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Abstract

Pseudo-random number are di�erent from the true random numbers. Test-
ing on whether pseudo-random number generator (PRNG) is accurate is nec-
essary because of the increasing need in the advantages of PRNG than the true
ones. In this thesis, we use a new way that converts the one dimensional num-
bers in to two dimensional lattice, and testing whether the lattice we generate
follows the white noise or not. The method we used is called the maximum
pseudo-likelihood estimator (MPLE), which is from Ising model. Finally we
look at the results to see where the boundaries of our method lies.
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Chapter 1

Introduction

The di�erence between true random number generators (TRNGs) and pseudo-
random number generators (PRNGs) on generating numbers is that TRNGs
use physical means from nature, and PRNGs use mathematical algorithms from
computer (Haahr, 2019). Much research has been done on RNG’s to �nd
modern algorithm number sequences that generates truly random sequences.
But there is still space for improvement on today’s research since the results of
PRNG’s are still pseudo. PRNG’s results can be measured, standardized, and
controlled. TRNGs can not be detected since it’s truly unpredictable.

A potential advantage of a PRNG is that one can reproduce the same se-
quence of numbers in another time by simply knowing the starting point or
seed of the sequence (Lau Yu, 2018). PRNG is commonly used for its low cost,
periodicity, and e�ciency, which TRNGs can’t match(Pandya, 2019).

To improve the PRNGs and make the number generated as close to true ran-
dom numbers as possible, an e�cient testing of whether they behave as white
noise is necessary. There are ways to detect the "pseudo" randomness. Kenny
(2005) conducted a research to generate a more advanced view of statistical tests
for true random number generators. Her report was based on the NIST test
suite for random numbers, which was an e�ect way to test test randomness dur-
ing that period. An earlier stage, Professor Marsaglia (1995) developed diehard
tests in seceral years in order to measure random number generators’ quality.
Diehard tests include a battery of statistical tests, such as the birthday spacing
test, the overlapping permutation test, and many other tests which return a
p-value (Florida State, 1995).
However, some early approches may have various defects. Take a very early
research, conducted by Neumann (1946), as an example. The middle-square
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method was applied in the study, which resulted in self-repetition for all se-
quences eventually. Furthermore, some conclusions may be not appropriate.
For instance, Beth and Dai (1980) concluded that Kolmogorov complexity and
Linear complexity are the same, but this conclusion was proved to be incorrect
by Wang (1999).
What we are proposing here is a new method to test for white noise on two di-
mensional pseudo random numbers. We use Dr. seymour’s (2001) method by
�rst rearranging the one dimensional pseudo random numbers in a 2-D lattice,
then apply maximum pseudo-likelihood estimator (MPLE) on di�erent type
of pseudo random numbers generated to see under what condition could the
method be applied, and what are the results.
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Chapter 2

Modeling Background

2.1 Ising model and MPLE
The Ising model was invented by the physicist Wilhelm Lenz (1920), the one-
dimensional Ising model was solved by his student Ernst Ising (1925) , and two-
dimensional square-lattice Ising model was analytically described by Lars On-
sager (1944). It is a model of ferromagnetism in statistical mechanics, and was
originally developed to describe the magnetic dipole moments of atom spins in
a lattice (+1 for up or 1 for down). We use discrete variables to represent these
two states, where the local structure repeats periodically in all directions, result-
ing each spin interact with neighbors.

Figure 2.1: 2D Ising Model

Figure 2.1 shows a lattice in 4 ∗ 4 subset ofZ2, the lattice in two dimension.
Consider the cross as site i in an n ∗ n lattice Λn, i ∈ Λn. Let j be one of
the four nearest neighbours,Ni be the set of these four nearest neighbours of
i, j ∈ Ni andNi ⊂ Λn. The spin of the atom, which is the random number
taking the values−1 or +1 at site i is denoted byXi. The collection of allXi,
i ∈ Λn is denoted by XΛn . βis a coe�cient governing how strongly sites and

3



interact. For a lattice Λ with boundary δΛ, the Ising model on Λ is:

P (XΛ = xΛ | xΛn) =
e
β( 1

2

∑
(i,j)∈Λ

∑
j∈Ni

xixj+
∑
i∈Λ

∑
j∈δΛ∩Ni

xixj)

