
Modeling and Interpreting
High-Dimensional Spaces

by

Mohammadhossein Toutiaee

(Under the Direction of John A. Miller)

Abstract

Curse of dimensionality in modeling occurs when the subject of study is an-
alyzed in high-dimensional data, while it cannot be easily identi�able in low
dimensional spaces. But migrating to higher dimensional spaces causes chal-
lenges in modeling and interpretation of the subject. Advances in machine
learning, particularly in the form of neural networks, supposedly tackles the
challenge of modeling, but such techniques require a plethora of input data for
training. Additionally, those techniques can be opaque and brittle when they
highly become performant as a result of learning in complex spaces. It is not
directly understandable as to why and when they work well, and why they may
fail entirely when faced with new cases not seen in the training data. In this dis-
sertation, we tackle those issues by proposing two techniques. (1) In the case of
modeling, we propose a novel method that can help unlock the power of neural
networks on limited data to produce competitive results. With extensive exper-
iments, we demonstrate that our proposed method can be e�ective on limited
data, and we test and evaluate our method on intermediate length time-series
data that may not be suitable for simple neural networks due to lack of data
with high-dimensional features. (2) In the interpretation context, we propose a
new framework for 2-D interpreting (features and samples) black-box machine
learning models via a metamodeling technique. Our interpretable toolset can
explain the behavior and verify the properties of black-box models, by which we
study the output and input relationships of the underlying machine learning

models. We show how our method facilitates the analysis of a black-box, aid-
ing practitioners to demystify its behavior, and in turn, providing transparency
towards learning better and more reliable models.

Index words: Responsible Data Science, Time-Series Analysis,
Machine Learning, Metamodeling, High-Dimensional
Spaces, Knowledge Graphs

2

Modeling and Interpreting High-Dimensional Spaces

by

Mohammadhossein Toutiaee

M.Sc., The University of Ottawa, Canada, 2013
M.Sc., The University of Georgia, 2020

A Dissertation Submitted to the Graduate Faculty of the
University of Georgia in Partial Ful�llment of the Requirements for the

Degree

Doctor of Philosophy

Athens, Georgia

2021

©2021
Mohammadhossein Toutiaee

All Rights Reserved

Modeling and Interpreting High-Dimensional Spaces

by

Mohammadhossein Toutiaee

Major Professor: John A. Miller

Committee: Hamid R. Arabnia
Khaled M. Rasheed
Ismailcem B. Arpinar
Yuan Ke

Electronic Version Approved:

Ron Walcott
Vice Provost for Graduate Education and Dean of the Graduate School School
The University of Georgia
August 2021

Dedicated to my parents, who have loved
me, raised me, and taught me

encouragement.

iv

Acknowledgments

First, I would like to thank my major professor, Dr. John A. Miller. He is truly
an example of a scholar with diligence and integrity. He has inspired me to
become an independent researcher and helped me realize the power of critical
reasoning. He also demonstrated what a brilliant and hard-working scientist
can accomplish. He has provided me constructive criticism which helped me
develop a broader perspective on my dissertation.

My sincere thanks must also go to my committee members: Professors
Hamid Arabnia, Khaled Rasheed, Budak Arpinar and Yuan Ke. They gen-
erously gave their time to o�er me valuable comments toward improving my
work. In particular, I would like to express my deep gratitude and respect to
Prof. Arabnia, who has always supported me through the ups and downs of
my Ph.D. journey.

I am most grateful to my lab collaborators for lending me their expertise
and intuition to my work: Indrajeet Javeri and Yogesh Chaudhari and all the
other current and former AIMS Lab grad students and visitors that I know.

I also extend my gratitude to Dr. Ke’s research group members whom I
have the pleasure of working with: Dr. Nicole Lazar and Xiaochuan Li.

I owe a special thanks to my family. My wife, Delaram, who has always been
my best friend and great companion, loved, supported, encouraged, and helped
me get through this long journey in the most positive way. I deeply thank my
parents, for always encouraging me to explore my own path, their unconditional
trust, timely encouragement, endless patience, and for everything they have
given me in my life - all of the support and love. It was their love that raised me
up again when I got weary. To my brothers, Ehsan and Amirhesan, for helping
me feel con�dent and brave even from afar.

v

Contents

Acknowledgments v

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Motivation and Research Objectives 2
1.2 Contributions and Outlines 3

2 Literature Review 6
2.1 Overview of Traditional Methods 7
2.2 Machine Learning Approaches 12
2.3 Generative Adversarial Networks 17

3 Improving Time-Series Forecasting by eXogenous Variables 30
3.1 Introduction . 31
3.2 Related Work . 32
3.3 Aggregate Mobility Data 33
3.4 COVID-19 Dataset . 33
3.5 SARIMAX . 34
3.6 Minimax Concave Penalty 35
3.7 Vector Auto-Regressive model 36
3.8 Random Walk . 36
3.9 GCN_LSTM . 37
3.10 Rolling Validation for Multiple Horizons 39
3.11 Hyperparameters and Architectures 40

vi

3.12 Mortality Prediction Performance 41
3.13 Conclusion . 42

4 Improving Intermediate Length Time-Series Data by Hybrid Mod-
els 49
4.1 Background . 50
4.2 Dataset . 51
4.3 Data Preprocessing . 52
4.4 Lag Selection . 53
4.5 Related Work . 53
4.6 Modeling Studies for COVID-19 55
4.7 ARIMA . 56
4.8 SARIMA . 57
4.9 Arti�cial Neural Networks 57
4.10 Gated Recurrent Unit (GRU)-based Autoencoders 58
4.11 LSTM with Convolutional Layer 59
4.12 Wavelet-based Neural Network Models 59
4.13 Fitting SARIMAX Model 62
4.14 Rolling Validation for Multiple Horizons 63
4.15 Backcasting Strategy . 63
4.16 Fitting of Wavelet-ANN Model 64
4.17 Results . 64
4.18 Conclusion . 66

5 Improving Classi�cation Performance by Transfer Learning in
Undersampled Videos 73
5.1 Introduction . 73
5.2 Previous Work . 75
5.3 Video Format and Preparation 77
5.4 Model Selection . 77
5.5 Fresh Convolutional Neural Network 78
5.6 Transfer Learning . 79
5.7 Results . 81
5.8 Model Performance . 83

vii

5.9 Why VGG19 Outperformed? 84
5.10 Conclusion . 86

6 Use of Knowledge Graphs in Time-Series Forecasting 91
6.1 Introduction . 91
6.2 Related Work . 94
6.3 Knowledge Graph Use Cases 95
6.4 Conclusion . 96

7 Metamodeling for Prediction and Interpretation 97
7.1 Metamodeling . 97
7.2 Evaluation Summary . 110
7.3 Black-Box Interpretation 110
7.4 Interpretable Models . 112
7.5 Our Contribution . 123
7.6 Gaussian Function On Response Surface Estimation; G-FORSE 124
7.7 Theoretical Results . 126
7.8 Experiments . 127
7.9 Results . 129
7.10 Group Explanation . 130
7.11 Advantages and Disadvantages 131
7.12 Conclusion . 136

8 Conclusion 152

Bibliography 154

viii

List of Figures

2.1 GAN architecture. 19

3.1 ACF plot of the daily death increase 35
3.2 An overview of GCN_LSTM architecture. 39
3.3 Multi-horizons (h) forecasts for the U.S. by the national level

data. 46
3.4 Multi-horizons (h) forecasts for the U.S. by state level data. . . 47

4.1 Wavelet Neural Network (Wavelet-ANN) Architecture 68
4.2 Multi-horizons rolling forecasts for the U.S. data by tradi-

tional methods. SARIMAX models obtained the best results
in all horizons compared to (Javeri et al., 2021) results. 69

4.3 Multi-horizons rolling forecasts for the U.S. data by neural
network models. The wavelet-ANN achieved the best results
in all horizons compared to (Javeri et al., 2021) results. 71

5.1 (Top row) dataset contains 3 modes of tra�c jam; Low, Medium
and Heavy. (Bottom row) shows poor quality and visibility
due to precipitation or corrupted signal in the number of video
samples. 87

5.2 Object detection in Videos using YOLO network. The middle
scene clearly shows that YOLO recognizes Person and Truck
by mistake, and it cannot detect vehicles in farther distance. . . 88

5.3 Di�erent variability in the number of detected vehicles in the
test and train subsets. 89

7.1 Accuracy and Kappa Box Plot for each meta-classi�er 138

ix

7.2 RMSE andR2 Box Plot for each meta-classi�er 139
7.3 G-FORSE model optimization for 1-D functionf(x) = xcos(x). 140
7.4 Class activation maps (CAM). 141
7.5 DeepLIFT: Calculating a multiplier in a simple ReLU activa-

tor.
Image Credit: HTTPS://TOWARDSDATASCIENCE.COM/INTERPRETABLE-NEURAL-

NETWORKS-45AC8AA91411 . 141
7.6 G-FORSE process. 142
7.7 θ parameter determines how relevant a variable is for learning

a function. Larger θ means more relevant. 143
7.9 Scatter plots of regression outcomes computed by G-FORSE

versus outcome values produced by di�erent black-box models
across various datasets. 147

7.10 Scatter plots of classi�cation outcomes computed by G-FORSE
versus outcome values produced by di�erent black-box models
across various datasets. 147

7.11 Clustering between data points revealed by G-FORSE for dif-
ferent black-box models. These clusters are computed by corre-
lation matrix estimated during G-FORSE optimization. Each
machine learning model treats samples di�erently in predict-
ing the outcome. 148

7.12 (a) Side-by-side comparison of features’ importance evaluated
by G-FORSE and Logistic Regression on the synthesized GLM.
G-FORSE is superior to Logistic Regression in detecting true
signals. (b) G-FORSE and SHAP values on the synthesized
GLM trained by GBM. Both plots show the tendency of G-
FORSE to be trustworthy to approximate global e�ects. . . . 149

7.13 Scatter plots of predicted outcomes computed by G-FORSE
and Logistic Regression on the simulated data versus the true
values. G-FORSE appears to be superior to Logistic Regres-
sion in small samples. 150

x

List of Tables

3.1 COVID-19 Dataset: State level 44
3.2 Multi-Horizon (h) Rolling Forecasts for the Unites States (Na-

tional Level): Competitive Models (sMAPE). 45
3.3 Multi-Horizon (h) Rolling Forecasts for the Unites States by

State Level Data: Competitive Models (sMAPE). 45
3.4 Multi-Horizon (h) Rolling Forecasts for Selected States: Ran-

dom Walk, SARIMA, GCN_LSTM, SARIMAX, VAR and
MCP (sMAPE). 48

4.1 Multi-Horizon (h) Rolling Forecasts: SARIMAX vs. Statisti-
cal Models (sMAPE) by (Javeri et al., 2021). 65

4.2 Multi-Horizon (h) Rolling Forecasts: Wavelet-ANN vs. Neu-
ral Network models (sMAPE) by (Javeri et al., 2021). 70

4.3 New Improvement Due to the Wavelet-ANN compared to
SARIMAX . 72

5.1 VGG19 and CNNs Table of Outputs 82
5.2 VGG-Transfer-Learning Diagnostic Table. 84
5.3 Diagnostic Table for the Best CNN-5 (5 Conv2D). 84

7.1 The average of the accuracy and Kappa scores obtained via �ve
methods for two complex models (neural network and GBM)
on Diabetes dataset. 100

7.2 The average of the root mean squared error (RMSE) andR2

obtained via �ve methods for two complex models on Housing
dataset. 100

xi

7.3 The standard deviation of the accuracy obtained via �ve meth-
ods for two complex models on Diabetes dataset. 101

7.4 The standard deviation of the root mean squared error (RMSE)
obtained via �ve methods for two complex models on the Hous-
ing dataset. 101

7.5 Time spent to perform 100 runs of training and testing for the
Metamodels on Diabetes Dataset (classi�cation problem) . . . 103

7.6 Time spent to perform 100 runs of training and testing for the
Metamodels on Boston Housing Dataset (regression problem) 103

7.7 Challenges in Metamodels: a summary of the pros and cons
of the di�erent methods to metamodel the complex models
for each of the major operations involving a method. 110

7.8 The root mean squared error (RMSE) and correlation (r) ob-
tained via G-FORSE by use of di�erential evolution optimizer
for di�erent complex models on di�erent datasets. 145

7.9 The root mean squared error (RMSE) and correlation (r) ob-
tained via G-FORSE by use of L-BFGS-B optimizer for di�er-
ent complex models on di�erent datasets. 146

7.10 Challenges in interpretable models: a summary of the di�-
culties encountered by di�erent methods to interpretable ma-
chine learning approaches for each of the major operations
involving a method. 151

xii

Chapter 1

Introduction

Every second, large volumes of data are being generated, and many organizations
and institutions seek to collect them by various ways. The data usually appears
in the format of record, consisting of a set of datum, each of which contains
a number of �elds that hold values. Thus the data naturally form a table or
matrix. Or it appears in the form of text, consisting of documents that can
represent words, sentences or even paragraphs of free �owing text. It can also
appear as images, where each pixel in an image represents a feature of the subject.
Another format could be time-series data, where data is collected at di�erent
points in time and each time point represents a feature, and because data points
in time-series are collected at adjacent time periods, there might be correlations
between the observations. While collecting such forms of data appears to be an
easy task, extracting useful knowledge from them is much harder.

In literature, n usually denotes the number of samples, the number of rows
of the table or the number of images, and d or m will denote the number of
values in each record or sample, which are called attributes or features.

High-dimensional data refers to the kind of datasets that have two of the
following properties:

• The datasets have many features, either collected naturally or as a result
of generating new features.

• The number of features re�ects the intrinsic complexity of data, and
the number of combinations between features re�ects the number of
abstract representations arising from the system being modeled. For ex-

1

ample, by de�nition, an image is considered a record with one feature
per pixel. While this de�nition is true, the surface representation of the
image does not necessarily pair with the real underlying complexity of the
collections of images. To put it another way, the representations can be
arti�cially chosen which create apparent complexity that is not present
visually there.

The advantage of roaming in high-dimensional spaces is capturing patterns
that are not apparent in the data. But this exploration requires special algo-
rithms that traditional methods do not provide. With the great success of Ma-
chine Learning applications in many domains, practitioners are more interested
in applying Arti�cial Intelligence techniques in such high-dimensional spaces.
However, it has become increasingly apparent that while machine learning mod-
els are highly performant, they have di�culties in providing predictions when
the available data does not su�ce. In other words, machine learning methods,
in particular deep neural network models, require a plethora of data for train-
ing, and if a su�cient amount of data is not fed into them, they tend to be less
e�ective in performing the learning task.

Most machine learning models bene�t from regularization techniques to
force the learning process to converge to the asymptotic optimal solution. The
main concern is how accurate the asymptotic prediction would be in the con-
text of parameters estimation in the new high-dimensional setting. And if there
is a chance to bound the error estimation between the estimator θ̂ and the un-
known parameters θ∗ with high probability, what is the convergence rate for
our problem? (Negahban et al., 2012) addressed this question by introducing
the notions that are more or less the extension of existing work, which together
form a theorem as a solution to the aforementioned question.

1.1 Motivation and Research Objectives

Modeling data in high-dimensional spaces introduces challenges in modeling
and interpretation of the subject being modeled. This dissertation seeks to
propose solutions for those challenges as we employ machine learning methods
for high-dimensional data.

2

In the context of modeling, we presented a new approach to enrich the space
parameters to compensate for data de�ciency. We applied and evaluated our
methods on two forms of high-dimensional applications, intermediate length
time-series data and undersampled video cases, to demonstrate the usefulness
of our approaches.

In the interpretation challenge, since machine learning methods become
rich in the feature space because of the extensive training process over the data,
the issue of model interpretation arises. We introduced a new framework that
can decipher rich machine learning models for explaining the behaviour of un-
derlying features after training.

1.2 Contributions and Outlines

To be speci�c, two forms of datasets have been studied for the purpose of mod-
eling. The �rst set of datasets were collected from COVID-19 time-series data.
This form of data is considered as intermediate length time-series data, and pro-
ducing accurate forecasts for the COVID-19 Pandemic has been challenging
due to the length of the time-series data that are available. There is only a year’s
worth of data available for the United States. Pandemic modeling and forecast-
ing are important for several reasons. Forecasting is important, so citizens and
their governments know what to expect in the next few weeks.

Researchers apply various techniques in time-series analysis and the com-
mon modeling including statistical methods and machine learning approaches
are studied in chapter 2.

In chapter 3, we studied pandemic modeling (COVID-19) by infusing eX-
ogenous variables into the modeling process. We evaluated and compared sev-
eral statistical and machine learning models to forecast the pandemic course in
the United States, using national and state levels data. We studied the e�ective-
ness of the mobility data in the COVID-19 prediction problem regarding the
accuracy and discussed the bene�ts of including eXogenous variables such as
hospitalization, ICU occupancy rate, and the count of patients who require a
ventilator mask into a multivariate time-series forecast. The empirical advan-
tages of including such eXogenous variables were justi�ed by our experiments.

3

In chapter 4, we argued that neural networks can be powerful data model-
ing techniques in various data-driven problems, but their overall results have
not been signi�cantly better than the statistical models, especially for interme-
diate length times-series data. We reasoned that their modeling capacities are
limited in cases where enough data may not be available to estimate the large
number of parameters that these non-linear models require. We then presented
the wavelet-ANN model that bene�ts from wavelet transformation functions,
a neural network trainer and backcasting strategy for improving forecast val-
ues, and we empirically showed that our new method could outperform other
competitors.

In chapter 5, we studied the second form of the dataset that appeared as
video samples. We addressed data de�ciency in the limited video samples via
the transfer learning technique. We applied and evaluated our method on the
tra�c video data collected by (https://www.wsdot.wa.gov, n.d.). This dataset
su�ers from multiple issues. First, the number of video samples is limited for a
certain number of classes, so the task of learning those particular classes is non-
trivial. Also, the length and quality of videos are low. Especially, in the presence
of severe weather such as “foggy” weather or in a situation where “corrupted”
video frames exist in the data. These issues would add to the challenges in the
learning tasks, and our proposed method is an attempt to classify videos under
such di�culties.

The knowledge graph and its applications were addressed in chapter 6. This
chapter described the idea of combining the knowledge graph with machine
learning methods to help users improve the accuracy of the systems and expand
the range of machine learning capabilities. There are many opportunities in ma-
chine learning where the knowledge graphs can be infused to obtain promising
results, and a few use cases were provided in this chapter.

In chapter 7, we addressed the challenge of model interpretation by propos-
ing a new framework for 2-D (i.e. features and samples) interpretation of black-
box machine learning models. We introduced G-FORSE, a metamodel inherit-
ing the characteristics of the Kriging process to support global interpretation
using activeness parameter and a network between samples using correlation

4

function, where both aspects can increase the level of transparency for interpre-
tation.

In chapter 8, the summary of these studies was provided, in an e�ort to
show that this dissertation adds to this growing body of machine learning re-
search with novel approaches to de�ning, developing, and demonstrating the
e�ectiveness of such methods for modeling and interpreting high-dimensional
spaces.

5

Chapter 2

Literature Review

Time-series data appears in a form of sequence recorded at successive equally
spaced points in time, so it is a sequence of discrete-time data. Each time point
in the series denotes one feature, and because data points in time-series are
collected at adjacent time periods, there might be correlations between features.
A year-long time-series data with monthly observations may simply contain 12

features, while a tra�c sensor data may record 31536000 (365×24×60×60)
observations per second over a year. So, time-series data is considered as high-
dimensional data since the time component adds to the complexity.

Since the sequence of observations is unlikely to be independent of one
another in time-series data, it is a far more challenging task than just �tting a
linear or nonlinear regression model. Therefore, time-series analysis requires
special methods to extract meaningful statistics and other characteristics of the
data.

This section reviews literature in the �eld of time-series forecasting via tradi-
tional and modern toolsets. The traditional methods refer to a family of models
that have been practicing for many years. It can be observed that many studies
have shifted focus to applying machine learning models in time-series analysis
in very recent years.

6

2.1 Overview of Traditional Methods

Several common statistical techniques for univariate and multivariate time-series
analysis may be applied in time-series data. Although these techniques have
been introduced many years ago, they are still popular among the majority of re-
searchers, trader companies and practitioners. The most common use of these
techniques are provided in the following:

2.1.1 Random Walk

By de�nition, a candidate series follows a random walk if the �rst di�erences
are random (non-stationary). Random Walk (RW) is a common technique in
graphical models (Aldous & Fill, 2014), and it is widely used in webpage ranking,
image segmentation and time-series analysis. The most practical usage of RW
is in the �nancial market, where it states that the historical trend of a market
cannot be used to forecast its future trend. Many studies showed that the RW
method applies to most time-series data, especially when the samples have the
same distribution and are independent of each other. A Gaussian Random
Walk for variable yt can be written by:

yt = yt−1 + εt (2.1)

where εt follows Gaussian distribution.

2.1.2 Exponential Smoothing

This family of methods has been formed back in the 1950s, and they are closely
related to simple forms of state space and Box-Jenkins models. This method
is widely used for the forecasting processes. For one-step ahead forecasting of
yt+1 in a univariate time-series data yt, yt−1, . . ., this process had been origi-
nally introduced on a basis of exponentially weighted moving average, which is
formulated as:

ŷt+1 = (1− λ)
∞∑
j=0

λjyt−j, 0 < λ < 1. (2.2)

7

By deduction, the following recursion is obtained:

ŷt+1 = (1− λ)yt + λŷt (2.3)

Since the above formula is e�cient for both computation and storage, it is
widely used in many multivariate forecasting simultaneously. This formula
is called exponential smoothing. If one substitutes error of ŷt+1 by ut, replaces t
by t− 1 and inserts it in the above formula, yielding:

yt − ut = (1− λ)yt−1 + λ(yt−1 − ut−1), (2.4)

that is:
∆yt = ut − λut−1 (2.5)

Given that ut is a series of i.i.d N(0, σ2
u) samples, the recursion formula is de-

duced to the simple ARIMA model.

2.1.3 Auto-Regressive of Lags p

Perhaps the simplest form of time-series modeling is the autoregressive family.
This method has been practiced for many years and it is popular among statisti-
cians and economists. This method takes one argument p, indicating the past
lags p values. The autoregressive series have a certain number of properties:

• The auto-correlation function (ACF) exponentially decays as lags(p) in-
crease.

• The partial autocorrelation function (PACF) spikes up to certain “p” lags,
and it becomes nearly zero.

In addition to these properties, the AR series can be non-stationary in mean or
variance, making it popular among other similar methods. The AR series can
be formulated and estimated via following system of linear equations:

zt = φ0zt−p + φ1zt−p+1 + . . .+ φp−1zt−1 + εt

8

Multiplying by zt−k, taking the expectation and Dividing by γ0 produces:

ρk = φ0ρk−p + φ1ρk−p+1 + . . .+ φp−1ρk−1

The number of parameters or lags p are estimated via the above equation, and
it can be used to generate p equations, or one matrix equation.

2.1.4 Auto-Regressive Integrated Moving Average

Box-Jenkins introduced an autoregressive integrated moving average (ARIMA)
method for modeling time-series data in their book, back in 1970. They consid-
ered trend, seasonality and irregularity components in a univariate time-series
yt. They modeled such problems by removing the trend and seasonal via di�er-
encing process, so the result becomes a stationary time-series. Denote:

∆yt = yt − yt−1, ∆2yt =∆(∆yt)

∆syt = yt − yt−s, ∆2
syt =∆s(∆syt)

. . . , . . .

(2.6)

The di�erencing is continued until trend and seasonal e�ects disappear from
the data, yielding a new variable:

y∗t = ∆d∆D
s yt for d,D = 0, 1, . . . , (2.7)

which we model as a stationary ARMA(p, q) model formulated by:

y∗t = φ1y
∗
t−1 + . . .+φpy

∗
t−p + ζt + θ1ζt−1 + . . .+ θpζt−q, ζt ∼ N(0, σ2

ζ),

(2.8)
with non-negative integers p and q and ζt represents a serially independent series
ofN(0, σ2

ζ) noises. The above formula can be simpli�ed as:

y∗t =
r∑
j=1

φjy
∗
t−j + ζt +

r−1∑
j=1

θjζt−j, t = 1, . . . , n, (2.9)

where r = max(p, q + 1) and for which a certain number of coe�cients are
zero.

9

2.1.5 SARIMA

ARIMA model can be extended to a case when seasonality appears in time-series
data, so a SARIMA(p, d, q)× (0, D, 0)s is formulated by:

φ.[−Bp, . . . ,−B1, 1](1−B)d(1−Bs)Dyt = δ + θ.[Bq, . . . , B1, 1]εt

(2.10)
This family of models is essentially formulated by ((1−B)d) and (1−Bs)D

for respectively controlling the seasonal and regular di�erencing followed by an
ARMA model. A more general case of SARIMA happens when the seasonal
autoregressive vector φs ∈ Rp and seasonal moving-average parameter vector
θs ∈ RQ is added to a SARIMA(p, d, q)× (P,D,Q)s model, namely as:

[φ.[−Bp, . . . ,−B1, 1]][φs.[−Bsp, . . . ,−Bs, 1]](1−B)d(1−Bs)Dyt =

δ + [θ.[Bq, . . . , B1, 1]][θs.[Bsq, . . . , Bs, 1]]εt
(2.11)

This form of SARIMA model is also known as multiplicative SARIMA model
since The whole expression is multiplied by the polynomial term [φ.[−Bp, . . . ,−B1, 1]].

2.1.6 SARIMAX

Another popular time-series method is Seasonal Autoregressive Integrated Mov-
ing Average (SARIMA). This (Arunraj et al., 2016) model is de�ned as below

ϕp(B)ΦP (Bs)∇d∇D
s yt = θq(B)ΘQ (Bs) εt, (2.12)

where yt is a variable to forecast, t = 1, 2, . . . , ϕp(B) is a regular AR poly-
nomial of order p, θq(B) is a regular MA polynomial of order q, ΦP (Bs) is a
seasonal AR polynomial of orderP , and ΘQ (Bs) is a seasonal MA polynomial
of orderQ. The di�erencing operator∇d and the seasonal di�erencing opera-
tor∇D

s eliminate the non-seasonal and seasonal non-stationarity, respectively.

10

2.1.7 Time-Series Regression

A univariate time-series with variable yt can be modeled by the regression model
as:

yt = Xtβ + εt, εt ∼ N(0, Ht), (2.13)

for t=1,. . . ,n, whereXt is the 1× k regressor vector with exogenous variables, β
is the k× 1 vector of regression coe�cients andHt is the known variance. The
generalized least squares estimator of the regression coe�cient vector β is given
by:

β̂ =

(
n∑
t=1

X ′tH
−1
t Xt

)−1 n∑
t=1

X ′tH
−1
t yt (2.14)

In this setting, Kalman Filter can be applied to e�ectively estimate β̂ in a recur-
sive way.

2.1.8 Vector Auto-Regressive

Vector Auto-Regressive model (Zivot & Wang, 2006) is another popular ap-
proach to model and predict multivariate time-series. For a p dimensional re-
sponse vector of interest, say:

yt = (y1,t, y2,t, . . . , yn,t)
T, (2.15)

a vector auto-regressive model of order q, i.e. VAR(q), is de�ned as

yt = δ + Φ(0)yt−q + Φ(1)yt−q+1 + . . .+ Φ(q−1)yt−1 + εt (2.16)

where δ ∈ Rn is an intercept vector, Φ(s) ∈ Rn×n(s = 0, . . . , p − 1) are
regression coe�cient matrices, and εt ∈ Rn is an error vector.

2.1.9 Minimax Concave Penalty

Since time-series data appears in a high-dimensional format, a penalized linear
regression approach can be utilized for forecasting. The method is formulated

11

as follows:

Q(β | X, z) =
1

2N
‖z−Xβ‖2 +

d∑
j=1

Pγ (βj;λ) , (2.17)

where z ∈ Rn is the vector of response variables, X ∈ Rn×d is the design
matrix of all predictors andβ = (β1, ..., βd)

T is a vector of unknown regression
coe�cients. Besides, Pγ(·;λ) is the Minimax Concave Penalty (MCP) (C.-H.
Zhang et al., 2010) which satis�es

Pγ(β;λ) =

{
λ|x| − β2

2γ
, if |β| ≤ γλ,

1
2
γλ2, if |β| > γλ.

(2.18)

We extensively discuss about this method next.

2.2 Machine Learning Approaches

The deep learning revolution, driven especially by incredible achievements in
image recognition technology, encourages a predominately data-driven approach
to machine learning and data science techniques. One challenge in using ma-
chine learning methods for time-series data is they require a plethora of data
and training a deep neural network on intermediate length time-series data is
more challenging. This issue will be elaborated on in later sections.

Selected machine learning techniques are provided in the following, al-
though this list can be extended by many other methods:

2.2.1 Neural Network for Time-Series

With the extension of Neural Network models in many applications, we can
forecast time-series data with such sophisticated methods. Perhaps a simple
architecture of a neural network for univariate time-series data is modeled by a
pth order Auto-Regressive AR(p) model. It is a three-layer (one hidden) neural
network, where the input layer has a node for each of the p lags, the hidden layer

12

also has p nodes, and the output layer has 1 node:

xt = [yt−p, . . . , yt−1]

yt = w.f(Φxt) + εt
(2.19)

The p × p matrix Φ bears the parameters/weights connecting the input and
hidden layers, while the p dimensional vector w bears the parameters/weights
connecting the hidden and output layers. There is only one activation function
(vectorized f) for the hidden layer.

The time-series data which is a representation of time can be modeled by
neural networks such that it provides an implicit functional representation of
the time domain. The input layer in neural networks constructs short-term
memory via the use of the time-delay approach. Time-delay neural network
(TDNN) (Bromley et al., 1993) was studied by many researchers, and it is a
simple case of such architecture. In most cases, a single hidden layer is used in the
neural networks for modeling time-series data with a single-output node. For
p input lag features, q hidden nodes in the hidden layer, and one output node,
the total number of parameters in a three-layer neural network is q(p+ 2) + 1.

2.2.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) has
been proposed many years ago to �x some issues that a simple Recurrent Neural
Network model may face during the training process, and many experiments
have proved that this particular method is actually e�ective.

2.2.3 Gated Recurrent Unit

In recent years, some groups of researchers have improved the LSTM model by
simplifying its architecture, and they introduced Gated Recurrent Unit (GRU)
which became popular among the researchers. It adds a second gate, a third
parameter matrix and a third bias vector. The two gates in a GRU are the reset
gate and the update gate. The equations below show how information �ows
through a gated recurrent unit (Cho et al., 2014; Yu et al., n.d.; G.-B. Zhou et al.,

13

2016):

xt = [yt−1, . . . , yt−p] input (2.20)

rt = f1(Ψ[ht−1,xt] + βr) reset gate (2.21)

ut = f2(Φ[ht−1,xt] + βu) update gate (2.22)

h̃t = f3(Θ[rt � ht−1,xt] + βh) candidate state (2.23)

ht = (1− ut)� ht−1 + ut � h̃t state (2.24)

yt = ht(0) + εt output (2.25)

The parameters consist of three weight/parameter matrices Φ ∈ Rp×2p, Ψ ∈
Rp×2p and Θ ∈ Rp×2p, as well as three bias vectors βz ∈ Rp, βr ∈ Rp and
βh ∈ Rp. The �rst two activation functions default to sigmoid, while the third
activation function defaults to tanh.

The vanishing gradient issue in GRU is managed by an update gate and a
reset gate. The update gate and reset gate control information that �ows into
and out of memory, respectively.

2.2.4 Convolutional-LSTM

The Convolutional LSTM or ConvLSTM (Shi et al., 2015) is constructed upon
the fully connected LSTM (FC_LSTM), where it extends the idea of having
convolutional structures in both the input-to-state and state-to-state transitions.
In comparison with other simple RNN network architectures, such as LSTM
or GRU, this combined architecture encourages the process to determine the
future state of a certain cell in the grid by the inputs and past states of its local
neighbors. By stacking multiple ConvLSTM layers and forming an encoding-
forecasting structure, it is possible to build an end-to-end trainable model for
spatio-temporal casting. Like other RNN models, it has feedback connections,
making it useful to process entire sequences of data. The ConvLSTM is formu-

14

lated as follow:

it = σ(WxiXt +WhiHt−1 +Wci � Ct−1 + bi)

ft = σ(WxfXt +WhfHt−1 +Wcf � Ct−1 + bf)

Ct = ft � Ct−1 + it � tanh(WxcXt +WhcHt−1 + bc)

ot = σ(WxoXt +WhoHt−1 +Wco � Ct + bo)

Ht = ot � tanh(Ct)

(2.26)

2.2.5 Encoder-Decoder-Attention-LSTM

The encoder-decoder model uses an LSTM based encoder that learns vector rep-
resentations from input time-series. These encoded representations have to be
of a �xed length. This representation is then fed into an LSTM based decoder
whose job is to reconstruct the time-series using the current hidden state and
the output of the previous time step (Malhotra et al., 2016). Since the encoded
representations have to be of a �xed length, capturing all the information from
input series can be challenging (Bahdanau et al., 2014). It is also di�cult to cap-
ture long term dependencies since previous memories are erased and the model
is refreshed with new observations (C. Fan et al., 2019). To combat this problem,
attention mechanisms can be incorporated in the decoder. An alignment score
is generated for each time step of the encoder and the decoder uses a weighted
sum. The alignment scores are then normalized using the softmax function to
obtain attention weights. A context vector is then built as the weighted sum of
hidden values of the encoder and the attention weights. This context vector is
used to compute the current hidden state of the decoder using the hidden state
of the previous step and the output of the previous step. Once the hidden state
is computed for each time step, the output of the decoder can be computed
using softmax on weighted hidden state (Gangopadhyay et al., 2018).

