data[,i] >= val,]

D2 = data[data[,i] < val,]

MSEchange = MSE(data[,((p+1):(p+2))]) -

nrow(D1)/nrow(data)*MSE(D1[,((p+1):(p+2))]) -
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nrow(D2)/nrow(data)*MSE(D2[,((p+1):(p+2))])

delta_MSE <- c(delta_MSE,MSEchange)

col_index <- c(col_index,i)

mid_val <- c(mid_val, val)

}

}

id = which.max(delta_MSE)

return (list(delta = delta_MSE[id],

new_delta = MSE(data[,((p+1):(p+2))]) - delta_MSE[id],

col_index = col_index[id],

mid_val = mid_val[id]))

}

# Functions to evaluate models

evaluation <- function(model, data, atype) {

# This function is for classification with input models

prediction = predict(model, data, type=atype)

xtab = table(prediction, data$label)

accuracy = sum(prediction == data$label)/length(data$label)

precision = xtab[1,1]/sum(xtab[,1])

recall = xtab[1,1]/sum(xtab[1,])

f = 2 * (precision * recall) / (precision + recall)

return (list(acc = accuracy,recall = recall, pre = precision, f = f))

}

compare <- function(l1,l2){

# This function is for classification with input lists

xtab = table(l1, l2)
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accuracy = sum(l1 == l2)/length(l1)

precision = xtab[1,1]/sum(xtab[,1])

recall = xtab[1,1]/sum(xtab[1,])

f = 2 * (precision * recall) / (precision + recall)

return (list(acc = accuracy,recall = recall, pre = precision, f = f))

}

### 1. Iris dataset

## 1.1 The original iris dataset

data("iris")

head(iris)

x <- iris[,1:4]

y <- iris[,5]

par(mfrow=c(2,2))

for(i in 1:4) {

boxplot(x[,i], main=names(iris)[i])

}

# scatterplot matrix for classical data

featurePlot(x=x, y=y, plot="ellipse")

tree.model = rpart(Species ~ Sepal.Width + Petal.Width, data = iris,

method=’class’)

plot(iris$Petal.Width, iris$Sepal.Width, pch=19, col=as.numeric(iris$Species))

partition.tree(tree.model, label="Species", add=TRUE)

legend("topright",legend=unique(iris$Species),

col=unique(as.numeric(iris$Species)), pch=19)
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## 1.2 Interval-valued iris dataset

iris_interval = aggregate_interval(iris,m=5)

iris_interval$Species = rep(c(’setosa’, ’versicolor’,

’virginica’),each = 10)

colnames(iris_interval)<-c(’SL_L’,’SL_U’,’SW_L’,’SW_U’,

’PL_L’,’PL_U’,’PW_L’,’PW_U’,’Species’)

rownames(iris_interval)<-paste(’group’,1:nrow(iris_interval))

head(iris_interval)

# Visualize the data

par(mfrow = c(2,3))

for (i in 1:3){

for (j in (i+1):4){

X_L = iris_interval[,(2*i-1)]

X_U = iris_interval[,2*i]

Y_L = iris_interval[,(2*j-1)]

Y_U = iris_interval[,2*j]

plot(c(min(X_L)-0.2,max(X_U)+0.2), c(min(Y_L)-0.2, max(Y_U)+0.2),

type = "n", xlab = colnames(iris)[i], ylab = colnames(iris)[j],

main = paste(’Scatter Plots (’, colnames(iris)[i],’,’,

colnames(iris)[j],’)’ ))

rect(X_L[1:10], Y_L[1:10], X_U[1:10], Y_U[1:10], border = "blue")

rect(X_L[11:20], Y_L[11:20], X_U[11:20], Y_U[11:20], border = "red")

rect(X_L[21:30], Y_L[21:30], X_U[21:30], Y_U[21:30], border = "green")

}

}

s <- sample(1:30,24,replace = FALSE)
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train = iris_interval[s,]

test = iris_interval[-s,]

rtree <- rpart(Species ~ ., data = train, method=’class’)

printcp(rtree)

summary(rtree)

par(mfrow = c(1,1))

rpart.plot(rtree, box.palette="RdBu", shadow.col="gray", nn=TRUE)

tripart_best(train)