Zi

Where δΛ is the set of lattice sites which neighbor sites in Lambda but are not
contained in Lambda. Here Zi is the normalizing constant, which sums over
all con�gurations of Λ, and which is computationally intractable. In practice,
the site i can never be on the boundary of the lattice because it must have a
complete set of neighbors.
Because this distribution cannot be computed, we turn to using the single-site
conditional distributions. These single-site conditional probabilities are called
the local characteristics of the Markov random �eld (MRF):

P (Xi = xi | xj, j ∈ Ni) =
e
βxi(

∑
j∈Ni

xj)

e
β(

∑
j∈Ni

xj[xi=1])

+ e
−β(

∑
j∈Ni

xj[xi=−1])

The pseudo-likelihood �rst proposed by Besag (1975) multiplies the conditional
distributions at grid sites given neighboring sites:

PL(β;XΛn) =
∏
i∈Λn

P (Xi = xi | xj, j ∈ Ni; β)

His idea was to treat all sites as independent, and multiple all of the local char-
acteristics together. Use optimization to maximize in β and get the maximum
pseudo-likelihood estimate (MPLE) . It gives an exponentially consistent pa-
rameter estimate called a maximum pseudo-likelihood estimate (MPLE). The
we use the method in Dr. Seymour’s paper (2001) to get the MPLE of the lattice,
we extract each 10 ∗ 10 matrix side by side inside the lattice, �nd their pseudo-
likelihood estimate, then optimal to �nd the maximum pseudo-likelihood esti-
mate. ().

2.2 Hypothesis
The null and alternative hypotheses are two mutually exclusive statements about
a population. A hypothesis test uses sample data to determine whether to reject
the null hypothesis. The null hypothesis (H0) is often an initial claim that is
based on previous analyses or specialized knowledge. The alternative hypothesis
(Ha) is what you might believe to be true or hope to prove true. (cite)
We propose the main null hypothesis to be the Ising model parameter β is 0,
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meaning there are no neighboring interactions. Pseudo-likelihood estimator is
likelihood estimator, which we have white noise: H0 : β = 0. The alternative
hypothesis is the Ising parameter is not 0, which is not white noise: Ha : β 6= 0

(Ising, 1925). The purpose is to test if the null hypothesis is true under di�erent
lattices. There are two tests to test if the lattice follows white noise. We apply
the Anderson-Darling (AD) test for the composite hypothesis of normality and
Box test for serial auto-correlation on β̂ to see if the lattice is really white noise
(Anderson, 2011). The null hypothesis of AD test is the data are normally dis-
tributed under mean 0 (mean for white noise). When p ≥ 0.05 we fail to reject
normality. The null hypothesis of Box test is the data have 0 serial autocorrela-
tion. Under this test, when p ≥ 0.05 we fail to reject that there is no signi�cant
serial autocorrelation (Box, 1970). The BOx test is also used for the auto serial
correlation (ACF) plots in the later chaperter. If both tests fail to reject, we can
conclude in high con�dence that the MPLEs of the lattice is normal with mean
0 and have zero serial autocorrelation, which is white noise (cite).
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Chapter 3

Simulation and
Exploration

As discussed in the previous section, our null hypothesis is where Ising parame-
ter β = 0, which indicates no neighboring interaction within the lattice, giving
white noise. The Alternative hypothesis is that there exists a Ising parameter
which is not 0. If the sample MPLEs (β̂) are not signi�cantly di�erent from
0 and are uncorrelated, then the lattice is white noise. To test whether the
MPLEs (β̂) generated from sub-blocks of a given lattice meet normality, we
simulate di�erent lattices to check for Null true and Null false cases. The series
of β̂ generated from a lattice are the MPLEs of 10 ∗ 10 non-overlapping sub-
lattices inside the whole lattice, for example, a 1000 ∗ 1000 lattice would have
(1000

10
)2 = 10000 of these sub-lattices and corresponding values of β̂.

3.1 Null hypothesis true case

First, we generate the Null hypothesis (H0) true case, where p = 0.5 for each
−1 and 1 points in the lattice. A 1000 ∗ 1000 lattice is as shown, red dots are
−1 points and yellow ones are 1 :

6



Figure 3.1: 1000 ∗ 1000, p = 0.5 lattice

Figure 3.1 looks random, it is likely white noise.
To check this, we look at the histogram to see if the distribution is approxi-

mately normal distribution with mean 0, in which the lattice is normal.