2.2.6 Graph Convolutional Network-LSTM

One of the interesting topics in network science and knowledge graph is Graph
Neural Network (GNN) models, which are gradually receiving tons of atten-
tion from practitioners. A Graph Convolutional Network (GCN) is a special

15

case of GNN, where it takes the advantage of convolutional layers for aggregat-
ing the neighbors’ information at each node. In GCN models the entities or
nodes are connected by some edges, where those edges can represent distance,
correlation and causality (Przymus et al., 2017). The GCN_LSTM captures the
spatial dependency of the underlying graph network by the GCN component,
and the dynamic dependency of the graph is captured by the LSTM, together
forming a hybrid architecture that takes the advantage of combining two com-
plex deep frameworks.

The main idea behind Graph Convolutional Network (GCN) models is
that a given input signal (node) can be enriched via information propagation
from its neighbors to improve a future prediction task. The neighbors are
often de�ned by constructing a network of inputs where nodes and connections
represent features and relations between them. This study (Gilmer et al., 2017)
formulated an oracle de�nition upon the message-passing framework that was
inspired by many previously proposed methods. In such settings, the spatial
dependency is obtained by the 2-layer GCN architecture through the following
formula:

f(X,A) = σ(Â Relu(ÂX W0)W1) (2.27)

whereX denotes the feature matrix,A denotes the adjacency matrix,W0 and
W1 respectively denote the weight matrix in the �rst and second layer.

2.2.7 Transformers

In addition to using popular recurrent neural networks to model our sequential
data, we attempt to use other classes of transduction models which are trans-
former models. Transformer models have been successful in modeling sequen-
tial data, such as language data, by achieving state-of-the-art results on machine
translations (Vaswani et al., 2017). The transformer models replace the recurrent
and the convolutional neural networks by solely relying on multiheaded self-
attentions to capture the temporal and complex global dependencies (Vaswani
et al., 2017). Such models also allow for parallelization which is ideal for model-
ing long sequences (Vaswani et al., 2017). The architecture of the transformer
models consists of stacked encoders and decoders. The encoder consists of po-

16

sitional embedding, multiheaded self-attentions, and a feed-forward layer (Wu
et al., 2020). The decoder consists of positional encoding, multiheaded atten-
tion applied to the encoded sequence, masked multiheaded attention applied
to the output sequence, and a feed-forward layer (Wu et al., 2020). The trans-
former models have gained attention recently to model time-series data, such
as forecasting seasonal in�uenza epidemics.

2.3 Generative Adversarial Networks

2.3.1 Introduction

Most machine learning models attempt to minimize a cost function for learn-
ing some tasks, so that they would be able to make low to little mistakes on
the training set. Now in adversarial machine learning, there are two players of
two costs, where each player tries to minimize its cost function and encourages
the other one to maximize itself. One question of interest is why is an adver-
sarial network required versus just providing a pool of data for training some
tasks? One purpose of using such frameworks is to produce imaginary samples
by providing the model an opportunity to practice and perform useful tasks.
Generative Adversarial Networks (GAN) learn to produce realistic images via
a �ctitious competition between an image generator and an image discrimina-
tor, where the generator tries to produce real images, the discriminator collects
points for detecting fake images and blocking them. Additionally, there might
be some real-world adversary, such that an intelligence aims to “fool” our sys-
tem into predicting incorrectly, an adversary that can make money by causing
other systems to make mistakes, from search engines to face recognition, to self-
driving cars are few examples out of many that the system may be vulnerable to
be tricked.

In the remaining sections, GAN will be discussed in detail with emphasis on
its motivations, assumptions, strengths, and weakness. In the following, some
prominent research that has utilized GANs in time-series data are reviewed
through intuitions and mathematical formulations.

17

2.3.2 Generative Adversarial Networks

(Goodfellow et al., 2014) are machine learning models that can imagine new
samples. A generative model G trained on training dataX sampled from some
true distribution D is one which, given some standard random distribution
Z , produces a distributionD′ which is close toD, according to a pre-de�ned
metric function.

Generative Adversarial Networks (Goodfellow et al., 2014) are machine
learning models that can imagine new samples. If the inputs are a set of images,
for instance, they can output entirely new images that are realistic, even though
they have never been seen before. Most of the applications for GANs so far have
been for images, and the outputs of GANs are totally imaginary. In fact, GAN is
drawing a sample from the probability distribution over all hypothetical images
matching that description. Thus, GAN can be kept running to produce more
images.

Along with several other kinds of generative models, GANs use a di�eren-
tiable function represented by a neural network as a generator network (G). The
generator network takes random noise as input, then runs that noise through a
di�erentiable function to transform the noise and reshape it to have a recogniz-
able structure. The output of the generator network is a realistic image. The
choice of random input noise determines which image will be generated out of
the generator network.

Running the generator network with many di�erent input noise values
produces many di�erent realistic output images. The goal is for these images to
be fair samples from the distribution over real data.

Certainly, the generator network does not start producing realistic images,
it has to be trained. The training process for a generative model is very di�erent
from the training process for a supervised learning model. For a supervised
learning model, we show the model an image of a “tra�c light”, for example,
and we label it in such a way that this is a tra�c light. For a generative model, on
the other hand, there is no output to associate with each image. We just show
many images to the model and ask it to generate more images that come from
the same probability distribution.

18

Most generative models are trained by adjusting parameters to maximize the
probability that the generator net will generate the training data set. Since it can
be di�cult to compute this probability, most generative models approximate it,
where a second network, called discriminator (D), learns to guide the generator.
The discriminator is just a regular neural net classi�er.

Figure 2.1: GAN architecture.

During the training process, the discriminator is shown real images from
training the data half the time, and fake images from the generator the other half
of the time. Over time, the generator is forced to produce more realistic outputs
to fool the discriminator. The generator takes random noise values z from a
prior distribution Pz and maps them to output values x via function G(z).
Wherever the generator maps more values of z, the probability distribution
over x, represented by the model, becomes denser. The discriminator outputs
high values wherever real data density is greater than the density of generated
data. The generator changes the samples it produces to move uphill along the
function learned by the discriminator. Eventually, the generator’s distribution
Pz matches the real distribution Pdata. And the discriminator has to output a
probability of one-half everywhere because every point is equally likely to be
generated by the real data set as to be generated by the model.

19

The objective function ofD andG are respectively de�ned as:

max
D

Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))], (2.28)

min
G

Ez∼Pz [log(1−D(G(z)))]. (2.29)

During the training process, the discriminator is shown real images from train-
ing the data half the time, and fake images from the generator the other half of
the time. Over time, the generator is forced to produce more realistic outputs to
fool the discriminator. The generator takes random noise values z from a prior
distribution Pz and maps them to output values x via function G(z). Wher-
ever the generator maps more values of z, the probability distribution over x,
represented by the model, becomes denser. The discriminator outputs high
values wherever real data density is greater than the density of generated data.

Thus, the GAN (Figure 2.1) is formulated as a minG maxD V (G,D), namely
as:

V (G,D) = Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))]. (2.30)

Many variants on GAN are extended by machine learning enthusiasts, while
some are very prominent. DCGANs (Radford et al., 2015), Conditional Gen-
erative Adversarial Nets (Mirza & Osindero, 2014), Progressively Growing of
GANs for Improved Quality, Stability, and Variation (Karras et al., 2017), Bi-
GAN (Brock et al., 2018), Style-GAN (Karras et al., 2019), CycleGAN (Zhu et
al., 2017), WGAN-GP (Gulrajani et al., 2017), Pix2Pix (Isola et al., 2017), Stack-
GAN (H. Zhang et al., 2017), DRAGAN (Kodali et al., 2017) and many others.
Among which, we elaborate the discussion on “WGAN” and “DRAGAN” to
argue as to how the weaknesses of vanilla GAN can be improved by proposing
new loss, and then we touch on “CGAN” which is the core basis of some work
in tabular settings, particularly in time-series data.

20

2.3.3 Issues with GAN

GAN su�ers from instability in the training step as a result of nonlinearities
in the last layer of discriminator, leading to generates a small range of outputs.
GAN applies the softplus nonlinearity to the output of the last matrix multi-
plication (matmul) in the discriminator when computing the loss. So GAN is
relying on tuning the hyper-parameters to alleviate that e�ect, which is almost
impossible in the high-dimensional setting. Another issue with GAN is vanish-
ing the gradients which happens when the discriminator beats the generator,
so the generator learns nothing. These issues are the main motivations of the
following two important work that will be discussed in the following.

2.3.4 Wasserstein GAN

One alternative to remove the nonlinearities of the output of the last matmul
in the discriminator is using a new loss function. WGAN (Arjovsky et al., 2017)
introduced a new loss function using Wasserstein distance, which encourages
a restriction on the range of the weights, to guarantee Lipschitz continuity.
The proposed loss function computes the Wasserstein distance between two
distributions, such that the function is continuous and di�erentiable. The
WGAN loss function is de�ned as follows:

min
G

max
D∈D

Ex∼Pdata
[D(x)]− Ez∼Pz [D(G(z))], (2.31)

whereD includes all 1−Lipschitz functions in the subspace. The authors of
WGAN believe that the gradient of the discriminator outperforms GAN, lead-
ing to generate better quality of images. In the paper, the authors suggested to
use a small value to enforce weight clipping for the Lipschitz e�ects. Another
group of researcher proposed the idea (Gulrajani et al., 2017) of incorporating
a gradient regularization in the loss function of WGAN to achieve comparable
results. However, some researcher at Google Brain (Lucic et al., 2018) refused
the idea of using the gradient penalty, and they showed that WGAN-GP shows
inconsistently in generating results in some situations.

21

2.3.5 On Convergence and Stability of GANs

DRAGAN (Kodali et al., 2017) is yet another GAN �xer, aiming to overcome
the gradient vanishing problem by injecting a gradient penalty into GAN. The
authors observed that GAN encounters many local peaks within GAN’s loss
function (1) during the training phase, leading to spike gradients of the discrim-
inator in the vicinity of some data points. They suggested that this issue can
be alleviated to some degree by incorporating a gradient penalty on the loss
function, namely as:

min
G

max
D
{(1)− λEx̂∼pd+N(0,c)[(||∇D(x̂)||2 − 1)2]}, (2.32)

The authors of the paper concluded that the proposed loss function enables
GAN to be trained faster with fewer mode collapses, encouraging the generator
produces better results with e�ective performance. They evaluated their work
on di�erent GANs’ architectures and loss functions.

2.3.6 Conditional Generative Adversarial Network

CGAN (Mirza & Osindero, 2014) improved the traditional GAN in such a
way that samples are generated via conditioning on y. This conditioning term
enables GAN to produce targeted outputs, while this is not the case in the
traditional GAN. The method is founded by supporting supplementary infor-
mation from the real data points for the generator to provide a direction a head
of time for producing new samples. Technically, the directive information de-
noted by y is provided for both generator and discriminator as extra input layers.
This extra piece of information is appeared in the loss function as follows:

min
G

max
D∈D

Ex∼Pdata
[logD(x|y)]− Ez∼Pz [log(1−D(G(z|y)))], (2.33)

where pz and pd are the distributions of the random noise and samples data,
respectively. The WGAN loss function can be modi�ed in a similar way by
conditioning y in the loss function:

min
G

max
D∈D

Ex∼Pdata
[D(x|y)]− Ez∼Pz [D(G(z|y))]. (2.34)

22

It is worth mentioning that the way CGAN is learning on a single category is
not the same as training several GANs on a single subject, where the former is
much harder than the latter in the context of learning di�culty. This di�culty
happens due to the fact that trained CGAN can contain one batch of weights
of a single subject with the ability of producing di�erent samples if the subjects’
distributions are given. CGAN can also be trained on continuous conditions,
which it makes it equipped to be utilized in the tabular data such as time-series
analysis in particular.

2.3.7 GAN in Time-Series Data

Before proceeding, it is worth mentioning some of the challenges GAN method
would encounter for simulating tabular data, where a group of researchers have
collected in their article (Xu et al., 2019). They aimed to generate columns of a
dataset T containingNc continuous columns {C1, . . . , CNc} andNd continu-
ous columns {D1, . . . , DNd

}, where each column is considered to be a random
variable. These columns are jointly distributed by P(C1:Nc , D1:Nd

), and T is
partitioned into training and test sets. But real-world tabular data may contain
mix of discrete and continuous, and GANs should apply both softmax and
tanh. GANs have been developed purposely for Gaussian distributions where
min-max transformation is applicable, while the continuous values in tabular
data are usually not forming a Gaussian trend and vanishing gradient may occur
as a result of min-max transformation. Also GANs are not able to capture all
the modes in a higher dimension, while most tabular data appears as the multi-
modal distribution of continuous columns. Additionally, the main levels in a
high-dimensional data with categorical columns appear in the majority of obser-
vations (%90), so the dataset su�ers from imbalanced labels in data, leading to
poor learning in the discriminator. This de�ciency for minor levels discourage
the network to be learned fairly, thus detecting the rare events (e.g. accidents
in the tra�c data, anomalies in normal systems, etc.) is challenging. To over-
come this issue they introduced conditional GAN and training-by-sampling,
hoping to manage imbalance training data, then the original distribution is

23

reconstructed by:

P(row) =
∑
k∈Di∗

PG(row|Di∗ = k∗)P(Di∗ = k) (2.35)

where k∗ is the value from the i∗th discrete columnDi∗ that must be matched
by the generated samples r̂.

To help the learner evenly represent all possible values in discrete columns,
an assessor is required so that it estimated the di�erence between the learned
conditional distribution PG(row|cond) and the real data P(row|cond). The
paper instructed practitioners on how to learn imbalance levels via six steps,
which they called it training-by-sampling.

These are some of the main concerns the authors have raised in the context
of tabular data modeling, some of them may be managed elegantly by modi�ed
GANs.

2.3.8 Time-Series GANs

TimeGAN (Yoon et al., 2019) introduced the idea of combining the adaptabil-
ity of the unsupervised GAN method with supervised autoregressive models.
The authors believe that TimeGAN takes the temporal correlations in time-
series data into account, which have not been considered in any of the existing
methods. Thus this feature encourages the network to maintain the dynamics
of the training data in sampling. TimeGAN has been proposed via connecting
four components in three separate parts. The autoencoding part containing an
embedding function and the recovery function ought to be trained jointly with
the sequence generator and sequence discriminator. This enables TimeGAN
to concurrently learn to encode, generate and iterate across the time steps. To
achieve the “jointly learning” within the components, the embedding e(.) and
recovery r(.) functions should reconstruct s̃, x̃1:T of the original data s,x1:T

accurately from their representations by minimising the reconstruction loss:

LR = Es,x1:T∼p[||s− s̃||2 +
∑
t

||xt − x̃t||2] (2.36)

24

The generator is supposed to produce synthetic embedding ĥs, hath1:T similar
to the training data hs,h1:T by minimizing the unsupervised loss:

LU = Es,x1:T∼p[logyS+
∑
t

logyt]+Es,x1:T∼p̂[log(1−ŷS)+
∑
t

log(1−ŷt)]

(2.37)
while the discriminator attempts to trick the generator by maximizing theLU
to provide the generator with the binary adversarial feedback of incorrect clas-
si�cations ŷS, ŷ1:T . To boost the generator, the work introduced a supervised
lossLS in addition to unsupervised lossLU , where it enables the generator to
capture the conditional distributions in the data by optimizing the likelihood
function via:

LS = Es,x1:T∼p[
∑
t

||ht − gX (hS,ht−1, zt)||2] (2.38)

where gX (hS,ht−1, zt) estimatesEzt∼N [p̂(Ht|HS,H1:t−1, zt)] with one sam-
ple zt. Overall, the article presented that in generating realistic time-series data,
the improvements of TimeGAN architecture over prior work were particularly
pronounced.

2.3.9 Simulation Time-Series Data by CGAN

Very little prior work has been done on GANs for time-series data analysis tasks.
One reason may be GANs architectures are not relying on the likelihood func-
tion, so there is nothing to maximized, and consequently, no convergence is
guaranteed. Another challenge in using GANs in the tabular data is that it re-
quires a great number of iterations in the training step, leading to the use of the
computation resources extensively. On the other hand, GANs are able to ap-
proximate any posterior distributions without having the closed-form function
or making assumptions on the prior, provided that the posterior distribution
has zero support. This approximation can be greatly pronounced in classi�ca-
tion problems when the label of the events are available. Thus, having condi-
tions on the samples can improve the quality of prediction and simulation, and
CGAN is one of the best frameworks for such purposes. CGAN enables users

25

to produce new samples from the same distribution upon which the event is
conditioned.

The following is a review of GANs and their applications in tabular data,
by collecting some prominent work in the subject. We argue that research di-
rections in GANs can be useful in the context of simulation and approxima-
tion. We discuss how GAN networks can support supervised learning, anomaly
detection and help detect underlying trends in time-series analysis, laying the
cornerstone for more complex patterns of learning.

Some work in the time-series domain evaluated the performance of CGAN
in various examples. One study (Fu et al., 2019) applied CGAN on a mixture of
Gaussian distributions with destabilized parameters µ and Σ. They employed
CGAN to generate a Gaussian Mixture Model (GMM) and compared it to
a similar case with T-mixture distributions for performance evaluation. They
trained and tested the simulations on both GMMs categorical and continuous,
and they showed that one can bene�t from CGAN in extrapolation tasks when
the conditions are continuous. They extended the usage of CGAN for Vector
Autoregressive (VAR), by simulating autoregressive and GARCH-type time-
series samples. A VAR(p) model indicates a multivariate autoregressive time-
series model of order p. They simpli�ed the problem by assuming that the
training data is governed by a simple VAR(1) with the following parameter:

Xt = c+ aXt−1 + εt, (2.39)

This VAR model is founded on the assumption that the variables rely on the
historical data and on random noises, thus the current time can be conditioned
on 1-time-lag values, �tting to the purpose for what CGAN has been essentially
designed. The CGAN uses the previous value as a condition to generate the
present value. The paper continued the discussion to use CGAN for region
switching time-series modeling, where the region switching in time-series data
is de�ned by di�erent dependent relationships from di�erent time periods. The
authors then extended the idea to apply CGAN on the GARCH time-series,
which has been proposed initially for the structure with dependent variance,

26

and the model is calibrated through the following equation:

σ2 = c+

p∑
i=1

aiX
2
t−i +

q∑
i=1

biσ
2
t−i, Xt ∼ N(0, σ2

t), (2.40)

where {ai, bi, i = 1, . . . , p}, {Xt, t = 1, . . . , T}, c is the constant and εt is
random noise. Unlike VAR models that emphasize more on the mean values,
GARCH models emphasize the variance of the model, thus CGAN acknowl-
edges the condition on the variance of data.

2.3.10 Time-Series Generation with Recurrent Conditional
GANs

In this work (Esteban et al., 2017) Recurrent Network and GAN have intersected
to produce realistic medical images by conditioning recurrent neural network
(RNN) on auxiliary information. The authors showed by sample likelihood
and maximum mean discrepancy that the RCGANs can generate new samples
that are useful for supervised training.

The study started by de�ning RGAN and RCGAN, which both follow the
architecture of vanilla GAN with one di�erence and that is both the generator
and the discriminator have been replaced by RNN. Thus RGAN should be
able to take two inputs, one for random seed and the other for conditioning
on the generated sequence with extra data. Similarly, the discriminator RNN
in RCGAN takes the generated sequence with additional input to produce
samples as imaginary or real for every time step. Basically, the discriminator in
this setting ought to minimize the di�erence between the sequence labels and
the predictions per time-step via optimizing the cross-entropy metric function
CE(a,b). The discriminator loss for the sequence and the label denoted by
{Xn,yn}whereXn ∈ RT×d and yn ∈ {0, 1}T is de�ned as:

DL(Xn,yn) = −CE(RNND(Xn),yn). (2.41)

The generator, similar to GAN, then aims to make the discriminator predict its
outputs as true, thus it tries to minimize the negative CE(RNND(Xn),yn)

between the discriminators’ outcomes on produced sequences and the 1s vector,

27

denoted by 1 for the true label, namely as:

GL(Zn) = DL(RNNG(Zn),1) = −CE(RNND(RNNG(Zn)),1),

(2.42)
where Zn is sampled independently from the latent distribution Z in a sub-
space of Zn ∈ RT×m. Similarly, in RCGAN the auxiliary information cn is
added at every time-step in the inputs to each RNN, thus it encourages RNN
to reuse the conditional information in training.

One of the authors’ contributions in this work was to generate realistic ICU
data used by medical sectors. Since privacy in medical data might be jeopardized
by adversaries, the authors also proposed a di�erential private RGAN model
to avoid privacy violation via:

P [M(D) ∈ S] ≤ eεP [M(D′) ∈ S] + δ, (2.43)

whereM(D) denotes the GAN training on D, S is the outcomes of GANs
andP is the probability of randomness in the mechanismM. They noted that
while maintaining the GAN private is critical in medical sectors, making private
GANs’ results comparable to non-private GANs is challenging.

2.3.11 Anomaly Detection with GAN for Time-Series Data

Anomaly detection is applied in many domains, and time-series data modeling–
as one of the popular models with temporal ordering structure–is contributing
to the domain signi�cantly. Of interest to classical analysis is to measure when
the underlying system deviates from its normal behavior, and this is the main
focus of anomaly detection in a complex system. But the problem becomes
more challenging when the system has temporal (dynamic) patterns, while there
is no obvious solution to capture those possible patterns. Those patterns can be
temporary or permanent, thus the problem is nontrivial. Researchers attempt
to control the normality of a system by mimicking it, thus it enables them to be
vigilant if an anomaly happens. This strategy is the foundation of GAN-AD
(D. Li et al., 2018) and is the motivation behind the acquisition and analysis of
intrusion events in data streams.

28

The authors of the paper have proposed two networks in GAN that one
learns the normal behavior of the data, and another detects rare events due to
intrusion incidents being targeted against the system in an unsupervised fash-
ion. This GAN should be able to directly utilize both the discriminator and
the generator to capture those incidents. They claimed that their new frame-
work is able to achieve comparable results. The networks they have selected
for GAN are Long Short Term-Recurrent Neural Networks (LSTM-RNN),
which is heavily used in modeling time-series data. The loss function they used
in the framework is the original one used by GAN. Both networks ought to
be trained for imitating the underlying behavior of the system. Once the gen-
erator is prepared to produce samples that resemble the normal data, then any-
thing unusual in the testing phase can be reported as anomalies. They formu-
lated their anomaly detection framework for multivariate times-series as follows.
X = {x(t), t = 1, . . . , T} is an m-dimensional time-series data with length
T , then GAN learns the normal time-series dataset denoted by Xreal to gen-
erate “fake” sample denoted by Xgs, appears realistic data. Thus GAN-AD
reports anomalies if the testing time-series dataset Xtes deviates from Xreal.
They adopted PCA to reduce the dimension of the data before inputting it
into GAN, and the GAN-AD computes the anomaly scores by:

Stest = λRes(X tes
t) + (1− λ)Drnn(X tes

t) (2.44)

The anomaly events are labeled by a pre-de�ned function to detect whether the
ith variable of the testing time-series set Xtes at time i has deviated or not via:

Ates,it =

1, ifH(S(xtes,it), 1) > τ

0, else
(2.45)

then the anomaly is reported if the cross-entropy errorH(., .) for the anomaly
score is higher than a certain threshold τ .

29

Chapter 3

Improving Time-Series
Forecasting by

eXogenous Variables1

1M Toutiaee et al., Submitted to MiLeTS 2021

30

Abstract

In this work, we study the pandemic course in the United States by considering
national and state levels data. We propose and compare multiple time-series pre-
diction techniques which incorporate auxiliary variables. One type of approach
is based on spatio-temporal graph which forecasts the pandemic course by uti-
lizing a hybrid deep learning architecture and human mobility data. Nodes in
this graph represent the state level deaths due to COVID-19, edges represent the
human mobility trend and temporal edges correspond node attributes across
time. The second approach is based on a statistical technique for COVID-19
mortality prediction in the United States that uses the SARIMA model and
exogenous variables. We evaluate these techniques on both state and national
levels COVID-19 data in the United States and claim that the SARIMA and
MCP models generated forecast values by the exogenous variables can enrich the
underlying model to capture complexity in respectively national and state levels
data. We demonstrate signi�cant enhancement in the forecasting accuracy for
a COVID-19 dataset, with a maximum improvement in forecasting accuracy by
64.58% and 59.18% (on average) over the GCN_LSTM model in the national
level data, and 58.79% and 52.40% (on average) over the GCN_LSTM model
in the state level data. Additionally, our proposed model outperforms a parallel
study (AUG-NN) by 27.35% improvement in the accuracy on average.

3.1 Introduction

The outbreak of the COVID-19 pandemic from early 2020 until today has re-
sulted in over 170M infected individuals and in over 3.54M deaths worldwide
(“WHO Coronavirus (COVID-19) Dashboard”, 2021). The ability to forecast
the number of infections and deaths is vital to policy makers since they can man-
age healthcare resources, control disease upsurges, and take preventive actions
when necessary to ensure public health safety. As the number of mortality and
morbidity in the U.S. continued to rise within 2020, many states enforced the
lockdown policy, practiced remote working and imposed social distancing to
slow the spread of COVID-19. These policies also a�ect individual mobility.

31

On the other hand, the number of cases in hospitals, ICUs and ventilators
also increase as a result of the pandemic. Therefore, mobility and hospitaliza-
tion patterns both at the national and local levels can provide useful measures
for predicting the pandemic course, especially when this data is included in the
pandemic analysis (Kapoor et al., 2020).

3.2 Related Work

A great amount of research has been conducted since the beginning of the
COVID-19 pandemic on forecasting the number of people a�ected. Early stud-
ies such as the one proposed in (Barmparis & Tsironis, 2020) used the SIR model
for forecasting the infection rate in di�erent countries. Other work (Fazeli et
al., 2020) used ARIMA to predict the daily death rate in di�erent states in the
United States. (Javeri et al., 2021) introduced the AUG-NN model that enriches
neural network models by augmentation which resulted in signi�cant improve-
ments in the accuracy. They reported the forecast values on the national level
data.

Time-series forecasting using Graph Neural Networks (GNN) has been in-
troduced in various domains in the past, however, it is less studied in epidemic
disease. For example, (Zhao et al., 2019) used a Temporal Graph Convolutional
Network (T-GCN) for tra�c prediction while (Matsunaga et al., 2019) used
Graph Neural Networks for Stock Market Prediction. GNN based approach
for COVID-19 prediction discussed in (Kapoor et al., 2020), generated forecast
values by using spatio-temporal mobility data. Although their work is impres-
sive, they reported COVID-19 forecasting on a very small scale, i.e. top 20 most
populated counties in the United States.

In this work, we extend the current research of pandemic modeling by
proposing novel approaches for predicting daily death cases in the United States
on both national and state levels. We introduce a spatio-temporal graph con-
volutional network that can capture complex dynamics by including mobility
patterns across di�erent states and a statistical model that generates forecasts by
eXogenous variables. With extensive experiments among proposed methods,
we demonstrate the power of eXogenous variables combined with lagged vari-

32

ables within the predictive models and conclude with an analysis of eXogenous
variables and their potential in monitoring virus spread.

3.3 Aggregate Mobility Data

The mobility data used in the study is obtained from COVID-19 U.S. Flows (Kang
et al., 2020). This dataset consists of dynamic human mobility patterns across
the United States in the form of the daily and weekly population �ows at three
geographic scales: census tract, county and state. The spatio-temporal data
is obtained by analyzing, computing, and aggregating the millions of anony-
mous mobile phone users’ visit trajectories to various places provided by “Safe-
graph”. To be speci�c, we use the daily and weekly state-to-state daily popu-
lation �ow (GeoDS, 2021) starting from January 19, 2020 to January 19, 2021.
The data �les consist of the unique identi�ers, latitudes and longitudes for the
origin and destination states, date, visitor �ows (estimated number of visitors
detected by SafeGraph between two geographic units) and the population �ow
(estimated population �ows between two geographic units, inferred from visi-
tor �ows).

3.4 COVID-19 Dataset

The ScalaTion COVID-19 dataset available on Github comprises data
about COVID-19 cases, hospitalizations, deaths, etc. in the United States, both
at the national 2 and state 3 levels.

The national level data spans from January 13, 2020 to March 7, 2021, which
consists of 420 days. We ignore the �rst 44 days due to missing values and
start from February 26, 2020, when the �rst COVID-19 death in the U.S. was
recorded. As a result, the national level time-series studied in this paper contains
376 days. We used the �rst 236 days as our training set and the rest 140 days as
the test set. The state level data spans from January 19, 2020 to January 19, 2021
(3.4), which consists of 367 days. Similarly, we ignore the �rst 70 days and start

2https://github.com/scalation/data/blob/master/COVID/CLEANED_35_Updated.csv
3https://github.com/scalation/data/blob/master/COVID/Until%201-14-21/

USCOVID_BY_STATE.csv

33

https://github.com/scalation/data/blob/master/COVID/CLEANED_35_Updated.csv
https://github.com/scalation/data/blob/master/COVID/Until%201-14-21/USCOVID_BY_STATE.csv
https://github.com/scalation/data/blob/master/COVID/Until%201-14-21/USCOVID_BY_STATE.csv

from March 29, 2020 to avoid missing values. Then, the state level time-series
studied in this paper contains 297 days for each state. We used the �rst 185 days
as the training set and the rest 112 days as a test set.

3.5 SARIMAX

Weekly seasonality of daily death increase can be observed using Auto-Correlation
Function (ACF), as shown in Figure 3.1. Then, we propose to �t the daily death
increase by a Seasonal Autoregressive Integrated Moving Average (SARIMA)
(Arunraj et al., 2016) model de�ned as below

ϕp(B)ΦP (Bs)∇d∇D
s yt = θq(B)ΘQ (Bs) εt, (3.1)

whereyt is a variable to forecast, i.e., the logarithm of deathIncrease, t = 1, 2, . . . ,
ϕp(B) is a regular AR polynomial of order p, θq(B) is a regular MA polyno-
mial of order q, ΦP (Bs) is a seasonal AR polynomial of orderP , and ΘQ (Bs)

is a seasonal MA polynomial of order Q. The di�erencing operator∇d and
the seasonal di�erencing operator∇D

s eliminate the non-seasonal and seasonal
non-stationarity, respectively.

The SARIMA with eXogenous factor (SARIMAX) model is an extension
of the SARIMA model in (4.12), which has the ability to include exogenous
variables, such as hospitalization and ICU occupancy rate. The SARIMAX
model can be de�ned as:

ϕp(B)ΦP (Bs)∇d∇D
s yt = θq(B)ΘQ (Bs) εt +

n∑
i=1

βix
i
t, (3.2)

where {x1
t , . . . , x

n
t } are the n exogenous variables de�ned at time twith coef-

�cients {β1, . . . , βn}. Further, we apply a log transformation to categorical
variables.

34

Figure 3.1: ACF plot of the daily death increase

3.6 Minimax Concave Penalty

We also consider a penalized linear regression approach to predict the daily
death increase by historical data and exogenous explanatory variables. Denote
zt = log yt − log y(t−7) the weekly log-return of deathIncrease at time t and
xt the exogenous hospitalization variables at time t. We linearly regress zt
on {zt−h, . . . , zt−(h+k−1)} and {xt−h, . . . ,xt−(h+k−1)}, where k = 14 and
1 ≤ h ≤ 14 is a horizon parameter. The horizon refers to the number of days
into the future for which forecast values are to be generated. Since the state
level hospitalization variables are highly correlated, we �rst implement a sure
independent screening (J. Fan & Lv, 2008) procedure to reduce the dimension-
ality of xt. As a result, only the top 7 exogenous variables are included in the
following penalized regression model.

Q(β | X, z) =
1

2N
‖z−Xβ‖2 +

d∑
j=1

Pγ (βj;λ) , (3.3)

35

where z ∈ Rn is the vector of response variables, X ∈ Rn×d is the design
matrix of all predictors andβ = (β1, ..., βd)

T is a vector of unknown regression
coe�cients. Besides, Pγ(·;λ) is the Minimax Concave Penalty (MCP) (C.-H.
Zhang et al., 2010) which satis�es

Pγ(β;λ) =

{
λ|x| − β2

2γ
, if |β| ≤ γλ,

1
2
γλ2, if |β| > γλ.