### 2. Simulations

## For each scenario, only the codes for situation 1 are shown here.

## 2.1 Scenario 1

# Data generation

X1 = generatebern(50,10,c(0.1,0.2,0.3,0.4))

X2 = generatebern(50,10,c(0.4,0.5,0.6,0.7))

X = rbind(X1,X2)

sim11 = data.frame(X)

dim(sim11)

sim11$label = as.factor(rep(0:1,each = 500))

# CART for classical data

s <- sample(1:1000,700,replace = FALSE)

train = sim11[s,]

test = sim11[-s,]

rtree <- rpart(label ~ .,data = train, method=’class’)

system.time(rpart(label ~ .,data = train, method=’class’))

printcp(rtree)

summary(rtree)
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par(mfrow = c(1,1))

rpart.plot(rtree, box.palette="RdBu", shadow.col="gray", nn=TRUE)

evaluation(rtree, test, "class")

# Run multiple times to get a stable estimator.

acc = NULL

recall = NULL

pre = NULL

f = NULL

for (i in 1:100){

s <- sample(1:1000,700,replace = FALSE)

train = sim11[s,]

test = sim11[-s,]

rtree <- rpart(label ~ .,data = train, method=’class’)

acc <- c(acc,evaluation(rtree, test, "class")$acc)

recall <- c(recall,evaluation(rtree, test, "class")$recall)

pre <- c(pre,evaluation(rtree, test, "class")$pre)

f <- c(f,evaluation(rtree, test, "class")$f)

}

c(mean(acc),var(acc))

c(mean(recall),var(recall))

c(mean(pre),var(pre))

c(mean(f),var(f))

# Convert the data to symbolic type

sim11_modal = aggregate_modal(sim11,m=10)

dim(sim11_modal)

sim11_modal$label = as.factor(rep(0:1,each = 50))
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rownames(sim11_modal)<-paste(’group’,1:nrow(sim11_modal))

head(sim11_modal)

tail(sim11_modal)

# CART for symbolic data

s <- sample(1:100,70,replace = FALSE)

train = sim11_modal[s,]

test = sim11_modal[-s,]

rtree <- rpart(label ~ .,data = train, method=’class’)

system.time(rpart(label ~ .,data = train, method=’class’))

printcp(rtree)

summary(rtree)

par(mfrow = c(1,1))

rpart.plot(rtree, box.palette="RdBu", shadow.col="gray", nn=TRUE)

evaluation(rtree, test, "class")

# Run multiple times to get a stable estimator.

acc = NULL

recall = NULL

pre = NULL

f = NULL

for (i in 1:100){

s <- sample(1:100,70,replace = FALSE)

train = sim11_modal[s,]

test = sim11_modal[-s,]

rtree <- rpart(label ~ .,data = train, method=’class’)

acc <- c(acc,evaluation(rtree, test, "class")$acc)
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recall <- c(recall,evaluation(rtree, test, "class")$recall)

pre <- c(pre,evaluation(rtree, test, "class")$pre)

f <- c(f,evaluation(rtree, test, "class")$f)

}

c(mean(acc),var(acc))

c(mean(recall),var(recall))

c(mean(pre),var(pre))

c(mean(f),var(f))

## 2.2 Scenario 2

# Data generation

X1 = generatebern(50,10,c(0.1,0.2,0.3,0.4))

X2 = generatebern(50,10,c(0.4,0.5,0.6,0.7))

X = rbind(X1,X2)

sim21 = data.frame(X)

dim(sim21)

l1 = sample(c(0,1),500,replace = TRUE, prob = c(0.8,0.2))

l2 = sample(c(0,1),500,replace = TRUE, prob = c(0.2,0.8))

sim21$label = c(l1,l2)

# CART for classical data

s <- sample(1:1000,700,replace = FALSE)

train = sim21[s,]

test = sim21[-s,]

rtree <- rpart(label ~ .,data = train, method=’class’)

system.time(rpart(label ~ .,data = train, method=’class’))

printcp(rtree)

summary(rtree)
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par(mfrow = c(1,1))

rpart.plot(rtree, box.palette="RdBu", shadow.col="gray", nn=TRUE)

evaluation(rtree, test, "class")