Figure 3.2: Histogram for 1000 ∗ 1000, p = 0.5 lattice

Figure 3.2 is closed to bell-shaped and symmetric close to the mean 0, we
can test for normality.
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An auto correlation function (ACF) plot shows serial correlation in data.
Look at the ACF plot: Figure 3.3 shows the ACF, which has a spike at lag 0 and

Figure 3.3: ACF of 1000 ∗ 1000, p = 0.5 lattice

cut-o� for following lags, which are within 95% con�dence interval. There is
no enough statistical evidence to prove the MPLEs have serial autocorrelation.
Thus, for Null hypothesis (H0) true case, we assume the MPLEs (β̂) is white
noise.

3.2 Null hypothesis false cases

Then, we apply the MPLE method on Null hypothesis (H0) false case, where
there isn’t a white noise case.

3.2.1 Existed Lattice
Looking at the existed lattice given by Dr. Seymour from personal communica-
tion, where β = 0.3. The 100 ∗ 100 lattice is as shown, red dots are−1 points
and yellow ones are 1 :
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Figure 3.4: 100 ∗ 100, existed lattice

Figure 3.4 looks non-normal. Then we look at the histogram and ACF
plots.

Figure 3.5: histogram for 100 ∗ 100, existed lattice

Figure 3.5 is not symmetric about the mean, we assume it is not normal.
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Figure 3.6: ACF of 100 ∗ 100, existed lattice

Figure 3.6 shows the autocorrelations plot seems to spike at lag 0 and 5,
then cut-o� for following lags, values for the ACF are within 95% con�dence
interval. The MPLEs seems to have no signi�cant autocorrelation values. Thus,
for the existed lattice, we assume the MPLEs (β̂) are not white noise.

3.2.2 Replicated matrix
Then we create small n ∗ n null hypothesis true matrix and replicate several
times to display them side by side in a 1000 ∗ 1000 lattice. Set the range of n
from 20 to 500, view their results.

n ∗ n=20 ∗ 20 matrix

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :
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Figure 3.7: Replicated Lattice with n ∗ n = 20 ∗ 20

�gure 3.7 has a clear pattern, it is not white noise. Then we look at the
histogram and ACF plots.

Figure 3.8: Histogram for Replicated Lattice with n ∗ n = 20 ∗ 20

Figure 3.8 does not follow the shape of normal distribution.
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Figure 3.9: ACF of Replicated Lattice with n ∗ n = 20 ∗ 20

Figure 3.9 shows all lags of ACF are outside the 95% con�dence interval in
a decreasing trend. The MPLEs have clear serail autocorrelation. Thus, for the
replicated Lattice with n ∗ n = 20 ∗ 20, we assume MPLEs (β̂) is not white
noise.

n ∗ n=25 ∗ 25 matrix

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.10: Replicated Lattice with n ∗ n = 25 ∗ 25

12



�gure 3.10 has a clear pattern, it is not white noise. Then we look at the
histogram and ACF plots.

Figure 3.11: Histogram for Replicated Lattice with n ∗ n = 25 ∗ 25

�gure 3.11 does not follow the shape of normal distribution.

Figure 3.12: ACF of Replicated Lattice with n ∗ n = 25 ∗ 25

�gure 3.12 shows ACF plot has a strong trend and periodic pattern, all lags
are outside the 95% con�dence interval. The MPLEs have clear serial autocorre-
lation. Thus, for the replicated Lattice withn ∗n = 25 ∗ 25, we assume MPLEs
(β̂) is not white noise.

13



n ∗ n=50 ∗ 50 matrix

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.13: Replicated Lattice with n ∗ n = 50 ∗ 50

�gure 3.13 has a pattern, it does not look like white noise. Then we look at
the histogram and acf plots.

Figure 3.14: Histogram for Replicated Lattice with n ∗ n = 50 ∗ 50

�gure 3.14 seems not following the normal distribution.
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Figure 3.15: ACF of Replicated Lattice with n ∗ n = 50 ∗ 50

�gure 3.15 shows ACF plot has a trend and periodic pattern. We decide the
MPLEs have serial autocorrelation. Thus, for the replicated lattice with n ∗ n
= 50 ∗ 50, it does not look like white noise.

n ∗ n=100 ∗ 100 matrix

The 1000 ∗ 1000 lattice is as shown:
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Figure 3.16: Replicated Lattice with n ∗ n = 100 ∗ 100

�gure 3.16 has no clear pattern, it looks like white noise. Then we look at
the histogram and ACF plots.