(3.4)

3.7 Vector Auto-Regressive model

Vector Auto-Regressive model (Zivot & Wang, 2006) is another popular ap-
proach to model and predict multivariate time-series. For a p dimensional re-
sponse vector of interest, say:

yt = (y1,t, y2,t, . . . , yn,t)
T, (3.5)

a vector auto-regressive model of order q, i.e. VAR(q), is de�ned as

yt = δ + Φ(0)yt−q + Φ(1)yt−q+1 + . . .+ Φ(q−1)yt−1 + εt (3.6)

where δ ∈ Rn is an intercept vector, Φ(s) ∈ Rn×n(s = 0, . . . , p − 1) are
regression coe�cient matrices, and εt ∈ Rn is an error vector.

Similar to the data pre-processing procedure described in Section 3.6, a
weekly log-return has been taken to both the response vector and exogenous
hospitalization variables to remove the seasonality.

3.8 Random Walk

By de�nition, a candidate series follows a random walk if the �rst di�erences
are random (non-stationary). Random Walk (RW) is a common technique in
graphical models (Aldous & Fill, 2014), and it is widely used in webpage ranking,
image segmentation and time-series analysis. The most practical usage of RW
is in the �nancial market, where it states that the historical trend of a market
cannot be used to forecast its future trend. Many studies showed that the RW

36

method is applicable to most time-series data, especially when the samples have
the same distribution and are independent of each other. A Gaussian Random
Walk for variable yt can be written by:

yt = yt−1 + εt (3.7)

where εt follows Gaussian distribution.

3.9 GCN_LSTM

GCN: The main idea behind Graph Convolutional Network (GCN) models
is that a given input signal (node) can be enriched via information propagation
from its neighbors to improve a future prediction task. The neighbors are
often de�ned by constructing a network of inputs where nodes and connections
represent features and relations between them. This study (Gilmer et al., 2017)
formulated an oracle de�nition upon the message-passing framework that was
inspired by many previously proposed methods. In such settings, the spatial
dependency is obtained by the 2-layer GCN architecture through the following
formula:

m
(l+1)
i =

∑
j∈N (i)

F (l)
(
h

(l)
i ,h

(l)
j

)
, h

(l+1)
i = G(l)

(
h

(l)
i ,m

(l+1)
i

)
(3.8)

whereF (l) denotes message function,G(l) denotes node update function,m(l)
i

denotes the messages propagated between nodes, andh(l)
i denotes the node rep-

resentations. This process is implemented in two steps: �rst, the information
�ow along with the neighbors; and second, the information is aggregated to
determine the updated hidden representations.

f(X,A) = σ(Â Relu(ÂX W0)W1) (3.9)

whereX denotes the feature matrix,A denotes the adjacency matrix,W0 and
W1 respectively denote the weight matrix in the �rst and second layer.

37

3.9.1 Mobility Network Graph:

In pandemic modeling, we usually analyze the global model through multiple
time-series data obtained at the local level, which denotes the spreading dynam-
ics in each region. The forecasting task is usually de�ned as a regression model
that takes in a time-series of t−k, . . . , t−1, t and emits a single value t+1. In
a general case, the output can be a series of future time points t+ 1, t+ 2, . . .

as generated forecast values. However, the regression model requires an adjust-
ment for modeling human mobility across regions. Mobility data forms a spatial
graph, where a region i is denoted by nodes, and every node can be connected to
other nodes j, k, z, . . ., and weighted edges represent the strength of relations
between the nodes.

3.9.2 Binary Graph

: We constructed a binary adjacency matrix to feed into the trainer. This adja-
cency matrix has been created by the following steps: (1) the average of mobility
data along the time point has been obtained, and (2) if the number of move-
ments from origins to a destination is among the top 20%, the corresponding
cell was assigned 1, and 0 otherwise. (3) Finally, the matrix was corrected to
be a full-rank matrix by an orthonormal set obtained via the Gram—Schmidt
process. We used “matlib” package in R for this purpose.

3.9.3 GCN_LSTM:

Disease epidemic forecasting is a quintessential example of spatio-temporal
problems for which we present a deep neural network framework that captures
the number of deaths using spatio-temporal data. The task is challenging due
to two main inter-twined factors: (1) the complex spatial dependency between
time-series of each state, and (2) non-linear temporal dynamics with changing
non-pharmaceutical interventions (NPI) such as mobility trends.

We attempt to populate a temporal knowledge graph using a mobility pat-
tern, since people moving around the regions with similar epidemic patterns
may contribute more to the forecasting process. The people traveling serve as

38

Figure 3.2: An overview of GCN_LSTM architecture.

the ground truth for training a GCN for identifying the underlying graph be-
tween sub-regions. Next, the constructed graph embedding from the GCN
model is used to feed into an LSTM model to forecast the pandemic in the
future. Notice that the graph embedding provides knowledge about the fore-
casting system, and the LSTM provides a direction for how to leverage the GCN
output in the COVID-19 forecasting task.

3.10 Rolling Validation for Multiple Horizons

Classical multi-folds cross-validation approaches are not directly applicable to
time-series data due to the existence of serial dependence. Instead, we follow
a rolling-validation scheme in this study. To be speci�c, we reserve the �rst
60% of days in the time-series as the training set and use the rest 40% of days to
make a rolling window forecast. For example, a forecast with horizon parameter
1 ≤ h ≤ 14 is obtained using the model trained in the training, an input from
a rolling window contains the information from t−13 to time t, and an out-of-
sample forecast for time t+ h. Then, we move the rolling window forward by
two weeks and repeat the above process. The two weeks ahead forecast policy

39

is suggested by CDC. The forecast accuracy is measure by the symmetric mean
absolute percentage error (sMAPE) which is the smaller the better.

For the purpose of simplicity and e�ciency in models, the process of rolling
forward to forecast the next value in the test set often involves retraining the
model by including the �rst value in the test set in the training set. The �rst
value is then removed from the training set, so the size of the training set remains
the same. We trained our architecture only once on the training set to generate
the out-of-sample forecast values.

3.11 Hyperparameters and Architectures

3.11.1 GCN_LSTM

The GCN_LSTM architecture used in this experiment consists of two GCN
layers followed by one LSTM layer. The model is built using StellarGraph
library Data61, 2018. The sizes of each of these layers vary for each horizon. The
size of GCN layers falls between 10 and 32 while the size of LSTM layers falls
between 150 and 300. Information from 10 previous lags is used for forecasting
future instances.

3.11.2 SARIMAX

The exogenous variables used in SARIMAX are the number of daily cases in hos-
pitals and ICUs. The speci�c model we �t is a SARIMAX(4, 1, 4)×(3, 1, 1, 7)

model with a constant trend.

3.11.3 MCP

We �t an MCP model and consider the serial dependence among daily new cases
in hospitals. Each day’s new hospitalized count is dependent on the previous
14 days of observations. The regularized parameters in MCP are selected by a
multi-fold cross-validation. Since the number of predictors is large, a sure In-
dependence screening procedure is used to remove e uninformative predictors.
As a result, 7 predictors are included in the MCP model.

40

3.11.4 VAR

Similar to SARIMAX model, VAR model contains multiple predictors includ-
ing “inIcuCurrently”, “hospitalizedCurrently”, “hospitalizedCumulative” and
“onVentilatorCurrently” in addition to “deathIncrease” variable. The hyper
parameters are selected by the Bayesian Information Criterion (BIC).

3.11.5 Baseline

We compare the performance of all the statistical models and the GCN_LSTM
model with a baseline Random Walk (RW) model. For each model, we make
14 days ahead rolling window forecast as introduced in the rolling-validation
section3.10. The forecast performance is measured by the sMAPE score at each
horizon 1 ≤ h ≤ 14.

The national level forecast results are reported in Table 3.2. The SARIMAX
model performs the best on this dataset with the lowest sMAPE score. RW has
slightly better results than other models at horizons h = 7 and 14.

Table 3.3 shows the forecast results on the state level data. For each state in
the U.S., we make 14 days ahead rolling window forecast with horizons 1 ≤ h ≤
14. Then, we aggregate the state level forecast into a forecast for the national
level daily death increase. The sMAPE scores on this aggregated forecast are then
used to compare all models. MCP model performs the best on this experiment
while RW has the worst performance in most scenarios.

Table 3.4 reports the sMAPE scores for di�erent models on a set of represen-
tative states. We notice that the scores for each model are much higher than the
aggregated results reported in Table 3.3. Also, we �nd that the GCN_LSTM
model performs the worst when the forecasts for these representative states are
considered.

3.12 Mortality Prediction Performance

In Tables 3.2 and 3.3, we compare the forecasting performance of SARIMAX
with a range of models. We report the sMAPE score for the predicted “deathIn-
crease”. Table 3.2 shows the performance of models over the national level data,

41

and Table 3.3 shows the performance over aggregated state level data for the
United States mortality. All performance values were reported for 14 horizons.
According to Table 3.2, the SARIMAX model achieves the best sMAPE score
at each horizon and outperforms other models on the national level forecast.
The best results were achieved by evaluating several combinations, i.e. hospital-
izedIncrease, hospitalizedCurrently, etc.

On the other hand, the MCP model performs best on the state level forecast
which is evidenced by the results in Table 3.3. This trend is due to the fact that we
included more lags (k = 14) in MCP compared to SARIMAX, and MCP tends
to manage over�tting better than SARIMAX since it uses a regularized term.
Although SARIMAX appears to be more accurate than MCP in forecasting
national level data, it is inferior to MCP in forecasting state level data, owing
to the fact that the global combination might not be the best option for all the
states.

Further, we discovered a general pattern that the forecast results can be im-
proved by including exogenous variables. That may explain the success of SARI-
MAX and MCP in our study. Interestingly, introducing additional variables
resulted in worse performance for the SARIMAX model. Table 3.4 compares
di�erent models for selected states.

3.13 Conclusion

In this paper, we evaluate and compare several statistical and machine learning
models to forecast the pandemic course in the United States, using national
and state levels data. We studied the e�ectiveness of the mobility data in the
COVID-19 prediction problem regarding accuracy and discussed the bene�ts
of including exogenous variables. The advantage of SARIMAX and MCP,
over other competitive methods such as GCN_LSTM, is they can incorporate
exogenous variables such as hospitalization, ICU occupancy rate, and the count
of patients who require a ventilator mask into a multivariate time-series forecast.
The empirical advantages of including such exogenous variables are justi�ed by
our experiments.

42

Our work adds to this growing body of epidemic disease modeling with a
novel approach to combine the multivariate time-series analysis with human
mobility data and exogenous variables. We expect the �ndings in this paper
can motive future studies for selecting and incorporating important exogenous
variables into time-series modeling to enhance the prediction.

43

Table3.1:C
O

V
ID

-19
D

ataset:Statelevel

C
olum

n
D

escription
date

date:January19,2020
to

January19,2021
death

T
hecum

ulativenum
berofdeaths

deathIncrease
T

henum
berofnew

deathson
thegiven

date
inIcuC

um
ulative

T
hecum

ulativenum
berofpatientsin

IC
U

inIcuC
urrently

T
henum

berofnettotalpatientsin
IC

U
on

thegiven
date

hospitalizedIncrease
T

henum
berofnew

hospitalizationson
thegiven

date
hospitalizedC

urrently
T

henum
berofnettotalhospitalizationson

thegiven
date

hospitalizedC
um

ulative
T

hecum
ulativenum

berofhospitalizations
negative

T
hecum

ulativenum
berofnegativetestresults

negativeIncrease
T

henum
berofnew

negativetestresultson
thegiven

date
onVentilatorC

um
ulative

T
hecum

ulativenum
berofpatientson

ventilator
onVentilatorC

urrently
T

henum
berofnettotalpatientson

ventilatoron
thegiven

date
positive

T
hecum

ulativenum
berofpositivetestresults

positiveIncrease
T

henum
berofnew

positivetestresultson
thegiven

date
states

T
henum

berofstatesreportingC
O

V
ID

-19
caseson

thegiven
date

totalTestR
esults

T
hecum

ulativenum
beroftotaltestresults

totalTestR
esultsIncrease

T
henum

beroftotaltestresultson
thegiven

date
recovered

T
hecum

ulativenum
berofrecovered

cases

44

Table 3.2: Multi-Horizon (h) Rolling Forecasts for the Unites States (National
Level): Competitive Models (sMAPE).

Horizon RW GCN SARIMAX SARIMA MCP VAR
h = 1 29.20 28.87 12.77 16.02 15.61 15.08
h = 2 48.40 33.81 13.81 19.36 17.13 16.09
h = 3 53.50 35.97 13.87 19.13 17.85 16.55
h = 4 54.20 32.26 13.88 19.26 18.02 16.53
h = 5 50.10 29.83 13.89 20.40 18.02 16.62
h = 6 32.20 36.76 13.64 20.49 17.87 16.50
h = 7 18.20 34.04 13.50 20.45 17.86 16.75
h = 8 31.30 34.29 14.92 22.70 23.03 18.61
h = 9 47.40 48.39 15.92 24.92 22.94 19.58
h = 10 52.10 54.37 16.33 25.77 23.24 19.84
h = 11 53.60 32.07 16.27 25.75 23.39 19.86
h = 12 49.90 28.39 16.45 26.27 23.16 20.10
h = 13 34.20 35.63 17.12 27.00 22.91 19.79
h = 14 24.30 32.84 17.05 26.94 22.97 20.17
Average 41.33 35.54 14.50 22.46 20.29 18.01

Table 3.3: Multi-Horizon (h) Rolling Forecasts for the Unites States by State
Level Data: Competitive Models (sMAPE).

Horizon RW GCN SARIMAX SARIMA MCP VAR
h = 1 29.66 24.99 18.22 15.41 16.28 15.40
h = 2 50.17 34.42 18.01 16.36 16.09 15.42
h = 3 53.98 34.75 18.42 17.31 16.17 16.26
h = 4 54.30 34.42 17.53 17.84 16.38 16.32
h = 5 51.71 30.41 17.58 17.95 16.61 15.90
h = 6 33.89 30.81 18.73 17.76 16.51 16.17
h = 7 17.44 35.74 18.04 17.84 16.63 16.65
h = 8 31.54 34.62 18.64 21.21 18.17 19.65
h = 9 47.21 38.88 18.64 21.89 17.82 20.67
h = 10 51.13 44.04 18.52 22.98 19.86 21.07
h = 11 52.70 44.15 19.02 23.24 19.40 22.36
h = 12 49.94 43.34 29.08 23.62 17.98 20.36
h = 13 34.91 38.21 26.88 23.63 18.19 20.31
h = 14 23.30 44.46 23.10 23.33 18.32 20.13
Average 41.56 36.66 20.03 20.81 17.55 18.33

45

Figure3.3:M
ulti-horizons(h)forecastsfortheU

.S.bythenationalleveldata.

46

Fi
gu

re
3.4

:M
ul

ti-
ho

riz
on

s(
h)

fo
re

ca
sts

fo
rt

he
U

.S
.b

ys
ta

te
lev

el
da

ta
.

47

Table3.4:M
ulti-H

orizon
(h)R

ollingForecastsforSelected
States:R

andom
W

alk,SA
R

IM
A

,G
C

N
_LST

M
,SA

R
IM

A
X

,VA
R

and
M

C
P

(sM
A

PE).

State
C

A
G

A
IL

H
orizons

RW
SR

G
C

N
SR

X
VA

R
M

C
P

RW
SR

G
C

N
SR

X
VA

R
M

C
P

RW
SR

G
C

N
SR

X
VA

R
M

C
P

h
=

1
54.10

38.60
55.63

35.63
42.02

35.10
68.80

54.40
58.74

59.54
51.87

53.13
41.60

27.40
61.76

30.49
32.72

32.99
h

=
2

68.50
39.40

57.86
38.02

41.06
34.42

82.00
51.50

62.68
57.52

51.93
55.08

53.00
29.00

64.67
29.25

31.63
32.73

h
=

3
76.20

40.80
64.93

36.44
41.11

33.93
87.00

52.80
68.37

59.93
51.09

52.49
54.90

30.10
68.11

30.05
31.67

32.43
h

=
4

75.90
41.70

68.76
37.50

41.06
33.70

87.60
52.60

70.51
56.92

51.06
53.57

55.10
31.00

70.67
29.44

31.38
32.97

h
=

5
66.10

41.70
68.31

35.31
41.32

34.34
83.30

52.20
70.14

56.42
51.18

53.45
52.10

32.30
71.32

29.17
31.07

32.84
h

=
6

55.60
40.60

65.53
38.44

41.40
34.98

69.10
51.60

69.05
56.36

51.13
53.62

43.20
31.70

70.93
30.76

31.57
31.94

h
=

7
41.40

40.90
60.42

40.54
41.48

34.73
48.80

52.50
62.67

54.57
51.54

53.77
31.00

31.40
70.04

30.60
31.47

31.78
h

=
8

59.60
47.30

55.34
37.00

42.62
41.94

69.70
56.30

59.24
61.46

61.13
63.82

40.40
35.20

70.57
30.52

34.45
36.89

h
=

9
68.80

47.90
58.54

37.55
43.28

42.44
79.70

56.80
63.7

61.21
60.27

60.75
51.10

37.00
73.42

31.34
33.21

34.82
h

=
10

74.70
49.90

66.69
42.21

43.44
42.46

82.40
57.60

67.85
61.98

60.85
60.81

54.50
38.10

75.41
31.89

33.47
39.67

h
=

11
74.50

50.60
68.88

36.79
43.40

43.02
83.70

57.30
72.01

58.91
60.37

62.04
56.20

38.50
76.99

29.48
34.41

36.63
h

=
12

67.80
51.40

67.8
39.08

43.75
43.10

79.50
57.00

73
59.55

60.56
59.43

52.70
39.90

78.53
30.19

33.87
35.09

h
=

13
57.40

49.70
64.91

37.79
43.93

42.87
66.10

55.80
71.01

59.46
60.45

60.58
42.40

41.10
78.42

31.59
34.64

35.03
h

=
14

48.60
50.40

59.42
34.93

44.37
43.80

55.50
56.20

62.24
58.79

60.74
61.46

36.20
39.80

77.51
32.84

35.68
34.83

Average
63.51

45.06
63.07

37.66
42.45

38.63
74.51

54.61
66.52

58.76
56.01

57.43
47.46

34.46
72.03

30.54
32.95

34.33
State

T
X

N
Y

PA
H

orizons
RW

SR
G

C
N

SR
X

VA
R

M
C

P
RW

SR
G

C
N

SR
X

VA
R

M
C

P
RW

SR
G

C
N

SR
X

VA
R

M
C

P
h

=
1

58.80
29.00

36.01
27.88

28.19
29.53

26.50
25.70

35.04
20.76

24.06
24.62

57.20
46.40

70.86
45.86

46.30
42.96

h
=

2
76.40

32.60
57.29

25.92
27.50

29.66
25.20

28.20
36.56

20.47
24.46

25.79
69.70

47.20
74.13

46.85
44.87

42.62
h

=
3

84.30
33.30

70.94
32.02

27.76
29.43

24.50
32.80

37.84
20.25

24.56
25.45

78.50
47.00

77.8
44.13

45.24
42.97

h
=

4
84.30

33.00
74.1

26.16
27.58

28.57
27.30

37.50
39.69

21.92
24.28

24.93
79.00

46.60
80.19

44.50
46.56

41.88
h

=
5

75.60
32.60

74.4
34.15

27.86
28.39

26.00
40.40

41.71
22.99

24.65
25.08

75.80
46.90

80.9
45.30

46.23
41.69

h
=

6
60.70

32.60
62.65

36.06
27.59

28.42
30.00

28.70
42.72

23.61
24.41

25.80
61.60

46.30
80.57

44.05
46.26

42.61
h

=
7

27.20
32.70

47.52
28.22

27.36
28.43

27.90
31.90

44.08
23.31

25.22
27.32

44.30
46.80

79.94
43.93

45.99
42.14

h
=

8
57.60

39.40
38.89

33.59
33.47

31.64
31.10

40.10
45.72

33.50
31.00

30.09
55.10

51.30
80.92

46.75
51.03

51.61
h

=
9

74.20
41.40

58.74
30.72

32.79
32.58

33.40
44.20

47.83
31.02

31.54
29.33

69.30
52.70

82.98
46.59

51.03
55.01

h
=

10
79.90

42.20
72.86

30.80
32.76

32.26
34.20

49.40
47.65

42.86
30.72

27.41
72.50

52.90
84.92

44.69
49.29

57.48
h

=
11

79.60
41.90

76.34
30.62

32.68
32.37

37.60
55.00

49.62
29.57

30.49
30.28

76.00
53.60

87.59
46.79

48.18
55.89

h
=

12
72.00

41.60
76.26

41.85
32.58

32.11
37.60

57.80
52.95

28.17
30.20

32.02
71.40

55.80
87.83

46.22
49.90

54.43
h

=
13

60.30
41.50

64.47
35.27

32.52
32.17

40.30
46.30

53.56
28.31

30.89
32.96

61.80
54.60

87.33
44.91

48.56
52.90

h
=

14
33.80

41.40
50.34

27.48
32.13

32.25
42.00

51.30
55.03

32.02
31.59

32.92
48.90

55.10
87.83

45.80
46.71

54.30
Average

66.05
36.80

61.49
31.48

30.20
30.56

31.69
40.66

45.00
27.05

27.72
28.14

65.79
50.23

81.70
45.46

47.58
48.46

48

Chapter 4

Improving Intermediate
Length Time-Series Data

by Hybrid Models

Neural Networks are commonly used to capture nonlinearities in time-series
data that classical statistical methods are not fully capable of capturing complex
patterns. Earlier research was around combining traditional methods with neu-
ral networks to capturing linear trends by the traditional part, and the neural
networks were trained to learn the remaining non-linearities. Automated Neu-
ral Networks took the center stage of forecasting in time-series data after they
were ranked the 9th best model in the M3 forecasting competition (Makridakis
& Hibon, 2000) back in 2000, whilst they had been abandoned prior to the
competition. More recently, several neural network models have been a part
of the M4 in 2018 and M5 in 2020 time-series forecasting competitions (Makri-
dakis et al., 2018), (Makridakis et al., 2020a) and have been competitive and, in
some cases, better than the traditional statistical models.

However, the most challenging part of the training neural networks is still
remaining in short or intermediate-length time-series data such that these net-
works are not fully able to learn the trend from the limited number of samples.
Intermediate length time-series forecasting is one of such areas that neural net-
works tend to be less competitive than other models. However, multiple studies
in time-series forecasting proved that neural networks can be competitive in

49

longer length time-series data, e.g., (Peng et al., 2018; Peng et al., 2019; Qin et al.,
2017).

This chapter shows a methodology for modeling intermediate length time-
series data that are comparable to the M4 competition average of one thousand
data points. Neural networks are often considered as powerful methods for
longer time-series data, but they tend to generate worse results than any tradi-
tional methods for shorter time-series. COVID-19 datasets collected daily by
several public and private institutes are categorized as this intermediate length
group. Moreover, a volatile trend in such data makes it challenging for time-
series forecasting. Finally, the importance of having accurate forecasts for the
pandemic cannot be underestimated.

This chapter provides a comparative study among classical methods and
neural networks. In particular, the results presented in this chapter reveal that
neural networks perform on par with the traditional statistical methods. How-
ever, this work shows that a simple technique in neural networks can improve
the results of out-of-sample forecasts.

This chapter also seeks to apply Automated Machine Learning (AutoML)
on building the neural network architecture via architecture optimization to
identify an optimal and e�cient method for the given training task and dataset.
Neural Architecture Search (NAS) coupled with data augmentation would
boost the performance signi�cantly, as the results presented in this chapter sup-
ports that claim.

4.1 Background

Earlier work in time-series modeling by neural networks were around the idea
of feeding neural networks by features generated by statistical methods. This
includes the top-performing models in M4 competition such as the hybrid
method of exponential smoothing and recurrent neural networks (Smyl, n.d.)
and the FFORMA (Montero-Manso et al., 2020). These models seek to pro-
vide the neural networks with more information to help them capture the non-
linear patterns better within the data and thus, enhancing the generalization
performance of these models. The data augmentation method used in this work

50

incorporates the forecast values generated from a statistical toolset to construct
a time-series that is dual the length of the original time-series, encouraging the
neural networks to train on more samples.

Modeling the pandemic course using the COVID-19 dataset seems to be
challenging because the length of the time-series data does not su�ce. Only
now is a year’s worth of data available for the United States. The shortness of
the time-series data is particularly a problem for machine learning models that
require extensive training sets in order to optimize their large sets of model pa-
rameters. This work leverages two main categories of methods, i.e. statistical
and machine learning models, to study COVID-19 modeling. The �rst group
of models tends to provide a robust and easy-to-implement set of toolsets that
are commonly used in time-series data, and they should be used in this analy-
sis as a baseline. The second group, that of machine learning, supports more
intense pattern matching that has the potential to produce more accurate fore-
casts. While using sophisticated machine learning methods generates better
results, the overhead of more data, hyper-parameters calibration, architecture
optimization and interpretability can introduce adversity.

Pandemic modeling is vital for both policy makers and people because they
know what to expect in the next few weeks. The COVID-19 Pandemic is unique
in the sense that the last pandemic with this (or more) signi�cance was the 1918
H1N1 In�uenza Pandemic (Morens et al., 2010).

4.2 Dataset

COVID-19 Datasets: There are multiple sources for the COVID-19 pandemic
in the United States which most of them fork over two primary data sources.
Both sources collect information from the public health authorities throughout
the country. First, The Johns Hopkins Coronavirus Resource Center (CRC)
is a continuously updated source of COVID-19 data have their data repository
stored at https://github.com/CSSEGISandData/COVID-19. Secondly, The
COVID Tracking Project is a volunteer organization collecting COVID-19 data
used by multiple organizations and research groups. This work utilizes the
national COVID-19 dataset composed of data collected and stored at https://

51

https://coronavirus.jhu.edu/about
https://github.com/CSSEGISandData/COVID-19
https://covidtracking.com/about
https://covidtracking.com/about
https://covidtracking.com/data
https://covidtracking.com/data

covidtracking.com/data. In addition to having COVID-19 case data for testing,
hospitalization, patient and death outcomes from all over the United States, the
dataset records other information that might be useful for other studies.
COVID-19 Datasets - United States: The ScalaTion COVID-19 dataset
https://github.com/scalation/data/tree/master/COVID contains data about
COVID-19 cases, hospitalizations, deaths and several more columns in the United
States. This dataset is in a CSV �le with 420 rows and 18 columns. This work
seeks to analyze the mortality rate or daily death increase column using an eX-
ogenous variable by forming a time-series for the neural networks and statistical
models. The time-series includes daily death and hospitalization counts in the
United States starting from January 13, 2020 to March 7, 2021. The �rst 44
day records were eliminated to form a set of observations with 376 days. Our
models input time-series data starting February 26, 2020 when the �rst deaths
due to COVID-19 in the United States were recorded.

This study took the entire dataset of the COVID tracking project as the
data has stopped collecting new records on the 7th of March 2021. Ending the
dataset on March 7, 2021 has the modeling advantage that vaccination e�ects
may be ignored, but after this time, models should take vaccinations under
consideration. Since the vaccination data does not su�ce for this type of study,
so we ignore including it at this point. In addition to the COVID Tracking
project, there are other resources for further data such as the Centers for Disease
Control and Prevention (CDC) (“United States COVID-19 Cases and Deaths
by State over Time”, n.d.) and National Center for Health Statistics (NCHS)
(“Provisional Death Counts for Coronavirus Disease 2019 (COVID-19)”, 2021).

4.3 Data Preprocessing

As part of the analysis, the time-series data was smoothed to eliminate the out-
liers that fall 3.5 standard deviations away from the rolling mean. The rolling
mean is the 6 time points local average, such that we consider 3 time-points be-
fore and after the current point. Observations within 3.5 standard deviations
are left unchanged, while the observations which are considered as outliers are

52

https://covidtracking.com/data
https://covidtracking.com/data
https://github.com/scalation/data/tree/master/COVID

replaced by the Kalman Smoothing using a Local Level Model (Commandeur
& Koopman, 2007).

4.4 Lag Selection

In time-series modeling, it is common to use lagged features as inputs to the
models. A lag value is the target value from any of its previous values. For
example, the kth lag value of yt will be yt−k. We need to de�ne models such that
they look for p previous lags while estimating their parameters. The choice of p
needs to be determined before taking any model under consideration. Choosing
a particular value for p depends on the characteristics and dynamics of the time-
series and the model. We determine the optimal number of lags to be 22 using
the Partial Auto-correlation function (PACF). Since, the PACF eliminates the
e�ect of correlation with all earlier lags, signi�cant correlations at lag 22 indicate
we can use up to 22 lags for our modeling and also eliminate any in between the
lags which are not signi�cant contributors.

4.5 Related Work

Neural Networks have been popular among practitioners for competing with
other statistical toolsets for a long time. Back in the year of 2000, the only rival
in the M3 competition among other 23 statistical models was a neural network
method (Makridakis & Hibon, 2000) The concept of Automated Arti�cial
Neural Networks (ANN) was �rst introduced in this competition (Balkin &
Ord, 2000) where an automated procedure for the selection of neural network
architecture proved useful. That event encouraged the community to use Au-
toML techniques such as NAS in the context of time-series forecasting. How-
ever, the automatic architecture selection tends to be less e�ective than the other
statistical models considered in the case of shorter length time-series.

But the community witnessed a greater number of neural network-based
models, triggered by the M4 time-series competition, while some of them were
able to outperform other statistical methods. One of the greatest impacts of
such competitions was introducing the “hybrid" approach which interleaved

53

both statistical and machine learning features (Makridakis et al., 2018, 2020b).
The winner of the M4 competition (Smyl, n.d.) used a Dynamic Computa-
tional Graph Neural Network system to combine an Exponential Smoothing
(statistical model) with Long Short-Term Memory (LSTM) networks to pro-
vide a single hybrid but powerful method to generate forecasting values 10%

(in sMAPE) better than the combination benchmarks considered in the com-
petition.

The second place team, FFORMA (Montero-Manso et al., 2020), utilized
a combination of 7 statistical methods and 1 ML method, and the weights for
averaging/combining such methods also used an ML algorithm. This encour-
aged the time-series research community to develop techniques that use a com-
bination of machine learning models with time-series features as indicated in
(Makridakis et al., 2018). In an e�ort to prove the usefulness of neural networks
over intermediate length time-series, we compare such networks with statistical
benchmarks and with extensive experiments, we show that using data augmen-
tation can help boost the performance of such neural network models.

In addition to Fully Connected Neural Networks, a certain number of Re-
current Neural Network (RNN) based frameworks have also been introduced
for mid-length time-series forecasting as referred by (Rangapuram et al., 2018; Y.
Wang et al., n.d.). More recent studies such as (Hewamalage et al., 2021), show
the application of RNNs on several short and intermediate length time-series
where the results are better than statistical models for some datasets while the
RNNs performing worse than ARIMA and ETS models on diverse datasets
such as the M4, which consists of 48,000 time-series.

Some tweaking in the Convolutional Neural Networks (CNN) have re-
sulted in broader percolation to earlier samples. This technique was cited by
(Borovykh et al., 2017) and they used the dilated convolutions for that purpose.
They claimed that CNN performs on par with the recurrent-type network,
whilst requiring signi�cantly fewer parameters and computation to achieve com-
parable performance.

“Attention Mechanisms” studied by many researchers in recent years allow
the network to directly concentrate on important time points in the past. Appli-
cation of such networks in longer length time-series shows improvements over

54

RNN-based competitors which has been re�ected in (C. Fan et al., 2019; S. Li
et al., 2019; Lim et al., 2019). This type of network often employs an encoder to
summarize historical information and a decoder to integrate them with known
future values (C. Fan et al., 2019; Lim et al., 2019). However, there has been lit-
tle evidence for the performance of such networks on shorter and intermediate
length time-series data.

Many studies in neural networks have been conducted in image and text
domains, while intermediate length time-series data have been less studied by
such networks. One reason is that such techniques require a plethora of input
data for training, and mid-length time-series data would not su�ce for training.
In general, we expect that our new proposed hybrid technique for forecasting
intermediate length time-series problems will provide interesting avenues for
future studies.

4.6 Modeling Studies for COVID-19

There are many studies in pandemic modeling that forecast morbidity and mor-
tality rates around the world. The study by (Kumar & Susan, 2020) attempted
to forecast the spread of the disease in 10 largely a�ected countries including the
United States. They applied ARIMA and Prophet time-series forecasting mod-
els on the number of positive cases and deaths, and they showed that ARIMA
performed better than FBProphet (Taylor & Letham, 2018) on a scale of di�er-
ent error metrics such as MAPE and RMSE. Another similar study that applied
an ARIMA is found in (Ilie et al., 2020) where they extensively tested and tuned
di�erent parameters to minimize the prediction error, and they discussed that
ARIMA models are appropriate for generating forecasts for the pandemic crisis.