# Run multiple times to get a stable estimator.

acc = NULL

recall = NULL

pre = NULL

f = NULL

for (i in 1:100){

s <- sample(1:1000,700,replace = FALSE)

train = sim21[s,]

test = sim21[-s,]

rtree <- rpart(label ~ .,data = train, method=’class’)

acc <- c(acc,evaluation(rtree, test, "class")$acc)

recall <- c(recall,evaluation(rtree, test, "class")$recall)

pre <- c(pre,evaluation(rtree, test, "class")$pre)

f <- c(f,evaluation(rtree, test, "class")$f)

}

c(mean(acc),var(acc))

c(mean(recall),var(recall))

c(mean(pre),var(pre))

c(mean(f),var(f))

# Convert the data to symbolic type

sim21_modal = aggregate_modal2(sim21,m=10,type = ’modal’)

dim(sim21_modal)

rownames(sim21_modal)<-paste(’group’,1:nrow(sim11_modal))
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head(sim21_modal)

tail(sim21_modal)

# Use the CART for SD to estimate the original class

s <- sample(1:100,70,replace = FALSE)

train = sim21_modal[s,]

test = sim21_modal[-s,]

so = NULL

for (k in s){

so <- c(so,(10*k-9):(10*k))

}

test_original = sim21[-so,]

rtree <- rpart(X5 ~ .,data = train, method=’anova’)

system.time(rpart(X5 ~ .,data = train, method=’anova’))

printcp(rtree)

summary(rtree)

par(mfrow = c(1,1))

rpart.plot(rtree, box.palette="RdBu", shadow.col="gray", nn=TRUE)

pred <- predict(rtree,test)

res = NULL

for (i in pred){

res <- c(res,sample(c(0,1),10,replace = TRUE, prob = c(1-i,i)))

}

compare(res,test_original$label)

# Run multiple times to get a stable estimator.

acc = NULL

recall = NULL
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pre = NULL

f = NULL

for (i in 1:100){

s <- sample(1:100,70,replace = FALSE)

train = sim21_modal[s,]

test = sim21_modal[-s,]

so = NULL

for (k in s){

so <- c(so,(10*k-9):(10*k))

}

test_original = sim21[-so,]

rtree <- rpart(X5 ~ .,data = train, method=’anova’)

pred <- predict(rtree,test)

res = NULL

for (i in pred){

res <- c(res,sample(c(0,1),10,replace = TRUE, prob = c(1-i,i)))

}

acc <- c(acc,compare(res,test_original$label)$acc)

recall <- c(recall,compare(res,test_original$label)$recall)

pre <- c(pre,compare(res,test_original$label)$pre)

f <- c(f,compare(res,test_original$label)$f)

}

c(mean(acc),var(acc))

c(mean(recall),var(recall))

c(mean(pre),var(pre))

c(mean(f),var(f))

# Run multiple times to get a stable RMSE.
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l = NULL

for (i in 1:100){

s <- sample(1:100,70,replace = FALSE)

train = sim21_modal[s,]

test = sim21_modal[-s,]

rtree <- rpart(X5 ~ .,data = train, method=’anova’)

pred <- predict(rtree, test)

l = c(l,RMSE(pred, test$X5))

}

mean(l)

var(l)

## 2.3 Scenario 3

# Data generation

X1 = generatenormal(50,10,0,1,diag(4))

X2 = generatenormal(50,10,1.5,1,diag(4))

X = rbind(X1,X2)

sim31 = data.frame(X)

dim(sim31)

sim31$label = as.factor(rep(0:1,each = 500))

# CART for classical data

s <- sample(1:1000,40,replace = FALSE)

featurePlot(x=sim31[s,1:4], y=sim31[s,5], plot="ellipse")

s <- sample(1:1000,700,replace = FALSE)

train = sim31[s,]

test = sim31[-s,]

rtree <- rpart(label ~ .,data = train, method=’class’)

167



system.time(rpart(label ~ .,data = train, method=’class’))

printcp(rtree)

summary(rtree)