Figure 3.17: Histogram for Replicated Lattice with n ∗ n = 100 ∗ 100

�gure 3.17 it does not seem to follow normal distribution.
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Figure 3.18: ACF of Replicated Lattice with n ∗ n = 100 ∗ 100

�gure 3.18 shows ACF plot has a slowly decresing and periodic pattern with
sevral spikes, the MPLEs have autocorrelation. Thus, for the replicated lattice
with n ∗ n = 100 ∗ 100, it is not white noise

n ∗ n=250 ∗ 250 matrix

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.19: Replicated Lattice with n ∗ n = 250 ∗ 250

�gure 3.19 has no pattern, it looks like white noise. Then we look at the
histogram and ACF plots.
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Figure 3.20: Histogram for Replicated Lattice with n ∗ n = 250 ∗ 250

�gure 3.20 has a bell shape and symmetric about mean, it seems to follow
normal distribution.

Figure 3.21: ACF of Replicated Lattice with n ∗ n = 250 ∗ 250

�gure 3.21 shows ACF plot has spikes in lag 0 and 25 with a cut-o� pattern.
The MPLEs have serial autocorrelation. Thus, for the replicated Lattice with
n ∗ n = 250 ∗ 250, we assume it is not white noise.
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n ∗ n=500 ∗ 500 matrix

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.22: Replicated Lattice with n ∗ n = 500 ∗ 500

�gure 3.22 has no pattern, it looks like white noise. Then we look at the
histogram and ACF plots.

Figure 3.23: Histogram for Replicated Lattice with n ∗ n = 500 ∗ 500

�gure 3.23 has a bell shape and symmetric about mean, it seems to follow
normal distribution.
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Figure 3.24: ACF of Replicated Lattice with n ∗ n = 500 ∗ 500

�gure 3.24 shows ACF plot has a cut-o� pattern after lag 0, most ACFs are
within the 95% interval. The MPLEs have no serial autocorrelation. Thus, for
the replicated Lattice with n ∗ n = 500 ∗ 500, we assume it is white noise.

3.2.3 Blocking matrix
Within the 1000 ∗ 1000 null hypothesis true lattice, we set x number of n ∗ n
non-overlapping blocks with all points equal to−1 inside. By visualizing the
MPLEs, we can see n ∗ n size blocking squares inside the lattice. Change the
number (x) and the size (n ∗ n) of blocks, explore the data.

size n ∗ n = 5 ∗ 5, number x = 100 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :
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Figure 3.25: Blocking Lattice with 100, 5 ∗ 5 blocks

Figure 3.25 has no clear pattern, it is white noise. Then we look at the
histogram and ACF plots.

Figure 3.26: Histogram for Blocking Lattice with 100, 5 ∗ 5 blocks

�gure 3.26 has a bell shape and symmetric about mean, it follows normal
distribution.
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Figure 3.27: ACF of Blocking Lattice with 100, 5 ∗ 5 blocks

�gure 3.27 shows ACF plot has a cut-o� pattern after lag 0, most ACFs are
within the 95% interval. The MPLEs have no serial autocorrelation. Thus, for
the blocking lattice with 400, 5 ∗ 5 blocks, we assume it is white noise.

size n ∗ n = 5 ∗ 5, number x = 400 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.28: Blocking Lattice with 400, 5 ∗ 5 blocks

Figure 3.28 has no clear pattern, it is white noise. Then we look at the
histogram and ACF plots.
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Figure 3.29: Histogram for Blocking Lattice with 400, 5 ∗ 5 blocks

Figure 3.29 has a bell shape and symmetric about mean, it follows normal
distribution.

Figure 3.30: ACF of Blocking Lattice with 400, 5 ∗ 5 blocks

Figure 3.30 shows ACF plot has a cut-o� pattern after lag 0, most ACFs are
within the 95% interval. The MPLEs have no serial autocorrelation. Thus, for
the blocking lattice with 400, 5 ∗ 5 blocks, we assume it is white noise.

size n ∗ n = 5 ∗ 5, number x = 2500 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :
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Figure 3.31: Blocking Lattice with 2500, 5 ∗ 5 blocks

�gure 3.31 has no clear pattern, it is white noise. Then we look at the his-
togram and ACF plots.
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Figure 3.32: Histogram for Blocking Lattice with 2500, 5 ∗ 5 blocks

�gure 3.32 has a mean greater than 0, it does not follow normal distribution.
�gure 3.33 shows ACF plot has a cut-o� pattern after lag 0 and 1, most ACFs

Figure 3.33: ACF of Blocking Lattice with 2500, 5 ∗ 5 blocks

are within the 95% interval. The MPLEs have no serial autocorrelation. Thus,
for the blocking lattice with 2500, 5 ∗ 5 blocks, we assume it is not white noise.