The GWO-LSTM model proposed by (Prasanth et al., 2020) was an at-
tempt to forecast the daily new cases, cumulative cases, and deaths for India,
the USA, and the UK. In their work, they showed that their hybrid architecture
obtained a better performance compared to the baseline (ARIMA), and they
calibrated the LSTM component by Grey Wolf Optimizer (GWO).

55

4.7 ARIMA

Box-Jenkins introduced an autoregressive integrated moving average (ARIMA)
method for modeling time-series data in their book, back in 1970. They consid-
ered trend, seasonality and irregularity components in a univariate time-series
yt. They modeled such problems by removing the trend and seasonal via di�er-
encing process, so the result becomes a stationary time-series. Denote:

∆yt = yt − yt−1, ∆2yt =∆(∆yt)

∆syt = yt − yt−s, ∆2
syt =∆s(∆syt)

. . . , . . .

(4.1)

The di�erencing is continued until trend and seasonal e�ects disappear from
the data, yielding a new variable:

y∗t = ∆d∆D
s yt for d,D = 0, 1, . . . , (4.2)

which we model as a stationary ARMA(p, q) model formulated by:

y∗t = φ1y
∗
t−1 + . . .+φpy

∗
t−p + ζt + θ1ζt−1 + . . .+ θpζt−q, ζt ∼ N(0, σ2

ζ),

(4.3)
with non-negative integers p and q and ζt represents a serially independent series
ofN(0, σ2

ζ) noises. The above formula can be simpli�ed as:

y∗t =
r∑
j=1

φjy
∗
t−j + ζt +

r−1∑
j=1

θjζt−j, t = 1, . . . , n, (4.4)

where r = max(p, q + 1) and for which a certain number of coe�cients are
zero.

56

4.8 SARIMA

ARIMA model can be extended to a case when seasonality appears in time-series
data, so a SARIMA(p, d, q)× (0, D, 0)s is formulated by:

φ.[−Bp, . . . ,−B1, 1](1−B)d(1−Bs)Dyt = δ+θ.[Bq, . . . , B1, 1]εt (4.5)

This family of models is essentially formulated by ((1−B)d) and (1−Bs)D

for respectively controlling the seasonal and regular di�erencing followed by an
ARMA model. A more general case of SARIMA happens when the seasonal
autoregressive vector φs ∈ Rp and seasonal moving-average parameter vector
θs ∈ RQ is added to a SARIMA(p, d, q)× (P,D,Q)s model, namely as:

[φ.[−Bp, . . . ,−B1, 1]][φs.[−Bsp, . . . ,−Bs, 1]](1−B)d(1−Bs)Dyt =

δ + [θ.[Bq, . . . , B1, 1]][θs.[Bsq, . . . , Bs, 1]]εt
(4.6)

This form of SARIMA model is also known as multiplicative SARIMA model
since The whole expression is multiplied by the polynomial term [φ.[−Bp, . . . ,−B1, 1]].

4.9 Arti�cial Neural Networks

Neural networks are powerful methods to learn complex patterns in the data,
owing to the fact that they learn patterns via hidden layers and several neurons
with non-linear activation functions in each hidden layer. If the number of hid-
den layers is properly optimized, a number of training samples are adequately
available and other hyperparameters are correctly set, neural networks can serve
as powerful data modeling techniques in the machine learning domain. How-
ever, such models tend to be less e�ective over intermediate length time-series
data. This is the case in forecasting COVID-19 data since the length of the time-
series is still shorter than ideal for training neural networks. Thus, we attempted
to utilize a simpler architecture in this work, and we used AutoML to search
over the space for better models, and we used data augmentation to compensate
for data de�ciency issues.

57

A simple type of Neural Network generalizes an AR(p) model. We use a
three-layer (two hidden) neural network, where the input layer has a node for
each of the p lags and the current time t. This architecture was used by (Javeri
et al., 2021). For p input lag features, q hidden nodes in the hidden layer and one
output node, the total number of parameters in a three-layer neural network is
q(p+ 2) + 1.

xt = [yt−p, . . . , yt−1, t]

yt = W t
3 f2(W t

2 f1(W t
1xt + b1) + b2) + b3 + εt

(4.7)

where W1 ∈ R(p+1)×nh , W2 ∈ Rnh×nh and W3 ∈ Rnh×no are the weight
matrices and b1 ∈ Rnh , b2 ∈ Rnh and b3 ∈ Rno are the bias vectors. Since the
last layer uses Identity function as the activation function, so there are only two
activation functions (vectorized f1 & f2) for the hidden layers.

4.10 Gated Recurrent Unit (GRU)-based Autoen-
coders

One of the popular architectures among the practitioners is Autoencoders. The
deep architecture inside enables Autoencoders to generate compressed feature
vectors in between the layers used for reconstructing the input data. Autoen-
coders learn in such a way that multiple layers to transform the input data into
a latent space represented by a lower dimensional space than the feature space.
the latent space is transferred to the next layers to be decoded back to the input
layer. This process enables us to enrich the feature space of the data, leading to a
better modeling of the training samples. The latent or hidden space is also called
the compressed knowledge representation of the original input data. One can
bene�t from the dimension reduction property providing by an autoencoder as
the constrained knowledge representation forces the autoencoders to generate
important features from the input samples required to model the given input.
The intermediate feature vectors are usually �xed-length, however, their size can
be calibrated, and choosing a suitable architecture is critical in the modeling
process.

58

GRU-based autoencoders (GRU-AE) are autoencoder architectures that
bene�t from GRUs as the modeling layers in the encoder and decoder levels of
the network. The sequential modeling property enables GRUs to generate the
knowledge representation. Although autoencoders are mostly used to recon-
struct the original input, (Javeri et al., 2021) used Fully Connected Layer added
at the output of autoencoder to use such networks for modeling the time-series
data. This model is one of the serious competitors in this study, and the results
generated by this architecture were provided in the Table 4.2.

4.11 LSTM with Convolutional Layer

Using convolution layers inside LSTM cells is the idea that has been explored
by researchers, and (Shi et al., 2015; Sutskever et al., 2014) re�ected that in their
studies. This type of architecture enables the training process to bene�t from
the advantages of both models while typically achieving results better than indi-
vidual CNN and LSTM. Time-series data may be a good candidate for CNN
models since local information is supposedly relevant for the analysis of the
time-stamped data. However, this relevancy is short-term due to the constraint
by the size of convolutional kernels. However, LSTM coupled with a convo-
lution layer can store and output information during the training process by
capturing the long-term time dependency of input data ConvLSTM replaces
matrix multiplication with convolution operation at each gate in the LSTM
cell, leading to capture informative features by convolution operations and pro-
vide the LSTM cell with sequenced data. This is the major di�erence between
a classical LSTM and a ConvLSTM. Inside the LSTM equations, all weight
matrix multiplications are converted into convolution operations. By stacking
multiple ConvLSTM layers and forming an encoding-forecasting structure, it is
possible to build an end-to-end trainable model for spatio-temporal forecasting.

4.12 Wavelet-based Neural Network Models

The wavelet transformation is commonly used in signal processing, and it can
generate information in both the time and frequency domain with a higher res-

59

olution. Wavelets have appeared at the beginning of the eighties (Grossmann
& Morlet, 1984) as a method for processing seismic data. This type of transfor-
mation is not available in traditional transformations.

A certain number of applications of wavelets in statistics are including but
are not limited to denoising, nonparametric function estimation, data com-
pression, and process synthesis. The wavelet-based neural network for time-
series data can appear in two approaches. The �rst approach seeks to transform
the signal into di�erent sets so that they are empirically easy to process. Two
types of wavelet transformation are Continuous Wavelet Transform (CWT)
and Discrete Wavelet Transform (DWT). DWT considers the series as a range
of integers, while CWT treats the time-series as the real axis.

In case of DWT, translation and dilation steps are uniformly discretized via
following formula:

ψm,n(t) = a−m/2ψ(a−mt− n) (4.8)

The above expression can be simpli�ed for computational purposes, so Dyadic
Wavelet Transform is utilized. In the dyadic case a is chosen to be equal to 2,
yielding the following translation- dilation equation:

ψj,n(x) = 2−j/2ψ(2−jx− n) (4.9)

where j denotes the level of scale (or dilation), and n denotes the translation
(or shifting) where j, n ∈ Z. The above transformation is a shift variant, and it
requires the �xed seriesX of length 2j . Therefore, Maximal Overlap Discrete
Wavelet Transform (MODWT) is used which is appropriate for all sample sizes
N, while translation invariant too.

Decomposition contains low-pass and high-pass �lters through which wavelet
detail and approximation sets are obtained by decomposition algorithm tree.
This process encodes raw signals with useful and distinctive features that are
informative for further analysis. Overall, the approximation step is the low-
frequency or high-resolution part, and

In general, the approximation part is the low-frequency or high-resolution
component, and the high-frequency or low-scale part is obtained by transformed

60

details. Low and high frequency �lters contribute to the prediction by di�erent
roles. The global trend can be captured by wavelet approximate component
that is quite identical with the raw series, and as the level of approximation in-
creases, the quality of the information in the original signal decreases. On the
�ip side, detail parts may be useful for detecting the information that is lost.
Haar, Daubechies, and Morlet are only a few examples of wavelet basis func-
tions that are commonly found in literature (Bultheel et al., 1995; Percival &
Walden, 2000; Vidakovic, 2009).

Figure 4.1 illustrates how wavelet-ANN generates forecast values, similar to
the �rst approach where TDNN is employed to capture individual detail and
approximate part of the decomposed signals. One of the motivations of using
ANN, wavelet details and approximate part is the presence of nonlinearities in
sub-series. In the case of nonlinearities in the time-series, the MODWT can
provide a simpler series by decomposing it into its sub-frequencies. This encour-
ages the ANN to model the details and approximate parts more e�ectively so
that the overall forecasting accuracy improves. One positive side-e�ect of using
wavelet-ANN over a single ANN method is a tendency of wavelet decomposi-
tion to be more sensitive to the original nonlinear pattern by dividing the raw
series into multiple sub-frequencies and further learning global and local fea-
tures of the series. This procedure can also be named “wavelet denoising”, as the
approach attempts to retrieve back the localized information loss in forecasting.

Di�erent wavelet functions can also be plugged in a neural network model
for various objectives of function approximation or estimating outputs. Wavelet
basis functions, therefore, serve as an activation function in the hidden neurons,
bearing the concept of wavelet neural network (WNM).

For example, a feed-forward neural network, with one hidden layer and
one output layer, may use the activation functions that are formulated on an
orthonormal wavelet basis. These neurons are referred to as wavelet network
(or wavelon), and the output for single-input wavelon is as follows:

Ψα,t(x) = Ψ

(
x− t
α

)
(4.10)

61

whereα and t are respectively scale and shift parameters. For single-input–single-
output wavelet neural network, if the hidden layer contains λ wavelons, then
the output is weighted sum of wavelon outputs, namely as:

y =
λ∑
i=1

wiΨαi,ti(x) + ȳ, (4.11)

where ȳ is added to the expression to manage functions with nonzero mean
(since the wavelet function w(x) is zero mean).

4.13 Fitting SARIMAX Model

Weekly seasonality of daily death increase can be observed using Auto-Correlation
Function (ACF). Then, we propose to �t the daily death increase by a Seasonal
Autoregressive Integrated Moving Average (SARIMA) (Arunraj et al., 2016)
model de�ned as below

ϕp(B)ΦP (Bs)∇d∇D
s yt = θq(B)ΘQ (Bs) εt, (4.12)

whereyt is a variable to forecast, i.e., the logarithm of deathIncrease, t = 1, 2, . . . ,
ϕp(B) is a regular AR polynomial of order p, θq(B) is a regular MA polyno-
mial of order q, ΦP (Bs) is a seasonal AR polynomial of orderP , and ΘQ (Bs)

is a seasonal MA polynomial of order Q. The di�erencing operator∇d and
the seasonal di�erencing operator∇D

s eliminate the non-seasonal and seasonal
non-stationarity, respectively.

The SARIMA with eXogenous factor (SARIMAX) model is an extension
of the SARIMA model in (4.12), which has the ability to include exogenous
variables, such as hospitalization and ICU occupancy rate. The SARIMAX
model can be de�ned as:

ϕp(B)ΦP (Bs)∇d∇D
s yt = θq(B)ΘQ (Bs) εt +

n∑
i=1

βix
i
t, (4.13)

62

where {x1
t , . . . , x

n
t } are the n exogenous variables de�ned at time twith coef-

�cients {β1, . . . , βn}. Further, we apply a log transformation to categorical
variables.

4.14 Rolling Validation for Multiple Horizons

Since there are dependencies between time instances in the series, k-fold cross-
validation is not an appropriate choice for generalization. A simple form of
rolling validation divides a dataset into an initial training set and test set. In this
study, we sampled 60% of the series as the training set and left the rest for the test
set. Horizon h = 1 forecasting in the test set is generated such that the �rst day
is forecasted based on the model produced by training on the training set. The
sMAPE (i.e. symmetric mean absolute percentage error) value for validation is
calculated via evaluating the di�erence between the actual and forecasted values
in the test set.

The next forecast value in the test set is often used in the retraining step as
the rolling window moves forward along the time. The size of the training set is
�xed by removing the �rst sample from the training set. We adjust the frequency
of retraining for the statistical models such that we forecast kt samples ahead in
the test set before including them in the training set and retraining our model.

4.15 Backcasting Strategy

Backcasting in times-series refers to the process that the series is forecasted in
reverse time. Backcasting can help practitioners recover the lost or weak informa-
tion generated as a result of the forecasting process. Although backcasting may
be used in smoothing the training set in time-series, leading to an increase in the
signal-to-noise ratio, we used it for the generated forecast values to amplify the
signals. With extensive experiments, we showed that time-series forecasting can
be improved signi�cantly by backcasting strategy, and the results were provided
in Table 4.2.

63

4.16 Fitting of Wavelet-ANN Model

The Wavelet-ANN method was used in the backcasting process, after generat-
ing 14 days horizons. We implemented a non-decimated Haar wavelet transform
to decompose the newly generated forecasting values into the multi-resolution
level. For our case, maximum decomposition level J0 ≤ logeN was set to 5.
The wavelet transformed sub-series were good candidates to be fed into TDNN
because they contain nonlinearity patterns. The number of input lag and hid-
den nodes were respectfully varied from 1 to 7 and 1 to 10 in the TDNN train-
ing process. To optimize the coe�cients in the back-propagation step, Leven-
berg–Marquardt algorithm was used in the process. The Identity and logistic
functions were used for the hidden nodes and output nodes, respectively. Every
single series was combined with the prediction values by Haar �lter reconstruc-
tion to forecast the original series. Because the output node produces single
forecasting values, longer horizons forecasts were iteratively generated. The
backcasting performance of the wavelet-ANN method was generated for an
out-of-sample rolling validation period of 14 days, and sMAPE validation crite-
ria were used for performance evaluation (Table 4.2).

4.17 Results

The experimental results for various statistical and neural network models are
shown in Table 4.1 and Table 4.2, respectively. We collected Multi-Horizon
rolling forecasts on daily deaths for the next 2 weeks i.e. from h = 1 through
h = 14 and used sMAPE as our primary performance metric which is one of
the standard performance metrics in time-series forecasting (Makridakis et al.,
2018; Taieb, Hyndman, et al., 2012).

(Javeri et al., 2021) trained and evaluated several statistical models, and they
optimized the auto-regressive non-seasonal order (p) of such models to ob-
tain the best results. The (p) in Table 4.1 indicates the auto-regressive non-
seasonal order for the model with the lowest sMAPE for the given horizon.
The SARIMA(p, 0, 0)×(3, 1, 1)7 uses no di�erencing and no MA component,
whereas it includes P = 3 and Q = 1 seasonal components with 1 seasonal

64

Table 4.1: Multi-Horizon (h) Rolling Forecasts: SARIMAX vs. Statistical Mod-
els (sMAPE) by (Javeri et al., 2021).

Horizon RW AR ARIMA SARIMA SARIMAX
h = 1 27.75 17.20 (8) 16.80 (12) 15.40 (1) 13.25
h = 2 43.49 19.20 (10) 19.10 (7) 17.30 (1) 15.1
h = 3 50.23 19.00 (10) 18.70 (9) 18.60 (4) 15.47
h = 4 50.44 19.30 (10) 18.70 (9) 18.80 (6) 15.21
h = 5 44.61 19.80 (9) 19.10 (9) 19.60 (1) 14.98
h = 6 30.31 19.60 (9) 18.70 (9) 19.20 (9) 14.18
h = 7 17.36 19.60 (12) 18.50 (8) 19.40 (9) 14.03
h = 8 29.92 23.60 (15) 21.30 (12) 22.10 (9) 13.52
h = 9 42.49 27.20 (11) 24.80 (10) 24.60 (9) 14.06
h = 10 47.77 27.40 (15) 25.00 (14) 24.90 (8) 14.22
h = 11 49.36 27.70 (15) 24.10 (15) 25.00 (9) 14.25
h = 12 44.91 28.00 (15) 24.50 (15) 25.10 (9) 14.52
h = 13 32.30 28.50 (9) 24.70 (15) 25.30 (9) 15.05
h = 14 24.05 29.30 (9) 24.10 (15) 25.40 (22) 15.22

AVG 38.21 23.24 21.29 21.47 14.50

di�erencing component and a seasonal period of 7 days. The highlighted values
in each row indicate the best performing model for the given horizon having the
lowest sMAPE score amongst all the proposed models. The SARIMA model
performs well overall, however, the ARIMA model is competitive on several
horizons, whereas the RW model having the lowest error for horizons 7 and 14.

Table 4.3 compares the performance of multiple con�gurations of neural
network-based models that were studied by (Javeri et al., 2021), against the
wavelet-ANN model. The neural network (NN) model refers to the feed-forward
neural network, GRU-AE refers to the GRU-based Autoencoder, ConvLSTM
refers to the Convolutional LSTM network and AUG-NN refers to the Augmented-
Neural-Network run on the data augmented time-series with 750 samples, i.e.
double the size of regular time-series with 376 samples. Except for the latter
one, all other models were trained on the regular time-series with 376 samples.
Since the augmented time-series has a resolution of half a day, the sMAPE val-
ues were collected for every even horizon output from h = 2 through h = 28

65

to give us the actual 14 days ahead forecasts. The wavelet-ANN model with
backcasting strategy performed much better compared to the augmented and
non-augmented ones. A certain number of strategies involved in the wavelet-
ANN model that led to being a highly performant model: (1) The log trans-
formation was applied to the input data to alleviate the variability of the data.
(2) SARIMAX model was used in forecasting the future horizons, and “Hos-
pitalizedCurrently” was used as the eXogenous variable in the model. (3) The
wavelet transformation was used in the backcasting step over the generated fore-
casting values, and the forecasted values were smoothed by a neural network
model. The wavelet-ANN performed the best for both longer and shorter hori-
zons and all the results along with the improvement percentage were provided
in the Tables 4.2 & 4.3, respectively.

Table 4.3 shows the improvement in wavelet-ANN over all neural network
models trained on the original time-series. In terms of improvement due to
wavelet-ANN, on average we see a 28.53% improvement across all horizons with
a maximum improvement of 35.63% observed at horizon 13 forecasts. While the
NN model did not perform better than the SARIMA model, the wavelet-ANN
model substantially outperformed SARIMA, AUG-NN and AUG-GRU-AE
models.

4.18 Conclusion

In this work, we developed and presented hybrid methods to improve the qual-
ity of out-of-sample forecasts for intermediate length times-series data. We ar-
gued that neural network-based models are limited in cases where enough data
may not be available to estimate the large number of parameters that these non-
linear models require.

By incorporating multiple transformations in the analysis, we could increase
the accuracy. When the wavelet transformation was paired with the backcasting
model, the generated forecast values were improved signi�cantly compared to
original values, due to the fact that the wavelet functions tend to recover poor
signals as a result of rolling forward forecasting. We also showed that the log
transformation can be bene�cial to the prediction, particularly when the se-

66

ries shows a volatile trend across time. However, with the backcasting strategy
paired with hyperparameters optimization, the performance of such predic-
tions is particularly pronounced, making them better than the best performant
traditional models.

This work has demonstrated the viability of backcasting strategy with the
wavelet transformation functions, suggesting that these research directions could
prove useful.

67

W
avelet

Decom
position

W
avelet

Reconstruction

TDN
N

TDN
N

TDN
N

O
utput

In
p
u
t

M
O
DW

T
IW

T

!𝑊
1!𝑊
𝑛

!𝑊
𝑗

𝑊
1

𝑊
𝑗

𝑊
𝑛

Figure4.1:W
aveletN

euralN
etw

ork
(W

avelet-A
N

N
)A

rchitecture

68

Fi
gu

re
4.

2:
M

ul
ti-

ho
riz

on
sr

ol
lin

g
fo

re
ca

sts
fo

rt
he

U
.S

.d
at

a
by

tra
di

tio
na

lm
et

ho
ds

.S
A

R
IM

A
X

m
od

els
ob

ta
in

ed
th

eb
es

tr
es

ul
ts

in
all

ho
riz

on
sc

om
pa

re
d

to
(J

av
er

ie
ta

l.,
20

21
)r

es
ul

ts.

69

Table4.2:M
ulti-H

orizon
(h)R

ollingForecasts:W
avelet-A

N
N

vs.N
euralN

etw
ork

m
odels(sM

A
PE)by(Javerietal.,2021).

H
orizon

N
N

A
U

G
-N

N
G

R
U

-A
E

A
U

G
-G

R
U

-A
E

C
onvLST

M
A

U
G

-C
onvLST

M
W

avelet-A
N

N
Im

provem
ent(%)

h
=

1
15.90

14.36
18.87

15.32
18.59

16.37
12.13(8)

20.82%
h

=
2

18.43
15.73

19.48
17.37

17.88
17.38

13.21(8)
23.94%

h
=

3
18.62

16.79
18.75

17.91
18.05

17.01
13.17

(8)
26.46%

h
=

4
19.06

17.82
19.38

17.69
18.59

16.88
13.19

(8)
25.43%

h
=

5
23.45

18.43
19.92

18.61
20.77

18.90
13.47

(6)
26.91%

h
=

6
20.18

18.72
21.08

18.81
22.32

19.65
13.29

(4)
29.00%

h
=

7
22.77

19.35
22.18

18.06
24.09

22.79
12.92

(8)
28.46%

h
=

8
22.27

20.13
25.21

19.35
26.02

23.81
13.76

(6)
28.88%

h
=

9
24.83

21.15
24.29

20.63
26.28

22.87
14.72

(6)
28.64%

h
=

10
24.69

21.94
24.52

20.64
26.80

22.40
14.87

(6)
27.95%

h
=

11
23.13

22.57
23.77

20.84
26.81

23.08
14.98

(10)
28.11%

h
=

12
25.49

23.82
24.13

23.30
28.44

25.20
15.16

(12)
34.93%

h
=

13
26.47

24.46
25.25

23.06
30.72

28.25
15.19

(11)
35.63%

h
=

14
25.97

24.28
28.74

21.76
32.96

30.49
15.30

(11)
29.68%

AVG
22.23

19.96
22.54

19.52
24.16

21.79
13.95

28.53%

70

Fi
gu

re
4.

3:
M

ul
ti-

ho
riz

on
sr

ol
lin

g
fo

re
ca

sts
fo

rt
he

U
.S

.d
at

ab
y

ne
ur

al
ne

tw
or

k
m

od
els

.T
he

w
av

ele
t-A

N
N

ac
hi

ev
ed

th
eb

es
tr

es
ul

ts
in

all
ho

riz
on

sc
om

pa
re

d
to

(J
av

er
ie

ta
l.,

20
21

)r
es

ul
ts.

71

Table 4.3: New Improvement Due to the Wavelet-ANN compared to SARI-
MAX

Horizon SARIMAX AUG-NN Wavelet-ANN Improvement (%)
h = 1 13.25 14.35 12.13 8.45%
h = 2 15.10 17.19 13.21 12.51%
h = 3 15.47 16.09 13.17 14.86%
h = 4 15.21 18.50 13.19 13.28%
h = 5 14.98 18.27 13.47 10.08%
h = 6 14.18 18.34 13.29 6.27%
h = 7 14.03 17.93 12.92 7.91%
h = 8 13.52 20.32 13.73 -
h = 9 14.06 19.78 14.72 -
h = 10 14.22 21.98 14.87 -
h = 11 14.25 22.91 14.98 -
h = 12 14.52 23.54 15.16 -
h = 13 15.05 23.48 15.19 -
h = 14 15.22 23.31 15.30 -

AVG 14.50 19.71 13.95 3.80%

72

Chapter 5

Improving Classification
Performance by Transfer

Learning in
Undersampled Videos

5.1 Introduction

Video data is considered as a super high-dimensional space, because it enriches
spaces both at the frame and time spaces. A video is a sequence of images (called
frames) captured and eventually displayed at a given frequency. The number
of frames in a video are highly relying on the format of the video, but a video
usually contains 8 to 16 frames of sequential images to form one second of video.
The space in the video is super rich, because video data contains pixels at the
frame level and multiple frames at the time level.

Recent and advances in Arti�cial Intelligence (AI), especially in the form
of deep neural networks, have opened many new possibilities in this domain.
However, those sophisticated techniques require enough data for training, and
if the length of the video is not high enough or the quality of the video is poor,
the learning process may fail.

One of the important tasks in the video is classi�cation. Similar to image
classi�cation, we should apply the classi�cation tasks to a sequence of images.

73

But as it was mentioned earlier, if the space is not rich enough, the classi�cation
may fail. This incident is common when we have a limited number of video
samples, or the videos were recorded poorly. In recent years, many approaches
have been brought to bear on such high-dimensional, undersampled problems,
including data augmentation, but this technique might not be applied in the
video domain due to a lack of consistency between samples.

To address this issue, we propose a novel application of “Transfer Learn-
ing” to classify video-frame sequences over di�erent classes. Transfer learning
enriches the space of learning by pre-weighted parameters trained previously
over other datasets. One positive side-e�ect of transfer learning is using a pre-
weighted model that does not require training a fresh deep model.

We applied and evaluated our method on the tra�c video data collected
by (https://www.wsdot.wa.gov, n.d.). This dataset su�ers from multiple issues.
First, the number of video samples is limited for a certain number of classes, so
the task of learning of those particular classes is non-trivial. Also, the length
and quality of videos are low. Especially, in the presence of severe weather such
as “foggy” weather or in the situation where “corrupted” video frames exist in
the data. These issues would add to the challenges in the learning tasks. In the
following, we demonstrate how our method can classify the videos successfully
under such di�culty.

Tra�c Management System (TMS)(Chan & Vasconcelos, 2005a) is a �eld
in which the technology is integrated to improve the �ow of vehicle tra�c and
safety. Real-time tra�c data from cameras, speed sensors and loop detectors are
just a few means of monitoring, out of many, to manage tra�c �ows. Among
those, CCTV camera or video surveillance technology is being used more, since
it is less expensive and more manageable compared to other ones. Moreover, a
fully automatic monitoring system is in the interest of certain researchers.

The majority of the existing framework in monitoring tra�c uses sophis-
ticated equations with a substantial number of parameters and coe�cients. A
group of researcher in (Chan & Vasconcelos, 2005a) and (Chan & Vasconcelos,
2005b) described methods that are heavily based on motion analysis and object
segmentation using “auto-regressive stochastic” technique and “KL-SVM” clas-

74

si�er, respectively. Both articles showed techniques that are estimated, tuned
and utilized once the objects are segmented.

One drawback of such techniques is they detect objects in videos when
the quality of the frames are visually accurate and the frames are not degraded
due to the severe weather conditions, nor distorted due to the corrupted signal.
Another issue is that videos should be fed into the proposed models for the video
classi�cation tasks, and this requires new weights and parameters estimation
speci�ed during the training and tuning process.

Last, as Figure ?? depicts, Medium and Heavy classes are very similar to one
another in terms of appearance and number of vehicles in the videos. These
di�culties a�ect the classi�er negatively, and tra�c mode prediction based on
the Entity Detection approach in videos would fail, and distinguishing between
Medium and Heavy classes becomes more challenging. The latter experiment
will also be discussed and elaborated in this study along with cases of how they
would stall.

In the end, this work will address those aforementioned problems by sug-
gesting a novel approach, so that video classi�cation case is able to be processed
while running over the “foggy” weather or “corrupted” video frames, and the
classi�cation in all tra�c modes would be achievable with high accuracy. Ad-
ditionally, training a new model from scratch over the samples would not be
required in this setting. These are the contributions studied via a series of ex-
periments that are elaborated and addressed in the following sections.

5.2 Previous Work

Statistical Methods:

Statistical methods have been practicing by many researchers in the context
of classi�cation problems. (Chan & Vasconcelos, 2005b) presented the “Dy-
namic Texture Model” based on the KL classi�cation framework which extracts
motion information from the video sequence to determine the motion classes.
(Chan & Vasconcelos, 2005a) proposed an “Auto-Regressive Stochastic Pro-
cesses” and it was claimed that it would not require segmentation or tracking
in the videos to capture the tra�c �ow. (Vaghasia, 2018) presented a hybrid

75

approach that combines the ARIMA model with fuzzy wavelet transform to
manage noise attached to a dataset that was previously studied. (Peng & Miller,
2019) compared di�erent statistical and machine learning models including sea-
sonal ARIMA, seasonal VARMA, exponential smoothing and regression, Sup-
port Vector Regression, feed-forward Neural Networks, and Long Short-Term
Memory Neural Networks. Both later articles attempted to forecast tra�c �ow
in both the short and long terms. One disadvantage of all aforementioned tech-
niques previously studied is they are heavily relying on estimating parameters
in a fully supervised fashion, which requires extensive parameters setting and
model �tting.

CNN Methods:

Many deep learning frameworks and architectures are being utilized by researchers
for di�erent applications and domains and have achieved remarkable results in
various computer vision tasks. (Szegedy et al., 2015) developed a deep convolu-
tional neural network architecture for image classi�cation tasks by utilization of
the computing resources inside the network. (Simonyan & Zisserman, 2014b)
showed very deep convolutional networks for large scale image classi�cation.
(Bertasius et al., 2015) presented a multi-scale deep network for image segmen-
tation task. (He et al., 2016) empirically claimed that their residual networks
are easier to optimize while keeping the accuracy relatively high. (Xie et al.,
2017) described a highly modularized network architecture with fewer hyper-
parameters to set by repeating a building block that aggregates a set of transfor-
mations. (Toshev & Szegedy, 2014) applied Deep Neural Networks for human
pose estimation. (Bertasius et al., 2017) introduced Random Walk Networks
(RWNs) for the purposes of object localization boosting and the segmentations
that are spatially disjoint. With the advent of the CNN era, many scientists
research further to deploy DNNs into the video-content datasets. (Yue-Hei Ng
et al., 2015) and (Simonyan & Zisserman, 2014a) implemented a video classi�-
cation task using stacked video frames as input to the network. Karpathy et al.,
2014 studied the performance of CNNs in large-scale video classi�cation and
they achieved the highest transfer learning performance by retraining the top 3

76

layers of the network. (Srivastava et al., 2015) compared and analyzed di�erent
proposed models based on LSTMs.

5.3 Video Format and Preparation

The tra�c video dataset contains 254 video samples of highway tra�c in Seattle,
recorded from a single �xed tra�c camera (https://www.wsdot.wa.gov, n.d.).
The collection is divided into three classes, namely as Low, Medium and High
tra�c road congestion (Figure 5.1). Since the number of Low tra�c jam labels is
considerably greater than the two others, the “unbalanced” samples happened
in the dataset. The video samples also su�er from “poor” quality in the resolu-
tion of the recorded frames. Corrupted frames and sudden “jumps” between
the frames are observed across the video frames. Moreover, a certain number
of videos have been recorded in the “precipitation” weather conditions where
the fog and rain a�ected on the visibility and clarity of the videos (Figure 5.1).

These are the issues that have negative e�ects on the prediction. A certain
number of videos have been recorded in the foggy or rainy climate, so the visi-
bility is drastically low in those videos. This is what causes the classi�cation task
more challenging since the model should ignore noises due to water droplets
spots and steam conditions during the prediction process.

5.4 Model Selection

YOLO

YOLO (You Look Only Once) (Redmon et al., 2016) developed an object detec-
tion framework as a regression problem to spatially separated bounding boxes
and associated class probabilities. YOLO9000, a real-time object detection net-
work that is the improved version of the YOLO detection model, proposed
by the same scientists, has fewer challenges than we had primarily by Google
API. We deployed YOLO architecture using pre-trained weights to recognize
objects across a video sample. Then we count the number of objects per frame
(speci�cally vehicles) to classify each video into Low, Medium and Heavy on
aggregated frames level, while the tra�c �ow is consistent across the frames.

77

Several objects in the videos are quite clear, especially when there was “low”
tra�c congestion. So, YOLO is able to label other objects in videos including
trees, lanes and persons. The object “Person” is a false class YOLO speci�es,
since there is no person in the videos (Figure 5.2).