#Plots for numerical data

par(mfrow = c(1,1))

rpart.plot(rtree, box.palette="RdBu", shadow.col="gray", nn=TRUE)

evaluation(rtree, test, "class")

# Convert the data to symbolic type

sim31_interval = aggregate_interval(sim31,m=10)

dim(sim31_interval)

sim31_interval$label = as.factor(rep(0:1,each = 50))

colnames(sim31_interval)<-c(’X1_L’,’X1_U’,’X2_L’,’X2_U’,

’X3_L’,’X3_U’,’X4_L’,’X4_U’,’label’)

rownames(sim31_interval)<-paste(’group’,1:nrow(sim31_interval))

head(sim31_interval)

tail(sim31_interval)

#Plots for interval-valued data

group1 = sample(which(sim31_interval$label == 0),10,replace = FALSE)

group2 = sample(which(sim31_interval$label == 1),10,replace = FALSE)

par(mfrow = c(2,3))

for (i in 1:3){

for (j in (i+1):4){

X_L = sim31_interval[,(2*i-1)]

X_U = sim31_interval[,2*i]

Y_L = sim31_interval[,(2*j-1)]
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Y_U = sim31_interval[,2*j]

plot(c(min(X_L)-0.2,max(X_U)+0.2), c(min(Y_L)-0.2, max(Y_U)+0.2),

type = "n", xlab = colnames(sim31)[i], ylab = colnames(sim31)[j],

main = paste(’Scatter Plots (’, colnames(sim31)[i],’,’,

colnames(sim31)[j],’)’ ))

rect(X_L[group1], Y_L[group1], X_U[group1], Y_U[group1], border = "blue")

rect(X_L[group2], Y_L[group2], X_U[group2], Y_U[group2], border = "red")

}

}

# CART for symbolic data

s <- sample(1:100,70,replace = FALSE)

train = sim31_interval[s,]

test = sim31_interval[-s,]

rtree <- rpart(label ~ .,data = train, method=’class’)

system.time(rpart(label ~ .,data = train, method=’class’))

printcp(rtree)

summary(rtree)

par(mfrow = c(1,1))

rpart.plot(rtree, box.palette="RdBu", shadow.col="gray", nn=TRUE)

evaluation(rtree, test, "class")

## 2.4 Scenario 4

# Data generation

X = generatenormal(100,10,0,1,diag(4))

beta = c(1,1,2,3,4)

eta = rnorm(nrow(X))

y = cbind(rep(1,nrow(X)),X)%*%beta + eta
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sim41 = data.frame(cbind(X,y))

dim(sim41)

head(sim41)

tail(sim41)

# CART for classical data

s <- sample(1:1000,700,replace = FALSE)

train = sim41[s,]

test = sim41[-s,]

rtree <- rpart(X5 ~ .,data = train, method=’anova’)

system.time(rpart(X5 ~ .,data = train, method=’anova’))

printcp(rtree)

summary(rtree)

par(mfrow = c(1,1))

rpart.plot(rtree, box.palette="RdBu", shadow.col="gray", nn=TRUE)

pred <- predict(rtree, test)

RMSE(pred, test$X5)

# Convert the data to symbolic type

sim41_interval = aggregate_interval2(sim41,m=10,type = ’interval’)

dim(sim41_interval)

rownames(sim41_interval)<-paste(’group’,1:nrow(sim41_interval))

head(sim41_interval)

tail(sim41_interval)

# Run multiple times to get a stable estimator.

ll = NULL

lu = NULL
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for (i in 1:100){

s <- sample(1:100,70,replace = FALSE)

train = sim41_interval[s,]

test = sim41_interval[-s,]

train1 = train[,1:9]

train2 = train[,c(1:8,10)]

test1 = test[,1:9]

test2 = test[,c(1:8,10)]

rtree1 <- rpart(X9 ~ .,data = train1, method=’anova’)

pred1 <- predict(rtree1, test1)

ll = c(ll,RMSE(pred1, test1$X9))

rtree2 <- rpart(X10 ~ .,data = train2, method=’anova’)

pred2 <- predict(rtree2, test2)

lu = c(lu,RMSE(pred2, test2$X10))

}

mean(ll)

var(ll)

mean(lu)

var(lu)
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