size n ∗ n = 5 ∗ 5, number x = 4900 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :
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Figure 3.34: Blocking Lattice with 4900, 5 ∗ 5 blocks

�gure 3.34 has a pattern, it is not white noise. Then we look at the histogram
and ACF plots. �gure 3.35has a mean greater than 0, it does not follow normal

Figure 3.35: Histogram for Blocking Lattice with 4900, 5 ∗ 5 blocks

distribution.
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Figure 3.36: ACF of Blocking Lattice with 4900, 5 ∗ 5 blocks

�gure 3.36 shows ACF plot has a periodic pattern after lag 0, most ACFs
are outside the 95% interval. The MPLEs have serial autocorrelation. Thus, for
the blocking lattice with 4900, 5 ∗ 5 blocks, we assume it is not white noise.

size n ∗ n = 5 ∗ 5, number x = 6400 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.37: Blocking Lattice with 6400, 5 ∗ 5 blocks

�gure 3.37 has a clear pattern, it is not white noise. Then we look at the
histogram and ACF plots.
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Figure 3.38: Histogram for Blocking Lattice with 6400, 5 ∗ 5 blocks

�gure 3.38 has a mean greater than 0, it does not follow normal distribution.

Figure 3.39: ACF of Blocking Lattice with 6400, 5 ∗ 5 blocks

�gure 3.39 shows ACF plot has a periodic pattern after lag 0, most ACFs
are outside the 95% interval. The MPLEs have serial autocorrelation. Thus, for
the blocking lattice with 6400, 5 ∗ 5 blocks, we assume it is not white noise.

size n ∗ n = 10 ∗ 10, number x = 25 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :
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Figure 3.40: Blocking Lattice with 25, 10 ∗ 10 blocks

�gure 3.40 has a clear pattern, it is not white noise. Then we look at the
histogram and ACF plots.

Figure 3.41: Histogram for Blocking Lattice with 25, 10 ∗ 10 blocks

Figure 3.41 is not normal distributed.
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Figure 3.42: ACF of Blocking Lattice with 25, 10 ∗ 10blocks

Figure 3.42 shows ACF plot has a cut-o� pattern after lag 0, most ACFs
are within the 95% interval. The MPLEs have no serial autocorrelation.
Thus, for the blocking lattice with 25, 5 ∗ 5 blocks, we assume it is not white
noise.

size n ∗ n = 10 ∗ 10, number x = 100 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.43: Blocking Lattice with 100, 10 ∗ 10 blocks

�gure 3.43 has a clear pattern, it is not white noise. Then we look at the
histogram and ACF plots.
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Figure 3.44: Histogram for Blocking Lattice with 100, 10 ∗ 10 blocks

Figure 3.44 is not normal.

Figure 3.45: ACF of Blocking Lattice with 100, 10 ∗ 10 blocks

�gure 3.45 shows ACF plot has a cut-o� pattern after lag 0, most ACFs are
within the 95% interval. The MPLEs have no serial autocorrelation. Thus, for
the blocking lattice with 100, 10 ∗ 10 blocks, we assume it is not white noise.

size n ∗ n = 10 ∗ 10, number x = 2500 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :
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Figure 3.46: Blocking Lattice with 2500, 10 ∗ 10 blocks

�gure 3.46 has a clear pattern, it is not white noise. Then we look at the
histogram and ACF plots.

Figure 3.47: Histogram for Blocking Lattice with 2500, 10 ∗ 10 blocks

�gure 3.47 is highly skewed, it is not normal.
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Figure 3.48: ACF of Blocking Lattice with 2500, 10 ∗ 10blocks

�gure 3.48 shows ACF plot has a cut-o� pattern after lag 0, most ACFs are
within the 95% interval. The MPLEs have no serial autocorrelation. Thus, for
the blocking lattice with 2500, 10 ∗ 10 blocks, we assume it is not white noise.

size n ∗ n = 20 ∗ 20, number x = 1 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.49: Blocking Lattice with 1, 20 ∗ 20 blocks

Figure 3.49 has a block on the top, it is not white noise. Then we look at
the histogram and ACF plots.
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Figure 3.50: Histogram for Blocking Lattice with 1, 20 ∗ 20 blocks

Figure 3.50 is highly skewed, it is not normal.