However, object detection tasks in Medium and Heavy classes are challeng-
ing, so YOLO fails to recognize more distinct objects as it does when tra�c �ow
is Low (Figure 5.2). This drawback is also seen in other Network architecture
such as Google Video Intelligence Service which we address in the next section.

Google Video Intelligence API

Another framework we analyzed performance is Google Cloud Video Intelli-
gence API. There are cloud-based service providers such as Amazon, Google,
Microsoft, BigML, and others who have developed MLAAS (Machine Learn-
ing As A Service) platforms, so that individual users and commercial companies
are able to employ pre-trained models to solve their problems without manag-
ing any hosts or servers. Also, they can bene�t from Machine Learning Engine
models running on powerful machines contain CPU and GPU, so the prob-
lem solving will be accelerated tremendously. GUI in Google Video API is
user-friendly, so this can be considered as an advantage. It is worth noting that
Google API recognizes tra�c congestion directly from the videos, however, it
does not specify the intensity of tra�c.

We observed that on the videos with Heavy or Medium tra�c �ow, the per-
formance of YOLO architecture over Google API was particularly pronounced.
So, Google detects vehicles less than YOLO within the same video samples. In
comparison with YOLO, Google API performs poorly in the object detection
tasks, and it fails when video samples are in foggy or rainy conditions.

5.5 Fresh Convolutional Neural Network

We built Convolutional Neural Network (CNN) models that could identify
whether a given tra�c �ow video is predicted as Low, Medium or Heavy. Ulti-
mately, we developed and trained these CNN models from scratch to see how
they would perform on new unseen data samples.

78

These models were created in Keras framework, as a sequential model. The
�rst layer is a “Convolutional Layer” (Conv2D), and this is a 2-dimensional
convolutional layer. The number of output �lters in the convolution is 32, with
3×3 “Kernel Size”. We used a “Relu” activation function, with 224×224×3

speci�ed in the �rst layer of sequential model for height, width and channel
dimensions of frames, respectively. Each convolutional layer is followed by a
“Max Pooling” layer with 2× 2 pool size.

We created CNNs with 5, 6 and 7 convolutional layers, and we have a �at-
tened layer taking the output from the previous layer and �attening it into a
one-dimensional tensor fed into a dense layer that has 3 nodes. The last layer
contains 3 nodes since this will be the output layer that categorizing videos as
Low, Medium or Heavy. We used the activation function of “softmax” in this
last layer. The models were trained with “Adam” optimizer, learning rate =
0.00005, categorical cross-entropy loss function and an array with the single
string accuracy as metrics.

5.6 Transfer Learning

Using a pre-trained model for prediction is a growing technique practiced by
many researchers. That model would achieve great results if the input data is
classi�ed into the categories used by the original model. However, none of the
current pre-trained CNN architectures classify Highway Tra�c Videos into
speci�c "Mode" categories. Thus, one approach by which the scientists could
obtain reasonable results is to Transfer the knowledge from one domain aspect
to another. This is what people call Transfer Learning. Recent studies suggest
that early layers of deep learning models identify simple “patterns”, while later
layers would identify more complex patterns. (Geirhos et al., 2018) showed that
the ImageNet-trained CNNs are heavily biased in favor of recognizing textures
rather than shapes. Thus, the later layers in CNNs are complex representations
of image textures.

79

VGG19

Very deep convolutional networks, also known as VGG, for large-scale image
classi�cation tasks is employed for labels prediction in tra�c �ow (Simonyan &
Zisserman, 2014b). The model increases depth using an architecture with very
small (3× 3) convolution �lters which encourages higher performance in the
localization and classi�cation tasks.

Model Setup

Researchers in (Simonyan & Zisserman, 2014b) explained how well their CNN
classi�er model performed on classifying the ImageNet challenge dataset. This
section shows how VGG19 will be applied on a completely new type of dataset
(CCTV videos of tra�c �ow) which does not contain classes similar to those
included in ImageNet.

VGG was originally has been trained on images and now it is trained on
videos. Video samples contain 3 classes labeled as Low (L), Medium (M) and
Heavy (H) tra�c �ow, and each class is constructed of images of frames ex-
tracted from 5-second videos. This dataset is available on (https://www.wsdot.wa.gov,
n.d.) website as videos. We extracted the data like videos and extracted 10 frames
per second. Having extracted and organized all frames from video samples, we
created the directory iterators for train, validation and test sets. We built the
new model that contains all of the VGG19 layers up to its 5 to the last layer, with
an added output layer containing 3 output nodes that correspond to each of
the tra�c mode classes.

observed that removing 2 fully connected layers (fc1 and fc2) would increase
the accuracy of prediction signi�cantly, while decreasing the number of “Train-
able Parameters” and “Total Parameters” by 96%. This DNN has been devel-
oped with Keras functional API framework. One question of interest is how
many layers should be trained on the new dataset. One may still want to keep
the most of what the original VGG19 model has already learned from ImageNet
data by freezing the weights in the majority of layers. One solution is to imple-
ment the “Brute-Force” approach on a di�erent number of layers, so one may
�nd the optimal number as to unfreeze for training.

80

We evaluated the performance of VGG19 on tra�c videos by testing all the
combinations of the last 5 layers, and in our experiments, VGG tends to yield
reasonably well accuracy with training the last 5 layers, which is “block5_conv1
(Conv2D)” layer with output shape of (None, 14, 14, 512) and 2,359,808 param-
eters. All model con�gurations and results are provided in Table 5.1. Under
multiple settings, it achieved state-of-the-art results across several highly com-
petitive con�gurations with the highest accuracy of 96.5%.

5.7 Results

Among 4 study cases, YOLO and Google Video Intelligence API are based
on object detection techniques. In other words, these techniques detected the
number of objects (vehicles) per frame across a video and attempted to classify a
given video based on an average number of vehicles they recognize. As Figure 5.2
shows, both classi�ers are not powerful enough to detect all the vehicles in a
video, so classi�cation merely based on the number of vehicles in the samples
is not an appropriate idea. One reason could be video samples have not been
recorded in high quality. Another reason is both classi�ers were not able to
segment between several vehicles when they are moving in a group, and they
detected them mistakenly as a truck or a bus.

Figure 5.3 shows that in the Train plot, the average number of vehicles be-
tween Medium and Heavy modes are very close to one another, and the line in
Heavy mode falls below the Medium line which is not correct. Interestingly, the
Heavy line (Blue) is below the Medium line (Orange) almost entirely. This tech-
nique may be useful when one would attempt to predict class labels between
the “Low” and “non-Low” modes, as Low lines (Grey) in Figure 5.3 indicate
lower waving as opposed to the other two lines (non-Low). In our experiments,
YOLO tends to yield better performance in detecting vehicles than Google
Video Intelligence API by segmenting objects more reliably, with fewer false
negatives.

Also, we observed that YOLO is more robust against severe conditions than
Google Video Intelligence API, where the weather is foggy or rainy in videos.
However, Google Video Intelligence API has a richer GUI and users can bene�t

81

Table5.1:VG
G

19
and

C
N

N
sTableofO

utputs

M
odel

H
yperParam

eters
Train

Validation
Test(C

V
)

VG
G

{’trained_layers’:last5,’batch_size’:100,’steps_per_epoch:45’,’epochs’:’70’,’pre_process’:M
obileN

et}
100%

85.81%
96.50%

VG
G

{’trained_layers’:last5,’batch_size’:100,’steps_per_epoch:16’,’epochs’:’70’,’pre_process’:M
obileN

et}
100%

85.91%
96.50%

VG
G

{’trained_layers’:last5,’batch_size’:287,’epochs’:’70’,’pre_process’:M
obileN

et}
100%

87.42%
95.42%

VG
G

{’trained_layers’:last5,’batch_size’:300,’epochs’:’70’,’pre_process’:M
obileN

et}
100%

87.53%
95.27%

C
N

N
{’C

onv2D
_layers’:5layers,’activation’:R

elu,’epochs’:’70’,’num
_dense_nodes’:409}

100%
91.5%

92.84%
C

N
N

{’C
onv2D

_layers’:6
layers,’activation’:tanh,’epochs’:’70’,’num

_dense_nodes’:449}
88.38%

83.08%
82.67%

C
N

N
{’C

onv2D
_layers’:7

layers,’activation’:R
elu,’epochs’:’70’,’num

_dense_nodes’:87}
100%

91.67%
91.98%

state-of-the-art
94.50%

T
heresultsfrom

theVG
G

-Transfer-Learningapproach
underm

ultiplecon�gurations.T
hetestresultsarecalculated

bytheaverageof10-fold
cross-validation.Severalbatch

sizesw
ereincluded

in
theexperim

entsto
achievehigherperform

ance.C
onventionally,“stepsperepoch”isset

to
an

integernum
berobtained

through
division

oftrain
sizeoverbatch

size.Forbatch
size=

100,wesetstepsperepoch
to

45(sim
pledivision)

and
16

(arbitrary
num

ber),to
com

pareboth
settings.T

hetableshow
sthehighestaccuracy

isobtained
by

setting
thebatch

sizeto
100

and
stepsperepoch

to
16.

82

from uploading the video on Google Storage to run models faster than a local
system, simply because Google runs the models in a big data framework and
highly scalable infrastructure. CNN and VGG-Transfer-Learning appear to
be e�ective ways to classify videos’ contents. The results presented in Table 5.1
reveal that VGG19 outperforms all the fresh CNNs in the prediction task. In
the same table, the CNN with 5 convolutional layers gained the highest accuracy
(92.84%).

Although CNN-5 achieved relatively high accuracy in classi�cation (92%),
VGG19 obtained 96.5% accuracy which is 4.5% more than CNN-5. CNN-5
misclassi�ed 77 frames videos as Medium mode, while they are Heavy, with-
out any misclassi�cation between Low and Medium or Low and Heavy. In
VGG19, on the other hand, several hyper-parameters were tested and evaluated.
We observed that when the batch size decreases from 300 to 100, the number of
misclassi�cations will also drop signi�cantly (50%). The misclassi�cation hap-
pened when predicting between Medium and Heavy modes. Under multiple
settings, it achieved state-of-the-art results with training the last 5 layers and 70
epochs (Table 5.1).

5.8 Model Performance

Tables 5.2 & 5.3 are vividly showing that both CNN-5 and VGG19 classi�ers
performed perfectly well in classifying Low vs. non-Low classes, as it shows val-
ues 100% for Sensitivity and Speci�city. However, both models are less e�cient
in predicting between Medium and Heavy classes. Although Sensitivity was
recorded very high for CNN (100%) and VGG19 (97.54%), Speci�city needs an
improvement, especially in the CNN-5 model. In other words, the table reports
that CNN-5 would be able to identify 83% of Heavy Tra�c �ow video cases as
Heavy correctly and classify 17% as Medium Tra�c �ow incorrectly. Similarly,
VGG can classify almost 91% of Heavy Tra�c �ow cases as Heavy correctly, and
predict the rest (9%) as Medium incorrectly.

The results presented in Table 5.2 & 5.3 reveal that VGG-Transfer-Learning
achieved the largest Accuracy, Sensitivity and Speci�city results across several

83

highly competitive hyper-parameters with nearly perfect evaluation metrics,
while CNN-5 performed on par with VGG in Sensitivity criteria.

Table 5.2: VGG-Transfer-Learning Diagnostic Table.

Pair-Labels #batches Sensitivity Speci�city Accuracy

Low-Medium
100 100% 100% 100%
287 100% 100% 100%
300 100% 100% 100%

Low-Heavy
100 100% 100% 100%
287 100% 100% 100%
300 100% 100% 100%

Medium-Heavy
100 97.12% 94.42% 95.74%
287 97.54% 91.12% 94.12%
300 97.54% 90.74% 93.91%

Table 5.3: Diagnostic Table for the Best CNN-5 (5 Conv2D).

Pair-Labels Sensitivity Speci�city Accuracy
Low-Medium 100% 100% 100%

Low-Heavy 100% 100% 100%
Medium-Heavy 100% 83.71% 89.71%

5.9 Why VGG19 Outperformed?

Transfer Values

To extract the transfer values, we excluded the last layer in VGG architecture,
which is the “softmax” classi�cation layer and we call it “Transfer Layer” and
its output is “Transfer Values”. We stored this layer on a hard disk since this
is an expensive computation. The transfer values are nothing but arrays with
25,088 elements due to the output shape of VGG-Transfer-Learning architec-
ture. Thus, the transfer values have 1396× 25088 dimensions, with 1396 and
25088 represent the number of samples (video frames) and features, respectively.
This new space contains pertinent information as to how they form classes in a
high dimension space.

84

Dimension Reduction: PCA

As part of this study, we are interested in analyzing the transfer values, so we
can learn how the VGG19 model is able to extract useful information and sep-
arate the 3-class labels we specify. The challenge is the transfer values are ob-
tained in a very high-dimensional space (25088 and 12544 elements in VGG19
and CNN-5, respectively), so plotting is impossible. For ease of exposition, we
applied a widely-used dimension reduction technique, called PCA. We called
this method from the “Scikit-learn” package with n = 2 meaning all transfer
values are reduced to arrays of length 2. The PCA process was implemented
for the entire test size (1396 samples), each of them is an array with 25088 and
12544 values, the dimension size of VGG19 and CNN-5 networks, respectively.
Ultimately, the PCA was reduced from 25088 and 12544 values to only 2 values.
Figures 5.4a & 5.4b show PC1 and PC2 for the transfer values in VGG19 (top)
and CNN-5 (bottom).

The plots illustrate visibly that class Low (green) is easily separable from the
other two classes, while Medium and Heavy classes are mixing at some points.
The class colors Red and Purple might be Medium and Heavy classes or vice
versa. As the plots suggest, the VGG19-Transfer-Learning model that we train
on tra�c �ow video samples predicted as expected, since the information ex-
tracted from video frames are properly separated into 3 classes with minor over-
lapping between Red and Purple. However, the transfer values in CNN-5 tend
to be distributed more sparsely after dimension reduction, which resulted in fac-
ing di�culty for the classi�er to perform classi�cation. Figures 5.4a & 5.4b are in
line with the results on the classi�cation performance we provided in Tables 5.2
& 5.3. We bene�t from the PCA technique, since it is linear and determinis-
tic, but other dimension reduction techniques such as “t-SNE” (t-Distributed
Stochastic Neighbor Embedding) which is non-linear and non-deterministic is
also applicable, however, t-SNE would not perform well when the data samples
are relatively large.

85

5.10 Conclusion

We presented several experiments in understanding the contents of videos. Two
approaches, YOLO9000 and Google Video Intelligence API, were depend-
ing on object detection fashion, and the other two, CNN and VGG-Transfer-
Learning, predicted classes through a convolutional paradigm. We showed that
video contents understanding scales naturally to tens of frames and objects
inside while exhibiting no implementation di�culties. Whilst the object detec-
tion approach follows a simple object counting rule in the frame-level, distin-
guishing between two similar classes (Medium and Heavy) is challenging.

In our experiments, YOLO outperformed Google Video Intelligence API
in detecting more vehicles across video frames, while Google was more user-
friendly. We also trained and evaluated a new CNN from scratch to compare
it with another pre-trained model (VGG19). Although the CNN model per-
formed astonishingly well, VGG showed higher accuracy in the prediction task
due to its complex network architecture and a large number of examples fed as
input.

It is conceivable that more extensive hyper-parameter searches may further
improve the performance of CNN on the Tra�c database. Under multiple set-
tings, VGG19 achieved the best results. In our experiments, both CNN archi-
tectures tended to yield consistent results in accuracy with a reducing number
of parameters, without any signs of performance degradation. On the tra�c
video dataset, we observed that the simplicity of our approaches over prior work
is particularly pronounced. The results presented in Table 5.1 revealed that our
proposed solution (VGG19) performed better than the best performance from
KL-SVM (98.50%> 94.5%), whilst requiring signi�cantly fewer parameters tun-
ing and computation to achieve supremacy.

86

Fi
gu

re
5.1

:(
To

p
ro

w
)d

at
as

et
co

nt
ain

s3
m

od
es

of
tra

�
cj

am
;L

ow
,M

ed
iu

m
an

d
H

ea
vy

.(
Bo

tto
m

ro
w

)s
ho

w
sp

oo
rq

ua
lit

ya
nd

vi
sib

ili
ty

du
e

to
pr

ec
ip

ita
tio

n
or

co
rr

up
te

d
sig

na
li

n
th

en
um

be
ro

fv
id

eo
sa

m
pl

es
.

87

Figure5.2:O
bjectdetection

in
V

ideosusingYO
LO

netw
ork.T

hem
iddlesceneclearly

show
sthatYO

LO
recognizesPerson

and
Truck

by
m

istake,and
itcannotdetectvehiclesin

fartherdistance.

88

Fi
gu

re
5.3

:D
i�

er
en

tv
ar

iab
ili

ty
in

th
en

um
be

ro
fd

et
ec

te
d

ve
hi

cle
si

n
th

et
es

ta
nd

tra
in

su
bs

et
s.

89

(a)T
hedim

ension
reduction

techniqueusingPC
A

m
ethod

to
reducethe

dim
ension

sizefrom
25088

to
2.T

hreecolorsreferto
threeclasslabels(L,

M
,H

).T
hisplotillustratesinform

ation
�ow

throughoutVG
G

netw
ork

up
to

“bottleneck”layer.

(b)T
hedim

ension
reduction

techniqueusingPC
A

m
ethod

to
reducethe

dim
ension

sizefrom
12544

to
2.T

hreecolorsreferto
threeclasslabels(L,

M
,H

).T
hisplotillustratesinform

ation
�ow

throughoutC
N

N
w

ith
5con-

volutionallayersnetw
ork

up
to

“bottleneck”layer.

90

Chapter 6

Use of Knowledge Graphs
in Time-Series
Forecasting

6.1 Introduction

In the past few years, rich arrays of time-series data have become available and
its analysis has also become increasingly important. It is predicted that in the
next few years, the importance of time-series data will grow even more rapidly
due to the massive production of such data. All this data requires competent
time-series analysis with both statistical and machine learning methods.

In the past, time-series forecasting has been undoubtedly a challenging ap-
plication for machine learning due to the shortness of the sample time-series,
however, in recent years high-resolution time-series are becoming more preva-
lent and therefore, many machine learning approaches have shown success in
forecasting.

On the other hand, graph-structured data have also become ubiquitous
within many �elds, where it can be used to model anything from recommenda-
tion systems to protein-protein structure networks. Such structures are com-
plex enough to capture the interactions (edges) between the entity (nodes).
Knowledge Graphs have become the backbone of many systems, but also have
many applications when it comes to machine learning tools. Many machine

91

learning applications use knowledge graphs to make predictions and discover
patterns in a dataset.

An example where knowledge graph data is used to make predictions and
forecast is in vehicle tra�c forecasting where tra�c �ow and speed data is avail-
able via sensors located on roads and crossroads (Peng et al., 2019). These sen-
sors collect high-resolution data as there are a number of them located in di�er-
ent parts of the roads. Another example that can be captured with knowledge
graphs is epidemiological data. Such data is collected with less frequency where
the time resolution could be daily. It is also captured over wider spatial regions,
for example, the spatial resolution could be regional. In both of the applications
given above, the data is spatial and temporal, so their spatial aspects can be cap-
tured properly with knowledge graphs to help generate accurate forecasts for
tra�c on a road system or hospitalization rates during a pandemic.

In addition, knowledge graphs are known to help build hybrid Statistics-
Machine Learning models, therefore one can take advantage of this knowledge
and apply it to the model to improve the accuracy of the system. Such kind of
system will be more reliable and robust in forecasting since it has the capability
to adapt to new events with the help of the knowledge graph data. The bene�ts
of this approach are two-fold; �rst that we can build knowledge-directed systems
by using the knowledge in building the machine learning models’ architecture.
Second, by infusing the knowledge as an exogenous source of data into the
model.

Machine learning and knowledge graphs can be proven to have a close re-
lationship. With the advantage of machine learning, we may help knowledge
graphs to establish any missing links they may have by link prediction and mak-
ing inferences as an example in (Makni et al., 2020; Ostapuk et al., 2019). On
the other hand, however, the opposite has not been explored as much except
for a few recent studies (Kursuncu, 2018).

One aspect that knowledge graphs can aid machine learning techniques is
to establish some contextual meaning. Knowledge graphs can easily represent
real-world concepts and describe the internal relations of a machine learning
algorithm by observing and impacting its policy making processes. This will
help eliminate any bias that may exist in the system. Recent work by (Sheth

92

et al., 2019) proposed using knowledge graphs as the input to neural networks
or even correcting the output once a prediction has been produced.

In the past two decades, neural networks have attracted much interest be-
cause of the success they have with their performance and predictions. This
has inspired many researchers to use them for analyzing graph-structured data
with graph neural networks (GNN). (Scarselli et al., 2008) originally proposed
GNN as a method to learn graph-structured data using neural networks, this
approach was then further extended to convolutional neural networks using
spectral or spatial methods (Kipf & Welling, 2016) and have obtained successful
performance in node classi�cation tasks.

The issue with traditional GNN methods is that while they can obtain ef-
fective feature embeddings, they tend to lose the information associated with
the interactions (edges). Many prediction tasks such as link prediction and com-
munity detection will bene�t from information about the interactions. Since
graphs usually have both the entity (nodes) and their interactions, learning both
simultaneously would be bene�cial. Furthermore, both the entities and their
relations provide rich information which would facilitate entity classi�cations.
(Jiang et al., 2019) have proposed a framework to learn both node and edge
features on graphs. They proposed a framework to learn the node and edge em-
beddings consists of a convolution with an edge-node switching network. To
put it another way, the role of a node and an edge can be switched. IfG denotes
the node adjacency matrix andL(G) denotes the line graph of the adjacencies
between entities in matrixG, the framework then conducts operations on both
G and L(G).

When using Deep Learning and other machine learning techniques, we
need to be mindful of the training dataset contains ambiguity, bias, and sparsity
(Kursuncu, Gaur, Castillo, et al., 2019) which can lead the model to fail. An-
other point of concern with such techniques even if they provide reasonable
results is their limitation in explainability (Palmonari & Minervini, 2020). Fur-
thermore, in the case that there have been some historically unforeseen events,
the prediction reliability of such models is unreliable.

93

6.2 Related Work

Recent and rapid advances in Arti�cial Intelligence (AI), particularly in neural
networks and knowledge representation learning, have opened many new possi-
bilities in performing various tasks such as time-series forecasting, classi�cation
in pattern and sequence recognition, clustering, and �ltering. On the parallel,
Knowledge Representation has provided the ability to represent entities and
relations with high reliability and reusability.

Researchers in (Kursuncu, Gaur, & Sheth, 2019) believe that separate knowl-
edge graph and machine learning methods tend to learn unreliable concepts or
relationships that appear misleadingly accurate on KG or representation space,
yet do not provide adequate results when the dataset contains contextual and
dynamically changing concepts and relations. Our idea is that combining the
knowledge graph with machine learning methods will systematically assist in
improving the accuracy of the systems and expand the range of machine learn-
ing capabilities. There are many opportunities in machine learning where the
knowledge graphs can be infused to obtain promising results. A certain number
of aspects of knowledge graphs that can be helpful are as follow:

• Data insu�ciency: Machine learning models, particularly neural net-
works, require a large amount of training data. As described in (Javeri et
al., 2021), neural networks with short and intermediate length data strug-
gle to compete with other statistical models in time-series forecasting
problems. In the case of sparse data, knowledge graphs can be bene�cial
to augment the training data.

• Zero-shot learning: Properly trained data is essential for a machine learn-
ing model to distinguish between two data points. With improperly
trained data the model cannot distinguish, and this is called zero-shot
learning. In this case, the induction from the machine learning model
can be complemented with a deduction from the knowledge graph.

• Interpretation: With the prompt acceptance of sophisticated Arti�cial
Intelligence (AI) models in the industry for solving problems, Machine
Learning Interpretation (MLI) is not a fancy direction but a need. Knowl-

94

edge Graph can be bene�cial to explain a black-box model by mapping
interpretations to certain proper nodes in the graph and providing a sum-
mary of the learning process.

Although knowledge graph (KG) can be applied in many domains, this sec-
tion focuses only on applying KG in time-series data. (Javeri et al., 2021) studied
building a neural network model by using data augmentation techniques for
time-series forecasting and (Kursuncu, Gaur, & Sheth, 2019) worked on tech-
niques to incorporate knowledge graphs in deep learning. They believe that
infusion of knowledge within the hidden layers of neural networks 2 will be-
come a critical and integral component of AI models that are integrated into
deployed tools. In their work, they created a subgraph from the actual knowl-
edge graph, because concrete problems often require a relevant portion of the
full graph. They explored the idea of infusing the structural information of
the subgraph before the output layers in an attempt to prove that combining
knowledge graphs and neural networks greatly enhance the performance.

(Feng et al., 2019) studied stock prediction analysis by graph neural net-
works, where they infuse the �rm knowledge graph into the predictive model.
In their e�ort, they showed if a knowledge graph with company-relations data
could be useful to improve the stock-market predictions. They applied a graph
convolutional network which takes input features and their connections for
training, including an additional LSTM layer inspired by (Zhao et al., 2019).

The CensNet framework introduced by (Jiang et al., 2019) is a general graph
embedding framework that represents the nodes and edges into a latent space.
This framework produces a novel approach that uses a line graph of the origi-
nal undirected graph to switch the roles of nodes and edges. Their framework
focuses on the idea that not just the nodes but also the edge contains some cru-
cial information. In other words, the CensNet framework conducts the graph
convolution operations on both the input graph and its line graph counterpart.

6.3 Knowledge Graph Use Cases

Although knowledge graph is in its early stage, a certain number of examples
that knowledge graph can be applied are provided in the following:

95

Question-Answering: Perhaps question-answering is one of the common ap-
plications of the knowledge graph. With an extensive availability of information
in the knowledge graph, question-answering may provide end-users with an ef-
fective and e�cient way to retrieve information from Knowledge Graphs.
Storing Information of Research: Many companies tend to use knowledge
graphs to store data generated from di�erent levels of research that are useful
for model reproducing, risk management, process evaluating, etc.
Recommendation System: One of the interesting applications of knowledge
graph is the recommendation system. A certain number of entertainment com-
panies try to store a large amount of information for recommendation purposes.
This would provide them with �nding relationships between each component
of movies, and later, these relationships may be used to predict what viewers
might be interested in watching next.
Supply Chain Management: Knowledge graph can also be applied in supply
chain management. This can help companies manage their inventories cost-
e�ectively regarding various components, sta� involved, time, etc.

6.4 Conclusion

In this chapter, an overview of using knowledge graphs in machine learning
models was provided, and a certain number of previous studies were described.
Those aforementioned studies showed that when the information from the
knowledge graph is used in the model, the performance of the model could be
better because combining the knowledge graph with machine learning methods
will systematically assist in improving the accuracy of the systems and expand
the range of machine learning capabilities.

We also named a few use cases. Among those, recommendation systems
and question-answering are on the top, and there are many other domains that
the application of knowledge graph is still undiscovered.

96

Chapter 7

Metamodeling for
Prediction and
Interpretation

Complex Simulation or Deep Neural Network models may have very long run
times or be hard to interpret, so a simpler Metamodel (model of the complex
model) may be created. This section evaluates some famous metamodels that
are applicable to machine learning interpretation and optimization. We will
focus on their motivations, assumptions, strengths and weakness. Therefore,
proposed metamodels are mostly explained through intuitions and experiment
performance rather than mathematical formulations. With extensive experi-
ments across regression and classi�cation problems running on two datasets,
we will show that how such metamodels can construct the rules, develop con-
straints and analyze frames for surrogating a target black-box model. We will
expand the discussion on the e�ciency, simplicity, accuracy and robustness
of each model, and argue which metamodels could potentially be useful for
machine learning interpretation and optimization tasks.

7.1 Metamodeling

Metamodeling is a branch of computer experiments in the design of experi-
ments (DOE), where a metamodel can be estimated by sampling data points

97

from a complex model that has been trained expensively by using extensive re-
sources. Metamodeling (or surrogate) is utilized when an outcome of interest
in a complex model cannot be directly identi�ed easily. In this situation, tra-
ditional DOE methods would fail to capture the structure and relationships
(geometry) of the model. Modeling geometry e�ects is vital when the purpose
of the experiment is a study of how combinations of various inputs in�uence an
output (response) measuring quantity or quality characteristics. This enables
us to identify the relationship between the input (predictors X) and output
(response y) variables in a complex machine learning process, by �tting a global
metamodel to the underlying model. The aim of (Kianifar & Campean, 2020)
was to present a fair evaluation on several metamodels widely used by practition-
ers, comparing di�erent characteristics of the techniques regarding robustness,
accuracy, e�ciency, etc. Given the fact that each metamodel is able to focus on
one or two aspects of a model, they showed that not all techniques are powerful
in every aspect, so the metamodeling strategy should be selected carefully. The
work provides a comprehensive evaluation of techniques for each aspect, and it
concluded that Gaussian Process could outperform other metamodels in some
aspects.

7.1.1 Evaluation

To assess the performance of di�erent Metamodelling techniques we perform
an empirical analysis on a set of Metamodel techniques namely as Linear/Logistic
Regression(LR), Support Vector Regression (SVR), Random Forests (RF),
Gaussian Process Regression (GPR) or Kriging, and Neural Networks(NN).
This work by experiments shows which Metamodel is e�cient for modeling.
Also, we attempt to evaluate the proposed models on the simplicity and accu-
racy and conclude the best and competitive models for metamodeling tasks. In
addition, other aspects of usability such as interpretability and usefulness for
optimization are rated, and the �ndings are summarized as a table.

The ultimate goal of most Metamodeling techniques is to learn the charac-
teristics of a complex model by highlighting the properties of the model itself.
An underlying model abides by its metamodel in a way that a computer program
abides by the grammar of the programming language in which it is coded.

98

With this goal in mind, we would like to evaluate the Metamodels by com-
paring them based on several factors such as but not limited to interpretability,
accuracy, computational e�ciency and robustness. This section provides a sys-
tematic analysis of the results of the study.

For ease of exposition, we decompose the evaluation techniques into two
groups: (1) classi�cation problem; and (2) regression problem. We trained 5
Metamodels (RF, SVR(M), NN, LR and Kriging) on two datasets including
Boston house price and the diabetes diagnosis. The Boston house price dataset
(Harrison Jr & Rubinfeld, 1978) is mostly used as a regression problem with a
continuous response variable, and the diabetes diagnosis dataset (Dua & Gra�,
2017) is presented as a classi�cation problem with a binary response variable.
Both datasets are publicly available.

7.1.2 Accuracy

Table 7.1 summarises the accuracy of �ve popular Metamodel techniques for
two complex models, Neural Network and GBM on the classi�cation prob-
lem. For each of these Metamodels the accuracy as well as the Kappa scores, in
parenthesis, are presented. The Accuracy describes the amount of deviation
of the Metamodels from the complex model outputs. The accuracy measure
is the average results of 10 runs, each run is evaluated based on a 10-fold cross-
validation resampling procedure. G-FORSE has outperformed all the Meta-
models for Complex Neural Networks, and has a comparable accuracy rate for
GBM. GLM, RF and G-FORSE have similar accuracy rates on the GBM model.
Simple Neural Networks have slightly better accuracy in this category, while
SVM has the least accuracy rate.

The other class of problem that we analyze here is the regression problem.
Table 7.2 summarizes the Root Mean Square Error(RMSE) andR2 metrics for
the Metamodels used on the Boston Housing Dataset. G-FORSE has the least
RMSE and the highestR2 on both of the complex models, suggesting that it is
the most accurate Metamodel in this class of problems. Random Forest is the
next model with the highest RMSE, which is followed by Neural Network.

It is also seen that some of the metamodels have not been able to accurately
model the Neural Network Complex model compared to GBM. There could be

99

Table 7.1: The average of the accuracy and Kappa scores obtained via �ve meth-
ods for two complex models (neural network and GBM) on Diabetes dataset.

Algorithms - Accuracy(Kappa)

Neural Network GBM

M
et

am
od

els GLM 0.789(0.466) 0.955(0.902)
SVM 0.789(0.463) 0.952(0.895)
RF 0.789(0.482) 0.955(0.901)
NN (simple) 0.786(0.463) 0.957(0.905)
G-FORSE 0.841(0.574) 0.955(0.902)

several reasons to explain this phenomenon; �rst, the Housing dataset is skewed
and the distribution has not been targeted here. The second reason is that the
metamodels such as LM and SVR are not complex enough to model a complex
architecture such as Neural Network. One may argue that metamodels should
be simple, but we should note that there is a certain degree of trade-o� between
accuracy and interpretability.

Table 7.2: The average of the root mean squared error (RMSE) andR2 obtained
via �ve methods for two complex models on Housing dataset.

Algorithms —– RMSE(R2)

Neural Network GBM

M
et

am
od

els LM 2.607(0.619) 1.625(0.96)
SVR 2.736(0.587) 1.588(0.96)
RF 1.066(0.940) 1.480(0.97)
NN (simple) 1.826(0.808) 1.750(0.95)
G-FORSE 0.022(0.980) 1.44(0.98)

7.1.3 Robustness

In this section, we will evaluate the robustness of the metamodels on the same
complex models as the previous section. We will use the standard deviations of
the accuracy rates obtained from multiple runs of each metamodel to assess the

100

robustness of the classi�cation problem. Table 7.3 summarizes the �ndings on
robustness for each Metamodel. We can see that the GLM metamodel has the
smallest SD of accuracy, followed by NN and RF on Neural Network complex
models. This suggests that GLM metamodels are potentially the most robust
compared to the other metamodels. Although all metamodels have very similar
SD of accuracy on the GBM complex model, the same three Metamodels, GLM,
NN and RF have a slightly lower SD. Figure 7.1 also presents this by using box
plots of the Accuracy and Kappa score on the Diabetes dataset. We also assess

Table 7.3: The standard deviation of the accuracy obtained via �ve methods for
two complex models on Diabetes dataset.

Algorithms - SDAccuracy

Neural Network GBM

M
et

am
od

els

GLM 0.039 0.021
SVM 0.045 0.022
RF 0.042 0.021
NN (simple) 0.041 0.021
G-FORSE 0.047 0.022

the robustness of the regression problem and present the results in Table 7.4.
The Standard Deviation of the RMSE is used to indicate the robustness of each
Metamodel. Random Forest appears to be the most robust with the least SD
of RMSE. LM and G-FORSE are the next two robust models and �nally, NN
and SVR follow. The same order of robustness of the metamodels is seen on
both complex models.

Table 7.4: The standard deviation of the root mean squared error (RMSE)
obtained via �ve methods for two complex models on the Housing dataset.

Algorithms - SDRMSE

Neural Network GBM

M
et

am
od

els LM 0.332 0.626
SVR 0.451 0.726
RF 0.263 0.398
NN (simple) 0.373 0.531
G-FORSE 0.347 0.694

101

Figure 7.2 presents the RMSE box plots for the Boston Housing dataset. It
can be seen that Random Forest’s boxplot is more concentrated compared to
other metamodels suggesting that it is potentially more robust in modeling the
complex models.

7.1.4 E�ciency

The running time is heavily impacted by the number of parameters involved in
the algorithm. So if a metamodel has many hyperparameters to tune, then the
running time would be relatively large. This run time could be even longer if
any extra operations occur during the training stage. For example, a family of
Gaussian process metamodels (including G-FORSE) is considered an expensive
model, because they require to calculate the correlation between data points,
leading to engage in high computations. This complexity is not the case in a
linear regression where the computations are focusing on the variables’ space.
The neural network model is also notorious for having a high running time, due
to exorbitant calculations that occur in the feedforward and backpropagation
of the model.

Apart from a theory discussion behind the running time of the metamodels,
we also evaluate the time spent on training and testing of the Metamodels over
100 runs on both classi�cation and regression problems. In regards to both
of the problem categories, LM and SVM have the fastest run times in seconds
and G-FORSE is the slowest. This is the case in both of the complex models.
Reporting run times in seconds has some �aws, since it is heavily hardware and
software dependant, so it is suggested that the time e�ciency using the time
complexity of the Metamodels would also be studied and compared with the
run times. Run times in seconds are reported in Tables 7.5 and 7.6.

7.1.5 Simplicity

In this section, we would like to compare the simplicity of the Metamodels.
Simplicity refers to the ease-of-use of the model, as well as the simplicity to
implement and tune the model (Østergård et al., 2018).

102

Table 7.5: Time spent to perform 100 runs of training and testing for the Meta-
models on Diabetes Dataset (classi�cation problem)

Time spent in seconds (s)

Neural Network GBM

M
et

am
od

els GLM 1.445 1.580
SVM 9.801 7.173
RF 94.662 65.071
NN (simple) 27.070 25.713
G-FORSE 246.679 264.654

Table 7.6: Time spent to perform 100 runs of training and testing for the Meta-
models on Boston Housing Dataset (regression problem)

Time spent in seconds (s)

Neural Network GBM

M
et

am
od

els LM 1.034 1.111
SVR 9.624 6.833
RF 226.474 217.335
NN (simple) 18.859 18.854
G-FORSE 13.417 15.028

Neural Network and Random Forest are considered to be the most complex
of the methods discussed in this study. They require several hyper-parameters
to tune for optimization which could be complex and is not intuitive. On the
other hand, LM is the simplest model because of the lack of parameters to tune,
the only parameter that needs to be tuned is the number of variables in the
model. SVM needs parameter tuning depending on the type of Kernel used in
the model, so it is not easy to generally categorize it as a simple or non-simple
model. And �nally, G-FORSE needs p and θ parameters to be tuned, and more
information can be found in the related article (Toutiaee & Miller, 2020).

103

7.1.6 Interpretability

An interpretable model helps us gain a good level of understanding of the factors
which are (and not) included in the model and also account for the parameter
importance and interaction e�ects. In this section, we compare and analyze the
Metamodels based on their interpretability.

A major advantage of linear regression models is linearity: It enables the
estimation to be simple and, most importantly, these linear equations are easily
perceivable for humans. In LM Metamodels, a linear combination of the fea-
tures with the weights is used to predict the outcome. The weights provide a
transparent interpretation of the model architecture and thus make such linear
models highly interpretable.

Yet another interpretable but powerful model is G-FORSE, approximating
the original model through the Kriging process. G-FORSE aims to provide
transparent information on the complex model or simulation, and this mis-
sion has been re�ected in the method’s manifest by the authors. G-FORSE
is most straightforward to apply when the basis function is Gaussian product
correlation, and it is very similar to a Gaussian process where the observations
have Gaussian basis function described with two characteristics functions µ(x)

(mean) and C(x, x′) (covariance).
RF models obtain information on the feature importance. Each tree in

the RF model may be intuitive and easy to interpret, however, when working
with many trees in an aggregated model, it becomes di�cult to interpret the
interaction e�ects of the features and thus to interpret the model. The com-
plexity of the model enables the RF to predict with quite high accuracy. One
negative side e�ect of high performance in a model is the tendency of the model
to be less interpretable. So inevitably there is a trade-o� between accuracy and
interpretability which one should take into account in the modeling process.

With SVM models, we capture the non-linear relations between variables
by projecting their features into the kernel space. Interpreting the model is
heavily relying on the kernel-basis function. This kernel could be chosen from
analytical functions (e.g. family of Gaussian functions), which are transparent
to the viewer, so interpretability is straightforward in terms of the parameters
involved in the function. However, if the kernel is replaced with some black-box

104

function trained by other learners, then there might be some di�culties in the
transparency of SVM. So we classify such models in the gray area in between
highly interpretable and not interpretable.

Simple Neural Networks with just one hidden layer may be easier to inter-
pret compared to RF. However, it is worth noting that in some literature such
as (Østergård et al., 2018), the authors believe that NN is possibly the least in-
terpretable method since it provides very little insight into the structure of the
approximated function.

7.1.7 Sensitivity Analysis

Sensitivity analysis is the study of the in�uence of uncertain input variables
or a group of variables on the output. It is widely used in many applications
and design problems. Since most complex model building cases and design
problems are computationally expensive, metamodels are often surrogated for
facilitating computations, sensitivity analysis and optimal solution direction.
Sensitivity analysis is grouped into three main categories:
Global sensitivity analysis: It helps practitioners understand the distribution of
the target outcome based on the input features. The Global sensitivity analysis
is very di�cult to achieve in practice. Any model that involves many parameters
or weights is unlikely to �t into the memory of the average human. While Global
sensitivity analysis is usually out of reach, there is a chance of understanding at
least some models on a modular level. In linear models, the sensitivity analysis
is de�ned as the weights, for regression trees it would be the splits and leaf node
predictions.
Local sensitivity analysis: The local sensitivity analysis investigates a complex
model on a single instance and examines what the model predicts for a partic-
ular input. LIME (Ribeiro et al., 2016) is one example in this group where it
relies on the assumption that every model can be analyzed locally. Thus, the
prediction may only depend linearly on some features, rather than having a
complex dependence on them.
Hierarchical sensitivity analysis: This family of analyses focuses on how the
input features can hierarchically in�uence the output of an original model. Very
few prior studies have been done on this group in metamodeling.

105

Variable importance and sensitivity analysis are interchangeably used in the
literature. The global sensitivity analysis provides a wider range of inputs analy-
sis, thus variable importance could be considered as a special case of the sensitiv-
ity analysis where the in�uence of feature inputs is controlled for the prediction
task. Many metamodels have been proposed for the purpose of global sensitivity
analysis (Saltelli et al., 2008). This report focuses on �ve metamodels, namely
Random Forest, Support Vector Regression (Machine), Linear Model, simple
Neural Network and G-FORSE.
G-FORSE method relies upon the assumption that the surface of the under-
lying model being supported is a sample map of the Gaussian random �eld.
G-FORSE estimates the black box information through a Kriging process (Kay-
maz, 2005) by de�ning a model consisting of two parts: linear regression part
and non-parametric stochastic part. The G-FORSE framework is most straight-
forward to apply when the basis function is Gaussian product correlation of the
form ψ(h) = exp

(
−
∑k

j=1 θjh
pj

)
. The core functionality of G-FORSE on

the global sensitivity analysis is under calibration of the correlation parameters
θj . Practically, we assume that cor[Y (x(i)), Y (x(l))] re�ects our expectation
function (equation 1) and it is smooth and continuous in the de�ned space.
Such assumptions provide some correlations between a set of random variables
Y that are relying on parameters θj and pj and the distance between points
|x(i)
j − x

(l)
j |. The likelihood function, which can be expressed in terms of the

sample data, provides us the concentrated log-likelihood function which opti-
mizes the locations of unknown parameters, and consequently, it enables us to
determine the rank of importance of variables.
Neural Network and Random Forest are one of the rich studies, used in var-
ious domains. The main disadvantage of using such techniques is the tendency
of both models to be more complex when they are trained for a prediction task,
while a high accuracy is desirable. Although scholars utilize them for feature
selection tasks, the explanation of why the selected features are chosen is not
transparent due to the nonlinear relationships existing in the models. The com-
plexity of the models discourages the practitioners to use them for sensitivity
analysis. Another weakness of NN is it needs a huge amount of data to run, thus
the users might abandon it for a simpler model in case of the low amount of data.

106

The features are selected in the random forest by measuring how much each fea-
ture can generate information. The information encodes how much variance
or Gini index would be dropped compared to the top node, and this amount
of information can be averaged across trees to determine the �nal importance
of the variable.
Support Vector Regression is similar to other discussed methods, such that
SVM is able to rank the input variables by their importance. Thus, it provides
one with a range of informative features that contribute to the model jointly
or individually. One positive side-e�ect of SVM is that the scholars are able
to choose their desired kernels for �tting to the original model. Whilst SVM
could become relatively di�cult for explanation in the form of global sensitivity
analysis, SVM naturally integrates the properties of optimization and sensitivity
analysis, which is helpful for some problems.
Linear Regression is perhaps the most popular and simple metamodel for
sensitivity analysis tasks. This is simply because the linear regression is easy to
use and interpret. The feature importance is calculated by the absolute value of
its t-statistic measurement, which is derived by:

tβ̂j =
β̂j

SE(β̂j)
(7.1)

Equation (1) has two de�nitions of the feature importance. First, the feature
is less important if the estimation is not reliable (i.e. higher variance). Second,
the weight’s magnitude indicates the importance of a feature in an estimated
model. The linear model has the ability to perform the sensitivity analysis both
locally and globally if accuracy is not important in the analysis.

7.1.8 Potential Optimization of System being Modeled

Model optimization is being practiced widely by practitioners. From “tuning
the hyperparameters” of classical machine learning, to “meta-learning” in the
recent revolutionized arti�cial intelligence. The common aspect of the two
contexts is to optimize the underlying model by tweaking some parameters.
Scholars categorize the meta-learning approaches into three groups:

107

• One-shot learning with memory augmented neural network (Santoro
et al., 2016).

• Optimization as a model for few-shot learning (Ravi & Larochelle, 2016).

• Model agnostic meta-learning (Finn et al., 2017).

Although this branch of machine learning has received some attention among
the scientist, Metamodeling of the advanced trainers has been less studied for
the purpose of faster convergence.

Among the proposed Metamodels, those with the interpolation property
are in the interest of this article. Since most machine learning methods, such as
neural networks and random forest, extrapolate through training over a large
number of data points, thus they are not helpful for optimization tasks. The
interpolation encourages the Metamodel predictor to precisely pass through
every data point and leads to zero error at each sample point. This phenomenon
will be discussed in more detail in the following.

Fig 7.3 illustrates the G-FORSE model for predicting unseen points by use
of few points. G-FORSE provides two piece of information ŷ(x) and s(x),
which are the predicted response value and the prediction error, respectively.
Thus, the reliable surface for each prediction response value is given, as a re-
sult of the positive-side e�ects of using such Gaussian family function. Those
parameters ŷ(x) and s(x) are useful in optimizing the objective function.

The region of exploration for a system being calibrated is essential in the
optimization problem. One of the important criteria widely used by scholars
is the Expected Improvement (EI) criterion (Jones et al., 1998). Many uncon-
strained optimization problems are evaluated by the EI information, namely
as:

min f(x)

s.t. xli ≤ xi ≤ xui , i = 1, 2, . . . , n

x = [x1, x2, . . . , xn]

where n is the number of design inputs and xli and xui denote lower and upper
bounds, respectively. Since optimizing this unconstrained problem is challeng-
ing, one might bene�t from using G-FORSE in approximating such objective
function of the underlying model. EI information is captured by G-FORSE

108

prediction and the error function, the next sample point is selected through the
EI direction per iteration, and the underlying model is optimized accordingly.
The EI criterion helps the metamodel �nd the optimal direction and narrow
the search solution, despite having a plethora of local and global search regions.
An unknown point x is de�ned by a normal distribution as follows:

Y (x) ∼ N(ŷ(x), s(x)) (7.2)

We aim to locate the current optimal solution as a result of minimizing the
function f . Thus, we can consider the searching steps as a random variable
such that:

I(x) = max(fmin − Y (x), 0) (7.3)

To �x the random variable I(x), we utilize the property of expectation in the
probability theory, namely as:

EI(x) = E[max(fmin − Y (x), 0)]

=

∫ fmin

−∞
(fmin − Y)

1√
2π(x)

exp

(
− ŷ(x2)

2s(x)2

)
dY

The integral in the equation (5) is calculated to obtain:

EI(x) = (fmin − ŷ(x))Φ

(
fmin − ŷ(x2)

s(x)

)
+ s(x)φ

(
fmin − ŷ(x2)

s(x)

)
(7.4)

where φ(.) and Φ(.) denote as the probability density function and the cumu-
lative distribution function, respectively, of the standard normal distribution.

Equation (6) shows mathematically as to why a “regression” model would
not be appropriate for interpolating values since the error of estimation should
be zero around the known values by passing through all the data values. Whereas
in regression, we generalize the points by minimizing the cost function. Thus,
most regression models are excluded from optimization problems if they fail
passing through data points. Among the studied metamodels in this work,
G-FORSE and SVM (Huizan et al., 2008) are able to provide interpolation
between the data values, thus scholars might consider them for further explo-
rations in optimization problems.

109

7.2 Evaluation Summary

The experimental results on two datasets show that three of the �ve metamod-
els yield good overall accuracy. Among them, G-FORSE performs on par with
the RF model, whilst providing interpretability for the original model being
approximated. In addition, the SVR(M) has a modest running time and hence,
is applicable to large problems with rich feature space. Moreover, the linear
regression appears to be the fastest and simplest metamodel, in which the vari-
ables are the only parameters to be tuned linearly, and therefore, lower accuracy
is expected. The discussed information is provided in the summary table 7.10.

Table 7.7: Challenges in Metamodels: a summary of the pros and cons of the
di�erent methods to metamodel the complex models for each of the major op-
erations involving a method.

RF LR SVR(M) NN (simple) G-FORSE

Accuracy

Robustness

E�ciency

Simplicity

Interpretability

Sensitivity Analysis

Use for Optimization

7.3 Black-Box Interpretation

With the prompt acceptance of sophisticated Arti�cial Intelligence (AI) models
in the industry for solving problems, Machine Learning Interpretation (MLI)
is not a fancy direction but a need. Model explanation enables us to interpret
and legitimize the outcomes of a predictive model to accredit Fairness, Account-
ability and Transparency (FAT) in making decisions. In other words, the theory
and mechanics of algorithmic decisions should be deciphered such that the
relationship between inputs and outputs is understandable to humans.

110

Determining FAT in predictive models is a major problem when a model
is used for decision making. When using a complex gradient boosting model
(GBM) with rich parameters to predict membership, for example, prediction
cannot be acted upon as an interpretable algorithmic process due to the fact
that thousands of pre-trained regression trees seem like a black-box to humans.

Apart from understanding the black-box process, the complex model should
have variable relationships evaluated before launching it into production. To
make this decision, humans require to validate what has actually been trained
via an algorithmic model to what they perceive from that model. That is, they
will not expect to see correlations between a group of variables and a target in a
prediction problem when the model has excluded that group from the predic-
tion process. In general, machine learning interpretation is evaluated based on
Local Inference (single instance) and Global Inference (entire or part of data).
However, real-world models are often signi�cantly complex, and further, we
do not have enough understanding of why and when they work well, and why
they may fail completely when faced with new situations not seen in the train-
ing data. A transparent and simpli�ed version (a surrogate or metamodel) of
a complex model is an e�ective solution, in addition to such methods. In this
case, a metamodel provides the best approximation to the underlying model by
minimizing a metamodeling loss `(g, f), where g and f are the metamodel and
black-box, respectively.

One aspect of metamodeling that has been less studied is “black-box inter-
pretation”, and this part aims to provide thorough insights by introducing a
new technique for machine learning interpretation through the Gaussian Pro-
cess method. A metamodel is useful for interpretation because it is a simpli�ed
copy of the black-box model. A complex prediction model represents raw data
and conforms to a metamodel.

In this section, we propose a metamodel for global interpretation as a solu-
tion to enable the prediction of FAT and optimize the metamodel by interpola-
tion to explore the relationships between several explanatory variables and one
or more response variables. Our main contributions are summarized as follows.

• The framework that can explore the relationships between several input
variables and one or more target variables by metamodeling.

111

• The metamodel that can reveal the structure and relationships between
data points, while simplifying the explanations of the complex model.

• A surrogate for a simple model such as Logistic Regression model that
can su�er from instability of estimation as a result of Hauck-Donner
e�ect.

• Comprehensive evaluation of metamodeling in interpreting a complex
model on some datasets, where we evaluate the strength of a feature for
prediction. In our experiments, the �nal �tted model obtained from our
proposed approach is more interpretable and decipherable to the viewers.
We also show how the mechanics and theory of metamodel characterized
by the “meta” of metamodeling can be used to emulate the distribution
of a black-box e�ciently by employing the black-box’s resources.

7.4 Interpretable Models

Until recently, most work on interpretable machine learning models focused
on feature importance estimation. (Adadi & Berrada, 2018) reviewed a wide
range of methods used for explainable arti�cial intelligence (XAI), and the work
categorized the techniques into six groups where each technique can cover
some groups. Although the authors have not presented metamodeling as a
separate technique in their work, metamodeling can be grouped by “surrogate”
or “model distillation” where the work reviewed them well. The work has been
published under the assumption that LIME (which is based on linear regres-
sion), model distillation, surrogate” models and decision trees should be con-
sidered individually, while their functionalities are quite similar to each other
in that all the techniques can explain the black-box by another understandable
model. This class of models that turn black-box into white-box using another
simpler model is the main motivation of this work to group them into a general
group called “metamodels”. This encourages a uni�ed de�nition and a clearer
connection between simpler models, and leads to incorporate more range of
interpretable models.

112

7.4.1 Model-speci�c Interpretation

Integrated Gradients (Sundararajan et al., 2017), Simple Gradients (Simonyan
et al., 2013), DeepLIFT (Shrikumar et al., 2017) and DeepSHAP (Fernando et
al., 2019) are examples of machine learning interpretation for gradient based
models. These methods tend to interpret the global variable selection where
they select the global variables through instance-wise learning. The instance-
wise variable selection has been extended by some recent studies, L2X (Chen
et al., 2018) and Invase (Yoon et al., 2018), whilst they have three di�erences in
the variable selection task: First, L2X closes the gap between the response Y
and the selected input features XS by maximizing a lower bound of the mu-
tual information, while Invase uses KL divergence to close that gap. Second,
Gumbel-softmax distribution (Jang et al., 2016) used by L2X, enables the back-
propagation through subset sampling, however, Invase bypasses that backpropa-
gation using actor-critic models (Peters & Schaal, 2008). And third, the number
of selected variables for every sample should be �xed in advance, and this is im-
posed by Gumbel-softmax distribution, whereas the actor-critic methodology
used by Invase would lift such limitations. This �exibility in Invase encourages
relevant features to be selected freely and leads to directly inject L0 regulariza-
tion term for inducing sparsity. Both models are categorized as model-agnostic
and non-additive, and they need training before applying.

Class Activation Maps (CAM) (B. Zhou et al., 2016) and Saliency maps
(Simonyan et al., 2013) have been introduced for visualizing the predictions of
deep convolutional network for images. The CAM method that has received
more attention, introduced a method to explicitly show how a DNN discrim-
inates between di�erent regions of the trained image by revisiting the global
average pooling layer introduced by (Lin et al., 2013). The Global Average Pool-
ing (GAP) used in the CAM method enables the method to identify the group
of features which contribute to the prediction. CAM is de�ned mathematically
as:

Sc =
∑
x,y

Mc(x, y) =
∑
x,y

∑
k

wckfk(x, y) (7.5)

wherefk(x, y) is the activation of unitk reported by the last Conv layer, andwck
is the weight of class c for unit k. Intuitively, this expression is described as the

113

summation of the similarities between the last convolutional feature map and
the class-wise weights of the fully connected (FC) layer. The CAM hence sums
all the visual patterns of fx(x, y) at di�erent locations by multiplying the rele-
vant weightswck by them. The method then generates an image-level class label
by passing the sample of regions in the input image through a softmax/sigmoid
activator.

DeepLIFT relies on the assumption that what matters in a neural network
model is not the gradient, which describes how y changes as x changes at the
point x, but the slope, which describes how y changes as x di�ers from the
baseline. So if we consider the slope instead of the gradient, then we can rede�ne
the importance of a feature as the following equation:

xi ×
∂Y

∂xi
→ (xi − xbaselinei)× Y − Y baseline

xi − xbaseline
(7.6)

As such, neural networks and their variants are good candidates for being ex-
plained by these methods, since the gradient can be used to explain the outcome
of a neural network. Due to the approximation of the gradient in their estima-
tion pipelines, they are relatively fast in computation.

DeepLIFT tends to de�ne the concept of the multiplier by attributing
the di�erence in output to certain neurons by using a multiplier, de�ned as
m∆x∆t = C∆x∆t/∆x, where x and t are the input and target neurons, respec-
tively. ∆ denotes the di�erence between the neuron and the baseline. Equation
(2) indicates that we measure change relative to the baseline. This formulation
can be illustrated in Figure 7.5. Per DeepLIFT’s idea, the input x had an impor-
tance value of−2. In other words, the inputx = −2 changed the output of the
model by−2 compared to the baseline. This example is solid evidence as to why
inconsistency happens when we apply other conventional interpretable models.
As it is shown in Figure 7.5,ReLU(x = 2) = 2,andReLU(x = −2) = 0, so
the input feature x = −2 has changed the output of the model by 2 compared
to the baseline. This change in the output of the model has to be attributed to
the change in x, since it is the only input feature to this model, but the gradient
ofReLU(x) at the point x = −2 is 0. This is indicating the contribution of
x to the output is 0, which is obviously a contradiction.

114

For each layer, the slope is calculated by:

slope =
y − ybaseline

x− xbaseline
=

∆y

∆x
. (7.7)

This is the slope that DeepLIFT calls “multiplier”, and it denotes bym. Having
de�ned a new gradient (slope), one can apply the chain rule and backpropaga-
tion property to estimate the changes relative to the baseline:

∂F

∂x
=
∂Y

∂x

∂F

∂Y
→ ∂F

∂x
=
∂Y

∂x

∂F

∂Y
(7.8)

The slope between input and output of a model can be obtained via backprop-
agating along these multipliers, and the expression is as follows:

Feature Importance = (xi − xbaselinei)
∆iY

∆ix
. (7.9)

In DeepLIFT, and similarly in the gradient-based methods overall, choosing
an appropriate baseline for a model is very challenging, and it might require
domain expertise. One option to pick a baseline is to consider what the prior
distribution of a trained model is. For example, a naive but e�ective approach is
to take the average of the dataset, simply by �nding the mean of all samples. This
approach has been suggested and utilized in several articles, where it removes
the need to be a domain expert to pick an appropriate baseline for the model
being interpreted.

DeepLIFT rede�nes how gradients are calculated in the model is explained
The model-speci�c property of DeepLIFT makes it less �exible for interpreting
all types of models and hence, every deep learning model needs to be examined
heavily into the nuts and bolts to implement this technique. However, one back-
ward pass of the model enables the algorithm to calculate feature importance
values rapidly.

Integrated Gradients (IG), yet another gradient-based method, is built
over a simple idea that no prerequisite in network architecture modi�cation for
computing feature importance. The inventors claim that IG can be utilized in
many ways: from rule or feature reasoning, to model debugging. Integrated
Gradients also relies on a baseline that resembles the gradient with emphasis on

115

measuring the di�erence between input and baseline. A part of the problem
is that the gradient should acknowledge the di�erence between baseline and
output being measured. We will discuss more on this issue in the following.

Integrated Gradients, as a self-explanatory method, computes the integral
of gradients between desired input and a pre-de�ned baseline. This integral is
approximated using Riemann Sum or Gauss Legendre quadrature due to not
being solved analytically. The exact expression is represented as follows:

IGi(x) ::= (xi − x′i)×
∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα (7.10)

where α is the scaling coe�cient and IGi represents the Integrated Gradients
of ith feature of X along the path from a given reference to input. The sensi-
tivity and implementation invariance are two critical factors that the inventors
identi�ed for this method. More information regarding these axioms can be
found in the original paper available in the references (Sundararajan et al., 2017).
Although this concept contains more details that authors have incorporated
in their article, we try to list a few but important properties they claim their
attribution method is supposed to satisfy: completeness, linearity preservation,
symmetry preservation and sensitivity. We discuss brie�y each in the following.

A) Completeness: One important property that Integrated Gradients ought
to meet is that the di�erence between the prediction scores of the input
and the baseline should be on a par with the sum of the attributions
from Integrated Gradients results. The paper claims that this property
could be supported by the gradient theorem. Intuitively, this property
can ensure the end-user having a reliable prediction from the model.

B) Linearity preservation: If a networkF is a linear combination aF1 +bF2

of two networksF1 andF2, then a linear combination of the attributions
for F1 and F − 2, with weights a and b respectively, is the attribution
for the network F . This property is desirable because the attribution
method preserves any linear trend present within a network.

C) Symmetry preservation: Integrated gradients protects symmetry. Sym-
metrical property in a network means we expect to see symmetrical fea-

116

ture attributions if two input features are treated symmetrically in a net-
work. For instance, suppose a functionF contains three variablesx1, x2, x3,
and F (x1, x2, x3) = F (x2, x1, x3) for all values of x1, x2, x3. Then F
is symmetric in the two variablesx1 andx2. If the variables have equal val-
ues in the input and baseline, i.e. x1 = x2, and x′1 = x′2, then symmetry
retention enforces that a1 = a2.

D) Sensitivity: The inventors of IG de�ned two aspects of sensitivity:

• Non-zero attribution represents the baseline and the input feature
di�ers only in one feature while having di�erent predictions.

• No activity of a feature, no attributions for that feature.

One major issue with IG is that it is practically not as accurate as DeepLIFT.
In comparison with the DeepLIFT method, IG tends to yield unreliable results
based on our experiments for this purpose. IG seems to be inconsistent with our
true GLM model’s weights generated for our experiment. Another issue with
IG is the time complexity where it requires O(n3) order of time to compute
the attributions. Thus, it is slower than DeepLIFT. However, IG has moti-
vated many other toolsets including but not limited to “Layer Conductance”
(Dhamdhere et al., 2018b) and “Internal In�uence” (Leino et al., 2018).

7.4.2 Model-agnostic Interpretation

The second group of interpretable methods is studied under sensitivity analysis.
In this family of models, perhaps the most successful one is LIME (Ribeiro et
al., 2016), which focuses on the predictions of the underlying complex models
to explain individual predictions. LIME relies on the assumption that every
complex model can be explained linearly on a local scale, and the following
equation should be calibrated to generate an explanation:

ξ(y) = argmin
β

{
N∑
i=1

exp(−D(y, z)2

σ2
)(f(zi)− βz′i)2 +∞1{||β||0>K}

}
(7.11)

where βz′i denotes the class of linear models as an explanation family G, the
similarity function exp(−D(y,z)2

σ2) denotes an exponential kernel de�ned on

117

some distance function D as a weight function, ||β||0 denotes the L0 norm
(i.e. the number of non-zero entries of β) limiting to K parameter which is
crucial for the explanation task. One can solve the above equation by selecting
K features using a subset selection method, so the coe�cients can be estimated
through Weighted Least Squares (WLS). In the paper, the authors utilized
LASSO regularization for feature selection, the so-called K-LASSO.

In the original paper, the authors described the approach that LIME uses
to approximate the solution of the above equation and produce an explanation
for instance y as follows:

A. It generatesN perturbed samples for each prediction to explain by de�n-
ing {z′i ∈ X ′|i = 1, . . . , N} as the set of these observations.

B. LIME would recover the perturbed observations in the original feature
space by means of the mapping function de�ned by {zi ≡ hy(z′i) ∈
X|i = 1, . . . , N}.

C. Then LIME lets the black-box model predict the outcome of every per-
turbed observation by the set of responses denoted by {f(zi) ∈ R|i =

1, . . . , N}. Then the dataset of perturbed sample with their responses
can be denoted by {(z′i, f(zi)) ∈ X ′×R|i = 1, . . . , N}. Next, it com-
putes the weight of every perturbed observation by de�ning{(wy(zi)) ∈
R+|i = 1, . . . , N} as the set of weights.

D. Next, LIME would select K features describing the underlying model
outcome from the perturbed dataset. It then �ts a weighted linear regres-
sion model using the LASSO regularization parameter to a subset of the
dataset composed of theK selected features in the previous step.

E. Finally, it extracts the weights from the �tted model and utilizes them as
explanations for the black-box model.

In general, LIME has the advantage of training and explaining interpretable
model candidates both in research and experience. Because LIME uses LASSO
for the local explanation, it enables a human-friendly explanation which makes
it more transparent. Also, LIME is one of the few methods that work for tab-
ular data, text and images. The inventors of LIME presented a notation as the

118

�delity measure, where it provides users with the idea of how well the inter-
pretable model estimates the complex outcomes. This enables users to appre-
ciate the minimum reliability the explanation can a�ord to interpret the black
box predictions in the vicinity of a single observation in the region of interest.
LIME is implemented in Python and R and it is easy to use. However, an op-
timal neighborhood is di�cult to de�ne on tabular data, and it appears one
of the biggest challenges with LIME. Also, the complexity of the explanation
model has to be de�ned in advance, and data points sampled from a normal dis-
tribution can lead to some issues, since the correlation between features could
be ignored in a normal distribution setting. Also, simple perturbations are not
enough. Ideally, a single point can be perturbed on the variation the model in-
jects in that vicinity. So, one can assume that perturbation is case-speci�c since
variation can be di�erent from one subspace to another, leading to introduce
bias into the model explanation. Also, some believe that not all complex mod-
els can be explained linearly on a local scale if the region of interest is not small
enough. In other words, some models need to be explained in a larger space,
so the linearity assumption may not hold for such cases. They believe we can
extend this idea by proposing some non-linear interpretable models.

Skater (Choudhary et al., 2018) is the extended version of LIME, where it
enables one to take the advantage of using a model-agnostic method for concrete
problems. It allows the underlying model to be any form of a complex model,
which leads to high popularity in the community. In comparison with other
popular MLI toolsets, Skater ought to reveal the learned structures of a complex
model on global and local scales. We start with the global interpretation by
Skater �rst in the next section.

Skater focuses on partial dependence and feature importance by introduc-
ing a tree family of models to provide one with a range of model-agnostic global
interpretation algorithms. Among these, feature importance is one of the most
sought after techniques in interpretation in machine learning which we discuss
next.

A partial dependence (PD) plot illustrates the relationship between the in-
puts and output of a model. It shows that relationship by isolating the variable
of interest from other e�ects in the model. PD is able to uncover the type of

119

relationship, which is helpful for model interpretation. If one is interested in
the local interpretation, then Individual conditional expectation (ICE) plots
are the ones providing the level of individual observations. Both types of plots
are considered model-agnostic techniques.