Figure 3.51: ACF of Blocking Lattice with 1, 20 ∗ 20 blocks

Figure 3.51 shows ACF plot has a periodic pattern after lag 0, all ACFs are
outside the 95% interval. The MPLEs have serial autocorrelation. Thus, for the
blocking lattice with 1, 20 ∗ 20 blocks, we assume it is not white noise.

size n ∗ n = 20 ∗ 20, number x = 64 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :
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Figure 3.52: Blocking Lattice with 64, 20 ∗ 20 blocks

�gure 3.52 is not white noise. Then we look at the histogram and ACF
plots.

Figure 3.53: Histogram for Blocking Lattice with 64, 20 ∗ 20 blocks

�gure 3.53 is highly skewed, it is not normal.
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Figure 3.54: ACF of Blocking Lattice with 64, 20 ∗ 20 blocks

�gure 3.54 shows ACF plot has a cut-o� pattern after lag 1, most ACFs are
within the 95% interval. The MPLEs have no serial autocorrelation. Thus, for
the blocking lattice with 64, 20 ∗ 20 blocks, we assume it is not white noise.

size n ∗ n = 50 ∗ 50, number x = 1 blocks

The 1000 ∗ 1000 lattice is as shown, red dots are−1 points and yellow ones are
1 :

Figure 3.55: Blocking Lattice with 1, 50 ∗ 50 blocks

�gure 3.55 has a block on the top, it is not white noise. Then we look at the
histogram and ACF plots.
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Figure 3.56: Histogram for Blocking Lattice with 1, 50 ∗ 50 blocks

�gure 3.56 is not normal.

Figure 3.57: ACF of Blocking Lattice with 1, 50 ∗ 50 blocks

�gure 3.57 shows ACF plot has a cut-o� pattern after lag 4, most ACFs are
within the 95% interval. The MPLEs have no serial autocorrelation. Thus, for
the blocking lattice with 1, 50 ∗ 50 blocks, we assume it is not white noise.
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Chapter 4

Results

We simulate 100 or 200 lattices for each case and see their white noise test results
and the �ve number summary of p-values. The �ve-number summary describes
statistical information about a dataset. Five most important sample percentiles
are listed: the sample minimum, the lower quartile, the median, the upper
quartile, the sample maximum. The reason we choose to do the part of the
simulations 100 timesis because it takes more than 2 hours to do that for a 200

times simulation blocking matrix case like n ∗ n = 50 ∗ 50, x = 1, which is a
time consuming test in reality. We fail to reject the 100 or 200 simulations for
the two tests if more than 95% of the p-values are≥ 0.05.

4.1 Null hypothesis true case
First we look at the null hypothesis true case:

Table 4.1: p-value Summary for Null True Case β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 95.50 % 0.9992 0.0051 0.2841 0.7936 0.5592
Box test 94.59% 0.9977 0.0037 0.2399 0.7877 0.4856

Table 4.1 shows the maximum and minimum values, the lower and upper quar-
tiles, the median, and the percentage of p ≤ 0.05 for normality test and serial
auto-correlation test when null is true. It is obvious that more than 95% of the
p-value for both AD test and Box test are larger than or equal to 0.05, indicating
that p = 0.5 lattice is normal and have no serial auto correlation. It is obvious
to conclude that it is detected as white noise under our method.
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4.2 Null hypothesis false cases
Then we look at these null hypothesis false case.

4.2.1 Existed Lattice
The existed lattice does not need to be simulated 200 times, so we test on itself:

Table 4.2: p-value summary for Existed Lattice β̂

p -values
AD test 0.001
Box test 0.683

Table 4.2 shows that p-value for AD test is less than 0.05, and larger than 0.05

for the Box test, indicating the existed lattice is not normal but have no serial
auto correlation. This is not white noise.

4.2.2 Replicated matrix

n ∗ n=20 ∗ 20 matrix

Then we look at the replicated matrix cases:

Table 4.3: p-value Summary for Replicated Lattice with n ∗ n = 20 ∗ 20 β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 0% 0.003 0.001 0.001 0.001 0.001
Box test 1.5% 0.9613 0.000 0.000 0.000 0.000

Table 4.3 shows the maximum and minimum values, the lower and upper quar-
tiles, the median, and the percentage of p ≤ 0.05 for normality test and serial
auto-correlation test when n ∗ n = 20 ∗ 20 for the replicated lattice. The per-
centage of p-value larger than or equal to 0.05 for both AD test and Box test
are close to 0, indicating the lattice is not normal under mean 0 but have serial
auto correlation. It is not detected as white noise.
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n ∗ n=25 ∗ 25 matrix