Feature importance is a general concept that represents a level of depen-
dency a predictive model has on a certain feature. Skater computes the feature
importance score relying on the idea that how much information one would
gain in predictions by perturbing a particular feature. Intuitively, we expect
if there is a strong connection between a model’s decision criteria and a given
feature, then we observe more variability in predictions as a function of per-
turbing a feature. Skater uses prediction-variance parameter computed by the
mean absolute value of changes in prediction, in the event of perturbations in
data.

If one is interested in conditioning on a particular feature to measure the
level of in�uence it exerts in the model’s prediction, then the partial dependence
may be useful. Partial dependence values resemble feature coe�cients in a linear
regression equation, where one evaluates a conditional e�ect of a given feature.
Thus, the partial dependence plot (PDP) illustrates the conditional e�ect of a
feature on the validated outcome of a trained model. PDP provides graphical
information about the trend between the output and a feature.

Local interpretation is ful�lled through two possible options. First, by mim-
icking the behavior of a black-box model by �tting an interpretable model in
the vicinity of a single instance. Second, one may �t a simpli�ed copy of the
complex model in an e�ort to perceive the behavior of a single prediction by
approximating a basis function between inputs and outputs. Since Skater can
exploit LIME to explain model predictions on matrix data, we can call the re-
lated helper function within the package to perform local interpretation. For
quantitative variables, Skater generates samples from an N(0,1) and applies the
inverse operation of mean and variance of the training data samples. Similarly,
categorical variables are evaluated by a binary feature and assigning 1 if the per-
turbed value is the same as the target point being explained.

Overall, Skater can provide global and local interpretations which makes
it desirable to users who are interested in more aspects of the interpretation in

120

machine learning models. However, we were not able to run Skater on our data
due to some un�xed bugs in Skater at the time of the experiment.

SHAP (Lundberg & Lee, 2017), which enables game theory to connect to
local explanations, where each feature value of the instance is a “player” in a
game, and the values are computed as follow:

Shj(v) =
∑

S⊆{x1,...,xp}\{xj}

(p− |S| − 1)!|S|!
p!

(v(S ∪{xj})− v(S)) (7.12)

where S is a subset of the features used in the model, x is the vector of feature
values of the instance to be explained andp is the number of features. Such mod-
els generally perturb the input slightly and measure the variations in prediction.
If the change in prediction occurred by tweaking the inputs is negligible, then
the model would consider it as an unimportant variable. This model is di�cult
even to approximate for the curvature of response y, and the key limitation is
that it is exponentially expensive due to the plethora of evaluations they make
to quantify a model’s sensitivity.

Another group, which is the easiest option for interpretation, is to employ
a subset of methods that are inherently interpretable. Although they are conve-
nient to use, typically they are not complex enough to achieve state-of-the-art
performance, so they degrade the accuracy. Linear regression, regression trees
and RuleFit algorithms (Friedman, Popescu, et al., 2008) are examples of inter-
pretable models, however, many other transparent algorithms are constantly
growing for this purpose.

Previous work has also taken the approach of including and excluding one
or more groups of input variables to measure the model’s outcome. These
approaches are commonly used in computer vision applications, where the
deep neural networks take the center stage (Lundberg & Lee, 2017; Simonyan
et al., 2013; Springenberg et al., 2014; Zeiler & Fergus, 2014). These methods are
somehow similar to gradient-based techniques, in that they analyze the e�ects of
being present and absent parts of the regions to which the model representation
is mostly responsive, resulting in highlighting that important region. Most work
in this research track are converged into the ability to evaluate the contribution
of each input variable to the target of a predictive model. This has encouraged

121

researchers to develop speci�c interpretability methods that target each neuron
in a given layer to the outcome of the model (Leino et al., 2018) and motivated
further research to focus on the contribution of each input variable on the
activation of a particular hidden unit (neuron conductance) (Dhamdhere et al.,
2018a).

Some previous work have used the general concept of global explanation by
setting some rules on training points (Plumb et al., 2018; Ribeiro et al., 2018),
so the interpretation is run through example-based explanations. This family
of explanations is considered, to some extent, as model-agnostic. The example-
based models explain an underlying model through instance selection rather
than feature selection of a dataset. Each training point is weighted based on the
level of impact they have on the prediction, and this relationship is evaluated
by an in�uence function. Some work utilize the idea of “counterfactual expla-
nations” (Van Looveren & Klaise, 2019) and ”adversarial examples” (Biggio &
Roli, 2018; Su et al., 2019). The example-based models are applicable for image
and text explanation, but tabular data remains challenging.

7.4.3 Interpretation by Metamodeling

The symbolic metamodel (Alaa & van der Schaar, 2019) is another recent work
in machine learning interpretation, trying to decode the underlying black-box
model by a metamodel. A symbolic metamodel is able to return a transparent
function describing the predictions of the original model. The inputs of the
transparent model G are the trained input variables from the original modelF ,
and the outputs are just some transparent equations. The white (transparent)
model may contain di�erent model spaces from polynomial to closed-form
expressions, and users are able to choose their desired functions. The paper
claimed that this white model G is achievable under Kolmogorov-Arnold rep-
resentation theorem (Kolmogorov, 1957) to decompose the metamodel into
univariate functions. The theorem proves that every multivariate continuous
function g(x) can be decomposed into multiple univariate continuous func-

122

tions as follows:

g(x) = g(x1, . . . , xn) =
r∑
i=0

gouti

(
d∑
j=1

ginij (xj)

)
(7.13)

Then the metamodel can be represented as:

G(x; θ) =
r∑
i=0

Gm,n
p,q

(
θouti |

d∑
j=1

Gm,n
p,q (θinij |xj)

)
. (7.14)

The challenge is the parameter θ is not known and it should be optimized
through:

θ∗ = argmin
θ∈Θ

`(f(x), g(x; θ)). (7.15)

The function in equation (11) is not given, so one might think of a general func-
tion as the basis function, containing the desired parameters of the metamodel
being optimized. The authors used MeijerG-functions for this purpose, namely
as:

Gm,n
p,q

(a1,...,ap
b1,...,bq

∣∣x) =
1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj + s)
xsds,

(7.16)
where Γ(.) is the Gamma function andL is the integration path in the complex
plane. The main property of the Meijer G-function enables the metamodel
to be reduced into some simpler and transparent functions, thus it should be
able to interpret the black-box model. Since the MeijerG-function is di�eren-
tiable, so it can be optimized by any optimizer (e.g. gradient descent) and the
convergence rate is fast.

Overall, demystifying the black-box by a symbolic metamodel may have
some pros and cons, however, the heavy and complicated math behind the
method may discourage users to apply it to their problems.

7.5 Our Contribution

This work, Gaussian Function On Response Surface Estimation or “G-FORSE”,
di�ers from previous work in four important ways: 1) in this technique, the re-

123

lationships between explanatory variables and one or more response variables
are explored by studying the curvature of the underlying model via optimizing
a metamodel. Spatial covariance functions can guarantee improvement of non-
standard metrics of model approximation. We will further discuss this. 2) The
nature of the explanation is di�erent. In interpretable models, several transpar-
ent algorithms are available to predict outcomes. In model-agnostic methods,
practitioners perturb the input variables to measure the change of outcome.
In G-FORSE, we approximate the original complex model by sampling points
from the underlying model under the Gaussian process assumption. 3) The
speci�cation of measuring the level of impact is di�erent. The example-based ex-
planation is described as generating explanations by �tting Random Forrest, yet
another black-box model, to identify whether a variable with a zero coe�cient
contains global e�ects. Metamodeling is based upon maximizing the likelihood
function rather than a randomized process and has a correlation function that a
vector of parameters corresponding to each feature seeks to maximize to identify
the global explanation of the original model. 4) Metamodeling is an interpola-
tion technique by which the unknown values are estimated through a Gaussian
process controlled by a pre-de�ned correlation function. This property enables
G-FORSE to avoid the non-existence of maximum likelihood estimates as a re-
sult of the Hauck-Donner e�ect encountered in classical GLM such as Logistic
Regression (Morris, 1990; Venables & Ripley, 2013). This phenomenon occurs
when the �tted probabilities are extremely close to zero or one.

7.6 Gaussian Function On Response Surface Es-
timation; G-FORSE

Our work estimates the black-box information through a Kriging process (Kay-
maz, 2005) by de�ning a model consisting of two parts: linear regression part
and non-parametric stochastic part, which can be given as:

Y (x) = µ(x) + Z(x), (7.17)

124

where µ(x) =
∑m

i=1 qi(x)βi = qT (x)β. β = [β1, . . . , βm]T is the regression
coe�cient to be determined, and q(x) = [q1(x), . . . , qm(x)]T is function of
vector x which can provide the global approximation. Z(x) is a stationary
Gaussian stochastic process with mean 0 and covariance function:

C(xi, xj) = Cov(Z(xi), Z(xj)) = σ2

k∏
l=1

K(hl; θl), (7.18)

where σ2 is the variance parameter, hl = |x(l)
i − x

(l)
j |, x

(l)
i and x(l)

j are the
lth elements of the ith run xi and the jth run xj , k is the number of variables
andK(hl; θl) is a correlation function with a positive parameter θl. G-FORSE
can be calibrated by choosing an impactful correlation function, and several
alternatives such as cubic, exponential and Matérn functions have been studied
in (Koehler & Owen, 1996). Among these, the Gaussian model is utilized in
this work (Forrester et al., 2008), which is provided in equation 3. We aim
to approximate the true underlying model Y (x) by the best linear unbiased
estimator (BLUE), which minimizes an objective function E{Ŷ (x)−Y (x)}2,
under the model in equation 1. The function µ is used to identify the known
trends in the equation, so it enablesZ(x) to be a stationary process. Ordinary
Kriging takes µ in equation 1 as constant µ0, which is widely used in studies
(Forrester et al., 2008; P. Wang et al., 2013; Welch et al., 1992).

The G-FORSE framework is most straightforward to apply when the basis
function is Gaussian product correlation of the form

ψ(h) = exp

(
−

k∑
j=1

θjh
pj

)
(7.19)

This function is very similar to a Gaussian process where the observations have
a Gaussian basis function described with two characteristics functions µ(x)

(mean) andC(x, x′) (covariance). We intend to use a vectorθ = {θ1, θ2, . . . , θk}T

in the G-FORSE to control the width of the basis function varying from feature
to feature, while the Gaussian basis function has 1/σ2. Similarly, the Gaussian
kernel tends to use a �xed exponent at p = 2 to enable smooth function in
all dimensions for a point x(i). The Gaussian process is a special case of the

125

metamodeling process when θj is �xed and p(1,2,...,k) = 2 for all dimensions
(isotropic basis function). In the next section, we present a theoretical analysis
of G-FORSE process, essentially showing that how smoothness and activeness
of p and θ, respectively, a�ect the underlying correlation. Figure 7.6 shows an
intuitive explanation of the G-FORSE process. In practice, we must view our
observed responses y = {y(1), y(2), . . . , y(n)}T as if they are sampled from a
stochastic process, although they may be deterministic in code. Thus, our ob-
served responses are denoted by Y = {Y (x(1)), Y (x(2)), . . . , Y (x(n))} with
a mean of 1µ.

Practically, we assume that cor[Y (x(i)), Y (x(l))] re�ects our expectation
function (equation 3) and it is smooth and continuous in the de�ned space.
Such assumptions provide some correlations between a set of random variables
Y that are relying on parameters θj and p and the distance between points
|x(i)
j − x

(l)
j |. The likelihood function, which can be expressed in terms of the

sample data, provides us the concentrated log-likelihood function which opti-
mizes the locations of unknown parameters, and consequently, it enables us to
determine the rank of importance of variables.

7.7 Theoretical Results

The parameter p controls the smooth correlation with a continuous gradient
evaluated on a distance between points (i.e. |x(i)

j − xj|). We expect variables
with a high correlation tend to yield e(−|x(i)j −xj |

p) → 1 since |x(i)
j − xj| → 0,

so Y (x
(i)
j) = Y (xj), and e(−|x(i)j −xj |

p) → 0 implies zero correlation because
|x(i)
j − xj| � 1. Figure 7.8b shows four di�erent correlations settings for

p = 0.1, 0.5, 1 and 2. It is shown that the correlation trend is a�ected by the
smoothness parameter p. By decreasing p, the correlation drops signi�cantly
as |x(i)

j − xj| reaches to 1. On the other hand, as |x(i)
j − xj| increases than

1, p < 1 encourages the correlation to decay gradually, while there is a rapid
decrease in the correlation e�ect for p ≥ 1. This sudden drop encourages a
saturation e�ect, wherep = 0.1 leads the correlations to break the interpolation
between Y (x

(i)
j) and Y (xj). Hence, a smooth kernel (p = 2) is appropriate

for �tting smooth functions, while a non-di�erentiable kernel (p = 1) may be a

126

better choice for �tting nondi�erentiable functions (Bindel, 2018). Figure 7.8a
presents the relationship between the θj and the correlation. As it is shown, a
sample point can extend its e�ect by varying a width parameter θ. A low value
of θj indicates a high correlation between data points, whereas a high θj shows a
signi�cant contribution across the Y (xj)’s θj . For example, if one examines an
underlying model where they measure the income of an individual for varying
hairstyle (x1), o�ce location (x2) and age (x3), we would hypothetically expect
to see θ1 = 0, since hairstyle has no impact on income, a slightly higher value of
θ2 since o�ce location would a�ect the cost of living, and θ3 would be highest
since age is most correlated with income. The parameters θj , for j = 1, . . . , d

can be interpreted as increasing θi makes the correlations drop to zero between
data points. We can then rewrite equation 3 as:

K(h; θ) = cor[Y (x(j)), Y (x(l))]

≈ exp(−
k∑
i=1

θi|x(j)
i − x

(l)
i |2)

By investigating the parameter of θ for an anisotropic basis function, we can
determine the order of importance of variables in a complex model. Generally
speaking, a smallerθmeans that the learned function varies less in that direction,
which encourages that feature to be irrelevant for the learned function (Figure
7.7).

7.8 Experiments

We demonstrate the use cases of G-FORSE through experiments on synthetic
and real data. In all experiments, we used SPOT Gaussian Process computation
library in R) to carry out computations involving G-FORSE.

We pretend the validated prediction of a trained complex model on a dataset
is a new target variable, which G-FORSE aims to predict. This enables G-
FORSE to provide the global explanation of the complex model after G-FORSE
has been enforced to predict the new target (validated prediction) using original
inputs. We trained four popular machine learning models on a range of datasets,
and we tested G-FORSE on the validated outputs of those algorithms (Tables

127

7.8 & 7.9). We also tested G-FORSE on simulated data generated from a true
GLM model with pre-de�ned weights and correlations to ensure it performs
trustworthily. Among which, the crimes and housing price datasets are regres-
sion problems with the continuous response variables, and the remaining ones
are the classi�cation problems with the binary response variables. For �tting
the G-FORSE model, the values for each variable are normalized to the 0 to 1
range. We only tuned parameter θ̂ since it determines the variable importance
of a model, which we desire. While our theoretical framework permits the tune
of parameter p̂ and one can bene�t from optimizing p̂ to produce accurate pre-
dictions, the parameter p̂ was �xed at p = 2 value because we have a smooth
correlation with a continuous gradient for very close points. We estimate pa-
rameter θ̂ by use of di�erential evolution (DE) and L-BFGS-B optimizers (Byrd
et al., 1995; Storn, 1995), and we limit the search region by setting the lower and
upper bounds to 10−4 and 102, respectively. The results are provided in Tables
7.8 & 7.9 for comparison. Super�cially, G-FORSE with DE optimizer achieved
similar results to L-BFGS-B optimizer: Table 7.9 di�ers from Table 7.8 in that L-
BFGS-B optimizer worked better on the Income dataset. However, both tables
are showing G-FORSE performed reasonably well in approximating the most
algorithms across all the datasets. The results from both tables are in line with
the results on probability plots we presented in Figures 7.9 and 7.10, where they
are showing that G-FORSE is successfully able to approximate the underlying
predictive models.

7.8.1 Hauck-Donner E�ect

There is a less-studied case for GLMs with the binary outcome that was speci-
�ed �rst by Hauck & Donner (Hauck Jr & Donner, 1977). The Hauck-Donner
e�ect (HDE) occurs when a Wald test statistic is not uniformly increasing as
a function of separation between the estimated parameter and the null input.
If there are some β̂i which are large, the curvature of the log-likelihood at ~̂β
can be much less than βi = 0, and so the Wald approximation underestimates
the change in log-likelihood on setting βi = 0. This happens in such a way
that as |β̂i| → ∞, the t statistic tends to zero. Thus highly signi�cant coe�-
cients according to the likelihood ratio test may have non-signi�cant t ratios.

128

This encourages an upward biased p-value and loss of power leads to incorrect
variable selection. We intentionally generate synthetic data with HDE, so the
capability of accurate estimation by G-FORSE can be evaluated under such
adverse e�ects.

We observe that on the simulated dataset with the Hauck-Donner e�ect
(HDE), the supremacy of G-force over Logistic Regression is particularly pro-
nounced. Figure 7.12a indicates the instability in the estimation of the simulated
data in green bars due to HDE, while G-FORSE achieved success in capturing
the true e�ects without signs of performance degradation. This is in keeping
with the strong results of Figure 7.13 where the outputs of (a) and (b) from
G-FORSE are showing no di�culties in approximating the underlying model,
while Logistic Regression tends to be less e�ective in capturing a model with
HDE.

7.9 Results

The prediction of G-FORSE model is obtained by Gaussian process with zero
mean and covariance matrix by the a�ne transformation of correlation matrix
Ψ using Cholesky decomposition technique. The performance is measured
via the root mean squared error (RMSE) and the correlation (r) between pre-
dicted and produced observations from the underlying model (Table 7.8 and
7.9). In the G-FORSE prediction process, the errors ε(x(i)) are the realization
of Gaussian process, and we predict ŷ at unknown location x∗ by including ŷ
into the known observations ỹ = {y, ŷ}T . We treat this as the model parameter
which is estimated by the use of MLE. G-FORSE process is parsimonious and
appropriate for high-dimensional data while keeping the number of estimated
parameters very low. While we make no claim that the G-FORSE model can out-
perform other existing interpretable methods in explaining and performance,
we believe that G-FORSE outperforms the GLMs such as Logistic Regression
in interpretation, overcoming the issue of Hauck-Donner e�ect, and it can be
competitive with the methods in the literature and highlight the potential of
the G-FORSE model.

129

7.10 Group Explanation

Of interest to practitioners is to �nd if global interpretation is appropriate for
demystifying the target black-box. Conventionally, MLI techniques deliver
variable selection by computing feature importance based on some metric func-
tion, so they determine what group of variables are important for prediction.
What is less studied in the �eld of MLI is knowing what group of samples is
contributing together to the prediction made by the black-box, and G-FORSE
undertakes this idea by constructing a correlation function during the training
phase (Figure 7.11). The correlation function (Ψ) used in G-FORSE provides
the bene�t to explore correlations between data points given the predictions,
which is re�ected in matrix Ψ. These correlations are relying on the absolute
distance between data points and the parameters pi and θj in the G-FORSE
method. Figure 7.11 shows that if instances i and j are both above or below
their respective predictions’ means, then the plot shows a higher correlation
denoted by a darker color. If one is above its prediction’s mean and the other
is below, we see lighter (yellowish) spots denoting little to no correlation. In
other words, the darker areas in the plot indicate an agreement on prediction,
and the lighter areas mean disagreement. In the classi�cation problems such
as (e) or (f) in Figure 7.11, when the outcome is binary (0 or 1), the darker ar-
eas represent instances that are in accordance with the prediction made by the
black-box (e.g. AdaBoost or Neural Network in (e) and (f)). This aspect of
interpretation made by G-FORSE provides us with the ability to penetrate in-
side the black-box and monitor the prediction e�ect across samples. Another
bene�t of group explanation is that the global �delity of a complex model can
be visually appreciated by looking at the heatmap plot (Figure 7.11) to �nd if it
can expand its prediction to darker areas. In this case, the user might choose
between a global or local explanation depending on how the prediction was
made by the underlying model.

7.10.1 G-FORSE Validation

We implement two synthetic experiments with the goal of evaluating the ac-
curacy of model interpretation provided by G-FORSE algorithm. In both ex-

130

periments, we apply G-FORSE (Section III) on a ground-truth multi-variate
function f(x) to �t a metamodel g(x) ≈ f(x), and compare the resulting
estimated coe�cients for g(x) against the true generator function f(x).

In Figure 7.12(a), we compare G-FORSE (blue) and Logistic Regression
(yellow) in terms of the coe�cients they estimate and their goodness-of-�t with
di�erent sample sizes with respect to the true function (Figure 7.13). We consider
a true GLM function with �ve linear terms X1, . . . , X5 and one interaction
term X2X3. As we can see, G-FORSE is generally more accurate than Logis-
tic Regression. Moreover, G-FORSE tends to be more robust than Logistic
Regression in the sense that the Hauck-Donner e�ect would not degrade G-
FORSE estimation, but it does so on Logistic Regression. This is vividly visible
in Figure 7.12(a) where the yellow bars representing Logistic Regression failed
to capture true coe�cients (green bars) correctly.

7.11 Advantages and Disadvantages

This new machine learning interpretation technique comes with advantages
and disadvantages relative to previous interpretation methods. The disadvan-
tages are primarily that G-FORSE may not be scalable on ultra-high-dimensional
data, and data smoothness is necessary to obtain a reliable estimation. Similar
to other techniques, multicollinearity can a�ect explanation negatively. The
advantages are that black-box models can be interpreted with fewer parameters,
missing data can be interpolated, a wide variety of covariance functions can be
plugged into the process, it’s applicable on noisy observations, and it can pro-
vide uncertainty estimates such as expected improvement. One can also bene�t
from using G-FORSE on cases with no maximum likelihood estimations as was
discussed earlier for Logistic Regression. Table 7.10 summarizes the comparison
of G-FORSE method with other interpretable modeling approaches that are
actively utilized in machine learning interpretation.

The G-FORSE models may also gain some statistical advantage from the
estimate of uncertainty for not being based on pre-assumed models, but rather
depending on empirical observations, which makes it superior to linear mod-
els or similar interpolation techniques. Another advantage is the tendency of

131

G-FORSE to be less varied toward speci�c bias direction, and the estimations
are best linear unbiased estimator (BLUE) if the observations are spatially inde-
pendent. Additionally, G-FORSE can surrogate to interpretable GLMs such
as Logistic Regression su�ering from HDE.

7.11.1 How G-FORSE Interprets Better?

The actual problem within black-box interpretation is to determine the rela-
tionship between samples themselves. A few extra steps are required to reveal
the underlying relationships between samples whereas none of the existing in-
terpretable methods provides this relationship. If we are better aware of the
connection between the instances and their networks with the outcome, we
would have a better interpretation about a black-box that could predict a com-
plex underlying system, as such a model interpreter would align with the actual
explanation within the black-box model.

Furthermore, it would have bene�ted us to appreciate the importance of
a metamodel being responsive to nonlinear relationships. LIME (as a popular
interpreter) assumes that any nonlinear model can be explained linearly in a local
space. Obviously, this assumption is inappropriate if the network of variables is
ignored in the explanation task (e.g., a network of variables may have di�erent
connections across data points).

Less obvious, the existing interpretable methods sacri�ce accuracy for less
complexity to ensure that the black-box model would be explained clearly by the
interpreter. Because of the incorporation of metamodeling techniques in inter-
pretation problems, we gain more access to powerful and accepted techniques.
This results in models with higher accuracy of prediction that can be the same as
(or at least comparable to) the underlying complex model while preserving the
interpretability. Lastly, the Hauck-Donner E�ect (discussed in Section V) as a
hidden phenomenon can a�ict many types of regression interpretable models,
which leads to unreliable explanations. Knowing all of this compelled us to
introduce metamodeling as a new gateway to black-box interpretation.

132

7.11.2 Choice of p and θ

We aim to minimize the generalization error of the model by maximizing the
likelihood ofy to choosep and θ. The concentrated ln-likelihood function for
parameters estimation is:

ln(L) = −n
2
ln(2π)− n

2
ln(σ̂2)− 1

2
ln|Ψ| − (y − 1µ)TΨ−1(y − 1µ)

2σ2

(7.20)
where Ψ is an n× n correlation matrix of all the observed data:

Ψ =


cor[Y (x(1)), Y (x(1))] . . . cor[Y (x(1)), Y (x(n))]

...
cor[Y (x(n)), Y (x(1))] . . . cor[Y (x(n)), Y (x(n))]

 (7.21)

We obtain Maximum Likelihood Estimates (MLEs) for µ and σ2 by taking the
derivatives of equation 7.18 and setting to zero:

µ̂ =
1TΨ−1y

1TΨ−11

σ̂2 =
(y − 1µ)TΨ−1(y − 1µ)

n

(7.22)

The probability of the dataset{(x(1), y(1)±ε), (x(2), y(2)±ε), . . . , (x(n), y(n)±
ε)} given a set of parametersW and the model estimation f̂(x,W) with i.i.d.
errors ε is computed by:

P =
1

(2πσ2)n/2

n∏
i=1

exp
−1

2

(
y(i) − f̂(x,W)

σ

)2
 ε
 (7.23)

Here we assume that there is no error in Y (due to the deterministic property)
and modeling error is not permissible, so our likelihood function is:

L(Y (1),Y (2), . . . ,Y (n)|µ, σ) =
1

(2πσ2)n/2
exp

[
−
∑

(Y (i) − µ)2

2σ2

]
(7.24)

133

Which can be replaced by the sample data, namely as:

L =
1

(2πσ2)n/2|Ψ|1/2
exp

[
−(y − 1µ)TΨ−1(y − 1µ)

2σ2

]
⇒

ln(L) =− n

2
ln(2π)− n

2
ln(σ2)− 1

2
ln|Ψ| − (y − 1µ)TΨ−1(y − 1µ)

2σ2

We obtain Maximum Likelihood Estimates (MLEs) for µ and σ2 by taking the
derivatives of equation 7.20 and setting to zero:

µ̂ =
1TΨ−1y

1TΨ−11

σ̂2 =
(y − 1µ)TΨ−1(y − 1µ)

n

(7.25)

Thus, by substituting MLEs back into equation 7.20 and removing the constant
terms, concluding the proof.

7.11.3 Theorem

Given correlation parameters, a new prediction of ŷ at x is consistent with
the observations and estimated correlation parameters if the likelihood of the
sample data and the prediction are maximized.

We de�ne Ψ = (cor[Y (x(1)), Y (x)], . . . , cor[Y (x(n)), Y (x)]) a vec-
tor of correlations between the observed data and new prediction to obtain
(ψ(1), . . . , ψ(n)). We de�ne an augmented correlation matrix, namely as:

Ψ̃ =

[
Ψ ψ

ΨT 1

]
(7.26)

The element one in the matrix represents as the self-correlation where |x(i) −
x(i)| = 0 or cor[Y (x(i)), Y (x(i))] = 1. The natural log-likelihood of the
augmented data is:

ln(L) = −n
2
ln(2π)− n

2
ln(σ̂2)− 1

2
ln|Ψ̃| − (ỹ − 1µ̂)T Ψ̃−1(ỹ − 1µ̂)

2σ̂2

(7.27)

134

Having removed the constant terms from the likelihood function and substi-
tuted in the equation for ỹ and Ψ̃, the ln-likelihood is:

ln(L) ≈ − 1

2σ̂2

[
y − 1µ̂

ŷ − µ̂

]T [
Ψ ψ

ΨT 1

]−1 [
y − 1µ̂

ŷ − µ̂

]
(7.28)

The inverse of Ψ̃ obtained by Theil method (See Appendix for details) is substi-
tuted into equation 7.27 to construct a simpli�ed ln-likelihood function, and
we remove terms without ŷ to achieve:

ln(L) ≈
(

−1

2σ̂2(1−ψTΨ-1ψ)

)
(ŷ − µ̂)2 +

(
ψTΨ−1(y − 1µ̂)

σ̂2(1−ψTΨ-1ψ)

)
(ŷ − µ̂)

(7.29)
Having taken derivatives with respect to ŷ and set to zero, one can obtain MLE
for ŷ as:

ŷ(x) = µ̂+ψTΨ−1(y − 1µ̂) (7.30)

Theψ is the ith column of Ψ at the new estimate ofx(i), implying that,ψΨ−1

is the ith unit vector of estimate. Thus ŷ(x) = µ̂+ y(i) − µ̂ = y(i)

7.11.4 Partitioned Inverse

For a non-singular n× nmatrixA, there is a unique n× n inverse matrixA−1

which satis�esAA−1 = A−1A = I , namely as:

A =

[
P1 R1

RT
1 Q1

]
(7.31)

where P andQ are non-singular submatrices, so one wishes to obtain:

A−1A = I =

[
P2 R2

RT
2 Q2

][
P1 R1

RT
1 Q1

]
=

[
I 0

0 I

]
(7.32)

135

We divideA−1A into the four equations as follow:

P2P1 +R2R
T
1 = I,

P2R1 +R2Q1 = 0,

RT
2 P1 +Q2R

T
1 = 0,

RT
2R1 +Q2Q1 = I.

(7.33)

We obtain equation by substituting equation 7.32 into 7.33 to achieve:

Q2 = (Q1 −RT
1 P
−1
1 R1)−1 (7.34)

and
RT

2 = −(Q1 −RT
1 p
−1
1 R1)−1RT

1 P
−1
1 ,

R2 = −P−1
1 R1(Q1 −RT

1 P
−1
1 R1)−1.

(7.35)

By substituting equation 7.34 into 7.30, we obtain:

P2 = P−1
1 + P−1

1 R1(Q1 −RT
1 P
−1
1 R1)−1RT

1 P
−1
1 . (7.36)

Putting equations 7.34, 7.35, 7.36 and 7.37 together,A−1 can be constructed as
follows:

A−1 =

[
P1 + P−1

1 R1(Q1 −RT
1 P
−1
1 R1)−1RT

1 P
−1
1 −p−1

1 R1(Q1 −RT
1 P
−1
1 R1)−1

−(Q1 −RT
1 P
−1
1 R1)−1RT

1 P
−1
1 (Q1 −RT

1 P
−1
1 R1)−1

]
(7.37)

7.12 Conclusion

A complicated machine learning model is an abstraction of discovered patterns
in massive data; a metamodel is a simpli�ed version, re�ecting the properties of
that complex model.

The main goal of this work was to propose a new technique based on the
metamodeling concept for turning a black-box into a clear-box. Metamodeling
is widely used in simulation and engineering �elds for covering one aspect of
a modeling problem, and this study showed that it can be applied for machine
learning interpretation as well.

136

We argued that interpretation in the sample level is vital for an e�ective ex-
planation, and it provides the user with more insights about the underlying
black-box model. We propose G-FORSE, a metamodel inheriting the charac-
teristics of the Kriging process to support global interpretation using active-
ness parameter, and a network between data points using correlation function,
where both aspects can increase the level of transparency for interpretation. We
also show that G-FORSE could outperform some types of regression models
such as Logistic Regression, where they su�er from the Hauck-Donner e�ect
by running experiments on the synthetic data. Our experiments con�rmed
that G-FORSE can determine a global view of any complex model for a wide
range of models, and we prove by several examples that G-FORSE can go be-
yond the conventional interpretation where global or local aspect was the only
concern. G-FORSE provides a global explanation, mimics a complex model,
and outperforms certain GLM models. It also acknowledges the idea of using
close neighbors for approximation to eliminate the e�ect of bias in a region of
data, whereas in the LIME technique, it explains by simple perturbations which
could be a possible source of bias.

Many straightforward extensions are suggested by this study: in the expla-
nations for image classi�ers, G-FORSE framework can be extended to highlight
the super-pixels with the relatedness measurement a�orded by variograms (cali-
brated by lag, sill, range and nugget) towards a speci�c class, to pictorialize why
a certain prediction would happen. The covariance function used in G-FORSE
can be replaced by other types of functions, and G-FORSE can be scalable for
ultra-high-dimensional data using penalized likelihood function mixed with
feature selection techniques (Joseph et al., 2008).

This article has presented the viability of metamodeling in interpreting
black-box models, suggesting that these research directions could prove useful.

137

(a)C
lassi�cation

on
N

N
com

plexm
odel

(b)C
lassi�cation

on
G

B
com

plexm
odel

Figure7.1:A
ccuracyand

K
appaBoxPlotforeach

m
eta-classi�er

138

(a
)R

eg
re

ssi
on

on
N

N
co

m
pl

ex
m

od
el

(b
)R

eg
re

ssi
on

on
G

B
co

m
pl

ex
m

od
el

Fi
gu

re
7.

2:
R

M
SE

an
d
R

2
Bo

xP
lo

tf
or

ea
ch

m
et

a-
cla

ssi
�e

r

139

Figure 7.3: G-FORSE model optimization for 1-D function f(x) = xcos(x).