Table 4.4: p-value Summary for Replicated Lattice with n ∗ n = 25 ∗ 25 β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 51% 0.761 0.001 0.013 0.119 0.051
Box test 9% 0.9698 0.000 0.000 0.000 0.000

Table 4.4 shows the percentage of p-value larger than or equal to 0.05 for
both AD test and Box test are less than 95%, indicating the lattice is not normal
under mean 0 and have serial auto correlation. It is not detected as white noise.

n ∗ n=50 ∗ 50 matrix

Table 4.5: p-value Summary for Replicated Lattice with n ∗ n = 50 ∗ 50 β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 54% 0.838 0.001 0.019 0.161 0.062
Box test 7% 0.908 0.000 0.000 0.000 0.000

Table 4.5 shows the percentage of p-value larger than or equal to 0.05 for
both AD test and Box test are less than 95%, indicating the lattice is not normal
under mean 0 and have serial auto correlation. It is not detected as white noise.

n ∗ n=100 ∗ 100 matrix

Table 4.6: p-value Summary for Replicated Lattice with n ∗ n = 100 ∗ 100 β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 95% 0.966 0.016 0.204 0.658 0.404
Box test 23% 0.961 0.000 0.000 0.003 0.000

Table 4.6 shows the percentage of p-value larger than or equal to 0.05 for
AD test exceeds 95% and less than 95% for the Box test, indicating the lattice
is tested normal with mean 0 but have serial auto correlation. It is not detected
as white noise.
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n ∗ n=250 ∗ 250 matrix

Table 4.7: p-value Summary for Replicated Lattice with n ∗ n = 250 ∗ 250 β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 96% 0.997 0.006 0.222 0.757 0.465
Box test 35% 0.866 0.000 0.000 0.013 0.003

Table 4.7 shows the percentage of p-value larger than or equal to 0.05 for
AD test exceeds 95% and less than 95% for the Box test, indicating the lattice
is tested normal with mean 0 but have serial auto correlation. It is not detected
as white noise.

n ∗ n=500 ∗ 500 matrix

Table 4.8: p-value Summary for Replicated Lattice with n ∗ n = 500 ∗ 500 β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 99% 0.991 0.036 0.240 0.837 0.559
Box test 66% 0.994 0.000 0.015 0.603 0.192

Table 4.8 shows the percentage of p-value larger than or equal to 0.05 for
AD test exceeds 95% and less than 95% for the Box test, indicating the lattice
is tested normal with mean 0 but have serial auto correlation. It is not detected
as white noise.

4.2.3 Blocking matrix

size n ∗ n = 5 ∗ 5, number x = 100 blocks

Finally we look at the blocking matrix cases:

Table 4.9: p-value Summary for Blocking Lattice with 100, 5 ∗ 5 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 95% 0.999 0.009 0.264 0.726 0.469
Box test 97% 0.999 0.004 0.231 0.848 0.552

Table 4.9 shows the maximum and minimum values, the lower and upper
quartiles, the median, and the percentage of p ≤ 0.05 for normality test and
serial auto-correlation test when there are 100, n ∗ n = 5 ∗ 5 blocks for the
blocking lattice. The percentage of p-value larger than or equal to 0.05 for both
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AD test and Box test exceeds 95%, indicating the lattice is tested normal and
have no serial auto correlation. It has no di�erentiate than white noise under
our method.

size n ∗ n = 5 ∗ 5, number x = 400 blocks

Table 4.10: p-value Summary for Blocking Lattice with 400, 5 ∗ 5 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 83.10% 0.816 0.001 0.093 0.368 0.193
Box test 97.18% 0.993 0.014 0.340 0.742 0.554

Table 4.10 shows the percentage of p-value larger than or equal to 0.05 for
Box test exceeds 95% and lower than 95% for the AD test, indicating the lattice
is tested as not normal under mean 0, but have no serial auto correlation. It is
not white noise.

size n ∗ n = 5 ∗ 5, number x = 2500 blocks

Table 4.11: p-value Summary for Blocking Lattice with 2500, 5 ∗ 5 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 0% 0.001 0.001 0.001 0.001 0.001
Box test 0% 0.000 0.000 0.000 0.000 0.000

Table 4.11 shows the percentage of p-value larger than or equal to 0.05 for
both AD test and Box test are 0, indicating the lattice is not normal under mean
0 and have serial auto correlation. It is not white noise.

size n ∗ n = 5 ∗ 5, number x = 4900 blocks

Table 4.12: p-value Summary for Blocking Lattice with 4900, 5 ∗ 5 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 0% 0.001 0.001 0.001 0.001 0.001
Box test 0% 0.000 0.000 0.000 0.000 0.000

Table 4.12 shows the percentage of p-value larger than or equal to 0.05 for
both AD test and Box test are 0, indicating the lattice is not normal under mean
0 and have serial auto correlation. It is not white noise.