140

Figure 7.4: Class activation maps (CAM).

Figure 7.5: DeepLIFT: Calculating a multiplier in a simple ReLU activator.
Image Credit: HTTPS://TOWARDSDATASCIENCE.COM/INTERPRETABLE-NEURAL-NETWORKS-
45AC8AA91411

141

Figure 7.6: G-FORSE process.

142

Fi
gu

re
7.

7:
θ

pa
ra

m
et

er
de

te
rm

in
es

ho
w

re
lev

an
ta

va
ria

bl
ei

sf
or

lea
rn

in
ga

fu
nc

tio
n.

La
rg

er
θ

m
ea

ns
m

or
er

ele
va

nt
.

143

(a)C
orrelationsw

ith
varying

θ.
(b)C

orrelationsw
ith

varying
p.

144

A
lg

or
ith

m
s-

R
M

SE
(r)

N
eu

ra
lN

et
w

or
k

G
BM

A
da

Bo
os

t
X

G
Bo

os
t

Datasets
C

rim
es

0.
10

0(
0.

88
)

0.
10

1(0
.8

8)
0.

04
2(

0.
95

)
0.

113
(0

.8
5)

H
ou

sin
g

0.
02

2(
0.

99
)

1.4
4(

0.
99

)
0.

65
4(

0.
99

)
1.4

8(
0.

98
)

C
an

ce
r

0.
00

0(
0.

99
)

0.
12

6(
0.

96
)

0.
01

5(
0.

98
)

0.
07

2(
0.

98
)

D
iab

et
es

0.
05

7(
0.

96
)

0.
36

1(0
.6

0)
0.

00
1(0

.7
2)

0.
32

0(
0.

66
)

In
co

m
e

0.
10

7(
0.

94
)

0.
154

(0
.8

7)
0.

00
0(

0.
90

)
0.

157
(0

.8
6)

Ta
bl

e7
.8

:T
he

ro
ot

m
ea

n
sq

ua
re

d
er

ro
r(

R
M

SE
)a

nd
co

rr
ela

tio
n

(r
)o

bt
ain

ed
vi

aG
-F

O
R

SE
by

us
eo

fd
i�

er
en

tia
le

vo
lu

tio
n

op
tim

ize
rf

or
di

�e
re

nt
co

m
pl

ex
m

od
els

on
di

�e
re

nt
da

ta
se

ts.

145

A
lgorithm

s-R
M

SE(r)

N
euralN

etw
ork

G
BM

A
daBoost

X
G

Boost
Datasets

C
rim

es
0.101(0.88)

0.112(0.86)
0.045(0.94)

0.110(0.86)
H

ousing
0.259(0.99)

2.26(0.96)
2.13(0.96)

2.40(0.96)
C

ancer
0.145(0.93)

0.167(0.93)
0.022(0.97)

0.115(0.97)
D

iabetes
0.059(0.96)

0.386(0.57)
0.001(0.74)

0.336(0.63)
Incom

e
0.094(0.94)

0.131(0.91)
0.000(0.93)

0.144(0.90)

Table7.9:T
herootm

ean
squared

error(R
M

SE)and
correlation

(r)obtained
via

G
-FO

R
SE

by
useofL-BFG

S-B
optim

izerfordi�erent
com

plexm
odelson

di�erentdatasets.

146

(a
)

(b
)

(c
)

(d
)

Fi
gu

re
7.

9:
Sc

at
te

rp
lo

ts
of

re
gr

es
sio

n
ou

tc
om

es
co

m
pu

te
d

by
G

-
FO

R
SE

ve
rsu

so
ut

co
m

ev
alu

es
pr

od
uc

ed
by

di
�e

re
nt

bl
ac

k-
bo

xm
od

-
els

ac
ro

ss
va

rio
us

da
ta

se
ts.

(a
)

(b
)

(c
)

(d
)

Fi
gu

re
7.

10
:S

ca
tte

rp
lo

ts
of

cla
ssi

�c
at

io
n

ou
tc

om
es

co
m

pu
te

d
by

G
-F

O
R

SE
ve

rs
us

ou
tc

om
ev

alu
es

pr
od

uc
ed

by
di

�e
re

nt
bl

ac
k-

bo
x

m
od

els
ac

ro
ss

va
rio

us
da

ta
se

ts.

147

(a)Sam
plesin

A
daBoost

(H
ousingdata)

(b)Sam
plesin

N
euralN

etw
ork

(H
ousingdata)

(c)Sam
plesin

N
euralN

etw
ork

(D
iabetesdata)

(d)Sam
plesin

A
daBoost

(D
iabetesdata)

(e)Sam
plesin

A
daBoost

(C
ancerdata)

(f)Sam
plesin

N
euralN

etw
ork

(C
ancerdata)

(g)Sam
plesin

G
radientBoosting

(Incom
edata)

(h)Sam
plesin

N
euralN

etw
ork

(Incom
edata)

Figure7.11:C
lusteringbetween

datapointsrevealed
byG

-FO
R

SE
fordi�erentblack-boxm

odels.T
heseclustersarecom

puted
bycorrelation

m
atrixestim

ated
duringG

-FO
R

SE
optim

ization.Each
m

achinelearningm
odeltreatssam

plesdi�erentlyin
predictingtheoutcom

e.

148

(a
)

(b
)

Fi
gu

re
7.

12
:(

a)
Si

de
-b

y-
sid

ec
om

pa
ris

on
of

fe
at

ur
es

’i
m

po
rta

nc
ee

va
lu

at
ed

by
G

-F
O

R
SE

an
d

Lo
gi

sti
cR

eg
re

ssi
on

on
th

es
yn

th
es

ize
d

G
LM

.
G

-F
O

R
SE

is
su

pe
rio

rt
o

Lo
gi

sti
cR

eg
re

ssi
on

in
de

te
ct

in
gt

ru
es

ig
na

ls.
(b

)G
-F

O
R

SE
an

d
SH

A
P

va
lu

es
on

th
es

yn
th

es
ize

d
G

LM
tra

in
ed

by
G

BM
.B

ot
h

pl
ot

ss
ho

w
th

et
en

de
nc

yo
fG

-F
O

R
SE

to
be

tru
stw

or
th

yt
o

ap
pr

ox
im

at
eg

lo
ba

le
�e

ct
s.

149

(a)
(b)

(c)
(d)

Figure7.13:Scatterplotsofpredicted
outcom

escom
puted

byG
-FO

R
SE

and
LogisticR

egression
on

thesim
ulated

dataversusthetruevalues.
G

-FO
R

SE
appearsto

besuperiorto
LogisticR

egression
in

sm
allsam

ples.

150

LI
M

E
SH

A
P

G
LM

D
ec

isi
on

Tr
ee

s
C

X
Pl

ain
G

-F
O

R
SE

M
od

el
pa

sse
s

Fo
rw

ar
d

Fo
rw

ar
d-

Ba
ck

w
ar

d
Fo

rw
ar

d
Fo

rw
ar

d
Fo

rw
ar

d
In

te
rp

ol
at

io
n

R
eq

ui
re

sb
as

eli
ne

N
o

Ye
s

N
o

N
o

Ye
s

N
o

C
om

pu
ta

tio
n

tim
e

Fa
st

Sl
ow

Fa
st

Fa
st

Fa
st

M
od

er
at

e

M
od

el-
ag

no
sti

c
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

R
ela

tio
ns

hi
p

bw
Sa

m
pl

es
N

o
N

o
N

o
N

o
N

o
Ye

s

U
nc

er
ta

in
ty

es
tim

at
e

N
o

N
o

N
o

N
o

Ye
s

Ye
s

Ta
bl

e7
.10

:C
ha

lle
ng

es
in

in
te

rp
re

ta
bl

em
od

els
:a

su
m

m
ar

y
of

th
ed

i�
cu

lti
es

en
co

un
te

re
d

by
di

�e
re

nt
m

et
ho

ds
to

in
te

rp
re

ta
bl

em
ac

hi
ne

lea
rn

in
ga

pp
ro

ac
he

sf
or

ea
ch

of
th

em
ajo

ro
pe

ra
tio

ns
in

vo
lv

in
ga

m
et

ho
d.

151

Chapter 8

Conclusion

Most machine learning models are able to encode input data to a high-dimensional
space, to capture more patterns from data. If the training data is not su�-
cient, the high-dimensional encoding process will prevent the production of
optimal answers, and the model degrees of freedom would be negative. On
the other hand, recent advances in machine learning for training data in high-
dimensional has brought with it many new challenges such as interpretability.
This work presented useful solutions to the aforementioned challenges as a re-
sult of working with high-dimensional space, and those solutions were applied
to high-dimensional applications such as time-series data and video cases. The
contributions we have made in each chapter are summarized in the following.

In chapter 2, an extensive literature review was provided, focusing on both
traditional methods and machine learning algorithms in time-series forecasting
and a chronological overview of the developments in this �eld.

In chapter 3, we proposed a new technique that generates forecast values
in intermediate length time-series analysis, and we applied and evaluated it on
COVID-19 data. The technique involves multiple strategies to maximize fore-
casting accuracy. We �rst forecasted the series by the SARIMA model and then
applied backcasting on the generated forecast values by a neural network model
coupled with the wavelet transformation function. This process enables the
weak signal to be ampli�ed during the backcasting, leading to improve model
accuracy compared to other competitors.

152

In chapter 3, we argued that a complicated machine learning model is an
abstraction of discovered patterns in high-dimensional spaces, leading to ob-
scuring our understanding of relationships between input and output. We
then proposed G-FORSE which is based on metamodeling, and it enables us to
study the output and input relationships of the underlying black-box model.

In chapter 4, we addressed undersampled problems in video cases that oc-
cur as a result of poor quality in frames and deprivation in samples or duration.
Since video data is super rich in terms of dimensionality in sample and time
spaces, we mentioned that simple deep neural networks such as a convolutional
neural network may not be powerful enough. We solved this issue by present-
ing a transfer learning technique that can bene�t from a pre-weighted model
without a necessity to train the model from scratch. Not only would this tech-
nique save time and computational resources, but also it resolves the issue of
parameters de�ciency because of data scarcity.

Finally, sophisticated machine learning models tend to be e�ective in high-
dimensional spaces provided that the number of learning parameters would
su�ce and the relationships between input and output are transparent to hu-
mans.

153

Bibliography

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on
explainable arti�cial intelligence (xai). IEEE Access, 6, 52138–52160.

Alaa, A. M., & van der Schaar, M. (2019). Demystifying black-box models
with symbolic metamodels. Advances in Neural Information Processing
Systems.

Aldous, D., & Fill, J. (2014). Reversible markov chains and random walks on
graphs, 2002. Unfinished monograph, recompiled, 2002.

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arXiv preprint
arXiv:1701.07875.

Arunraj, N. S., Ahrens, D., & Fernandes, M. (2016). Application of sarimax
model to forecast daily sales in food retail industry. International Jour-
nal of Operations Research and Information Systems (IJORIS), 7(2), 1–
21.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Balkin, S. D., & Ord, J. K. (2000). Automatic neural network modeling for
univariate time series. International Journal of Forecasting.

Barmparis, G., & Tsironis, G. (2020). Estimating the infection horizon of
covid-19 in eight countries with a data-driven approach. Chaos, Solitons
& Fractals, 135, 109842. https://doi.org/10.1016/j.chaos.2020.109842

Bertasius, G., Shi, J., & Torresani, L. (2015). Deepedge: A multi-scale bifurcated
deep network for top-down contour detection. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 4380–4389.

Bertasius, G., Torresani, L., Yu, S. X., & Shi, J. (2017). Convolutional ran-
dom walk networks for semantic image segmentation. Proceedings of

154

https://doi.org/10.1016/j.chaos.2020.109842

the IEEE Conference on Computer Vision and Pattern Recognition, 858–
866.

Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition.

Bindel. (2018). Numerics for data science. https://www.cs.cornell.edu/ bindel/class/sjtu-
summer18/lec/2018-06-27.pdf.

Borovykh, A., Bohte, S., & Oosterlee, C. W. (2017). Conditional time series
forecasting with convolutional neural networks. arXiv preprint.

Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale gan training for
high �delity natural image synthesis. arXiv preprint arXiv:1809.11096.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1993). Signature
veri�cation using a" siamese" time delay neural network. Advances in
neural information processing systems, 6, 737–744.

Bultheel, A. et al. (1995). Learning to swim in a sea of wavelets. Bulletin of the
Belgian Mathematical society-simon stevin, 2(1), 1–45.

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algo-
rithm for bound constrained optimization. SIAM Journal on scientific
computing.

Chan, A. B., & Vasconcelos, N. (2005a). Classi�cation and retrieval of traf-
�c video using auto-regressive stochastic processes. IEEE Proceedings.
Intelligent Vehicles Symposium, 2005., 771–776.

Chan, A. B., & Vasconcelos, N. (2005b). Probabilistic kernels for the classi�-
cation of auto-regressive visual processes. 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), 1,
846–851.

Chen, J., Song, L., Wainwright, M. J., & Jordan, M. I. (2018). Learning to
explain: An information-theoretic perspective on model interpretation.
arXiv preprint arXiv:1802.07814.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., & Bengio, Y. (2014). Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

155

Choudhary, P., Kramer, A., & datascience.com team. (2018). datascienceinc/Skater:
Enable Interpretability via Rule Extraction(BRL) (Version v1.1.0-b1).
Zenodo. https://doi.org/10.5281/zenodo.1198885

Commandeur, J. J., & Koopman, S. J. (2007). An introduction to state space
time series analysis. Oxford University Press.

Data61, C. (2018). Stellargraph machine learning library.
Dhamdhere, K., Sundararajan, M., & Yan, Q. (2018a). How important is a

neuron? CoRR, abs/1805.12233.
Dhamdhere, K., Sundararajan, M., & Yan, Q. (2018b). How important is a

neuron? arXiv preprint arXiv:1805.12233.
Dua, D., & Gra�, C. (2017). UCI machine learning repository. http://archive.

ics.uci.edu/ml
Esteban, C., Hyland, S. L., & Rätsch, G. (2017). Real-valued (medical) time se-

ries generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633.
Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., Wu, D., Wang, W.,

Pei, J., & Huang, H. (2019). Multi-horizon time series forecasting with
temporal attention learning. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional
feature space. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(5), 849–911.

Fazeli, S., Moatamed, B., & Sarrafzadeh, M. (2020). Statistical analytics and
regional representation learning for covid-19 pandemic understanding.

Feng, F., He, X., Wang, X., Luo, C., Liu, Y., & Chua, T.-S. (2019). Temporal
relational ranking for stock prediction. ACM Transactions on Informa-
tion Systems (TOIS), 37(2), 1–30.

Fernando, Z. T., Singh, J., & Anand, A. (2019). A study on the interpretability
of neural retrieval models using deepshap. Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks. arXiv preprint arXiv:1703.03400.

156

https://doi.org/10.5281/zenodo.1198885
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Forrester, A., Sobester, A., & Keane, A. (2008). Engineering design via surro-
gate modelling: A practical guide. John Wiley & Sons.

Friedman, J. H., Popescu, B. E. et al. (2008). Predictive learning via rule ensem-
bles. The Annals of Applied Statistics.

Fu, R., Chen, J., Zeng, S., Zhuang, Y., & Sudjianto, A. (2019). Time series
simulation by conditional generative adversarial net. arXiv preprint
arXiv:1904.11419.

Gangopadhyay, T., Tan, S. Y., Huang, G., & Sarkar, S. (2018). Temporal atten-
tion and stacked lstms for multivariate time series prediction.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Bren-
del, W. (2018). Imagenet-trained cnns are biased towards texture; in-
creasing shape bias improves accuracy and robustness. arXiv preprint
arXiv:1811.12231.

GeoDS. (2021). Geods/covid19us�ows. https://github.com/GeoDS/COVID19USFlows
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neu-

ral message passing for quantum chemistry. International Conference
on Machine Learning, 1263–1272.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Ad-
vances in neural information processing systems, 2672–2680.

Grossmann, A., & Morlet, J. (1984). Decomposition of hardy functions into
square integrable wavelets of constant shape. SIAM journal on mathe-
matical analysis, 15(4), 723–736.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017).
Improved training of wasserstein gans. Advances in neural information
processing systems.

Harrison Jr, D., & Rubinfeld, D. L. (1978). Hedonic housing prices and the
demand for clean air.

Hauck Jr, W. W., & Donner, A. (1977). Wald’s test as applied to hypotheses in
logit analysis. Journal of the american statistical association, 72(360a),
851–853.

157

https://github.com/GeoDS/COVID19USFlows

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and
pattern recognition, 770–778.

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural net-
works for time series forecasting: Current status and future directions.
International Journal of Forecasting.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation.

https://www.wsdot.wa.gov. (n.d.).
Huizan, W., Ren, Z., Kefeng, L., Wei, L., Guihua, W., & Ning, L. (2008). Im-

proved kriging interpolation based on support vector machine and its
application in oceanic missing data recovery. 2008 International Con-
ference on Computer Science and Software Engineering, 4, 726–729.

Ilie, O.-D., Cojocariu, R.-O., Ciobica, A., Timofte, S.-I., Mavroudis, I., & Do-
roftei, B. (2020). Forecasting the spreading of covid-19 across nine coun-
tries from europe, asia, and the american continents using the arima
models. Microorganisms.

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-image trans-
lation with conditional adversarial networks. Proceedings of the IEEE
conference on computer vision and pattern recognition, 1125–1134.

Jang, E., Gu, S., & Poole, B. (2016). Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144.

Javeri, I. Y., Toutiaee, M., Arpinar, I. B., Miller, T. W., & Miller, J. A. (2021).
Improving neural networks for time series forecasting using data aug-
mentation and automl. arXiv preprint arXiv:2103.01992.

Jiang, X., Ji, P., & Li, S. (2019). Censnet: Convolution with edge-node switch-
ing in graph neural networks. IJCAI, 2656–2662.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). E�cient global optimization
of expensive black-box functions. Journal of Global optimization, 13(4),
455–492.

Joseph, V. R., Hung, Y., & Sudjianto, A. (2008). Blind kriging: A new method
for developing metamodels. Journal of mechanical design.

158

Kang, Y., Gao, S., Liang, Y., Li, M., Rao, J., & Kruse, J. (2020). Multiscale
dynamic human mobility �ow dataset in the us during the covid-19
epidemic. Scientific data, 7(1), 1–13.

Kapoor, A., Ben, X., Liu, L., Perozzi, B., Barnes, M., Blais, M., & O’Banion,
S. (2020). Examining covid-19 forecasting using spatio-temporal graph
neural networks. arXiv preprint arXiv:2007.03113.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L.
(2014). Large-scale video classi�cation with convolutional neural net-
works. The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing
of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196.

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for
generative adversarial networks. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

Kaymaz, I. (2005). Application of kriging method to structural reliability prob-
lems. Structural Safety.

Kianifar, M. R., & Campean, F. (2020). Performance evaluation of metamod-
elling methods for engineering problems: Towards a practitioner guide.
Structural and Multidisciplinary Optimization, 61(1), 159–186.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classi�cation with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2017). On convergence and
stability of gans. arXiv preprint arXiv:1705.07215.

Koehler, J., & Owen, A. (1996). Computer experiments. handbook of statistics.
Elsevier Science.

Kolmogorov, A. N. (1957). On the representation of continuous functions of
many variables by superposition of continuous functions of one vari-
able and addition. Doklady Akademii Nauk, 114(5), 953–956.

Kumar, N., & Susan, S. (2020). Covid-19 pandemic prediction using time series
forecasting models. 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), 1–7.

159

Kursuncu, U. (2018). Modeling the persona in persuasive discourse on social
media using context-aware and knowledge-driven learning (Doctoral
dissertation). University of Georgia.

Kursuncu, U., Gaur, M., Castillo, C., Alambo, A., Thirunarayan, K., Shalin,
V., Achilov, D., Arpinar, I. B., & Sheth, A. (2019). Modeling islamist
extremist communications on social media using contextual dimen-
sions: Religion, ideology, and hate. Proceedings of the ACM on Human-
Computer Interaction, 3(CSCW), 1–22.

Kursuncu, U., Gaur, M., & Sheth, A. (2019). Knowledge infused learning (k-
il): Towards deep incorporation of knowledge in deep learning. arXiv
preprint arXiv:1912.00512.

Leino, K., Sen, S., Datta, A., Fredrikson, M., & Li, L. (2018). In�uence-directed
explanations for deep convolutional networks. 2018 IEEE International
Test Conference (ITC).

Li, D., Chen, D., Goh, J., & Ng, S.-k. (2018). Anomaly detection with gener-
ative adversarial networks for multivariate time series. arXiv preprint
arXiv:1809.04758.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., & Yan, X. (2019).
Enhancing the locality and breaking the memory bottleneck of trans-
former on time series forecasting. arXiv preprint.

Lim, B., Arik, S. O., Loe�, N., & P�ster, T. (2019). Temporal fusion trans-
formers for interpretable multi-horizon time series forecasting. arXiv
preprint.

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint
arXiv:1312.4400.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., & Bousquet, O. (2018). Are
gans created equal? a large-scale study. Advances in neural information
processing systems, 700–709.

Lundberg, S. M., & Lee, S.-I. (2017). A uni�ed approach to interpreting model
predictions. Advances in neural information processing systems.

Makni, B., Abdelaziz, I., & Hendler, J. (2020). Explainable deep rdfs reasoner.
arXiv preprint arXiv:2002.03514.

160

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020a). The m5 accuracy
competition: Results, �ndings and conclusions. Int J Forecast.

Makridakis, S., & Hibon, M. (2000). The m3-competition: Results, conclu-
sions and implications.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). The m4 competition:
Results, �ndings, conclusion and way forward. International Journal
of Forecasting.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020b). The m4 competi-
tion: 100,000 time series and 61 forecasting methods. IJF.

Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shro�, G.
(2016). Lstm-based encoder-decoder for multi-sensor anomaly detec-
tion. arXiv preprint.

Matsunaga, D., Suzumura, T., & Takahashi, T. (2019). Exploring graph neural
networks for stock market predictions with rolling window analysis.

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784.

Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., & Talagala, T. S.
(2020). Fforma: Feature-based forecast model averaging. International
Journal of Forecasting.

Morens, D. M., Taubenberger, J. K., Harvey, H. A., & Memoli, M. J. (2010).
The 1918 in�uenza pandemic: Lessons for 2009 and the future. Critical
care medicine.

Morris, P. (1990). The statistical analysis of discrete data, by tj santner and de
du�y. pp 367. dm88. 1989. isbn 3-540-97018-5 (springer). The Mathe-
matical Gazette.

Negahban, S. N., Ravikumar, P., Wainwright, M. J., Yu, B., et al. (2012). A
uni�ed framework for high-dimensional analysis ofm-estimators with
decomposable regularizers. Statistical science, 27(4), 538–557.

Ostapuk, N., Yang, J., & Cudré-Mauroux, P. (2019). Activelink: Deep active
learning for link prediction in knowledge graphs. The World Wide
Web Conference, 1398–1408.

161

Østergård, T., Jensen, R. L., & Maagaard, S. E. (2018). A comparison of six
metamodeling techniques applied to building performance simulations.
Applied Energy, 211, 89–103.

Palmonari, M., & Minervini, P. (2020). Knowledge graph embeddings and ex-
plainable ai. Knowledge Graphs for Explainable Artificial Intelligence:
Foundations, Applications and Challenges, IOS Press„ Amsterdam, 49–
72.

Peng, H., Bobade, S. U., Cotterell, M. E., & Miller, J. A. (2018). Forecasting
tra�c �ow: Short term, long term, and when it rains. International
Conference on Big Data.

Peng, H., Klepp, N., Toutiaee, M., Arpinar, I. B., & Miller, J. A. (2019). Knowl-
edge and situation-aware vehicle tra�c forecasting. 2019 IEEE Interna-
tional Conference on Big Data (Big Data).

Peng, H., & Miller, J. A. (2019). Multi-step short term tra�c �ow forecasting
using temporal and spatial data. International Conference on Big Data,
110–124.

Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis
(Vol. 4). Cambridge university press.

Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71(7-9),
1180–1190.

Plumb, G., Molitor, D., & Talwalkar, A. S. (2018). Model agnostic supervised
local explanations. Advances in Neural Information Processing Systems.

Prasanth, S., Singh, U., Kumar, A., Tikkiwal, V. A., & Chong, P. H. (2020).
Forecasting spread of covid-19 using google trends: A hybrid gwo-deep
learning approach. Chaos, Solitons & Fractals.

Provisional death counts for coronavirus disease 2019 (covid-19). (2021). https:
//www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm

Przymus, P., Hmamouche, Y., Casali, A., & Lakhal, L. (2017). Improving
multivariate time series forecasting with random walks with restarts on
causality graphs. 2017 IEEE International Conference on Data Mining
Workshops (ICDMW).

162

https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., & Cottrell, G. (2017). A
dual-stage attention-based recurrent neural network for time series pre-
diction. arXiv preprint.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434.

Rangapuram, S. S., Seeger, M., Gasthaus, J., Stella, L., Wang, Y., & Januschowski,
T. (2018). Deep state space models for time series forecasting. Proceed-
ings of the 32nd international conference on neural information process-
ing systems.

Ravi, S., & Larochelle, H. (2016). Optimization as a model for few-shot learn-
ing.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
Uni�ed, real-time object detection. Proceedings of the IEEE conference
on computer vision and pattern recognition, 779–788.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " why should i trust you?" ex-
plaining the predictions of any classi�er. Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data min-
ing.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision
model-agnostic explanations. Thirty-Second AAAI Conference on Arti-
ficial Intelligence.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis: The
primer. John Wiley & Sons.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016).
One-shot learning with memory-augmented neural networks. arXiv
preprint arXiv:1605.06065.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008).
The graph neural network model. IEEE transactions on neural net-
works, 20(1), 61–80.

163

Sheth, A., Gaur, M., Kursuncu, U., & Wickramarachchi, R. (2019). Shades of
knowledge-infused learning for enhancing deep learning. IEEE Inter-
net Computing, 23(6), 54–63.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., & Woo, W.-c. (2015).
Convolutional lstm network: A machine learning approach for precip-
itation nowcasting. Advances in neural information processing systems.

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important fea-
tures through propagating activation di�erences. Proceedings of the 34th
International Conference on Machine Learning-Volume 70.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional
networks: Visualising image classi�cation models and saliency maps.
arXiv preprint arXiv:1312.6034.

Simonyan, K., & Zisserman, A. (2014a). Two-stream convolutional networks
for action recognition in videos. Advances in neural information pro-
cessing systems, 568–576.

Simonyan, K., & Zisserman, A. (2014b). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Smyl, S. (n.d.). A hybrid method of exponential smoothing and recurrent
neural networks for time series forecasting. IJF.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Srivastava, N., Mansimov, E., & Salakhudinov, R. (2015). Unsupervised learn-
ing of video representations using lstms. International conference on
machine learning, 843–852.

Storn, R. (1995). Di�errential evolution-a simple and e�cient adaptive scheme
for global optimization over continuous spaces. Technical report, Inter-
national Computer Science Institute.

Su, J., Vargas, D. V., & Sakurai, K. (2019). One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep
networks. Proceedings of the 34th International Conference on Machine
Learning-Volume 70.

164

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning
with neural networks. arXiv preprint.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolu-
tions. Proceedings of the IEEE conference on computer vision and pattern
recognition, 1–9.

Taieb, S. B., Hyndman, R. J. et al. (2012). Recursive and direct multi-step fore-
casting: The best of both worlds. Citeseer.

Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statisti-
cian.

Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation via deep
neural networks. Proceedings of the IEEE conference on computer vision
and pattern recognition, 1653–1660.

Toutiaee, M., & Miller, J. A. (2020). Gaussian function on response surface es-
timation. 2020 IEEE International Conference on Big Data (Big Data),
1097–1102.

United states covid-19 cases and deaths by state over time. (n.d.). https://data.
cdc.gov/Case- Surveillance/United- States- COVID- 19- Cases- and-
Deaths-by-State-o/9mfq-cb36

Vaghasia, S. (2018). An approach of tra�c �ow prediction using arima model
with fuzzy wavelet transform.

Van Looveren, A., & Klaise, J. (2019). Interpretable counterfactual explanations
guided by prototypes. arXiv preprint arXiv:1907.02584.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances
in neural information processing systems.

Venables, W. N., & Ripley, B. D. (2013). Modern applied statistics with s-plus.
Springer Science & Business Media.

Vidakovic, B. (2009). Statistical modeling by wavelets (Vol. 503). John Wiley &
Sons.

Wang, P., Lu, Z., & Tang, Z. (2013). An application of the kriging method in
global sensitivity analysis with parameter uncertainty. Applied Mathe-
matical Modelling.

165

https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36

Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Foster, D., & Januschowski,
T. (n.d.). Deep factors for forecasting. International Conference on
Machine Learning.

Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., & Morris, M. D.
(1992). Screening, predicting, and computer experiments. Technomet-
rics.

Who coronavirus (covid-19) dashboard. (2021). https://covid19.who.int/
Wu, N., Green, B., Ben, X., & O’Banion, S. (2020). Deep transformer mod-

els for time series forecasting: The in�uenza prevalence case. arXiv
preprint.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated resid-
ual transformations for deep neural networks. Proceedings of the IEEE
conference on computer vision and pattern recognition, 1492–1500.

Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019).
Modeling tabular data using conditional gan. Advances in Neural In-
formation Processing Systems, 7335–7345.

Yoon, J., Jarrett, D., & van der Schaar, M. (2019). Time-series generative ad-
versarial networks. Advances in Neural Information Processing Systems,
5508–5518.

Yoon, J., Jordon, J., & van der Schaar, M. (2018). Invase: Instance-wise variable
selection using neural networks. International Conference on Learning
Representations.

Yu, Y., Si, X., Hu, C., & Zhang, J. (n.d.). A review of recurrent neural networks:
Lstm cells and network architectures. Neural computation.

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
& Toderici, G. (2015). Beyond short snippets: Deep networks for video
classi�cation. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolu-
tional networks. European conference on computer vision.

Zhang, C.-H. et al. (2010). Nearly unbiased variable selection under minimax
concave penalty. The Annals of statistics, 38(2), 894–942.

166

https://covid19.who.int/

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. N.
(2017). Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. Proceedings of the IEEE International
Conference on Computer Vision.

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., & Li, H.
(2019). T-gcn: A temporal graph convolutional network for tra�c pre-
diction. IEEE Transactions on Intelligent Transportation Systems.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning
deep features for discriminative localization. Proceedings of the IEEE
conference on computer vision and pattern recognition, 2921–2929.

Zhou, G.-B., Wu, J., Zhang, C.-L., & Zhou, Z.-H. (2016). Minimal gated unit
for recurrent neural networks. International Journal of Automation
and Computing.

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image
translation using cycle-consistent adversarial networks. Proceedings of
the IEEE international conference on computer vision, 2223–2232.

Zivot, E., & Wang, J. (2006). Vector autoregressive models for multivariate
time series. Modeling financial time series with S-PLUS®.

167

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation and Research Objectives
	Contributions and Outlines

	Literature Review
	Overview of Traditional Methods
	Machine Learning Approaches
	Generative Adversarial Networks

	Improving Time-Series Forecasting by eXogenous Variables
	Introduction
	Related Work
	Aggregate Mobility Data
	COVID-19 Dataset
	SARIMAX
	Minimax Concave Penalty
	Vector Auto-Regressive model
	Random Walk
	GCN_LSTM
	Rolling Validation for Multiple Horizons
	Hyperparameters and Architectures
	Mortality Prediction Performance
	Conclusion

	Improving Intermediate Length Time-Series Data by Hybrid Models
	Background
	Dataset
	Data Preprocessing
	Lag Selection
	Related Work
	Modeling Studies for COVID-19
	ARIMA
	SARIMA
	Artificial Neural Networks
	Gated Recurrent Unit (GRU)-based Autoencoders
	LSTM with Convolutional Layer
	Wavelet-based Neural Network Models
	Fitting SARIMAX Model
	Rolling Validation for Multiple Horizons
	Backcasting Strategy
	Fitting of Wavelet-ANN Model
	Results
	Conclusion

	Improving Classification Performance by Transfer Learning in Undersampled Videos
	Introduction
	Previous Work
	Video Format and Preparation
	Model Selection
	Fresh Convolutional Neural Network
	Transfer Learning
	Results
	Model Performance
	Why VGG19 Outperformed?
	Conclusion

	Use of Knowledge Graphs in Time-Series Forecasting
	Introduction
	Related Work
	Knowledge Graph Use Cases
	Conclusion

	Metamodeling for Prediction and Interpretation
	Metamodeling
	Evaluation Summary
	Black-Box Interpretation
	Interpretable Models
	Our Contribution
	Gaussian Function On Response Surface Estimation; G-FORSE
	Theoretical Results
	Experiments
	Results
	Group Explanation
	Advantages and Disadvantages
	Conclusion

	Conclusion
	Bibliography