42



size n ∗ n = 5 ∗ 5, number x = 6400 blocks

Table 4.13: p-value Summary for Blocking Lattice with 6400, 5 ∗ 5 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 0% 0.001 0.001 0.001 0.001 0.001
Box test 85.7% 0.000 0.000 0.000 0.000 0.000

Table 4.13 shows the percentage of p-value larger than or equal to 0.05

for both AD test and Box test are 0, indicating the lattice is tested not normal
under mean 0 and have serial auto correlation. The p-values for Box test are
high because the blocks are occupying most of the lattice, which can be seen in
Chapter 3. It is not white noise.

size n ∗ n = 10 ∗ 10, number x = 25 blocks

Table 4.14: p-value Summary for Blocking Lattice with 25, 10 ∗ 10 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 7% 0.001 0.001 0.001 0.001 0.001
Box test 99% 0.985 0.019 0.407 0.819 0.670

Table 4.14 shows the percentage of p-value larger than or equal to 0.05 for
Box test exceeds 95%, which is less than 95% for AD test, indicating the lattice
is not tested normal under mean 0 but have no serial auto correlation. It is not
white noise.

size n ∗ n = 10 ∗ 10, number x = 100 blocks

Table 4.15: p-value Summary for Blocking Lattice with 100, 10 ∗ 10 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 0% 0.001 0.001 0.001 0.001 0.001
Box test 0% 0 0 0 0 0

Table 4.15 shows the percentage of p-value larger than or equal to 0.05 for
both tests is equal to 0% for AD test, indicating the lattice is not normal under
mean 0 but have no serial auto correlation. It is not white noise.
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size n ∗ n = 10 ∗ 10, number x = 2500 blocks

Table 4.16: p-value Summary for Blocking Lattice with 2500, 10 ∗ 10 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 0% 0.001 0.001 0.001 0.001 0.001
Box test 0% 0.000 0.037 0.000 0.003 0.001

Table 4.16 shows the percentage of p-value larger than or equal to 0.05 for
both AD test and Box test are 0, indicating the lattice is not normal under mean
0 and have serial auto correlation. It is not white noise.

size n ∗ n = 20 ∗ 20, number x = 1 blocks

Table 4.17: p-value Summary for Blocking Lattice with 1, 20 ∗ 20 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 0% 0.001 0.001 0.001 0.001 0.001
Box test 2.40% 0.220 0.000 0.000 0.001 0.000

Table 4.17 shows the percentage of p-value larger than or equal to 0.05 for
both AD test and Box test are close to 0, indicating the lattice is not normal
under mean 0 and have serial auto correlation. It isn’t white noise.

size n ∗ n = 50 ∗ 50, number x = 1 blocks

Table 4.18: p-value Summary for Blocking Lattice with 1, 50 ∗ 50 Blocks β̂

% of p ≥ 0.05 max min 1st quartile 3rd quartile median
AD test 0% 0.001 0.001 0.001 0.001 0.001
Box test 0% 0 0 0 0 0

Table 4.18 shows the percentage of p-value larger than or equal to 0.05 for
both AD test and Box test are 0, indicating the lattice is not normal under mean
0 and have serial auto correlation. It is not white noise.
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Chapter 5

Conclusion

The only possible white noise is for null hypothesis true case, the lattice is al-
ways close to white noise. For existed lattice case, the lattice have no serial auto
correlation but is not normal distribution with mean 0. For replicated matrix
cases, when the size of replicated matrix increase, it got closer to the normality
and no serial auto correlations. When the replicated matrix n ∗ n>100 ∗ 100,
the lattices are normal with mean 0; however, all replicated matrix cases have
serial auto correlation. For blocking matrix cases, when the size of the blocks in-
crease, holding the number of the blocks constant, the lattices preform further
from white noise. Holding the size of the blocks constant, when the number
of the blocks increase, the lattices preform further from white noise. We only
detected white noise are when the size and number of blocks is less or equal to
n ∗ n = 5 ∗ 5, x = 400. Thant means when the blocks have small size and
numbers, our MPLE method may fail detecting the pseudo-randomness and
treat it as white noise. This is where our method need to be improved in the
future.
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